# Introduction to Electromagnetic Compatibility

# **Second Edition**

### CLAYTON R. PAUL

Department of Electrical and Computer Engineering, School of Engineering, Mercer University, Macon, Georgia and Emeritus Professor of Electrical Engineering, University of Kentucky, Lexington, Kentucky



# **Contents**

| Pre | face                                                |        |                                                                    | xvii |  |
|-----|-----------------------------------------------------|--------|--------------------------------------------------------------------|------|--|
| 1   | Introduction to Electromagnetic Compatibility (EMC) |        |                                                                    |      |  |
|     | 1.1                                                 | Aspec  | ts of EMC                                                          | 3    |  |
|     | 1.2                                                 | Histor | y of EMC                                                           | 10   |  |
|     |                                                     | Examp  |                                                                    | 12   |  |
|     |                                                     |        | ical Dimensions and Waves                                          | 14   |  |
|     | 1.5                                                 | Decibe | els and Common EMC Units                                           | 23   |  |
|     |                                                     | 1.5.1  | Power Loss in Cables                                               | 32   |  |
|     |                                                     | 1.5.2  | Signal Source Specification                                        | 37   |  |
|     | Prob                                                | lems   |                                                                    | 43   |  |
|     | Refe                                                | rences |                                                                    | 48   |  |
| 2   |                                                     | •      | rements for Electronic Systems                                     | 49   |  |
|     | 2.1                                                 |        | nmental Requirements                                               | 50   |  |
|     |                                                     | 2.1.1  | Requirements for Commercial Products Marketed in the United States | 50   |  |
|     |                                                     | 2.1.2  |                                                                    |      |  |
|     |                                                     |        | outside the United States                                          | 55   |  |
|     |                                                     | 2.1.3  | 1                                                                  |      |  |
|     |                                                     |        | United States                                                      | 60   |  |
|     |                                                     | 2.1.4  | 1                                                                  | 62   |  |
|     |                                                     |        | 2.1.4.1 Radiated Emissions                                         | 64   |  |
|     |                                                     |        | 2.1.4.2 Conducted Emissions                                        | 67   |  |
|     |                                                     |        | Typical Product Emissions                                          | 72   |  |
|     |                                                     | 2.1.6  | 1 1                                                                | 77.0 |  |
|     |                                                     |        | the Regulatory Limits                                              | 78   |  |
|     |                                                     |        |                                                                    | vii  |  |

# viii CONTENTS

|   | 2.2  | Additi   | ional Product Requirements                                                                        | 79          |
|---|------|----------|---------------------------------------------------------------------------------------------------|-------------|
|   |      | 2.2.1    | Radiated Susceptibility (Immunity)                                                                | 81          |
|   |      | 2.2.2    |                                                                                                   | 81          |
|   |      | 2.2.3    | Electrostatic Discharge (ESD)                                                                     | 81          |
|   |      | 2.2.4    | *                                                                                                 | 82          |
|   |      | 2.2.5    | Requirements for Commercial Vehicles                                                              | 82          |
|   | 2.3  |          | n Constraints for Products                                                                        | 82          |
|   | 2.4  |          | ntages of EMC Design                                                                              | 84          |
|   |      | olems    |                                                                                                   | 86          |
|   | Refe | erences  |                                                                                                   | 89          |
| 3 | Sign | al Spec  | ctra—the Relationship between the Time Domain and                                                 |             |
|   | tne  |          | ncy Domain                                                                                        | 91          |
|   | 3.1  | Period   | dic Signals                                                                                       | 91          |
|   |      | 3.1.1    | a carrot before the presentation of Terrodic Signals                                              | 94          |
|   |      | 3.1.2    | Response of Linear Systems to Periodic Input Signals                                              | 104         |
|   |      | 3.1.3    | Important Computational Techniques                                                                | 111         |
|   | 3.2  |          | ra of Digital Waveforms                                                                           | 118         |
|   |      | 3.2.1    | The Spectrum of Trapezoidal (Clock) Waveforms                                                     | 118         |
|   |      | 3.2.2    | Spectral Bounds for Trapezoidal Waveforms                                                         | 122         |
|   |      |          | 3.2.2.1 Effect of Rise/Falltime on Spectral Content                                               | 123         |
|   |      |          | 3.2.2.2 Bandwidth of Digital Waveforms                                                            | 132         |
|   |      |          | 3.2.2.3 Effect of Repetition Rate and Duty Cycle 3.2.2.4 Effect of Ringing (Undershoot/Overshoot) | 136         |
|   |      | 3.2.3    | " " " " " " " " " " " " " " " " " " "                                                             | 137         |
|   |      | 5.2.5    | Use of Spectrum of a Linear Spectrum of the Output Spectrum of a Linear Spectrum.                 |             |
|   | 3.3  | Spectr   | Output Spectrum of a Linear System                                                                | 140         |
|   | - 1- | 3.3.1    | Basic Principles                                                                                  | 142         |
|   |      | 3.3.2    | Peak versus Ougsi Pools versus A                                                                  | 142         |
|   | 3.4  |          | Peak versus Quasi-Peak versus Average sentation of Nonperiodic Waveforms                          | 146         |
|   |      | 3.4.1    | The Fourier Transform                                                                             | 148         |
|   |      | 3.4.2    | Response of Linear Systems 4. N                                                                   | 148         |
|   | 3.5  |          | Response of Linear Systems to Nonperiodic Inputs sentation of Random (Data) Signals               | 151         |
|   | 3.6  | Use of   | f SPICE (PSPICE) In Fourier Analysis                                                              | 151         |
|   | Prob | olems    | (102 102) In Fourier Analysis                                                                     | 155         |
|   | Refe | erences  |                                                                                                   | 167         |
|   |      |          |                                                                                                   | 175         |
| 4 |      | ısmissic | on Lines and Signal Integrity                                                                     | 1 <i>77</i> |
|   | 4.1  | The T    | ransmission-Line Equations                                                                        |             |
|   | 4.2  | The P    | er-Unit-Length Parameters                                                                         | 181<br>184  |
|   |      | 4.2.1    | Wire-Type Structures                                                                              |             |
|   |      |          |                                                                                                   | 186         |

|   |            |                                |                                        | CONTENTS    | ix         |
|---|------------|--------------------------------|----------------------------------------|-------------|------------|
|   |            | 4.2.2 Printed                  | Circuit Board (PCB) Structures         |             | 199        |
|   | 4.3        | The Time-Dom                   | nain Solution                          |             | 204        |
|   |            | 4.3.1 Graphic                  | cal Solutions                          |             | 204        |
|   |            | -                              | ICE Model                              |             | 218        |
|   | 4.4        | High-Speed Dig                 | gital Interconnects and Signal Integri | ty          | 225        |
|   |            | 4.4.1 Effect o                 | of Terminations on the Line Waveford   | ms          | 230        |
|   |            | 4.4.1.1                        | Effect of Capacitive Terminations      |             | 233        |
|   |            | 4.4.1.2                        | 33 3                                   |             | 236        |
|   |            |                                | ng Schemes for Signal Integrity        |             | 238        |
|   |            |                                | Does the Line Not Matter, i.e., When   | is Matching | 244        |
|   |            | Not Rec                        | quirea? of Line Discontinuities        |             | 244<br>247 |
|   | 4.5        |                                | itation of the Line and the Phasor So  | lution      | 260        |
|   | 4.5        |                                |                                        |             | 261        |
|   |            | 4.5.1 Voltage<br>4.5.2 Power I | e and Current as Functions of Position | ı           | 269        |
|   |            |                                | on of Losses                           |             | 270        |
|   |            |                                | of Losses on Signal Integrity          |             | 273        |
|   | 4.6        |                                | it Approximate Models                  |             | 283        |
|   | Prob       | -                              | T F F                                  |             | 287        |
|   | Refe       | rences                         |                                        |             | 297        |
| 5 | Non        | deal Behavior                  | of Components                          |             | 299        |
|   | 5.1        | Wires                          |                                        |             | 300        |
|   |            | 5.1.1 Resistar                 | nce and Internal Inductance of Wires   |             | 304        |
|   |            |                                | l Inductance and Capacitance of Para   |             | 308        |
|   |            | 5.1.3 Lumped                   | d Equivalent Circuits of Parallel Wire | 'S          | 309        |
|   | 5.2        |                                | Board (PCB) Lands                      |             | 312        |
|   | 5.3        | Effect of Comp                 | ponent Leads                           |             | 315        |
|   | 5.4        | Resistors                      |                                        |             | 317<br>325 |
|   | 5.5<br>5.6 | Capacitors<br>Inductors        |                                        |             | 336        |
|   | 5.7        |                                | Materials—Saturation and Frequency     | Response    | 340        |
|   | 5.8        | Ferrite Beads                  |                                        | 2100, 21100 | 343        |
|   | 5.9        | Common-Mode                    | e Chokes                               |             | 346        |
|   | 5.10       | Electromechan                  | ical Devices                           |             | 352        |
|   |            | 5.10.1 DC M                    | lotors                                 |             | 352        |
|   |            |                                | er Motors                              |             | 355        |
|   |            | 5.10.3 AC M                    |                                        |             | 355        |
|   | <b>.</b>   | 5.10.4 Soleno                  |                                        |             | 356        |
|   | 5.11       | Digital Circuit                |                                        |             | 357        |
|   | 5.12       | Mechanical Sw                  | ponent Variability                     |             | 358<br>359 |
|   | 5.13       |                                |                                        |             | 360        |
|   |            | 5.13.1 Arcing                  | g at Switch Contacts                   |             | 200        |

| Y | CON. | TENTS  |
|---|------|--------|
|   | COIN | ILINIO |

|   |              | 5.13.2<br>5.13.3 | The Showering Arc Arc Suppression                                                                            | 363<br>364 |
|---|--------------|------------------|--------------------------------------------------------------------------------------------------------------|------------|
|   | Prob<br>Refe |                  | **                                                                                                           | 369<br>375 |
| 6 | Con          | ducted           | Emissions and Susceptibility                                                                                 | 377        |
|   | 6.1          | Measu            | rement of Conducted Emissions                                                                                | 378        |
|   |              | 6.1.1            | The Line Impedance Stabilization Network (LISN)                                                              | 379        |
|   |              | 6.1.2            | Common- and Differential-Mode Currents Again                                                                 | 381        |
|   | 6.2          | Power            | Supply Filters                                                                                               | 385        |
|   |              | 6.2.1            | Basic Properties of Filters                                                                                  | 385        |
|   |              | 6.2.2<br>6.2.3   | A Generic Power Supply Filter Topology Effect of Filter Elements on Common- and                              | 388        |
|   |              | 6.2.4            | Differential-Mode Currents Separation of Conducted Emissions into Commonand Differential-Mode Components for | 390        |
|   |              |                  | Diagnostic Purposes                                                                                          | 396        |
|   | 6.3          |                  | Supplies                                                                                                     | 401        |
|   |              | 6.3.1            | Linear Power Supplies                                                                                        | 405        |
|   |              | 6.3.2<br>6.3.3   | Switched-Mode Power Supplies (SMPS) Effect of Power Supply Components on Conducted Emissions                 | 406        |
|   | 6.4          | Dower            |                                                                                                              | 409        |
|   | 6.5          |                  | Supply and Filter Placement cted Susceptibility                                                              | 414        |
|   |              | olems            | oted buseepholity                                                                                            | 416        |
|   |              | erences          |                                                                                                              | 416<br>419 |
| 7 | Ant          | ennas            |                                                                                                              | 421        |
|   | 7.1          | Eleme            | ntal Dipole Antennas                                                                                         | 421        |
|   |              | 7.1.1            | The Electric (Hertzian) Dipole                                                                               | 421        |
|   |              | 7.1.2            | The Magnetic Dipole (Loop)                                                                                   | 422        |
|   | 7.2          | The H            | alf-Wave Dipole and Quarter-Wave Monopole Antennas                                                           | 429        |
|   | 7.3          | Anten            | na Arrays                                                                                                    | 440        |
|   | 7.4          |                  | eterization of Antennas                                                                                      | 448        |
|   |              | 7.4.1            | Directivity and Gain                                                                                         | 448        |
|   |              | 7.4.2<br>7.4.3   | Effective Aperture                                                                                           | 454        |
|   |              | 7.4.4<br>7.4.4   | Antenna Factor Effects of Relancing and P. I.                                                                | 456        |
|   |              | 7.4.5            | Effects of Balancing and Baluns Impedance Matching and the Heart P. 1                                        | 460        |
|   | 7.5          |                  | Impedance Matching and the Use of Pads iis Transmission Equation                                             | 463        |
|   | 7.6          | Effects          | s of Reflections                                                                                             | 466        |
|   |              | 7.6.1            | The Method of Images                                                                                         | 470        |
|   |              | -                | and of images                                                                                                | 470        |

|   |      | 7.6.2                                                 |           | Incidence of Uniform Plane Waves on Plane,       |      |  |  |
|---|------|-------------------------------------------------------|-----------|--------------------------------------------------|------|--|--|
|   |      | <b>7.</b> ( 0                                         |           | l Boundaries                                     | 470  |  |  |
|   |      | 7.6.3                                                 | •         | th Effects                                       | 479  |  |  |
|   | 7.7  |                                                       |           | asurement Antennas                               | 486  |  |  |
|   |      | 7.7.1                                                 |           | conical Antenna                                  | 487  |  |  |
|   |      | 7.7.2                                                 | The Log   | g-Periodic Antenna                               | 490  |  |  |
|   |      | lems                                                  |           |                                                  | 494  |  |  |
|   | Refe | rences                                                |           |                                                  | 501  |  |  |
| 8 | Radi | iated Ei                                              | missions  | and Susceptibility                               | 503  |  |  |
|   | 8.1  | Simple                                                | e Emissic | on Models for Wires and PCB Lands                | 504  |  |  |
|   |      | 8.1.1                                                 | Differer  | ntial-Mode versus Common-Mode Currents           | 504  |  |  |
|   |      | 8.1.2                                                 | Differer  | tial-Mode Current Emission Model                 | 509  |  |  |
|   |      |                                                       |           | n-Mode Current Emission Model                    | 514  |  |  |
|   |      |                                                       | Current   |                                                  | 518  |  |  |
|   |      | 8.1.5                                                 | Experin   | nental Results                                   | 523  |  |  |
|   | 8.2  | Simple                                                | e Suscept | ibility Models for Wires and PCB Lands           | 533  |  |  |
|   |      | 8.2.1                                                 | Experin   | nental Results                                   | 544  |  |  |
|   |      | 8.2.2                                                 | Shielde   | d Cables and Surface Transfer Impedance          | 546  |  |  |
|   | Prob | lems                                                  |           |                                                  | 550  |  |  |
|   | Refe | rences                                                |           |                                                  | 556  |  |  |
| 9 | Cros | stalk                                                 |           |                                                  | 559  |  |  |
|   | 9.1  | 9.1 Three-Conductor Transmission Lines and Crosstalk  |           |                                                  |      |  |  |
|   | 9.2  | .2 The Transmission-Line Equations for Lossless Lines |           |                                                  |      |  |  |
|   | 9.3  | The Po                                                | er-Unit-L | ength Parameters                                 | 567  |  |  |
|   |      | 9.3.1                                                 | Homoge    | eneous versus Inhomogeneous Media                | 568  |  |  |
|   |      | 9.3.2                                                 | Wide-S    | eparation Approximations for Wires               | 570  |  |  |
|   |      | 9.3.3                                                 | Numeri    | cal Methods for Other Structures                 | 580  |  |  |
|   |      |                                                       | 9.3.3.1   | Wires with Dielectric Insulations                |      |  |  |
|   |      |                                                       |           | (Ribbon Cables)                                  | 586  |  |  |
|   |      |                                                       | 9.3.3.2   | Rectangular Cross-Section Conductors (PCB Lands) | 590  |  |  |
|   | 9.4  | The In                                                | ductive-  | Capacitive Coupling Approximate Model            | 595  |  |  |
|   |      | 9.4.1                                                 |           | cy-Domain Inductive-Capacitive Coupling          |      |  |  |
|   |      | J. 1.1                                                | Model     | bomain inductive capacitive coupling             | 599  |  |  |
|   |      |                                                       | 9.4.1.1   | Inclusion of Losses: Common-Impedance            | 0,,, |  |  |
|   |      |                                                       |           | Coupling                                         | 601  |  |  |
|   |      |                                                       | 9.4.1.2   | Experimental Results                             | 604  |  |  |
|   |      | 9.4.2                                                 | Time-D    | omain Inductive—Capacitive Coupling Model        | 612  |  |  |
|   |      |                                                       | 9.4.2.1   | Inclusion of Losses: Common-Impedance Coupling   | 616  |  |  |
|   |      |                                                       | 9.4.2.2   | Experimental Results                             | 617  |  |  |

## xii CONTENTS

| 9  | .5 L         | umped-0  | Circuit Approximate Models                         | 624        |
|----|--------------|----------|----------------------------------------------------|------------|
| 9  | 0.6 A        | n Exact  | SPICE (PSPICE) Model for Lossless, Coupled Lines   | 624        |
|    |              |          | Computed versus Experimental Results for Wires     | 633        |
|    |              | 9.6.2    | Computed versus Experimental Results for PCBs      | 640        |
|    | 9.7          | Shielde  | ed Wires                                           | 647        |
|    |              |          | Per-Unit-Length Parameters                         | 648        |
|    |              |          | Inductive and Capacitive Coupling                  | 651        |
|    |              |          | Effect of Shield Grounding                         | 658        |
|    |              |          | Effect of Pigtails                                 | 667        |
|    |              |          | Effects of Multiple Shields                        | 669        |
|    | 0.0          |          | MTL Model Predictions                              | 675        |
|    | 9.8          |          | d Wires                                            | 677        |
|    |              |          | Per-Unit-Length Parameters                         | 681        |
|    |              |          | Inductive and Capacitive Coupling Effects of Twist | 685        |
|    |              |          | Effects of Balancing                               | 689<br>698 |
|    | Drob         | olems    | Directs of Balancing                               |            |
|    |              | rences   |                                                    | 701        |
|    | 1010         | Achees   |                                                    | 710        |
| 10 | Shielding    |          |                                                    |            |
|    | 10.1         |          | ing Effectiveness                                  | 718        |
|    | 10.2         | Shieldi  | ing Effectiveness: Far-Field Sources               | 721        |
|    |              | 10.2.1   | Exact Solution                                     | 721        |
|    |              | 10.2.2   | Approximate Solution                               | 725        |
|    |              |          | 10.2.2.1 Reflection Loss                           | 725        |
|    |              |          | 10.2.2.2 Absorption Loss                           | 728        |
|    |              |          | 10.2.2.3 Multiple-Reflection Loss                  | 729        |
|    | 10.0         | <b>~</b> | 10.2.2.4 Total Loss                                | 731        |
|    | 10.3         |          | ing Effectiveness: Near-Field Sources              | 735        |
|    |              | 10.3.1   | a rota voisus i ai Ticiu                           | 736        |
|    |              |          | Electric Sources                                   | 740        |
|    | 10.4         | 10.3.3   | Sarate Sources                                     | 740        |
|    | 10.4<br>10.5 | Low-F    | requency, Magnetic Field Shielding                 | 742        |
|    | Probl        |          | of Apertures                                       | 745        |
|    |              | ems      |                                                    | 750        |
|    | ICICI        | ciices   |                                                    | 751        |
| 11 | Syste        | m Desi   | gn for EMC                                         | 753        |
|    | 11.1         | Chang    | ing the Way We Think about Electrical Phenomena    | 758        |
|    |              | 11.1.1   | Nonideal Behavior of Components and the            | ,50        |
|    |              |          | Hidden Schematic                                   | 758        |

11.1.2 "Electrons Do Not Read Schematics"

763

|              |         | CONTENTS                                                                   | xiii       |
|--------------|---------|----------------------------------------------------------------------------|------------|
|              | 11.1.3  | What Do We Mean by the Term "Shielding"?                                   | 766        |
| 11.2         |         | Do We Mean by the Term "Ground"?                                           | 768        |
|              | 11.2.1  | Safety Ground                                                              | 771        |
|              | 11.2.2  | •                                                                          | 774        |
|              | 11.2.3  | Ground Bounce and Partial Inductance                                       | 775        |
|              |         | 11.2.3.1 Partial Inductance of Wires                                       | 781        |
|              |         | 11.2.3.2 Partial Inductance of PCB Lands                                   | 786        |
|              | 11.2.4  | Currents Return to Their Source on the Paths of Lowest                     |            |
|              |         | Impedance                                                                  | 787        |
|              | 11.2.5  | Utilizing Mutual Inductance and Image Planes to Force                      |            |
|              | 1106    | Currents to Return on a Desired Path                                       | 793        |
|              | 11.2.6  | Single-Point Grounding, Multipoint Grounding, and Hybrid Grounding         | 706        |
|              | 11.2.7  | Ground Loops and Subsystem Decoupling                                      | 796<br>802 |
| 11.3         |         | Circuit Board (PCB) Design                                                 | 805        |
| 11.5         | 11.3.1  | Component Selection                                                        |            |
|              | 11.3.1  | Component Speed and Placement                                              | 805<br>806 |
|              | 11.3.3  | Cable I/O Placement and Filtering                                          | 808        |
|              | 11.3.4  |                                                                            | 810        |
|              | 11.3.5  |                                                                            | 812        |
|              | 11.3.6  | •                                                                          | 822        |
|              | 11.3.7  | Mixed-Signal PCB Partitioning                                              | 823        |
| 11.4         | System  | Configuration and Design                                                   | 827        |
|              | 11.4.1  | System Enclosures                                                          | 827        |
|              | 11.4.2  | Power Line Filter Placement                                                | 828        |
|              | 11.4.3  | Interconnection and Number of Printed                                      | 0.00       |
|              | 11.4.4  | Circuit Boards                                                             | 829        |
|              | 11.4.4  | Internal Cable Routing and Connector Placement PCB and Subsystem Placement | 831<br>832 |
|              | 11.4.6  | PCB and Subsystem Decoupling                                               | 832        |
|              | 11.4.7  | Motor Noise Suppression                                                    | 832        |
|              | 11.4.8  | Electrostatic Discharge (ESD)                                              | 834        |
| 11.5         | Diagnos | stic Tools                                                                 | 847        |
|              | 11.5.1  | The Concept of Dominant Effect in the Diagnosis of                         |            |
|              |         | EMC Problems                                                               | 850        |
| Proble       | m       |                                                                            | 856        |
| Refere       | ences   |                                                                            | 857        |
|              |         |                                                                            |            |
| Annendiv     | Δ Tha   | Phasor Solution Method                                                     | orn        |
| · · ppciidix |         |                                                                            | 859        |
|              | A.1     | Solving Differential Equations for Their Sinusoidal, Steady-State Solution | 859        |
|              |         | •                                                                          |            |

# xiv CONTENTS

|                                       | A.2        | Solving Electric Circuits for Their Sinusoidal,<br>Steady-State Response             | 863        |
|---------------------------------------|------------|--------------------------------------------------------------------------------------|------------|
| Problems<br>Reference                 |            |                                                                                      | 867        |
| T T T T T T T T T T T T T T T T T T T | <b>J</b>   |                                                                                      | 869        |
| Appendix B                            | The        | Electromagnetic Field Equations and Waves                                            | 871        |
|                                       | B.1<br>B.2 | Vector Analysis                                                                      | 872        |
|                                       | D.2        | Maxwell's Equations B.2.1 Faraday's Law                                              | 881        |
|                                       |            | B.2.2 Ampere's Law                                                                   | 881<br>892 |
|                                       |            | B.2.3 Gauss' Laws                                                                    | 892<br>898 |
|                                       |            | B.2.4 Conservation of Charge                                                         | 900        |
|                                       |            | B.2.5 Constitutive Parameters of the Medium                                          | 900        |
|                                       | B.3        | Boundary Conditions                                                                  | 902        |
|                                       | B.4<br>B.5 | Sinusoidal Steady State Power Flow                                                   | 907        |
|                                       | B.6        | Uniform Plane Waves                                                                  | 909        |
|                                       |            | B.6.1 Lossless Media                                                                 | 909        |
|                                       |            | B.6.2 Lossy Media                                                                    | 912<br>918 |
|                                       |            | B.6.3 Power Flow                                                                     | 918        |
|                                       |            | B.6.4 Conductors versus Dielectrics                                                  | 923        |
|                                       | D 7        | B.6.5 Skin Depth                                                                     | 925        |
|                                       | B.7        | (= c) Electionagnetic Tield Relations—                                               |            |
|                                       |            | a Special Case  B.7.1 Maxwell's Equations for Static (DC) Finds                      | 927        |
|                                       |            | B.7.1 Maxwell's Equations for Static (DC) Fields B.7.1.1 Range of Applicability for  | 927        |
|                                       |            | Low-Frequency Fields                                                                 | 928        |
|                                       |            | B.7.2 Two-Dimensional Fields and Laplace's                                           | 720        |
| Problems                              |            | Equation                                                                             | 928        |
| Reference                             | c          |                                                                                      | 930        |
| -101010100                            |            |                                                                                      | 939        |
| Appendix C                            | (1 ()      | puter Codes for Calculating the Per-Unit-Length  Description:  Description:          |            |
|                                       |            |                                                                                      | 941        |
|                                       | C.1        | WIDESEP.FOR for Computing the PUL                                                    |            |
|                                       | C.2        | Parameter Matrices of Widely Spaced Wires RIBBON FOR for Computer of Parameter Wires | 942        |
|                                       |            | RIBBON.FOR for Computing the PUL Parameter Matrices of Ribbon Cables                 |            |
|                                       | C.3        | PCB.FOR for Computing the PUL Parameter                                              | 947        |
|                                       |            | Matrices of Printed Circuit Boards                                                   | 949        |
|                                       |            |                                                                                      | ノサノ        |

|            |      | CO                                             | NTENTS | χv  |
|------------|------|------------------------------------------------|--------|-----|
|            | C.4  | MSTRP.FOR for Computing the PUL Paramete       | er     |     |
|            |      | Matrices of Coupled Microstrip Lines           |        | 951 |
|            | C.5  | STRPLINE.FOR for Computing the PUL             |        |     |
|            |      | Parameter Matrices of Coupled Striplines       |        | 952 |
|            | C.6  | SPICEMTL.FOR for Computing a SPICE             |        |     |
|            |      | (PSPICE) Subcircuit Model of a Lossless,       |        |     |
|            |      | Multiconductor Transmission Line               |        | 954 |
|            | C.7  | SPICELPI.FOR For Computing a SPICE (PSPI       | CE)    |     |
|            |      | Subcircuit of a Lumped-Pi Model of a Lossless, | ,      |     |
|            |      | Multiconductor Transmission Line               |        | 956 |
| Appendix D | A SF | PICE (PSPICE) Tutorial                         |        | 959 |
|            | D.1  | Creating the SPICE or PSPICE Program           |        | 960 |
|            | D.2  | Circuit Description                            |        | 961 |
|            | D.3  | Execution Statements                           |        | 966 |
|            | D.4  | Output Statements                              |        | 968 |
|            | D.5  | Examples                                       |        | 970 |
| References |      | -                                              |        | 974 |
| Index      |      |                                                |        | 975 |