37,481 research outputs found

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal ÎŁ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism

    Get PDF
    This essay examines the philosophical significance of Ω\Omega-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω\Omega-logical validity can then be countenanced within a coalgebraic logic, and Ω\Omega-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω\Omega-logical validity correspond to those of second-order logical consequence, Ω\Omega-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets

    Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA

    Full text link
    Modal formulae express monadic second-order properties on Kripke frames, but in many important cases these have first-order equivalents. Computing such equivalents is important for both logical and computational reasons. On the other hand, canonicity of modal formulae is important, too, because it implies frame-completeness of logics axiomatized with canonical formulae. Computing a first-order equivalent of a modal formula amounts to elimination of second-order quantifiers. Two algorithms have been developed for second-order quantifier elimination: SCAN, based on constraint resolution, and DLS, based on a logical equivalence established by Ackermann. In this paper we introduce a new algorithm, SQEMA, for computing first-order equivalents (using a modal version of Ackermann's lemma) and, moreover, for proving canonicity of modal formulae. Unlike SCAN and DLS, it works directly on modal formulae, thus avoiding Skolemization and the subsequent problem of unskolemization. We present the core algorithm and illustrate it with some examples. We then prove its correctness and the canonicity of all formulae on which the algorithm succeeds. We show that it succeeds not only on all Sahlqvist formulae, but also on the larger class of inductive formulae, introduced in our earlier papers. Thus, we develop a purely algorithmic approach to proving canonical completeness in modal logic and, in particular, establish one of the most general completeness results in modal logic so far.Comment: 26 pages, no figures, to appear in the Logical Methods in Computer Scienc

    Logics and Their Galaxies

    Get PDF
    This article introduces some concepts that help exploring the ontological import of universal logic. It studies the notions of an antilogic and counterlogic associated to each logic and shows some of their properties. It presents the notion of galaxy, as the class of possible worlds compatible with a given logic.We explore some consequences of these developments

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    • …
    corecore