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Abstract
We prove that for every positive integer r and for every graph class G of bounded expansion,
the r-Dominating Set problem admits a linear kernel on graphs from G. Moreover, in the
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31:2 Kernelization and Sparseness: the Case of Dominating Set

more general case when G is only assumed to be nowhere dense, we give an almost linear kernel
on G for the classic Dominating Set problem, i.e., for the case r = 1. These results generalize
a line of previous research on finding linear kernels for Dominating Set and r-Dominating
Set (Alber et al., JACM 2004, Bodlaender et al., FOCS 2009, Fomin et al., SODA 2010, Fomin
et al., SODA 2012, Fomin et al., STACS 2013). However, the approach taken in this work, which
is based on the theory of sparse graphs, is radically different and conceptually much simpler than
the previous approaches.

We complement our findings by showing that for the closely related Connected Dominat-
ing Set problem, the existence of such kernelization algorithms is unlikely, even though the
problem is known to admit a linear kernel on H-topological-minor-free graphs (Fomin et al.,
STACS 2013). Also, we prove that for any somewhere dense class G, there is some r for which
r-Dominating Set is W[2]-hard on G. Thus, our results fall short of proving a sharp dichotomy
for the parameterized complexity of r-Dominating Set on subgraph-monotone graph classes:
we conjecture that the border of tractability lies exactly between nowhere dense and somewhere
dense graph classes.
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1 Introduction

In the classic Dominating Set problem, given a graph G and an integer k, we are asked to
determine the existence of a subset D ⊆ V (G) of size at most k such that every vertex u ∈
V (G) is dominated by D: either u belongs to D itself, or it has a neighbor that belongs
to D. The r-Dominating Set problem, for a positive integer r, is a generalization where
each vertex of D dominates all the vertices at distance at most r from it. Dominating
Set parameterized by the target size k plays a central role in parameterized complexity
as it is a predominant example of a W[2]-complete problem. Recall that the main focus
in parameterized complexity is on designing fixed-parameter algorithms, or shortly FPT
algorithms, whose running time on an instance of size n and parameter k has to be bounded
by f(k) · nc for some computable function f and constant c. Downey and Fellows introduced
a hierarchy of parameterized complexity classes FPT ⊆W[1] ⊆W[2] ⊆ · · · that is believed
to be strict, see [8, 13]. As Dominating Set is W[2]-complete in general, we do not expect
it to be solvable in FPT time.

However, it turns out that various restrictions on the input graph lead to robust tractability
of Dominating Set. Out of these, a particularly fruitful line of research concerned
investigation of the complexity of the problem in sparse graph classes, like planar graphs,
graphs of bounded genus, or graphs excluding some fixed graph H as a minor. In these classes
we can even go one step further than just showing fixed-parameter tractability: It is possible
to design a linear kernel for the problem. Formally, a kernelization algorithm (or a kernel) is
a polynomial-time preprocessing procedure that given an instance (I, k) of a parameterized
problem outputs another instance (I ′, k′) of the same problem which is equivalent to (I, k),
but whose total size |I ′| + k′ is bounded by f(k) for some computable function f , called
the size of the kernel. If f is polynomial (resp. linear), then such an algorithm is called a
polynomial (resp. linear) kernel.

The quest for small kernels for Dominating Set on sparse graph classes began with the
groundbreaking work of Alber et al. [1], who showed the first linear kernel for the problem
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on planar graphs. Another important step was the work of Alon and Gutner [2, 21], who
gave an O(kc) kernel for the problem on H-topological-minor free graphs, where c depends
on H only. Moreover, if H = K3,h for some h, then the size of the kernel is actually linear.
This led Alon and Gutner to pose the following excellent question: Can one characterize the
families of graphs where Dominating Set admits a linear kernel?

The research program sketched by the works of Alber et al. [1] and Alon and Gutner [2, 21]
turned out to be one of particularly fruitful directions in parameterized complexity in recent
years, and eventually led to the discovery of new and deep techniques. In particular, linear
kernels for Dominating Set have been given for bounded genus graphs [3], apex-minor-free
graphs [14], H-minor-free graphs [15], and most recently H-topological-minor-free graphs [16].
In all these results, the notion of bidimensionality plays the central role. Using variants of the
Grid Minor Theorem, it is possible to understand well the connections between the minimum
possible size of a dominating set in a graph and its treewidth. The considered graph classes
also admit powerful decomposition theorems that follow from the Graph Minors project of
Robertson and Seymour [26], or the recent work of Grohe and Marx [20] on excluding H as
a topological minor. The combination of these tools provides a robust base for a structural
analysis of the input instance.

Beyond the current frontier of H-topological-minor-free graphs [16], kernelization of
Dominating Set was studied in graphs of bounded degeneracy. Recall that a graph is
called d-degenerate if every subgraph contains a vertex of degree at most d. Philip et al. [24]
obtained a kernel of size O(k(d+1)2) on d-degenerate graphs for constant d. However, as
proved by Cygan et al. [5], the exponent of the size of the kernel needs to increase with d at
least quadratically (unless NP ⊆ coNP/poly).

As far as r-Dominating Set is concerned, the current most general result gives a linear
kernel for any apex-minor-free class [14], and follows from a general protrusion machinery [4].
The techniques used by Fomin et al. [15, 16] for H-(topological)-minor-free classes are
tailored to the classic Dominating Set problem, and do not carry over to an arbitrary
radius r. Therefore, up to this point the existence of linear kernels for r-Dominating Set
on H-(topological)-minor-free classes was open.

Sparsity. The general concept of sparsity, beyond graphs with excluded (topological) minors,
has been recently the subject of intensive study both from the point of view of pure graph
theory and of computer science. In particular, the notions of graph classes of bounded
expansion and nowhere dense graph classes have been introduced by Nešetřil and Ossona de
Mendez. The main idea behind these models is to establish an abstract notion of sparsity
based on known properties of well-studied sparse graph classes, e.g. H-minor-free graphs,
and to develop tools for combinatorial analysis of sparse graphs based only on this abstract
notion. We refer to the book of Nešetřil and Ossona de Mendez [23] for an introduction to
the topic.

To measure sparsity of a graph more formally, we need a few definitions. We say that a
graph H is a minor of G if there exists a family (Xv)v∈V (H) of pairwise disjoint subsets of
V (G) such that for every v ∈ V (H) the graph G[Xv] is connected and for every uv ∈ E(H)
there exists an edge in G between Xu and Xv. The sets Xv are called branch sets, and the
family (Xv)v∈V (H) is called a minor model of H in G. We say that H is an r-shallow minor
of G if there exists a minor model of H in G such that for every branch set Xv the graph
G[Xv] is of radius at most r. The set of all r-shallow minors of a graph G is denoted by
GO r, and for a graph class G we define G O r =

⋃
G∈G(GO r). The essence of sparsity of a

graph or a graph class is captured in the following definition.
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31:4 Kernelization and Sparseness: the Case of Dominating Set

I Definition 1.1 (Grad and bounded expansion). For a graph G and an integer r ≥ 0, we
define the greatest reduced average density (grad) at depth r as

∇r(G) = max
M∈GO r

density(M) = max
M∈GO r

|E(M)|/|V (M)|.

For a graph class G, we let ∇r(G) = supG∈G ∇r(G). A graph class G then has bounded
expansion if there exists a function f : N→ R such that for all r we have that ∇r(G) ≤ f(r).

Graph classes excluding a topological minor, such as planar and bounded-degree graphs,
have bounded expansion [23]. Bounded expansion implies bounded degeneracy, since the
degeneracy of G lies between ∇0(G) and 2∇0(G). However, having bounded expansion is
much stronger than just bounded degeneracy: in some sense, it requires every shallow minor
to be of bounded degeneracy, with the bound on degeneracy increasing with the depth of the
minors. The notion of a nowhere dense graph class is a further relaxation of this concept.

As far as the theory of sparsity is concerned, from the point of view of theoretical computer
science, of particular importance is the program of establishing fixed-parameter tractability
of model checking first order logic on sparse graphs. A long line of work resulted in FPT
algorithms for model checking first order formulae on more and more general classes of
sparse graphs [6, 11, 12, 17, 19, 27], similarly to the story of kernelization of Dominating
Set. Finally, FPT algorithms for the problem have been given for graph classes of bounded
expansion by Dvořák et al. [11], and very recently for nowhere dense graph classes by Grohe
et al. [19]. This is the ultimate limit of this program: as proven in [22, 11], for any class G
that is not nowhere dense (is somewhere dense) and is closed under taking subgraphs, model
checking first order formulae on G is not fixed-parameter tractable (unless FPT = W[1]).

Fixed-parameter tractability of r-Dominating Set on nowhere dense graph classes
follows immediately from the result of Grohe et al. [19], as the problem is definable in first
order logic for a fixed r; an explicit algorithm was given earlier by Dawar and Kreutzer [7].

Our results. In this work we prove that having bounded expansion or being nowhere dense
is sufficient for a graph class to admit an (almost) linear kernel for Dominating Set.
Henceforth, for a graph G, we let ds(G) denote the minimum size of a dominating set of G.

I Theorem 1.2. Let G be a graph class of bounded expansion. There exists a polynomial-time
algorithm that given a graph G ∈ G and an integer k, either correctly concludes that ds(G) > k

or finds a subset of vertices Y ⊆ V (G) of size O(k) with the property that ds(G) ≤ k if and
only if ds(G[Y ]) ≤ k.

I Theorem 1.3. Let G be a nowhere dense graph class and let ε > 0 be a real number. There
exists a polynomial-time algorithm that given a graph G ∈ G and an integer k, either correctly
concludes that ds(G) > k or finds a subset of vertices Y ⊆ V (G) of size O(k1+ε) with the
property that ds(G) ≤ k if and only if ds(G[Y ]) ≤ k.

For r-Dominating Set, for r > 1, we can give a linear kernel for any graph class of bounded
expansion. Unfortunately, there is a technical subtlety that does not allow us to state the
kernel in a nice form as in Theorems 1.2 and 1.3. Instead, we kernelize to an annotated
version of the problem, where only a given subset of vertices of G needs to be dominated.
The annotated version can be reduced to the classic one by simple gadgeteering but that,
unfortunately, may lead to a slight increase in the bounded expansion guarantees.

In the following, by dsr(G) we denote the minimum size of an r-Dominating Set in
a graph G, while for Z ⊆ V (G), dsr(G,Z) denotes the minimum size of a (Z, r)-dominator
in G, that is, a set D ⊆ V (G) that r-dominates (i.e., is at distance at most r of) every vertex
of Z.
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I Theorem 1.4. Let G be a graph class of bounded expansion, and let r be a positive integer.
There exists a polynomial-time algorithm that given a graph G ∈ G and an integer k, either
correctly concludes that dsr(G) > k or finds subsets of vertices Z ⊆ W ⊆ V (G), where
|W | = O(k), with the property that dsr(G) ≤ k if and only if dsr(G[W ], Z) ≤ k.

The obtained results strongly generalize the previous results on linear kernels for Dominating
Set on sparse graph classes [1, 3, 14, 15, 16], since all the graph classes considered in these
results have bounded expansion. Moreover, by giving a linear kernel for r-Dominating Set
on any class G of bounded expansion, we obtain the same result for any H-minor-free or
H-topological-minor-free class as well. The existence of such kernels was not known before.

We see the main strength of our results in that they constitute an abrupt turn in the
current approach to kernelization of Dominating Set and r-Dominating Set on sparse
graphs: the tools used to develop the new algorithms are radically different from all the
previously applied techniques. Instead of investigating bidimensionality and treewidth, and
relying on intricate decomposition theorems originating in the work on graph minors, our
algorithms exploit only basic properties of bounded expansion and nowhere dense graph
classes. As a result, the full version of this work presents essentially self-contained proofs of
all the stated kernelization results. The only external facts that we use are basic properties
of weak and centered colorings, and the constant-factor approximation algorithm for r-
Dominating Set of Dvořák [10]. All in all, the results show that only the combinatorial
sparsity of a graph class is essential for designing (almost) linear kernels for Dominating Set,
and further topological constraints like excluding some (topological) minor are unnecessary.

Lower bounds. We complement our study by proving that for the closely related Con-
nected Dominating Set problem, where the sought dominating set D is additionally
required to induce a connected subgraph, the existence of even polynomial kernels for bounded
expansion and nowhere dense graph classes is unlikely.

I Theorem 1.5. There exists a class of graphs G of bounded expansion such that Connected
Dominating Set does not admit a polynomial kernel when restricted to G, unless NP ⊆
coNP/poly. Furthermore, G is closed under taking subgraphs.

Up to this point, linear kernels for Connected Dominating Set were given for the same
family of sparse graph classes as for Dominating Set: a linear kernel for the problem on
H-topological-minor-free graphs was obtained by Fomin et al. [16]. Hence, classes of bounded
expansion constitute the point where the kernelization complexity of both problems diverge;
the connectivity constraint seems to have a completely different nature, and topological
properties of the graph class become necessary to handle it efficiently.

Next, we show also that nowhere dense classes form the ultimate limit of parameterized
tractability of r-Dominating Set, as it was for model checking first order formulae.

I Theorem 1.6. For every somewhere dense graph class G closed under taking subgraphs,
there exists an integer r such that r-Dominating Set is W[2]-hard on graphs from G.

In this extended abstract we provide an almost complete proof of Theorems 1.2 and 1.4.
The full version of the paper contains [9] full proofs of all results, as well as an extended
discussion in the introduction and conclusions.

2 Neighborhoods and closure lemma

The cornerstone of our approach stems from an observation of Gajarský et al. [18] that in
a graph G from a class of bounded expansion, the number of possible neighborhoods in a

STACS 2016



31:6 Kernelization and Sparseness: the Case of Dominating Set

given subset of vertices X is bounded linearly in |X| and, moreover, the number of vertices
that have many neighbors in X is also small. Let X ⊆ V (G) and v ∈ V (G). We denote by
NX(v) = N(v) ∩X the neighborhood of v in X.

I Lemma 2.1 ([18]). Let G be a graph, X ⊆ V (G) be a vertex subset, and R = V (G) \X.
Then for every integer p ≥ ∇1(G) it holds that
1. |{v ∈ R : |NX(v)| ≥ 2p}| ≤ 2p · |X|, and
2. |{A ⊆ X : |A| < 2p and ∃v∈R A = NX(v)}| ≤ (4p + 2p)|X|.
Consequently, the following bound holds:

|{A ⊆ X : ∃v∈R A = NX(v)}| ≤
(

4∇1(G) + 4∇1(G)
)
· |X|.

This statement is best suited for the standard Dominating Set problem on graphs of
bounded expansion, but to extend our result to r-Dominating Set, we need proper
generalizations. Suppose G is a graph and X is a subset of its vertices. For u ∈ V (G) \X
and positive integer r, we define the r-projection of u onto X as follows: MG

r (u,X) is the
set of all those vertices w ∈ X, for which there exists a path P in G that starts in u, ends
in w, has length at most r, and whose all internal vertices do not belong to X. Whenever
the graph is clear from the context, we omit the superscript. In the following we will use the
following strengthening of Lemma 2.1(1).

Let G be a class of bounded expansion, G ∈ G, r a positive integer, and X ⊆ V (G). A set
clr(X) is called an r-closure of X if (1) X ⊆ clr(X) ⊆ V (G); (2) |clr(X)| ≤ ((r−1)ξ+2) · |X|,
where ξ = d2∇r−1(G)e; and (3) |MG

r (u, clr(X))| ≤ ξ(1 + (r− 1)ξ) for each u ∈ V (G) \ clr(X).

I Lemma 2.2 (Closure lemma). Let G be a class of bounded expansion. There exists an
algorithm that, given a graph G ∈ G, positive integer r, and X ⊆ V (G), computes the
r-closure of X.

Proof. Consider the following iterative procedure: (1) Start with H = G and Y = X. We
will maintain the invariant that Y ⊆ V (H). (2) As long as there exists a vertex u ∈ V (H)\Y
with |MH

r (u, Y )| ≥ ξ, do the following:
Select an arbitrary subset Zu ⊆MH

r (u, Y ) of size ξ.
For each w ∈ Zu, select a path Pw that starts at u, ends at w, has length at most r, and
all its internal vertices are in V (H) \ Y .
Modify H by contracting

⋃
w∈Zu

(V (Pw) \ {w}) onto u, and add the obtained vertex to Y .
Observe that in a round of the procedure above we always make a contraction of a connected
subgraph of H − Y of radius at most r − 1. Also, the resulting vertex falls into Y and hence
does not participate in future contractions. Thus, at each point H is an (r−1)-shallow minor
of G. For any moment of the procedure and any u ∈ V (H), by τ(u) we denote the subset of
original vertices of G that were contracted onto u during earlier rounds. Note that either
τ(u) = {u} when u is an original vertex of G, or |τ(u)| ≤ 1 + (r − 1)ξ.

We claim that the presented procedure stops after at most |X| rounds. Suppose otherwise,
that we successfully constructed the graph H and subset Y after |X|+ 1 rounds. Examine
graph H[Y ]. This graph has 2|X|+ 1 vertices: |X| original vertices of X and |X|+ 1 vertices
that were added during the procedure. Whenever a vertex u is added to Y after contraction,
then it introduces at least ξ new edges to H[Y ]: these are edges that connect the contracted
vertex with the vertices of Zu. Hence, H[Y ] has at least ξ(|X|+ 1) edges, which means that

density(H[Y ]) = |E(H[Y ])|
|Y |

≥ ξ(|X|+ 1)
2|X|+ 1 > ∇r−1(G).
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This is a contradiction with the fact that H is an (r − 1)-shallow minor of G.
Therefore, the procedure stops after at most |X| rounds producing pair (H,Y ) where

|MH
r (u, Y )| < ξ for each u ∈ V (H) \ Y . Define clr(X) = τ(Y ) =

⋃
u∈Y τ(u). Property (1) is

obvious. Since |τ(u)| = 1 for each original vertex of X and |τ(u)| ≤ 1 + (r − 1)ξ for each u
that was added during the procedure, property (2) follows. We are left with property (3).

By the construction V (H) \ Y = V (G) \ clr(X). Take any u ∈ V (H) \ Y and observe
that MG

r (u, clr(X)) ⊆ τ(MH
r (u, Y )). Since |MH

r (u, Y )| < ξ for each u ∈ V (H) \ Y and
|τ(u)| ≤ 1 + (r − 1)ξ for each u ∈ V (H), property (3) follows. J

As we can safely assume ∇r−1(G) ≥ 1 (otherwise G contains only forests), we can use
simplified, weaker bounds: |clr(X)| ≤ 3r∇r−1(G) · |X| and |MG

r (u, clr(X))| ≤ 9r∇r−1(G)2.
Observe that Lemma 2.2 is not merely a generalization of Lemma 2.1(1) to r-neighborhoods.
It shows that a certain maximality property can be achieved; this property may be not true
if, even for r = 1, we would construct clr(X) from X by just adding all vertices with many
neighbors in X.

The generalization of Lemma 2.1(2) which we will use later is the following.

I Lemma 2.3. Let G be a class of bounded expansion and let r be a positive integer. Let
G ∈ G be a graph and X ⊆ V (G). Then

|{Y : Y = Mr(u,X) for some u ∈ V (G) \X}| ≤ c · |X|,

for some constant c depending only on r and the grads of G.

The proof of Lemma 2.3 is essentially contained in the PhD thesis of the eight author,
Reidl [25]. For the sake of completeness, in the full version we give a self-contained proof
based on the presentation of Reidl.

Finally, for the proof of Theorem 1.4 for r > 1 we will need the following lemma.

I Lemma 2.4 (Short paths closure lemma). Let G be a class of bounded expansion and let r
be a positive integer. Let G ∈ G be a graph and X ⊆ V (G). Then there is a superset of
vertices X ′ ⊇ X with the following properties:
1. Whenever distG(u, v) ≤ r for some distinct u, v ∈ X, then distG[X′](u, v) = distG(u, v).
2. |X ′| ≤ Qr(∇r−1(G)) · |X| for some polynomial Qr.
Moreover, X ′ can be computed in polynomial time.

Proof sketch. We start with X ′ := X0 := clr(X) and then, for every u, v ∈ X0, we add to
X ′ a path Pu,v between u and v that is shortest among paths that do not visit X0 apart
from the endpoints, provided that it is of length at most r. The first required property of X ′
and polynomial time computability is immediate.

For the size bound, first note that the properties of X0 = clr(X) ensure that every vertex
x ∈ X ′ \X0 can lie only on a constant number of paths Pu,v, as the endpoints of such path
needs to lie in Mr(x,X0). On the other hand, if too many paths Pu,v are pairwise disjoint,
they constitute a dense r-shallow minor of G. We infer that only O(|X0|) = O(|X|) paths
Pu,v are added, and hence |X ′| = O(|X|), as required. J

3 Linear kernel in graphs of bounded expansion

Let us fix a graph class G that has bounded expansion, and let (G, k) be the input instance
of r-Dominating Set, where G ∈ G. We assume that G is fixed, and hence so are also the
values of ∇i(G) for all nonnegative integers i. We start with the following pivot definition.

STACS 2016



31:8 Kernelization and Sparseness: the Case of Dominating Set

I Definition 3.1 (r-domination core). Let G be a graph and Z be a subset of vertices. We
say that Z is an r-domination core in G if every minimum-size (Z, r)-dominator in G is also
an r-dominating set in G.

Clearly, the whole V (G) is an r-domination core, but we will look for an r-domination core
that is small in terms of k. Note that if Z is an r-domination core, then dsr(G) = dsr(G,Z).
Let us remark that in this definition we do not require that every (Z, r)-dominator is an
r-dominating set in G; there can exist (Z, r)-dominators that are not of minimum size and
that do not dominate the whole graph.

The heart of our argument lies in providing a small domination core.

I Theorem 3.2. There exists a constant ccoresize depending on r and the grads of G only
and a polynomial-time algorithm that, given an instance (G, k) where G ∈ G, either correctly
concludes that dsr(G) > k, or finds an r-domination core Z ⊆ V (G) with |Z| ≤ ccoresize · k.

We fix G and k in the following to improve readability. For the proof of Theorem 3.2 we
start with Z = V (G) and gradually reduce |Z| by removing one vertex at a time, while
maintaining the invariant that Z is an r-domination core. To this end, we need to prove the
following lemma, from which Theorem 3.2 follows trivially as explained:

I Lemma 3.3. There exists a constant ccoresize depending on r and the grads of G only and a
polynomial-time algorithm that, given an r-domination core Z ⊆ V (G) with |Z| > ccoresize · k,
either correctly concludes that dsr(G) > k, or finds a vertex z ∈ Z such that Z \ {z} is still
an r-domination core.

In Sections 3.1 and 3.2 we prove Lemma 3.3. Then, in Section 3.3 we show how Theorem 3.2
implies Theorems 1.2 and 1.4.

3.1 Iterative extraction of Z-dominators
The first phase of the algorithm of Lemma 3.3 is to build a structural decomposition of the
graph G. More precisely, we try to “pull out” a small set X of vertices that r-dominates Z, so
that after removing them, Z contains a large subset S that is 2r-scattered in the remaining
graph.1 Given such a structure, intuitively we can argue that in any optimal (Z, r)-dominator,
vertices of X serve as “hubs” that route almost all the domination paths leading to vertices
of S. This is because any vertex of V (G) \X can r-dominate only at most one vertex from S

via a path that avoids X. Since S will be large compared to X, some vertices of S will be
indistinguishable from the point of view of r-domination routed through X, and these will
be precisely the vertices that can be removed from the domination core. The identification
of the irrelevant dominatee will be the goal of the second phase of the algorithm, whereas
the goal of this phase is to construct the pair (X,S).

Our main tool in this part is the constant-factor approximation for r-Dominating Set
proved by Dvořák [10]. We use the following convenient form; the full version of our work
describes in detail how to derive it from the work of Dvořák.

I Lemma 3.4. Let r be a positive integer. There is a polynomial Pr and a polynomial-time
algorithm that, given a graph G, a vertex subset Z ⊆ V (G) and an integer k, finds either

a (Z, r)-dominator in G of size at most Pr(∇r(G)) · k, or
a subset of Z of size at least k + 1 that is 2r-scattered in G.

1 Recall that a set S ⊆ V (G) is `-scattered if every two distinct vertices of S are within distance greater
than `; a 2r-scattered set of size k + 1 is an obstruction for an r-dominating set of size k.
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Let Cdv = Pr(∇r(G)) be the approximation ratio of the algorithm of Lemma 3.4. Given Z,
we first apply the algorithm of Lemma 3.4 to G, Z, and the parameters r and k. Thus, we
either find a (Z, r)-dominator Y1 such that |Y1| ≤ Cdv · k, or we find a subset S ⊆ Z of size
at least k + 1 that is 2r-scattered in G. In the latter case, since S is an obstruction to an
r-dominating set of size at most k, we may terminate the algorithm and provide a negative
answer. Hence, from now on we assume that Y1 has been successfully constructed.

Let C0 be a constant depending on ∇(G), to be defined later. Now, in search for the pair
(X,S), we inductively construct sets X1, Y2, X2, Y3, . . . such that Y1 ⊆ X1 ⊆ Y2 ⊆ · · · using
the following definitions:

If Yi is already defined, then set Xi = cl3r(Yi).
If Xi is already defined, then apply the algorithm of Lemma 3.4 to G−Xi, Z \Xi, and
the parameters r and C0 · |Xi|.
1. Suppose the algorithm finds a set S ⊆ Z \Xi that is 2r-scattered in G−Xi and has

cardinality greater than C0 · |Xi|. Then we let X = Xi, terminate the procedure and
proceed to the second phase with the pair (X,S).

2. Otherwise, the algorithm has found a (Z \Xi, r)-dominator Di+1 in G−Xi of size at
most Cdv · C0 · |Xi|. Then set Yi+1 = Xi ∪Di+1 and proceed.

Let Γcl = 9r∇3r−1(G) be the bound on the size blow-up in Lemma 2.2 applied to radius
3r, and let ∆cl = 27r∇3r−1(G)2 be the upper bound on the sizes of 3r-projections given
by Lemma 2.2. From Lemmas 3.4, 2.2, and a trivial induction we infer that the following
bounds hold for all i for which (Yi, Xi) were constructed:

|Yi| ≤ CdvΓi−1
cl (1 + CdvC0)i−1 · k and |Xi| ≤ CdvΓicl(1 + CdvC0)i−1 · k.

For a nonnegative integer i, let Ki = CdvΓicl(1 + CdvC0)i−1.
In this manner, the algorithm consecutively extracts dominators D2, D3, D4, . . . and

performs 3r-closure, constructing sets X2, X3, X4, . . . up to the point when case (1) is
encountered. Then the computation is terminated and the sought pair (X,S) is constructed.
We now claim that case (1) always happens within a constant number of iterations.

I Lemma 3.5. Let Λ =
∑r
i=0 ∆i

cl ≤ (r+1)∆r
cl. Assuming that |Z| > KΛ ·k, the construction

terminates yielding some pair (X,S) before performing Λ iterations.

Proof. For the sake of contradiction, suppose YΛ and XΛ were successfully constructed.
Since |Z| > KΛ · k and |XΛ| ≤ KΛ · k, there is some vertex u ∈ Z \ XΛ. For an index
1 ≤ i ≤ Λ, we shall say that a vertex w ∈ Xi \Xi−1 is i-good if there is a path P that starts
at u, ends at w, has length at most r, and all its internal vertices do not belong to Xi (we
denote X0 = ∅). Vertex w is good if it is good for some index i.

I Claim 3.6. The number of good vertices is at most Λ− 1.

Proof of claim. Let w be any good vertex, and let P be a path certifying this. Let q ≤ r

be the length of P , and denote the vertices of P by ui for 0 ≤ i ≤ q, where u0 = u and
uq = w. Observe that internal vertices of P can belong only to sets Xj \Xj−1 for j > i, or to
V (G) \XΛ. We say that a vertex u` of P is important if there is an index j, with i ≤ j ≤ Λ,
such that u` ∈ Xj \ Xj−1 but u`′ /∈ Xj for all `′ < `. Clearly, w = uq is important. Let
`1 < `2 < . . . < `p = q be the indices of important vertices on P , and let j1 > j2 > . . . > jp
be such that u`i

∈ Xji
\Xji−1, for all 1 ≤ i ≤ p. We will denote `0 = 0, so u`0 = u, and

j0 = Λ + 1 (denoting XΛ+1 = V (G)).
Consider any index i with 1 ≤ i ≤ p. Observe that on the part between u`i−1 and u`i ,

path P never entered Xji−1−1, because first such entrance would constitute an important

STACS 2016



31:10 Kernelization and Sparseness: the Case of Dominating Set

vertex that was not recorded. Since u`i ∈ Xji−1−1, we infer that u`i ∈MG
r (u`i−1 , Xji−1−1).

Since Xji−1−1 = cl3r(Yji−1−1) by the construction, we infer that |MG
r (u`i−1 , Xji−1−1)| ≤ ∆cl.

Therefore, once vertex u`i−1 is selected, there are at most ∆cl choices for the next important
vertex u`i . We infer that the choice of the sequence of important vertices on P can be
modeled by taking at most r decisions, each from a selection of at most ∆cl options. Since w
is the last important vertex, there are at most

∑r
i=1 ∆i

cl = Λ− 1 ways to select w. J

I Claim 3.7. For every 1 ≤ i ≤ Λ, there is an i-good vertex.

Proof of claim. Recall that Di ⊆ Xi \ Xi−1 is a (Z \ Xi−1, r)-dominator in the graph
G−Xi−1. Since u ∈ Z \Xi−1, in G−Xi−1 there is a path P of length at most r from u to
a vertex of Di. Take w to be the first vertex of this path that belongs to Xi \Xi−1. Then
the prefix of P from u to w certifies that w is an i-good vertex. J

Claims 3.6 and 3.7 contradict each other, which finishes the proof. J

In Lemma 3.3 we will set ccoresize = KΛ, so that Lemma 3.5 can be applied. Therefore, unless
the size of Z is bounded by KΛ · k, the construction terminates within Λ =

∑r
i=0 ∆i

cl ≤
(r + 1)∆r

cl iterations with a pair (X,S). By the construction of X and S, we have the
following properties:
|X| ≤ KΛ · k and |S| > C0 · |X|;
X is a (Z, r)-dominator in G (because Y1 ⊆ X);
for each u ∈ V (G) \X, we have |MG

3r(u,X)| ≤ ∆cl;
S ⊆ Z \X and S is 2r-scattered in G−X.

3.2 Finding an irrelevant dominatee
Given G, Z, and the constructed sets X and S, we denote by R = V (G) \ X the set of
vertices outside X. Using this notation, S is 2r-scattered in the graph G[R]. Recall that for
any vertex u ∈ R, we have |M3r(u,X)| ≤ ∆cl.

Define the following equivalence relation ' on S: for u, v ∈ S, let

u ' v ⇔ Mi(u,X) = Mi(v,X) for each 1 ≤ i ≤ 3r.

Let us denote by Cnei the constant c given by Lemma 2.3 for class G and radius 3r. Hence,
the number of different 3r-projections in X of vertices of R is bounded by Cnei · |X|.

I Lemma 3.8. The equivalence relation ' has at most Cnei · (3r)∆cl · |X| classes.

Proof. Observe that for each u ∈ S,

M1(u,X) ⊆M2(u,X) ⊆ . . . ⊆M3r−1(u,X) ⊆M3r(u,X).

By Lemma 2.3, the number of choices for M3r(u,X) is at most Cnei · |X|. Moreover, since
u ∈ R, we have that |M3r(u,X)| ≤ ∆cl. Hence, to define the sets Mi(u,X) for 1 ≤ i < 3r
it suffices, for every w ∈ M3r(u,X), to choose the smallest index j, 1 ≤ j ≤ 3r, such
that w ∈ Mj(u,X). The number of such choices is at most (3r)∆cl , and hence the claim
follows. J

We can finally set the constant C0 that was introduced in the previous section. We let
C0 = (∆cl + 1) · Cnei · (3r)∆cl . Since we have that |S| > C0 · |X|, from Lemma 3.8 and the
pigeonhole principle we infer that there is a class κ of relation ' with |κ| > ∆cl + 1. Note
that we can find such a class κ in polynomial time, by computing the classes of ' directly
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from the definition and examining their sizes. We are ready to prove the final lemma of this
section: any vertex of κ can be removed from the r-domination core Z (recall that S ⊆ Z),
concluding the proof of Lemma 3.3.

I Lemma 3.9. Let z be an arbitrary vertex of κ. Then Z \ {z} is an r-domination core.

Proof. Let Z ′ = Z \ {z}. Take any minimum-size (Z ′, r)-dominator D in G. If D also
dominates z, then D is a minimum-size (Z, r)-dominator as well. Since Z was an r-domination
core, we infer that D is an r-dominating set in G, and we are done. Hence, suppose z is not
r-dominated by D. We prove that this case leads to a contradiction.

Every vertex s ∈ κ \ {z} is r-dominated by D. For each such s, let v(s) be an arbitrarily
chosen vertex of D that r-dominates s, and let P (s) be an arbitrarily chosen path of length
at most r that connects v(s) with s.

I Claim 3.10. For each s ∈ κ \ {z}, path P (s) does not pass through any vertex of X (in
particular v(s) /∈ X). Consequently, vertices v(s) for s ∈ κ \ {z} are pairwise different.

Proof of claim. Suppose otherwise and let w be the vertex of V (P (s)) ∩X that is closest
to s on P (s). Then the suffix of P (s) from w to s certifies that w ∈Mj(s,X), for j being
the length of this suffix. As s ' z, we also have that w ∈Mj(z,X), so there is a path Q of
length at most j from w to z. By concatenating the prefix of P (s) from v(s) to w with Q we
obtain a walk of length at most r from v(s) to z, a contradiction with the assumption that z
is not r-dominated by D.

For the second part of the claim, suppose v(s) = v(s′) for some distinct s, s′ ∈ κ \ {z}.
Then the concatenation of P (s) and P (s′) would be a path of length at most 2r connecting s
and s′ that is entirely contained in G[R]. This would be a contradiction with the fact that S
is 2r-scattered in G[R]. J

Let W = {v(s) : s ∈ κ \ {z}}. From Claim 3.10 we have that |W | = |κ \ {z}| ≥ ∆cl + 1.
Define D′ = (D \W ) ∪M3r(z,X). Since |M3r(z,X)| ≤ ∆cl, we have that |D′| < |D|.

I Claim 3.11. D′ is a (Z ′, r)-dominator.

Proof of claim. For the sake of contradiction, suppose there is some a ∈ Z ′ that is not
r-dominated by D′. Since a was r-dominated by D and D \D′ = W , there must be a vertex
s ∈ κ \ {z} such that vertex v(s) r-dominates a. Consequently, in G there is a path Q0
of length at most r that leads from v(s) to a. Furthermore, since X is a (Z, r)-dominator,
there is a path Q1 of length at most r that leads from a to some x ∈ X. Let Q be the
concatenation of P (s), Q0, and Q1; Q is a walk of length at most 3r that connects s and
x ∈ X.

Let x′ be the first (closest to s) vertex on Q that belongs to X; such a vertex exists as
x ∈ X is on Q. As the length of Q is at most 3r, we have x′ ∈M3r(s,X). Since s ' z, we
have x′ ∈M3r(z,X), and, consequently, x′ ∈ D′. However, by Claim 3.10, x′ does not lie on
P (s). Hence x′ lies on the part of Q between v(s) and x, but each vertex of this part is at
distance at most r from a on Q. Thus a is r-dominated by x′, a contradiction. J

As |D′| < |D|, Claim 3.11 is a contradiction with the assumption that D is a minimum-size
(Z ′, r)-dominator. This concludes the proof. J
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3.3 Reducing dominators
In the rest of this section we work with arbitrary r towards the proof of Theorem 1.4. At
some point we will argue that for r = 1, the statement of Theorem 1.2 is immediate. Having
reduced the number of vertices whose domination is essential, we arrive at the situation
where the vast majority of vertices serve only the role of dominators, or, when r > 1,
they serve as connections between dominators with dominatees. Now, it is relatively easy
to reduce the number of candidate dominators in one step. This immediately gives the
sought kernel for r = 1, i.e., proves Theorem 1.2. For r > 2, the treatment of vertices
connecting dominators and dominatees without introducing additional gadgets turns out to
be problematic. Therefore, we are unable to give a kernel that is an induced subgraph of the
original graph, and we resort to the statement of Theorem 1.4.

The algorithm of Theorem 1.4 works as follows. First, we apply the algorithm of
Theorem 3.2 to compute a small domination core in the graph. In case the algorithm gives a
negative answer, we output that dsr(G) > k. Hence, from here on, we assume that we have
correctly computed an r-domination core Z0 ⊆ V (G) of size O(k).

Compute Z = clr(Z0) using Lemma 2.2; then we have that |Z| ≤ 3r∇r−1(G)|Z0| = O(k).
Observe that in any graph, any superset of an r-domination core is also an r-domination
core; this follows easily from the definition. Consequently, Z is an r-domination core in G.
Partition V (G) \ Z into equivalence classes with respect to the following relation ', defined
similarly as in Section 3.2: For u, v ∈ V (G) \ Z, let:

u ' v ⇔ Mi(u, Z) = Mi(v, Z) for each 1 ≤ i ≤ r.

From Lemma 2.2 we know that for each u ∈ V (G) \Z, it holds that |Mi(v, Z)| ≤ 9r∇r−1(G)2.
Moreover, Lemma 2.3 implies that the number of possible different projections Mr(u, Z) for
u ∈ V (G) \ Z is at most c · |Z|, for some constant c depending on the grads of G. Hence,
using the same reasoning as in the proof of Lemma 3.8 we obtain the following. (Fully formal
verification of Claims 3.12–3.15 is contained in the full version.)

I Claim 3.12. For C = c · r9r∇r−1(G)2 , the equivalence relation ' has at most C · |Z| classes.

Construct Y as follows: start with Z and, for each equivalence class κ of relation ', add an
arbitrarily selected member vκ of κ. Hence we have that |Y | ≤ (C + 1) · |Z|, so in particular
|Y | = O(k). The following claim follows from a standard replacement argument.

I Claim 3.13. There exists a minimum-size r-dominating set in G that is contained in Y .

Theorem 1.2 now follows from the following immediate claim.

I Claim 3.14. If r = 1, then ds(G) ≤ k if and only if ds(G[Y ]) ≤ k.

For Theorem 1.4, we need not only to preserve the potential dominatees and dominators (the
set Y ), but also distances (up to length r) between them. To this end, we run the algorithm
of Lemma 2.4 on set Y , and let W = Y ′ be the obtained superset of Y . By Lemma 2.4 we
have that |W | = O(k). Then Theorem 1.4 follows immediately from the following claim,
which in turn follows easily from the properties of the set W promised by Lemma 2.4.

I Claim 3.15. dsr(G) ≤ k if and only if dsr(G[W ], Z) ≤ k.

4 Conclusions

We have shown that, for each r ≥ 1, r-Dominating Set admits a linear kernel on any graph
class of bounded expansion. Before this work, the most general family of graph classes where
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such a kernelization result was known were apex-minor-free graphs [14], whereas in the case
of the classic Dominating Set, linear kernels were shown also for general H-minor-free [15]
and H-topological-minor-free classes [16]. Moreover, for r = 1, i.e., the Dominating Set
problem, we can also give a kernel on any nowhere dense class of graphs, at the cost of
increasing the size bound to almost linear, i.e., O(k1+ε) for any ε > 0. These results vastly
and broadly extend the current frontier of kernelization results for domination problems on
sparse graph classes.

The most important question left is understanding the kernelization complexity of r-
Dominating Set on nowhere dense graph classes. So far we know that this problem admits
a linear kernel on any class of bounded expansion, for each r, whereas on any somewhere
dense class closed under taking subgraphs, for some r it is W[2]-hard. Our approach for
bounded expansion graph classes fails to generalize to nowhere dense classes mostly because
of technical reasons. We believe that, in fact, for any nowhere dense class G and any positive
integer r, r-Dominating Set has an almost linear kernel on G. Together with the lower
bound of Theorem 1.6, this would confirm the following dichotomy conjecture that we pose:

I Conjecture 1. Let G be a graph class closed under taking subgraphs and r ∈ N. Then:
If G is nowhere dense, then for every r ≥ 1 and real ε > 0, r-Dominating Set admits
an O(k1+ε) kernel on G.
If G is somewhere dense, then r-Dominating Set is W[2]-hard on G for some r ≥ 1.
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