1,267 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(log⁥k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Graph subshifts

    Full text link
    We propose a definition of graph subshifts of finite type that can be seen as extending both the notions of subshifts of finite type from classical symbolic dynamics and finitely presented groups from combinatorial group theory. These are sets of graphs that are defined by forbidding finitely many local patterns. In this paper, we focus on the question whether such local conditions can enforce a specific support graph, and thus relate the model to classical symbolic dynamics. We prove that the subshifts that contain only infinite graphs are either aperiodic, or feature no residual finiteness of their period group, yielding non-trivial examples as well as two natural undecidability theorems.Comment: 13 pages, 4 figure

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    Upper density problems in infinite Ramsey theory

    Get PDF
    We consider the following question in infinite Ramsey theory, introduced by ErdƑs and Galvin [EG93] in a particular case and by DeBiasio and McKenney [DM19] in a more general setting. Let H be a countably infinite graph. If the edges of the complete graph on the natural numbers are colored red or blue, what is the maximum value of λ such that we are guaranteed to find a monochromatic copy of H whose vertex set has upper density at least λ? We call this value the Ramsey density of H. The problem of determining the Ramsey density of the infinite path was first studied by ErdƑs and Galvin, and was recently solved by Corsten, DeBiasio, Lang and the author [CDLL19]. In this thesis we study the problem of determining the Ramsey density of arbitrary graphs H. On an intuitive level, we show that three properties of a graph H have an effect on the Ramsey density: the chromatic number, the number of components, and the expansion of its independent sets. We deduce the exact value of the Ramsey density for a wide variety of graphs, including all locally finite forests, bipartite factors, clique factors and odd cycle factors. We also determine the value of the Ramsey density of all locally finite graphs, up to a factor of 2. We also study a list coloring variant of the same problem. We show that there exists a way of assigning a list of size two to every edge in the complete graph on N such that, in every list coloring, there are monochromatic paths with density arbitrarily close to 1.Wir betrachten die folgende Fragestellung aus der Ramsey-Theorie, welche von ErdƑs und Galvin [EG93] in einem Spezialfall sowie von DeBiasio und McKenney [DM19] in einem allgemeineren Kontext formuliert wurde: Es sei H ein abzĂ€hlbar unendlicher Graph. Welches ist der grĂ¶ĂŸtmögliche Wert λ, sodass wir, wenn die Kanten des vollstĂ€ndigen Graphen mit Knotenmenge N jeweils entweder rot oder blau gefĂ€rbt sind, stets eine einfarbige Kopie von H, dessen Knotenmenge eine obere asymptotische Dichte von mindestens λ besitzt, finden können? Wir nennen diesen Wert die Ramsey-Dichte von H. Das Problem, die Ramsey-Dichte des unendlichen Pfades zu bestimmen wurde erstmals von ErdƑs und Galvin untersucht und wurde vor kurzem von Corsten, DeBiasio, Lang und dem Autor [CDLL19] gelöst. Gegenstand der vorliegenden Dissertation ist die Bestimmung der Ramsey-Dichten von Graphen. Auf einer intuitiven Ebene zeigen wir, dass drei Parameter eines Graphen die Ramsey-Dichte beeinflussen: die chromatische Zahl, die Anzahl der Zusammenhangskomponenten sowie die Expansion seiner unabhĂ€ngigen Mengen. Wir ermitteln die exakten Werte der Ramsey-Dichte fĂŒr eine Vielzahl von Graphen, darunter alle lokal endlichen WĂ€lder, bipartite Faktoren, Kr-Faktoren sowie Ck-Faktoren fĂŒr ungerade k. Ferner bestimmen wir den Wert der Ramsey-Dichte aller lokal endlichen Graphen bis auf einen Faktor 2. DarĂŒber hinaus untersuchen wir eine Variante des oben beschriebenen Problems fĂŒr ListenfĂ€rbungen. Wir zeigen, dass es möglich ist, jeder Kante des vollstĂ€ndigen Graphen mit Knotenmenge N eine Liste der GrĂ¶ĂŸe Zwei zuzuweisen, sodass in jeder zugehörigen ListenfĂ€rbung monochromatische Pfade mit beliebig nah an 1 liegender Dichte existieren

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding ÎŁ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018
    • 

    corecore