15,558 research outputs found

    Digital waveguide modeling for wind instruments: building a state-space representation based on the Webster-Lokshin model

    Get PDF
    This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations for the refined acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope and curvature). The purpose of this work is to build low-cost digital simulations in the time domain based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a Kelly-Lochbaum network of input/output systems and delays. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in the time domain. The method is applied to a real trombone, and results of simulations are presented and compared with measurements. This method seems to be a promising approach in term of modularity, complexity of calculation and accuracy, for any acoustic resonators based on tubes

    Hybrid computer Monte-Carlo techniques

    Get PDF
    Hybrid analog-digital computer systems for Monte Carlo method application

    Design and Analysis of Microstrip Filtennas

    Get PDF
    The Goal of this thesis is to design and analyses the filtenna, also called by name filtering antenna. Designed by integration of the filter and antenna. In modern day wireless devices multiple antennas are required to make sure that it can be used for multiple communication services, this not only make the system bulky but the power loss is also more. In filtenna using active components can replace them making a system with low profile, more light weight, and energy efficient characteristics. In this thesis includes the first part which is an introduction to computational electromagnetics and using this analysis of microstrip antenna and second is the proposed design of two microstrip filtennas. Under computation electromagnetics, the Maxwell equation and antenna parameter are analyzed using finite difference method. The design and simulation of this filtenna have been done in ANSYS-HFSS-15 simulation tool. The first filtenna designed structure is the integration of the band-rejection filter with monopole antenna for UWB and X-Band applications. Where after applying the open stub it only passes the X-Band i.e. 8-12 GHz. The second proposed filtenna is for overlay cognitive radio application. This is design using the bandpass filter which is integrated with the antenna. In bandpass filter, the frequency tuning is done by varactor diode. This filtenna resonates at frequency 2.6 to 3 GHz and gain of 2.7dB. The fabrication of second filtenna using bandpass characteristics is done and analyzed the results

    Continuous-time Algorithms and Analog Integrated Circuits for Solving Partial Differential Equations

    Get PDF
    Analog computing (AC) was the predominant form of computing up to the end of World War II. The invention of digital computers (DCs) followed by developments in transistors and thereafter integrated circuits (IC), has led to exponential growth in DCs over the last few decades, making ACs a largely forgotten concept. However, as described by the impending slow-down of Moore’s law, the performance of DCs is no longer improving exponentially, as DCs are approaching clock speed, power dissipation, and transistor density limits. This research explores the possibility of employing AC concepts, albeit using modern IC technologies at radio frequency (RF) bandwidths, to obtain additional performance from existing IC platforms. Combining analog circuits with modern digital processors to perform arithmetic operations would make the computation potentially faster and more energy-efficient. Two AC techniques are explored for computing the approximate solutions of linear and nonlinear partial differential equations (PDEs), and they were verified by designing ACs for solving Maxwell\u27s and wave equations. The designs were simulated in Cadence Spectre for different boundary conditions. The accuracies of the ACs were compared with finite-deference time-domain (FDTD) reference techniques. The objective of this dissertation is to design software-defined ACs with complementary digital logic to perform approximate computations at speeds that are several orders of magnitude greater than competing methods. ACs trade accuracy of the computation for reduced power and increased throughput. Recent examples of ACs are accurate but have less than 25 kHz of analog bandwidth (Fcompute) for continuous-time (CT) operations. In this dissertation, a special-purpose AC, which has Fcompute = 30 MHz (an equivalent update rate of 625 MHz) at a power consumption of 200 mW, is presented. The proposed AC employes 180 nm CMOS technology and evaluates the approximate CT solution of the 1-D wave equation in space and time. The AC is 100x, 26x, 2.8x faster when compared to the MATLAB- and C-based FDTD solvers running on a computer, and systolic digital implementation of FDTD on a Xilinx RF-SoC ZCU1275 at 900 mW (x15 improvement in power-normalized performance compared to RF-SoC), respectively

    Introduction to Electromagnetic Compatibility

    Get PDF

    Discrete Fourier transform techniques for power transmission line protection

    Get PDF
    Imperial Users onl

    A space communications study Final report, 15 Sep. 1966 - 15 Sep. 1967

    Get PDF
    Investigation of signal to noise ratios and signal transmission efficiency for space communication system

    Mode-matching analysis of a shielded rectangular dielectric-rod waveguide

    Get PDF
    Rectangular cross-section dielectric waveguides are widely used at millimeter wavelengths. In addition, shielded dielectric resonators having a square cross-section are often used as filter elements, however there is almost no information available on the effect of the shield. Rectangular or square dielectric waveguide is notoriously difficult to analyze, because of the singular behaviour of the fields at the corners. Most published analyses are for materials with a low dielectric constant, and do not include the effects of a shield. This paper describes a numerically efficient mode matching method for the analysis of shielded dielectric rod waveguide, which is applicable to both low and high dielectric constant materials. The effect of the shield on the propagation behaviour is studied. The shield dimensions may be selected such that the shield has a negligible effect, so that results can be compared with free space data. The results are verified by comparison with several sets of published data, and have been confirmed by measurement for a nominal 'e' r of 37.4
    corecore