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Mode-Matching Analysis of a Shielded
Rectangular Dielectric-Rod Waveguide

Colin G. Wells, Student Member, IEEE, and James A. R. Ball, Member, IEEE

Abstract—Rectangular cross-sectional dielectric waveguides are
widely used at millimeter wavelengths. In addition, shielded dielec-
tric resonators having a square cross section are often used as filter
elements; however, there is almost no information available on the
effect of the shield. Rectangular or square dielectric waveguide is
notoriously difficult to analyze because of the singular behavior of
the fields at the corners. Most published analyses are for materials
with a low dielectric constant, and do not include the effects of a
shield. This paper describes a numerically efficient mode-matching
method for the analysis of shielded dielectric-rod waveguide, which
is applicable to both low and high dielectric-constant materials.
The effect of the shield on the propagation behavior is studied. The
shield dimensions may be selected such that the shield has a neg-
ligible effect so that results can be compared with free-space data.
The results are verified by comparison with several sets of pub-
lished data, and have been confirmed by measurement for a nom-
inal €, of 37.4.

Index Terms—Dielectric resonators, dielectric waveguides,
electromagnetic propagation in nonhomogeneous media,
mode-matching methods, shielding.

1. INTRODUCTION

IELECTRIC waveguides are an attractive alternative to
metal waveguides at millimeter-wave frequencies due to
their lower propagation loss, lower cost, and easier fabrication
[1]. Rectangular dielectric waveguides form a large proportion
of these and have uses in integrated optics and millimeter-wave
integrated circuits and transmission lines. However, there has
always been difficulty obtaining accurate propagation coeffi-
cients for the various modes on these structures. There is no
closed-form solution to the problem [1] and the methods used
either rely on approximations, as in the procedure originated by
Marcatili [2] and improved by Knox and Toulios [3], or are nu-
merical in nature. The main numerical techniques range from
the circular harmonic analysis of Goell [4], finite-element [5]
and finite-difference [6] procedures, to mode matching.
Mode-matching methods have been applied to the dielectric
image line by Solbach and Wolff [7], and to the homogeneous
inverted strip guide by Mittra et al. [8]. The latter used a sim-
ilar procedure to [7], with the mode-matching techniques de-
veloped by Mittra and Lee [9]. In a very comprehensive paper,
Strube and Arndt [10] have applied the method of Solbach and
Wolff to the shielded dielectric image line. The first part of their
paper used this procedure, together with the inclusion of an extra
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Fig. 1. Rectangular dielectric line and shield.

electric wall, to analyze propagation on infinite shielded image
guide. As well as propagating and evanescent modes, complex
modes and backward waves were identified and thoroughly in-
vestigated. Complex modes can only exist in pairs having com-
plex conjugate propagation coefficients, and couple so that the
total power flow is always reactive. A backward wave is one in
which the power flows in the opposite direction to the wave-
fronts. The second part of their paper finds the scattering matrix
of a transition from shielded dielectric image guide to rectan-
gular waveguide, by matching the tangential fields at the inter-
face. A comparison of measured and calculated .Sp; results were
used to verify the method. The results obtained by Strube and
Arndt correspond to those modes that can exist in the dielec-
tric-rod waveguide shown in Fig. 1 when the z-axis is an elec-
tric wall. However, these do not include some of the dominant
modes, for which the z-axis is a magnetic wall. To obtain the
full set of modes for this waveguide, it is necessary to consider
all four types of symmetry.

An analysis of complex and backward waves in an inhomo-
geneously filled waveguide has been carried out by Omar and
Schunemann [11]. A method to predict the presence of complex
modes in inhomogeneous lossless dielectric waveguide can be
found in [12].

An alternative mode-matching (boundary element) method
for the shielded dielectric-rod waveguide, incorporating dyadic
Green’s functions, was developed by Collin [13] and Collin and
Ksienski [14].

A problem with numerical solutions is that they can suffer
from slow convergence due to divergence of the electric field at
the corners of the dielectric where the refractive index changes
abruptly [15]. However, for most purposes, sufficient accuracy
can still be obtained for a relatively small number of basis
functions.

In a typical situation, the permittivity of the dielectric e,.o will
be higher than the surrounding medium ¢,-; (usually air) so that
the electromagnetic fields will be concentrated in the dielectric
line, and the proportion outside it will decay away exponentially.
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Fig. 2. One-quarter of the rectangular dielectric line with a shield, showing

mode-matching regions.

The ability of a high-permittivity material to contain and con-
centrate the fields, together with the availability of high-Q tem-
perature stable materials, has led to the development of the di-
electric resonator as a filter element. In filter applications, the
dielectric resonators are often enclosed in metallic shields or
cavities to prevent unwanted coupling, as shown in Fig. 1.
Cavity filters incorporating dielectric resonators are widely
used in mobile base stations and other demanding applications.
Traditionally, many of these have used cylindrical resonators.
Designers have sought to reduce the size of these filters by using
multiple mode cavities. This has led to increased interest in res-
onators that have a square cross section, and also in cubical
resonators. Dielectric filter cavities may be analyzed using the
methods developed by Zaki and Atia. The propagation char-
acteristics of an infinite cylindrical waveguide containing a di-
electric rod were first established. A cylindrical cavity was then
modeled as a length of this guiding structure, terminated in short
lengths of empty waveguide [16]. In a later paper, this was ex-
tended to cylindrical dielectric resonators in rectangular wave-
guide and cavities [17]. This paper represents the first step in a
similar study of the shielded square section dielectric resonator.

II. ANALYSIS USING THE MODE-MATCHING METHOD

An advantage of a mode-matching method is that it has rela-
tively good processing speed due to its semianalytical nature. It
also allows visualization of the fields in the structure by solving
for the unknown coefficients of the basis function equations.
Another advantage is that it can be used with reasonably high
values of permittivity ([10] show results as high as €, = 50).
The other numerical methods cited, with the exception of the
finite-difference method of Schwieg and Bridges [6], have only
been applied to relatively low values (&, ~ 2.5).

Due to the symmetrical nature of the shielded dielectric wave-
guide, only one-quarter of the structure needs to be analyzed.
Fig. 2 shows how the cross section is divided into three regions.
Regions I and I1; surround the dielectric rod and are filled with
a medium of permittivity €,.1, which, in this paper, will be con-
sidered to be air (¢,,; = 1). Region I, is the dielectric rod with
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permittivity €,.2. The outer shield will be considered as a perfect
electric conductor (electric wall). The bottom and left-hand-side
(LHS) symmetry planes, coincident with the z- and y-axes, may
be either electric or magnetic walls. The selection of wall types
will determine the types of symmetry that can exist in the struc-
ture.

In this paper, as in [8] and [10], a modification of the mode-
matching method of Solbach and Wolff [7] will be used so that
the effect of the proximity of the shield to the dielectric can
be ascertained. However, to provide calculation of all modes
possible in this structure, additional basis functions to cater for
the full range of symmetries (see Section II-A) have had to be
provided. This variation will be called the modified Solbach and
Wolff (MSW) method through the remainder of this paper.

A. Basis Functions

The modes that can propagate in a shielded rectangular di-
electric-rod waveguide are all hybrid modes, i.e., they always
have field variation along either the horizontal or vertical di-
electric-rod boundaries and, thus, have both electric- and mag-
netic-field components in the longitudinal direction [18]. In each
of the regions in Fig. 2, the field patterns for these modes can
be built up from superpositions of appropriate basis functions,
which are transverse magnetic or transverse electric with respect
to the y-direction. These will be designated TM? (electric) and
TEY (magnetic), respectively, and are indicated by subscripts e
and h. The cross section has two axes of symmetry, which means
there are four possible symmetries. In this paper, these will be
classified according to the behavior of the H .-field component,
following Schweig and Bridges [6]. For example, superscript eo
will indicate that H . is an even function of = and an odd func-
tion of y.

It is most efficient to derive the basis function fields from
vector potentials. From Balanis [19], the magnetic vector po-
tential for a TM” wave propagating in the z-direction in a non-
magnetic region with rectangular boundaries is of the form

Ay(z,y,2) = [C’l cos(fB.x) + Dy sin(,@mx)]
x [Ca cos(Byy) + Dasin(Byy)] Aze™ 7. (1)

The longitudinal-field components can then be obtained from

1 024,
FE. z)=—7 Y 2
(z,y,2) opa 090z 2
1 04,
H.(z,y,2) = R 3)

From these expressions, it can be seen that £, and H, will have
opposite types of symmetry. The longitudinal electric field will
be as follows:

(0,1, = 12 [C1 cos(Ba) + Dy sin(fso)]

X [D2 cos(Byy) — Cs sin(,[iyy)]Ag,e_"z. 4

Using the boundary conditions imposed by the shield, appro-
priate equations for £, can be selected in each region and for
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each symmetry. For the case of H,, an even function of x and
odd function of y (eo), these are as follows:

AR
B0 = AP G (50 (0, — 1)) cos (B0 ) e
WHo€o
(I1y) p(I1y)
gIIl)eo :jBne Y Byne Y sin ([))(Ih)x)
" WhoEo e
X sin (,3(111)(b - y)) e 7F
BUI) g(IT>)
Bt = P i (50110 cos (51y) ¢
" WHoEoEr2 e
Q)
where
/3(1 —m7 where m =1,3,5...
me  2by
B2 =00 = B+

me

ﬁ(Ih)Q _/82 IB(Ih)Z

Yne ZTne
piIT)2 = g5 — pIT2)2 4 2
/33 :“)2N050
/83 :w2ﬂogo€r2 (6)
and n is the mode number in region II.

From (2) and (5), the resultant magnetic vector potential
equations for the shielded dielectric waveguide are then

Az(fw)eo =AY gin ([)’({n) (az — 417)) sin (ﬁz(;?y) e "
AT = BUM sin (87 ) cos (B (b = 9) 7

ALY = B sin (A0 ) sin (B11) =)

From (7), the other components of the TMY basis functions for
each region can be derived using the partial differential equa-
tions from Balanis [19].

Similarly, the electric vector potential equations for a TEY
mode propagating in the z-direction are found to be

)) cos( 5?} ) vz

Ymh

F(I)Fa :A(I) cos (/81'77111 (a2

{1020 = BT con (A1) sin (120 y>)
Ry =B cos (000 cos (10w) e 2 ®)

The other components of the TE? basis functions can again
be found using the partial differential equations from Balanis
[19].

Continuity of the transverse fields at the boundary y = by,
0 < z < aq between regions I [; and I I, must also be taken into
account so that wavenumbers /3(11’ nd [315?1) can be found.
At this boundary, wavenumbers [, Hl) ﬂgk) to allow for
continuity of phase. Then, for even (), odd (y) symmetry, and
TMY modes,

E(Ih)ea E(IIZ) (9)

Zne Zne

3171
and from this
B con (6100)
B(Ifz) - (IL) 1) (10)
ne Yne €12 sin (ﬁynE (bz — bl))
and also
H£111)60 — HZ(IIZ)eo (11)

Substituting (10) into (11) gives the transcendental equation

ot (A4 =

Yne Yne

ne

B(H - tan(ﬁ<”2>b1) (12)

The wavenumbers can then be obtained from numerical solu-
tions of (12) after substitution of the relation

B = B5% 4 (e = 1) (13)
which is derived using /3,{1{31 = q(pH°) and the region II equa-

tions of (6).
Similarly, for the TEY modes,
B(I 1)

cos( 5”2) 1)
B(Uz)

o epsin (B (6 = b))

(14)

and the transcendental equation for the wavenumbers becomes

B cot (BT (by—b) ) = B tan (B8, ) . (15)

The equations for the other symmetries of the TMY and TEY
basis functions can be similarly derived.

B. Mode Matching at the Boundary Between Regions

The parallel fields Er and Hp must be continuous at the
mode-matching boundary between regions I and Il (z = aq,
0 < y < bs). In the case of the electric field, this leads to the
equations

- (I I
Z Aph)E( )h + Z A(I)ETpe

(e}

In II,
Z ( nhE’g"nh) E’g"nh))
+ 30 B0 (KB +BRD). a6
For continuity of the magnetic fields,
Dpp(T I
Z ADED, + Z ADHD.
p=1
I 12 I IT,
Z ( ( H’(T'n h) + H’(T'nh))
+ 30 B (KB +HED) 7
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where K is the right-hand side (RHS) of (10) and (14) for the
TM®° and TE®® modes, respectively, and is used to reduce the
number of unknown coefficients. The above pair constitute a
doubly infinite set of linear equations for the modal coefficients
A, and B,,. To simplify these equations, and to expand their
number to equal the number of unknowns, the electric and mag-
netic fields in region I were used as testing functions. Only the
y-dependent factors are required, and these have been desig-
nated e(I)( ) and h((II) (y), respectively. The following orthogo-
nality relations are required:

ba

/ EY) hD(y)d, =0

form # q (18)

qu

/HI) (I) yd =0,

where m and ¢ are the indices used to find wavenumbers /3 s
or ﬂyq as in (6)] for each mode number p in region 1. That is,
(16) and (17) are multiplied by TMY or TEY testing functions
h,(II)(y) or eS,I) (y) from region I, respectively, and integrated
over the interval 0 < y < by at x = ay, as per Mittra et
al. [8]. The infinite set of equations so formed is reduced by
truncating the number of basis functions used to a value that
can be practically computed and will give a desired accuracy in
the solution. The maximum values of the mode indices p and n
are P and N, respectively. An equal number of basis functions
were used (P = N) in both regions I and II to alleviate any
problems with relative convergence [20], [21]. In matrix form,
the equations using the electric field and odd (y) symmetry are

— A’II‘E -
(D rpp(D) D pp® :
(TR T, | [T TR, | ApE
(D) g (1) A
[0] [ ™M (y)} i
[ AT |
() rpera(D) D pp
) [TEGOTES | [TMEDTED )]
[0] [TMgI ™, }
_ BITE _
X BifVM (19)
|

The sub-matrices of the LHS of (19) are P x P diagonal
matrices, the elements of which are the result of (18). The zero
sub-matrices are the result of the I/, component being zero for
TEY. The elements of the N x N sub-matrices of the RHS of
(19) are coupling integrals of the form

bo

II
/ EY 0D (y)d,.
0
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For this odd(y) case, the subscripts m and ¢ are odd integers
only and are equivalent in number to the number of basis func-
tions used N. For the even(y) case, there will be a total of N
even integers (including zero).

In abbreviated form, the matrix equations can be written as

[W]A] = [X][B]. (20)
The magnetic field equations are similar, and in abbreviated

form are

[Y][A] = [Z][B]. 2D

C. Propagation Coefficient and Unknown Mode Coefficients
of the Structure

A homogeneous system of equations may be formed from
(20) and (21) as follows:

¥ 303
Y -Z||B '
The eigenvalues of (22) are the propagation coefficients of
the modes of the structure. These modes can be propagating,
evanescent, complex, or backward wave types and are found by
substituting a range of propagation coefficient values into the
equations and finding those values for which the determinant
is zero.

To determine that the propagation coefficients found are
physically sensible, and also to find the type of mode each rep-
resents, it is essential to calculate the unknown coefficients and
plot the field patterns. A selected coefficient is chosen as unity
or some appropriate factor. In this paper, the coefficient chosen
is that of the first TM mode in region II (BIT M) and, thus,
the associated matrix element values are b TF (electric) to
bINTM (magnetic), as shown. Consequently, the B coefficients
are reduced by one to B,. and the X and Z matrices are reduced
by a column to X,. and Z,.. Hence, (22) can be written as

(22)

r (electric) 7
pTMTE
11

bTMTM
N1

1
Y -7Z, ] (23)

o)

[W -X,

(magnetic)
bTMTE
11

bTMTM
L N1 i

The system of (23) has more equations than unknowns (i.e.,
overdetermined), but can still be solved for the normalized
values of the unknown coefficients by the use of the MATLAB
operator “\.” This function gives a least squares solution for
these truncated equations and, thus, produces a best fit result
[22].

It was found that there is a limit to the number modes that
can be used in the system of equations before ill conditioning
occurs in the form of rank deficiency (MATLAB gives a warning
if the matrix is rank deficient). This is due to the very large
numbers that occur when trigonometric functions are evaluated
for imaginary arguments. In effect, the computer runs out of
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sufficient decimal places to accurately cover the range of the
size of numbers in the equation matrix. However, the number of
modes required for sufficient accuracy is well below this limit.

Once the coefficients are found, they can then be substituted
into the field equations so that the field components can be de-
termined from the sum of the basis functions at a number of
spatial grid points, and the resultant field in the structure can be
plotted as a superposition of all the components.

III. DISCUSSION AND COMPARISON OF RESULTS
WITH OTHER METHODS

To confirm the validity of this method, the propagation
coefficients were calculated for a number of frequency ranges
and permittivity values, and compared to the results from other
methods. All of the calculations and measurements reported
here are for a square cross section, i.e., a square dielectric rod
symmetrically located within a square shield. The structure
will be characterized by the aspect ratio DR = ay /by for
the dielectric rod and SDR = ay/ay for the shield. In the
following, the normalization applied by Schwieg and Bridges
[6] will be used, where V' and B are the normalized frequency
and propagation coefficient, respectively:

V =2a1680\/er2

(2)
B = ANCY
Er2

Bo = W/ Ho€o-

The method described in this paper gives the propagation co-
efficients of the possible modes for each symmetry used. The
designations of the modes on the dielectric line in this paper is
the same as that used by Marecatili, Goell, and others. Modes
will be identified as EY,,, or E ., where z or y denotes the di-
rection of polarization of the main electric field, and m and n
are the number of maxima in the z- and y-directions over the

xy-plane of the dielectric.

(24)

A. Comparison of Method Convergence Properties

A comparison of the convergence properties of Goell’s
method and the MSW versus the number of basis functions
used is shown in Fig. 3. The dielectric rod was square (DR = 1)
with €0 = 37.4 and, in free space, with a normalized fre-
quency of V' = 7. The square shield dimension ratio in the
MSW method had SDR = 3, which is of sufficient distance
from the dielectric (see Fig. 4) so as to be a good approximation
of free space. As can be seen, only approximately 7 TMY and
7 TEY basis functions are required for good convergence. At
11 TMY and 11 TEY basis functions, the MSW method and
Goell’s results are within 1%.

B. Effect on the Propagation Coefficient of the Proximity of the
Shield to the Dielectric Rod

The effect of the proximity of the shield on the propaga-
tion coefficients of the first few modes to propagate (E}; and
E3,/EY,) is shown in Fig. 4. It can be seen that, for a shield
to dielectric dimension ratio value SDR > 2, the shield has
only a small effect on the propagation coefficient. These results
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Fig. 3. Comparison of the convergence properties of the Goell [4] and MSW

methods when used with a square cross-sectional dielectric-rod waveguide
(-2 = 37.4) in free space where B is the normalized propagation coefficient.
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Fig. 4. Effect of the proximity of the shield on 3., &,.0 = 37.4,a; = by =
6 mm, frequency = 3.5 GHz.

are verified by considering the situation where the shield size
approaches that of the dielectric (SDR = 1). In both cases,
the propagation coefficients found using the MSW method ap-
proached those calculated for dielectric-filled rectangular wave-
guide, as shown in this figure.

C. Comparison of Methods Used for Calculation of the Rod
Propagation Coefficient in Free Space

With the dielectric in free space, €, = 13.1 and DR = 1,
Fig. 5 shows the propagation coefficients of the first modes to
propagate for normalized frequencies from V' = 4to V = 12.
To simulate a free-space situation, SDR = 3 is used in the MSW
program. One can see that there is good agreement with the
free-space method of Goell. Some differences at low frequen-
cies are due to the effect of the use of the shield in the MSW pro-
gram. Modes EY; and EY; are degenerate, while 3,/ E%, and
Ef,/E3, are degenerate and coupled (discussed later in Sec-
tion III-F).
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Fig. 5. Comparison of the 3. calculation methods of MSW and Goell [4] for

a square cross-sectional dielectric-rod waveguide in free space where B and V'
are the normalized propagation coefficient and frequency, respectively (£,.o =
13.1).
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Fig. 6. Comparison of the 3, calculation methods of MSW, the
boundary-element method of Collin [13], and the finite-difference method
of Schweig and Bridges for a shielded square cross-sectional dielectric-rod
waveguide SDR = 1.87 and €,.5 = 2.22, where B and V' are the normalized
propagation coefficient and frequency, respectively.

D. Comparison of Methods for Calculation of the Shielded
Dielectric-Rod Propagation Coefficient

The MSW method with eo symmetry shows good agreement
with propagation coefficients obtained by Collin [13] and Collin
and Ksienski [14] using a boundary-element method and the
finite-difference method of Schweig and Bridges. These results
are shown in Fig. 6. The mode is £{;, DR = 1, SDR = 1.87,
and €, = 2.22.

E. Propagation Coefficient Verses Frequency Mode Diagram
of the Shielded Dielectric-Rod Waveguide

The propagation coefficient verses frequency-mode diagram,
of the first few modes to propagate, is shown in Fig. 7. The
12-mm square dielectric has a permittivity e, = 37.13, the
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Fig. 7. Mode diagram for the first few modes to propagate in a shielded

dielectric-rod waveguide plus some of the associated complex modes,
evanescent modes, and backward waves. SR = 1(a; = 6 mm),
SDR = 2(a» = 12 mm), and ¢, = 37.13. The modes are labeled
with their associated symmetry in parentheses.

shield is 24-mm square (SDR = 2). This figure shows differ-
ences from that of the dielectric image line reported by Strube
and Arndt [10]. The MSW method (for a shielded dielectric-rod
waveguide with DR = 1 and SDR = 2) reveals a coupled
E3,/EY, mode, which is dominant in this structure, and also
the £Y; mode is associated with a degenerate ¥, . The EY; and
E%, / EY, modes and their associated higher order modes do not
occur in the dielectric image line and the studies of this structure
in [7] and [10] use only a combination of oe and ee symmetry.
Some of the complex, evanescent, and backward wave modes
for the shielded dielectric rod, mentioned in Section II-C, are
also shown in Fig. 7. The symmetry associated with each mode
is shown in parentheses.

F. Field Patterns of the First Few Modes to Propagate on the
Shielded Dielectric-Rod Waveguide

The transverse electric and magnetic fields of the EY; mode,
in one-quarter of the structure, and determined from oe sym-
metry, are shown in Fig. 8. The calculated propagation coeffi-
cient is 3, = 305.42 at 3.5 GHz. The E3, / E{, modes have oo
symmetry. In a square cross section, using the same parameters,
these are degenerate, as they have the same propagation coef-
ficient 8, = 89.2. The resultant field plot is a superposition of
both modes, and is shown in Fig. 9. These modes are coupled to-
gether, as described by Goell [4], such that their propagation co-
efficients remain locked together for a range of cross-sectional
aspect ratios. The coupled modes separate when DR is some-
what greater or less than 1 depending on the frequency. For ex-
ample if, for this same structure, DR = 4/3 (a; = 8 mm, by =
6 mm) is used, the £5; mode is now uncoupled and is found to
have a propagation coefficient of 3, = 136.4. The transverse
electric-field pattern of the mode is shown in Fig. 10. The E7,
mode was found not to propagate. If DR = 3/4 (a1 = 6 mm,
b1 = 8 mm) is used instead, the roles of the modes are reversed.
The same type of situations occur when the EY,/EY, modes are
produced with ee symmetry.
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Fig. 8. Plot of the transverse electric and magnetic fields (¢, = 37.13) of

the E2Y; mode from the MSW method and oe symmetry.
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It is interesting to note that the transverse-field patterns of
Figs. 8 and 9 in the dielectric rod are not unlike the 7'F, and
T M1 modes in dielectric-filled rectangular waveguide, respec-
tively, as was indicated in Section III-B.

The electric-field intensities in the dielectric in Figs. 9 and 10
have been artificially increased by factors of 10 and 5, respec-
tively in the plots. This is so that field patterns in the dielectric
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Fig. 11. Setup for an S;; measurement of the shielded dielectric waveguide.

can be shown effectively at the same time as the larger intensity
field of the air region.

IV. MEASUREMENT TECHNIQUE

Apart from the boundary-element method results of Collin
mentioned in Section III, there does not appear to be any pub-
lished results on the specific effects of the shield on the propa-
gation coefficient of the structure described in this paper. There-
fore, to verify the method when the shield is close to the dielec-
tric, a measurement approach was devised whereby the propa-
gation coefficient could be calculated from the measured reflec-
tion coefficient (Sy1) of the structure. A length (L) of a shielded
square cross-sectional dielectric rod was fitted with end plates,
and a connector and probe were installed midway to allow mea-
surement by a vector network analyzer (see Fig. 11). To pro-
vide a situation where there would be a sufficient effect from
the shield, dielectric dimensions of a; = b; = 6 mm and
ay = bo = 9 mm (SDR = 1.5) where chosen. The dielec-
tric used was 153.3-mm long and had a nominal relative per-
mittivity of 37.4+1. This structure behaves as a resonant cavity
and the resonant frequencies produced are related to multiple
half-wavelengths between the plates and can be measured at
minimum points in the S1; magnitude data. The propagation
coefficient at these points can then be calculated from

TN

g =

(25)
where N is the number of multiple half-wavelengths of the res-
onant modes that can exist in the shielded dielectric-rod wave-
guide, and L is the distance between the planes. These propa-
gation coefficient values 3,(NN) can then be compared to cal-
culated values from the MSW method at the measured resonant
frequencies.

V. COMPARISON OF CALCULATED AND MEASURED RESULTS

A plot of calculated propagation coefficient over a frequency
range that covers the first few modes to propagate is shown in
Fig. 12. The coupled E3,/E}, modes are dominant, and the
degenerate modes EY; and EY;, which are normally dominant
in the free-space situation, are found to be cut off at just below
2.9 GHz.
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With this frequency range applied to the test setup of Fig. 11,
the 511 data produced is as shown in Fig. 13. It was found that
the frequencies at the resonant dips shown were within 1% of
calculated resonant frequencies for the E3,/EY, coupled and
Ef,, EY, degenerate modes. The EY,/E}; mode did not couple
to the measurement probe, nordid N = 5 for the 5, / EY, mode
and N = 11 for the Ef;, EY, modes.

It can be seen that some of the resonant dips associated with
EY, and EY| are in pairs and some are not. Some of these are
too small to be seen due to the scale of Fig. 13. The pairing
indicates that these modes are not quite degenerate in the test
unit due to some asymmetry in its dimensions. In these cases,
the measurement frequency was averaged. Where only a single
resonant dip was measured, it appears that either the £, or EY;
mode did not couple sufficiently to the probe to be visible or they
overlap.

Fig. 13 also shows that there are no resonances below 2.9 GHz
for the E¥, and EY, modes and, thus, the E%,/EY, coupled
mode is truly dominant.
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The propagation coefficients, calculated from (25) at the mea-
sured frequencies for £, and F},, are compared against MSW
calculated values in Fig. 14. An estimated permittivity of the
dielectric of €, = 37.13 was used. The extremes of the permit-
tivity tolerance for this dielectric are also shown in Fig. 14.

The measured propagation coefficient values for the £7; and
EY, modes are within 2% of the MSW values above 3 GHz.

Similarly, the measured frequency propagation values for the
E%, | EY, coupled mode are also within 2%, as shown in Fig. 15.

VI. CONCLUSION

A rigorous method for the computation of the propagation
coefficients and field patterns of the fundamental modes in a
shielded rectangular dielectric-rod waveguide has been pre-
sented. The method, based on that of Solbach and Wolff gives
closely comparable results to that of Goell in free space and the
boundary-element method of Collin, and has been verified by
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experiment for the case of a shield close to a dielectric of high
permittivity. The method also reveals that when the dielectric
is shielded, a dominant E3,/EY, coupled mode exists. The
method allows the effect of shield proximity to be assessed and,
thus, has application to the design of cavity filters incorporating
rectangular parallelepiped or cubic dielectric resonators. It is
easily extended to include calculation of both dielectric losses
and conductor losses in the shield wall. This will be the subject
of a future paper. This study could also be extended to the
calculation of the resonant frequencies of fundamental-mode
cubic dielectric-loaded cavity resonators.
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