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ABSTRACT OF THE DISSERTATION

CONTINUOUS-TIME ALGORITHMS AND ANALOG INTEGRATED

CIRCUITS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS

by

Nilan Udayanga Galabada Kankanamge

Florida International University, 2019

Miami, Florida

Professor Arjuna Madanayake, Major Professor

Analog computing (AC) was the predominant form of computing up to the end of

World War II. The invention of digital computers (DCs) followed by developments

in transistors and thereafter integrated circuits (IC), has led to exponential growth

in DCs over the last few decades, making ACs a largely forgotten concept. However,

as described by the impending slow-down of Moores law, the performance of DCs

is no longer improving exponentially, as DCs are approaching clock speed, power

dissipation, and transistor density limits. This research explores the possibility of

employing AC concepts, albeit using modern IC technologies at radio frequency (RF)

bandwidths, to obtain additional performance from existing IC platforms. Combin-

ing analog circuits with modern digital processors to perform arithmetic operations

would make the computation potentially faster and more energy-efficient. Two AC

techniques are explored for computing the approximate solutions of linear and non-

linear partial differential equations (PDEs), and they were verified by designing ACs

for solving Maxwell’s and wave equations. The designs were simulated in Cadence

Spectre for different boundary conditions. The accuracies of the ACs were compared

with finite-defference time-domain (FDTD) reference techniques.

The objective of this dissertation is to design software-defined ACs with com-

plementary digital logic to perform approximate computations at speeds that are

vii



several orders of magnitude greater than competing methods. ACs trade accuracy of

the computation for reduced power and increased throughput. Recent examples of

ACs are nearly accurate but have less than 25 kHz of analog bandwidth (Fcompute)

for continuous-time (CT) operations. In this dissertation, a special-purpose AC,

which has Fcompute = 30 MHz (an equivalent update rate of 625 MHz) at a power

consumption of 200 mW, is presented. The proposed AC employes 180 nm CMOS

technology and evaluates the approximate CT solution of the 1-D wave equation in

space and time. The AC is 100×, 26×, 2.8× faster when compared to the MATLAB-

and C-based FDTD solvers running on a computer, and systolic digital implemen-

tation of FDTD on a Xilinx RF-SoC ZCU1275 at 900 mW (×15 improvement in

power-normalized performance compared to RF-SoC), respectively.
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CHAPTER 1

INTRODUCTION

Analog computers (ACs) were the primary method of computation from the 1930s

to the 1950s. As an example, Professor Vannevar Bush’s differential analyzer (me-

chanical wheels and disk) [2] was used 24 hours a day during World war II [3].

During this time, mechanical ACs were used to solve many problems in different

laboratories at the Massachusetts Institute of Technology (MIT). With the inven-

tion of the operational amplifier (op-amp), there was a huge interest in electronic

AC. One of the first major successes of such op-amp-based computers was the M9

gun director developed at Bell Labs [4], and improved versions of these computers re-

mained popular until the 1970s. However, the invention of digital computers (DCs)

followed by transistor scaling surpassed ACs over the last few decades. According to

Moore’s law, the computing power and speed of DCs were doubled every two years.

However, DCs are no longer improving exponentially as they are approaching clock

speed, power dissipation, and transistor density limits. Fig. 1.1 shows how the ex-

pected number of transistors from Moore’s law and the actual transistor count (of

various state-of-the-art DCs) have varied over the last 15 years (at the end of 2005,

2010, 2015, and 2018). The pink colorbar shows the predicted value of Moore’s law.

The blue and green colorbars represent central processor units (CPUs) and graphics

processor units (GPUs), respectively. It is clear that starting around 2015, Moore’s

law prediction surpassed the number of transistors in state-of-the-art DCs.

However, analog circuits realized in mainstream complementary metal-oxide-

semiconductor (CMOS) technologies have shown tremendous performance improve-

ment in recent years, which has not been sufficiently explored for computations.

For example, today’s radio-frequency (RF) transistors offer a unity current gain

frequency greater than 500 GHz [5, 6]. Thus, analog and analog-digital hybrid
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Figure 1.1: The variation of the expected number of transistors from Moore’s law
and the actual transistor count in the last 15 years (images from: [1])
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computing platforms realized using scaled CMOS are becoming attractive for com-

plex computations and simulations [7–18]. Columbia University’s prototype analog

accelerator is a recent example of an energy-efficient hybrid computer (HC) that

accelerates ordinary differential equation (ODE)- and partial differential equation

(PDE)-based computations [7–12, 14].

The research described in this dissertation takes a significant step forward to-

wards designing and developing ACs that can perform physics-based computations

at speeds that are 1-3 orders of magnitude greater than the speeds of the available

ACs and DCs. For a given power and area budget, the analog bandwidth of our

ACs is 1-3 orders of magnitude higher than the existing ACs. The proposed AC is

equipped with modern digital processors (as supporting instrumentation) to perform

PDE-based computations. Combining analog circuits with existing digital systems

to perform arithmetic operations would make the computation potentially faster and

more energy-efficient [7–12, 14]. In a general HC, the digital component serves as

the controller (or the programmer) and performs basic logical and numerical opera-

tions, whereas the analog component performs more complex computations such as

solving PDEs (electromagnetic, fluid dynamics, and plasmas) [19–23] and executing

higher-dimensional matrix operations (inversion and multiplication) [24, 25].

Fig. 1.2 shows an overview of a hybrid computing platform. In general, ACs

are exceedingly fast, since they can perform mathematical operations at the rate

at which a signal transverses the analog circuit, which is an appreciable fraction

of speed of light [26, 27]. Also, ACs can perform most power-intensive computa-

tions with far less energy as compared to DCs [7–11, 13]. However, the solutions of

ACs are approximations to accurate solutions. In contrast, DCs are accurate, offer

straightforward programmability, simple algorithmic operations, and ease of storage

(memory) [7]. Thus, the hybrid architecture combines the best features of analog
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Figure 1.2: Overview of the envisioned hybrid accelerator.

and digital technologies to effectively perform complex computations. Here, the

effectiveness of the computation is measured in terms of the computational speed,

power, and area consumption. This dissertation mainly focuses on the analog sub-

system of the HC and endeavors to bring back a modern version of an AC.

To understand how an HC can accelerate complex computations, consider the

following example. In general, complex problems find their solutions using iterative

methods, which require a large number of iterations to compute an accurate solution.

One practical example is the solution of a nonlinear system of equations [16]. The

selection of the initial guess is more critical in such a system–not only to reduce the

number of iterations required but also to achieve convergence. The required number

of iterations mainly depends on i) how good the initial guess (numerical seed) is and

ii) how much accuracy is required [26]. Thus, the analog component of the HC can

be used to obtain a good initial guess (in a very short time). The digital system

is then fed by the resulted seed (initial guess) to compute the solution iteratively
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and achieve the desired accuracy. Because of the good initial guess, the required

number of iterations to achieve the desired accuracy will be reduced, which in turn

reduces the total computation time and power consumption. An increase in speed

and a 10-fold energy savings can be achieved with the hybrid systems compared to

the standard DC systems [7, 9, 10, 12].

A given computational problem has features that lead to different computing

demands. Some of these demands are not met by the capabilities of analog comput-

ers and others are not met by the structure of digital computers. Thus, the proper

selection of a computational problem that can be accelerated using ACs is very im-

portant in designing an efficient hybrid computational platform. In general, analog

computing can accelerate certain special classes of computational problems that are

defined by continuously varying continuous-time (CT) systems [7, 9, 10, 13, 28–31].

Here, we selected multidimensional (MD) PDEs to solve using the proposed ACs,

not only because PDEs are defined by continuously varying CT physical systems

but also they are complex enough to accelerate using ACs. As an example, con-

sider Maxwell’s equations, which are a set of PDEs that form the foundation for

electromagnetics. Modern computational simulators are dealing with a discretized

version of Maxwell’s equations, such as the finite-difference time-domain (FDTD)

method [32–34]. However, Maxwell’s equations are CT in nature, and inherently

suitable for ACs. An AC that solves Maxwell’s equations may yield approximate

results compared to a digital FDTD-based solver, but with higher throughput.

Almost all physical systems that are described by theories of physics (or physical

laws) are expressed using PDEs [19–23,35–37]. Examples of such systems have appil-

cations in fluid dynamics, thermodynamics, electromagnetics, quantum mechanics,

magneto-hydrodynamics, and other areas [20–23, 36–39]. The dependent variables

of the PDEs represent physical quantities such as temperature, pressure, electric
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field, magnetic field, and fluid velocity, whereas the independent variables are space

(three dimensions defined as x, y, and z) and time. Thus, the solutions of the PDEs

describe the variation of one or more continuously varying physical quantities with

space and time. Also, they must be defined at each space-time point. However,

finding a continuously varying continuous space-time solution (analytic or closed-

form solution) to a complex physical system having different boundary conditions is

usually a difficult, time-consuming, and a computationally expensive task. In some

cases, it is impossible to find an analytical solution. Moreover, for the physical sys-

tems that are described by coupled nonlinear PDEs, only numerical solutions are

plausible [39].

In general, discrete-domain numerical methods running on powerful computers

have been used to solve PDE-based problems. Examples of such methods include fi-

nite difference methods [32–34,40–42], the method of moments [43,44], finite volume

methods [45,46], finite element methods [47,48], and spectral methods [49,50]. These

methods discretize the spatial domain into different spatial grids. A suitable numer-

ical integration (time-stepping) technique such as a Runge-Kutta method [51, 52],

leapfrog method [40], or composition and splitting method [51, 53] is then applied

along the time dimension to compute the solution over the temporal grid. Thus,

all these methods discretize the PDEs in both time and space dimensions to enable

computation using digital computers. As a result, the solutions are approximations

to the exact, continuous-valued space-time solutions. In addition, implementations

of fully discrete PDE solvers on high-speed digital processors, such as graphics pro-

cessing units (GPUs), take many clock cycles to compute a single temporal frame

of the update equation and thus have relatively low equivalent bandwidths. The

proposed approach directly implements temporal recursions in continuous-time by

using analog circuits. Such circuits can have bandwidths that greatly exceed the
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equivalent bandwidths of GPUs. We expect our approach to provide a path beyond

Moore’s law scaling.

1.1 Research Questions

Due to the limitations in DCs, it is unlikely that a better solution for increasing

the computational speed would be available by only using digital techniques. Thus,

many research programs explore new material substrates for accelerating and solv-

ing difficult computation problems [54–56]. In this dissertation, we investigate the

possibility of employing modern analog CMOS circuits and technologies (existing

and well-established) for CT computations with significant advantages compared to

existing DCs. The following research questions are addressed during the dissertation.

• Can we combine low-power analog circuits with modern digital systems to

accelerate physics-based computations and simulations?

• Can we address the challenges in existing analog computing methods such that

the proposed ACs have a significant acceleration for CT computations?

• How much speed-up we can gain from the ACs when compared to modern

digital computing hardware?

• How much power reduction we can experience from the ACs when compared

to modern DCs?

• How much accuracy do the solutions from ACs have when compared to the

numerical methods running on DCs?
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1.2 Proposed Hybrid Computing Architecture

In this dissertation, we propose digitally-programmable analog computing tech-

niques for solving MD linear and non-linear PDEs in real-time. The objective is

to design an analog (time-continuous) computational platform in the form of a

software-defined integrated-circuit (IC) with supplementary digital logic for solving

PDE-based simulations at speeds that are 1-2 orders of magnitude greater than

available analog and digital high-performance computation platforms. Fig. 1.3 (a)

shows an overview of the proposed accelerator architecture. All the computations

are performed in the continuous-time domain by using analog chips that input and

output signals via 50 Ω transmission lines. The outputs of the analog chip produce

a set of time-varying voltages that are defined by the PDE, initial conditions, and

boundary conditions. Fig. 1.3 (b) shows an example of an AC that computes the

approximate CT solution of the one-dimensional (1-D) wave equation. Here, the

AC produces the space-time variation of the propagating waves for given input ex-

citations and boundary conditions. In other words, the AC generates time-varying

voltages that correspond to the electric field variations of the propagating waves at

different points in the spatial grid, which are defined by the 1-D wave equation.

The boundary conditions and the input excitations are generated inside a se-

ries of field-programmable gate array (FPGA) boards and supplied to the analog

chip through digital-to-analog converter (DAC) channels. Computed analog solu-

tions (computational outputs of the analog chip) are routed back into the FPGA

through analog-to-digital (ADC) boards. Digitized results can then be used for

post-processing inside the FPGA or sent to a Linux PC for analysis. Reconfiguration

commands, status lines, and calibration signals are sent by microcontrollers/FPGAs.

All FPGAs and microcontrollers are connected through 10 Gbps connections and
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are controlled by the Linux PC. This dissertation mainly focuses on designing an

analog chip that computes the continuous-time solution of a given PDE. It also

demonstrates a prototype analog-digital computational platform using a custom-

designed analog computing chip, FPGAs, ADCs, DACs, and microcontrollers.
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1.3 Research Objectives

The research objectives of this dissertation are summarized below. Each of the

objectives takes an important step forward towards designing a modern version of

an AC that accelerates physics-based computations and simulations.

Objective 1: Investigate CT algorithms to map linear PDEs into CT mathematical

models that can be realized using analog circuits. The corresponding analog circuit

should produce time-varying voltages/currents that correspond to the solutions of

the given PDE.

Objective 2: Verify the correctness of the proposed algorithms by applying them

to a set of selected PDEs. The corresponding ACs can be designed and simulated

using ideal analog circuits. Also, identify the main building blocks towards design-

ing a CMOS-based AC.

Objective 3: Identify how the proposed methods can be scaled to the problem,

size, and dimensionality as well as identify any restrictions on the generalizability

of the approaches.

Objective 4: Evaluate the performance (accuracy) of the designed ACs by compar-

ing the CT solutions that are produced by the ideal analog circuits with the solutions

from the standard numerical solvers. This is essentially the best-case analysis (up-

per limits of the proposed methods).

Objective 5: Explore algorithms to design ACs that can compute the CT solu-

tions of non-linear PDEs. Also, identify the main building blocks towards designing

a CMOS-based AC.

Objective 6: Design a low-frequency prototype of an AC that solves a selected

PDE using discrete integrated circuits (ICs). Verify its functionality.

Objective 7: Identify key challenges of realizing large-scale analog networks such
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as the proposed PDE solvers for high-frequency applications using CMOS technolo-

gies and investigate possible solutions. Simulate the ACs using non-ideal analog

circuits (dominant pole models) to verify the proposed approaches.

Objective 8: Extend non-ideal analog solvers towards CMOS-based implementa-

tions and quantify their accuracy. Design, simulate, layout and fabricate a selected

AC using 180 nm CMOS technology towards a chip-level implementation. Digital

programmability of the AC is important for compensating process, voltage, and

temperature (PVT) variations following calibration of the chip.

Objective 9: Design and implement a prototype of an analog-digital hybrid com-

puting platform using the fabricated analog chip, FPGA+ADC/DCA boards, and

microcontrollers.

Objective 10: Calibrate the AC (digitally programmable gains and bias voltages)

to improve the performance of the computation. Collect measurements and quantify

the accuracy of the AC for different boundary conditions.

Objective 11: Estimate the relative speedup of the AC versus best-in-class DCs

and existing ACs. Compare the power consumption of the AC with existing analog

and digital computers.

1.4 Dissertation Roadmap

The roadmap for designing analog accelerators that solve linear and nonlinear PDEs

is presented under three main sections as described below.

1) CT algorithms and ideal ACs: Explore new algorithms to map a given

PDE into analog circuits that can eventually compute the solution of the

PDE. The proposed algorithms were verified using ideal ACs that compute

the solution of Maxwell’s and wave equations.
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2) ACs in 180 nm CMOS technology: Design and simulate ACs using 180

nm CMOS technology. Extend the AC that solves 1-D wave equations towards

chip-level implementation (layout and fabrication).

3) Prototype hybrid computational platform: Design and implement a

prototype analog-digital hybrid computation platform using the fabricated

AC and FPGA+ADC/DAC platforms. The hybrid platform was used to take

the measurements of the AC. The performance in terms of speed, area, and

power of the AC were compared with existing ACs and DCs.

This dissertation is organized as follows. Chapter 2 revisits the history of analog

and hybrid computing techniques. It also includes a discussion of the modern era of

computing and a review of recent examples of ACs. Fig. 1.4 shows how the remaining

chapters in this dissertation are organized and presented. Chapter 3 introduces the

continuous-time in Laplace domain (CTLD) and the all-pass delay approximation

(APDA) methods for solving linear PDEs. In Chapter 4, the proposed methods are

employed for the design of ACs that compute the solution of Maxwell’s equations.

In Chapter 5, the CT solution of 1-D and two-dimensional (2-D) wave equations are

found using the CTLD and APDA methods. In Chapters 4 and 5, the corresponding

ACs are simulated using ideal analog circuits, and the results are compared with the

results for closely-related FDTD solutions. The APDA method is extended in Chap-

ter 6 to the design of ACs for solving non-linear PDEs. A low-frequency prototype

of a CTLD-based AC is implemented using discrete ICs in Chapter 7, and the cor-

responding measured results are presented. Chapter 8 discusses the key challenges

of CMOS implementations. This chapter also explains the implementation details

of the 180 nm CMOS AC that solves 1-D wave equations. The hybrid measurement

setup is discussed in detail in Chapter 9 along with the initial measurement results.

This chapter also discusses the calibration procedure of the AC that improves the
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accuracy of the computation. The measurements, comparison with previous work,

and speed-up results are provided in Chapter 10. Here, the measurement results

are provided for different boundary conditions and frequencies. Chapter 11, which

concludes this dissertation, discusses the major outcomes of this research work.
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CHAPTER 2

ANALOG COMPUTING TECHNIQUES

There are four classes of electronic systems in the world that can be expressed in

terms of their operating domains (signal and time). The four classes are continuous-

signal continuous-time (CSCT), discrete-signal discrete-time (DSDT), continuous-

signal discrete-time (CSDT), and discrete-signal continuous-time (DSCT) [57].

Fig. 2.1 shows the four classes with example circuits. In general, continuous-signal

(CS) and discrete-signal (DS) circuits are referred to as analog and digital cir-

cuits, respectively, irrespective of their time-domain representations [57]. Analog

and digital systems can then be divided into the four separate classes based on

the time-domain representation as shown in Fig. 2.1. Examples of CSCT systems

includes op-amps, analog all-pass filters, and current mirrors. Digital processors

and FPGA platforms are examples of DSDT systems. Switched capacitor filter and

charge-coupled devices represent the electronics in the CSDT class. Asynchronous

digital communication circuits are examples of DSCT systems. This dissertation

mainly focuses on CSCT systems. In later chapters, DSDT systems along with

CSCT electronics are employed in the design of analog-digital hybrid computational

platform.

The proposed hybrid system solves PDEs that are defined by physical systems.

In general, physical systems are continuous in signal, time, and space domains (in the

dimensions x, y and z) and describe the continuous variation of one or more physical

quantities (such as temperature, pressure, electric field, magnetic field, and fluid

velocity) in space and time [19–23, 35–37]. Such systems have applications in fluid

dynamics, thermodynamics, electromagnetics, magnetohydrodynamics, etc [20–23,

36–39]. The solutions to these PDEs are, therefore, continuous in the signal, time

and space domains. However, finding an analytical closed-form solution (continuous
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Figure 2.1: The four types of electronic systems with example circuits.

in both space and time) for a complex physical problem is a tedious, if not practically

impossible task. Therefore, discrete-domain numerical methods running on powerful

computers have been used to solve such problems. All of these methods discretize the

PDEs in both dimensions to enable computation using digital computers. Note that

a physical system at a given spatial point represents a CSCT system. These systems

are more naturally solved using CSCT electronics (analog computing systems) based

on spatially discrete but time-continuous update equations. In general, spatially-

discrete time-continuous (SDTC) algorithms running on ACs can be potentially

faster and more energy-efficient than fully discrete numerical solvers [7, 9, 10, 12–

15]. Furthermore, ACs can have bandwidths that greatly exceed the equivalent

bandwidths of modern digital computing platforms.

By the 1940s, the high speed, low cost, and small size of electronic computing

elements were already making electronic computers more popular than the earlier

mechanical ACs [4,58–61] (such as differential analyzers [2] and tide-predicting ma-

chines [62]), although at the cost of lower accuracy [58]. Electronic circuits have been
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used to simulate impurity profiles of semiconductor junctions [63], nuclear fission

reactors [64], and process control loops involving proportional-integral-differential

(PID) controllers [65]. Such circuit models can be simulated using electronic ACs,

which can either be passive or active [58, 64, 66]. Passive ACs use a network (grid)

of resistive and reactive elements to directly implement the circuit model, i.e., cap-

ture spatial distributions of the physical quantities being modeled (e.g., voltage,

power, temperature, pressure, fluid flow rate, or wave amplitude) [59–61,66,67]. By

contrast, active analog computers generally use operational amplifiers (op-amps) to

implement analog computations, thus enabling accurate and flexible devices that

can be easily reconfigured to solve a variety of problems [10,68–70]. One of the first

major successes of such op-amp-based computers was the M9 gun director developed

at Bell Labs during World War II [4], and improved versions remained popular until

the 1970s.

2.1 Analog Computing History

Analog computing techniques and instruments have a long history of mechani-

cal analog systems ranging from sundials, castel clock to complex astrolabes [71].

Among them, the Antikythera mechanism is considered to be the worlds oldest

known mechanical AC, dating back to 200 B.C. [72]. An astrolabe is also a similar

device, but less complex, and is thought to have existed around the same time.

In recent times, several mechanical instruments and computers had been invented

to solve different computational problems. In general, ACs can be divided into

two main categories: special-purpose computers and general-purpose computers.

Special-purpose computers aim to solve one particular problem, whereas the general-

purpose computers can alter the arrangement of interconnections between the com-

puting elements (or programmed) to solve many different problems in a variety of
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(a) (b)

Figure 2.2: (a) A 10-component tide-predicting machine by Sir William
Thomson (Lord Kelvin) (Image: https://en.wikipedia.org/wiki/Tide-
predicting machine), (b) Vannevar Bush’s differential analyzer (Image:
https://www.computerhistory.org/revolution/analog-computers/3/143/311).

applications. Also, ACs can be sub-categorized based on the type of computational

elements: mechanical, electromechanical, and electronic. The tide predicting ma-

chine that was invented by Lord Kelvin to predict the ebb and flow of sea tides [62] is

one of the earliest examples of special-purpose mechanical analog computers (Lord

Kelvin is considered as the father of analog computing). Fig. 2.2 (a) shows an image

of the tide-predicting AC. Mechanical analog computing reached its zenith with the

differential analyzer that was invented by Professor Vannevar Bush at MIT in 1930

using mechanical wheels and disk integrators [2]. This computer was used 24 hours

a day during world war II and helped to solve problems from the MIT Radiation

Laboratory. Fig. 2.2 (b) shows an image of the MIT differential analyzer.

In 1938, the United States Navy had developed a trigonometry-based electrome-

chanical AC (Torpedo data computer) to solve the problem of firing a torpedo at

a moving target [73]. This can be considered as the first electromechanical AC.

Several electromechanical differential analyzers were also developed after the MIT
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mechanical analyzer, especially after World war II. Nordsieck’s “Synchro Operated

Differential Analyzer” is a successful example of such analyzers [74]. Early DCs

were also classified as electromechanical systems since they were constructed from

switches and relay logic rather than vacuum tubes (thermionic valves) or transis-

tors. By the 1940s, electronic analog computing methods were becoming the most

preferred methods for computations and simulations rather than mechanical and

electromechanical ACs. This was mainly due to the speed, cost and size charac-

teristics of the electronic computing elements compared to its mechanical counter-

part [4, 58–61]. However, it is worth noting that the mechanical computers were

more accurate than the early electronic-based systems [58].

The invention of the op-amp had largely superseded the mechanical and elec-

tromechanical ACs. The op-amp is a device that can perform the mathematical

operations of addition, subtraction, integration, and differentiation electronically.

Antiaircraft gun detectors that were designed by the United States and the United

Kingdom are successful developments of the op-amp-based fully-electronic analog

computers [4, 71]. During that time, the main advantage of this computer was the

high computational speed compared to the mechanical counterpart. The develop-

ment of very high gain op-amps in the late 1940s led to a significant improvement

in electronic analog computing technologies. A general-purpose analog computer

(GPAC) was developed at Bell Labs by following the technology from the M9 an-

tiaircraft gun director and was operational by 1949 [3]. At the same time, a flight

simulator was developed at MIT using analog computing techniques [3]. This was

one of the largest post-world-war analog computing projects. The first electronic

training simulator was build by The Foxboro Company to simulate a proportional-

integral-differential (PID) controller [65].
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(a) (b)

Figure 2.3: (a) Brochure of the Reeves Instrument Corporation’s electronic
analog computer (Image: https://www.computerhistory.org/revolution/analog-
computers/3/150/354), (b) overview of the “Project Typhoon” analog computer
(Image: http://www.joostrekveld.net/?p=1409).

The Reeves Instrument Corporation (RIC) designed and constructed an analog

computation and simulation laboratory to conduct guided-missile simulations [3,71].

This was one of the most significant analog computing projects that were funded

by the Office of Naval Research (ONR) and was called Project Cyclone. In 1948,

RIC become the first company to market a complete general-purpose analog com-

puting system, which was able to solve larger, more complex problems. The Reeves

electronic analog computer (REAC) is shown in Fig. 2.3 (a). Project Typhoon,

also funded by ONR, was a follow-up project to Cyclone and was targeted on

obtaining the highest possible performance and precision from analog computa-

tions [3,71]. It was also designed to simulate guided missiles. Fig. 2.3 (b) shows an

overview of the “Project Typhoon” AC. The Goodyear electronic differential ana-

lyzer (GEDA) [71,75] and the Boeing electronic analog computer (BEAC) [71] were

two other advanced ACs that were developed by the U.S. Air Force for simulating

missile systems.

20



(a) (b)

Figure 2.4: Brochure of (a) the HYDAC 2000 and (b) the Hycomp 250 analog-
digital hybrid computers (Image: https://www.computerhistory.org/brochures/doc-
4372957168f00/).

By the late 1950s, electronic ACs were largely replaced by analog-digital HCs.

The intercontinental ballistic missile (ICBM) program was one of the main influences

for the inversion of hybrid computational techniques. The first hybrid computer

was developed in 1954 at Convair Astronautics [76, 77]. The Ramo-Wooldridge

Corporation developed an HC in 1955 by combining commercial analog and digital

computers using a special interface called Add-a-Verter [3, 71]. They have used the

PACE system by Electronic Associate, Inc. and the IBM 704 system as the analog

and digital components of the HC, respectively [76,77]. A digital control circuit was

introduced in the HYDAC 2000 hybrid computer, where the main computation was

done in an AC. Hycomp 250, which was developed by Packard Bell in 1961, was

considered as the first desktop hybrid computing system. Here, the HC was designed

using the PB250 digital computer and the T-50 analog computer [3, 71]. Figs. 2.4
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(a) and (b) show the marketing brochures of the HYDAC 2000 and Hycomp 250

HCs, respectively.

2.1.1 Analog and Hybrid Computers that Solve PDEs

A physical system described by a set of equations can be modeled using analog

circuits only if the set forms a tensor equation [78]. Within this constraint, analog

circuits can be used to model a wide variety of continuous-time physical systems de-

scribed by PDEs. These include models of fluid dynamics, thermodynamics, electro-

magnetics, quantum mechanics, and magnetohydrodynamics [4,58–61,63,64,78–82].

In [83], a multidimensional resistance network was proposed to compute the solution

of PDEs with different boundary conditions. As an example, the solution of two-

dimensional (2-D) Laplace’s equation was computed using a 2-D resistance network.

The accuracy and simplicity of these networks made them a useful tool for analog

computations. A similar method to solve PDEs using resistance networks was pro-

posed in [84], where the solver was used to compute the electric potential variation

in a plane diode as a function of the distance from the cathode. An analog circuit

model of Maxwell’s equations in three dimensions was first proposed by Kron [81].

The voltage differences and branch currents associated with each circuit element

in this passive network (which consists of resistors, capacitors, inductors, and ideal

transformers) represent the electric and magnetic properties of the physical system.

A corresponding passive circuit model was then developed to simulate the transient

response of a dipole antenna to an incident electromagnetic field. The matrix form

of Maxwell’s equations was later used to demonstrate the formal relationship be-

tween field variables (electrical and magnetic fields) and circuit variables (current

and voltages) [82].
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The electronic differential analyzers were extended in [85] towards solving PDEs

by approximating one or more partial derivatives using appropriate finite differ-

ences. Here, linear PDEs were first converted into one or more ODEs by applying

the method of separation of variables. Mathematical derivations and corresponding

analog circuits were introduced for solving heat, wave and beam equations. The

accuracy of the proposed method was reported for different applications. A gen-

eral method for solving PDEs using op-amp based integrators and differentiators

was proposed in [86]. Examples of analog circuits to solve Laplace, Poisson, and

Helmholtz equations were introduced with their theoretical derivations. Equivalent

mathematical formulations of the PDEs characterizing field problems were discussed

in [87] along with the corresponding resistance-reactance networks. The proposed

analog computing techniques were applied for solving elliptic, parabolic, hyperbolic,

and biharmonic equations. Several applications were considered and analog circuits

were introduced to compute the CT solutions of PDEs.

An analog-digital HC is proposed in [88] to solve PDEs with time-dependent

problems involving second-order derivatives. The heat equation and the wave equa-

tion were considered for hybrid computations with multidimensional problems and

boundary conditions. The development of a hybrid simulator that solves the tran-

sient field problems in nuclear reactors and power plants was proposed in [89] with a

comprehensive theoretical framework. Monte Carlo methods were developed in [90]

to compute approximate solutions of the PDEs using an analog-digital HC. A sim-

ilar method was proposed in [91] that utilizes sequential estimation techniques for

Monte Carlo–based hybrid computations. Applications to the solution of PDEs and

stochastic perturbation–based optimization techniques were reported. Hybrid com-

puting techniques for solving parabolic and hyperbolic PDEs were proposed in [92]

along with the application to heat transfer equations. In [93], a digital-computer
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(b)

(a)

Figure 2.5: Results from Google Ngram Viewer for the two words (a) “analog com-
puting” and (b) “hybrid computing” over the period of 1940-2000.

oriented hybrid system was proposed to compute the solutions of nonlinear PDEs. A

hybrid nonlinear PDE simulator was proposed in [94] to analyze the flow of fluids in

underground formations. Here, the matrix inversion operations in the computation

were realized using an analog resistance network.

Fig. 2.5 shows the results from Google Ngram Viewer for the two wards “analog

computing” and “hybrid computing” over the period of 1940 to 2000. Google Ngram

Viewer shows how the two words have been used over time using more than 30 million

books in print. It is clear that both analog and hybrid computing techniques were

popular around 1950 to 1970 and then entered a period of rapid decline with the

invention of digital computers [3, 71].
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2.2 Modern Era of Analog/Hybrid Computers

Although ACs were surpassed by the exponential growth in DCs (followed by tran-

sistor scaling), ACs are returning as DCs are approaching limits in clock-speed,

power dissipation, and transistor density [7, 9, 10, 12]. Combining analog circuits

with modern digital processors to perform arithmetic operations would make the

computation potentially faster and more energy-efficient [7,9,10,13–16]. In general,

ACs trade off the accuracy of the computation for less power and higher throughput.

Yannis Tsividis’ group at Columbia University has developed two hybrid com-

puting chips (in 2005 and 2015) for energy-efficient ODE- and PDE-based computa-

tions. Both ACs solve ODEs and PDEs using an integrator-based signal flow graph.

An 80th order AC was designed by Glenn Cowan in 2005 [10,11] employing 250 nm

CMOS technology. His analog computer contains a large number of signal routing

switches and functional blocks (integrators, VGA/2-input multipliers, fanout blocks,

logarithm blocks, exponential blocks, and programmable blocks which can imple-

ment different mathematical operations). The chip only consumes 300 mW of power

and is 400 times faster than the MATLAB FDTD-based solvers (at that time). A

fourth-order HC was designed by Ning Guo in 2015 [8, 9, 14, 16]. This prototype

HC is a successor to the earlier design built by Cowan and has features that permit

calibration for more accurate results and easier interfacing with conventional digital

architectures. The chip can implement nonlinear functions using DACs, static ran-

dom access memory (SRAM), and ADCs in a table-lookup manner. The application

of nonlinear PDEs on Guos’ chip is discussed in [16] with several example problems.

In [95], the prototype hybrid solver is used to demonstrate a case study in solving

the Black–Scholes stochastic differential equation.
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Memristor-based computing techniques have also gained interest in recent years

for power-efficient analog computations and simulations. A memristor is a two-

terminal device that can switch its resistances based on the history of applied voltage

and current. The electronic tunability of the memristor made it significant for analog

computations. It was introduced by Chua in 1971 [96]. The physical implementation

of the memristors was reported in 2008 at HP Labs [97]. Prospective applications for

memristive devices were discussed in [98] along with their key challenges in nano-

scale implementations. The vector-matrix multiplication was implemented using

a memristor crossbar in [99] with applications in signal and image processing. A

memristor crossbar array was used in [100] to accelerate algorithms in deep neural

networks where they demonstrated a 128×64 array for high precision analog tuning

and control. A memristor-based in-memory computing system was proposed in [101]

to solve elliptic and hyperbolic PDEs. The water wave propagation problem and the

plasma evolution in a reactor were demonstrated using a high-precision memristor

crossbar. A memristor-based linear equation accelerator was proposed in [102]. The

proposed approach was 1500 times faster and 8.5 times energy-efficient compared

with the existing solvers.

2.3 Towards This Dissertation

Most of the existing and past analog and hybrid computers are based on passive

elements or active integrators and differentiators. The use of passive elements can

reduce errors in the continuous-time computation since passive elements are less

noisy. However, it is difficult to realize high-quality on-chip inductors and trans-

formers for broadband operation, which limits the analog bandwidth Fcompute for CT

operations of such passive solvers. Furthermore, it is impossible to compensate for
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signal losses in a fully-passive AC, whereas the active methods have the flexibility

to control the gains appropriately. In active ACs, the finite bandwidth of practical

integrators/differentiators is one of the main challenges that need to be addressed

when targeting CT computations at high frequencies. The finite bandwidth of the

circuits introduces a signal propagation delay (PD) from its input to the output

(which is inevitable for all practical elements). This PD affects the CT computation

and needs to be compensated, especially at high frequencies. However, at low fre-

quencies, the PD is insignificant compared to the frequency of interest. The analog

bandwidth of the Columbia hybrid prototype is ∼20-25 kHz [7, 9, 10, 16].

Considering these factors, this dissertation investigates new CT algorithms that

are more convenient for high-speed implementations of analog/hybrid computational

platforms. These algorithms are then extended towards an active circuit-based

analog accelerator for solving PDE-based computations. The proposed ACs only use

resistors, capacitors, and active elements, which make them suitable for realization

as CMOS integrated circuits. Moreover, the proposed solvers can also compensate

for implementation errors such as i) losses in the circuit elements and ii) propagation

delays between the nodes, unlike the existing and past designs.

27



CHAPTER 3

CONTINUOUS-TIME ALGORITHMS FOR SOLVING LINEAR PDES

There have been immense efforts in the computational engineering community to

simulate physical systems that are defined by one or more PDEs. In general, these

simulations start by first discretizing the equations using a staggered computational

grid. Discretized equations are then solved using numerical methods running on

digital computers (using the software) [34, 42, 103–105]. However, these physical

systems are themselves time-continuous and therefore are more naturally solved

using analog computing systems based on SDTC update equations. Furthermore,

SDTC algorithms running on analog computers can be potentially faster and more

energy-efficient than fully-discrete numerical solvers [7–15]. This dissertation pro-

poses two novel algorithms to map a given PDE into an SDTC update equation,

which can then be implemented using analog circuits. Here, the dependent variables

of the PDEs such as temperature, pressure, electric field, magnetic field, and fluid

velocity are represented using voltages or currents in the analog circuit. Electronic

elements are then interconnected in such a way that they produce a defined set of

time-varying currents/voltages that are proportional to the solutions of the PDE at

each spatial point. More precisely, the variation of the currents/voltages is defined

by the PDE.

In the first method, the partial derivatives in the spatial dimension are approxi-

mated using discrete finite differences, while the LT is applied to partial derivatives

in the time dimension [29–31, 106–109]. The resulting mixed domain (spatially-

discrete and time-continuous) update equation is used to design an analog circuit

that can compute the solution for a given spatial point. The resulting analog com-

puting modules are then interconnected in a systolic array architecture to com-

pute the solution over the whole spatial grid. The second method replaces the
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discrete-time difference operators in the standard FDTD cell (Yee cell), using a

continuous-time delay operator, which can be realized as an analog all-pass filter

(APF) [110–116]. The summing and scaling operations in the Yee cell are realized

using op-amps. Individual cells can then be interconnected in a systolic array to

compute the complete solution, as in the first method. Different boundary condi-

tions and problem geometries can be simulated by modifying the boundary cells

and inter-cell connectivity, respectively. In this chapter, we introduce the necessary

mathematical derivations of the two methods based on a one dimensional (one spa-

tial dimension and time) second-order linear PDE. The following two chapters will

apply these two algorithms to solve Maxwell’s and wave equations.

3.1 Background

This section briefly discusses the necessary background before introducing the two

CT analog computing methods. Note that the proposed algorithms are discrete in

space and continuous in time such that it can be computed using an array of analog

circuits. Here, the spatial discretization is achieved by applying the finite difference

approximation to the spatial domain partial derivatives of the PDEs.

3.1.1 Finite Difference Approximation

Partial derivatives of a PDE can be approximated using differential quotients. There

exist several methods for approximating differentials of a given function. Examples

of such methods are Taylor series expansion and polynomial expansion of degree

n [32, 33, 117]. Here, only the Taylor series expansion is considered. Given an

analytical function W (x, t), the first and higher partial derivatives about x can

be approximated by analyzing the function values around x. The accuracy of the
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Figure 3.1: Discretization of the function W (x, t) in spatial domain x (only shows
the spatial dimension x).

approximation depends on the number of terms selected from the Taylor series

expansion.

In order to derive the approximate expressions for partial derivatives, consider

the discretization of the spatial dimension as shown in Fig. 3.1 (only shows the

spatial dimension), where ∆x is the spatial step size. The function is then defined

at integer grid points x = i∆x (i.e., i ∈ Z), where i is the spatial index. The Taylor

series expansion of W (x+∆x, t) about x is

W (x+∆x, t) = W (x, t) + (∆x)
∂W

∂x
+

(∆x)2

2!

∂2W

∂x2
+

(∆x)3

3!

∂3W

∂x3
+ · · · . (3.1)

This leads to

∂W

∂x
=

W (x+∆x, t)−W (x, t)

∆x
− (∆x)

2!

∂2W

∂x2
+

(∆x)2

3!

∂3W

∂x3
+ · · · ,

=
W (x+∆x, t)−W (x, t)

∆x
+O (∆x) ,

=
W (i+ 1, t)−W (i, t)

∆x
+O (∆x) ,

(3.2)

which is an approximation for the partial derivative ∂W
∂x

about x. Here, x = i∆x

andW (i, t) ≡ W (i∆x, t). This is called the forward finite difference approximation.
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The order of the approximation is ∆x (a first order error term). By applying the

Taylor series expansion on W (x−∆x, t)

W (x−∆x, t) = W (x, t)− (∆x)
∂W

∂x
+

(∆x)2

2!

∂2W

∂x2
− (∆x)3

3!

∂3W

∂x3
+ · · · , (3.3)

the backward difference approximation of ∂W
∂x

can be obtained as

∂W

∂x
=

W (x, t)−W (x−∆x, t)

∆x
+O (∆x) ,

=
W (i, t)−W (i− 1, t)

∆x
+O (∆x) .

(3.4)

The order of the approximation is ∆x. By subtracting (3.1) from (3.3) the centered

difference approximation of ∂W
∂x

can be obtained as

∂W

∂x
=

W (x+∆x, t)−W (x−∆x, t)

2∆x
+O (∆x)2 . (3.5)

The order of the approximation is (∆x)2 (a second order error term).

In order to derive the approximate expression for the higher order derivatives,

consider the Taylor series expansion of W (x+ 2∆x, t) as

W (x+ 2∆x, t) = W (x, t)+(2∆x)
∂W

∂x
+

(2∆x)2

2!

∂2W

∂x2
+

(2∆x)3

3!

∂3W

∂x3
+ · · · . (3.6)

Multiplying (3.1) by 2 and subtracting it from (3.6) leads to

−W (x+∆x, t) +W (x+ 2∆x, t) = −W (x, t) + (∆x)2
∂W

∂x
+ (∆x)2

∂2W

∂x2

+ (∆x)3
∂3W

∂x3
+ · · · .

(3.7)

Solving the expression (3.7) for ∂2W
∂x2 leads to

∂2W

∂x2
=

W (x+ 2∆x, t)− 2W (x+∆x, t) +W (x, t)

(∆x)2
+O (∆x) . (3.8)

This represents the forward difference approximation of the second derivative of

W (x, t). The order of the approximation is ∆x. Similarly, backward difference

approximation of the derivative can be obtained as

∂2W

∂x2
=

W (x, t)− 2W (x−∆x, t) +W (x−∆x, t)

(∆x)2
+O (∆x) . (3.9)

31



By adding (3.1) and (3.3), the central difference approximation of the second deriva-

tive can be obtained as

∂2W

∂x2
=

W (x+∆x, t)− 2W (x, t) +W (x−∆x, t)

(∆x)2
+O (∆x)2 . (3.10)

These expressions are used in this chapter to derive new SDTC algorithms. Ap-

proximations for higher-order derivatives can be obtained by following the same

procedure. Also, higher-order error terms can be obtained for the approximation by

selecting the required number of terms from the expansion.

3.1.2 Laplace Transform

The Laplace transform (LT) is a powerful tool that has numerous applications in

electrical engineering. It transforms a given function W (t) with a real variable t

(can be time or a space variable) into a complex function W̄ (s) with a complex

variable s. The definition of the Laplace transform can be expressed as

L [W (t)] = W̄ (s) =

∫ ∞

0−
W (t) e−stdt. (3.11)

Here, s = σ + jω is the Laplace domain variable. The corresponding inverse trans-

form is defined as

L
[
W̄ (s)

]
= W (t) =

1

2πj

∫ ω1+jω

ω1−jω

W̄ (s) estds. (3.12)

Similarly, the Laplace transform can be applied to a two dimensional function

W (x, t) as

L [W (x, t)] = W̄ (x, s) =

∫ ∞

0−
W (x, t) e−stdt. (3.13)

Note that this is not a multidimensional LT (m integrations are required for a

m−dimensional transform). Here, the Laplace transform is only applied with re-

spect to the time variable t (this property is important when deriving the proposed
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algorithms). Also, the LT is a linear operator such that it can be applied to any

linear operation. Which means

L [aW1 (x, t) + bW2 (x, t)] = aL [W1 (x, t)] + bL [W2 (x, t)] , (3.14)

where a and b are constants. The LTs of the first and second order partial derivatives

can be obtained as

L
[
∂W (x, t)

∂t

]

= sW (x, s)−W (x, 0) ,

L
[
∂2W (x, t)

∂t2

]

= s2W (x, s)− sW (x, 0)−W ′ (x, 0) ,

(3.15)

respectively. Here, W (x, 0) and W ′ (x, 0) = ∂W (x,t)
∂t

∣
∣
∣
t=0

are the initial conditions of

the function. These two properties are used when deriving the first CT algorithm.

The LTs of the higher order derivatives can be obtained in a similar way. The time

shifting property of the Laplace transform is

L [W (x, t− τ) u (t− τ)] = e−τsW̄ (x, s) . (3.16)

Here, u (t) is the Heaviside step function. This property is used when deriving the

second CT algorithm.

In general, LT is used to transform the time-domain circuits into s domain

circuits since it simplifies the solution of integral differential equations into a ma-

nipulation of a set of algebraic equations. In the same way, the LT is used in our

methods to map the SDTC algorithms into an analog circuit.

3.2 Continuous-time Algorithms for Solving PDEs

A general form of a second-order linear PDE given in (3.17) is utilized to formulate

the two CT algorithms that solve linear PDEs. Here, only two dimensions are con-

sidered: space x and time t. However, the proposed methods can be extended to
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i = 0 i = Nx

Left boundary Right boundary

W (x, t)

t

x

Space-time domain

ti
m
e
co
nt
in
uo
us

∆x

W (i, t)

W (i− 1, t)

W (i+ 1, t)

Figure 3.2: The discretization of the spatial dimension x from 0 to Lx with the
spatial step size ∆x. Here i is the discrete spatial index.

multiple dimensions by following the same procedures. Chapter 5 provides an exam-

ple of a 2-D PDE solver (space x, y and time t). Consider a PDE given in the form

A
∂2W (x, t)

∂t2
+B

∂2W (x, t)

∂x2
+C

∂W (x, t)

∂t
+D

∂W (x, t)

∂x
+ EW (x, t) + F = 0, (3.17)

where x and t are the spatial and time variables, respectively. A,B,C,D,E, and

F are constant coefficients. Consider the space-time domain as shown in Fig. 3.2,

where 0 ≤ x ≤ Lx and 0 ≤ t < ∞. Note that both algorithms are discrete in space.

Thus, the initial step of the algorithms is the discretization of the spatial dimension.

In particular, a uniform grid is selected with a grid spacing of ∆x = Lx

Nx
, where i

denotes the spatial index (i ∈ {0, 1, 2, . . . , Nx}). The discretized space consists of

Nx + 1 grid points. Here, i = 0 and i = Nx correspond to the spatial locations

at the left and right boundaries. The following sections introduce the two analog

computing methods based on this discretized spatial grid.
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3.2.1 Continuous-time in Laplace Domain (CTLD) Method

In the continuous-time in Laplace domain (CTLD) method, the partial derivatives

in the spatial dimension are approximated using discrete finite differences, while the

LT is applied along the time dimension [29–31,106–109]. This results in a spatially-

discrete and time-continuous update equation. The CT solution is then computed

by realizing the corresponding update equation using analog circuit elements. The

design of an analog 2-D beam filter where the time-domain was realized in RC-active

low-frequency op-amp circuits was proposed by Bruton [29–31]. Here, we extend the

approach in [29–31] to the general case of solving PDEs. The step by step procedure

of the CTLD method is described below.

Step 1: Approximate the spatial domain partial derivatives in (3.17) using finite

difference approximations. The resulting SDTC expression is

A
∂2W (i, t)

∂t2
+B

[
W (i+ 1, t)− 2W (i, t) +W (i− 1, t)

∆x2

]

+ C
∂W (i, t)

∂t

+D

[
W (i, t)−W (i− 1, t)

2∆x

]

+ EW (i, t) + F = 0.

(3.18)

The first- and second-order derivatives are approximated using the backward (with

the first-order accuracy) and central (with second-order accuracy) differences, re-

spectively. The most suitable finite difference method (forward, backward or central)

can be selected based on the resulting mathematical model. In general, the method

that leads to a realizable analog circuit implementation with the lowest hardware

complexity will be selected. The accuracy of the computation can be improved by

selecting a higher-order accurate finite difference scheme to approximate the deriva-

tives. However, this will increase the hardware complexity of the AC.
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Step 2: Apply the LT on (3.18) along the time dimension. The resulting mixed-

domain expression is

A
[
s2W̄ (i, s)− sW (i, 0) −W ′ (i, 0)

]
+

B

∆x2

[
W̄ (i+ 1, s)− 2W̄ (i, s) + W̄ (i− 1, s)

]

+ C
[
sW̄ (i, s)−W (i, 0)

]
+

D

2∆x

[
W̄ (i, s)− W̄ (i− 1, s)

]
+ EW̄ (i, s) + F = 0,

(3.19)

where s is the Laplace domain variable. Here, one independent variable of the

solution is in the space domain (discrete), where as the other variable is in the

Laplace domain (not in the time domain). Thus, (3.19) is a mixed-domain expres-

sion. W̄ (i, s) is the Laplace domain representation of W (i, t) [29–31]. W (i, 0) and

W ′ (i, 0) define the initial conditions of the system. Also, note that this expression is

discrete in space and continuous in time (the Laplace domain variable is continuous).

Step 3: Solve (3.19) for the mixed-domain solution W̄ (i, s). This is called the

SDTC update equation of the PDE, which is used to compute the CT solution of

the PDE at spatial index i. For zero initial conditions, the solution W̄ (i, s) can be

expressed as

W̄ (i, s) =
αW̄ (i− 1, s) + βW̄ (i+ 1, s)− F

As2 + Cs+ γ
, (3.20)

where, α = − B
∆x2 +

D
2∆x

, β = −B
∆x2 , and γ = − 2B

∆x2 +
D

2∆x
+ E. The update equation

can be used to implement an analog module that computes the solution at spatial

locations x = i∆x.

Analog Circuits: Consider the internal module (IM) that computes the solution

W (i, t) at spatial index i (W (i, s) is the LT of W (i, t)). Based on (3.20), the

module requires W (i− 1, t) and W (i+ 1, t) functions as the inputs, which cor-

respond to the solutions at i − 1 and i + 1 spatial locations, respectively. The

numerator polynomial αW̄ (i− 1, s) + βW̄ (i+ 1, s) − F can be realized using an

adder/subtractor circuit (scaling and summing), where as the 1
As2+Cs+γ

operator can

be implemented using a passive LRC circuit or an active circuit realization method
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Figure 3.3: Block diagram of the internal module (IM) derived from (a) the direct
LT method and (b) the all-pass filter method. (c) Systolic array architecture of the
second order continuous-time PDE solver.

(e.g. Sallen-Key topology [118]). Fig. 4.1 (a) shows a block diagram of the corre-

sponding IM. The continuous-time solution to the PDE over the whole spatial grid

can be computed by interconnecting each module in an analog array architecture as

shown in Fig. 4.1 (c). The proposed method can be extended to multiple dimensions

and higher order PDEs.

At each boundary (i = 0 and i = Nx), different modules need to be implemented

based on the governing equations at the boundary. As an example, consider the
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left boundary i = 0 with a Dirichlet boundary. The Dirichlet boundary condition

specifies the solution W (0, t) at the boundary [20, 38, 119]. Thus, we do not need

any additional hardware to implement the boundary module. A signal source that

produces the corresponding solution W (0, t) can be used to excite the IM at i = 1

(i.e. the W (i + 1, t) input of the IM1 is W (0, t)). However, for other boundary

conditions such as the Neumann, and the Robin boundary conditions, a specific

module needs to be designed based on the governing equations at the boundary. The

CTLD method can be employed to derive the corresponding CT update equation

at the boundary, which can then be used to design the boundary module. Several

examples on modeling different boundary conditions using the CTLD method will

be discussed in the succeeding chapters with their corresponding analog circuits.

3.2.2 All-pass Delay Approximation (APDA) Method

The second CT method of solving PDEs is proposed as a direct mapping from a fully-

discrete (discrete in both space and time) FDTD method to a CT implementation.

The corresponding CT update equations are realized by replacing unit sample delays

in the digital prototype with an analog all-pass filter, thereby converting a digital

prototype to a continuous-time analog version [110–115]. Here, the all-pass filter is

approximating the unit sample delay. Thus, the method is named as all-pass filter

approximation (APDA) method. Summing and scaling operations are implemented

using adder/subtractor circuits (op-amps). Following is the step by step procedure

of the APDA method for obtaining an SDTC update equation for a given PDE.

Step 1: Approximate the spatial-domain partial derivatives in (3.17) using the finite

difference approximations. This step is similar to Step 1 of the CTLD method. The
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resulting SDTC expression is

A
∂2W (i, t)

∂t2
+B

[
W (i+ 1, t)− 2W (i, t) +W (i− 1, t)

∆x2

]

+ C
∂W (i, t)

∂t

+D

[
W (i, t)−W (i− 1, t)

2∆x

]

+ EW (i, t) + F = 0.

(3.21)

The first and second order derivatives are approximated using the backward (with

first order accuracy) and central (with second order accuracy) differences, respec-

tively. Here, the spatial variable x has been discretized.

Step 2: Approximate the time-domain partial derivatives in 3.21 using finite dif-

ferences, but keeping the time variable continuous. The resulting expression is

A

[
W (i, t + τ)− 2W (i, t) +W (i, t− τ)

τ 2

]

+B

[
W (i+ 1, t)− 2W (i, t) +W (i− 1, t)

∆x2

]

+ C

[
W (i, t + τ)−W (i, t− τ)

2τ

]

+D

[
W (i, t)−W (i− 1, t)

2∆x

]

+ EW (i, t) + F = 0.

(3.22)

Here, τ is the CT delay operator of the update equation. Both first and second or-

der partial derivatives are approximated using centered finite differences with second

order accuracy. As similar to the CTLD method, the most suitable finite difference

method (forward, backward or central) can be selected based on the resulting math-

ematical model. Note that the expression given in (3.22) is still continuous in time

even after the application of the finite differences (with the time variable t). This is

the main difference between Step 1 and Step 2.

Step 3: Solve (3.22) for W (i, t+ τ) and evaluate the function at time t (t + τ → t).

This leads to the SDTC update equation

KW (i, t) = α′W (i, t− τ) + β ′W (i, t− 2τ)

+ γ′W (i− 1, t− τ) + δ′W (i+ 1, t− τ)− F,

(3.23)

where α′ = 2A
τ2

+ 2B
∆x2 − D

2∆x
− E, β ′ = −A

τ2
+ C

2τ
, γ′ = −B

∆x2 + D
2∆x

, δ′ = −B
∆x2 , and

K = A
τ2

+ C
2τ
.
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Step 4: Apply the LT on (3.23) with respect to the time variable t, which leads to

the mixed-domain update equation

KW̄ (i, s) = α′W̄ (i, s) e−sτ + β ′W̄ (i, s) e−2sτ

+ γ′W̄ (i− 1, s) e−sτ + δ′W̄ (i+ 1, s) e−sτ − F.

(3.24)

The resulting update equation can be used to design analog circuits that compute

the continuous-time solution of the PDE.

Analog Circuits: The Laplace domain representation e−sτ is approximated as

e−sτ ≈
[
1− sτ

2m

1+ sτ
2m

]m

, and can be realized in an analog RC-active topology using a

cascade of m all-pass filters. Typically, m = 3 is sufficient for approximation of

e−sτ [110–115]. Let φ(s) =
(

1−sτ/2m
1+sτ/2m

)m

be the transfer function of the all-pass filter

that approximates the continuous-time delay τ . Fig. 4.1 (c) shows the block diagram

of the proposed IM, where the all-pass filter φ(s) is used as a building block. The

summing and scaling operations can be implemented using adder/subtractor circuits

and gain blocks. Note that this procedure is equivalent to a direct mapping from

the digital FDTD implementation, where we replace the unit time delays with all-

pass filters. The analog modules which correspond to each of the boundaries can be

obtained by modeling the governing equations using the above mentioned method.

The CT solution over the whole spatial grid can be computed by interconnecting

internal and boundary modules in a systolic array architecture as shown in Fig. 4.1

(c).

3.2.3 FDTD Method vs APDA Method

FDTD algorithms are discrete in both space and time. Since the APDA method

is derived from a purely discrete-time algorithm, there may be a confusion

with the continuous-time nature of the APDA method. The following discus-
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sion explains this argument and compares the behavior of the APDA method

with the FDTD schemes.

Consider a general FDTD stepping algorithm as shown in Fig. 3.4 (a). The

algorithm computes the solution y(t) at time t by utilizing the solutions y(t − τ)

and y(t − 2τ) at time t − τ and t − 2τ , respectively, where τ is the temporal step

size (see the FDTD stencil shown in Fig. 3.4 (a)). The algorithm can only access

the solutions at discrete times {. . . , t + 2τ, t + τ, t, t − τ, t − 2τ, . . .}. Furthermore,

the time marching is performed in a discrete manner. Thus, the next step of the

discrete-time algorithm is to compute the solution y(t+ τ) at time t+ τ by utilizing

the solutions y(t) and y(t− τ) at time t and t− τ , respectively.

Now consider the proposed APDA method. It also computes the solution y(t)

at time t by utilizing the solutions y(t− τ) and y(t− 2τ) at time t− τ and t− 2τ ,

respectively (same FDTD stencil). However, the time marching is performed in a

continuous manner. Thus, the solution y(t + δt) at time t + δt can be computed

using the solutions y(t+ δt− τ) and y(t+ δt−2τ) at time t+ δt− τ and t+ δt−2τ ,

respectively, where δt is a infinitesimally small time. This means the algorithm can

access every point at the time dimension (i.e., can be considered as a continuous

movement of the FDTD stencil along the time dimension as shown in Fig. 3.4(b)).

In contrast, the stencil moves in a discrete manner in the discrete-time algorithm.

Thus, the proposed APDA method is a CT algorithm.

Special Note: In a typical sampled discrete-time linear time invariant (LTI) sys-

tem, such as an FIR or IIR digital filter, both the input spectrum as well as the

filter response are periodic in 2π due to the phase-wrapping of the infinite-order

all pass filter e−jωT . When one replaces the digital filter with an analog version as

in the APDA method, the input is not sampled any longer. However, the system

response is still periodic in 2π because of phase wrapping of e−j2πτ where τ is now a
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Figure 3.4: (a) The FDTD stepping algorithm. (b) The proposed APDA method.

continuous-time delay. In order for the system to correctly filter the input, it has to

be strictly bandlimited, such that only the principal copy of the filter response is rel-
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evant for the filtering. The strictly-bandlimited condition ensures that the wrapped

copies of the system response do not have any corresponding spectral content in the

input signal. By selecting a value of τ in the APDA method, the signals that are

present within the circuit model are assumed to be band-limited to 1
2τ
.

In the next two chapters, the CTLD and the APDA methods are employed to

design ACs that compute the CT solution of Maxwell’s and wave equations.
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CHAPTER 4

CONTINUOUS-TIME SOLUTION OF MAXWELL’S EQUATIONS

This chapter employs CTLD and APDA methods to design ACs that compute

the CT solutions of 1-D Maxwell’s equations. Both ACs have been simulated using

ideal analog circuits in Cadence Spectre for different boundary conditions such as

the perfect electric conductor (PEC), the perfect magnetic conductor (PMC), and

the absorbing boundary. The performance of the ACs have been quantified using i)

mean squared difference between the AC results and FDTD simulation results, and

ii) the noise to signal energy ratio. The chapter also presents mathematical models

(based on the CTLD method) to design ACs that can solve 2-D Maxwell’s equations.

Maxwell’s equations are a set of coupled linear PDEs that describe the behavior

of electric and magnetic fields at each point in space-time [20,23,38]. In the proposed

ACs, the CT electric and magnetic fields (the dependent variables in Maxwell’s

equations) are represented using differences in electrical potentials (a voltage-mode

analog circuit) and are defined at discrete spatial points. Electronic elements are

then interconnected in such a way that they produce a defined set of time-varying

voltages that are proportional to the electric and magnetic fields at each spatial

point. More precisely, the variation of the voltages in the circuit is defined by

Maxwell’s equations. Since the independent variable of the coupled PDEs is time,

the proportionality between the problem time scale and the computation time scale

is unity.

Maxwell’s equations in an isotropic source-free region of space can be expressed

as [119, 120]

∇× E = −µ
∂H

∂t
, ∇×H = ǫ

∂E

∂t
, (4.1)

where E ≡ (Ex, Ey, Ez) and H ≡ (Hx, Hy, Hz) are the electric and magnetic field

vectors, respectively. The field components Ek and Hk are functions of space and
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time and are defined at each space-time point (k ∈ {x, y, z}). Here, ǫ and µ are the

permittivity and permeability of the medium, respectively. For simplicity, ǫ and µ

are assumed to be uniform over the simulation volume. Both methods are applied

to the 1-D (one spatial dimension and the time dimension) Maxwell’s equations. In

1-D, the transverse magnetic (TM) mode electromagnetic fields are described by

∂Ez

∂t
=

1

ǫ

∂Hy

∂x
,

∂Hy

∂t
=

1

µ

∂Ez

∂x
, (4.2)

and Ex = 0, Ey = 0, Hz = 0, and Hx = 0 [119, 120]. Note that both spatial and

time variables (x and t) are continuous in nature.

4.1 CTLD Method for Solving Maxwell’s Equations

Consider the coupled PDEs given in (4.2). In the CTLD method, the partial deriva-

tives in the spatial dimension are approximated using discrete finite differences,

while the LT is applied along the time dimension [29–31, 106–109]. This results

in a spatially-discrete and time-continuous update equation. The CT solution is

then computed by realizing the corresponding update equation using analog circuit

elements.

Consider the spatial domain of 0 ≤ x ≤ Lx. The coupled equations given in (4.2)

are first discretized over the spatial dimension with a spatial grid size ∆x = Lx

Nx
. The

electric field Ez is defined at integer grid points (i.e., i ∈ {0, 1, 2, . . . , Nx}) whereas

the magnetic field Hy is defined at half-integer points (i.e., i+ 1
2
∈ {1

2
, 3
2
, 5
2
, . . . , Nx−

1
2
}), where i ∈ Z. The spatial points i = 0 and i = Nx correspond to the left and

right boundaries, respectively. Here, both boundaries are defined by electric fields.

If needed, magnetic field-based boundaries may also be simulated by defining the

left and right boundary at i = 1
2
and i = Nx − 1

2
, respectively. The approximation

of the spatial partial derivatives using finite differences leads to (while keeping the
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time variable continuous)

∂Ez(i, t)

∂t
=

1

ǫ

Hy(i+
1
2
, t)−Hy(i− 1

2
, t)

∆x
,

∂Hy(i+
1
2
, t)

∂t
=

1

µ

Ez(i+ 1, t)− Ez(i, t)

∆x
.

(4.3)

Here, each of the derivatives are approximated using second-order centered differ-

ences. However, more complex higher-order finite difference schemes (and time

domain integration methods) can also be employed to improve the accuracy of the

solutions. Use of a different approximation will result a different SDTC update

equation, which eventually leads to an alternative analog circuit that solves the

same PDE. The application of LT on (4.3) leads to the following mixed-domain

expressions

sĒz(i, s)− Ez(i, 0) =
H̄y(i+

1
2
, s)− H̄y(i− 1

2
, s)

ǫ∆x
,

sH̄y(i+
1

2
, s)−Hy(i+

1

2
, 0) =

Ēz(i+ 1, s)− Ēz(i, s)

µ∆x
.

(4.4)

Here, s is the Laplace domain variable, Hy(i +
1
2
, 0) and Ez(i, 0) define the ini-

tial conditions of the coupled PDE, and Ēz(i, s) and H̄y(i +
1
2
, s) are the Laplace

transform domain representations of the field components Ey(i, t) and Hy(i+
1
2
, t),

respectively. For zero initial conditions, the SDTC update equations that solve Ez

and Hy at mesh points i and
(
i+ 1

2

)
can be expressed as

Ēz(i, s) =
H̄y

(
i+ 1

2
, s
)
− H̄y

(
i− 1

2
, s
)

ǫ∆xs
,

H̄y

(

i+
1

2
, s

)

=
Ēz(i+ 1, s)− Ēz(i, s)

µ∆xs
,

(4.5)

The resulting expressions can then be used to solve Maxwell’s equations using analog

circuits. Note that this is a staggered grid architecture similar to the standard Yee

algorithm [41].
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4.1.1 Circuit Theory

The SDTC update equations given in (4.5) have poles at s = 0. In order to move

the poles away from origin, we approximate the corresponding system as

Ēz(i, s) ≈
H̄y

(
i+ 1

2
, s
)
− H̄y

(
i− 1

2
, s
)

α + ǫ∆xs
,

H̄y

(

i+
1

2
, s

)

≈ Ēz(i+ 1, s)− Ēz(i, s)

β + µ∆xs
.

(4.6)

The resulting system can accurately solve Maxwell’s equations when the operating

frequency of the solver ω ≫ ω0 = max{ α
ǫ∆x

, β
µ∆x

}, where α and β define the minimum

operating frequency ω0 of the system. In other words, the update equations given

in (4.6) accurately approximates (4.5) when ω ≫ ω0. In order to make the solver

works for all frequencies, consider the following modification to (4.6).

Ēz(i, s) =
H̄y

(
i+ 1

2 , s
)
− H̄y

(
i− 1

2 , s
)
+ Ēz(i, s)− Ēz(i, s)

α+ ǫ∆xs
,

H̄y

(

i+
1

2
, s

)

=
Ēz(i+ 1, s)− Ēz(i, s) + H̄y

(
i+ 1

2 , s
)
− H̄y

(
i+ 1

2 , s
)

β + µ∆xs
,

(4.7)

Here, a Ēz (i, s) term is added and subtracted to the right-hand side of the first

equation. Similarly, H̄y

(
i+ 1

2
, s
)
is added and subtracted to the second equation.

In both cases the subtracted term is then moved to the left-hand side, resulting in

the following modified update equations:

Ēz(i, s) =
H̄y

(
i+ 1

2
, s
)
− H̄y

(
i− 1

2
, s
)
+ Ēz(i, s)

1 + α + ǫ∆xs
,

H̄y

(

i+
1

2
, s

)

=
Ēz(i+ 1, s)− Ēz(i, s) + H̄y

(
i+ 1

2
, s
)

1 + β + µ∆xs
,

(4.8)

which have poles at s = −1+α
ǫ∆x

and s = − 1+β
µ∆x

for the electric and magnetic update

equations, respectively. Here, the poles are not at the origin even if α = 0 and

β = 0. Thus, we selected α = 0 and β = 0 (throughout the chapter). However, both

update equations now need feedback from the output to compute the solution. The

modified update equations given in (4.8) (with α = 0 and β = 0) can be used to
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Figure 4.1: (a) Internal analog modules (RC-active circuits) that compute the elec-
tric (left) and magnetic (right) fields at internal spatial locations, which are derived
based on the CTLD method. (b) Systolic array architecture of the interconnected
internal modules to solve Maxwell’s equations.

implement analog modules that compute the electric and magnetic field intensities

at the internal spatial points i ∈ {1
2
, 1, 3

2
, 2, . . . , Nx − 1

2
} (update equations given in

(4.6) can also be used to design the internal module. However, this system only

works for frequencies ω ≫ ω0). Two separate modules are required to compute the

electric and magnetic fields. Fig. 4.1(a) shows the analog circuit architectures of

the electric and magnetic fields internal modules (IMs) Ei and Hi+ 1
2
. Consider the

electric field IM Ei at grid point i. The magnetic field values at the neighboring

spatial points (i− 1
2
and i+ 1

2
) are used as the inputs to the module. The operations
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in the numerator of the electric field update equation given in (4.8) are realized using

an op-amp. The 1
1+ǫ∆xs

operation (note that α = 0) is implemented as a passive

low pass filter by setting R1C1 = ǫ∆x (see Fig. 4.1 (a)). The output of the low

pass filter is buffered prior to feeding the neighboring magnetic field modules. The

buffered output is fed back to the summing op-amp. The IM that computes the

magnetic field is implemented following the same architecture. Here, the resistor

and the capacitor values are selected such that R2C2 = µ∆x. The CT solution to

Maxwell’s equations over the internal simulation grid points can then be computed

by interconnecting the IMs in a systolic array architecture, as shown in Fig. 4.1(b).

At each boundary, different modules need to be implemented based on the gov-

erning equations at the boundary. Consider a situation where we have a perfect

electric conductor (PEC) at x = Lx = Nx∆x (the right boundary). The component

of the electric field parallel to a PEC boundary is zero. Thus, Ez = 0 at the bound-

ary. The component of the magnetic field perpendicular to a PEC boundary is also

zero. Thus, the PEC boundary can be realized by simply grounding the Ez (i, t)

input of the magnetic IM at spatial point Nx − 1
2
. The perfect magnetic conductor

(PMC) boundary condition is the magnetic equivalent of the PEC boundary. The

components of the parallel magnetic field and the perpendicular electric field at a

PMC boundary are zero. Thus, the corresponding boundary module can be simu-

lated by grounding the Hy

(
i+ 1

2

)
input of the electric IM at spatial point Nx − 1.

Here, the right boundary is defined at x =
(
Nx − 1

2

)
∆x. Furthermore, if we need

to excite the left boundary using a time varying function f(t), this can be achieved

by connecting a signal source that produces f(t) to the Ez(i − 1, t) input of the

Hy

(
1
2
, t
)
magnetic field IM.
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Figure 4.2: Analog circuit architecture of the radiation boundary module that is
derived based on the CTLD method.

In order to simulate a radiation boundary at i = Nx (the right side boundary),

consider the 1-D Mur absorbing boundary condition [119, 120]

1

c

∂Ez (x, t)

∂t
|x=Nx∆x +

∂Ez (x, t)

∂x
|x=Nx∆x = 0. (4.9)

Here c = 1√
ǫµ

is the wave propagation speed. Application of the finite differ-

ence approximation along the spatial dimension followed by the LT along the time

dimension on (4.9) leads to a SDTC update equation

Ēz (Nx, s) =
4Ēz (Nx − 1, s)− Ēz (Nx − 2, s)

3
(
1 + 2

3
∆x
c
s
) . (4.10)

Note that a second-order backward approximation is employed to discretize the

spatial domain partial derivative. A backward approximation is suitable in this case

since there is no reflection from the boundary, so the fields at the boundary can

be computed only using fields inside it. Also, zero initial conditions are considered

for the LT. The resulting update equation given in (4.10) is used to implement the

radiation boundary module. Fig. 4.2 shows the corresponding circuit architecture.

50



Here, R1C1 =
2
3
∆x
c
. Note that the inputs to the radiation boundary module are the

electric fields from spatial points Nx − 1 and Nx − 2.

4.1.2 Ideal Cadence Simulations

The proposed AC that computes the CT solution of Maxwell’s equations was eval-

uated using a circuit simulator (Cadence Spectre) assuming ideal elements. A spa-

tial grid of 65 spatial points was considered for the simulation, which includes 33

and 32 electric and magnetic field-based spatial points, respectively (left and right

boundaries are defined by the electric fields). The analog bandwidth Fcompute of the

system (for CT operations) was selected as 100 MHz (λmin = c
Fcompute

), and the spa-

tial step size is ∆x = λmin

10
(oversampled by 5 compared to the Nyquist rate). The

left boundary was excited using a Gaussian modulated cosine (GMC) electric field

Em cos (2πf (t− t0)) e
−k(t−t0)

2

, where f = 50MHz, Em = 377 mV, and t0 = 0.2 µs.

Here, k sets the bandwidth of the signal. The characteristic impedance
√

µ
ǫ
and the

velocity c of the medium are selected as 377 Ω and c = 3 × 108 ms−1, respectively.

The right boundary was simulated as a PEC boundary. Figs. 4.3 (a) and (b) show

the spatio-temporal variation of the electric and magnetic fields obtained from the

proposed AC (the three-dimensional view and the top view). Zero initial conditions

are considered for the simulations, and the maximum time step is set to 1 ps.

Similarly, Figs. 4.4 (a) and (b) show the electric and magnetic field variations

in the space-time domain but with the right boundary replaced with an absorbing

boundary.
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Figure 4.3: Ideal simulation results obtained from the CTLD solver (left: 3-D view,
right: top view). The left boundary is excited using a GMC electric field at 50 MHz.
The right boundary is simulated as a PEC. The spatio-temporal variation of (a) the
electric field Ez and (b) the magnetic field Hy. The deviation of the continuous-time
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and (d) the magnetic field.
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4.1.3 Comparative Analysis

In order to quantify how much our continuous-time solution deviates from the stan-

dard FDTD solution, two metrics have been calculated: the mean squared difference

(MSD) between the two solutions, and the noise energy to signal energy ratio γ (in

dB). These metrics describe how much the computed CT solution deviates with re-

spect to the FDTD solution, when the proposed ACs are realized using ideal analog

circuits. For this purpose, an FDTD-based Maxwell’s equation solver was imple-

mented using MATLAB. In order to define the comparative metrics, consider the

electric field solution Ez. Since the values of both metrics vary with the spatial lo-

cation, MSDi and γi are calculated for each spatial location i. MSDi for the electric

field solution is defined as

MSDi =
1

Nt

Nt−1∑

n=0

[EF (i, n∆T )−EA (i, n∆T )]2 , (4.11)

where EF (i, n∆T ) and EA (i, n∆T ) are the solutions of the FDTD and analog

solvers, respectively, at spatial point i and time t = n∆T . Also, Nt is the total

number of time samples and ∆T is the temporal step size of the FDTD simulation.

In addition, the noise to signal energy ratio γi is expressed as

γi = 10 log10

Nt−1∑

n=0

[EF (i, n∆T )− EA (i, n∆T )]2

Nt−1∑

n=0

EF (i, n∆T )2
. (4.12)

Similar metrics corresponding to the magnetic field solutions (MSDi+ 1
2
and γi+ 1

2
)

at the half grid points can also be defined. Figs. 4.3(c) and (d) show the electric

and magnetic field comparison results (MSD and γ), respectively, for the simulation

with the PEC boundary at x = Nx∆x (shown in Figs. 4.3(a) and (b)). The tem-

poral step size ∆T is selected as 10 ps for the FDTD simulation. Both analog and

FDTD simulations use the same spatial step sizes (10 spatial points per minimum
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Figure 4.4: Ideal simulation results obtained from the CTLD Maxwell’s equation
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wavelength), while Nt = 30000 for the comparison. Figs. 4.4(c) and (d) show the

corresponding comparison results for the simulation with a radiation boundary on

the right hand side (shown in Figs.4.4(a) and (b)). In both cases, the electric field

MSD results are much larger than the magnetic fields. This is due to the amplitude

difference of the fields: the simulated electric and magnetic field amplitudes are

377 mV (Em) and ≈1 mV, respectively, which matches the expected characteristic

impedance of the propagation medium (
√

µ
ǫ
= 377 Ω). However, the values of γ are

in the same range since they do not depend on the amplitudes of the fields. The

proposed CTLD method is able to compute the solutions of Maxwell’s equations

with a difference less than −26 dB in terms of γ (assuming ideal circuit models).

4.1.4 Continuous-time Solution of 2-D Maxwell’s Equations

The 2-D TM mode electromagnetic fields satisfy [119, 120]

∂Hx

∂t
= −1

µ

∂Ez

∂y
,

∂Hy

∂t
=

1

µ

∂Ez

∂x
,

∂Ez

∂t
=

1

ǫ

∂Hy

∂x
− 1

ǫ

∂Hx

∂y
,

(4.13)

where Ex = 0, Ey = 0, and Hz = 0. Spatial index j represents the grid points

in y dimension (∆y is the corresponding step size). Consider a 2-D computational

domain of 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly (∆y = Ly

Ny
). The electric field Ez is

defined at integer grid points for both dimensions (i.e., (i,j)). The Hx component

is defined at integer and half integer grid points for x and y directions, respectively

(i.e.,
(
i, j + 1

2

)
). Similarly, the Hy component is defined at half and integer grid

points for x and y dimensions, respectively (i.e.,
(
i+ 1

2
, j
)
). The spatial points with

i = 0, j = 0, i = Nx, and j = Ny correspond to left, bottom, right, and top

boundaries of the spatial grid, respectively. Application of the CTLD method on
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(4.13) leads to

H̄x(i+
1

2
, j +

1

2
, s) =

Ēz(i, j, s)− Ēz(i, j + 1, s)

µ∆ys
,

H̄y(i+
1

2
, j +

1

2
, s) =

Ēz(i+ 1, j, s)− Ēz(i, j, s)

µ∆xs
,

Ēz(i, j, s) =
H̄y(i+

1
2
, j, s)− H̄y(i− 1

2
, j, s)

ǫ∆xs
− H̄x(i, j +

1
2
, s)− H̄x(i, j − 1

2
, s)

ǫ∆ys
,

(4.14)

which can then be used to solve the 2-D Maxwell’s equations using analog computing

methods. Here, zero initial conditions are considered for the LT. The internal analog

modules that compute Ez, Hx, and Hy field components can be realized based on

the expressions in (4.14). Consider the electric field IM. The magnetic field intensity

values at the neighboring spatial points (i − 1
2
, j), (i + 1

2
, j), (i, j − 1

2
), (i, j + 1

2
)

are used as the inputs to the module. The output Ez(i, j, t) is the field intensity

value at the (i, j)th spatial location. The addition and subtraction operations can

be realized using op-amps. The 1
µ∆xs

and 1
ǫ∆xs

operations can be implemented using

integrator circuits.

4.2 APDA Method for Solving Maxwell’s Equations

The APDAmethod is derived based on the standard FDTDmethod (Yee algorithm).

As in the Yee algorithm, the electric and magnetic fields are defined at the integer

(i.e., i, i + 1, . . .) and half-integer (i.e., i + 1
2
, i + 3

2
, . . .) spatial points, respectively,

where i ∈ Z. However, we only discretize the spatial variable, while keeping the time

variable continuous; this is the main difference between the Yee algorithm and the

proposed method. Thus, we first approximate both time and spatial derivatives in

the 1-D TM mode Maxwell’s equations (given in (4.2)) using second-order centered

differences without explicitly discretizing the time variable. Rearranging the terms,
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the update equations become [110–115]

Ez (i, t) = Ez (i, t− τ) +
τ

ǫ∆x

[

Hy

(

i+
1

2
, t− τ

2

)

−Hy

(

i− 1

2
, t− τ

2

)]

,

Hy

(

i+
1

2
, t− τ

2

)

= Hy

(

i+
1

2
, t− 3τ

2

)

+
τ

µ∆x
[Ez (i+ 1, t− τ)−Ez (i, t− τ)] ,

(4.15)

where τ (the temporal step size) is an analog variable and the time variable t is con-

tinuous. The updating of Ez and Hy are staggered in the time dimension by τ/2.

The stability condition for the Yee algorithm with second-order temporal differences

is ∆T ≤ ∆x
c

[32, 34, 41, 42]; the same condition applies to the proposed analog com-

puting method, i.e., τ ≤ τmax = ∆x
c
. The application of the Laplace transformation

on (4.15) leads to

Ēz (i, s) = Ēz (i, s) e
−sτ +

τ

ǫ∆x

[

H̄y

(

i+
1

2
, s

)

− H̄y

(

i− 1

2
, s

)]

e
−sτ
2 ,

H̄y

(

i+
1

2
, s

)

e
−sτ
2 = H̄y

(

i+
1

2
, s

)

e
−3sτ

2 +
τ

µ∆x

[
Ēz (i+ 1, s)− Ēz (i, s)

]
e−sτ .

(4.16)

Similarly, the magnetic field update equation in (4.16) can be expressed as

H̄y

(

i+
1

2
, s

)

= H̄y

(

i+
1

2
, s

)

e−sτ +
τ

µ∆x

[
Ēz (i+ 1, s)− Ēz (i, s)

]
e

−sτ
2 .

(4.17)

The resulting CT update equations (the electric and magnetic field update equations

given in (4.16) and (4.17), respectively) are used to design analog circuits that can

compute CT solutions to Maxwell’s equations.

4.2.1 Circuit Theory

Two separate modules need to be implemented based on the two update equations:

one produces the electric field at integer spatial points, while the other produces the

magnetic field at the half spatial grid points. Fig. 4.5(a) shows the analog circuit
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Figure 4.5: (a) The electric and magnetic field-based internal analog modules for
solving Maxwell’s equations using APDA method. (b) The systolic array architec-
ture of the interconnected internal modules.

architectures for these modules. Consider the circuit on the left-hand side, which

is the electric field IM that computes the solution Ez. It is fed by the outputs of

magnetic field IMs at the neighboring spatial points (i − 1
2
and i + 1

2
). It includes

two continuous-time delays of value τ/2, each of which has the Laplace domain

representation e−sτ/2. It has been shown that the continuous-time delay e−sτ can

be approximated as
[
1− sτ

2m

1+ sτ
2m

]m

with an accuracy that increases with m. Accurate

time delays can be realized using a cascade of m > 1 APFs (m = 3 is required

to approximate a true delay within 1% error) [110–116]. Thus, the delay τ/2 is

approximated as e−sτ/2 ≈ φ(s), where φ(s) =
(

1−sτ/12
1+sτ/12

)3

is a third-order APF
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with a group delay of τ/2 (i.e., three cascaded first order systems each having an

individual group delay of τ/6). In addition, the same APF φ(s) is used to delay the

adjacent magnetic fields by τ
2
in time before they are fed into the electric field IM.

A delay of τ is obtained by cascading two such APFs, as shown in Fig. 4.5(a), while

summing and scaling operations are implemented using an op-amp. The magnetic

field module that computes the solution forHy can be designed by following the same

procedure, and is shown on the right-hand side of Fig. 4.5(a). The complete solution

of Maxwell’s equations over the whole spatial domain is computed by interconnecting

the IMs in a systolic array architecture as shown in Fig. 4.5(b). Note that this

procedure is equivalent to a digital FDTD implementation, but with the unit time

delays ∆T replaced by analog APFs that provide a group delay of τ .

Different boundary conditions can be simulated by modeling the governing equa-

tion at the boundary. A PEC at the right boundary can be simulated by grounding

the Ez(i+ 1, t− τ
2
) input of the magnetic field IM at spatial point i = Nx − 1

2
such

that the simulation grid ends with an electric boundary at at i = Nx. Similarly, a

PMC can be simulated by grounding the Hy(i+ 1, t− τ
2
) input of the electric field

IM at spatial point i = (Nx − 1) such that the simulation grid ends with a magnetic

boundary at i = Nx− 1
2
. In order to realize a radiation boundary condition, we con-

sider the Mur boundary condition given in (4.10). The approximation of the spatial

and temporal derivatives using the second-order centered differences at spatial point

i =
(
Nx − 1

2

)
(just inside the boundary) and time t− τ

2
leads to

Ez

(

Nx −
1

2
, t

)

− Ez

(

Nx −
1

2
, t− τ

)

+K
[

Ez

(

Nx, t−
τ

2

)

− Ez

(

Nx − 1, t− τ

2

)]

= 0,

(4.18)

where K = cτ
∆x

≤ 1 [32, 34, 41, 42]. However, we do not define the electric field at

half space-time points. Thus, a simple average, which is based on the electric fields

at adjacent integer spacial points, is employed to approximate each term, such that
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Figure 4.6: Ideal simulation results obtained from the APDA Maxwell’s equations
solver (left: 3-D view, right: top view): (a) the electric field Ez and (b) the magnetic
field Hy. The right boundary was simulated as a PEC, while the left boundary was
excited using a GMC electric field at 50 MHz. The deviation of the continuous-time
solution compared to the FDTD numerical solution (MSD and γ) for (c) the electric
field, and (d) the magnetic field.
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Ez

(
Nx − 1

2
, t
)
= Ez(Nx,t)+Ez(Nx−1,t)

2
. The resulting update equation is

Ez (Nx, t) = Ez (Nx − 1, t− τ) +

[
1−K

1 +K

]

[Ez (Nx, t− τ)− Ez (Nx − 1, t)] .

(4.19)

The application of the LT on (4.19) leads to

Ēz (Nx, s) = Ēz (Nx − 1, s) e−sτ +

[
1−K

1 +K

]
[
Ēz (Nx, s) e

−sτ − Ēz (Nx − 1, s)
]
.

(4.20)

The corresponding radiation boundary module can be realized using an architecture

similar to the electric field IM shown in Fig. 4.5 (a).

4.2.2 Ideal Cadence Simulations and Comparative Analysis

The proposed APDA-based AC that solves Maxwell’s equations was simulated using

ideal circuit elements in Cadence Spectre. The IMs use active APFs realized as a

cascade of three first-order sections [121]. A spatial grid of 65 points (including

half spatial points) was selected for the simulation, with the left (i = 0) and right

(i = Nx) boundaries defined using electric fields. The maximum frequency fmax

was selected as 100 MHz, while the spatial step size ∆x = λmin

10
was similar to the

CTLD-based simulation. Moreover, τ = 318 ps was used to satisfy the stability

condition τ ≤ τmax = ∆x
c
, resulting in a group delay of τ/2 = 159 ps for each APF.

Note that in our simulations, ∆x = 0.3 m. Thus, τmax = 1000 ps.

Figs. 4.6(a) and (b) show the spatio-temporal variation of the electric and mag-

netic field solutions when a GMC electric field with a center frequency of 50 MHz

(identical to that used in the CTLD-based simulations) is applied to the left bound-

ary, while a PEC condition is applied to the right boundary. Figs. 4.6(c) and (d) use

MSD and γ to quantify deviations between the APDA-based simulation results and

those from standard FDTD simulations. Fig. 4.7 shows the corresponding results
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Figure 4.7: Ideal simulation results obtained from the APDA Maxwell’s equations
solver (left: 3-D view, right: top view): (a) the electric field Ez and (b) the magnetic
field Hy. The right boundary was simulated as a radiation boundary, while the left
boundary was excited using a GMC electric field at 50 MHz. The deviation of the
continuous-time solution compared to the FDTD numerical solution (MSD and γ)
for (c) the electric field, and (d) the magnetic field.
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when the right boundary is simulated as a radiation boundary. The proposed APDA

method is able to compute the solutions of Maxwell’s equations with a difference

less than −19 dB in terms of γ (assuming ideal circuit models).
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CHAPTER 5

CONTINUOUS-TIME SOLUTION OF WAVE EQUATION

This chapter extends the CTLD and APDA algorithms towards designing ACs for

solving the wave equation. 1-D and 2-D wave equations are considered. The ACs

have been simulated using ideal circuits for different wave propagation scenarios

and boundary conditions. The accuracy of their performances are estimated by

comparing with the standard FDTD solutions. Electromagnetic wave propagation

is described using the wave equation, which can be easily derived from the source-

free Maxwell’s equations given in (4.1). Since the field vectors E and H satisfy

the same wave equation, a simplified analog circuit model can be used to compute

the corresponding CT solution. In particular, consider the 1-D version, which has

one spatial variable and the time variable t. If the function Ez (x, t) represents the

electric field intensity of a propagating wave at position x and time t, then Ez (x, t)

satisfies the PDE [119, 120]

1

c2
∂2Ez (x, t)

∂t2
=

∂2Ez (x, t)

∂x2
. (5.1)

Consider a spatial domain 0 ≤ x ≤ Lx, which is discretized into Nx + 1 spatial

points, where ∆x = Lx

Nx
is the spatial step size. The electric field Ez is defined only

at integer grid points i (i ∈ {0, 1, 2, . . . , Nx}) and we do not need to define any

variable at half grid points as the Maxwell’s equation solver. Fig. 5.1 shows the

spatial grid of the analog wave equation solver.

5.1 CTLD Method for Solving Wave Equation

Application of the finite difference approximation along the spatial dimension, fol-

lowed by LT along the time dimension (i.e., the CTLD method) on (5.1), leads to a
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Figure 5.1: The space-time domain of the wave equation solver.

SDTC update equation [29–31, 106–109]

Ēz (i, s) =
Ēz (i+ 1, s) + Ēz (i− 1, s)

2 (As2 + 1)
, (5.2)

where A = ∆x2

2c2
and spatial derivatives have been approximated using second-order

centered differences [34]. Also, zero initial conditions are considered for the LT. Con-

sider the IM that computes the solution Ez (i, t) at spatial grid point i. According

to (5.2), the IM is fed by its neighboring solutions Ez (i− 1, t) and Ez (i+ 1, t). The

summation operation in the numerator of the update equation can be realized using

an op-amp, while the 1
As2+1

operation can be realized using a series inductor (L) and

capacitor (C). Fig. 5.2(a) shows an analog implementation of the IM that results

in A = LC. The Sallen-Key technique [118] or the Bruton transformation [106,107]

can be used to simplify this circuit by replacing the LC network with an equivalent

active network [109]. Such a network can also be easily tuned, thus allowing A to be

changed between IMs to simulate inhomogeneous media. Finally, the continuous-
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Figure 5.2: (a) An analog circuit that can be used as the internal module (IM) of the
1-D wave equation solver. (b) Systolic array architecture to compute the solution
of the 1-D wave equation.

time solution over the whole spatial domain can be computed by interconnecting

the IMs in a systolic array architecture, as shown in Fig. 5.2(b). However, note that

the output of each IM is measured across the capacitor and so must be buffered

before feeding the neighboring IMs.

At each boundary (i = 0 and i = Nx), different computing modules need to be

implemented. For the proposed analog wave equation solver, we consider three dif-

ferent boundary modules, which are based on the Dirichlet, Neumann, and radiation

boundary conditions. Consider the left boundary (i = 0). Since the Dirichlet con-

dition specifies the solution Ez(0, t) at the boundary, we do not need any additional

hardware to implement it. In particular, a signal source f(t) can directly excite the

Ez(i − 1, t) input of IM1 (at i = 1) with the desired solution. A hard reflector is a

special case of the Dirichlet boundary condition. As an example, it can be imposed
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Dirichlet, (b) Neumann, and (c) radiation boundaries.

on the right boundary by feeding a DC voltage source (i.e., f(t) = constant) to the

Ez(i+ 1, t) input of IMNx−1 as shown in Fig. 5.3 (a).

The Neumann boundary condition specifies the value of the derivative of the solu-

tion at the boundary. Consider a situation where the field intensity Ez (x, t) satisfies

∂Ez(x,t)
∂x

∣
∣
∣
x=Nx∆x

= 0. Application of the CTLD method on the given Neumann condi-

tion leads to Ēz (Nx + 1, s) = Ēz (Nx − 1, s) . The SDTC update equation at i = Nx

can then be obtained as (by substituting in (5.2)).

Ēz (Nx, s) =
Ēz (Nx − 1, s)

As2 + 1
. (5.3)
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This function can be implemented by connecting the Ez (i+ 1, t) and Ez (i− 1, t)

inputs of an IM to each other as shown in Fig. 5.3 (b).

In order to obtain the SDTC update equation for the radiation boundary con-

dition, consider the following Mur boundary condition [119, 120]

1

c

∂Ez (x, t)

∂t
|x=Nx∆x +

∂Ez (x, t)

∂x
|x=Nx∆x = 0. (5.4)

Application of the CTLD method on (5.4) leads to

Ēz (Nx + 1, s) = Ēz (Nx − 1, s)− 2
∆x

c
sĒz (Nx, s) . (5.5)

Here, a second order centered difference is employed to discretize the spatial domain

partial derivative. The mixed domain expression at i = Nx can then be obtained as

(by substituting in (5.2))

Ēz (Nx, s) =
2Ēz (Nx − 1, s)

(
∆x
c

)2
s2 + 2∆x

c
s+ 2

. (5.6)

The radiation boundary module can be implemented by using a simple passive LRC

circuit as shown in Fig. 5.3 (c) or its active implementation using, e.g., the Sallen-

Key architecture [118]. The input to the module is the solution of the neighboring

internal module IMNx−1. Figs. 5.3 (a-c) show the systolic array architectures when

realizing Dirichlet, Neumann, and radiation boundary conditions, respectively, at

the right boundary of the spatial domain.

5.1.1 Transfer Functions of the Analog Computer

In this section, the s-domain transfer functions of the AC that solves 1-D wave

equation were obtained for each of the outputs, where input Ez (0, t) was applied

at x = 0. The resulting transfer functions can be used to analyze the stability

of the AC. Consider a 1-D wave equation solver with seven spatial points (i. e.
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Figure 5.4: Signal flow graph of the analog 1-D wave equation solver when Nx = 6.

Nx = 6 and i = 0, 1, 2, 3, 4, 5, 6). Spatial points i = 0 and i = 6 are the left

and right boundaries, respectively. The left boundary is excited using a voltage

source Ez (0, t) and the right boundary is fixed at zero voltage (Dirichlet boundary

condition). The signal flow graph of the analog solver is shown in Fig. 5.4. Here,

H̄ (s) = 1
2(As2+1)

, which is derived based on the update equation given in (5.2). The

summation of the numerator is separated and represented using an adder in the

figure. For the following calculations, A is selected as 1. Ēz (0, s) is the Laplace

domain representation of the input Ez (0, t). The input-output relationships (s-

domain transfer functions) of each output can then be obtained as

Ēz (1, s)

Ēz (0, s)
=

16s8 + 64s6 + 84s4 + 40s2 + 5

2 (s2 + 1) (16s8 + 64s6 + 80s4 + 32s2 + 3)
,

Ēz (2, s)

Ēz (0, s)
=

4s4 + 2s2 + 2

(16s8 + 64s6 + 80s4 + 32s2 + 3)
,

Ēz (3, s)

Ēz (0, s)
=

4s4 + 8s2 + 3

2 (s2 + 1) (16s8 + 64s6 + 80s4 + 32s2 + 3)
,

Ēz (4, s)

Ēz (0, s)
=

1

(16s8 + 64s6 + 80s4 + 32s2 + 3)
,

Ēz (5, s)

Ēz (0, s)
=

1

2 (s2 + 1) (16s8 + 64s6 + 80s4 + 32s2 + 3)
.

(5.7)

When considering the denominator of each expression, it is clear that each of the

individual systems, which correspond to each of the outputs, are stable and realizable

using analog circuits.
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5.1.2 Ideal Cadence Simulations

The proposed AC that solves the wave equation was simulated in Cadence Spectre

using ideal circuit elements. Fig. 5.5 shows the results obtained for a spatial grid

size of 65 (Nx = 64 and i ∈ {0, 1, 2, . . . , 64}). The analog bandwidth Fcompute

of the system was selected as 100 MHz, resulting in a minimum wavelength of

λmin = c
Fcompute

. The spatial step size is then set to ∆x = λmin

10
. The left boundary is

excited using a GMC field at 50 MHz (the same function used in earlier simulations).

Fig. 5.5(a) shows the spatio-temporal results obtained when the right boundary is

fixed at zero (thus implementing a hard boundary) by grounding the Ez (i+ 1, t)

input of IM63. Both a 3-D view (left) and the top view (right) of the results are

shown. Similarly, Figs. 5.5(b) and (c) show the results obtained with Neumann and

radiation boundaries at the right boundary, respectively.

Figs. 5.6(a)-(c) compare the simulation errors of the three scenarios shown in

Figs. 5.5(a) - (c), respectively. The proposed CTLD-based AC is capable of com-

puting the 1-D wave equation with a difference less than −72 dB (defined using γ)

when the circuits are assumed to be ideal.

5.1.3 Analog Computing for Two Media

In order to investigate the behavior of the proposed AC in different media, a situation

with two media (two different wave propagation velocities) is considered. Note that

the wave propagation velocity c of the medium is related with the value A = ∆x2

2c2
of

the internal modules. It can be changed by tuning the capacitor of the LC section

of the IM (see Fig. 5.2(a)). The number of spatial points in the system is selected as

66. Spatial modules from 33 to 64 have half of the wave propagation speed as that of

the spatial modules from 1 to 32 (i.e. internal modules 1 to 32 and 33 to 64 simulate
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Figure 5.5: Simulation results obtained from the CTLD method-based 1-D analog
wave equation solver (left: 3-D view, right: top view). The left boundary is excited
using a GMC field at 50 MHz. The right boundary is realized as (a) a Dirichlet, (b)
a Neumann, and (c) a radiation boundary.

wave propagation velocities c and c/2, respectively). Fig. 5.7 shows the Cadence

results obtained for a Gaussian pulse with the radiation boundary condition at the
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scenarios shown in Figs. 5.5(a)-(c), respectively.

right boundary. The RLC values of the radiation boundary module are modified

such that it accounts the velocity c/2 at the boundary. It is clear in Fig. 5.7 that

72



Spatial index Nx

c c/2

Time (s)

Spat
ial in

dex
Nx

T
im

e
(s
)

Figure 5.7: Behavior of the wave equation solver with two mediums. Cadence results
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right: top view).

the proposed solver is able to provide information of the refraction at the medium

boundary along with the partial refraction.

5.1.4 CT Solution of Damped Wave Equation

Mathematical models that we developed for solving the lossless wave equation can

be extended to lossy mediums. The lossy (damped) wave equation can be expressed

as,

1

c2
∂2Ez (x, t)

∂t2
+ k

∂Ez (x, t)

∂t
=

∂2Ez (x, t)

∂x2
, (5.8)

where k is the damping coefficient of the medium. In general, losses in a medium can

be modeled by a small number of odd-order terms added to the wave equation. Here,

we only consider the simplest case where losses are approximated by a first order

term (the resistive force is directly proportional to transverse velocity). Application

of the direct LT method on (5.8) leads to the following mixed domain transfer
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functions for internal spatial points (with zero initial conditions)

Ēz (i, s) =
Ēz (i+ 1, s) + Ēz (i− 1, s)

∆x2

c2
s2 + k∆x2s+ 2

. (5.9)

The second order centered difference is employed to approximate the spatial partial

derivative. The 1
∆x2

c2
s2+k∆x2s+2

operation can be implemented using a LRC circuit.

Scaling and summing operations can be realized using op-amp circuits.

5.1.5 Higher-Order Approximations

The accuracy of the CT solution can be improved by employing higher order ap-

proximations to the partial derivatives in the spatial dimension. As an example, we

employ the fourth order accurate centered difference to approximate the ∂2Ez

∂x2 term

in (5.1) as

∂2Ez (i, t)

∂x2
≈ 1

12∆x2
[−Ez (i+ 2, t) + 16Ez (i+ 1, t)

−30Ez (i, t) + 16Ez (i− 1, t)− Ez (i− 2, t)] .

(5.10)

We then apply the Laplace transform with respect to the time variable t, which

leads to a mixed domain transfer function

Ēz (i, s) =

1

30 (Ahs2 + 1)

[
−Ēz (i+ 2, s) + 16Ēz (i+ 1, s) +16Ēz (i− 1, s)− Ēz (i− 2, s)

]
,

(5.11)

where Ah = 12∆x2

30c2
. The analog circuit that computes the solution can then be

realized using op-amp circuits. The corresponding boundary modules need to be

designed by approximating the spatial derivatives of the governing equations using

higher order approximations.
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5.1.6 CT Solution of 2-D Wave Equation

The analog computation methods that we developed to compute the CT solution

for the 1-D wave equation can be extended to additional spatial dimensions. The

general form of the 2-D wave equation is

1

c2
∂2Ez (x, y, t)

∂t2
=

∂2Ez (x, y, t)

∂x2
+

∂2Ez (x, y, t)

∂y2
, (5.12)

which describes the field intensity Ez (x, y, t) of a propagating wave at position (x, y)

and time t. A rectangular 2-D spatial domain is considered, where 0 ≤ x ≤ Lx

and 0 ≤ y ≤ Ly. The spatial domain is first discretized into Nx + 1 and Ny + 1

spatial points along the x and y directions, respectively; the corresponding spatial

step sizes are ∆x = Lx

Nx
and ∆y = Ly

Ny
. The spatial indexes i = 0, 1, 2, ..., Nx and

j = 0, 1, 2, ..., Ny represent the x and y directions, respectively. For simplicity, we

consider the case where ∆x = ∆y = ∆d and apply the CTLD method to find a

continuous-time solution. Applying finite differences to the spatial derivatives along

both x and y, followed by the LT along t, leads to

Ēz (i, j, s) =
1

4 (A2Ds2 + 1)

[
Ēz (i+ 1, j, s) + Ēz (i− 1, j, s)

+Ēz (i, j + 1, s) + Ēz (i, j − 1, s)
]
,

(5.13)
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Figure 5.9: Simulation results obtained from the 2-D analog wave equation solver
realized using the CTLD method. The spatial point (17,17) is excited using a GMC
field at 50 MHz, while the four boundaries are fixed at zero.

where A2D = ∆d2

4c2
, zero initial conditions are considered for the LT, and both spatial

derivatives are approximated using second-order centered differences. The 1
A2Ds2+1

operation can be implemented using a LC circuit that can be made tunable in order
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to simulate inhomogeneous media, while scaling and summing operations can again

be realized using op-amps. Fig. 5.8 shows an analog circuit that can be used to solve

(5.13) at internal spatial points. This IM is fed by the electric field solutions from

the four neighboring modules. The CT 2-D solution to the wave equation can now

be computed over the whole spatial grid by interconnecting IMs in a 2-D systolic

array architecture.

As an example, a spatial grid of 35 × 35 spatial points (Nx = 34 and Ny = 34)

was used to simulate the AC that computes the 2-D analog wave equation (using

ideal circuit components). The boundaries were fixed at zero by grounding the

corresponding inputs of IMs located just inside the boundary. A GMC electric field

at 50 MHz is used to excite the (17, 17) spatial point. Fig.5.9 shows the intensity

patterns obtained in the x-y spatial domain at different times (time increases from

(a) to (f)). Figs. 5.10 (a) and (b) show the corresponding comparison results (MSDi

and γi, respectively). The proposed AC is capable of computing the solution with

a difference less than −60 dB (as defined using the comparison metric γ) when the

circuits are assumed to be ideal.
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Two example simulations of the AC are recorded as time varying signals. Cap-

tured data is used to create videos that show the wave propagation in the 2-D

space-time domain. Followings are brief descriptions of each of the simulation se-

tups along with the links to the videos.

Example 1: Spatial grid with 33 × 33 elements (Nx = 32 and Ny = 32)

is selected for the simulation. Gaussian pulse is applied to i = 16, j =

16 spatial point. All boundaries are fixed at zero. Link to the video:

https://www.dropbox.com/s/zcbke3zfp4t6yac/Video 1.mov?dl=0

Example 2: Spatial grid with 32 × 16 elements (Nx = 31 and Ny = 15) is se-

lected for the simulation, where i = 0, 1, 2, ..., Nx and j = 0, 1, 2, ..., Ny. Gaus-

sian pulse is applied to left boundary. Right boundary is simulated as a open

boundary. All other boundaries are simulated as soft reflectors. Link to the video:

https://www.dropbox.com/s/prk9uds3bna8fwi/Video 2.mov?dl=0

5.2 APDA Method for Solving Wave Equation

The APDA method can also be employed to obtain a mathematical model that

can solve the 1-D wave equation in the CT domain. Approximating both spatial

and time derivatives in (5.1) using the second order centered finite differences (while

keeping the time variable continuous) and applying the LT along the time dimension

(with zero initial conditions) lead to

Ēz (i, s) = K2
[
Ēz (i+ 1, s) + Ēz (i− 1, s)

]
e−τs

+ 2
(
1−K2

)
Ēz (i, s) e

−τs − Ēz (i, s) e
−2τs,

(5.14)

where K = cτ
∆x

≤ 1. The resulted mixed domain transfer function is used to realize

the internal analog module that computes the solution for internal locations. The

Laplace domain representation e−sτ is approximated using an all-pass filter φ′(s)
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Figure 5.11: The analog circuit for realizing the internal module of the 1-D wave
equation solver for the all-pass filter method.

with a group delay of τ . The analog circuit architecture of the all-pass filter-based

IM is shown in Fig. 5.11. The complete CT solution to the 1-D wave equation

(over the whole spatial grid) is obtained by interconnecting IMs in an analog array

architecture.

A fixed boundary at i = Nx can be simulated by fixing the Ez (i+ 1, t− τ)

input of the IM at spatial point i = Nx − 1. A Neumann boundary at i = Nx

can be simulated by connecting the two inputs to the IM at i = Nx (as similar to

the CTLD method [29, 31]). Consider the radiation boundary condition given in

(5.4). The application of the centered finite differences on both spatial and time

dimensions and Laplace transformation along the time dimension lead to

KĒz (Nx + 1, s) e−τs = KĒz (Nx − 1, s) e−τs − Ēz (Nx, s) + Ēz (Nx, s) e
−2τs.

(5.15)
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By substituting the resulting expression in (5.14), the mixed domain transfer

function for the radiation boundary at i = Nx can be obtained as

(1 +K) Ēz (Nx, s) = 2
(
1−K2

)
Ēz (Nx, s) e

−τs

+ (K − 1) Ēz (Nx, s) e
−2τs + 2K2Ēz (Nx − 1, s) e−τs.

(5.16)

The corresponding radiation boundary module can be realized using an architecture

similar to the IM shown in Fig. 5.11. However, the radiation boundary module only

requires the input Ez (i− 1, t) for the computation.

5.2.1 Ideal Cadence Simulations

The APDA-based AC that solves the wave equation was simulated using ideal cir-

cuit elements. The analog bandwidth Fcompute was selected as 100 MHz, and the

spatial step size ∆x = λmin

10
. The group delay of the APF τ was 1.59 ns, and the

temporal step size ∆T of the FDTD simulation (used for comparison purposes) was

also selected as 1.59 ns. Figs. 5.12(a)-(c) show the spatio-temporal solutions ob-

tained from the proposed analog wave equation solver for a GMC excitation at the

left boundary when the right boundary is set to Dirichlet, Neumann, or radiation

boundary conditions, respectively. Fig. 5.13 shows how much the obtained results

deviate from the standard FDTD simulations in terms of both MSDi and γi. The

proposed APDA method is able to compute the solution of the 1-D wave equation

with a difference less than −24 dB (as defined using γ) when the circuits are assumed

to be ideal.

5.3 CTLD Method vs APDA Method

Based on the comparison results of the proposed analog solvers (MSD and γ), it

is clear that the CTLD method is more accurate than the APDA method for all
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Figure 5.12: Ideal simulation results obtained from the APDA-based 1-D analog
wave equation solver (left: 3-D view, right: top view). The left boundary is excited
using a GMC field at 50 MHz, while the right boundary is simulated as (a) a
Dirichlet, (b) a Neumann, and (c) a radiation boundary.

simulation scenarios. However, note that the performance of APDA-based solvers is

mainly limited by the ability of the APFs to provide accurate gain and group delay at
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Figure 5.13: Comparison results (MSDi and γi) correspond to the three simulation
scenarios shown in Figs. 5.12(a) - (c), respectively.

higher frequencies. Thus, we can improve the performance of APDA solvers by using

higher-order APFs to approximate continuous-time delays instead of the third-order
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ones used in this dissertation. The APDA method also approximates both time and

spatial domain derivatives using finite differences, whereas the CTLD method only

discretizes the spatial variable to compute the continuous-time solution; this also

influences the relative accuracy of the two classes of solvers. However, note that the

APDA method is a direct mapping from an FDTD scheme in which we replace the

unit time delays with analog APFs. Thus, the design phase of the APDA method

is less complex than the CTLD method, even with different boundary conditions.

Furthermore, the APDA method provides a more convenient way to compensate

for the propagation delays introduced by practical circuit elements. Thus, it is

more suitable for higher-bandwidth implementations for which these delays become

more significant. The APDA method is also more general since it can also be

used to solve non-linear PDEs, for which deriving a CTLD-based architecture is

generally difficult.
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CHAPTER 6

CONTINUOUS-TIME ALGORITHMS FOR SOLVING NONLINEAR

CONSERVATIVE PDES

Nonlinear PDEs describe the behavior of a wide variety of complex physical phe-

nomena with applications in fluid mechanics, electromagnetics, quantum mechanics,

magnetohydrodynamics, etc. In this chapter, a CT mathematical model, which is

suitable for designing analog circuits is proposed to solve non-linear coupled PDEs.

The proposed model is an extension of the APDA method. Note that the APDA

method is derived based on a standard FDTD method [110–115]. Thus, the in-

vestigation starts with an existing discrete-time discrete-space numerical method,

which is capable of solving coupled non-linear PDEs. Such methods include standard

and improved MacCormack’s schemes, Lax-Wendroff scheme, and projective Riccati

equation method [32,117,122,123]. The proposed CT mathematical model is based

on the standard MacCormack’s numerical scheme. The discrete-time delay opera-

tors in the MacCormack’s update equations are replaced with CT delays to obtain

SDTC update equations that can be solved using analog computing methods. The

CT delay is approximated using an analog all-pass filter (APF) [29–31,109–111,116].

Also, analog multipliers are used to realize the nonlinear terms in the PDEs, while

other numerical operations in the update equations (e.g., scaling and summing) are

realized using op-amps. The proposed architecture solves SDTC update equations

simultaneously at each spatial grid point.

Note that this dissertation is only limited to the mathematical models of the

non-linear PDE solver. Analog circuit implementations and simulation results are

beyond the scope of this dissertation.

Developing a general-purpose analog computation platform that can solve all

different types of nonlinear PDEs is an impossible task since even a fully-discrete
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numerical method can only solve a specific class of nonlinear PDEs. Thus, the

proposed analog computing architecture only considers conservative systems (an

important class of physical systems with various real-world applications) that de-

scribe the variation of conserved physical quantities such as mass, velocity, energy,

and density. Examples of conservative systems include electromagnetics, magneto-

hydrodynamics, optics, aerodynamics, plasma physics, etc. Furthermore, most of

the hyperbolic PDEs, which have a variety of applications such as Maxwell’s equa-

tions and shock tubes can be expressed in the conservative form. Multidimensional

systems of non-linear conservation laws can be expressed as a system of coupled

PDEs in the conservative or divergent form (flux-conservative form). In this for-

mulation of physical law, the coefficient of the derivatives are either constant or, if

variable, their derivatives do not appear anywhere in the equation [117]. In multi-

dimensions, the conservative form of the non-linear PDEs can be expressed as

∂Φ

∂t
+∇ · f(Φ) = h(Φ), (6.1)

where f and h are the flux and the source terms of the conserved quantity Φ,

respectively. Here,

Φ =












u1 (x, y, z, t)

u2 (x, y, z, t)

...

un (x, y, z, t)












, f(Φ) =












f1 (Φ)

f2 (Φ)

...

fn (Φ)












, h(Φ) =












h1 (Φ)

h2 (Φ)

...

hn (Φ)












.

In this chapter, the dependent variables of the PDEs are represented using lowercase

letters because it is a common practice in the nonlinear computational community.

In particular, the derived mathematical model only considers a one-dimensional

(1-D) system (space x and time t) with two conservative variables u1(x, t) and
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u2(x, t). Thus, f , h, and Φ terms can be expressed as

Φ =




u1 (x, t)

u2 (x, t)



 , f(Φ) =




f1 (Φ)

f2 (Φ)



 , h(Φ) =




h1 (Φ)

h2 (Φ)



 .

6.1 Continuous-time Mathematical Model

In order to obtain a SDTC update equation, the system of coupled PDEs given

in (6.1) is first discretized into Nx + 1 spatial points while keeping the time vari-

able continuous, where ∆x = Lx

Nx
is the spatial step size. Here, the 1-D spatial

domain is defined as 0 ≤ x ≤ Lx. Then, the variables (solutions of the PDEs)

u1(i, t) = u1(i∆x, t) and u2(i, t) = u2(i∆x, t) describe the variation of the conser-

vative quantities at x = i∆x (i ∈ {0, 1, . . . , Nx}). The spatial indexes i = 0 and

i = Nx define the left and right boundaries, respectively. The next step is to select

a numerical method which is capable of solving nonlinear PDEs defined by the con-

servative form. The most suitable numerical scheme to solve a particular problem

depends on its vortex structure and may also vary from application to application.

For example, some may require low order numerical schemes to reduce dissipation

of the solution along the spatial dimension. Most of these algorithms are variations

of the Lax–Wendroff scheme [124–126].

Here, the MacCormack numerical method, which is a second-order accurate

scheme in both space and time is selected [124–126]. This method only consists

of two computational steps. Fourth-order accurate schemes, such as the ones pro-

posed in [127] and [128], are more accurate than the selected method. However,

these methods dramatically increase the hardware complexity of the analog solvers

compared to a two-step method. Moreover, the implicit numerical scheme proposed

in [127] is not suited for analog circuit models since it results in tridiagonal matrices.
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Thus, it is advantageous to use a two-step explicit scheme that trades off accuracy

for less complexity.

The update equations of standard numerical methods are discretized both in

space and time. However, the proposed method keeps the time variable t continuous

to compute the solution using analog circuits. Let Φt
i =






u1 (i, t)

u2 (i, t)




, f ti =






f1 (Φ
t
i)

f2 (Φ
t
i)




,

and ht

i
=






h1 (Φ
t
i)

h2 (Φ
t
i)




. Here, the nonlinear functions f1, f2, h1, and h2 are in a partic-

ular form. Consider f1(u1, u2) as an example,

f1 (u1, u2) =

N1∑

k1=0

N2∑

k2=0

αk1,k2u
k1
1 uk2

2 (6.2)

where αk1,k2 is the gain associated with the nonlinear term uk1
1 uk2

2 . The predictor and

corrector steps of the continuous-time scheme can be derived using the MacCormack

scheme. The corresponding equations are expressed as [124–126]

Φp
i = Φt−τ

i − τ

∆x

(
f t−τ
i − f t−τ

i−1

)
+ τht−τ

i ,

Φc
i = Φt−τ

i − τ

∆x

(
fpi+1 − fpi

)
+ τhp

i ,

(6.3)

where superscripts p and c refer to the predictor and corrector steps, respectively.

The superscript t− τ corresponds to a τ -delayed version of the operator, where τ is

a continuous-time delay operator of the numerical scheme. Then the conservative

quantity Φt
i at internal spatial points i ∈ {1, 2, . . . , Nx − 1} and time t, is computed

using the predictor and corrector values as [124–126]

Φt
i =

1

2
[Φp

i +Φc
i ] . (6.4)

The SDTC update equations given in (6.3) and (6.4) are then used to design

an analog module that computes the solution for internal spatial points (i.e.

i ∈ {1, 2, . . . , Nx − 1}). Note that each of the expressions is discrete in space and
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continuous in time, such that they can be computed using analog computing meth-

ods. For each of the boundaries (i = 0 and i = Nx), different SDTC update

equations need to be developed based on the corresponding boundary conditions

and the FDTD scheme, which can then be used to design suitable analog circuits.

6.2 APDA Method for Solving Nonlinear PDEs

Consider the SDTC equations given in (6.3) and (6.4) which eventually solve prob-

lems governed by the conservation laws. Each equation involves addition, subtrac-

tion and scalar multiplications to compute the update equations. The nonlinear

terms inside f and h operators (such as u1 (i, t)
2 and u1 (i, t) u2 (i, t)) demand multi-

plications. Apart from these arithmetic operations, a CT delay operator is required

to produce the τ -delayed version of Φt
i. In the APDA method, a CT delay τ ,

which has a Laplace domain representation e−sτ , is approximated using an ana-

log APF φ(s). It has been shown that the CT delay e−sτ can be approximated

as φ(s) ≈
[
1− sτ

2m

1+ sτ
2m

]m

with an accuracy that increases with m. Thus, accurate time

delays can be realized using a cascade of m > 1 APFs (m = 3 is sufficient in most

cases) [112–116]. It is clear that the proposed analog nonlinear PDE solver requires

only analog adders/subtractors, programmable-gain amplifiers (PGAs), APFs, and

multipliers as its building blocks, all of which can be realized in integrated circuit

form. Also note that the APDA method is a direct mapping from an FDTD scheme

in which we replace the unit time delays with analog APFs. All other operations

are realized using analog circuits.
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Figure 6.1: The proposed analog computing architecture that solves nonlinear PDEs
defined by conservative systems.

6.3 Analog Computing Architecture

The conservative quantity Φt
i given in (6.4) is computed based on a systematic

calculation (using (6.3)), which can directly map into an analog circuit architecture.

Fig. 6.1(a) shows a signal flow graph of the proposed analog computing architecture.

Note that each signal path represents a vector of values. Consider the internal

module IMi that computes the CT solution of the nonlinear PDE at x = i∆x. The

output of subsystem Φ, which produces Φt
i, is delayed using an analog APF φ(s)

prior to feeding the f and h subsystems. The APF also produces the output of the

internal module (IM). Note that the subsystem Φ computes the corrector step given

in (6.3) (i.e. Φc
i) and (6.4), simultaneously, whereas the predictor subsystem only

computes the first equation in (6.3). The input vector αi contains all parameters

needed to calculate the coefficients of f and h at x = i∆x (i.e. the αk1,k2 values
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Figure 6.2: Block diagrams of analog circuits for realizing the computations (a)
f1 (u1, u2) and (b) Φp

i .

in (6.2)). Flux operators f t−τ
i−1 and f p

i+1 are fed by the neighboring IMs at x =

(i − 1)∆x and x = (i + 1)∆x, respectively. Similarly, output flux operators f t−τ
i

and fpi feed the neighboring modules to produce their outputs. Note that this

systematic architecture does not vary from problem to problem. Functions f (Φ)

and h (Φ) totally define the problem and introduce non-linearity to the system. In

the proposed architecture, we limit the non-linearities in f (Φ) and h (Φ) to contain

only u2
1, u

2
2, and u1u2 terms (non-linearities of order 2). Consider a system with f

and h functions, which can be expressed in the following form (f1 (u1, u2) is given

here)

f1 (u1, u2) =α1,0 u1 + α2,0 u2
1 + α0,1 u2 + α0,2 u2

2 + α1,1 u1u2. (6.5)
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Fig. 6.2(a) shows a block diagram of an analog circuit that realizes the computation

of f1 (u1, u2). Here, the multiplication operation is realized using analog multipliers.

Input vector αi is used to program the gains of the PGAs. Normalization of a given

system limits the αk1,k2 values to be in the range of [−1, 1], which can be imple-

mented using PGAs (which should support negative gains). Thus, the realization of

analog circuits to compute f1 (u1, u2) , f2 (u1, u2) , h1 (u1, u2) , and h2 (u1, u2) involves

multipliers, op-amps and PGAs. Fig. 6.2(b) shows the analog circuit architecture

that implements the predictor subsystem, which uses op-amps. Similarly, we can

implement a circuit for subsystem Φ. The resulting internal analog modules are

finally interconnected in a systolic array architecture to compute the solution over

the whole spatial grid (as shown in Fig. 6.1). Here, internal modules calculate the

solution at each spatial point simultaneously. For each boundary (i = 0 and i = Nx)

different boundary modules (BMs) need to be implemented based on the governing

equations at the boundaries and the corresponding FDTD scheme.

6.4 Example Systems

Two example physical systems that can be solved using the proposed CT computa-

tional model are briefly introduced below.
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6.4.1 Acoustic Shocks in a Shock Tube

In compressible gas dynamics, shock tube problems are realistic as they portray a

converging diverging nozzle modeled after the inlet of a jet engine. Here, we focus

our attention to acoustic shocks. Consider a flow of sound waves propagating in

a shock tube (variable area duct) with length L as shown in Fig. 6.3, where A (x)

represents the geometry of the shock tube. The acoustic waves are generated by

an incident plane wave on the left of the duct and leave the right end without

reflecting. The total flow field is governed by the following equations (which are in

the conservative form):

∂ρ̄

∂t
+

∂ρ̄ū

∂x
= −ρ̄ū

A′ (x)

A (x)
,

∂ū

∂t
+

∂
(

ū2

2
+ γ

γ−1
c2ρ̄γ−1

)

∂x
= 0. (6.6)

Here, the dependent variables ρ̄ and ū are the total density and velocity, respectively.

Corresponding acoustic equations are obtained by splitting the variables into two

parts: mean flow variable and acoustic flow variable. In order to partition the flow

quantities into mean and acoustic parts, consider the following substitution for the

flow variables

ū = us + u, ρ̄ = ρs + ρ, (6.7)

where subscript s denotes the mean values (which are known) and they are as-

sumed to satisfy the steady state condition. We can then rearrange Eq. 6.6 in the

conservative form given in Eq. 6.1

∂ρ

∂t
+

∂ (usρ+ ρsu+ uρ)

∂x
= − (usρ+ ρsu+ uρ)

A′ (x)

A (x)
,

∂u

∂t
+

∂

[

usu+ u2

2
+ c2

(

ρ
ρs

+ γ−2
γ

(
ρ
ρs

)2
)]

∂x
= 0,

(6.8)
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and the vectors f (Φ) and h (Φ) can be expressed as

f(Φ) =






usρ+ ρsu+ uρ

usu+ u2

2
+ c2

(

ρ
ρs

+ γ−2
γ

(
ρ
ρs

)2
)




 h(Φ) =






− (usρ+ ρsu+ uρ) A′(x)
A(x)

0




 .

(6.9)

It is clear that the system described by Eqs. 6.8 and 6.9 is in the form that is given

in Eq. 6.1 and can be solved using the proposed continuous-time model.

6.4.2 1-D Wave Equation

Suppose that the function w (x, t) provides the field intensity of a wave at position x

and time t (for the 1-D case). Then, w (x, t) satisfies the following coupled first-order

differential equations,

∂w

∂t
− c

∂v

∂x
= 0,

∂v

∂t
+ c

∂w

∂x
= 0. (6.10)

Thus Φ, f(Φ), and h(Φ) can be obtained as

Φ =






w (x, t)

v (x, t)




 , f(Φ) =






−c v (x, t)

c w (x, t)




 , h(Φ) =






0

0




 . (6.11)

The two variable model described in this chapter can be used to solve this system,

which can be considered as a new approach for solving the 1-D wave equation.

Boundary Condition

The characteristic-based method can be used to obtain boundary conditions. Since

Eq. 6.10 is already in linear PDE form, it can be expressed as [128]

∂Φ

∂t
+






0 − c

c 0






︸ ︷︷ ︸

M

∂Φ

∂x
= 0. (6.12)
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Eigenvalues of the matrix M are λ1 = c and λ2 = −c. Corresponding eigenvectors

are e1 =






1

−1




 and e2 =






1

1




 . Thus, S =






1 1

−1 1




 and v = S−1Φ =






v1

v2




 =






w−v
2

w+v
2




 . Eq. 6.10 can then be expressed as

∂

∂t

(
w + v

2

)

+ c
∂

∂x

(
w + v

2

)

= 0,
∂

∂t

(
w − v

2

)

− c
∂

∂x

(
w − v

2

)

= 0.

(6.13)
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CHAPTER 7

LOW FREQUENCY PROTOTYPE ANALOG COMPUTER FOR

SOLVING THE WAVE EQUATION

In this chapter, the mathematical models and ideal ACs developed in Chap-

ter 5 are extended to a non-ideal analog circuit implementation. Design challenges

that one may face during the implementation phase of the non-ideal analog solver

and their analysis would be beneficial when extending these methods towards the

analog CMOS realizations. A low-frequency prototype AC that solves the 1-D wave

equation has been designed, simulated, and implemented using discrete op-amp ICs.

Active circuit realization techniques have been introduced to implement the passive

LC section of the internal module shown in Fig. 7.1, mainly because of the diffi-

culties in realizing high-quality factor (high-Q) inductors at low frequencies. The

boundary modules are also designed using active circuits. The Bruton transforma-

tion is applied to the LC circuits (internal and boundary modules) to avoid the use

of inductors [31, 106, 107, 129]. This introduces a circuit element called frequency-

dependent negative resistance (FDNR) to the system, which can also be realized

using active circuits (op-amps) [31, 106, 107, 129].

The AD8056 op-amp IC, which uses standard voltage-feedback topology and

has a 300 MHz of -3 dB bandwidth is utilized to design the circuit. SPICE data

of the op-amp circuit is used to simulate the analog solver in the OrCAD PSPICE

software. This allows validating the circuit behavior before building the circuit.

The performance of the op-amp based analog solver is quantified by comparing the

results with a MATLAB FDTD solver. The MSD between the two simulations

(MATLAB-based FDTD and OrCAD PSPICE) and the noise to signal energy ratio

(γ) are used to quantify the accuracy. The OrCAD models are then extended to a
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Figure 7.1: An analog circuit that can be used as the internal module (IM) of the
1-D wave equation solver.

printed circuit board (PCB) level implementation as an experimental verification of

the continuous-time wave equation solver.

7.1 Active Circuit Implementation

The analog bandwidth of the AC, Fcompute, was selected as 250 kHz (minimum

wavelength λmin = c
Fcompute

, where c is the wave speed). The distance between two

spatial points ∆x is set to be λmin

2
. Consider the update equation of the internal

module given in (5.1) (also in Fig. 7.1). The numerator of the update equation is

realized using an op-amp as shown in Fig. 7.1. In Chapter 5, the 1
As2+1

operation was

implemented using an LC circuit (for ideal simulations). However, the realization

of a high-Q inductor at low frequencies is a difficult task. Thus, an op-amp based

active circuit is employed to realize the passive LC circuit. The selection of Fcompute

leads to A = 1
8F2

compute
= 2× 10−12.

Consider the passive LC circuit shown in Fig. 7.2 (a). The Bruton trans-

formation, which involves an impedance scaling of the circuit elements, was uti-

lized to transform the LC section into a circuit that does not require any induc-

tors [31, 106–108, 129, 130]. In the Bruton transformation, a circuit element with
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Figure 7.2: (a) Ideal LC passive circuit. (b) Circuit obtained from the Bruton
transformation (c) Corrosponding FDNR based implementation.

the impedance Z (s) is transformed into a circuit with an impedance Z (s) /s. This

implies

• Inductor transforms to a resistor: Ls → L.

• Resistor transforms to a capacitor: R → R
s
.

• Capacitor transforms to an FDNR: 1
Cs

→ 1
Ds2

.

The impedance transformation does not affect the voltage and current transfers and

provides the original transfer function after the transformation. The elimination

of the inductors in favor of resistors is the key purpose of the Bruton transforma-

tion [31,106–108,129,130]. Thus, the passive LC circuit of the internal module (see

Fig. 7.2(a)) can be replaced by a circuit with a resistor and an FDNR element as

shown in Fig. 7.2(b), which can be realized using op-amps as shown in Fig. 7.2(c).
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Figure 7.3: (a) Block diagram of a general impedance converter. (b-d) Different
configurations (by changing the positions of the two capacitors) for realizing the
FDNR elements.

7.1.1 Frequency Dependent Negative Resistance (FDNR)

The FDNR element has a steady-state impedance of Z(s) = 1
−Dω2 , which implies a

frequency-dependent, negative, real resistance. Here, D is the value of the FDNR

element. Such a circuit can be designed using the general impedance converter

method and realized using active circuits. Fig. 7.3(a) shows the block diagram of

a general impedance converter (GIC). The input impedance of the circuit can then

be expressed as

Z =
Z1Z3Z5

Z2Z4
. (7.1)

By substituting capacitors and resistors at appropriate locations, different types of

impedances can be synthesized. Note that the lower end of the circuit must be

grounded. An FDNR element can be realized by substituting capacitors to two of

the Z1, Z3 and Z5 elements, whereas others are replaced by resistors [106,107]. Thus,

depending on the capacitor placement, there are three different configurations to the

FDNR element, as shown in Fig. 7.3 (b-d). Each configuration consists of two op-
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FDNR-based (using op-amps)

Ideal passive element-based

Figure 7.4: Frequency response comparison between the ideal and FDNR-based
circuits.

amps, two capacitors, and three resistors. In theory, there is no difference between

the three configurations. However, configuration A is the only circuit that provides

a return path for the amplifier bias currents. Thus, configuration A is utilized to

implement the analog 1-D wave equation solver. Here, the value D of the FDNR

element (which has an impedance Z(s) = 1
−Dω2 ) can be expressed as [106, 107]

D =
C1R2C3R4

R5
. (7.2)

Fig. 7.4 compares the frequency responses of the non-ideal FDNR element-based

circuit (which is based on op-amps) with the passive LC circuit that is implemented

using an ideal inductor and a capacitor. AD8056 op-amp is used to implement the

FDNR elements. Z1 and Z3 capacitor values are selected as 10 nC. Resistor values

Z2 = 100 Ω, Z4 = 100 Ω, and Z5 = 50 Ω are used to obtain the appropriate A value.

The FDNR-based circuit provides a better approximation to the ideal LC circuit.
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Figure 7.5: FDNR element based implementation of the internal module of the low
frequency 1-D wave equation solver.

7.1.2 Analog Computing Modules

Fig. 7.5 shows the complete circuit of the internal module which is realized using

the Bruton transform and FDNR elements. The output of the internal module is

buffered prior to feeding the adjacent elements. Here, a unity gain buffer is realized

using the same op-amp as shown in Fig 7.5. Thus, four op-amps are required

to realize the internal module of the low-frequency analog wave equation solver.

The following subsection describes the procedure for implementing the radiation

boundary module using FDNR elements.

The radiation boundary module (RBM) can be implemented using an LRC cir-

cuit as shown in Fig. 7.6 (a). In order to eliminate the use of the inductor, we apply

the Bruton transformation to the LRC circuit and the resulting circuit is shown in

Fig. 7.6(b) [31,106–108,129,130]. Here, the circuit consists of a capacitor, a resistor,

and an FDNR element as shown in Fig. 7.6(c). Fig. 7.6(d) compares the frequency

responses of the ideal LRC circuit and the non-ideal FDNR-based RBM circuit,

which shows a good approximation.
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Figure 7.6: (a) Circuit diagram of a reflection free module which is implemented
using passive elements. (b) Circuit obtained from the Bruton transformation (c)
Corresponding FDNR element-based implementation (d) Frequency response com-
parison between the ideal passive element- and FDNR-based circuits.

However, this circuit creates a negative dc shift, which increases with the time as

shown in Fig. 7.7 (a) (corresponding results are based on a time-domain simulation

with a sinusoidal input). This is due to the nonidealities (dc offset) of the op-amps

circuits. In order to remove the dc component of the output signal, a first-order

RC high pass filter with the cutoff frequency of 1 kHz is utilized (see Fig. 7.7(b)).

Fig. 7.7 (c) shows the results from the modified circuit and it is clear that the output

of the new circuit follows the ideal output. As similar to the internal module, a unity

gain buffer is utilized at the output of the FDNR element to prevent loading.

7.2 SPICE Simulation Results

The internal and radiation modules are then interconnected in a 1-D systolic array

architecture to simulate different wave propagation scenarios. The corresponding

AC consists of 17 spatial points (Nx = 16). The radiation boundary condition is
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Figure 7.7: (a) Time domain response of the original radiation boundary module.
(b) Modified circuit to remove the negative DC shift. (c) Time domain response
with the high-pass filter at the output of the radiation boundary module.

considered for simulations. All simulation results are based on non-ideal SPICE

models of op-amps (using OrCAD PSPICE software). The following examples

show the results obtained from the low-frequency analog wave equation solver for

different input signals. MATLAB FDTD simulations are used to compare the

results and quantify the accuracy of the computations (using MSD and γ).

Simulation 1: A Gaussian modulated cosine pulse is applied to the left boundary,

where Ez (0, t) = [cos 2πf (t− τ)] e−k(t−τ)2 . Here, f is the center frequency of the

wide band signal, and is selected as 50 kHz. τ is selected as 50 × 10−5s. Constant

k is used to control the fractional bandwidth of the signal and selected as 109 for

simulations. The right boundary is simulated using a RBM. Fig. 7.8 (a) shows the

space-time domain results obtained from the MATLAB FDTD simulation (both 3-

D and top view). The corresponding results obtained from the SPICE simulations

(using non-ideal SPICE models) are shown in Fig. 7.8(b).
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(a)
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Figure 7.8: Obtained results for a Gaussian pulse with a center frequency 50 kHz
(a) MATLAB FDTD simulation (left- 3-D view, right- top view), (b) proposed low-
frequency analog wave equation solver (using PSPICE simulation).

Fig. 7.9 summarizes the comparison results associated with simulation 1. The

SPICE results are compared with a MATLAB FDTD solver. Fig. 7.9 (a) shows

the variation of the absolute difference between the two simulation results in the

space-time domain. Figs. 7.9 (b-f) show the MATLAB and PSPICE simulation

outputs obtained at different spatial points (i = 0, i = 4, i = 8, i = 12, and i = 16).

The variation of the absolute difference between the MATLAB and the PSPICE

simulations is also plotted. The MSD and γ are calculated for each spatial point.
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Figure 7.9: (a) Absolute difference between the PSPICE and the MATLAB simula-
tion results shown in Fig. 7.8. (b-f) Signal outputs at different spatial points (i = 0,
i = 4, i = 8, i = 12, and i = 16), along with the absolute difference (error). The
mean square difference (MSD) and the noise energy to signal energy ratio (γ) are
provided for each spatial location.
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Figure 7.10: Obtained results for a Gaussian pulse with a center frequency 50 kHz
(a) MATLAB FDTD simulation (left- 3-D view, right- top view), (b) proposed low-
frequency analog wave equation solver (using PSPICE simulation).

Simulation 2: The left boundary is excited using a sinusoidal wave, where

Ez (0, t) = cos 2πft. Here, f is selected as 50 kHz. The right boundary is simulated

as a radiation boundary condition. Corresponding MATLAB and PSPICE simula-

tion results are shown in Fig. 7.10 (both 3-D and top views). Fig. 7.11 shows the

comparison results associated with simulation 2. Signal outputs at different spatial

points are plotted along with the absolute difference between the two simulations.
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Figure 7.11: (a) Absolute difference between the PSPICE and the MATLAB sim-
ulation results shown in Fig. 7.10. (b-f) Signal outputs at different spatial points
(i = 0, i = 4, i = 8, i = 12, and i = 16), along with the absolute difference. The
MSD and the γ are provided for each spatial location.
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7.3 Printed Circuit Board Level Implementation

The OrCAD models were then designed into a PCB level implementation as an

experimental verification of the mathematical models and circuits developed in the

previous chapters. Surface mount components had been used to populate the PCB

(Rogers 4003C laminates). EAGLE PCB design software was used to layout the

design. The circuit board was fabricated using an LPKF plotter model ProtoMat

S103 PCB milling machine. Eight- and sixteen-spatial point ACs that solve the

1-D wave equation were implemented and tested. An RS232 connection was used so

that multiple 8-spatial point boards could be easily connected to form longer chains.

SMA connectors were used to capture signals from each of the spatial point outputs.

The radiation boundary module was implemented as a separate circuit, which can

be connected to the main PCB board using an RS232 connection.

Figs. 7.12 (a) and (b) show the populated 8-spatial point PCB ((a) top and (b)

bottom views) and Figs. 7.12 (c) and (d) show the populated RBM board ((c) top

and (d) bottom views). Fig. 7.12 (e) shows a 16-spatial point analog wave equation

solver, which is implemented using two 8-spatial point boards. The RBM board is

connected to one of the boundaries of the solver.

7.4 Experimental Verification and Measurement Results

Fig. 7.13 shows the experiment setup that is used to capture measurements from

the analog wave equation solver. The left boundary of the solver was excited using

different analog signals. A signal generator was used to generate input signals and

supplied to the circuit through a 50 Ω cable. All the computations are performed

in the continuous-time domain by using the analog circuit that inputs and outputs

signals via 50 Ω transmission lines. The national instrument data acquisition unit,
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(a) (b)
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Figure 7.12: (a) Top and (b) bottom views of a populated 8-spatial point board.
(c) Top and (d) bottom views of a populated radiation boundary module. (e) An
interconnected 16-element analog wave equation solver.
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Figure 7.13: Experiment setup to collect data. A signal generator is used to generate
the excitation signals. All the computations are performed in the continuous-time
domain by using the analog circuit that inputs and outputs signals via 50 Ω trans-
mission lines. A National instrument data acquisition unit is used to capture signals
from the circuit.

which consists of several ADCs, was used to capture signals from the circuit (com-

puted outputs of the wave equation solver). In Fig. 7.13, the circuit is excited using

a Gaussian pulse at the left boundary. Here, four different outputs are connected

to the oscilloscope.

Figs. 7.14 and 7.15 show the measurements obtained from the low-frequency ana-

log wave equation solver. The 16-spatial point version of the circuit is used to collect

the measurements. The sampling rate of the NI ADC is selected as 500 kHz. The

left boundary is excited using sinusoidal signals with different frequencies. Fig. 7.14
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Figure 7.14: The space-time measurement results obtained from the 16-spatial point
analog wave equation solver: (a) 3-D view and (b) top view. The left boundary is
excited using a sinusoidal signal with a center frequency of 70 kHz.
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Figure 7.15: The space-time measurement results obtained from the 16-spatial point
analog wave equation solver: (a) 3-D view and (b) top view. The left boundary is
excited using a sinusoidal signal with a center frequency of 50 kHz.

and 7.15 show the results when the wave equation solver is excited using a sinusoidal

input with a center frequency of 70 kHz and 50 kHz, respectively. The results clearly

show the wave propagation in the space-time domain (with a constant velocity) and

the effect of the radiation boundary (reflection free).

110



CHAPTER 8

CMOS ANALOG COMPUTER FOR SOLVING THE WAVE

EQUATION

The proposed analog computing methods that compute the CT solutions of the

1-D wave equation and Maxwell’s equations were extended to analog CMOS designs.

This chapter focuses on the analog CMOS implementation of the AC that solves

the 1-D wave equation. Mainly, the APDA method was considered. The key chal-

lenges toward CMOS implementations of the proposed solvers were identified and

discussed with possible solutions. Here, the AC was first simulated with a dominant-

pole model, which better approximates the non-ideal (CMOS) circuit behavior. A

propagation delay compensation technique, which is required for high-speed designs,

was introduced based on the APDA method. The main building blocks of the CMOS

wave equation solver were then identified and separately designed, simulated and

improved to achieve better performance. Finally, a full-scale AC that solves the

wave equation was designed and simulated using CMOS transistor-based circuits

and was laid out to realize a chip-level implementation. Also, an on-chip digital cal-

ibration circuit was introduced to compensate for process, voltage, and temperature

(PVT) variations and random mismatches of the analog CMOS circuits.

The circuit designs employed the Taiwan Semiconductor Manufacturing Com-

pany (TSMC) analog CMOS library with the 180 nm process. Low-voltage (op-

erating voltage of 1.8 V) MOS transistor models (substrate-based), which have an

operating frequency of 4 GHz (both NFET and PFET), are used to design the cir-

cuit. The TSMC library offers fully characterized simulation models with noise,

matching, and parasitic parameters and supports up to six metal levels (Levels 3

to 6). A comprehensive set of passive devices including resistors (diffusion resistors,

poly resistors, high resistive poly resistors, high precision poly resistors) and capac-
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itors (VNCAP, MIM cap, MOS-Varactors) are available in the library to support

various applications. Full-scale Berkeley short-channel IGFET model-4 (BSMI4)

models that take into account full process parameters were used in the design and

simulations. Cadence integrated circuit design software is used to design the pro-

posed analog solvers.

8.1 Key Challenges Towards CMOS Implementations

The key challenge of realizing large-scale analog networks such as the proposed PDE

solvers is to minimize the effects of circuit non-idealities such as noise, nonlinearity,

component mismatch, and parasitic elements (mostly device and interconnect capac-

itances) on the computation. Note that the simulation results shown in Chapter 4

and Chapter 5 are based on ideal circuit elements, e.g., op-amps with infinite gain-

bandwidth product, infinite input impedance, zero output impedance, and no noise

or offset. However, practical op-amps have non-ideal characteristics including finite

gain-bandwidth, voltage offsets, input bias currents, noise and drift, finite input and

output impedances, finite common-mode and power-supply rejection, and limited

linear range. Each of these non-idealities affects the simulated PDE solution with

a certain sensitivity that needs to be analyzed prior to a CMOS implementation.

These analysis results can then be used to determine the performance requirements

of the op-amps and other circuits. As an example, consider the op-amp bandwidth

Bo, which is the key factor that limits the usable bandwidth B of the proposed

PDE solvers. In general, Bo should be > 10B to obtain acceptable gain and phase

characteristics throughout the required bandwidth B, with Bo > 50B preferred for

applications that demand high accuracy.

The simulations in Chapter 4 and Chapter 5 have assumed zero propagation

delays for each ideal circuit block, but in practice these often cause significant phase
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shifts when B exceeds a few MHz. In this case, these delays need to be estimated

and compensated to ensure that the solution is stable and has acceptable accuracy.

The APDA method is convenient in this respect since it allows the delays from all

the circuit blocks to be directly inserted into the continuous-time delay operator τ

without affecting the SDTC update equation. Specifically, the actual group delay

τa of the CMOS APFs can be set to τa = τ − τp, where τp is the propagation

delay introduced by other circuit elements. It is also possible to compensate the

CTLD-based methods in a similar manner, but in this case the RC values within

the IMs need to be modified. Note that these RC values are calculated based on

the coefficients of the SDTC update equation, where the coefficients are defined

by the physical quantities such as µ, ǫ and c. The use of empirical values for

these parameters may lead to impractical capacitor and resistor values (e.g., very

large capacitor values). Thus, the physical parameters can be scaled down/up to

obtain practical RC values that can be realized using analog CMOS. Similarly, if

the selection of ∆x and c leads to an unrealizable τmax in the APDA method, these

parameters can be scaled up or down to obtain a practical value for τmax.

Element-level parasitic components and PVT variations will play a major role

in limiting the accuracy of the proposed continuous-time CMOS ACs. Precision

circuit design methods must be used to maximize the linear range and minimize

systematic mismatches. For example, capacitor ratios can be used to control the

gains of the op-amp stages instead of resistor ratios, since the former are more

accurate. Expected errors in simulated variables due to component mismatches

can be analyzed using Monte Carlo simulations, followed by device sizing and op-

timized layouts (e.g., common-centroid designs) to obtain acceptable error levels.

In general, mismatch can be reduced by increasing the element sizes, but at the

cost of increased power consumption [131]. If necessary, the effects of mismatches
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can be further reduced by using well-known active techniques like auto-zeroing (for

offset cancellation) or dynamic element matching (for mismatch shaping). The ef-

fects of parasitic elements can be minimized by estimating them using post-layout

RC extraction and back-annotation, and iteratively modifying the design until

performance goals are reached.

On-chip digital calibration techniques can also be employed to compensate for

PVT variations and random mismatches that degrade the analog circuit perfor-

mance. For example, binary-weighted capacitor and resistor DACs can be used

instead of single circuit elements in the analog solvers to dynamically change R and

C values such that matching is improved and PVT variations are minimized. How-

ever, the introduction of such reconfigurable hardware will increase the area of the

circuit. Scalability of the proposed architectures to larger computational domains

and higher dimensions is also challenging for analog IC implementations. However,

this can be addressed by taking a highly modular approach to circuit realization, in

which a high-resolution problem is partitioned into multiple lower-resolution prob-

lems. In this approach, fundamental modules need to be identified and designed

in such a way that the higher dimensions and larger computation domains can be

achieved by interconnecting multiple modules in analog systolic array architectures.

8.1.1 Dominant-pole Model of the Op-amps

To better portray the behavior under non-ideal circuit conditions, a simulation that

approximates the analog circuit elements with more realistic behaviors is performed.

Consider the APDA-based AC that solves the 1-D wave equation that was described

in Chapter 5. The circuit architecture shown in Fig. 8.1 was used to implement the

analog circuits that eventually compute the CT update equations given in (5.14)
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Figure 8.1: The analog circuit architecture used to implement the internal and radi-
ation modules of the APDA-based 1-D wave equation solver (the radiation boundary
module only needs one external input). The propagation delay of the op-amp, which
is introduced by its dominant pole response, is denoted as τoa.

and (5.16), which correspond to the internal module and the radiation boundary

module, respectively (note that the radiation boundary module only needs one

external input). The APFs were simulated using a cascade of three first-order

APFs, which provide a better approximation (both in time and frequency domains)

to a practical APF.

The op-amp, which is used to perform summing and scaling operations in the

update equations was approximated with a dominant-pole response. It has been

assumed that the op-amps have a first-order low-pass response to demonstrate the

viability of the method for realistic components. Thus, the approximate s-domain

transfer function A(s) of an op-amp gain can be expressed as A (s) = A
1+ s

ω0

, where

A and ω0 are the DC gain and the dominant pole frequency, respectively. The cor-

responding unity-gain frequency and gain-bandwidth product (GBW) are approxi-

mately Aω0. By contrast, for an ideal op-amp, the gain is infinite and independent of
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frequency. Also it should be noted that the bandwidth of a dominian-pole op-amp in

an inverting gain configuration is Aω0

K+1
, whereK is the gain of the configuration [107].

The corresponding bandwidth in a non-inverting configuration is Aω0

K
. However, in

the ideal case, both inverting and non-inverting circuits have an infinite bandwidth.

In the simulations, the pole frequency was selected as f0 = 30 kHz
(
f0 =

ω0

2π

)
and

the DC gain was selected as 90 dB, resulting in a reasonable GBW ≈ 1 GHz. The

selected DC gain and the GBW are comparable with the op-amp that we designed

using the 180 nm CMOS technology.

8.1.2 Propagation Delay Compensation Technique

The finite bandwidth of the op-amp introduces a signal propagation delay from

its input to output (which is inevitable for all practical elements). This delay af-

fects the continuous-time computation and needs to be compensated by the use of

an additional delay in the forward paths. A method that can address this concern

has been introduced in this dissertation. In order to explain the proposed propa-

gation delay (PD) compensation technique, consider Fig. 8.1. Let us consider that

Ez (i, t− τ), Ez (i, t− 2τ), Ez (i− 1, t− τ), and Ez (i+ 1, t− τ) inputs are available

at the input of the op-amp. The op-amp should be able to compute the solution

Ez (i, t) at the output instantly (which is the case for an ideal op-amp). However,

the actual op-amp requires an amount of time τoa to produce the solution. Thus,

the output is Ez (i, t− τoa), where τoa is the propagation delay of the op-amp (as-

sumed to be constant over the expected bandwidth of the solver). Also note that,

the delay τoa can vary with the gain configuration and the gain-bandwidth product

of the op-amp. The group delay τ1 of the all-pass filter φ1 (s) is selected such that

τ1 = τ − τoa. This selection ensures the τ−delayed version of the electric field at
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Figure 8.2: Performance of the propagation delay compensation technique. The
summing op-amp is approximated with a dominant pole response. The all-pass
filters are simulated as a cascade of three first-order all-pass filters. Thus, the
simulated circuit closely approximates the realistic behavior of the practical circuit
elements. The left boundary is excited using a 25 MHz GMC electric field, whereas
the right boundary is simulated as a radiation boundary. Simulation results obtained
(a) without and (b) with the propagation delay compensation technique.

the output of the first all-pass filter (which is Ez (i, t− τ)), which can then be used

for the accurate computation. Here, the propagation delay of the op-amp is em-

bedded inside the continuous-time delay operator τ . The group delay of the second

all-pass filter φ2 (s), which provides the 2τ−delayed version of the electric field, is

maintained at the nominal value τ .
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This compensation technique, which can be used to compensate for any prop-

agation delays in the practical circuit, is used during the IC implementation to

compensate for propagation delays of the op-amps and the buffers. Fig. 8.2(a)

shows how the wave equation solver computes the solution when the op-amps are

approximated with a dominant pole response in the absence of the propagation de-

lay compensation technique. Here, a radiation boundary is simulated at the right

boundary. It demonstrates the effectiveness of the propagation delay on continuous-

time computation and the solution. Even though the wave propagation can be seen

in the space-time domain plot, the amplitude of the propagating wave rapidly de-

cays with the spatial index, which should not be the case for behavior of a loss-less

propagation. Fig. 8.2(b) shows the results after applying the propagation delay

compensation technique as discussed here.

Note that gain compensation may be required even after the application of the

PDC technique since the gains of the circuits are also frequency-dependent and drop

with the frequency increases. This can be achieved by employing variable gains for

the op-amp circuits. Also, the all-pass filter gains can be made programmable to

calibrate the gains.

8.1.3 Non-ideal Simulation Results

Figs. 8.3(a-c) show the space-time simulation results obtained for three different

wave propagation scenarios after the PD compensation technique is applied. For

all three simulations, the left boundary is excited using a 25 MHz GMC electric

field. The right boundary is simulated as either a fixed, soft, or radiation bound-

ary, respectively. The propagation delays from the summing op-amps used in the

internal module and the radiation boundary module are measured as 286 ps and
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Figure 8.3: Simulation results obtained from the APDA method-based 1-D analog
wave equation solver (left: 3-D view, right: top view). The summing op-amp is
approximated with a dominant pole response. The all-pass filters are simulated as
a cascade of three first-order all-pass filters. The left boundary is excited using a
GMC field at 25 MHz. The right boundary is realized as (a) a Dirichlet boundary,
(b) a Neumann boundary, and (c) a radiation boundary.

175 ps, respectively. Even though both modules use the same op-amp (with same

gain-bandwidth product), they experience different delays due to the different gain
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Figure 8.4: (a-c) Comparison results (MSDi and γi) corresponding to the three
simulation scenarios shown in Fig. 8.3.

configurations (which are defined by the update equations). The analog bandwidth

of the AC Fcompute was selected as 50 MHz, and the spatial step size ∆x = λmin

10
.

Here, τ is selected as 1273 ps, which satisfies the stability condition τ ≤ ∆x
c
. The
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group delays of the all-pass filters φ1 (s) are selected as 987 ps and 1.098 ns for

the internal and the radiation modules, respectively. Thus, in the real circuit, we

require a variable all-pass filter as φ1 (s) that can finely tune its group delay around

a nominal value τ . Furthermore, the gains of the op-amp need to be calibrated for

the accurate computation of the continuous-time update equations (due to PVT

variations). The results are compared with a FDTD simulation and Figs. 8.4(a-b)

show the corresponding results (MSD and noise to signal energy ratio). Here, the

time domain step size ∆T of the FDTD simulation is equal to τ . It is clear that

the proposed analog computing methods along with compensation techniques can

be used to compute the solution of the wave equation, even with non-ideal circuits,

with an error (in terms of noise to signal energy ratio) that is less than −13 dB.

8.2 180 nm CMOS AC that Solves the Wave Equation

The APDA-based AC that solves the 1-D wave equation has been extended towards

a CMOS chip-level implementation. The challenges described in the previous section

have been addressed and discussed in the following subsections. The circuit designs

employed the TSMC analog CMOS library with the 180 nm process.

8.2.1 Top-level Design Parameters

The top-level block diagram of the AC is shown in Fig. 8.5. The electric field Ez

is defined at discrete grid points x = i∆x (i ∈ {0, 1, 2, . . . , N}), where ∆x is the

spatial step size. Spatial indexes i = 0 and i = N correspond to the left and right

boundaries, respectively. The AC produces time-varying voltages that correspond

to the CT electric fields at each spatial point, which are governed by the wave

equation (and the boundary conditions). It consists of 18 analog modules (M1 to
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Figure 8.5: The top-level block diagram of the analog CMOS wave equation solver.

M18), where each module corresponds to a particular spatial point. The first 16

modules (M1 to M16) are designed as internal modules (IMs) (see the schematic of

an IM shown in Fig. 8.5). These modules correspond to spatial indexes i = 1 to

i = 16. The input to M1 is considered as the solution at spatial index i = 0. This is

also the excitation signal at the left boundary, which can be supplied to the circuit

using a signal generator or a digital circuit plus DAC.

122



The proposed AC is capable of implementing three different boundary condi-

tions at the right boundary. Module 17 is used to realize the Dirichlet and Neu-

mann boundary conditions. Note that these two boundaries can be implemented

using an IM. Thus, the architecture of M17 is similar to the IM, but with addi-

tional control circuitry to configure the required boundary. Module 18 is used to

realize the radiation boundary condition. The schematic of the radiation boundary

module is shown in Fig. 8.5. Module 16 connects the boundary modules (M17 and

M18) with the main circuit. Here, a control input at M16 determines the right-

side boundary condition. The selection of a particular boundary disconnects other

boundaries from the computing circuit. The configuration of either radiation or Neu-

mann boundary condition simulates a spatial grid of 18 spatial points (N = 17),

whereas for the Dirichlet boundary, N = 18 (19 spatial points). In the Dirichlet

condition, the boundary is set by grounding the Ez (i+ 1, t− τ) input of the IM.

Thus, Ez (i+ 1, t− τ) input of M17 is considered as the solution at i = 18. In addi-

tion to the three boundary conditions, M16 can be excited using an external input

signal. Thus, the AC can be extended along the spatial dimension to simulate larger

spatial grid sizes by cascading several chips. This can be achieved by connecting

module M16 on a given chip to M1 on the next chip. Here, the boundary modules

of the first chip are disconnected from the computing circuit.

The expected analog bandwidth (or Fcompute) for the CT computation of the AC

is set to 50 MHz at design time. This results a minimum wavelength of λmin =

c
Fcompute

. The spatial step size is set to ∆x = λmin

8
, where the spatial oversampling

factor is 4. The equivalent temporal over-sampling factor for FDTD in a DC is

selected as 6.25 to satisfy the stability condition τ ≤ τmax = ∆x
c

= 2.5 ns which

leads to the CT delays of τ = 1.6 ns in the AC. Thus, the equivalent temporal

update rate in the AC is 625 MHz. Here, c is the wave speed. The proposed analog
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solver is able to simulate different wave propagation speeds. Note that the gains

of the op-amp depend on parameter K = cτ
∆x

. Thus, the corresponding gain values

are configured using a digital control input to vary the propagation speed of the

medium (each module can be programmed individually).

8.2.2 Primary Building Blocks

To start with, the primary building blocks of the analog solver have been identified

and designed using Cadence circuit design software. The op-amp, which was used

for scaling and summing operations is designed, simulated and improved to achieve

the required performance. It was also used as a buffer in the circuit (unity gain

configuration). As described in Section 8.1, the gain-bandwidth product of the

op-amp should be > 500 MHz to obtain an acceptable accuracy from the analog

solver (that has a bandwidth of 50 MHz). In general, the phase margin of the op-

amp should be > 60◦ to achieve stability. Also, in order to maintain an acceptable

accuracy, the open-loop voltage gain AOL of an op-amp should be high; this can be

verified by using the basic feedback theory. The expression for a closed-loop gain

ACL with a forward gain of α and a feedback gain of β is ACL = α
1+αβ

. In an op-amp

α = AOL and the loop-gain αβ = AOLβ. The term 1
β
is the ideal closed-loop gain

of the op-amp in a non-inverting configuration. By rearranging the terms,

ACL =
1

β

(

1

1 + 1
AOLβ

)

. (8.1)

Thus, the percentage of error can be calculated using

Error% =

[

1−
(

1

1 + 1
AOLβ

)]

× 100 ≈ 1

AOLβ
× 100. (8.2)

It is clear that the error of the gain increases as the loop-gain decreases in frequency.

This is the reason for selecting the gain bandwidth product of the op-amp Bo > 10B.
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The error term can also be made smaller by having an op-amp with a larger open-

loop gain AOL. The expected open-loop DC gain is about 90 dB, which results

∼0.003% of error for the unity gain configuration at DC.

In the proposed system, capacitors were used instead of resistors to control the

gains of the summing op-amp to improve the accuracy of the analog solver. This

also minimizes the effect of the PVT variations on the continuous-time computation.

The capacitor ratio then determines the gain of the op-amp. In general, the ratio

of the capacitors can be realized more accurately than the ratio of the resistors in a

silicon wafer. Also, much better matching can be achieved by making the capacitor

area large (errors less than 0.2% can be achieved) [131]. In particular, four-bit

capacitor DACs were used as capacitors, instead of a single capacitor. Thus, the

capacitor DAC can produce 16 different capacitor values, which correspond to 16

gain configurations. The required capacitor value is selected using a digital control

signal. The use of capacitor DACs improves the reconfigurability of the proposed

wave equation solver. Furthermore, the DACs can be used during the calibration

stage to compensate for the solver for PVT variations and device parasitics in the

chip. However, the introduction of capacitors to the circuit blocks the DC paths

to the op-amps. Thus, additional circuitry is required to maintain the required DC

voltage levels.

An all-pass filter was designed based on a resistor-capacitor network. The all-

pass filters are used to approximate the e−sτ terms appears in (5.14) and (5.16)

as e−sτ ≈
[
1− sτ

2M

1+ sτ
2M

]M

and are realized in an analog RC topology using a cascade of

M first-order all-pass filters. Voltage buffers are used in between each cascading

stage to avoid loading effects. The bandwidth of the all-pass filter should be greater

than 100 MHz to achieve a reasonable accuracy from the AC. A constant group delay

of ∼1-2 ns is expected over the bandwidth of the solver. Also, the all-pass filters
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are tunable in terms of the gain and the group delay. The tunability of the all-pass

filters is used to compensate for the PVT variations of the analog solver. In addition,

the variable group-delay is necessary to compensate for the propagation delays, as

discussed in the preceding section. Each module consists of several capacitors and

resistor DACs that need to be configured using a digital control signal. An on-

chip digital serial peripheral interface (SPI) module is designed to communicate and

program the chip. Note that each module can be programmed individually. The

primary analog circuits are designed and simulated using Cadence. The following

subsections describe the circuits in greater detail.

8.2.3 High-speed CMOS Op-amp

A two stage op-amp is designed and ported to TSMC 180 nm CMOS technology.

Fig. 8.6 shows the schematic of the op-amp [132–134]. The first stage is a telescopic

differential amplifier (diff-amp). The current source loads and the differential pairs

of the diff-amp are cascoded to increase the gain from the first stage. The gain of

the diff-amp Ad can be expressed as

Ad ≈ gm1

(
gm2r

2
o2||gm4r

2
o4

)
, (8.3)

where gmX and roX are the transconductance and the output resistance of transistor

MX (or MXT or MXB), respectively. Transistors M6, M5T, and M5B are used to

bias the first stage. The second stage is the PMOS common source stage with a

cascoded current source load. An indirect feedback technique is used for compensat-

ing the two-stage op-amp [132,133]. This method results in a faster op-amp circuit

and a smaller layout area. Also, the proposed circuit offers a better power supply

rejection ratio (PSRR) at higher frequencies. The compensation capacitor Cc does

not directly connect to the output of the diff-amp as most of the two-stage op-amp
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circuits in the literature. Connecting a compensation capacitor between two high-

impedance nodes introduces a right-hand plane (RHP) zero, which limits the speed

of the op-amp. In the indirect compensation, the current is feedbacked indirectly to

the output of the diff-amp as shown in Fig. 8.6. Here, the capacitor is connected to

an internal low impedance node at X (source of M4B). This technique introduces

a left-hand-plane (LHP) zero. The LHP zero is located at − gm4B

Cc+CA
and improves

the phase margin at the unity gain frequency fun, where CA is the capacitance at

low impedance node X [132, 133]. The unity gain frequency is located at around

gm1

2πCc
[132, 133]. The low frequency open loop gain of the two stage op-amp is

A ≈ gm1gm8

(
gm2r

2
o2||gm4r

2
o4

)
ro8. (8.4)

The channel lengths of all MOSFETs are selected as 360 nm, except for transistor

M8 (second gain stage). The channel length of M8 is 180 nm. A smaller channel

length is selected for M8 to move the second pole sufficiently away from the origin of

the complex frequency plane (beyond the unity-gain frequency). Note that a large

capacitor is required in the direct (or Miller) compensation technique to improve

the phase margin. Thus, the compensation capacitor generally dominates the layout

area of an op-amp. However, the compensation capacitor Cc of the proposed circuit

is only about 160 fF. The use of the indirect compensation technique relaxes the

capacitor requirement, which leads to a significantly smaller chip area.

Four bias voltages (Vb1, Vb2, Vb3, Vb4) are used to bias the op-amp. Their

simulated values are Vb1 = 1100 mV, Vb2 = 575 mV, Vb3 = 1100 mV, and Vb4

= 715 mV. Slightly higher W/L ratios are selected for M8, M9T, and M9B to

obtain a higher gain from the second amplification stage and to improve the phase

margin (to move the second pole away from the unity gain frequency). The common

centroid technique and other precision layout techniques are utilized to layout the
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X

Figure 8.6: The schematic of the high-speed op-amp circuit.

op-amp. Fig. 8.7 shows the layout of the op-amp. Transistors M3, M4, M5, and M8

are laid out in a single common centroid stack (the top row). Deep-nwell NMOS

transistors are used for M1, M2, and M6. Transistors M7 and M9 are also laid out

in a single stack (the bottom row). The compensation capacitor is laid out as two

80 fF capacitors (connected in parallel) to make the layout symmetric.

The parasitic-extracted schematics are used to evaluate the performance of the

op-amp. Fig. 8.8 (a) shows the gain and phase variations of the op-amp. The op-

amp shows 89 dB of open-loop gain at DC. The gain-bandwidth product is about

700 MHz with a 65◦ phase margin. Fig. 8.8 (b) shows the output of the op-amp for

the unity gain configuration while sweeping the input from 0 V to 1.8 V. The input
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Figure 8.7: The layout of the op-amp.

common-mode range (ICMR) of the op-amp is reported as 1.6 V (the linear region

of the curve). The slew rate of the op-amp is measured based on the response to a

1.4 V step input to the unity gain op-amp buffer (see Fig. 8.8 (c)). The resulting

slew rate is 240 V/µs, which was calculated based on the falling edge of the response.

Here, the falling edge slew rate is mainly restricted by the class A output stage of the

op-amp. The input-referred noise of the designed op-amp is reported as 10 nV/
√
Hz

(see Fig. 8.8 (d)). Table 8.1 summarizes the simulated characteristics of the designed

op-amp.
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Figure 8.8: (a) Variation of the gain and the phase. (b) Output of the setup that
measures the ICMR. (c) Simulation results to measure the slew rate. (d) Input
referred noise of the designed op-amp.

8.2.4 CMOS All-pass Filter Design

An all-pass filter, consisting of cascaded resistor-capacitor networks, was designed.

In the current system, the Laplace domain representation of an ideal all-pass filter

e−sτ is approximated as e−sτ ≈
[
1− sτ

6

1+ sτ
6

]3

, and is realized in an analog RC topology

using a cascade of three first-order APFs. Fig. 8.9 shows the circuit diagram of the

all-pass filter for three cascaded first-order stages with fixed capacitors (with value

C) and variable resistors (with value R). The group delay τ of the all-pass filter is

software programmable via variable resistors. In particular, a 4-bit binary- weighted
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Table 8.1: Simulated characteristics of the designed op-amp.

Specification Result
DC gain 89 dB
Phase margin 65
Power consumption 1.5 mW
Output swing 1.7 V
ICMR 1.6
Slew rate 345 V/us
Noise floor 10.1 nV/sqrt (Hz)

V5(s)

V6(s)

V1(s) V3(s)

V2(s)

Figure 8.9: Schematic of the CMOS all-pass filter.

resistor DAC is used as the resistor. Buffers are employed in between each stage to

minimize the loading.

Consider the first stage of the APF (first RC section). The s-domain voltage

transfer functions V1(s) and V2(s) can be obtained as

V1(s) =
1

1 +RCs
Vin(s), V2(s) =

RCs

1 +RCs
Vin(s), (8.5)

where Vin(s) is the Laplace transform of the input alternating current signal vin(t).

The voltage transfer functions V3(s) and V4(s) at output of the second stage are
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Figure 8.10: Schematics of the buffer and subtractor circuits.

obtained as

V3(s) =
1

1 +RCs

(
1−RCs

1 +RCs

)

Vin(s), V4(s) =
RCs

1 +RCs

(
1− RCs

1 +RCs

)

Vin(s).

(8.6)

If the two voltages at the output of the third stage are subtracted (V5(s) − V6(s)),

the complete transfer function of the APF can be obtained as

Vout(s)

Vin(s)
= φ(s) =

(
1− RCs

1 +RCs

)3

=

(

1− jωτ
6

1 + jωτ
6

)3

. (8.7)

Here, the group delay of the APF is τ = 6RC.

The intermediate buffer stages of the APF are realized using an NMOS-PMOS

source follower pair. The bandwidth of the buffer circuits should be much higher

than the system bandwidth, such that the group delay contribution from the buffers
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(b)(a)

Figure 8.11: (a) Schematic of the OTA-based negative feedback circuit. (b) Layout
of the OTA.

to the all-pass filter circuit is insignificant. Thus, a simple circuit with four tran-

sistors is designed. Fig. 8.10 shows the corresponding circuit. Transistors M1T and

M2B operate as source followers (the input is fed into the gate of M1T and the

output is taken from the source of M2B), while the other two transistors, M1B and

M2T, are used to bias M1T and M2B, respectively. The group delay of the buffer re-

mains constant at ∼110 ps throughout the frequency of interest. Note that the gain

of the buffer is ∼0.8 dB less than unity, which requires compensation at the output

of the APF (at the subtractor stage). The bias voltage Vb1 is supplied externally.

The gate voltage of M2T is set by an internal self-feedback circuit. A negative feed-

back circuit was employed to maintain the output DC value of the buffer circuit at

the desired value even when PVT variations are present. The feedback mechanism is

essential, since the output DC voltage of the designed circuit is directly determined

by the W/L ratios of the transistors, which can easily vary with PVT variations.

A simple analog circuit was used to subtract two voltages at the end of the APF.

The proposed circuit only requires seven transistors and produces the output without

using an op-amp. The group delay of op-amp-based subtractors is significant when

compared to the all-pass filter delay, which makes it difficult to use with the proposed

APF design. Fig. 8.10 shows the schematic of the subtractor. The first stage consists
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Figure 8.12: Tunability of the all-pass filter in terms of (a) the gain and (b) the
group delay (with different resistor configurations in the DACs).

of a differential pair that produces the difference voltage. The output of the first

stage is fed into a source follower before obtaining the output. This improves the

output impedance of the all-pass filter. Ideally, the gain of the subtractor should

be 1. However, the gain of the subtractor circuit was chosen such that the total

gain of the APF circuit is unity (subtractor gain is higher than unity to compensate

losses from the buffer stages and the second stage of the subtractor). Since the

gain requirement is around 0 dB, resistors are employed as the load impedances of

the differential stage (instead of transistors). The circuit is self-biased and the gate

voltage of the M3 and M5 are controlled by a negative feedback loop such that the

output DC voltage is fixed at the desired value.

An operational transconductance amplifier (OTA)-based negative feedback cir-

cuit was proposed to maintain the DC bias voltages of the buffer and the subtractor

at desirable values. This makes the DC characteristics of the circuit insensitive to

PVT variations and parasitics. A continuous-time transconductance (Gm) type in-

tegrator (Gm − C integrator) was employed as the feedback system. Fig. 8.11 (a)

shows the corresponding circuit. Here, Cbig is a large capacitor, which was imple-
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mented using MOS transistors. It was realized using a transistor (drain, source, and

body of the transistor are connected to act as one plate of a parallel-plate capacitor,

and the gate acts as the other plate of the capacitor). Together Gm and Cbig form

an integrator with a time constant
Cbig

Gm
. The integrator compares the input signal

voltage with a reference voltage and provides feedback such that it makes the two

voltages equal. The time constant of the integrator should be much larger than

1
ωmin

to minimize the impact of the feedback circuit on the signal of interest, where

ωmin is the lowest frequency of interest. Thus, all the transistors of the OTA were

biased at sub-threshold. Cascoded current mirrors were utilized at the second stage

to obtain an acceptable gain. The open-loop gain of the designed OTA was ∼65 dB.

Fig. 8.12 shows the parasitic extracted simulation results obtained from the

software-programmable APF. The gain of all-pass filter is tunable in between -

4 dB and 2 dB (see Fig. 8.12 (a)). The binary-weighted resistor DACs in the

subtractor are utilized to tune the gain. Resistor DACs in the RC sections of the

APF are used to tune the propagation delay from 1.2 ns to 1.7 ns (see Fig. 8.12 (b)).

The tunability of the all-pass filter is important for compensating PVT variations

following calibration.

8.2.5 Internal and Boundary Modules

Fig. 8.13 shows a schematic of the internal module. The output is the τ -delayed

version of Ez(i, t) (i.e. Ez(i, t − τ)). Thus, the output can be directly fed into the

neighboring modules. A unity gain buffer is employed prior to feeding the output.

Next, consider the op-amp that performs the addition and subtraction. Capacitors

are utilized instead of resistors to control the gains of the input and feedback signals,

since capacitor ratios can be laid out more accurately in CMOS technology. Also,
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Figure 8.13: Schematic of the internal module of the 1-D wave equation solver.

capacitors ensure a DC gain of zero, which avoids building up any random DC

offsets during the computation. In particular, 4-bit binary capacitor DACs (that

can produce 16 different capacitor values) are used for compensating PVT variations,

parasitics, and mismatches following calibration.

The implementation of CT delay τ is important for accurate computations in

the AC (especially at high frequencies). As explained in Section 8.1.2, the PD

compensation technique provides a convenient way of achieving this requirement.

Also, the PD compensation is the key to achieve higher analog bandwidths from ACs

(for CT computation), which is challenging in integrator-based methods employed

in [8–11]. If analog bandwidth Fcompute and the spatial oversampling factor is fixed,

the gain values of the op-amp mainly depend on τ (note that K = cτ
∆x

defines gain

values of the SDTC update equations). Consider the summing op-amp with a PD

τ1. The output of the op-amp is fed into all-pass filter APF1 (with a group delay

τ2) followed by unity gain buffer BF1 (with a group delay τ3). Thus, the CT delay

τ = τ1 + τ2 + τ3. The signal at the output of the buffer (at B) can be denoted

as Ez(i, t − τ). The resulting signal is then fed into the neighboring modules and
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OTA−based negative feedback

circuits are not shown here.
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Figure 8.15: Layout of an internal module.

all-pass filter APF2, which has a group delay τ4 (in the feedback path). A unity

gain buffer (with a group delay of τ5) is cascaded with APF2 to being fed to the

summing op-amp. In the design, APF1 is a fixed group delay all-pass filter (fixed

resistors instead of resistor DACs), where as APF2 is a tunable all-pass filter. The

group delay τ4 (of APF2) is configured such that τ4 = τ − τ5; and the signal at the

output of BF2 (at C) is Ez(i, t− 2τ). Neumann boundary, Dirichlet boundary, and

radiation boundary modules are implemented following the same architecture.

Fig. 8.14 shows the complete schematic of the internal module including each

CMOS circuit. The figure also shows the internal structure of the capacitor and resis-

tor DACs. Transmission gates are used as the switches in the DACs. Programmable

gains of the op-amp (capacitor DACs) can also be used to simulate multiple prop-

agation media. Furthermore, they can be used to compensate for PVT variations

and device parasitics. However, the introduction of capacitors blocks the DC path

required to bias the op-amp. Thus, two large resistors are utilized to maintain the

DC bias voltages. One resistor is tied between the non-inverting terminal of the

op-amp and the common-mode voltage, while the other is tied between the output

and the inverting terminal (see Fig. 8.14). Here, the large resistors are realized using

a chain of PMOS pseudo resistors (also known as an adaptive element) to increase
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Figure 8.16: (a) Block diagram of the complete SPI block. (b) Schematic of the
5-bit digital comparator. (c) Schematic of the shift register. (d) Schematic of the
programming block to program a specific stage.
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the total resistance and linear range. Fig. 8.15 shows the complete layout of an

internal module (without the digital programming module).

8.2.6 SPI Programming Module

Each module has 25 programming bits to configure (25×18 programming bits in

total). Thus, a 30-bit (25 data bits + 5 address bits) serial peripheral interface (SPI)

programming module was used to program the entire chip and save input/output

pads. The complete block diagram of the SPI module is shown in Fig.8.16 (a). Four

wires were utilized to implement the SPI interface (clk, data (MOSI), program,

and store). Therefore, the complete SPI module only uses four I/O pads. A shift

register block is first to receive data from the external circuits. Each module has its

own programming block to compare the address bits (5 bits) coming from the shift

register with its local address. If they match and the program signal is high, then

the rest of the programming data are used to program the specific module.

In the schematic of the shift register block, shown in Fig. 8.16(c), the block

has 30 D flip-flops (DFFs) in series acting as a shift register. A digital buffer is

used between DFFs to delay the clock so that one of the DFFs has enough time to

latch the data from the output of the previous DFF. Latches are used to store the

programming bits when the enable signal is low. Each module in the chip has its

own programming block, as shown in Fig. 8.16(d). A digital comparator (shown in

Fig. 8.16(b)) is first used to compare the local address with the address bits coming

from the shift register. Since the address contains 5 bits, 5 XOR gates are used to

first compare the local address with the address bits. If they match, the extra NOR

gate in the digital comparator outputs high. In this case, when the program signal

is high, this specific module is selected, and all programming bits are stored in the
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Program

Store

Figure 8.17: Timing diagram of the complete SPI block.

latches in this stage, as shown in Fig. 8.16(d), so that this stage is programmed

successfully.

The timing diagram is shown in Fig. 8.17, where store is the enable signal for

the shift register, clk (rising edge triggered) is the clock for the SPI bus, data is the

data transferred through SPI bus, and program (high active) is the enable signal

for the programming block.

8.2.7 Simulation Results

The proposed APDA-based AC that solves the 1-D wave equation was simulated

using Cadence Spectre. A spatial grid of 16 spatial points is selected for the simu-

lation. The analog bandwidth Fcompute is selected as 50 MHz. The spatial step size

∆x = λmin

6
. The circuit satisfies the stability condition τ ≤ ∆x

c
. Fig. 8.18 (a) shows

the spatio-temporal variation of the electric field for a Gaussian modulated cosine

(GMC) electric field Em cos (2πf (t− τd)) e
−k(t−τd)

2

excitation at the left boundary,

where Em = 30 mV, and τd = 0.5 µs (left: 3-D view; right: top view). The center

frequency of the GMC field is 40 MHz. The right boundary of the AC was simulated

as a radiation boundary. The zero initial conditions were considered for all simula-

tions. Fig. 8.18 (b) shows the simulation results for a sinusoidal signal at 40 MHz.

Fig. 8.19 shows the simulation results obtained when the input excitation is at 30

MHz. Note that the group delay of the system varies with frequency and needs to be
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Figure 8.18: Obtained Cadence results from the CMOS AC when the system is
excited using (a) a GMC electric field (b) a sinusoidal signal at the left boundary
(left: 3-D view, right: top view). The center frequency of the signals are 40 MHz.
The right boundary is simulated as a radiation boundary.

compensated prior to measurements. In the proposed system, the variable all-pass

filter φ2(s) in the internal module is used to tune the circuit. Other reconfigurable

circuits (resistor DACs and capacitor DACs) can also be used to obtain the desired

output (by compensating PVT variations and parasitics).

Fig. 8.20 shows the simulation results when the right boundary was simulated

as a Dirichlet boundary (fixed at the common-mode voltage). Fig. 8.20(a) and
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Figure 8.19: Obtained Cadence results from the CMOS AC when the system is
excited using (a) a GMC electric field (b) a sinusoidal signal at the left boundary
(left: 3-D view, right: top view). The center frequency of the signals are 30 MHz.
The right boundary is simulated as a radiation boundary.

Fig. 8.20(b) correspond to GMC and sinusoidal excitation at 40 MHz, respectively.

The corresponding results for 30 MHz input signals are shown in Fig. 8.21.

8.2.8 Final Layout

Fig. 8.22 shows the final layout of the AC that computes the CT solution of the 1-D

wave equation. The total chip size of the AC is 2 mm × 2 mm (including the pad
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Figure 8.20: Obtained Cadence results from the CMOS AC when the system is
excited using (a) a GMC electric field (b) a sinusoidal signal at the left boundary
(left: 3-D view, right: top view). The center frequency of the signals are 40 MHz.
The right boundary is simulated as a Dirichlet boundary (fixed at the common mode
voltage).

frame). Each side of the layout (left and right) contains nine analog modules (right:

M1-M9; left: M10-M18). The SPI bus and the programming modules are laid out

between the two sets of modules. The AC also consists of separate circuit elements

(op-amps and APFs) that can be tested individually for their characteristics and

functionalities. The test circuits can also be used to check the operation of the SPI
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Figure 8.21: Obtained Cadence results from the CMOS AC when the system is
excited using (a) a GMC electric field (b) a sinusoidal signal at the left boundary
(left: 3-D view; right: top view). The center frequency of the signals are 30 MHz.
The right boundary is simulated as a Dirichlet boundary (fixed at the common mode
voltage).

interface, since these circuits are directly controlled by the SPI inputs. Furthermore,

we have included several test points inside the SPI interface for individual testing of

the SPI module. The selection of the boundary modules and the option of cascading

chips are controlled by four separate control signals (they are not controlled using

SPI signals). As a summary, the AC consists of 72 op-amps, 36 APFs, and 36 OTAs
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Figure 8.22: Final layout of the wave equation solving chip.

for the CT computation of the 1-D wave equation (4 op-amps, 2 APFs, and 2 OTAs

per module). The simulated power consumption is ∼200 mW.
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CHAPTER 9

MEASUREMENT SETUP AND CALIBRATION

We designed and implemented a software-programmable measurement setup to

program, calibrate, and evaluate the fabricated AC that computes the approximate

solution of the wave equation problem. It consists of the analog chip, FPGAs, ADCs,

DACs, microcontrollers, and off-the-shelf microwave components. All computations

were performed in the CT domain by using the special-purpose AC that inputs

and outputs signals via matched 50 Ω transmission lines. The chip micrograph

of the wave equation–solving AC is shown in Fig. 9.1. The 4 mm2 chip (2 mm2

of active area) consumes 200 mW of power. Input boundary boundary conditions

were generated inside an FPGA and supplied to the analog chip through a DAC

board. Computed analog solutions (computational outputs of the analog chip) are

routed back into the FPGA through a 16-input ADC board. Reconfiguration and

calibration commands were sent by an Atmel microcontroller. Bias voltages are

also supplied using a microcontroller through a 16-bit DAC. Variable gains, delays,

and bias voltages were first optimized through a series of calibration stages. For

the calibration, the simultaneous perturbation stochastic approximation (SPSA)

algorithm is used as the optimization technique [135,136]. Fig. 9.2 shows an overview

of the measurement setup. Each supporting instrument was connected to a computer

using Ethernet and universal serial bus (USB) connections. The computer was used

to configure control inputs, run calibration algorithms, and collect/analyze results.

9.1 Measurement Setup

This section provides a detailed description of the measurement setup that is used

to obtain measurements of the AC. A brief description of the FPGA designs that are

used to generate input data and capture solution outputs are also provided. This
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Figure 9.1: Die micrograph (die size: 4 mm2, active area: 2 mm2). Each side of
the analog chip (left and right) consists of nine analog modules (right: M1-M9; left:
M10-M18). The SPI bus and the programming modules are laid out in between
the two sets of modules. The AC consumes 200 mW of power and consists of 72
op-amps, 36 APFs, and 36 OTAs for the CT computation of the 1-D wave equation
(4 op-amps, 2 APFs, and 2 OTAs per module).

section also discusses the initial test measurements that were used to characterize

the chip.
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Figure 9.2: Overview of the designed analog-digital hybrid computing architecture.

9.1.1 Evaluation Board

A custom PCB was designed to test and evaluate the analog computing chip. The

evaluation board is shown in Fig. 9.3, which is fully populated with circuit compo-

nents. EAGLE PCB design software is used to design the board layout. The board

consists of four layers. The top layer routes most of the data signals, whereas the

second, third, and fourth layers serve as ground, power and ground layers, respec-

tively (Appendix 11.2 shows the layout and the schematic of the evaluation board).

The analog chip at the center of the board connects all inputs and outputs via

matched 50 Ω transmission lines. Here, we used U.FL connectors to connect the
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evaluation board to the external circuits (ADCs and DACs). Hirose U.FL connec-

tors are convenient miniaturized replacements for SMAs and they reduce the size of

the board and the lengths of the input/output transmission lines. Off-chip op-amp

buffers were used in between the chip outputs and the U.FL connectors in order to

isolate the chip outputs from the external circuits (ADCs and the oscilloscope). Off-

the-chip buffers ensure that the chip would not be loaded by large capacitive loads.

Bias voltages were supplied through voltage regulators followed by potentiometers.

Each bias voltage was connected to the chip through a pin header, such that the bias

voltages could be easily disconnected from the chip if needed. The pin headers are

also important to drive the bias voltages directly using external power supplies such

as DACs. Reconfiguration and calibration SPI commands were sent by an Atmel

microcontroller. Three dip switches were used to configure different boundary con-

ditions (radiation boundary, Dirichlet boundary, and Neumann boundary) as well

as the selection of the two cascading chips.

An infrared reflow oven was used with a soldering stencil to populate the eval-

uation board. The use of a soldering stencil made it easier to solder tiny surface

mount devices (SMDs). When soldering, it is important to make sure that all the

pads of the SMDs are lined up with the stencil before pasting any solder as well as

to ensure that the stencil does not move when pasting the solder. Surface mount

components were carefully placed using a tweezer, and a BestEquip T962 reflow

oven was used to melt the solder. Fig. 9.3 shows an image of the soldered board

(including through-hole components).

After soldering, the components were visually inspected using a digital micro-

scope. Bad connections were resoldered to improve the soldering condition. A

multimeter was then used to confirm the connectivity throughout the PCB. Finally,
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Figure 9.3: The custom-designed PCB used to test and evaluate the chip.

all power regulators and potentiometers had been checked for expected outputs by

supplying a direct current voltage and probing each output using a multimeter.

9.1.2 Programming/calibration Data

An SPI interface with an additional control wire is used to program and calibrate the

analog chip. The proposed programming/calibration interface consists of four wires

(clk, data, store, program), which transfers data serially. The data bit-stream

consists of 18 control words. Each control word is 30 bits wide. One word is used

to configure the capacitor and the resistor DACs in a single module (in the analog

chip). The first 5 bits of the control word represents the address of the module

that needs to be configured. Each module has a unique 5-bit address starting from

00001 and ending at 10010. If the address of the module and the first 5 bits of the
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Figure 9.4: Captured oscilloscope data from the SPI interface (shows when the
control word is for module 5).

control word match, then the rest of the programming data (the remaining 25 bits)

are used to program the specific module. The structure of the 25 programming bits

is as follows:

• Bits 0–11: For capacitor DACs to control the gains of the summing op-amp.

• Bits 12–16: For resistor DAC of the subtractor to control the gain of the

all-pass filter.

• Bits 17–20: For resistor DAC of the all-pass filter to control the group delay

of the all-pass filter.

• Bits 21–24: For capacitor DACs to control one of the gains of the summing

op-amp.

The programming/calibration bitstream was generated using an Atmel microcon-

troller (an Arduino board). They were transferred to the evaluation board through

the SPI interface of the Arduino board. The built-in SPI library of the Arduino

programming language was used to generate data and clk bitstreams. Two control
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signals store and program, that are required to store and program the control

word, were generated separately by configuring two general-purpose input/output

pins. Four wires were first observed using an oscilloscope to confirm the generation

of the correct bitstreams. Fig. 9.4 shows an oscilloscope image that captures the

generated SPI control word for Module 5 (module address 00101). Note that the 3

V outputs from the Arduino board were level shifted to 1.8 V prior to being fed to

the chip. These data were captured at the outputs of the on-board level shifters.

9.1.3 Current-voltage Curves of the On-chip Current

Sources/sinks

Three pairs of nmos/pmos current sinks/sources (diode-connected transistors) have

been placed in three different corners inside the chip. During the initial testing of the

analog chip, its current-voltage (I-V) characteristics can be used to characterize the

fabrication variations inside the chip (to estimate transistor process corners). The

bias voltages (gate voltage of current sinking or sourcing transistors) that correspond

to the given bias currents have been measured using a source meter. Figs. 9.5 (a) and

(b) show the measured I-V curves of the NMOS current sinks and PMOS current

sources, respectively. Here, the drain current varies between 5 uA and 120 uA. Based

on the measurements, all three pairs of transistors have similar I-V characteristics

(PMOS-1 is slightly different). This data is compared with the simulation results

to adjust the bias voltages such that the required current is applied through the

transistors. The corresponding simulated I-V curves are shown in purple in this

figure. It is noticed that the measured gate voltages of the PMOS current sources

vary by ∼50 - 75 mV as compared to the voltages in the schematic-level simulations.
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Figure 9.5: Measured I-V curves of the (a) NMOS current sinks and (b) PMOS
current sources. Corresponding simulated I-V curves are shown in purple.

This difference was taken into consideration when biasing PMOS transistors in the

circuit.

9.1.4 Initial Testing

In the initial tests, the chip was powered up using all bias voltages (based on the

measured and simulated IV results). The chip draws about 115 mA of current,

which is the expected value. Next, the direct current voltages at each output were

checked and were found to be near the expected voltage of 900 mV. Two test points

inside the chip were selected to evaluate how well the SPI interface functions for

different control/calibration inputs: i) at the shift register and ii) at the input of the

programmer. The correct functionality of the SPI interface was confirmed by probing

the test point outputs and capturing them using an oscilloscope. Furthermore,

two separate all-pass filers and one op-amp were selected to test and evaluate the

functionality of the basic building blocks of the wave equation solver. APFs were

tested by exciting them using sinusoidal signals. A signal generator was used to

input the signals to the chip, and the outputs are captured using an oscilloscope.
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Figure 9.6: (a) ROACH-2 hardware platform with ADC connected. MATLAB
Simulink-based digital designs that were used to (b) to generate boundary conditions
and input excitations and (c) capture computed analog solutions.

The tunability of the APF in terms of the gain and group delay of the all-pass filter

was verified by changing the resistor values of the resistor DACs. This was another

test that was used to verify the functionality of the SPI programming interface.

9.1.5 Digital FPGA Designs

Digital architectures were designed to generate required boundary excitations and

to capture computed analog waveforms. They were designed in the MATLAB en-

vironment using the Xilinx system generator (XSG). The designs were targeted to

realize on Reconfigurable Open Architecture Computing Hardware-2 (ROACH-2)

FPGA platform.

ROACH-2 is an open-source FPGA platform designed in Cape Town, South

Africa, together with collaborators from the Collaboration for Astronomy Signal

Processing and Electronics Research (CASPER) as part of the Square Kilometer
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Array (SKA) radio telescope project. The core processing module of ROACH-2 is a

Xilinx Virtex-6 sx475t FPGA (XC6VSX475T-1FFG1759C) chip, equipped with on-

board inter-FPGA links interfaced with 10Gb Ethernet interfaces using SFP+ mez-

zanine cards for all cross-FPGA communications. Key peripherals of a ROACH-2

consists of two multi-gigabit transceiver card slots supporting 4x10Ge links (SFP+),

four 72Mb QDR II+ SRAMs and a 72-bit DDR3 RDIMM slot connected to the

FPGA along with two ZDok+ interfaces supporting a high-speed DAC/ADC. A

wide range of ADC boards are available that can be interfaced with ROACH-2 that

have 1, 4, 8 and 16 ADCs with sampling rates up to 240, 480 and 960 MHz per

output. Fig. 9.6 (a) shows the ROACH-2 board that we used to realize digital

architectures.

Figs. 9.6(b) and 9.6(c) show the digital architectures that we designed to gener-

ate the input excitations and capture computed solutions, respectively. The former

creates a predefined digital signal inside the FPGA and converts it to its analog

counterpart using the CASPER - DAC2x1000-16 DAC, which supports 16-bit ac-

curacy at a maximum clock frequency of 1 GHz. The proposed FPGA architecture

was designed such that the amplitude and the frequency of the generated signal are

able to vary on the fly. The design is also able to configure the duration of the sig-

nal. The Simulink design shown in Fig. 9.6(c) utilizes the CASPER - ADC16x250-8

ADC to capture computed analog solutions. This ADC card supports 16 channels

with 8-bit accuracy. The ROACH-2 FPGA supports two such ADC cards. Thus,

the ROACH-2 supports a total of 32 channels, which are capable of operating at

a maximum frequency of 230 MHz. The captured digital data was stored using an

array of block random access memories (RAMs), which was then transferred to the

computer through an Ethernet connection (for post-processing).
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9.1.6 Software-programmable Test Bench

A software programmable test bench was designed and implemented using FPGAs,

ADCs, DACs, and microcontrollers such that the analog chip can be easily pro-

grammed, calibrated, tested and evaluated for its functionality. Each of the sup-

porting instruments was accessible through a network connection and could be pro-

grammed from a single computer. A set of MATLAB, C++ and Python scripts

was used to communicate with each instrument (and program). Fig. 9.7 shows the

corresponding analog-digital hybrid computational platform that has been designed

using the analog chip and the ROACH-2 FPGA platforms.

All computations were performed in the CT domain by using the analog chip

that inputs and outputs signals via 50 Ω transmission lines. U.FL connectors were

used to connect the board with ADCs and DACs. Input excitations and boundary

conditions were generated inside an FPGA and supplied to the analog chip through

the DAC board. Computed analog solutions (computational outputs of the analog

chip) were routed back into the FPGA through the ADC board. Both ADC and

DAC boards were programmed and controlled using Python scripts. Bias voltages

were supplied through voltage regulators followed by potentiometers. During the

calibration, they were supplied using an eight-channel DAC board, which was con-

trolled by a microcontroller (via an I2C interface). Reconfiguration and calibration

SPI commands were also sent by an Atmel microcontroller. MATLAB and C++

scripts were used to communicate with the microcontrollers.

9.2 Calibration

The calibration of the AC is an important factor to improve the accuracy of the

computation. Thus, several calibration steps have been employed. The calibration
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Figure 9.7: The analog-digital hybrid computational platform that used to test the analog wave equation solving
chip.
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was performed when the right boundary of the spatial grid was realized with a

radiation boundary condition. The SPSA algorithm was utilized as the optimization

algorithm for most of the stages, where the objective function (or loss function) of

the optimization algorithm was selected as the expectation of noise-to-signal energy

ratio E (γ) [135,136]. This method does not require information about the gradient

of the objective function. Instead, it approximates the gradient using objective

function measurements. The SPSA method only requires two measurements per

iteration (regardless of the dimension of the problem) to estimate the gradient of

the objective function [135, 136]. This was one reason to select the SPSA method

over other stochastic methods, as those methods require 2p number of measurements

for a p-dimensional problem.

9.2.1 SPSA Optimization Algorithm

The SPSA is a recursive optimization algorithm that relies only on measurements

of the objective function to be optimized, and not on direct measurements of the

gradient (derivative) of the objective function [135,136]. Thus, the SPSA algorithm

does not require information about the relationship between the objective function

and the parameters to be optimized. This is important for complex optimization

problems that contain a large number of parameters to optimized. This method ap-

proximates the gradient of the objective function using two measurements around

the current parameter values. More importantly, the number of measurements does

not increase with the dimension of the optimization problem as in other stochastic

optimization algorithms [135, 136]. The finite difference stochastic approximation

(FDSA) algorithm (most common stochastic method) requires 2p number of mea-

surements to estimate the gradient of a p-dimensional system [137]. In the SPSA
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method, the two measurements are obtained by simultaneously perturbing all of

the parameters. Note that this simultaneous variation is performed in a “proper”

random fashion. The SPSA algorithm is capable of working with measurements of

the objective function that are corrupted by noise. In addition, it should be noted

that the loss function of the SPSA algorithm does not uniformly decrease as the

iteration process proceeds, which is a common feature of all stochastic algorithms.

However, the algorithm iteratively minimizes the objective function (on average).

All these important and practical features of the SPSA algorithm were taken into

consideration when selecting an optimization method for the calibration.

Consider an optimization problem that minimizes the (scalar) differentiable loss

function L(θ), where θ is a p-dimensional vector that consists of all parameters to

be optimized. The following is a step-by-step procedure of the SPSA algorithm that

iteratively produces a sequence of estimates [135, 136].

• Step 1: Initialization and coefficient selection: Initialize the parameter

vector θ̂0 (where θ̂0 is the intial estimate of θ). Pick non-negative coefficients

a, c, A, α, and β for the SPSA gain sequences ak = a
(A+k+1)α

and ck = c

(k+1)β
.

The accurate selection of ak and ck are important for the performance of the

SPSA algorithm. The reference [135] provides some guidance on picking these

coefficients.

• Step 2: Generation of the simultaneous perturbation vector: Gen-

erate a p−dimensional random perturbation vector ∆k using a Bernoulli±1

distribution with a probability of 0.5.

• Step 3: Loss function evaluations: Obtain two measurements of L (θ)

around the current parameter set θ̂k (at θ̂k + ck∆k and θ̂k − ck∆k).
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• Step 4: Gradient approximation: Approximate the gradient of the objec-

tive function by using the following equation:

ĝk

(

θ̂k

)

=
L
(

θ̂k + ck∆k

)

− L
(

θ̂k − ck∆k

)

2ck
.∆k. (9.1)

• Step 5: Updating θ estimate: Estimate the parameter vector θ̂k+1 as

θ̂k+1 = θ̂k − akĝk

(

θ̂k

)

. (9.2)

• Step 6: Iteration or termination: Return to Step 2 if the iteration pro-

gresses. If not, terminate the process.

9.2.2 Calibration of the Analog Computer

Each module of the AC consists of four 4-bit resistor DACs (to control the gains of

the summing op-amp), one 5-bit resistor DAC that controls the gain of the APFs,

and one 4-bit DAC that tunes the group delay of the APFs. Additionally, there

are seven bias voltages common to each module. Thus, the AC has 115 parameters

(6×18+7) in total for calibration. As the initial step of the calibration process, opti-

mum values for high sensitivity variables were determined, while all other variables

were fixed. The gain and the group delay of the APFs were identified as the most

sensitive variables of the objective function E (γ). Here, the optimum values were

found out using an exhaustive search. The objective function was recorded for all

possible DAC configurations (a 2-D plot). There are 512 different configurations

based on the two resistor DACs (4-bit and 5-bit). Here, the same DAC values were

used for each module (in all 18 modules) when recording the measurements for a

particular configuration. Optimum resistor DAC values were selected based on the

minimum value of E (γ) in the 2-D space.
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Figure 9.8: A series of calibration steps have been employed to improve the accu-
racy of the computation (expected value of noise-to-signal energy ratio). Here, the
SPSA algorithm is used to find the optimized bias voltage values, while keeping the
programmable gains constant. (a)-(g) The variation of the bias voltage with each
iteration. (h) The loss function (expectation of the noise-to-signal energy ratio)
reduces from -6dB to 10dB in 100 iterations.

As the second step, the bias voltages (there are a total of seven bias voltages)

were optimized while keeping the gains and the group delays constant. Here, highly

sensitive variables were fixed at the values that were determined in the previous

stage. The bias voltages were supplied to the chip using an 8-channel 16-bit DAC

(AD5669), which is controlled using a microcontroller (through an I2C interface).

Since this is a 7-dimensional problem, the SPSA algorithm is utilized for the cali-

bration. Here, the bias voltages were considered as continuously varying variables,

even though they were programmed using a DAC. This assumption is valid, since

the step size of the DAC is 0.0000763 V. The flow diagram of the calibration pro-
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Figure 9.9: Measurement results obtained at several stages of the SPSA-based cal-
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cess that optimizes the bias voltages is shown in Fig. 9.8 (a). The process starts

by setting the bias voltages at initial values θ̂0 (note that θ̂0 is a vector with seven

voltage values). Here, the simulated bias voltages were used as the initial condi-

tions. In each iteration k, the gradient of the loss function was approximated by

taking two measurements of the objective function. Two measurements were taken

by perturbing the bias voltages around the current values (θ̂k+ck∆k and θ̂k−ck∆k),

where θ̂k is the current set of bias voltages. Here, ck is a small positive constant that

becomes smaller as the iteration number becomes larger, and ∆k is a 7-dimensional

random vector with ±1 (Bernoulli distribution with probability of 0.5). The two

measurements were obtained by exciting the left boundary using a sinusoidal sig-

nal, capturing the computed solutions using ADCs, and comparing them with the

FDTD solutions in MATLAB. The estimate of θ̂k+1 was obtained using the standard

stochastic approximation form θ̂k+1 = θ̂k − akĝk

(

θ̂k

)

, where ak and ĝk

(

θ̂k

)

are a

positive constant and the approximated gradient of the loss function, respectively.

Fig. 9.8 shows the results obtained as the bias voltages are being calibrated using

the SPSA algorithm. Figs. 9.8 (a)-(g) show the variation of the bias voltages with

each iteration. The process ran for 100 iterations. The loss function (expectation

of the noise-to-signal energy ratio) reduces from -6dB to -10dB in 100 iterations

(see Fig. 9.8 (h)). Fig. 9.9 shows how the measurements improve as the process

progresses. In an absorbing (radiation) boundary, the waves propagating in the

medium should not have any reflection from the boundary. Also, the signal ampli-

tude at each spatial point should be constant (over the spatial dimension). Figs. 9.9

(a) - (h) correspond to the measurements captured at iterations 1, 10, 20, 30, 40,

50, 60, and 70, respectively.

As the next step, the variable gains of the IMs were calibrated. Here, the same

gain values were assigned for the corresponding DACs at each module. Finally, the
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gain values of the radiation boundary module were calibrated. The calibrated AC

was then used to obtain the measurements for different boundary conditions.
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CHAPTER 10

MEASUREMENTS, COMPARISON, AND SPEED-UP RESULTS

Following the calibration, the measurement setup has been utilized to capture the

results from the AC for different wave propagation scenarios (different boundary

conditions). The captured results were then compared with the MATLAB-based

FDTD solver (the corresponding FDTD results are also shown). The metrics for

the mean squared difference (MSD) and noise-to-signal energy ratio γ are utilized

for the comparison. Two analog chips were tested to verify the consistency of the

measurements. The power consumption, chip area, and the analog bandwidth of the

AC were then compared with ACs that were reported in the literature. The ACs

proposed in [8–11] were capable of solving PDEs using integrator-based signal flow

graphs. However, their Fcompute for the CT operations were limited to 20 kHz–

25 kHz. The reported Fcompute of our special-purpose AC is 30 MHz (with an

equivalent update rate of 625 MHz).

The comparison metrics Fcompute/Area and Fcompute/power were then estimated

for each AC (assuming they were solving the 1-D wave equation). These two metrics

are good estimates on the achievable analog bandwidths of the ACs for a given area

and a power constraint. The combination of the power and area requirements for

a particular analog bandwidth was compared using Fcompute/(area*power) metrics.

The speed-up of our AC was estimated by comparing the computation times of

FDTD solvers to run on a CPU (two Intel Xeon Silver 4110 CPUs @ 2.10 GHz

with 8 cores and 256 GB of RAM). Two FDTD solvers were implemented on the

CPU (based on MATLAB and C++). Furthermore, a digital FDTD solver was

implemented on an FPGA (Xilinx RF system on chip xczu29dr-ffvf1760) to compare

its computation speed with our AC.

166



0 5 10

Space (m)

0

1

2

3

T
im

e
 (

s
)

10
-7

10

Space (m)

5

-0.1

3

10
-7

Time (s)

2
1 00

0E
z

0.1

0 5 10

Space (m)

0

1

2

3

T
im

e
 (

s
)

10
-7

10

Space (m)

5

-0.1

3

10
-7

Time (s)

2
1 00

0E
z

0.1

0 1 2 3

Time (s) 10
-7

-0.1

-0.05

0

0.05

0.1

V
o
lt
a
g
e
 (

V
)

0 5 10

Space (m)

0

1

2

3

T
im

e
 (

s
)

10
-7

10

Space (m)

5

-0.1

3

Time (s)
10

-7 2
1 00

0E
z

0.1

0 5 10

Space (m)

0

0.5

1

1.5

M
S

D
i

10
-3

-25

-20

-15

-10

-5

0

i
0 2 4 6 8 10

Space (m)

0

1

2

3

4

M
S

D
i

10
-4

-25

-20

-15

-10

i

Comparison results

Input excitation at the left boundary

M
ea

su
re

m
en

ts
 (

ch
ip

 1
)

M
ea

su
re

m
en

ts
 (

ch
ip

 2
)

Comparison results

3−D view Top view

(c)

(f)

(g) (h) (i)

(d)

(a) (b)

(e)
M

A
T

LA
B

 F
D

T
D

γ
i
[d
B
]

γ
i
[d
B
]

F
igu

re
10.1:

(a)
T
h
e
fi
rst

m
o
d
u
le

of
th
e
A
C

(left
b
ou

n
d
ary

)
is

ex
cited

u
sin

g
a

sin
u
soid

al
p
u
lse

at
30

M
H
z.

T
h
e
righ

t
b
ou

n
d
ary

is
realized

as
a
rad

iation
b
ou

n
d
ary.

(b
-c)

S
im

u
lation

resu
lts

ob
tain

ed
from

th
e
M
A
T
L
A
B

F
D
T
D

solver
for

th
e
sam

e
in
p
u
t.

(e-f)
M
easu

rem
en
t
resu

lts
ob

tain
ed

from
ch
ip
1.

(h
-i)

M
easu

rem
en
t
resu

lts
ob

tain
ed

from
ch
ip
1.

(d
)
an

d
(g)

th
e
corresp

on
d
in
g
com

p
arison

of
resu

lts
w
ith

th
e

M
A
T
L
A
B

F
D
T
D

solver.

167



At the beginning of the sinusoidal pulse
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Figure 10.2: The left boundary (first module of the AC) is excited using a sinusoidal
pulse at 30 MHz. The right boundary is realized as a radiation boundary. (a)-
(c) Measurements obtained from the AC (which begins capturing data just before
exiting the left boundary). (b)-(d) Simulation results obtained from the MATLAB
FDTD solver. (e) Comparison of results with the MATLAB FDTD solver.

10.1 Measurements for the Analog Computer

Fig. 10.1 shows the measurement results obtained from the calibrated analog chips.

Two chips were tested. The first module of the AC, which corresponds to the

left boundary of the spatial grid, was excited using a 30 MHz sinusoidal signal (as

shown in Fig. 10.1 (a)) representing an electric field of 30 MHz. The right boundary

(i = 17) was programmed as a radiation boundary. The output voltages for all

modules were captured, which correspond to the electric fields at each spatial point.

Figs. 10.1(e-f) and (h-i) show the corresponding space-time variation (3-D and top

views) for chip1 and chip2, respectively. The results from the MATLAB FDTD
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At the end of the sinusoidal pulse
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Figure 10.3: The left boundary is excited using a sinusoidal pulse at 30 MHz. The
right boundary is realized as a radiation boundary. (a)-(c) Measurements obtained
from the AC (which stopped capturing results just after removing the exitation
signal). (b)-(d) Simulation results obtained from the MATLAB FDTD solver. (e)
Comparison of results with those of the MATLAB FDTD solver.

simulations are shown in Figs. 10.1(b) and 10.1(c) for the same excitation input at

the left boundary (and an absorbing boundary at the right edge of the spatial grid).

In order to compare the captured solutions with the MATLAB-based FDTD solvers,

the measurements at each spatial point were first interpolated with a time-step of 1.6

ns (the same as the FDTD time-step) using the MATLAB interp1 function and the

spline interpolation method. The interpolated data were then compared with the

FDTD solutions. Figs. 10.1(d) and 10.1(g) show the comparison between the two

results (MSD and signal-to-noise ratio γ) for chip1 and chip2, respectively. Based

on the measured results, the AC is capable of computing the solution to the wave
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Figure 10.4: The left boundary is excited using a sinusoidal pulse at 30 MHz. The
right boundary is realized as a Dirichlet boundary. (a, c) Measurements obtained
from the analog solver. (b, d) Simulation results obtained from the MATLAB FDTD
solver. (e) Comparison of results with those of the MATLAB FDTD solver.

equation with a difference less than -10 dB in terms of γ. The mean square error

percentage of the AC is 1%–10% (depending on the spatial location).

Fig. 10.2 and Fig. 10.3 show the measurement results obtained at the beginning

and the end of the excitation sinusoidal pulse, respectively. Here, only chip1 mea-

surements are provided. In Fig. 10.2, we started the capturing process just before

the boundary excitation was applied to the left boundary. Figs. 10.2(a) and (c) show

the 3-D view and the top view of the measured results, respectively. Fig. 10.2(b)

and Fig. 10.2(d) show the corresponding results for the MATLAB FDTD solver for

the same excitation input. Fig. 10.2(e) compares the measured results to the sim-

ulation results in terms of MSD and γ, which also shows a 1%-10% mean squared
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Figure 10.5: The left boundary is excited using a sinusoidal pulse at 30 MHz. The
right boundary is realized as a Neumann boundary. (a, c) Measurements obtained
from the analog solver. (b, d) Simulation results obtained from the MATLAB FDTD
solver. (e) Comparison of results with those of the MATLAB FDTD solver.

error percentage as similar to the previous measurements. Fig. 10.3 shows the cor-

responding measurement results that were captured at the end of the boundary

excitation signal. The accuracy of the CT computation is similar to the previous

measurements.

Dirichlet Boundary: Fig. 10.4 shows the measurement and MATLAB simulation

results obtained when the right boundary (i = 17) was programmed as a Dirichlet

boundary (fixed boundary). Here, the left boundary was excited using a sinusoidal

voltage signal at 30 MHz. Fig. 10.4(a) and Fig. 10.4(c) show the 3-D view and

the top view of the measured results, respectively. Figs. 10.4(b) and (d) show the

corresponding results from the MATLAB FDTD solver. Fig. 10.4(e) compares the
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Figure 10.6: The left boundary is excited using a sinusoidal pulse at 20 MHz. The
right boundary is realized as a radiation boundary. (a, c) Measurements obtained
from the analog solver. (b, d) Simulation results obtained from the MATLAB FDTD
solver. (e) Comparison of results with those of the MATLAB FDTD solver.

measured results to the simulation results in terms of MSE and γ. The accuracy of

the computation can be improved by further calibrating the AC with the Dirichlet

boundary.

Neumann Boundary: Fig. 10.5 shows the measurement and MATLAB simulation

results obtained when the right boundary was programmed as a Neumann boundary

(soft boundary). The left boundary was excited using the same sinusoidal signal at

30 MHz (representing an electric field at 30 MHz). Fig. 10.5(a) and Fig. 10.5(c) show

the 3-D view and the top view of the measured results, respectively. Figs. 10.5(b)

and (d) show the corresponding results for MATLAB FDTD solver. Fig. 10.5(e)

compares the measured results versus the simulation results in terms of MSE and
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Figure 10.7: The left boundary is excited using a sinusoidal pulse at 20 MHz. The
right boundary is realized as a Dirichlet boundary. (a) and (c), Measurements
obtained from the analog solver. (b) and (d), Simulation results obtained from the
MATLAB FDTD solver. (e) Comparison results with the MATLAB FDTD solver.

γ. The accuracy of the computation can be improved by further calibrating the AC

with the Neumann boundary.

Radiation Boundary, 20 MHz Input: Fig. 10.6 shows the measurement and

MATLAB simulation results obtained when the left boundary was excited using a

sinusoidal voltage signal at 20 MHz (representing an electric field at 20 MHz). Here,

the right boundary was realized as a radiation boundary. Figs. 10.6(a) and (c) show

the 3-D view and the top view of the measured results, respectively. Figs. 10.6(b)

and (d) show the corresponding results for MATLAB FDTD solver. Fig. 10.6(e)

provides the comparison results (in terms of MSE and γ), which shows a 1%–20%

mean squared error percentage.
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Dirichlet Boundary, 20 MHz Input: Fig. 10.7 shows the measurement and

MATLAB simulation results obtained when the right boundary was programmed

as a Dirichlet boundary. The left boundary was excited using a sinusoidal voltage

signal at 20 MHz. Figs. 10.7(a) and Fig. 10.7(c) show the 3-D view and the top view

of the measured results, respectively. Figs. 10.7(b) and (d) show the corresponding

results for MATLAB FDTD solver. Fig. 10.7(e) shows the comparison results.

10.2 Comparison with Results of Previous Work

With Moore’s law slowing down, analog and analog-digital hybrid computing plat-

forms realized using scaled CMOS are becoming attractive for complex computations

and simulations [7,12–18]. Columbia University’s prototype analog accelerators are

recent examples of energy-efficient hybrid computers that accelerate ODE- and PDE-

based computations [7–11]. The reported ACs represent the variables using differ-

ential currents, whereas the proposed AC represents electric fields using voltages.

The two ACs reported in [8–11] are capable of solving PDEs using integrator-based

signal flow graphs (using integrators, multipliers/VGAs, and fanouts). The AC

in [10, 11] contains 80 integrators, 80 multipliers/VGAs, and 160 fanouts such that

it can be configured to solve different problems. The chip reported in [8, 9] is an

improvement over the one reported in [10, 11], which consists of four integrators,

eight multipliers/VGAs, eight fanouts with additional programmable circuits. Both

these ACs are general-purpose AC that can be configured to solve different problems

as required. In addition, they are capable of solving nonlinear systems of equations.

Table 10.1 shows the performance summary of our AC and the corresponding

metrics of the previous works reported in [8–11]. Here, the ACs in [8,9] and [10,11]

are denoted as AC1 and AC2, respectively. Our AC consists of 72 op-amps, 36 APFs,
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Table 10.1: Performance comparison with the previous work report in [8–11] . Here, the ACs in [8, 9] and [10, 11] are
denoted as AC1 and AC2, respectively.

Our chip AC1 [8, 9] AC2 [10, 11]
Supply voltage 1.8 V 1.2 V 2.5 V
Technology TSMC 0.18 µm TSMC 65 nm TSMC 0.25 µm
Fcompute (analog bandwidth) 30 MHz 20 kHz 25 kHz
Fmax = 1/τ (equivalent
update rate)

625 MHz Not available Not available

Die size 4 mm2 3.8 mm2 Not available
Active area (estimate: including
circuits used for testing and
programming)

2 mm2 2 mm2 100 mm2

Power consumption 200 mW 1.2 mW 300 mW
Programming interface SPI SPI Non-standard
Number of analog inputs 2 4 64
Number of analog outputs 17 4 64
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and 36 OTAs (four op-amps, two APFs, and two OTAs per module). The 4mm2

chip (including the pad frame) consumes 200 mW of power. The analog bandwidth

Fcompute of our AC is 30 MHz, whereas the analog bandwidths of the AC1 and AC2

are 20 kHz and 25 kHz, respectively. Note that the PD compensation technique

used in our AC is the key to achieve a higher bandwidth, which is challenging in

integrator-based methods employed in [8–11]. The equivalent update rate of our

AC is 625 MHz. Such a metric is not defined for AC1 and AC2. Even though the

active area of our AC and AC1 are the same (2 mm2), the power consumption of

AC1 is only 1.2 mW (compared to the 200 mW of our AC). Low power consumption

was achieved in AC1 by biasing most of the transistors in the sub-threshold region,

whereas most of the transistors in our AC was biased in the saturation region (except

the OTAs). A standard SPI interface was utilized in AC1 for programming (which

is similar to our AC), whereas AC2 was programmed using a non-standard interface.

Based on the results reported in [8–11], the power and area consumption of a sin-

gle module in an analog wave equation solver has been estimated and compared with

a single module of our AC. The corresponding module (in AC1 and AC2) requires

two integrators, two fanouts, and one VGA. Table 10.2 shows the corresponding

power and area results. The area of a single module of our AC is 0.09 mm2 and

it consumes 10.10 mW of power. The metrics Fcompute/area, Fcompute/power, and

Fcompute/(area*power) are utilized to compare the area and power results of the ACs.

These metrics are good estimates on the achievable analog bandwidths of the ACs for

a given area and a power constraint. The results show that our AC is 2560×, 24×,

and 44× better in Fcompute/area, Fcompute/power, and Fcompute/(area*power) metrics,

respectively, when compared with the results in [8, 9]. The comparison results for

AC2 show 6660×, 290×, 1650× improvement in Fcompute/area, Fcompute/power, and

Fcompute/(area*power) metrics, respectively.
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Table 10.2: The power and area consumption of a single module of the wave equation solver (when realized using our AC,
AC1, and AC2). The performance metrics Fcompute/Area, Fcompute/Power, and Fcompute/(Area*Power) are presented for
comparison.

Our chip AC1 [8, 9] AC2 [10, 11]

Active area for 1 module
of the 1-D wave equation
solver (estimate)

0.09 mm2 0.16 mm2 (1) 0.58 mm2 (2)

Fcompute/Area 333 MHz/mm2 0.13 Hz/mm2 0.05 MHz/mm2

Power consumption for
1 module of the 1-D wave
equation solver (estimate)

10.10 mW 0.17 mW (3) 2 mW (4)

Fcompute/Power 2.9 MHz/mW 0.12 Hz/mW 0.01 MHz/mW

Fcompute/(Area*Power) 33 MHz/(mW.mm2) 0.74 MHz/(mW.mm2) 0.02 MHz/(mW.mm2)

(1) The results presented in Table II in [9] are used for the estimation.
(2) Fig. 3 in [10] and results presented in Table IV in [8] are used for the estimation.
(3) Results presented in Table III in [8] and Table II in [9] are used for the estimation.
(4) The results presented in Table IV in [8] are used for the estimation. The power consumption of the non-linear blocks
in one macro in [10] is assumed as 40% (60% for all other blocks). The power consumption ratios of the integrator, VGA,
and the fanout are assumed as same as the results presented in Table II in [9].
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Table 10.3: Speedup comparison with MATLAB- and C-based FDTD solvers run-
ning or a CPU.

Input signal is 30 MHz
sinusoidal signal with
a sample period of 1.6 ns

Our chip

Computer with two Intel Xeon
Silver 4110 CPU @ 2.10GHz, 8 Core(s),
and 256 GB of RAM
FDTD MATLAB code FDTD C code1

Time to simulate
1 ms of physical time

1 ms 99.1 ms 26.3 ms

Time to simulate
10 ms of physical time

10 ms 984 ms 261 ms

Time to simulate
100 ms of physical time

100 ms 10075 ms 2506 ms

Time to simulate
1000 ms of physical time

1000 ms 101589 ms 27009 ms

Average speedup 100× 26×

10.3 Estimated Speed-up of the Analog Computer

To compare speed-up against modern DCs, the execution times that the FDTD

solvers take to simulate 1 ms, 10 ms, 100 ms, and 1000 ms of input waves were

recorded when each AC/DC solver was excited using a 30 MHz sinusoidal signal with

a time step of 1.6 ns. The radiation condition was configured at the right boundary.

The FDTD solvers were implemented using MATLAB and C were executed on a

computer that has two Intel Xeon Silver 4110 CPU @ 2.10GHz, 8 Core(s), resulting

in 16 logical processors and is equipped with 256 GB of RAM. All the parameters

were selected based on the analog solver (for a fair comparison). Corresponding

results are shown in Table 10.3. The AC computes the solutions of the wave equation

in real-time, whereas CPUs take many clock cycles to compute a single temporal

frame of the update equation. The estimated speedup of the analog solver is about

100× and 26× compared to the MATLAB- and C-based FDTD solvers, respectively.

Furthermore, an FPGA-based FDTD solver was implemented on a Xilinx RF

system on chip (SoC) (xczu29dr-ffvf1760) using the ZCU1275 board. The digital
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Oscilloscope

Xilinx RFSoC

RF baluns

ZCU1275 board

Figure 10.8: A digital hardware FDTD solver is implemented on Xilinx RFSoC
(xczu29dr-ffvf1760) using the ZCU1275 board (clocked at a maximum frequency
of 222 MHz). The left boundary is excited using a signal generator which is then
digitized using an ADC. All the outputs are converted to the analog domain using
the 16-channel DAC. Four analog outputs are captured using the oscilloscope.

design was implemented in MATLAB Simulink using the Xilinx system generator.

The FDTD solver was then integrated with ADCs to excite the system using analog

inputs and DACs to capture the outputs on an oscilloscope. The Vivado IP integra-

tor was used to design the complete system and generate the bitstream to program

the RFSoC. The maximum frequency of the design is 222 MHz. The dynamic power
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Table 10.4: Speedup comparison with FPGA-based FDTD solvers running on RF-
SoC (ZCU1275 evaluation board)

Input signal is 30 MHz
sinusoidal signal with
a sample period of 1.6 ns

Our
chip

FDTD
FPGA design
running on
xczu29dr-ffvf1760
RFSoC
@222 MHz

Time to simulate 1 ms
of physical time

1 ms 2.8 ms

Time to simulate 10 ms
of physical time

10 ms 28 ms

Time to simulate 100 ms
of physical time

100 ms 280 ms

Time to simulate 1000 ms
of physical time

1000 ms 2800 ms

Average
speedup

2.8×
Fcompute/Power 0.15 MHz/mW 0.01 MHz/mW

consumption is about 900 mW (excluding ADC and DACs). Fig. 10.8 shows the

experiment setup of the FPGA-based FDTD solver. The left boundary of the spa-

tial grid was excited using an analog signal generated from a signal generator via

ADC. The computed 16 outputs were taken back into the analog domain using a

16-channel DAC running at 800 MHz. Four outputs are shown in the oscilloscope.

Similar to the CPU-based FDTD solvers, the times taken to simulate 1 ms, 10 ms,

100 ms, and 1000 ms of the physical time of a 30 MHz signal were recorded. The

corresponding results are shown in Table 10.4. The speedup of the 180 nm CMOS

AC is 2.8× at 200 mW. Based on the power results, our AC is 15 times better

in terms of the Fcompute/Power metric, when compared to the FPGA-based FDTD

solver running on the RFSoC.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

In this dissertation, we proposed analog computing techniques to compute the

approximate solutions of linear and nonlinear PDEs. The main objective was to

perform the computations at a speed that is 1 to 2 orders of magnitude greater than

the available ACs and DCs. The proposed computing techniques were first verified

by designing ideal ACs for solving Maxwell’s and wave equations. They were then

simulated in Cadence, and the accuracy of the computation was compared with

standard FDTD solvers. CMOS-based ACs were then designed and simulated by

addressing the non-ideal effects of the CMOS-based circuits. Finally, an energy-

efficient AC that approximately solves the wave equation was designed, simulated,

and fabricated using 180 nm CMOS technology. Recent examples of such energy-

efficient approximate computing reported in [8–11] are accurate but have less than

25 kHz of analog bandwidth for CT operations. Our special-purpose AC has an

analog bandwidth of 30 MHz (with an equivalent update rate of 625 MHz) at a power

consumption of 200 mW. The power and area consumption of our AC was compared

with previous work. The acceleration of the AC is 1 to 3 orders of magnitude greater

than the existing ACs for a given area and power budget if they compute the CT

solution of the wave equation. Furthermore, our AC is 100×, 26× faster when

compared to the MATLAB- and C-based FDTD solvers running on a CPU (at 2.10

GHz) with 8 cores and 256 GB of RAM, respectively. An FPGA-based FDTD solver

running on an RFSoC consumes 900 mW of power. The corresponding speed-up of

the AC is 2.8× at 200 mW.

This dissertation explored several paths towards building analog accelerators for

solving linear and nonlinear PDEs. The following section summarizes the major

technical accomplishments of this dissertation.
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11.1 Technical Accomplishments

Following is a list of major achievements from the dissertation.

Accomplishment 1: Two methods have been introduced to map a given PDE

into analog circuits, which can eventually compute the CT solution of the PDE.

Both methods are discrete in space but continuous in time such that they can be

implemented using analog circuits.

i) Continuous-time in Laplace domain (CTLD) method: In this method, the par-

tial derivatives in the spatial dimension are approximated using discrete finite

differences, while the LT is applied to partial derivatives in the time dimen-

sion [29–31, 106, 107]. The resulting mixed-domain update equation is used

to design an analog module that can compute the solution for a given spatial

point. The resulting analog computing modules are then interconnected in a

systolic array architecture to compute the solution over the entire spatial grid.

ii) All-pass delay approximation (APDA) method: This method replaces the

discrete-time difference operators in the standard FDTD cell (Yee cell), using

a CT delay operator, which can be realized as an analog APF [110–115]. The

summing and scaling operations in the Yee cell are realized using op-amp-based

analog circuits. Individual cells can then be interconnected in a systolic array

to compute the complete solution.

Accomplishment 2: Maxwell’s equations and the wave equation, which are ex-

tremely important in electromagnetics and have numerous applications in modern

communication systems, were used to verify the proposed methods. ACs for solving

1-D Maxwell’s equations and the 1-D and 2-D wave equations were designed and

simulated using ideal models in Cadence integrated circuit design software. Both

CTLD and APDA methods were considered. Different boundary conditions were
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simulated, which include Dirichlet boundary, Neumann boundary, and radiation

boundary conditions. Cadence-based results were provided for different simulation

scenarios based on ideal models. Furthermore, the behavior of the wave equation

in two different mediums was analyzed. In addition, a mathematical model for

implementing the damped wave equation in a CT system was introduced by

approximating the losses by a first-order partial derivative term.

Accomplishment 3: Methods and techniques have been investigated towards

expanding the proposed analog computing systems into multiple dimensions and

larger computational domains. The need for scalability was addressed by taking a

highly modular and regular approach to circuit realization. By drawing analogies to

digital systolic arrays, the proposed analog accelerators formed a highly modular,

regular and locally interconnected fabric of analog computational accelerator cores,

which can be scaled up in size to take into account larger computational domains

as required by the PDE system being simulated.

Accomplishment 4: In order to quantify how much the CT solution deviates

from the standard FDTD solution, two metrics have been calculated: the mean

squared difference (MSD) between the two solutions and the noise energy to signal

energy ratio γ (in dB). Here, noise refers to the deviation between the two solutions.

These metrics describe how much the computed CT solution deviates with respect

to the FDTD solution, when the proposed solvers are realized using analog circuits.

For this purpose, an FDTD-based Maxwell’s equation solver and a wave equation

solver were implemented using MATLAB.
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Accomplishment 5: By exploiting the APDA method, a CT mathematical model

for solving non-linear coupled PDEs was proposed. Here, conservative systems

(an important class of systems with various real-world applications), which are

governed by non-linear coupled PDEs, were considered for designing the AC.

The investigation was started with an existing FDTD numerical method, which

can solve coupled non-linear PDEs [32, 117]. The proposed method replaces the

discrete-time delays in the FDTD cell using a CT delay (an analog all-pass filter),

thereby obtaining the corresponding spatially discrete but time-continuous (SDTC)

version of the PDE solver [110–115]. The remaining operators such as addition,

subtraction, multiplication, and amplification were designed using standard analog

circuits as separate building blocks.

Accomplishment 6: A low-frequency prototype of an AC that solves the 1-D

wave equation has been designed and simulated using discrete op-amp ICs in the

OrCAD analog circuit design software. The Bruton transformation was applied

to avoid the use of inductors [31, 106, 107, 129], which introduces a circuit element

called frequency-dependent negative resistance (FDNR) to the circuit. The FDNR

element was realized using active circuits (op-amps) [31, 106, 107, 129]. The

OrCAD models were then extended into a PCB level implementation. Eight- and

sixteen-spatial point ACs were implemented and tested. The measurement results

were captured to demonstrate the wave propagation in the space-time domain.

Accomplishment 7: The key challenges toward CMOS implementations of the

proposed ACs were identified. The main challenge of realizing such large-scale

analog networks is to minimize the effects of circuit non-idealities such as noise,

nonlinearity, component mismatch, and parasitic elements (mostly device and
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interconnect capacitances) on the computation. As an example, practical op-amps

have non-ideal characteristics including finite gain-bandwidth, voltage offsets,

input bias currents noise and drift, finite input and output impedances, finite

common-mode and power-supply rejection, and limited linear range. Each of these

non-idealities affects the analog solutions with a certain sensitivity that needs to be

analyzed prior to a CMOS implementation. These analysis results can then be used

to determine the required performance metrics of the op-amps and other circuits.

Furthermore, a PD compensation technique was proposed for the APDA-based

ACs to compensate for the effect of finite bandwidth circuits (which is inevitable

for all practical elements).

Accomplishment 8: Both CTLD- and APDA-based ACs were extended to analog

CMOS implementations. They were designed and simulated employing the TSMC

180 nm CMOS technology for solving Maxwell’s and wave equations. Low-voltage

(operating voltage of 1.8 V) MOS transistor models were used. Cadence integrated

circuit design software is used to design the system. As the main building block (in

both methods), a wide swing cascode op-amp with a 90 dB of gain and a 500 MHz

of gain-bandwidth product was designed. An analog APF was designed using

a cascade of a resistor-capacitor network for the APDA method. The proposed

CMOS ACs were simulated in Cadence and simulated for different wave/field

propagation scenarios. Full-scale BSMI3 models that take into account full process

parameters were used in the design and simulations.

Of all the ACs considered, the ADPA-based AC that solves the 1-D wave

equation was extended into a chip-level implementation with an expected analog

bandwidth of 50 MHz. The analog solver consists of 18 analog modules. The
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outputs of each module produce a set of time-varying voltages that correspond to

the electric fields at each spatial point (defined by the wave equation). Precision

circuit design techniques had been utilized (e.g., capacitor ratios to control the

gains of op-amps) to maximize the linear range and also to minimize the systematic

mismatches of the analog circuits, which eventually reduce the effects from element

parasitics and PVT variations. Furthermore, precision layout techniques were

employed to minimize systematic and random mismatches (e.g., common centroid

layouts). The effects of parasitic elements were estimated using post-layout

extraction and back-annotation to adjust the design as necessary. An SPI module

was designed to program and calibrate the entire chip. The total chip size of the

analog solver is 2 mm × 2 mm (including the pad-frame).

Accomplishment 9: A prototype of an analog-digital hybrid computational

platform was designed and implemented using the analog chip, FPGAs, ADCs,

DACs, and microcontrollers so that the analog chip can be easily programmed,

calibrated, tested and and evaluated to verify their functionalities. Input excita-

tions and boundary conditions were generated inside an FPGA and supplied to

the analog chip through a DAC. Digital architectures were designed to generate

required boundary excitations and to capture computed analog waveforms. These

architectures were designed within the MATLAB environment using the Xilinx

system generator. The designs were targeted to be realized on the ROACH-2 FPGA

platform. All computations were performed in the analog chip that inputs and

outputs signals via 50 Ω transmission lines. Computed analog solutions were routed

back into the FPGA through a 16 channel ADC. Reconfiguration and calibration

SPI commands were sent by an Atmel microcontroller.
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Accomplishment 10: The designed hybrid test bench was utilized to collect

the measurements of the AC that solves the 1-D wave equation. Before taking

the measurements, a series of calibration steps were carried out to improve the

accuracy of the computation (to calibrate the programmable gains and bias

voltages). The SPSA algorithm was used as the optimization technique [135, 136].

Measurements of the AC were then captured for different boundary conditions and

frequencies. The reported analog bandwidth of the AC is 30 MHz with an equiva-

lent update rate of 625 MHz. The measurement results were then compared with

MATLAB FDTD solutions. The mean square error percentage of the AC is 1%-10%.

Accomplishment 11: The speed, area, and power results of the AC were compared

with modern ACs reported in [8–11]. The speed-up of our AC is 1 to 3 orders of

magnitude greater than the available ACs. For a given power and area budget,

the analog bandwidth of the ACs is also 1 to 3 orders of magnitude higher than

the existing ACs. To compare speed-up against modern DCs, a reference FDTD

solver is implemented using a C-code and is executed on a computer that has two

Intel Xeon Silver 4110 CPUs (at 2.10 GHz) with 8 cores and 256 GB of RAM. The

estimated speedup of the AC is 26× compared to the C-code. Furthermore, an

FPGA-based FDTD solver was implemented on a Xilinx RF system on chip (SoC)

(xczu29dr-ffvf1760) using the ZCU1275 board and clocked at a maximum frequency

of 222 MHz at about 900 mW of dynamic power. The corresponding speedup of the

180 nm CMOS AC is 2.8× at 200 mW.

The outcomes from this dissertation provide a promising pathway to explore

future analog computing accelerators.
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11.2 Future Work

The followings are some suggestions to explore based on the outcomes and findings

from this dissertation.

Analog Computer for Solving Nonlinear PDEs: Mathematical models that

were proposed in Chapter 6 to solve nonlinear PDEs can be extended towards an

analog CMOS implementation. The proposed AC only requires adder/subtractors,

buffers, programmable gain amplifiers, APFs, and multipliers, in analog-domain, as

building blocks towards implementing a fully-integrated analog chip. An example

system such as the acoustic shock tube problem discussed in Subsection 6.4.1

can be employed to design, simulate and fabricate the AC. Similar to the wave

equation–solving AC, the PDs of each element can be compensated to achieve larger

bandwidths for the CT computations. However, the bandwidth of the multiplier

would mainly decide the analog bandwidth of the AC.

A Current-mode Analog Computer: The proposed ACs in this dissertation are

voltage-mode circuits (in our ACs, the dependent variables in PDEs are represented

using voltages). As an example, the electric field values in the wave equation

solving AC were represented using voltages. Each module in the AC produces a

time-varying voltage that corresponds to the electric field at the particular spatial

point (each module corresponds to a particular spatial point in the spatial grid). In

a current-mode AC, we can represent variables using currents in the analog circuit

instead of the voltages. The same mathematical models that we developed in this

dissertation can be used to design the current-mode AC. Here, the summation

operation can be realized by simply connecting multiple wires together. Also, the

summation operation performs instantly (no PD). In contrast, the voltage-mode
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circuit requires a summing circuit that has a finite PD. This is one advantage of

current-mode circuits. However, the current-mode operation requires fanout blocks

(a current mirror) to buffer the outputs prior to feeding the next operation. The

scaling and multiplication operations can be implemented as proposed in [8–11].

The power consumption of the current-mode AC can be reduced by biasing the

transistors in the sub-threshold region instead of saturation. In a voltage-mode

circuit, most of the transistors are biased in saturation, which leads to high power

consumption. However, it should be noted that the accuracy of sub-threshold

current mirrors is greatly affected by PVT variations.

A General-purpose AC for Solving FDTD Computations: The ACs imple-

mented in this dissertation are special-purpose computers that can only solve one

computational problem. However, the proposed analog computing methods (CTLD

and APDA methods) are capable of solving any given linear PDE. Also, the APDA

method is capable of solving nonlinear PDEs as well, as long as there is a numer-

ical method available for solving them. Thus, a general update equation can be

obtained by applying the proposed methods on a general form of a PDE as simi-

lar to Chapter 3. The resulting SDTC update equation can be used to design the

corresponding AC. The AC can be configured (using software inputs) before solv-

ing any PDE such that it models the given PDE. The APDA method is a better

candidate for a general-purpose AC as compared to the CTLD method, since the

APDA method is based on standard FDTD algorithms. An APDA-based AC only

requires adder/subtractors, buffers, programmable gain amplifiers, and APFs as

building blocks (multipliers are required for solving nonlinear PDEs). Both voltage-

and current-mode circuits are capable of implementing a general-purpose AC with

appropriate programming modules.
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APPENDIX A

LAYOUT AND SCHEMATIC OF THE EVALUATION BOARD

Figs. 1 and 2 show the layout and the schematic of the evaluation board that

was designed to test the AC, respectively. The evaluation board consists of 4 layers.

Figure 1: The layout of the evaluation board.
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Figure 2: The schematic of the evaluation board.
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