1,785 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    The single row layout problem with clearances

    Get PDF
    The single row layout problem (SRLP) is a specially structured instance of the classical facility layout problem, especially used in flexible manufacturing systems. The SRLP consists of finding the most efficient arrangement of a given number of machines along one side of the material handling path with the purpose of minimising the total weighted sum of distances among all machine pairs. To reflect real manufacturing situations, a minimum space (so-called clearances) between machines may be required by observing technological constraints, safety considerations and regulations. This thesis intends to outline the different concepts of clearances used in literature and analyse their effects on modelling and solution approaches for the SRLP. In particular the special characteristics of sequence-dependent, asymmetric clearances are discussed and finally extended to large size clearances (machine-spanning clearances). For this, adjusted and novel model formulations and solution approaches are presented. Furthermore, a comprehensive survey of articles published in this research area since 2000 is provided which identify recent developments and emerging trends in SRLP

    Honey Bees Inspired Optimization Method: The Bees Algorithm

    Get PDF
    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Performance Comparison of Parallel Bees Algorithm on Rosenbrock Function

    Get PDF
    The optimization algorithms that imitate nature have acquired much attention principally mechanisms for solving the difficult issues for example the travelling salesman problem (TSP) which is containing routing and scheduling of the tasks. This thesis presents the parallel Bees Algorithm as a new approach for optimizing the last results for the Bees Algorithm. Bees Algorithm is one of the optimization algorithms inspired from the natural foraging ways of the honey bees of finding the best solution. It is a series of activities based on the searching algorithm in order to access the best solutions. It is an iteration algorithm; therefore, it is suffering from slow convergence. The other downside of the Bee Algorithm is that it has needless computation. This means that it spends a long time for the bees algorithm converge the optimum solution. In this study, the parallel bees algorithm technique is proposed for overcoming of this issue. Due to that, this would lead to reduce the required time to get a solution with faster results accuracy than original Bees Algorithm
    • …
    corecore