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Chapter 4 1

Modal !-Logic: Automata, 2

Neo-Logicism, and Set-Theoretic Realism 3

Hasen Khudairi 4

Abstract This essay examines the philosophical significance of !-logic in 5

Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between 6

algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be 7

interpreted as coalgebras. The modal profile of !-logical validity can then be 8

countenanced within a coalgebraic logic, and !-logical validity can be defined via 9

deterministic automata. I argue that the philosophical significance of the foregoing 10

is two-fold. First, because the epistemic and modal profiles of !-logical validity 11

correspond to those of second-order logical consequence, !-logical validity is 12

genuinely logical, and thus vindicates a neo-logicist conception of mathematical 13

truth in the set-theoretic multiverse. Second, the foregoing provides a modal- 14

computational account of the interpretation of mathematical vocabulary, adducing 15

in favor of a realist conception of the cumulative hierarchy of sets. 16

Keywords Modal !-logic · !-logical Validity · Modal Coalgebraic Automata · 17

Neo-Logicism · Set-theoretic Realism 18

4.1 Introduction 19

This essay examines the philosophical significance of the consequence relation 20

defined in the !-logic for set-theoretic languages. I argue that, as with second- 21

order logic, the modal profile of validity in !-Logic enables the property to be 22

epistemically tractable. Because of the dual isomorphism between algebras and 23

coalgebras, Boolean-valued models of set theory can be interpreted as coalgebras. 24
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In Sect. 4.2, I demonstrate how the modal profile of !-logical validity can be 25

countenanced within a coalgebraic logic, and how !-logical validity can further 26

be defined via automata. In Sect. 4.3, I examine how models of epistemic modal 27

algebras to which modal coalgebraic automata are dually isomorphic are availed 28

of in the computational theory of mind. Finally, in Sect. 4.4, the philosophical 29

significance of the characterization of the modal profile of !-logical validity for the 30

philosophy of mathematics is examined. I argue (i) that it vindicates a type of neo- 31

logicism with regard to mathematical truth in the set-theoretic multiverse, and (ii) 32

that it provides a modal and computational account of formal grasp of the concept 33

of ‘set’, adducing in favor of a realist conception of the cumulative hierarchy of sets. 34

Section 4.5 provides concluding remarks. 35

4.2 Definitions 36

In this section, I define the axioms of Zermelo-Fraenkel set theory with choice. I 37

define the mathematical properties of the large cardinal axioms to which ZFC can 38

be adjoined, and I provide a detailed characterization of the properties of !-logic for 39

ZFC. Because Boolean-valued algebraic models of !-logic are dually isomorphic to 40

coalgebras, a category of coalgebraic logic is then characterized which models both 41

modal logic and deterministic automata. Modal coalgebraic models of automata are 42

then argued to provide a precise characterization of the modal and computationalAQ1 43

profiles of !-logical validity. 44

4.2.1 Axioms1
45

• Empty set: 46

∃x∀u(u /∈ x) 47

• Extensionality: 48

x = y ⇐⇒ ∀u(u ∈ x ⇐⇒ u ∈ y) 49

• Pairing: 50

∃x∀u(u ∈ x ⇐⇒ u = a ∨ u = b) 51

• Union: 52

∃x∀u[u ∈ x ⇐⇒ ∃v(u ∈ v ∧ v ∈ a)] 53

• Separation: 54

∃x∀u[u ∈ x ⇐⇒ u ∈ a ∧ φ(u)] 55

• Power Set: 56

∃x∀u(u ∈ x ⇐⇒ u ⊆ a) 57

1For a standard presentation, see Jech (2003). For detailed, historical discussion, see Maddy
(1988a).
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• Infinity: 58

∃x∅ ∈ x ∧ ∀u(u ∈ x → {u} ∈ x) 59

• Replacement: 60

∀u∃!vψ(u, v) → ∀x∃y(∀u ∈ x)(∃v ∈ y)ψ(u, v) 61

• Choice: 62

∀u[u ∈ a → ∃v(v ∈ u)] ∧ ∀u, x[u ∈ a ∧ x ∈ a → ∃v(v ∈ u ⇐⇒ v ∈ 63

x) ∨ ¬v(v ∈ u ∧ v ∈ x)] → ∃x∀u[u ∈ a → ∃!v(v ∈ u ∧ u ∈ x)] 64

4.2.2 Large Cardinals 65

Borel sets of reals are subsets of ωω or R, closed under countable intersections and 66

unions.2 For all ordinals, a, such that 0 < a < ω1, and b < a, %0
a denotes the open 67

subsets of ωω formed under countable unions of sets in &0
b, and &0

a denotes the 68

closed subsets of ωω formed under countable intersections of %0
b . 69

Projective sets of reals are subsets of ωω, formed by complementations (ωω – u, 70

for u ⊆ ωω) and projections [p(u) = {⟨x1, . . . , xn⟩ ∈ ωω | ∃y⟨x1, . . . , xn, y⟩ ∈ u}]. 71

For all ordinals a, such that 0 < a < ω, &1
0 denotes closed subsets of ωω; &1

a is 72

formed by taking complements of the open subsets of ωω, %1
a ; and %1

a+1 is formed 73

by taking projections of sets in &1
a . 74

The full power set operation defines the cumulative hierarchy of sets, V, such thatAQ2 75

V0 = ∅; Va+1 = P(V0); and Vλ = ⋃
a<λ Va . 76

In the inner model program (cf. Woodin 2001, 2010, 2011; Kanamori 2012a,b), 77

the definable power set operation defines the constructible universe, L(R), in the 78

universe of sets V, where the sets are transitive such that a ∈ C ⇐⇒ a ⊆ C; 79

L(R) = Vω+1; La+1(R) = Def(La(R)); and Lλ(R) = ⋃
a<λ(La(R)). 80

Via inner models, Gödel (1940) proves the consistency of the generalized 81

continuum hypothesis, ℵℵa
a = ℵa+1, as well as the axiom of choice, relative to the 82

axioms of ZFC. However, for a countable transitive set of ordinals, M, in a model 83

of ZF without choice, one can define a generic set, G, such that, for all formulas, φ, 84

either φ or ¬φ is forced by a condition, f , in G. Let M[G] = ⋃
a<κ Ma[G], such that 85

M0[G] = {G}; with λ < κ , Mλ[G] = ⋃
a<λ Ma[G]; and Ma+1[G] = Va ∩ Ma[G].3 86

G is a Cohen real over M, and comprises a set-forcing extension of M. The relation 87

of set-forcing, !, can then be defined in the ground model, M, such that the forcing 88

condition, f , is a function from a finite subset of ω into {0,1}, and f ! u ∈ G if 89

f (u) = 1 and f ! u /∈ G if f (u) = 0. The cardinalities of an open dense ground 90

model, M, and a generic extension, G, are identical, only if the countable chain 91

condition (c.c.c.) is satisfied, such that, given a chain – i.e., a linearly ordered subset 92

of a partially ordered (reflexive, antisymmetric, transitive) set – there is a countable, 93

2See Koellner (2013), for the presentation, and for further discussion, of the definitions in this and
the subsequent paragraph.
3See Kanamori (2012a: 2.1; 2012b: 4.1), for further discussion.
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maximal antichain consisting of pairwise incompatible forcing conditions. Via set- 94

forcing extensions, Cohen (1963, 1964) constructs a model of ZF which negates 95

the generalized continuum hypothesis, and thus proves the independence thereof 96

relative to the axioms of ZF.4 97

Gödel (1946/1990: 1–2) proposes that the value of Orey sentences such as the 98

GCH might yet be decidable, if one avails of stronger theories to which new 99

axioms of infinity – i.e., large cardinal axioms – are adjoined.5 He writes that: 100

‘In set theory, e.g., the successive extensions can be represented by stronger and 101

stronger axioms of infinity. It is certainly impossible to give a combinatorial and 102

decidable characterization of what an axiom of infinity is; but there might exist, 103

e.g., a characterization of the following sort: An axiom of infinity is a proposition 104

which has a certain (decidable) formal structure and which in addition is true. 105

Such a concept of demonstrability might have the required closure property, i.e. 106

the following could be true: Any proof for a set-theoretic theorem in the next higher 107

system above set theory . . . is replaceable by a proof from such an axiom of infinity. 108

It is not impossible that for such a concept of demonstrability some completeness 109

theorem would hold which would say that every proposition expressible in set theory 110

is decidable from present axioms plus some true assertion about the largeness of the 111

universe of sets’. 112

For cardinals, x,a,C, C ⊆ a is closed unbounded in a, if it is closed [if x < C and 113⋃
(C ∩ a) = a, then a ∈ C] and unbounded (

⋃
C = a) (Kanamori, op. cit.: 360). 114

A cardinal, S, is stationary in a, if, for any closed unbounded C ⊆ a, C ∩ S ̸= ∅ 115

(op. cit.). An ideal is a subset of a set closed under countable unions, whereas filters 116

are subsets closed under countable intersections (361). A cardinal κ is regular if the 117

cofinality of κ – comprised of the unions of sets with cardinality less than κ – is 118

identical to κ . Uncountable regular limit cardinals are weakly inaccessible (op. cit.). 119

A strongly inaccessible cardinal is regular and has a strong limit, such that if λ < κ , 120

then 2λ < κ (op. cit.). 121

Large cardinal axioms are defined by elementary embeddings.6 Elementary 122

embeddings can be defined thus. For models A,B, and conditions φ, j: A → B, 123

φ⟨a1, . . . , an⟩ in A if and only if φ⟨j(a1), . . . , j(an)⟩ in B (363). A measurable 124

cardinal is defined as the ordinal denoted by the critical point of j, crit(j) (Koellner 125

and Woodin 2010: 7). Measurable cardinals are inaccessible (Kanamori, op. cit.). 126

Let κ be a cardinal, and η > κ an ordinal. κ is then η-strong, if there is a transitive 127

class M and an elementary embedding, j: V → M, such that crit(j) = κ, j(κ) > η, 128

and Vη ⊆ M (Koellner and Woodin, op. cit.). 129

κ is strong if and only if, for all η, it is η-strong (op. cit.). 130

4See Kanamori (2008), for further discussion.
5See Kanamori (2007), for further discussion. Kanamori (op. cit.: 154) notes that Gödel
(1931/1986: fn48a) makes a similar appeal to higher-order languages, in his proofs of the incom-
pleteness theorems. The incompleteness theorems are examined in further detail, in Sect. 4.4.2,
below.
6The definitions in the remainder of this subsection follow the presentations in Koellner and
Woodin (2010) and Woodin (2010, 2011).
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If A is a class, κ is η-A-strong, if there is a j : V → M, such that κ is η-strong 131

and j(A ∩ Vκ) ∩ Vη = A ∩ Vη (op. cit.). 132

κ is a Woodin cardinal, if κ is strongly inaccessible, and for all A ⊆ Vκ , there is a 133

cardinal κA < κ , such that κA is η-A-strong, for all η such that κη, η < κ (Koellner 134

and Woodin, op. cit.: 8). 135

κ is superstrong, if j : V → M, such that crit(j) = κ and Vj (κ) ⊆ M, which 136

entails that there are arbitrarily large Woodin cardinals below κ (op. cit.). 137

Large cardinal axioms can then be defined as follows. 138

∃x* is a large cardinal axiom, because: 139

(i) *x is a %2-formula; 140

(ii) if κ is a cardinal, such that V |= *(κ), then κ is strongly inaccessible; and 141

(iii) for all generic partial orders P ∈ Vκ , VP |= *(κ); INS is a non-stationary 142

ideal; AG is the canonical representation of reals in L(R), i.e. the interpretation 143

of A in M[G]; H(κ) is comprised of all of the sets whose transitive closure is 144

< κ (cf. Rittberg 2015); and L(R)Pmax |= ⟨H(ω2), ∈, INS , AG⟩ |= ‘φ’. P is a 145

homogeneous partial order in L(R), such that the generic extension of L(R)P
146

inherits the generic invariance, i.e., the absoluteness, of L(R). Thus, L(R)Pmax
147

is (i) effectively complete, i.e. invariant under set-forcing extensions; and (ii) 148

maximal, i.e. satisfies all &2-sentences and is thus consistent by set-forcing 149

over ground models (Woodin (ms): 28). 150

Assume ZFC and that there is a proper class of Woodin cardinals; A ∈ P(R) ∩ 151

L(R); φ is a &2-sentence; and V(G), s.t. ⟨H(ω2), ∈, INS , AG⟩ |= ‘φ’: Then, it can 152

be proven that L(R)Pmax |= ⟨H(ω2), ∈, INS , AG⟩ |= ‘φ’, where ‘φ’ := ∃A ∈ 153

+∞⟨H(ω1), ∈, A⟩ |= ψ . 154

The axiom of determinacy (AD) states that every set of reals, a ⊆ ωω is 155

determined, where κ is determined if it is decidable. 156

Woodin’s (1999) Axiom (*) can be thus countenanced: 157

ADL(R) and L[(Pω1)] is a Pmax-generic extension of L(R), 158

from which it can be derived that 2ℵ0 = ℵ2. Thus, ¬CH; and so CH is absolutely 159

decidable. 160

4.2.3 !-Logic 161

For partial orders, P, let VP = VB, where B is the regular open completion of (P).7 162

Ma = (Va)
M and MB

a = (VB
a )M = (VMB

a ). Sent denotes a set of sentences in 163

a first-order language of set theory. T ∪ {φ} is a set of sentences extending ZFC. 164

c.t.m abbreviates the notion of a countable transitive ∈-model. c.B.a. abbreviates 165

the notion of a complete Boolean algebra. 166

7The definitions in this section follow the presentation in Bagaria et al. (2006).
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Define a c.B.a. in V, such that VB. Let VB
0 = ∅; VB

λ = ⋃
b<λ VB

b , with λ a limit 167

ordinal; VB
a+1 = {f : X → B |X ⊆ VB

a }; and VB = ⋃
a∈On VB

a . 168

φ is true in VB, if its Boolean-value is 1B, if and only if 169

VB |= φ iff !φ"B = 1B. 170

Thus, for all ordinals, a, and every c.B.a. B, VB
a ≡ (Va)

V B
iff for all x ∈ VB, 171

∃y ∈ VB!x = y"B = 1B iff !x ∈ VB"B = 1B. 172

Then, VB
a |= φ iff VB |= ‘Va |= φ’. 173

!-logical validity can then be defined as follows: 174

For T ∪ {φ} ⊆ Sent , 175

T |=! φ, if for all ordinals, a, and c.B.a. B, if VB
a |= T, then VB

a |= φ. 176

Supposing that there exists a proper class of Woodin cardinals and if T ∪ {φ} ⊆ 177

Sent , then for all set-forcing conditions, P: 178

T |=! φ iff VT |= ‘T |=! φ’, 179

where T |=! φ ≡ ∅ |= ‘T |=! φ’. 180

The !-Conjecture states that V |=! φ iff VB |=! φ (Woodin ms). Thus, !- 181

logical validity is invariant in all set-forcing extensions of ground models in the 182

set-theoretic multiverse. 183

The soundness of !-Logic is defined by universally Baire sets of reals. For a 184

cardinal, e, let a set A be e-universally Baire, if for all partial orders P of cardinality 185

e, there exist trees, S and T on ω X λ, such that A = p[T] and if G ⊆ P is 186

generic, then p[T]G = RG – p[S]G (Koellner 2013). A is universally Baire, if it 187

is e-universally Baire for all e (op. cit.). 188

!-Logic is sound, such that V ⊢! φ → V |=! φ. However, the completeness 189

of !-Logic has yet to be resolved. 190

Finally, in category theory, a category C is comprised of a class Ob(C) of objects 191

a family of arrows for each pair of objects C(A,B) (Venema 2007: 421). A functor 192

from a category C to a category D, E: C → D, is an operation mapping objects and 193

arrows of C to objects and arrows of D (422). An endofunctor on C is a functor, E: 194

C → C (op. cit.). 195

A E-coalgebra is a pair A = (A, µ), with A an object of C referred to as the 196

carrier of A, and µ: A → E(A) is an arrow in C, referred to as the transition map of 197

A (390). 198

A = ⟨A, µ: A → E(A)⟩ is dually isomorphic to the category of algebras over the 199

functor µ (417–418). If µ is a functor on categories of sets, then Boolean-algebraic 200

models of !-logical validity are isomorphic to coalgebraic models. 201

The significance of the foregoing is that coalgebraic models may themselves be 202

availed of in order to define modal logic and automata theory. Coalgebras provide 203

therefore a setting in which the Boolean-valued models of set theory, the modal 204

profile of !-logical validity, and automata can be interdefined. In what follows, A 205

will comprise the coalgebraic model – dually isomorphic to the complete Boolean- 206

valued algebras defined in the !-Logic of ZFC – in which modal similarity types 207

and automata are definable. As a coalgebraic model of modal logic, A can be defined 208

as follows (407): 209
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For a set of formulas, *, let ∇* := " ∨
* ∧ ∧ ⋄*, where ⋄* denotes the set 210

{⋄φ | φ ∈ * (op. cit.). Then, 211

⋄φ ≡ ∇{φ, T}, 212

"φ ≡ ∇∅ ∨ ∇φ (op. cit.). 213

Let an E-coalgebraic modal model, A = ⟨S, λ, R[.]⟩, such that S,s ! ∇* if and 214

only if, for all (some) successors σ of s∈S, [*, σ (s) ∈ E(!A)] (op. cit.). 215

A coalgebraic model of deterministic automata can be thus defined (391). An 216

automaton is a tuple, A = ⟨A, aI , C, δ, F⟩, such that A is the state space of 217

the automaton A; aI ∈A is the automaton’s initial state; C is the coding for the 218

automaton’s alphabet, mapping numerals to properties of the natural numbers; δ: 219

A X C → A is a transition function, and F⊆ A is the collection of admissible 220

states, where F maps A to {1,0}, such that F: A → 1 if a∈F and A → 0 if a/∈F 221

(op. cit.). The determinacy of coalgebraic automata, the category of which is dually 222

isomorphic to the Set category satisfying !-logical consequence, is secured by the 223

existence of Woodin cardinals: Assuming ZFC, that λ is a limit of Woodin cardinals, 224

that there is a generic, set-forcing extension G ⊆ the collapse of ω < λ, and that 225

R∗ = ⋃{RG[a] |a < λ}, then R* |= the axiom of determinacy (AD) (Koellner and 226

Woodin, op. cit.: 10). 227

Finally, A = ⟨A, α:A → E(A)⟩ is dually isomorphic to the category of algebras 228

over the functor α (417–418). For a category C, object A, and endofunctor E, 229

define a new arrow, α, s.t. α:EA → A. A homomorphism, f , can further be 230

defined between algebras ⟨A, α⟩, and ⟨B, β⟩. Then, for the category of algebras, 231

the following commutative square can be defined: (i) EA → EB (Ef ); (ii) EA → 232

A (α); (iii) EB → B (β); and (iv) A → B (f ) (cf. Hughes, 2001: 7–8). The same 233

commutative square holds for the category of coalgebras, such that the latter are 234

defined by inverting the direction of the morphisms in both (ii) [A → EA (α)], and 235

(iii) [B → EB (β)] (op. cit.). 236

Thus, A is the coalgebraic category for modal, deterministic automata, dually 237

isomorphic to the complete Boolean-valued algebraic models of !-logical validity, 238

as defined in the category of sets. 239

4.3 Epistemic Modal Algebras and the Computational 240

Theory of Mind 241

Beyond the remit of Boolean-valued models of set-theoretic languages, models of 242

epistemic modal algebras are availed of by a number of paradigms in contemporary 243

empirical theorizing, including the computational theory of mind and the theory 244

of quantum computability. In Epistemic Modal Algebra, the topological boolean 245

algebra, A, can be formed by taking the powerset of the topological space, X, defined 246

above; i.e., A = P(X). The domain of A is comprised of formula-terms – eliding 247

propositions with names – assigned to elements of P(X), where the proposition- 248

letters are interpreted as encoding states of information. The top element of the 249
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algebra is denoted ‘1’ and the bottom element is denoted ‘0’. We interpret modal 250

operators, f(x), – i.e., intensional functions in the algebra – as both concerning 251

topological interiority, as well as reflecting epistemic possibilities. An Epistemic 252

Modal-valued Algebraic structure has the form, F = ⟨A, DP(X), ρ⟩, where ρ is 253

a mapping from points in the topological space to elements or regions of the 254

algebraic structure; i.e., ρ : DP(X) x DP(X) → A. A model over the Epistemic- 255

Modal Topological Boolean Algebraic structure has the form M = ⟨F, V⟩, where 256

V(a) ≤ ρ(a) and V(a,b) ∧ ρ(a, b) ≤ V(b).8 For all xx/a,φ ,y∈A: 257

f(1) = 1; 258

f(x) ≤ x; 259

f(x ∧ y) = f(x) ∧ f(y); 260

f[f(x)] = f(x); 261

V(a, a) > 0; 262

V(a, a) = 1; 263

V(a, b) = V(b, a); 264

V(a, b) ∧ V(b, c) ≤ V(a, c); 265

V(a = a) = ρ(a, a); 266

V(a, b) ≤ f[V(a, b)]; 267

V(¬φ) = ρ(¬φ) − f(φ); 268

V(⋄φ) = ρφ − f[−V(φ)]; 269

V("φ) = f[V(φ)] (cf. Lando, op. cit.).9 270

Marcus (2001) argues that mental representations can be treated as algebraic 271

rules characterizing the computation of operations on variables, where the values 272

of a target domain for the variables are universally quantified over and the function 273

is one-one, mapping a number of inputs to an equivalent number of outputs (35–36). 274

Models of the above algebraic rules can be defined in both classical and weighted, 275

connectionist systems: Both a single and multiple nodes can serve to represent the 276

variables for a target domain (42–45). Temporal synchrony or dynamic variable- 277

bindings are stored in short-term working memory (56–57), while information 278

relevant to long-term variable-bindings are stored in registers (54–56). Examples 279

of the foregoing algebraic rules on variable-binding include both the syntactic 280

concatenation of morphemes and noun phrase reduplication in linguistics (37–39, 281

70–72), as well as learning algorithms (45–48). Conditions on variable-binding 282

are further examined, including treating the binding relation between variables 283

and values as tensor products – i.e., an application of a multiplicative axiom 284

for variables and their values treated as vectors (53–54, 105–106). In order to 285

account for recursively formed, complex representations, which he refers to as 286

structured propositions, Marcus argues instead that the syntax and semantics of such 287

representations can be modeled via an ordered set of registers, which he refers to as 288

‘treelets’ (108). 289

8See Lando (2015), McKinsey (1944) and Rasiowa (1963), for further details.
9Note that, in cases of Boolean-valued epistemic topological algebras, models of corresponding
coalgebras will be topological (cf. Takeuchi 1985 for further discussion).
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A strengthened version of the algebraic rules on variable-binding can be accom- 290

modated in models of epistemic modal algebras, when the latter are augmented 291

by cylindrifications, i.e., operators on the algebra simulating the treatment of 292

quantification, and diagonal elements.10 By contrast to Boolean Algebras with 293

Operators, which are propositional, cylindric algebras define first-order logics. 294

Intuitively, valuation assignments for first-order variables are, in cylindric modal 295

logics, treated as possible worlds of the model, while existential and universal 296

quantifiers are replaced by, respectively, possibility and necessity operators (⋄ and 297

") (Venema 2013: 249). For first-order variables, {vi | i < α} with α an arbitrary, 298

fixed ordinal, vi = vj is replaced by a modal constant di,j (op. cit: 250). The 299

following clauses are valid, then, for a model, M, of cylindric modal logic, with 300

Ei,j a monadic predicate and Ti for i, j < α a dyadic predicate: 301

M, w ! p ⇐⇒ w ∈ V(p); 302

M, w ! di,j ⇐⇒ w ∈ Ei,j ; 303

M, w ! ⋄iψ ⇐⇒ there is a v with wTiv and M, v ⊢ ψ (252).11
304

Finally, a cylindric modal algebra of dimension α is an algebra, A = ⟨A,+, •, 305

–, 0, 1, ⋄i , dij ⟩i,j<α , where ⋄i is a unary operator which is normal (⋄i0 = 0) and 306

additive [⋄i (x + y) = ⋄ix + ⋄iy)] (257). 307

The philosophical interest of cylindric modal algebras to Marcus’ cognitive 308

models of algebraic variable-binding is that variable substitution is treated in the 309

modal algebras as a modal relation, while universal quantification is interpreted as 310

necessitation. The interest of translating universal generalization into operations of 311

epistemic necessitation is, finally, that – by identifying epistemic necessity with 312

apriority – both the algebraic rules for variable-binding and the recursive formation 313

of structured propositions can be seen as operations, the implicit knowledge of 314

which is apriori. 315

In quantum information theory, let a constructor be a computation defined over 316

physical systems. Constructors entrain nomologically possible transformations from 317

admissible input states to output states (cf. Deutsch 2013). On this approach, 318

10See Henkin et al (op. cit.: 162–163) for the introduction of cylindric algebras, and for the axioms
governing the cylindrification operators.
11Cylindric frames need further to satisfy the following axioms (op. cit.: 254):

1. p → ⋄ip
2. p → "i ⋄i p
3. ⋄i ⋄i p → ⋄ip
4. ⋄i ⋄j p → ⋄j ⋄i p
5. di,i

6. ⋄i (di,j ∧ p) → "i (di,j → p)
[Translating the diagonal element and cylindric (modal) operator into, respectively, monadic

and dyadic predicates and universal quantification: ∀xyz[(Tixy∧Ei,j y∧Tixz∧Ei,j z) → y = z]
(op. cit.)]

7. di,j ⇐⇒ ⋄k(di,k],∧ dk,j ).
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information is defined in terms of constructors, i.e., intensional computational 319

properties. The foregoing transformations, as induced by constructors, are referred 320

to as tasks. Because constructors encode the counterfactual to the effect that, were 321

an initial state to be computed over, then the output state would result, modal 322

notions are thus constitutive of the definition of the tasks at issue. There are, further, 323

both topological and algebraic aspects of the foregoing modal approach to quantum 324

computation.12 The composition of tasks is formed by taking their union, where the 325

union of tasks can be satisfiable while its component tasks might not be. Suppose, 326

e.g., that the information states at issue concern the spin of a particle. A spin-state 327

vector will be the sum of the probabilities that the particle is spinning either upward 328

or downward. Suppose that there are two particles which can be spinning either 329

upward or downward. Both particles can be spinning upward; spinning downward; 330

particle-1 can be spinning upward while particle-2 spins downward; and vice versa. 331

The state vector, V which records the foregoing possibilities – i.e., the superposition 332

of the states – will be equal to the product of the spin-state of particle-1 and the 333

spin-state of particle-2. If the particles are both spinning upward or both spinning 334

downward, then V will be .5. However – relative to the value of each particle 335

vector, referred to as its eigenvalue – the probability that particle-1 will be spinning 336

upward is .5 and the probability that particle-2 will be spinning downward is .5, 337

such that the probability that both will be spinning upward or downward = .5 × .5 338

= .25. Considered as the superposition of the two states, V will thus be unequal to 339

the product of their eigenvalues, and is said to be entangled. If the indeterminacy 340

evinced by entangled states is interpreted as inconsistency, then the computational 341

properties at issue might further have to be defined on a distribution of epistemic 342

possibilities which permit of hyperintensional distinctions.13
343

4.4 Modal Coalgebraic Automata and the Philosophy of 344

Mathematics 345

This section examines the philosophical significance of the Boolean-valued models 346

of set-theoretic languages and the modal coalgebraic automata to which they are 347

dually isomorphic. I argue that, similarly to second-order logical consequence, 348

(i) the ‘mathematical entanglement’ of !-logical validity does not undermine its 349

status as a relation of pure logic; and (ii) both the modal profile and model- 350

theoretic characterization of !-logical consequence provide a guide to its epistemic 351

12For an examination of the interaction between topos theory and an S4 modal axiomatization of
computable functions, see Awodey et al. (2000).
13The nature of the indeterminacy in question is examined in Saunders and Wallace (2008),
Deutsch (2010), Hawthorne (2010), Wilson (2011), Wallace (2012: 287–289), Lewis (2016: 277–
278), and Khudairi (ms). For a thorough examination of approaches to the ontology of quantum
mechanics, see Arntzenius (2012: ch. 3).
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tractability.14 I argue, then, that there are several considerations adducing in favor of 352

the claim that the interpretation of the concept of set constitutively involves modal 353

notions. The role of the category of modal coalegebraic deterministic automata 354

in (i) characterizing the modal profile of !-logical consequence, and (ii) being 355

constitutive of the formal understanding-conditions for the concept of set, provides, 356

then, support for a realist conception of the cumulative hierarchy. 357

4.4.1 Neo-Logicism 358

Frege’s (1884/1980; 1893/2013) proposal – that cardinal numbers can be explained 359

by specifying an equivalence relation, expressible in the signature of second-order 360

logic and identity, on lower-order representatives for higher-order entities – is the 361

first attempt to provide a foundation for mathematics on the basis of logical axioms 362

rather than rational or empirical intuition. In Frege (1884/1980. cit.: 68) and Wright 363

(1983: 104–105), the number of the concept, A, is argued to be identical to the 364

number of the concept, B, if and only if there is a one-to-one correspondence 365

between A and B, i.e., there is a bijective mapping, R, from A to B. With Nx: a 366

numerical term-forming operator, 367

• ∀A∀B∃R[[Nx: A = Nx: B ≡ ∃R[∀x[Ax → ∃y(By ∧ Rxy ∧∀z(Bz ∧ Rxz → y 368

= z))] ∧∀y[By → ∃x(Ax ∧ Rxy ∧∀z(Az ∧ Rzy → x = z))]]]. 369

Frege’s Theorem states that the Dedekind-Peano axioms for the language of 370

arithmetic can be derived from the foregoing abstraction principle, as augmented 371

to the signature of second-order logic and identity.15 Thus, if second-order logic 372

may be counted as pure logic, despite that domains of second-order models are 373

definable via power set operations, then one aspect of the philosophical significance 374

of the abstractionist program consists in its provision of a foundation for classical 375

mathematics on the basis of pure logic as augmented with non-logical implicit 376

definitions expressed by abstraction principles. 377

There are at least three reasons for which a logic defined in ZFC might not 378

undermine the status of its consequence relation as being logical. The first reason for 379

which the mathematical entanglement of !-logical validity might be innocuous is 380

that, as Shapiro (1991: 5.1.4) notes, many mathematical properties cannot be defined 381

within first-order logic, and instead require the expressive resources of second-order 382

logic. For example, the notion of well-foundedness cannot be expressed in a first- 383

order framework, as evinced by considerations of compactness. Let E be a binary 384

relation. Let m be a well-founded model, if there is no infinite sequence, a0, . . . , 385

14The phrase, ‘mathematical entanglement’, is owing to Koellner (2010: 2).
15Cf. Dedekend (1888/1963) and Peano (1889/1967). See Wright (1983: 154–169) for a proof
sketch of Frege’s theorem; Boolos (1987) for the formal proof thereof; and Parsons (1964) for an
incipient conjecture of the theorem’s validity.
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ai , such that Ea0, . . . , Eai+1 are all true. If m is well-founded, then there are no 386

infinite-descending E-chains. Suppose that T is a first-order theory containing m, 387

and that, for all natural numbers, n, there is a T with n + 1 elements, a0, . . . , an, 388

such that ⟨a0, a1⟩, . . . , ⟨an, an−1⟩ are in the extension of E. By compactness, there 389

is an infinite sequence such that a0 . . . ai , s.t. Ea0, . . . , Eai+1 are all true. So, m is 390

not well-founded. 391

By contrast, however, well-foundedness can be expressed in a second-order 392

framework: 393

∀X[∃xXx → ∃x[Xx ∧ ∀y(Xy → ¬Eyx)]], such that m is well-founded iff 394

every non-empty subset X has an element x, s.t. nothing in X bears E to x. 395

One aspect of the philosophical significance of well-foundedness is that it 396

provides a distinctively second-order constraint on when the membership relation in 397

a given model is intended. This contrasts with Putnam’s (1980) claim, that first-order 398

models mod can be intended, if every set s of reals in mod is such that an ω-model in 399

mod contains s and is constructible, such that – given the Downward Lowenheim- 400

Skolem theorem16 – if mod is non-constructible but has a submodel satisfying ‘s 401

is constructible’, then the model is non-well-founded and yet must be intended. 402

The claim depends on the assumption that general understanding-conditions and 403

conditions on intendedness must be co-extensive, to which I will return in Sect. 4.4.2 404

A second reason for which !-logic’s mathematical entanglement might not 405

be pernicious, such that the consequence relation specified in the !-logic might 406

be genuinely logical, may again be appreciated by its comparison with second- 407

order logic. Shapiro (1998) defines the model-theoretic characterization of logical 408

consequence as follows: 409

‘(10) * is a logical consequence of [a model] + if * holds in all possibilities 410

under every interpretation of the nonlogical terminology which holds in +’ (148). 411

A condition on the foregoing is referred to as the ‘isomorphism property’, 412

according to which ‘if two models M, M’ are isomorphic vis-a-vis the nonlogical 413

items in a formula *, then M satisfies * if and only if M’ satisfies *’ (151). 414

Shapiro argues, then, that the consequence relation specified using second-order 415

resources is logical, because of its modal and epistemic profiles. The epistemic 416

tractability of second-order validity consists in ‘typical soundness theorems, where 417

one shows that a given deductive system is ‘truth-preserving’ (154). He writes that: 418

‘[I]f we know that a model is a good mathematical model of logical consequence 419

(10), then we know that we won’t go wrong using a sound deductive system. Also, 420

we can know that an argument is a logical consequence . . . via a set-theoretic proof 421

in the metatheory’ (154–155). 422

The modal profile of second-order validity provides a second means of account- 423

ing for the property’s epistemic tractability. Shapiro argues, e.g., that: ‘If the 424

isomorphism property holds, then in evaluating sentences and arguments, the only 425

‘possibility’ we need to ‘vary’ is the size of the universe. If enough sizes are 426

16For any first-order model M , M has a submodel M ′ whose domain is at most denumerably
infinite, s.t. for all assignments s on, and formulas φ(x) in, M ′, M ,s ! φ(x) ⇐⇒ M ′,s ! φ(x).
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represented in the universe of models, then the modal nature of logical consequence 427

will be registered . . . [T]he only ‘modality’ we keep is ‘possible size’, which is 428

relegated to the set-theoretic metatheory’ (152). 429

Shapiro’s remarks about the considerations adducing in favor of the logicality 430

of non-effective, second-order validity generalize to !-logical validity. In the 431

previous section, the modal profile of !-logical validity was codified by the dual 432

isomorphism between complete Boolean-valued algebraic models of !-logic and 433

the category, A, of coalgebraic modal logics. As with Shapiro’s definition of logical 434

consequence, where * holds in all possibilities in the universe of models and 435

the possibilities concern the ‘possible size’ in the set-theoretic metatheory, the !- 436

Conjecture states that V |=! φ iff VB |=! φ, such that !-logical validity is invariant 437

in all set-forcing extensions of ground models in the set-theoretic multiverse. 438

Finally, the epistemic tractability of !-logical validity is secured, both – as on 439

Shapiro’s account of second-order logical consequence – by its soundness, but also 440

by its isomorphism to the coalgebraic category of deterministic automata, where the 441

determinacy thereof is again secured by the existence of Woodin cardinals. 442

4.4.2 Set-Theoretic Realism 443

In this section, I argue, finally, that the modal profile of !-logic can be availed of 444

in order to account for the understanding-conditions of the concept of set, and thus 445

crucially serve as part of the argument for set-theoretic realism. 446

Putnam (op. cit.: 473–474) argues that defining models of first-order theories is 447

sufficient for both understanding and specifying an intended interpretation of the 448

latter. Wright (1985: 124–125) argues, by contrast, that understanding-conditions 449

for mathematical concepts cannot be exhausted by the axioms for the theories 450

thereof, even on the intended interpretations of the theories. He suggests, e.g., that: 451

‘[I]f there really were uncountable sets, their existence would surely have to flow 452

from the concept of set, as intuitively satisfactorily explained. Here, there is, as it 453

seems to me, no assumption that the content of the ZF-axioms cannot exceed what is 454

invariant under all their classical models. [Benacerraf] writes, e.g., that: ‘It is granted 455

that they are to have their ‘intended interpretation’: ‘e’ is to mean set-membership. 456

Even so, and conceived as encoding the intuitive concept of set, they fail to entail 457

the existence of uncountable sets. So how can it be true that there are such sets? 458

Benacerraf’s reply is that the ZF-axioms are indeed faithful to the relevant informal 459

notions only if, in addition to ensuring that ‘E’ means set-membership, we interpret 460

them so as to observe the constraint that ‘the universal quantifier has to mean all or at 461

least all sets’ (p. 103). It follows, of course, that if the concept of set does determine 462

a background against which Cantor’s theorem, under its intended interpretation, is 463

sound, there is more to the concept of set that can be explained by communication of 464

the intended sense of ‘e’ and the stipulation that the ZF-axioms are to hold. And the 465

residue is contained, presumably, in the informal explanations to which, Benacerraf 466

reminds us, Zermelo intended his formalization to answer. At least, this must be so if 467
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the ‘intuitive concept of set’ is capable of being explained at all. Yet it is notable that 468

Benacerraf nowhere ventures to supply the missing informal explanation – the story 469

which will pack enough into the extension of ‘all sets’ to yield Cantor’s theorem, 470

under its intended interpretation, as a highly non-trivial corollary’(op. cit). 471

In order to provide the foregoing explanation in virtue of which the concept of set 472

can be shown to be associated with a realistic notion of the cumulative hierarchy, I 473

will argue that there are several points in the model theory and epistemology of set- 474

theoretic languages at which the interpretation of the concept of set constitutively 475

involves modal notions. The aim of the section will thus be to provide a modal 476

foundation for mathematical platonism. 477

One point is in the coding of the signature of the theory, T, in which Gödel’s 478

incompleteness theorems are proved (cf. Halbach and Visser 2014). Relative to, 479

(i) a choice of coding for an ω-complete, recursively axiomatizable language, L, 480

of T – i.e. a mapping between properties of numbers and properties of terms 481

and formulas in L; 482

(ii) a predicate, phi; and 483

(iii) a fixed-point construction: 484

Let phi express the property of ‘being provable’, and define (iii) such that, 485

for all consistent theories T of L, there are sentences, pphi , corresponding to 486

each formula, phi(x), in T, s.t. for ‘m’ := pphi , 487

|–T pphi iff phi(m). 488

One can then construct a sentence, ‘m’ := ¬phi(m), such that L is incom- 489

plete (the first incompleteness theorem). 490

Moreover, L cannot prove its own consistency: 491

If: 492

|–T ‘m’ iff ¬phi(m), 493

Then: 494

|–T C → m. 495

Thus, L is consistent only if L is inconsistent (the second incompleteness 496

theorem). 497

In the foregoing, the choice of coding bridges the numerals in the language 498

with the properties of the target numbers. The choice of coding is therefore 499

intensional, and has been marshalled in order to argue that the very notion of 500

syntactic computability – via the equivalence class of partial recursive functions, 501

λ-definable terms, and the transition functions of discrete-state automata such as 502

Turing machines – is constitutively semantic (cf. Rescorla 2015). Further points 503

at which intensionality can be witnessed in the phenomenon of self-reference in 504

arithmetic are introduced by Reinhardt (1986). Reinhardt (op. cit.: 470–472) argues 505

that the provability predicate can be defined relative to the minds of particular agents 506

– similarly to Quine’s (1968) and Lewis’ (1979) suggestion that possible worlds can 507

be centered by defining them relative to parameters ranging over tuples of spacetime 508

coordinates or agents and locations – and that a theoretical identity statement can be 509

established for the concept of the foregoing minds and the concept of a computable 510

system. 511
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In the previous section, intensional computational properties were defined via 512

modal coalgebraic deterministic automata, where the coalgebraic categories are 513

dually isomorphic to the category of sets in which !-logical validity was defined. 514

Coalgebraic modal logic was shown to elucidate the modal profile of !-logical con- 515

sequence in the Boolean-valued algebraic models of set theory. The intensionality 516

witnessed by the choice of coding may therefore be further witnessed by the modal 517

automata specified in the foregoing coalgebraic logic. 518

A second point at which understanding-conditions may be shown to be con- 519

stitutively modal can be witnessed by the conditions on the epistemic entitlement 520

to assume that the language in which Gödel’s second incompleteness theorem is 521

proved is consistent (cf. Dummett 1963/1978; Wright 1985). Wright (op. cit.: 91, 522

fn.9) suggests that ‘[T]o treat [a] proof as establishing consistency is implicitly 523

to exclude any doubt . . . about the consistency of first-order number theory’. 524

Wright’s elaboration of the notion of epistemic entitlement, appeals to a notion 525

of rational ‘trust’, which he argues is recorded by the calculation of ‘expected 526

epistemic utility’ in the setting of decision theory (2004; 2014: 226, 241). Wright 527

notes that the rational trust subserving epistemic entitlement will be pragmatic, 528

and makes the intriguing point that ‘pragmatic reasons are not a special genre of 529

reason, to be contrasted with e.g. epistemic, prudential, and moral reasons’ (2012: 530

484). Crucially, however, the very idea of expected epistemic utility in the setting 531

of decision theory makes implicit appeal to the notion of possible worlds, where the 532

latter can again be determined by the coalgebraic logic for modal automata. 533

A third consideration adducing in favor of the thought that grasp of the concept 534

of set might constitutively possess a modal profile is that the concept can be defined 535

as an intension – i.e., a function from possible worlds to extensions. The modal 536

similarity types in the coalgebraic modal logic may then be interpreted as dynamic- 537

interpretational modalities, where the dynamic-interpretational modal operator has 538

been argued to entrain the possible reinterpretations both of the domains of the 539

theory’s quantifiers (cf. Fine 2005, 2006), as well as of the intensions of non-logical 540

concepts, such as the membership relation (cf. Uzquiano 2015).17
541

The fourth consideration avails directly of the modal profile of !-logical 542

consequence. While the above dynamic-interpretational modality will suffice for 543

17For an examination of the philosophical significance of modal coalgebraic automata beyond the
philosophy of mathematics, see Baltag (2003). Baltag (op. cit.) proffers a colagebraic semantics
for dynamic-epistemic logic, where coalgebraic functors are intended to record the informational
dynamics of single- and multi-agent systems. For an algebraic characterization of dynamic-
epistemic logic, see Kurz and Palmigiano (2013). For further discussion, see Khudairi (ms). The
latter proceeds by examining undecidable sentences via the epistemic interpretation of multi-
dimensional intensional semantics. See Reinhardt (1974), for a similar epistemic interpretation
of set-theoretic languages, in order to examine the reduction of the incompleteness of undecidable
sentences on the counterfactual supposition that the language is augmented by stronger axioms
of infinity; and Maddy (1988b), for critical discussion. Chihara (2004) argues, as well, that
conceptual possibilities can be treated as imaginary situations with regard to the construction of
open-sentence tokens, where the latter can then be availed of in order to define nominalistically
adequate arithmetic properties.
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possible reinterpretations of mathematical terms, the absoluteness and generic 544

invariance of the consequence relation is such that, if the !-conjecture is true, then 545

!-logical validity is invariant in all possible set-forcing extensions of ground models 546

in the set-theoretic multiverse. The truth of the !-conjecture would thereby place 547

an indefeasible necessary condition on a formal understanding of the intension for 548

the concept of set. 549

4.5 Concluding Remarks 550

In this essay I have examined the philosophical significance of the isomorphism 551

between Boolean-valued algebraic models of modal !-logic and modal coalgebraic 552

models of automata. I argued that – as with the property of validity in second- 553

order logic – !-logical validity is genuinely logical, and thus entails a type 554

of neo-logicism in the foundations of mathematics. I argued, then, that modal 555

coalegebraic deterministic automata, which characterize the modal profile of !- 556

logical consequence, are constitutive of the interpretation of mathematical concepts 557

such as the membership relation. The philosophical significance of modal !-logic 558

is thus that it can be availed of to vindicate both a neo-logicist foundation for set 559

theory and a realist interpretation of the cumulative hierarchy of sets. 560
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