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Abstract

We consider the problem of designing network cost-
sharing protocols with good equilibria under uncer-
tainty. The underlying game is a multicast game in a
rooted undirected graph with nonnegative edge costs.
A set of k terminal vertices or players need to establish
connectivity with the root. The social optimum is the
Minimum Steiner Tree.

We are interested in situations where the designer
has incomplete information about the input. We pro-
pose two different models, the adversarial and the
stochastic. In both models, the designer has prior
knowledge of the underlying metric but the requested
subset of the players is not known and is activated ei-
ther in an adversarial manner (adversarial model) or is
drawn from a known probability distribution (stochastic
model).

In the adversarial model, the goal of the designer is
to choose a single, universal cost-sharing protocol that
has low Price of Anarchy (PoA) for all possible requested
subsets of players. The main question we address is:
to what extent can prior knowledge of the underlying
metric help in the design?

We first demonstrate that there exist classes of
graphs where knowledge of the underlying metric can
dramatically improve the performance of good network
cost-sharing design. For outerplanar graph metrics, we
provide a universal cost-sharing protocol with constant
PoA, in contrast to protocols that, by ignoring the graph
metric, cannot achieve PoA better than Ω(log k). Then,
in our main technical result, we show that there ex-
ist graph metrics, for which knowing the underlying
metric does not help and any universal protocol has
PoA of Ω(log k), which is tight. We attack this prob-
lem by developing new techniques that employ power-
ful tools from extremal combinatorics, and more specif-
ically Ramsey Theory in high dimensional hypercubes.

Then we switch to the stochastic model, where
each player is independently activated according to
some probability distribution that is known to the
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designer. We show that there exists a randomized
ordered protocol that achieves constant PoA. By using
standard derandomization techniques, we produce a
deterministic ordered protocol that achieves constant
PoA. We remark, that the first result holds also for the
black-box model, where the probabilities are not known
to the designer, but is allowed to draw independent
(polynomially many) samples.

1 Introduction

Network Cost-Sharing Games. We study a
multicast game in a rooted undirected graph G = (V,E)
with a nonnegative cost ce on each edge e ∈ E. A set of
k terminal vertices or players s1, . . . , sk need to establish
connectivity with the root t. Each player selects a path
Pi and the outcome produced is the graph H = ∪iPi.
The global objective is to minimize the cost

∑
e∈H ce of

this graph, which is the Minimum Steiner Tree.
The cost of an edge may represent infrastructure

cost for establishing connectivity or renting expense,
and needs to be covered by the players that use that
edge in the solution. There are several ways to split
the edge costs among the users and this is dictated
by a cost-sharing protocol. Naturally, it is in the
players best interest to choose paths that charge them
with small cost, and therefore the solution will be
a Nash equilibrium (NE). Algorithmic Game Theory
provides tools to analyze the quality of the equilibrium
solutions; this can be measured with the Price of
Anarchy (PoA) [43] (or Price of Stability (PoS) [5]) that
compares the worst-case (or the best-case) cost in a NE
with the cost of the minimum Steiner tree. This is a
fundamental network design game that was originated
by Anshelevich et al. [5] and has been extensively
studied since. [5] studied the Shapley cost-sharing
protocol, where the cost of each edge is equally split
among its users. They showed that the quality of
equilibria can be really poor1.

Cost-Sharing Protocol Design. Different cost-
sharing protocols result in different quality of equilibria.

1Even for simple networks the PoA grows linearly with the
number of players, k. The PoS is not well-understood. It is a

big open question to determine its exact value that is between
constant and O(log / log log k) [45].
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In this work, we are interested in the design of protocols
that induce good equilibrium solutions in the worst-
case, therefore we focus on protocols that guarantee
low PoA. Chen, Roughgarden and Valiant [22] were the
first to address design questions for network cost-sharing
games. They gave a characterization of protocols
that satisfy some natural axioms and they thoroughly
studied their PoA for the following two classes of
protocols, that use different informational assumptions
from the perspective of the designer.

Non-uniform protocols. The designer has full knowl-
edge of the instance, that is, she knows both the
network topology given by G and the costs ce, and
in addition the set of players’ requests s1, . . . , sk.
They showed that a simple priority protocol has a
constant PoA; the Nash equilibria induced by the
protocol simulate Prim’s algorithm for the Mini-
mum Spanning Tree (MST) problem, and therefore
achieve constant approximation.

Uniform protocols. The designer needs to decide how
to split the edge cost among the users without
knowledge of the underlying graph. They showed
that the PoA is Θ(log k); both upper and lower
bound comes from the analysis of the Greedy
Algorithm for the Online Steiner Tree problem
(OSTP).

Cost-Sharing Design under Uncertainty. Ar-
guably, there are situations where the former assump-
tion is too optimistic while the latter is too pessimistic.
We propose a model that lies in the middle-ground, as
a framework to design network cost-sharing protocols
with good equilibria, when the designer has incomplete
information.

We assume that the designer has prior knowledge
of the underlying metric, (given by the graph G and
the shortest path metric induced by the costs ce), but is
uncertain about the requested subset of players. We
consider two different models, the adversarial model
and the stochastic model. In the former, the designer
knows nothing about the number or the positions of the
si’s and has as goal to process the graph and choose
a single, universal cost-sharing protocol that has low
PoA against all possible requested subsets. Here, no
distributional assumptions are made about arrivals of
players, and we take the worst-case approach similarly
to Competitive Analysis. Once the designer selects the
protocol, then an adversary will choose the requested
subset of players and their positions in the graph (the
si’s), in a way that maximizes the PoA of the induced
game. In the stochastic model, the players/vertices
are activated according to some probability distribution
which is given to the designer. The goal is now to choose

(a)

(b) (c)

Figure 1: In (a) and (b) we assume two orders on the vertices,
denoted by qi or pi. The q-order is adversarially chosen and

simulates the adversary for the OSTP [38], that results to high

PoA of Ω(log k). The p-order results to constant PoA. (c) shows
an example where both the best ordered protocol and the Shapley

protocol have PoA ≥ 5/4, whereas there is an intermediate
protocol with PoA 1. In edges with no written cost, we consider

the unit cost; we take ε > 0 arbitrarily small.

a universal protocol where the expected worst-case cost
in the NE is not far from the expected optimal cost.

Example 1.1. (Ordered protocols). An important
special class with interesting properties is that of ordered
protocols. The designer decides a total order of the
users, and when a subset of players uses some edge,
the full cost is covered by the player who comes first
in the order. Any NE of the induced game corresponds
to the solution produced by the Greedy Algorithm for
the MST: each player is connected, via a shortest path,
with the component of the players that come before
him in the order. The analysis of the PoA in the
uniform model boils down to the analysis of the Greedy
Algorithm for the OSTP, where the worst-case order is
considered. The following example demonstrates that
even this special class of ordered protocols becomes
very rich, once the designer has prior knowledge of the
underlying metric space. Uniform protocols throw away
this crucial component, the structure of the underlying
metric, that universal protocols can use in their favor
to come up with better PoA guarantees.



Uniform protocols. The designer chooses an order
of the players 1, . . . , k without prior knowledge of
the graph. The adversary constructs a worst-case
graph, by simulating the adversary for the Greedy
Algorithm of the OSTP [38], and places the players
accordingly (see for example Figure 1(a),(b), the
q labels). Therefore the PoA of uniform ordered
protocol is Ω(log k) [22].

Universal protocols. The designer takes into account
the graph; consider the worst-case graph for the
Greedy Algorithm of the OSTP (illustrated in
Figure 1(a),(b) for a small number of players).
For the graph of Figure 1(a), choose the linear
order dictated from the path p1, . . . , p9 (say from
left to right). For the graph of Figure 1(b) order
the vertices according to their distance from t,
p1, . . . , p11. The adversary will choose k and the
positions of the players (s1, . . . , sk). In both cases,
it is not hard to see that, no matter which subset
of players the adversary chooses, the PoA remains
constant as k grows.

Example 1.2. (Generalized weighted Shapley).
In [22], it was shown that ordered protocols are essen-
tially optimal among uniform protocols. In our model,
the choice of the optimal method may depend on the un-
derlying graph metric. Take the example in Figure 1(c).
By using Shapley cost sharing the adversary can choose
v1, v2, v3 and in the NE v1, v3 connect directly to t and
v2 connects through v1. Regarding any ordered proto-
col, the square defined by the vi’s contains a path of
length 2 where the middle vertex comes last in the or-
der. The adversary will select this triplet of players, say
v1, v2, v3. In the NE, v1 connects directly to t, v3 and v2

connect through v1. In both cases, the cost of the NE
is 5 and the minimum Steiner tree that connects those
vertices with t has cost 4 (by ignoring ε) and therefore,
PoA ≥ 5/4.

However the following (generalized Shapley) proto-
col has PoA = 1. Partition the players into two sets
S1 = {v1, v2}, S2 = {v3, v4}. If players from both parti-
tions appear on some edge, then the cost is charged only
to players from S1. Players that belong to the same par-
tition share the cost equally. One can verify that for all
possible subsets of players this protocol produces only
optimal equilibria.

Results. We propose a framework for the design
of (universal) network cost-sharing protocols with good
equilibria, in situations where the designer has incom-
plete information about the input. We consider two
different models, the adversarial and the stochastic. In
both models, the designer has prior knowledge of the

underlying metric but the requested subset of the play-
ers is not known and is activated either in an adversarial
manner (adversarial model) or is drawn from a known
probability distribution (stochastic model). The central
question we address is: to what extent does prior knowl-
edge of the metric help in good network design under
uncertainty?

For the adversarial model, we first demonstrate
that there exist classes of graph metrics where prior
knowledge of the underlying metric can dramatically
improve the performance of good network cost-sharing
design. For outerplanar graph metrics, we provide a
universal ordered cost-sharing protocol with constant
PoA, against any choice of the adversary. This is in
contrast to uniform protocols that ignore the graph and
cannot achieve PoA better than Ω(log k) in outerplanar
metrics.

Our main technical result shows that there exist
graph metrics, for which knowing the underlying metric
does not help the designer, and any universal protocol
has PoA of Ω(log k). This matches the upper bound of
O(log k) that can be achieved without prior knowledge
of the metric [38, 22].

Then we switch to the stochastic model, where each
player is independently activated according to some
probability that is known to the designer. We show
that there exists a randomized ordered protocol that
achieves constant PoA. By using standard derandom-
ization techniques [52, 48], we produce a deterministic
ordered protocol that achieves constant PoA. We re-
mark, that the first result holds also for the black-box
model, where the probabilities are not known to the
designer, but is allowed to draw independent (polyno-
mially many) samples.

Our results for the adversarial model motivate the
following question that is left open.

Open Question: For which metric spaces can one
design universal protocols with constant PoA? What
sort of structural graph properties are needed to obtain
good guarantees?

Techniques. We prove our main lower bound for
the adversarial model in two parts. In the first part
(Section 3) we bound the PoA achieved by any ordered
protocol. Our origin is a well-known “zig-zag” ordered
structure that has been used to show a lower bound
on the Greedy Algorithm of the OSTP (see the labeled
path (q1, q6, q4, . . . , q2) in Figure 1(a)). The challenge is
to show that high dimensional hypercubes exhibit such a
distance preserving structure no matter how the vertices
are ordered. Section 3 is devoted to this and we believe
that this is of independent interest.

We show the existence proof by employing power-
ful tools from Extremal Combinatorics and in particular



Ramsey Theory [35]. We are inspired by a Ramsey-type
result due to Alon et al. [4], in which they show that,
for any given length ` ≥ 5, any r-edge coloring of a high
dimensional hypercube contains a monochromatic cycle
of length 2`. Unfortunately, we cannot immediately use
their results, but we show a similar Ramsey-type re-
sult for a different, carefully constructed structure; we
assert that every 2-edge coloring of high dimensional
hypercubes Qn contains a monochromatic copy of that
structure. Then, we prescribe a special 2-edge-coloring
that depends on the ordering of Qn, so that the spe-
cial subgraph preserves some nice labeling properties.
A suitable subset of the subgraph’s vertices can be 1-
embedded into a hypercube of lower dimension. Recur-
sively, we show existence of the desired distance preserv-
ing “zig-zag” structure.

In the second part (Section 4), we extend the lower
bound to all universal cost-sharing protocols, by using
the characterization of [22]. At a high level, we use
as basis the lower bound construction for the ordered
protocol and create “multiple copies”2. The adversary
will choose different subsets of players, depending on
whether the designer chose protocols “closer” to Shapley
or to ordered. In the latter case, we use arguments from
Matching Theory to guarantee existence of ordered-like
players in one of the hypercubes.

For the stochastic model (Section 6), we construct
an approximate minimum Steiner tree over a subset of
vertices which are drawn from the known probability
distribution. This tree is used as a base to construct a
spanning tree, which determines a total order over the
vertices. We finally produce a deterministic order by
applying standard derandomization techniques [52, 48].

Related Work Following the work of [5, 6], a
long line of research studies network cost-sharing games,
mainly focusing on the PoS of the Shapley cost-sharing
mechanism. [5] showed a tight Θ(log k) bound for
directed networks, while for undirected networks several
variants have been studied [14, 16, 21, 23, 28, 29, 45, 15]
but the exact value of PoS still remains a big open
problem. For multicast games, an improved upper
bound of O(log k/ log log k) is known due to Li [45],
while for broadcast games, a series of work [29, 44] lead
finally to a constant due to Bilò et al. [16]. The PoA of
some special equilibria has been also studied in [19, 20].

Chen, Roughgarden and Valiant [22] initiated the
study of network cost-sharing design with respect to
PoA and PoS. They characterized a class of protocols
that satisfy certain desired properties (which was later
extended by Gopalakrishnan, Marden and Wierman, in

2Note that the standard complexity measure, to analyze the
inefficiency of equilibria, is the number of participants, k, and not

the total number of vertices in the graph (see for example [5, 22]).

[33]), and they thoroughly studied PoA and PoS for
several cases. Falkenhausen and Harks [51] studied
singleton and matroid games with weighted players,
while Gkatzelis, Kollias and Roughgarden [31] focused
on weighted congestion games with polynomial cost
functions.

Close in spirit to universal cost-sharing protocols is
the notion of Coordination Mechanisms [24] that pro-
vides a way to improve the PoA in cases of incomplete
information. The designer has to decide in advance local
scheduling policies or increases in edge latencies, with-
out knowing the exact input, and has been used for
scheduling problems [24, 39, 42, 8, 18, 26, 12, 1, 2] as
well as for simple routing games [25, 13].

As discussed in Example 1.1, the analysis of the
equilibria induced by ordered protocols corresponds to
the analysis of Greedy Algorithm for the MST. In
the uniform model, this corresponds to the analysis
of the Greedy Algorithm [38, 7] for the (Generalized)
OSTP [3, 9, 50], which was shown to be Θ(log k)-
competitive by Imase and Waxman [38] (O(log2 k)-
competitive for the Generalized OSTP by [7]). The
universal model is closely related to universal network
design problems [40], hence our choice for the term
“universal”. In the universal TSP, given a metric
space, the algorithm designer has to decide a master
order so that tours that use this order have good
approximation [46, 10, 37, 34, 40].

Much work has been done in stochastic models and
we only mention the most related to our work. Karger
and Minkoff [41] showed a constant approximation guar-
antee for the maybecast problem, where the designer
needs to fix (before activation) some path for every ver-
tex to the root. Garg et al. [30] gave bounds on the ap-
proximation of the stochastic online Steiner tree prob-
lem. A line of works [11, 34, 47, 48] has studied the
a priori TSP. Shmoys and Talwar [48] assumed inde-
pendent activations and demonstrated randomized and
deterministic algorithms with constant approximations.

2 Model and definitions

Universal Cost-Sharing Protocols. A multicast
network cost-sharing game, is specified by a connected
undirected graph G = (V,E), with a designated root t
and nonnegative weight ce for every edge e, a set of play-
ers S = {1, . . . , k} and a cost-sharing protocol. Each
player i is associated with a terminal3 si, which she
needs to connect with t. We say that a vertex is ac-
tivated if there exists some requested player associated
with it. In the adversarial model the designer knows

3We abuse notation and use S to refer both to the players and
their associated vertices.



nothing about the set S of activated vertices, while in
the stochastic model, the vertices are activated accord-
ing to some probability distribution Π which is known
to the designer.

For any set N of players, a cost-sharing method

ξ : 2N → R|N |+ decides, for every subset R ⊆ N , the
cost-share ξ(i, R) for each player i ∈ R. A natural rule
is that the shares for players not included in R should
always be 0, i.e. if i /∈ R, ξ(i, R) = 0. W.l.o.g. each
player is associated with a distinct vertex4. For any
graphG and any set of playersN , a cost-sharing protocol
Ξ assigns, for every e ∈ E, some cost-sharing method ξe
on N .

Following previous work [22, 51], we focus on cost-
sharing protocols that satisfy the following natural
properties:

(1) Budget-balance: For every network game induced
by the cost sharing protocol Ξ, and every outcome
of it,

∑
i∈R ξe(i, R) = ce, for every edge e with cost

ce.

(2) Separability: For every network game induced by
the cost sharing protocol Ξ, the cost shares of
each edge are completely determined by the set of
players using it.

(3) Stability: In every network game induced by the
cost-sharing protocol Ξ, there exists at least one
pure Nash equilibrium, regardless of the graph
structure.

We call a cost-sharing protocol Ξ universal, if it
satisfies the above properties for any graph G, and it

assigns the cost-sharing method ξe : 2V → R|V |+ to edge
e based only on knowledge of G (without knowledge of
S5) for the adversarial model, while in the stochastic
medel the method can in addition depend on Π. Due to
the characterization in [22], we restrict ourselves to the
family of generalized weighted Shapley protocols6.

Generalized Weighted Shapley Protocol
(GWSP). The generalized weighted Shapley protocol
(GWSP) is defined by the players’ weights (parameters)
{w1, . . . , wn} and an ordered partition of the players

4To see this, if there are two players with s1 = s2 = v, for some

v ∈ V , we modify the graph by connecting a new vertex v′ with v
via a zero-cost edge and then we set s1 = v and s2 = v′. Neither

the optimum solution, nor any Nash equilibrium are affected by
this modification.

5The methods should be defined on V , since every vertex is

potentially associated with some player.
6[22] characterizes the linear protocols (for every edge e of cost

ce ≥ 0, it assigns the method ce ·ξ, where ξ is the method it assigns
to any edge of unit cost) to be the generalized weighted Shapley

protocols. They further showed that for any non-linear protocol,
there exists a linear one with at most the same PoA.

Σ = (U1, . . . , Uh). An interpretation of Σ is that for
i < j, players from Ui “arrives” before players from Uj .
More formally, for every edge e of cost ce, every set of
players Re that uses e and for s = arg minj{Uj |Uj∩Re 6=
∅}, the GWSP assigns the following method to e:

ξe(i, Re) =

{
wi∑

j∈Us∩Re wj
ce, if i ∈ Us ∩Re

0, otherwise

In the special case that each Ui contains exactly one
player, the protocol is called ordered. The order of the
Ui sets indicates a permutation of the players, denoted
by π.

(Pure) Nash Equilibrium (NE). We denote by
Pi the strategy space of player i, i.e. the set of all
the paths connecting si to t. P = (P1, . . . , Pk) denotes
an outcome or a strategy profile, where Pi ∈ Pi for
all i ∈ S. As usual, P−i denotes the strategies of
all players but i. Let Re be the set of players using
edge e ∈ E under P. The cost share of player i
induced by ξe’s is equal to ci(P) =

∑
e∈Pi ξe(i, Re).

The players’ objective is to minimize their cost share
ci(P). A strategy profile P = (P1, . . . , Pk) is a Nash
equilibrium (NE) if for every player i ∈ S and every
strategy P ′i ∈ Pi, ci(P) ≤ ci(P−i, P ′i ).

Price of Anarchy (PoA). The cost of an out-
come P = (P1, . . . , Pk) is defined as c(P) =

∑
e∈∪iPi ce,

while O = (O1, . . . , Ok) ∈ arg minP c(P) is the optimum
solution. The Price of Anarchy (PoA) is defined as the
worst-case ratio of the cost in a NE over the optimal cost
in the game induced by S. In the adversarial model the
worst-case S is chosen, while in the stochastic model S
is drawn from a known distribution Π. Formally, in the
adversarial model we define the PoA of a protocol Ξ on
G as

PoA(G,Ξ) = max
S⊆V \{t}

maxP∈ N c(P)

c(O)
,

where N is the set of all NE of the game induced by Ξ
and S on G.

In the stochastic model, the PoA of Ξ, given G and
Π is

PoA(G,Ξ,Π) =
ES∼Π [maxP∈ N c(P)]

ES∼Π[c(O)]
.

In both models the objective of the designer is to
come up with protocols that minimize the above ratios.
Finally, the Price of Anarchy for a class of graph metrics
G, is defined in the two models respectively as

PoA(G) = max
G∈G

min
Ξ(G)

PoA(G,Ξ);

PoA(G) = max
G∈G

min
Ξ(G,Π)

max
Π

PoA(G,Ξ,Π).



Graph Theory. For every graph G, we denote by
V (G) and E(G) the set of vertices and edges of G,
respectively. For any v, u ∈ V (G), (v, u) denotes an
edge between v and u and dG(v, u) denotes the shortest
distance between v and u in G; if G is clear from the
context, we simply write d(v, u). A graph G is an
induced subgraph of H, if G is a subgraph of H and
for every v, u ∈ V (G), (v, u) ∈ E(G) if and only if
(v, u) ∈ E(H). G is a distance preserving (isometric)
subgraph of H, if G is a subgraph of H and for every
v, u ∈ V (G), dG(v, u) = dH(v, u).

3 Lower Bound of Ordered Protocols

The main result of this section is that the PoA of
any ordered protocol is Ω(log k) which is tight. We
formally define (Definition 3.2) the ‘zig-zag’ pattern of
the lower bounds of the Greedy Algorithm of the OSTP
(see Example 1.1(a) and Figure 2). Then the main
technical challenge is to show that for any ordering
of the vertices of high dimensional hypercubes, there
always exists a distance preserving path, such that the
order of its vertices follows that zig-zag pattern. Finally,
by connecting any two vertices of the hypercube with a
direct edge of suitable cost, similar to the example in
Figure1(a), we get the final lower bound construction.

Definition 3.1. (Classes) For r > 0, and for a
path graph P = (v0, . . . , v2r ) of 2r + 1 vertices, we
define a partition of the vertices into r + 1 classes,
D0, D1, . . . , Dr, as follows: Class 0 contains the end-
points of P , D0 = {v0, v2r}. For every j ∈ [r], Dj =
{vi|

(
i mod 2r−j

)
= 0 and

(
i mod 2r−j+1

)
6= 0}. For

v ∈ Dj, w ∈ Dj′ and j < j′, we say that v belongs to
a lower class than w (and w belongs to a higher class
than v).

As an example, consider the path P =
(v0, v1, v2, v3, v4, v5, v6, v7, v8), where r = 3. Then,
D0 = {v0, v8}, D1 = {v4}, D2 = {v2, v6} and D3 =
{v1, v3, v5, v7}. Note that always |D0| = 2 and for j 6= 0,
|Dj | = 2j−1.

For j > 0 and vi ∈ Dj , we define the parents of
vi as Π(vi) = {w|dP (vi, w) = 2r−j}, i.e. the closest
vertices that belong to lower classes. Remark that for
all v /∈ {v0, v2r} i) the cardinality of Π(v) is 2, ii) the
vertices of Π(v) belong to lower classes than v, iii) all
vertices between v and any vertex of Π(v) belong to
higher classes than v. We are now ready to define the
“zig-zag” pattern.

Definition 3.2. (Zig-zag pattern) We call a path
graph P = (v0, v1, . . . , v2r ), with distinct integer labels
π, zig-zag, and we denote it by Pr(π), if for every
i /∈ {0, 2r}, π(w) < π(vi) for all w ∈ Π(vi).

An example of such a path for r = 3 is shown in Figure 2.
Our main result of this section is that there exist graphs,
high dimensional hypercubes, such that for any order π,
Pr(π) always appears as a distance preserving subgraph.
Our proof is existential and uses Ramsey theory.

1 8 6 7 3 5 4 9 2

Figure 2: An example of a P3(π) path. The numbers
correspond to the labels.

Proof Overview: The proof is by induction and in
the inductive step our starting point is the n-th dimen-
sional hypercube Qn. Given an ordering/labeling π of
the vertices of Qn we first show that Qn contains a sub-
graph W which is isomorphic to a ‘pseudo-hypercube’
Q2
m (m < n) where the labeling of its vertices satisfies

a special property (to be described shortly). Q2
m is de-

fined by replacing each edge of Qm by a 2-edge path (of
length two)7.

Labeling property: For the subgraph W we require
that all such newly formed 2-edge paths, are P1(π)
paths, i.e. the label of the middle vertex is greater than
the labels of the endpoints (Figure 3(a) shows such a
labeling).

Next, we contract all such 2-edge paths of Q2
m into

single edges, resulting in a graph isomorphic to Qm;
this is the hypercube used for the next step. Note
that each contracted edge still corresponds to a path
in Qn. Therefore, after r recursive steps, each edge
corresponds to a 2r path of Qn. Further, note that such
a path is a Pr(π) path, due to the labeling property
that we preserve at each step. We require that, at
the end of the last inductive step, Qm = Q1 (a single
edge), and (by unfolding it) we show that this edge
corresponds to a distance preserving subgraph of the
original graph/hupercube. At each step, m < n; the
relation between n and m is determined by a Ramsey-
type argument.

We next describe the basic ingredients that we use
to show existence of W . We apply a coloring scheme to
the edges of Qn that depends on the vertices’ order.

Coloring Scheme: Consider Qn as a bipartite Qn =
(A,B,E). For any edge (v, u), with v ∈ A and u ∈ B, if
the v’s label is smaller than u’s, we paint the edge blue,
otherwise we paint it red.

By a Ramsey-type argument we show that Qn has
a monochromatic subgraph isomorphic to a specially
defined graph Gm; Gm is carefully specified in such a
way that it contains at least two subgraphs isomorphic

7See Q2
m of Definition 3.3 and Figure 3(a) for an illustration



to pseudo-hypercubes Q2
m. The special property of

those two subgraphs is described next.
Let H1 and H2 be the two half cubes8 of Qn and

let V (H1) = A and V (H2) = B. Observe that if Q2
m

is a subgraph of Qn then the corresponding Qm is an
induced subgraph of either H1 or H2. We carefully
construct Gm such that it contains subgraphs W1 and
W2 isomorphic to Q2

m, whose corresponding Qm’s are
induced subgraphs of H1 and H2, respectively. The
color of Gm determines which of the W1 and W2 will
serve as the desired W . In particular, if the color is
blue, then for every edge (v, u), with v ∈ V (H1) and
u ∈ V (H2), it should hold that v’s label is smaller than
u’s and therefore the labeling property is satisfied for
W1; similarly, if the color is red, W2 serves as W .

Proof Roadmap. The whole proof of the lower
bound proceeds in several steps in the following sections.
In Section 3.1 we give the formal definition of the
subgraph Gm of a hypercube Qn. Section 3.2 is devoted
to show that every 2-edge coloring of a (suitably)
high dimensional hypercube contains a monochromatic
copy of Gm (Lemma 3.2), by using Ramsey theory.
Then, in Section 3.3 we show that, for any ordering
of the vertices of Qn, we can define a special 2-edge-
coloring, so that there exists a Q2

m subgraph of Gm
that preserves the Labeling property (Lemma 3.3). At
last, in Section 3.4, by a recursive application of the
combination of the Ramsey-type result and the coloring,
we prove the existence of the zig-zag path in high
dimensional hypercubes (Theorem 3.1). We then show
how to construct a graph that serves as lower bound
for all ordered protocols (Theorem 3.2). This is done
by connecting any two edges of the hypercube with a
direct edge of appropriate cost, similar to the example
in Figure 1(a).

Definitions and notation on Hypercubes. We
denote by [r, s] (for r ≤ s) the set of integers {r, r +
1, . . . , s − 1, s}, but when r = 1, we simply write [s].
We follow definitions and notation of [4]. Let Qn be the
graph of the n-dimensional hypercube whose vertex set
is {0, 1}n. We represent a vertex v of V (Qn) by an n-bit
string x = 〈x1 . . . xn〉, where xi ∈ {0, 1}. By 〈xy〉 or xy
we denote the concatenation of an r-bit string x with an
s-bit string y, i.e. xy = 〈x1 . . . xry1 . . . xs〉. x = 〈xj〉rj=1

is the concatenation of its r bits. An edge is defined
between any two vertices that differ only in a single
bit. We call this bit, flip-bit, and we denote it by ‘∗’.
For example, x = 〈11100〉, y = 〈11000〉 are two vertices
of Q5 and (x, y) = 〈11 ∗ 00〉 is the edge that connects
them. The distance between two vertices x, y is defined

8The two half-cubes of order n are formed from Qn by
connecting all pairs of vertices with distance exactly two and

dropping all other edges.

by their Hamming distance, d(v, u) = |{j : xj 6= yj}|.
For a fixed subset of coordinates R ⊆ [n], we extend the
definition of the distance as follows,

d(x, y,R) =

{
d(x, y), if ∀j ∈ [n] \R, xj = yj
∞, otherwise.

We define the level of a vertex x by the number of
‘ones’ it contains, w(x)

∑n
i=1 xi. We denote by Li the

set of vertices of level i ∈ [0, n]. We define the prefix
sum of an edge e = (x, y), where the flip-bit is in the

j-th coordinate, by p(e) =
∑j−1
i=1 xi. We represent any

ordering π of V (Qn), by labeling the vertices with labels
1, . . . , 2n, where label i corresponds to ranking i in π.

3.1 Description of Gm

For a positive integer m, we define a graph Gm =
(Vm, Em) that is a restriction of Q4m on Vm = V1 ∪
V2 ∪ V3 ⊆ V (Q4m). A vertex of V1 is defined by 2m− 1
concatenations of pairs 〈01〉 and 〈10〉 and a single pair
〈00〉 that appears in the second half of the string. A
vertex of V2 is defined by 2m concatenations of 〈01〉 and
〈10〉. A vertex of V3 is defined by 2m−2 concatenations
of 〈01〉 and 〈10〉, one pair 〈11〉 that appears on the first
half of the string, and one pair 〈00〉 that appears on the
second half. For example, for m = 2, 〈01 10 00 10〉 ∈ V1,
〈01 10 10 10〉 ∈ V2, 〈01 11 10 00〉 ∈ V3. More formally,
let A = {〈01〉, 〈10〉}, then the subsets V1, V2, V3 are
defined as follows:

V1 := V1(m) = {〈ajbj〉2mj=1|∃i ∈ [m+ 1, 2m] s.t.

〈aibi〉 = 〈00〉 and ∀j 6= i, 〈ajbj〉 ∈ A},
V2 := V2(m) = {〈ajbj〉2mj=1|∀j, 〈ajbj〉 ∈ A},
V3 := V3(m) = {〈ajbj〉2mj=1|∃i1 ∈ [m],∃i2 ∈ [m+ 1, 2m]

s.t. 〈ai1bi1〉 = 〈11〉, 〈ai2bi2〉 = 〈00〉 and

∀j 6=i1, i2, 〈ajbj〉 ∈ A}.

Observe that Gm is bipartite with vertex partitions V1

and V2 ∪ V3, as vertices of V1 belong to level 2m − 1,
while vertices of V2 ∪ V3 to level 2m.

Lemma 3.1. Every pair of vertices x, x′ ∈ V1(m) with
d(x, x′, [2m]) = 2, have a unique common neighbor
y ∈ V3(m). Also, every pair of vertices x, x′ ∈ V2(m),
with d(x, x′, [2m + 1, 4m]) = 2, have a unique common
neighbor y ∈ V1(m).

Proof. Recall that (by definition) if d(x, x′, R) 6= ∞
then x, x′ should coincide in all but the R coordinates.
For the first statement, observe that the premises of
the Lemma hold only if there exists s ∈ [m] such that
x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the other way

around), in which case the required vertex y from V3(m)



has y2s−1y2s = 〈11〉; the rest of the bits are the same
among x, x′, y. For the second statement, the premises
of the Lemma hold only if there exists an s ∈ [m+1, 2m]
such that x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the

other way around), in which case the required vertex y
from V1(m) has y2s−1y2s = 〈00〉 and the rest of the bits
are the same among x, x′, y. �

3.2 Ramsey-type Theorem

Lemma 3.2. For any positive integer m, and for suffi-
ciently large n ≥ n0 = g(m), any 2-edge coloring χ of
Qn, contains a monochromatic copy of Gm

9.

Proof. The proof follows ideas of Alon et al. [4]. Con-
sider a hypercube Qn, with sufficiently large n > 6m
to be determined later, and some arbitrary 2-edge-
coloring χ : E(Qn) → {1, 2}. Let E∗ be the set of
edges between vertices of L4m−1 and L4m (recall that
Li = {v|w(v) = i}).

Each edge e ∈ E∗ contains 4m − 1 1’s, a flip-bit
represented by ∗ and the rest of the coordinates are 0.
Moreover, e is uniquely determined by its 4m non-zero
coordinatesRe ⊆ [n] and its prefix sum p(e) ∈ [0, 4m−1]
(number of 1′s before the flip-bit). Therefore, the color
χ(e) defines a coloring of the pair (Re, p(e)), i.e. χ(e) =
χ(Re, p(e)). For each subset R ⊂ [n] of 4m coordinates,
we denote by c(R) = (χ(R, 0), ..., χ(R, 4m − 1)) the
color induced by the edge coloring. The coloring of all
subsets R defines a coloring of the complete 4m-uniform
hypergraph of [n]10 using 24m colors.

By Ramsey’s Theorem for hypergraphs [35], there
exists n0 = g(m) such that for any n ≥ n0 there
exists some subset U ⊂ [n] of size 6m such that all
4m-subsets R ⊂ U have the same color c(R) = c∗.
Therefore, for every R1, R2 ⊂ U and p ∈ [0, 4m − 1],
it is χ(R1, p) = χ(R2, p) = cp. Since p takes 4m values
and there are only two different colors, there must exist
2m indices p0, . . . , p2m−1 ∈ [0, 4m − 1] with the same
color χ(R, pi) = χ∗, for all R ⊂ U , |R| = 4m and
i ∈ [0, 2m− 1].

It remains to show that the graph formed with the
edges that are determined by those prefix sums, contains
a monochromatic copy of Gm. We will show this by
constructing those edges from Em (the set of edges of
Gm). By inserting blocks of 1’s of suitable length among
the bits of the edges of Em, we construct the bits at the
coordinates of U . The rest of the bits (n− |U |) are set
to zero.

9The result could be extended to any (fixed) number of colors,

but we need only two for our application.
10A k-uniform hypergraph is a hypergraph such that all its

hyperedges have size k.

Let 1r be a string of r 1’s and define βi = 1pi−pi−1−1

for i ∈ [2m − 1], β0 = 1p0 and β2m = 14m−1−p2m−1 .
For any edge e = 〈ajbj〉j ∈ Em, we insert β0 at the
beginning of the string, for j ∈ [m] we insert βj between
aj and bj and for j ∈ [m + 1, 2m] we insert the string
βj after bj . Each edge of Em contains exactly 2m
zero bits. Also notice that

∑
j |βj | = 2m. Therefore,

in total we have 6m bits (same as |U |) and 4m non-
zero bits (same as |R|). These 6m bits are put at the
coordinates of U . The rest n − 6m of the coordinates
are filled with zeros. It is easy to check that, for every
such edge, the prefix of the flip-bit is always one of the
p0, . . . , p2m−1, implying that they are monochromatic.
All but 4m coordinates are fixed and the 4m coordinates
form exactly the sets V1(m), V2(m), V3(m); therefore,
the monochromatic subgraph is isomorphic to Gm. �

3.3 Coloring based on the labels

This part of the proof shows that for any ordering of the
vertices of a hypercube Qn, there is a 2-edge coloring
with the following property: in the monochromatic Gm,
either all the vertices of V1 or all the vertices of V2 have
neighbors in Gm with only higher label. This implies a
desired labeling property for a Q2

m subgraph of Qn, the
structure of which is defined next.

Definition 3.3. We define Qsn to be a subdivision of
Qn, by replacing each edge by a path of length s. Q1

n is
simply Qn. We denote by Z(Qsn) the set of all pairs
of vertices (x, x′), which correspond to edges of Qn;
P (x, x′) is the corresponding path in Qsn. For every
(x, x′) ∈ Z(Q2

m), we denote by θ(x, x′) the middle vertex
of P (x, x′).
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Figure 3: Examples of (a) Q2
3 and (b) Q4

2. The labels
on the nodes are examples of the labeling property, (a)
after one inductive step, (b) after two inductive steps.

In the next lemma we show that for any ordering of
the vertices of Qn, there exists a subgraph isomorphic
to Q2

m, such that the ‘middle’ vertices have higher label
than their neighbors (Labeling Property).

Lemma 3.3. For any positive integer m, for all n ≥
n0 = g(m) and for any ordering π of V (Qn), there



exists a subgraph W of Qn that is isomorphic to Q2
m,

such that for every (x, x′) ∈ Z(W ), it is π(θ(x, x′)) >
max{π(x), π(x′)}.

Proof. Choose a sufficiently large n ≥ n0 = g(m) as in
Lemma 3.2. Partition the vertices of Qn into sets O, E
of vertices of odd and even level, respectively. We color
the edges of Qn as follows. For every edge e = (z, z′)
with z ∈ O and z′ ∈ E , if π(z) < π(z′), then paint
e blue. Otherwise paint it red. Therefore, for every
blue edge, the endpoint in O has smaller label than the
endpoint in E . The opposite holds for any red edge.

Lemma 3.2 implies that Qn contains a monochro-
matic copy (blue or red) of Gm. Recall that Gm is
bipartite between vertices of levels L4m−1 and L4m and
that V1 ⊂ L4m−1 ⊂ O and V2 ∪ V3 ⊂ L4m ⊂ E . Let
R ⊂ [n] be the subset of the 4m coordinates that cor-
respond to vertices of Gm. Also let R1 and R2 be the
subsets of the first 2m and the last 2m coordinates of
R, respectively.

First suppose that Gm is blue. An immediate
implication of our coloring is that for every edge (z, z′) ∈
Em with z ∈ V1, z′ ∈ V2 ∪ V3 it must be π(z) < π(z′).
Fix a 2m-bit string s that corresponds to a permissible
bit assignment to the R2 coordinates of some vertex in
V1 (see Section 3.1). Define Ws as the subset of vertices
of V1 where the R2 coordinates are set to s. Recall that
each of the first m pairs 〈ajbj〉, j ∈ [m], of a vertex
z ∈ Ws, may take any of the two bit assignments 〈01〉
and 〈10〉. Hence, |Ws| = 2m.

Observe that we can embed Ws into Qm with
distortion 1 and scaling factor 1/2, by mapping the
first m pairs of bits into single bits; map 〈01〉 to 0 and
〈10〉 to 1. Every two vertices with distance d in Qm,
have distance 2d in Qn. For every x, x′ ∈ Ws ⊂ V1

with d(x, x′) = 2, Lemma 3.1 implies that there exists
y = θ(x, x′) ∈ V3, such that d(x, y) = d(x′, y) = 1.
Therefore, π(y) > max{π(x), π(x′)}. Take the union
Y = ∪y of all such vertices y, then Ws ∪ Y induces a
subgraph W isomorphic to Q2

m, that fulfills the labeling
requirements.

The case of Gm being red is similar. We focus
only on vertices V2. Fix now a 2m-bit string s that
corresponds to a permissible bit assignment of the R1

coordinates of a vertex in V2. Define Ws as the subset
of vertices of V2 where the R1 coordinates are set to s.
Similarly, we can embed Ws into Qm with distortion 1
and scaling factor 1/2.

For every x, x′ ∈ Ws ⊂ V2 with d(x, x′) = 2, where
the R1 coordinates are fixed to s, Lemma 3.1 implies
that there exists y = θ(x, x′) ∈ V1, such that d(x, y) =
d(x′, y) = 1. Therefore, π(y) > max{π(x), π(x′)}. Take
the union Y = ∪y of all such vertices y, then Ws ∪ Y
induces a subgraph W isomorphic to Q2

m, that fulfills

the labeling requirements. �

3.4 Lower Bound Construction

Now we are ready to prove the main theorem of this
section.

Theorem 3.1. For every positive integer r, and for
sufficiently large n = n(r), there exists a graph Qn such
that, for every ordering π of its vertices, it contains a
zig-zag distance preserving path Pr(π).

Proof. Let g be a function as in Lemma 3.2. We
recursively define the sequence n0, n1, . . . , nr, such that
nr = 1 and ni−1 = g(ni), for i ∈ [r]. We will show that
Qn0 (n0 = n(r)) is the graph we are looking for.

Claim 3.1. For every i ∈ [0, r], and for any vertex
ordering π of Qn0 , it contains a subgraph isomorphic

to Q2i

ni , such that for every (x, x′) ∈ Z(Q2i

ni), P (x, x′) is
a distance preserving path isomorphic to Pi(π).

Proof. The proof is by induction on i. As a base case,
Q20

n0
= Qn0 is the graph itself. An edge is trivially a

path P0(π), for any π. Suppose now that Qn0 contains

a subgraph isomorphic to Q2i

ni , for some i < r, such

that for every q ∈ Z(Q2i

ni), P (q) is a path Pi(π).

It is sufficient to show that Q2i

ni contains a subgraph

isomorphic to Q2i+1

ni+1
, such that for every q ∈ Z(Q2i+1

ni+1
),

P (q) is a path Pi+1(π).

For every (x, x′) ∈ Z(Q2i

ni), if we replace P (x, x′)
with a direct edge e = (x, x′), the resulting graph is a
copy of Qni . Applying Lemma 3.3 on Qni , guarantees
the existence of a subgraph W isomorphic to Q2

ni+1

(ni = g(ni+1)), where for every (y, y′) ∈ Z(W ),
π(θ(y, y′)) > max{π(y), π(y′)}. Each of the edges
(y, θ(y, y′)) and (y′, θ(y, y′)) of Q2

ni+1
are replaced by

a path Pi(π) in Q2i

ni . Therefore, W is a copy of Q2i+1

ni+1
,

with P (y, y′) being a path Pi+1(π). �

We now argue that the resulting Pr(π) is a distance
preserving path. Our analysis indicate a sequence of
hypercubes Qn0

, Qn1
, . . . , Qnr . Recall that in Lemma

3.3, in order to get Qni+1
from Qni we mapped 〈01〉 to

0 and 〈10〉 to 1 and the vertices of Qni+1
did not differ

in any other bit but the ones we mapped. Consider now
the two vertices x, x′ of Qnr = Q1 with bit-strings 〈0〉
and 〈1〉, respectively. Their Hamming distance in their
original bit representation (in Qn0

) should be 2r, the
same with their distance in Pr(π). Moreover, if any two
vertices of Pr(π) are closer in Qn0

than in Pr(π), then
this would contradict the fact that dQn0

(x, x′) = 2r. �

Finally we extend Qn so that for any order π of its
vertices, a path Pr(π) exists along with the shortcuts as
shown in the example in Figure 1(a).



Theorem 3.2. Any ordered universal cost-sharing pro-
tocol on undirected graphs admits a PoA of Ω(log k),
where k is the number of activated vertices.

Proof. Let k = 2r + 1 for some positive integer r. From
Theorem 3.1, we know that for any vertex ordering π of
Qn(r) there is a distance preserving path Pr(π).

We use Qn(r) as a basis to construct the weighted

graph Q̃n(r) with vertex set V (Q̃n(r)) = Qn(r) ∪ {t},
where t is the designated root. We connect every pair of
vertices x, y with a direct edge of cost ce = 2r, if t is one
of its endpoints, otherwise its cost is ce = dQn(r)

(x, y)
(similar to Figure 1(a)).

The adversary selects to activate the vertices of
Pr(π), and the lower bound follows; in the NE the
players choose their direct edges to connect with one
of their parents (see at the beginning of Section 3 for
the term “parent”). �

4 Lower Bound for all universal protocols

In this section, we exhibit metric spaces for which no
universal cost-sharing protocol admits a PoA better
than Ω(log k). Due to the characterization of [22], we
can restrict ourselves in generalized weighted Shapley
protocols (GWSPs). We follow the notation of [22], and
for the sake of self-containment we include here the most
related definitions and lemmas.

4.1 Cost-Sharing Preliminaries

A strictly positive function f : 2N → R+ is an edge
potential on N , if it is strictly increasing, i.e. for
every R ⊂ S ⊆ N , f(R) < f(S), and for every

S ⊆ N ,
∑
i∈S

f(S)−f(S\{i})
f({i}) = 1. For simplicity, instead

of f({i}), we write f(i). A cost-sharing protocol is
called potential-based, if it is defined by assigning to
each edge of cost c, the cost-sharing method ξ, where

for every S ⊆ N and i ∈ S, ξ(i, S) = c · f(S)−f(S\{i})
f(i) .

Let Ξ1 and Ξ2 be two cost-sharing protocols for
disjoint sets of vertices U1 and U2, with methods ξ1
and ξ2, respectively. The concatenation of Ξ1 and Ξ2

is the cost sharing protocol Ξ of the set U1 ∪ U2, with
method ξ defined as

ξ(i, S) =

 ξ1(i, S ∩ U1) if i ∈ U1

ξ2(i, S) if S ⊆ U2

0 otherwise

Note that the concatenation of two protocols for
disjoint sets of vertices defines an order among these
two sets. The GWSPs are concatenations of potential-
based protocols.

Lemma 4.1. (Lemma 4.10 of [22]). Let f be an edge
potential on N and ξ the induced (by f) cost-sharing

method, for unit costs. For k ≥ 1 and a constant α, with
1 ≤ α2k ≤ 1 + k−3, let S ⊆ N be a subset of vertices
with f(i) ≤ αf(j), for every i, j ∈ S. If |S| ≤ k, then
for any i, j ∈ S, ξ(i, S) ≤ α(ξ(j, S) + 2k−2).

Lemma 4.2. (Lemma 4.11 of [22]). Let f be an edge
potential on N , and ξ be the cost-sharing method in-
duced by f , for unit cost. For any two vertices i, j ∈ N ,
such that f(i) ≥ βf(j): ξ(i, {i, j}) ≥ β/(β + 1) and for
every S ⊇ {i, j}, ξ(j, S) ≤ 1/(β + 1).

4.2 Lower Bound

The following two technical lemmas will be used in our
main theorem. The proofs are provided in the full
version.

Lemma 4.3. Let X be a finite set of size msr2, and
X1, . . . , Xm be a partition of X, with |Xi| = sr2, for
all i ∈ [m]. Then, for any coloring χ of X such that
no more than r elements have the same color, there
exists a rainbow subset S ⊂ X (i.e. χ(v) 6= χ(u) for
all v, u ∈ S), with |S ∩Xi| = s for every i ∈ [m].

Lemma 4.4. Let X = (X1, . . . , Xm) be a partition of
[m2], with |Xi| = m, for all i ∈ [m]. Then, there exists
a subset S ⊂ [m2] with exactly one element from each
subset Xi, such no two distinct x, y ∈ S are consecutive,
i.e. for every x, y ∈ S, |x− y| ≥ 2.

Now we proceed with the main theorem of this
section. We create a graph where every GWSP has high
PoA. At a high level, we construct a high dimensional
hypercube with sufficiently large number of potential
players at each vertex (by adding many copies of each
vertex connected via zero-cost edges). Moreover, we
add shortcuts among the vertices of suitable costs and
we connect each vertex with t via two parallel links with
costs that differ by a large factor (see Figure 4). If the
protocol induces a large enough set of potential players
with Shapley-like values in some vertex, then it is a NE
that all these players follow the most costly link to t.
Otherwise, by using Lemmas 4.3 and 4.4 we show that
there exists a set of potential players B, with ordered-
like values, one at each vertex of the hypercube. Then,
by using the results of Section 3, there exists a path
where the vertices are zig-zag-ordered.

The separation into these two extreme cases was
first used in [22]. The crucial difference, is that for
their problem the protocol is specified independently
of the underlying graph, and therefore the adversary
knows the case distinction (ordered or shapley) and
bases the lower bound construction on that. However,
our problem requires more work as the graph should be
constructed in advance, and should work for both cases.



Theorem 4.1. There exist graph metrics, such that the
PoA of any universal cost-sharing protocol is at least
Ω(log k), where k is the number of activated vertices.

Proof. Let k = 2r−1 + 1 be the number of activated
vertices with r ≥ 4, (so k ≥ 9).

Graph Construction. We use as a base of our
lower bound construction, a hypercube Q := Qn, with
edge costs equal to 1 and n = n(r) as in Theorem 3.1.
Based on Q, for M = 16k1223n we construct the
following network with N = 2nM vertices, plus the
designated root t. We add to Q direct edges/shortcuts
as follows: for every two vertices v, u of distance 2j ,
for j ∈ [r], we add an edge/shortcut, (v, u), with cost

equal to ĉj = 2j
(
k−1
k

)j
= Ω(2j). Moreover, for every

vertex vq of Q, we create M − 1 new vertices, each of
which we connect with vq via a zero-cost edge. Let Vq
be the set of these vertices (including vq). Finally, we
add a root t, which we connect with every vertex vq of
Q, via two edges eq1 and eq2, with costs 2k and 2k ·k/6,
respectively. We denote this new network by Q∗ (see
Figure 4).

Figure 4: An example of Q∗ for Q2 as the base
hypercube.

We will show that any GWSP for Q∗ has PoA
Ω(log k). Any GWSP can be described by con-
catenations of potential-based cost-sharing protocols
Ξ1, . . . ,Ξh for a partition of the V (Q∗) into h subsets
U1, . . . , Uh, where Ξj is induced by some edge poten-
tial fj . Following the analysis of Chen, Roughgarden
and Valiant [22], we scale the fj ’s such that for ev-
ery i, j, fj(i) ≥ 1. For nonnegative integers s and for

α =
(
1 + k−3

) 1
2k , we form subgroups of vertices Ajs, for

each Uj , as Ajs = {i ∈ Uj : fj(i) ∈
[
αs, αs+1

]
} (note

that some of Ajs’s may be empty).
The adversary proceeds in two cases, depending on

the intersection of the Ajs’s with the Vq’s.
Shapley-like cost-sharing. Suppose first that

there exist Ajs and Vq such that |Ajs∩Vq| ≥ k, and take

a subset R ⊆ Ajs ∩ Vq with exactly k vertices. The ad-
versary will request precisely the set R. Budget-balance
implies that there exists some vertex i∗ ∈ R which is
charged at most 1/k proportion of the cost. Moreover,
Lemma 4.1 implies that, all i ∈ R are charged at most
α(1/k+ 2k−2) ≤ 2 · (3/k) = 6/k proportion of the cost.

Note that there is a NE where all players follow the
edge eq2, with cost 2k · k/6; no player’s share is more
than 2k and any alternative path would cost at least 2k.
However, the optimum solution is to use the parallel link
eq1 of cost 2k. Therefore, the PoA is Ω(k) for this case.

Ordered-like cost-sharing. If there is no such R
with at least k vertices, then |Ajs ∩ Vq| ≤ k for all j, s
and q, which means that each Ajs has size of at most
k2n. For every j ∈ [h], we group consecutive sets Ajs
(starting from Aj0) into sets Bjl, such that each Bjl,
(except perhaps from the last one), contains exactly 4k5

nonempty Ajs’s. The last Bjl contains at most 4k5

nonempty Ajs sets. Consider the lexicographic order
among Bjl’s, i.e. Bjl < Bj′l′ if either j < j′ or j = j′

and l < l′. Rename these sets based on their total order
as Bi’s. The size of each Bi is at most 4k62n.

Now we apply Lemma 4.3 on the set N , for r =
4k62n and s = m = 2n, by considering the subsets Vq
as the partition of N (recall that |Vq| = M = r2s). As
a coloring scheme, we color all the vertices of each Bi
with the same color and use different colors among the
sets Bi. Lemma 4.3 guarantees that for each Vq there
exists V ′q ⊂ Vq of size 2n, such that every v ∈ V ′ = ∪qV ′q
belongs to a distinct Bi.

The order of Bi’s suggests an order of the vertices
of V ′. Since the V ′q ’s form a partition of V ′, Lemma 4.4
guarantees the existence of a subset C ⊂ V ′, such that
C contains exactly one vertex from each V ′q and there
are no consecutive vertices in C. This means that C
contains exactly one vertex from each set Vq and all
these vertices belong to different and non-consecutive
sets Bi.

To summarize, so far we know that:

(i) for any pair of vertices v, u ∈ C, either v and u
come from different Uj ’s or their fj(v) and fj(u)

values differ by a factor of at least α4k5 ≥ 8k + 1
(since there exist at least 4k5 nonempty sets Ajs
between the ones that v and u belong to).

(ii) C is a copy of Qn (by ignoring zero-cost edges).

Let π be the order of vertices of C (recall that
they are ordered according to the Bi’s they belong to).
Theorem 3.1 guarantees that there always exists at least
one distance preserving path Pr(π) (see Definition 3.2).
Let S be the vertices of Pr(π) excluding the last class
Dr (see Definition 3.1). The adversary will activate



this set S (|S| = k). It remains to show that there
exists a NE, the cost of which is a factor of Ω(log k)
away from optimum. We will refer to these vertices
as S = {s1, s2, . . . , sk}, based on their order π, from
smaller label to larger, and let player i be associated
with si.

Let P ′ be the class of strategy profiles P =
(P1, . . . , Pk) which are defined as follows:

• P1 = e11 and P2 = (s1, s2) ∪ P1, where (s1, s2) is
the shortcut edge between s1 and s2.

• From i = 3 to k, let s` ∈ Π(si) be one of si’s parents
in the class hierarchy (we refer the reader to the
beginning of Section 3); then Pi = (si, s`) ∪ P`,
where (si, s`) is the shortcut edge between si and
s`.

We show in Claim 4.1 that there exists a strategy profile
P∗ ∈ P ′ which is a NE. P∗ has cost:

c(P∗) = c(e11) + ĉr +

r−1∑
j=1

|Dj | · ĉr−j

= Ω(2r) + Ω(2r) +

r−1∑
j=1

2j−1 · Ω(2r−j) = Ω(r2r).

However, there exists the solution Pr(π)∪e11, which
has cost of O(2r). Therefore, the PoA is Ω(r) =
Ω(log k).

Claim 4.1. There exists P∗ ∈ P ′ which is a NE.

Proof. We prove the claim by using better-response dy-
namics. Note that any GWSP induces a potential game
for which better-response dynamics always converge to
a NE (see [22, 33]). We start with some P1 ∈ P ′ and we
prove that, after a sequence of players’ best-responses,
we end up in P2 ∈ P ′. Proceeding in a similar way we
eventually converge to P∗, which is the required NE.

We next argue that for any P ∈ P ′, players 1
and 2, have no incentive to deviate from P1 (argument
(a)) and P2 (arguments (b)), respectively. We further

show that, given any strategy profile P̂, there exists
some P ∈ G such that: for every player i /∈ {1, 2}, if
Pi = (P1, . . . , Pi−1, P̂i+1, . . . , P̂k) are the strategies of
the other players, i prefers Pi to P̂i (arguments (c)-
(e)). We define the desired P recursively as follows:
P1 = e11, P2 = (s1, s2) ∪ P1 and from i = 3 to
k, Pi ∈ A = arg minP ′i {ci(P

i, P ′i )|∃(P ′i+1, . . . , P
′
k) s.t.

(P1, . . . , Pi−1, P
′
i , . . . , P

′
k) ∈ P ′}. If P̂i ∈ A then we set

Pi = P̂i, otherwise we choose a path from A arbitrarily.
We first give some bounds on players’ shares.

1. Let R ⊆ S be any set of players that use some
edge e of cost ce and let i be the one with the
smallest label. The total share of players R \ {i}
is upper bounded by

∑|R|−1
i=1

1
(8k+1)i+1 · ce < ce

8k

(Lemma 4.2). Moreover, i’s share is at least 8k−1
8k ce.

2. The total cost of any Pi under Pi, is at most 8k.
This is true because, for every player i′ with i′ ≤ i,
the first edge of Pi′ is a shortcut to reach one of
si′ ’s parents, with cost at most 2r−j , where Dj is
the class that si′ belongs to. Therefore, the cost of
Pi is at most 2k +

∑r−1
l=0 2r−l < 8k.

3. By combining the above two arguments, under Pi,
the total share of player i for the edges of Pi at
which she is not the first according to π, is at most
1
8k · 8k ≤ 1.

Here, we give the arguments for players 1 and 2.

(a) The share of player 1 under P is at most 2k and
any other path would incur a cost strictly greater
than 2k.

(b) The share of player 2 under P is at most 2r +
1 = 2k − 1 (argument 3), whereas if she doesn’t
connect through s1, her share would be at least
2k. Moreover, if she connects to t through s1 but
by using any other path rather than the shortcut
(s1, s2), the total cost of that path is at least

2r
(
k−1
k

)r−1
. Player 2 is first according to π at

that path and by argument 1, her share is at least

2r 8k−1
8k

(
k−1
k

)r−1
> ĉr.

We next give the required arguments in order to show
that Pi is a best response for player i 6= {1, 2} under Pi.
In the following, let si ∈ Dj and let s` be the parent
of si such that Pi = (si, s`) ∪ P`. Also let si′ be the
predecessor of si, according to π, that is first met by
following P̂i from si to t.

(c) Suppose that si′ = s`.

• Assume that P̂i doesn’t use the shortcut
(si, s`). The subpath of P̂i from si to s`
contains edges at which i is first according

to π of total cost at least 2r−j
(
k−1
k

)r−j−1
.

By argument 1, her share is at least

2r−j 8k−1
8k

(
k−1
k

)r−j−1
> ĉr−j .

• Assume that P̂i doesn’t use P`. The subpath
of P̂i from s` to t contains edges at which i
is first according to π of total cost at least 2
(the minimum distance between two activated
vertices). By argument 1, her share is at least
2 8k−1

8k > 1, where 1 is at most her share for P`
(argument 3).



(d) Suppose that si′ is si’s other parent. If P̂i 6=
(si, si′) ∪ Pi′ , the above arguments still hold and
so ci(P

i, Pi) < ci(P
i, P̂i). Otherwise, by the

definition of Pi, either Pi = P̂i, or ci(P
i, Pi) <

ci(P
i, P̂i).

(e) Suppose that si′ is not a parent of si. Player
i’s share in Pi is at most ĉr−j for her first
edge/shortcut and at most 1 for the rest of her path
(argument 3). However, all edges that are used by
players that precedes i in π have cost at least ĉr−j .

Therefore, in P̂i, player i is the first according to π
for edges of total cost at least ĉr−j+1. This implies
a cost-share of at least 8k−1

8k ĉr−j+1 (argument 1).

But for k ≥ 6 and j < r, 8k−1
8k ĉr−j+1 > ĉr−j + 1.

We now describe a sequence of best-responses from
some P̂ ∈ P ′ to P (P is constructed based on P̂ as
described above). We follow the π order of the players
and for each player we apply her best response. First
note that players 1 and 2 have no better response, so
P1 = P̂1 and P2 = P̂2. When we process any other
player i, we have already processed all her predecessors
in π and so, the strategies of the other players are
Pi. Therefore, Pi is the best response for i (it may
be that Pi = P̂i, where no better response exists for i).
The order that we process the vertices guarantees that
P ∈ P ′. �

�

5 Outerplanar Graphs

In this section we show that there exists a class of graph
metrics, prior knowledge of which can dramatically
improve the performance of good network cost-sharing
design. For outerplanar graphs, we provide a universal
cost-sharing protocol with constant PoA. In contrast,
we stress that uniform protocols cannot achieve PoA
better than Ω(log k), because the lower bound for the
greedy algorithm of the OSTP can be embedded in an
outerplanar graph (see Figure 5(a) for an illustration).

We next define an ordered universal cost-sharing
protocol Ξtour, and we show that it has constant
PoA. W.l.o.g. we assume that the metric space is
defined by a given biconnected outerplanar graph11.
Every biconnected graph admits a unique Hamiltonian
cycle [49] that can be found in linear time [27]. Ξtour

11If it is not already biconnected, we turn it into an equivalent

biconnected graph, by appropriately adding edges of infinity cost.

By equivalent we mean that any NE outcome and the minimum
Steiner tree solution remain unchanged after the transformation.

Equivalence is obvious since we only add edges of infinity costs

that cannot be used in neither any NE nor the minimum Steiner
tree outcome.

orders the vertices according to the cyclic order in which
they appear in the Hamiltonian tour, starting from t
and proceeding in a clockwise order π. In Figure 5(a),
π(q8) < π(q4) < π(q9) < . . . < π(q15).

(a) (b)

Figure 5: (a) shows an example of an outerplanar graph where

the order qi < qi+1 gives PoA of Ω(log k). (b) illustrates some
elements from the proof of Theorem 5.1, focusing on cycle C2.

The dashed components represent the optimum tree T ∗.

As a warm-up, we first bound from above the PoA
of Ξtour for cycle graphs, and then extend it to all
outerplanar graphs.

Lemma 5.1. The PoA of Ξtour in cycle graphs is at
most 2.

Proof. Consider a cycle graph C = (V,E, t) and let
S ⊆ V be the set of the activated vertices. Let T ∗ be
the minimum Steiner tree (path) that connects S ∪ {t},
and a, b be its two endpoints. Note that minimality
of T ∗ implies that a, b ∈ S ∪ {t}. a and b partition C
into two paths (T ∗, C \T ∗) and t divides further T ∗ into
two paths P ′1, P ′2. Let S1 = {u1, . . . , ur = a} and S2 =
{w1, . . . , ws = b} be the activated vertices of P ′1 and P ′2,
respectively. W.l.o.g., assume that π(ui) < π(ui+1) and
π(wj+1) < π(wj), for all i, j.

Consider any NE, P = (Pi)i∈N . We bound from
above the share of each player v 6= ws, by its distance
from their immediate predecessor in π, as follows. By
adopting the convention that u0 = t,

cui(P) ≤ d(ui, ui−1), ∀i ∈ [r]

cwj (P) ≤ d(wj , wj+1), ∀j ∈ [s− 1].

Also cws(P) ≤ d(ws, t). Overall,

c(P) =
∑
v∈S

cv(P)

≤
∑
ui∈S1

d(ui, ui−1) +
∑

wj∈S2\{ws}

d(wj , wj+1) + d(ws, t)

≤c(P ′1) + c(P ′2) + c(P ′2) ≤ 2c(T ∗).

�



Theorem 5.1. The PoA of Ξtour in outerplanar graphs
is at most 8.

Proof. Based on the previous discussion, it is sufficient
to consider only biconnected outerplanar graphs with
non-negative costs, including infinity. Let G = (V,E, t)
be any such graph with S being the set of activated
vertices.

Let T ∗ be the minimum Steiner tree that connects
S ∪ {t}, and C be the unique Hamiltonian tour of G,
forming its outer face. Let E∗ = E(T ∗) \ E(C) be the
set of non-crossing chords of C that belong to T ∗. Then
C∪E∗ forms |E∗|+1 = r cycles C1, . . . , Cr, where every
pair Ci, Cj are either edge-disjoint or they have a single
common edge belonging to E∗. On the other hand, each
edge of C belongs to exactly one Ci and each edge of
E∗ belongs to exactly two Ci’s. Figure 5(b) provides an
illustration.

For every i ∈ [r], let Si = (S ∪ {t}) ∩ V (Ci) be
the activated vertices that lie in Ci and ti be the vertex
that is first in π among Si. W.l.o.g. assume that, for
all i ∈ [r− 1], π(ti) ≤ π(ti+1) (then t1 = t). Also let T ∗i
be the subgraph of T ∗ that intersects with Ci. Then T ∗i
should be a path connecting Si.

Consider any NE, P = (Pi)i∈S . We show separately
that the shares of all Si \ {ti} are bounded by 4c(T ∗)
and the shares of all ti’s are bounded by 4c(T ∗).

For the first case we use Lemma 5.1. For any cycle
Ci, by considering ti as the root, Lemma 5.1 provides a
bound on the shares of Si\{ti}. So,

∑
v∈Si\{ti} cv(P) ≤

2c(T ∗i ). Recall, that each edge of E(T ∗) belongs to at
most two Ci’s, so by summing over all i ∈ [r],∑

i∈[r]

∑
v∈Si\{ti}

cv(P) ≤ 2
∑
i∈[r]

c(T ∗i ) ≤ 4c(T ∗).

The second case requires more careful treatment.
The endpoints of the edges of E∗ divide C into a
partition of nonzero-length arcs, A1, . . . , An, named
based on their clockwise appearance in C, starting from
an arc containing t. For every j ∈ [n], let aj and bj be
the two endpoints of Aj . The share of each ti can be
bounded by its distance from ti−1, for i > 1 (recall that
t1 = t). Let Asi be an arc that ti lies, then∑

i∈[2,r]

cti(P) ≤
∑
i∈[2,r]

d(ti, ti−1)

≤
∑
i∈[r]

(d(asi , ti) + d(ti, bsi)) +
∑

j∈[n]\{s1,...,sr}

d(aj , bj)

=F.

We next upper bound F by
∑
i∈[r] 2c(T ∗i ). Note

that each arc Aj belongs to exactly one Ci and every

Ci contains at least one such arc (otherwise T ∗ would
have a cycle). We concentrate to a specific Ci and show
that the portion of F associated with Ci’s arcs is upper
bounded by 2c(T ∗i ).

Let Ai1, ..., Aini be the arcs belonging to Ci and
aij , bij be the endpoints of Aij . Also let Ais be the arc
containing ti. Recall that T ∗i is a path and every edge
of E(Ci) ∩ E∗ belongs to T ∗i . Therefore, T ∗i contains
entirely all but one Aij , say Aim (see Figure 5(b)). We
examine the two cases of m = s and m 6= s separately.
Case 1: m = s. ais, bis (as endpoints of edges of E∗)
and ti are vertices of the path T ∗i . Therefore, either
some path from ti to ais or some path from ti to bis
belongs to T ∗i ; w.l.o.g. assume that it is some path
from ti to ais. Then

∑
j∈[ni],j 6=s d(aij , bij) + d(ti, ais) ≤

c(T ∗i ). Moreover, since bis and ti are vertices of T ∗i ,
d(ti, bis) ≤ c(T ∗i ).
Case 2: m 6= s. Similarly,

∑
j∈[ni],j 6=m,s d(aij , bij) +

d(ti, ais) + d(ti, bis) ≤ c(T ∗i ). Also aim and bim are
vertices of T ∗i and hence, d(aim, bim) ≤ c(T ∗i ).

To sum up, in both cases it holds that∑
j∈[ni],j 6=s

d(aij , bij) + d(ti, ais) + d(ti, bis) ≤ 2c(T ∗i ).

By summing over all i, F ≤
∑
i∈[r] 2c(T ∗i ) ≤ 4c(T ∗).

Finally, by summing over the whole S, c(P) =∑
v∈S cv(P) ≤ 8c(T ∗). �

6 Stochastic Network Design

In this section we study the stochastic model, where the
set of active vertices is drawn from some probability
distribution Π. Each vertex v is activated independently
with probability pv; the set of the activated vertices are
no longer picked adversarially, but it is sampled based
on the probabilities pv’s, i.e., the probability that set S
is active is Π(S) =

∏
v∈S pv ·

∏
v/∈S(1 − pv). On the

other hand, the probabilities pv’s (and therefore Π),
are chosen adversarially. The cost sharing protocol is
decided by the designer without the knowledge of the
activated set and the designer may have knowledge of
Π or access to some oracle of Π.

We show that there exists a randomized ordered
protocol that achieves constant PoA. This result holds
even for the black-box model [48], meaning that the
probabilities are not known to the designer, however
she is allowed to draw independent (polynomially many)
samples. On the other hand, if we assume that the
probabilities pv’s are known to the designer, there exists
a deterministic ordered protocol that achieves constant
PoA. We note that both protocols can be determined in
polynomial time.

The result for the randomized protocol depends on



approximation ratios of the minimum Steiner tree prob-
lem. More precisely, given an α-approximate minimum
Steiner tree, we show an upper bound of 2(α+ 2). The
approximate tree is used in our algorithm as a base in
order to construct a spanning tree, which finally deter-
mines an order of all vertices; the detailed algorithm is
given in Algorithm 6.1. This algorithm and its slight
variants have been used in different contexts: rend-
or-buy problem [36], a priori TSP [48] and, stochastic
Steiner tree problem [30].

Algorithm 6.1. Randomized protocol Ξrand
Input: A rooted graph G = (V,E, t) and an oracle for
the probability distribution Π.
Output: Ξrand.
1) Choose a random set of vertices R by drawing from
distribution Π and construct an α-approximate mini-
mum Steiner tree, Tα(R), over R ∪ {t}.
2) Connect all other vertices V \ V (Tα(R)) with their
nearest neighbor in V (Tα(R)) (by breaking ties arbi-
trarily).
3) Double the edges of that tree and traverse some Eu-
lerian tour starting from t. Order the vertices based on
their first appearance in the tour.

Theorem 6.1. Given an α-approximate solution of the
minimum Steiner tree problem, Ξrand has PoA at most
2(α+ 2).

Proof. Let π be the order of V , defined by Ξrand, and
S be the random set of activated vertices that require
connectivity with t. For the rest of the proof we denote
by MST (S) a minimum spanning tree over the vertices
S ∪ {t} on the metric closure12 of G.

Let s1, . . . , sr be the vertices of S as appeared
in π and the strategy profile PR(S) = (P1, . . . , Pr)
be a NE of set S. Under the convention that s0 =
t, csi(PR(S)) ≤ dG(si, si−1) for all si ∈ S. We
construct a tree TR,S from the Tα(R) of Algorithm 6.1,
by connecting only all vertices of S \ V (Tα(R)) with
their nearest neighbor in V (Tα(R)) (by breaking ties in
accordance to Algorithm 6.1). Note that, by doubling
the edges of TR,S , there exists an Eulerian tour starting
from t, where the order of the vertices S (based on their
first appearance in the tour) is π restricted to the set
S. Therefore,

∑
si∈S dTR,S (si, si−1) + dTR,S (s0, sr) =

2c(TR,S). By combining the above,

12The metric closure of a graph G is the complete undirected

graph on the vertex set V (G), where the edge costs equal the
shortest paths in G.

c(PR(S)) =
∑
si∈S

csi(PR(S)) ≤
∑
si∈S

dG(si, si−1)(6.1)

≤
∑
si∈S

dTR,S (si, si−1) ≤ 2c(TR,S).

Let Dv(R) be the distance of v from its nearest neighbor
in (R ∪ {t}) \ {v}. In the special case that v = t, we
define Dv(R) = 0 Then,

c(TR,S) = c(Tα(R)) +
∑

v∈S\V (Tα(R))

Dv(V (Tα(R)))

(6.2)

≤ c(Tα(R)) +
∑
v∈S

Dv(R).

We use an indicator I(v ∈ S) which is 1 when
v ∈ S and 0 otherwise; then

∑
v∈S Dv(R) =

∑
v I(v ∈

S)Dv(R). By taking the expectation over R and S,

E
R

[E
S

[c(TR,S)]] ≤ E
R

[c(Tα(R))]+E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]].

Since S and R are independent samples we can bound
the second term as:

E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]] =
∑
v∈V

E
S

[I(v ∈ S)]E
R

[Dv(R)]

(6.3)

=
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)] = E
S

[
∑
v∈V

I(v ∈ S)Dv(S)]

=E
S

[
∑
v∈S

Dv(S)] ≤ E
S

[c(MST (S))].

The last equality holds since Dv(S) is the distance
of v from its nearest neighbor in (S∪{t})\{v} and it is
independent of the event I(v ∈ S). For the inequality,
Dv(S) is upper bounded by the minimum distance of v
from its parent in the MST (S). Let T ∗S be the minimum
Steiner tree over S ∪ {t}, then it is well known that
c(MST (S)) ≤ 2c(T ∗S). Overall,

E
R

[E
S

[c(PR(S))]] ≤ 2E
R

[E
S

[c(TR,S)]]

≤ 2(E
S

[c(Tα(S))] + E
S

[c(MST (S))])

≤ 2(α+ 2)E
S

[c(T ∗S)].

�

By applying the 1.39-approximation algorithm of
[17] we get the following.



Corollary 6.1. Ξrand has PoA at most 6.78.

Theorem 6.2. There exists a deterministic ordered
protocol with PoA at most 16.

We use derandomization techniques similar to [52,
48]. We provide the proof in the full version of this
paper.

7 Conclusion

An interesting direction would be to get a deeper under-
standing of settings for which universal protocols pro-
vide better guarantees comparing to uniform protocols.
On the one hand, our negative result for the adversarial
setting shows that there exist graphs for which universal
protocols behave no better than uniform protocols. On
the other hand, our positive results demonstrate a sepa-
ration between uniform and universal protocols. There
exist classes of graphs, such as the outerplanar graphs,
where universal protocols clearly outperform uniform
protocols, with respect to price of anarchy bounds. A
natural question that arises is what structural graph
properties can be useful to the designer? We leave as an
open question the characterization of the graphs, where
such a separation exists.
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