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The current market’s demand for customization and responsiveness is a major challenge for producing
intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an
alternative way to design this kind of system based on decentralized control using distributed,
autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions
provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually
do not consider true adaptation and re-configuration. Understanding how, in nature, complex things
are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful
adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur-
ing systems. The paper provides an overview of some of the principles found in nature and biology and
analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to
solve complex engineering problems, especially in the manufacturing field. An industrial automation
case study is used to illustrate a bio-inspired method based on potential fields to dynamically route

pallets.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The current global economy imposes new challenges for
manufacturing companies, with cost, quality and responsiveness
being the three critical foundations on which every manufactur-
ing company stands to remain competitive (EIMaraghy, 2006).
Under these circumstances, manufacturing systems are required
to be more flexible, robust and reconfigurable, supporting the
agile response to the changing conditions through their dynamic
re-configuration on the fly (i.e., without stopping, re-program-
ming or re-starting the processes or the other system compo-
nents). Since the systems are more complex, distributed and
reconfigurable, the probability of the system malfunction also
increases (Trentesaux, 2009).

Since the traditional approaches, based on centralized, rigid
structures, do not have enough flexibility to cope with modularity,
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flexibility, robustness and re-configuration, several paradigms have
been introduced over the last few years: Multi-Agent Systems (MAS)
(Wooldridge, 2002), Holonic Manufacturing Systems (HMS) (Deen,
2003; Leitdo and Restivo, 2006) and Bionic Manufacturing Systems
(BMS) (Okino, 1993). In spite of their natural differences, these
paradigms propose distributed, autonomous and adaptive manufac-
turing systems, which can respond promptly and correctly to
external changes. These paradigms differ from the conventional
approaches due to their inherent ability to adapt to changes without
external interventions. In addition, the HMS and BMS paradigms
indicate that hierarchy is needed to guarantee the inter-entity
conflict resolution and to maintain overall system coherence and
objectivity in the face of the individual, autonomous attitude of the
entities (Sousa et al., 1999).

The work on MAS, HMS and BMS provides a good framework to
rise to the challenge of developing a new class of adaptive and
reconfigurable manufacturing systems that will support robustness
and re-configurability quite naturally (see the surveys of Leitdo
(2009a) and Pechoucek and Marik (2008)). However, the current
application of such paradigms usually does not consider self-adapta-
tion and self-organization, which results in the systems becoming
increasingly reconfigurable, adaptive, organized and efficient.

In biology and nature, complex systems behave simply because
of the cooperation of individuals, who are very simple, with very
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limited cognitive skills (e.g., the colonies of ants and bees). Biological
insights have been the source of inspiration for the development of
several techniques and methods to solve complex engineering
problems, such as logistics and traffic optimization, telecommunica-
tions networks, economic markets and production systems (Leitdo,
2009b). Multi-Agent Systems have already inherited certain ideas
derived from biology and nature, but they can be enhanced with
other biological insights, notably the swarm intelligence and
self-organization, to obtain more responsive, adaptive systems
that address the current requirements imposed on manufacturing
systems. In particular, bio-inspired techniques can contribute to
obtaining manufacturing systems with the desired characteristics
of flexibility, robustness, re-configuration and responsiveness.

The motivation of this paper is to understand how bio-inspired
techniques can be used to solve complex engineering problems.
Thus, some biological phenomena are studied, some of the
existing bio-inspired applications are analyzed, and then the real
benefits of bio-inspired MAS for solving the current manufactur-
ing control problems are examined. A real implementation of a
bio-inspired solution for routing pallets in a flexible manufactur-
ing system is described to illustrate its suitability.

The remainder of this paper is organized as follows. Section 2
provides an overview of biological phenomena, and Section 3
introduces some bio-inspired techniques and methods used to
solve complex problems, especially manufacturing problems.
Section 4 discusses the suitability of bio-inspired multi-agent
systems solutions for the manufacturing field, and Section 5
describes a bio-inspired solution based on potential fields for an
industrial automation case study. Finally, Section 6 presents our
conclusions and our prospects for future research.

2. Basic concepts found in biology

Nature offers plenty of powerful mechanisms, refined by
millions of years of evolution, to handle emergent and evolvable
environments (Leitdo, 2009b). This section tries to show how
complex things behave simply in nature and biology, introducing
the concepts of swarm intelligence (Section 2.1) and evolution
and self-organization (Section 2.2).

2.1. Swarm intelligence

In biology, complex systems are based on entities that exhibit
simple behaviors, made of a small set of simple rules, with
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reduced cognitive abilities. The global system behavior emerges
from a multiplicity of non-linear interactions among the indivi-
dual entities. In such systems, the emergent behavior occurs
without a pre-defined plan, is not driven by a central entity,
and occurs only when the resultant behavior of the whole is
greater and much more complex than the sum of the behaviors of
its parts (Holland, 1998). Some illustrative examples of this kind
of emergent behavior can be found in the ant and bee societies. In
fact, everybody knows that “a single ant or bee isnt smart, but their
colonies are” (Miller, 2007); they are capable of displaying surpris-
ingly complex behaviors.

Swarm intelligence, found in colonies of insects, can be defined
as “the emergent collective intelligence of groups of simple and single
entities” (Bonabeau et al., 1999), thus reflecting the emergent
phenomenon. Swarm intelligence offers an alternative way of
designing intelligent, complex systems, in which the traditional
centralized control is replaced by a distributed operations where
the interactions between individuals lead to the emergence of
“intelligent” global behavior, previously unknown (Bonabeau
et al., 1999). Examples of swarm intelligence include ant colonies,
bird flocking, fish shoaling and bacterial growth (Miller, 2007).

In such colonies, individuals possess a partial view of the world
and require some way of communicating with others to achieve
global objectives. However, the individuals in these colonies usually
do not have the ability to communicate directly each other (e.g., like
humans) and thus have recourse to an indirect form of commu-
nication that establishes a “channel” of information sharing. For
example, ants communicate by using an indirect coordination
mechanism known as stigmergy, derived from the Greek words
stigma, which means mark or sign, and ergon, which means work or
action (Grassé, 1959). In stigmergy, the trace left in the environment
stimulates the execution of a subsequent action, by the same or
different entity. In this mechanism, ants use a chemical substance
known as pheromone, which acts like a trigger that individuals from
the same species can sense and/or use in favor of the swarm (e.g.,
guidance when foraging for food) (Bonabeau et al., 1997) (Fig. 1a).

After finding a food site, ants walk back to the nest and lay
down a pheromone trail to share information. Other ants foraging
for food can sense the odor diffused by pheromones, and may lay
a trail reinforcing the existing pheromones. The pheromones
deposited in the nature suffer a natural process of evaporation,
resulting in a reduction of the intensity of the odor; the reduction
is directly proportional to the time elapsed from the nest to the
food source (i.e., the more intense, the shorter distance traveled).
If several ants make different trips to the same source of food,
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Fig. 1. Indirect communication in insect swarms: (a) ant pheromone deposition (adapted from Parunak and Brueckner, 2001); (b) the waggle dance used by bees.
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there will be several trips to the same source. The optimal solution
(i.e., the shortest one) will be the trail that has more intense
pheromones. After a while, gradually, the trails that have less intense
pheromones are abandoned by the ants because the pheromones are
not reinforced. Naturally, these trails are no longer considered as
options. Sometimes, ants can walk randomly instead of choosing a
pheromone trail, which is a good way to find new paths that have
appeared in the mean time (Bonabeau et al., 1997).

The double-bridge experiment conducted by Deneubourg et al.
(1990) reinforces the idea that ants can indeed find the shortest
paths to goals. In their experiments, if two equal paths from the
nest to a food source, each path is chosen 50% of the time; in each
experiment, the ants tend to choose only one path. On the other
hand, if one path is significantly longer than the other, the ants
chose the shortest one (Goss et al., 1989).

Another illustrative example of indirect communication sup-
porting swarm intelligence is related to the waggle dance used by
honey bees to share information about the direction and distance
to patches of flowers yielding nectar and pollen. After scouting an
area for a food source, honey bees return to the hive and inform
other bees about the food source, performing a dance known as
the “waggle dance”, as shown in Fig. 1b. This dance provides the
following information to the other bees: (1) the rotation angle of
the dance, in relation to the sun, states the direction in which the
food source can be found and (2) the duration of the dance
represents the travel distance to the food source (Bonabeau et al.,
1999; Frisch, 1967). Other researchers suggest that this dance also
provides a third kind of information related to the quality and
quantity of the food source. This last information is shared by
releasing a pheromone-type odor (Dornhaus et al., 2003).

Swarm intelligence can be achieved more from coordinating
activities of individuals and less from using decision-making
mechanisms. A well-known example is the movement of flock
of birds (e.g., the typical V formation), where individuals coordi-
nate their movements in relation to the movement of the others
(Reynolds, 1987). For this purpose, simple mechanisms are used
to coordinate the individual behavior: feedback mechanisms,
which use positive and negative feedback to regulate the system’s
behavior (Camazine et al., 2002):

(i) in positive feedback, the system responds to the perturbation
in the same direction as the change (i.e., towards the ampli-
fication of the perturbation); and

(ii) in negative feedback, the system responds to the perturbation
in the opposite direction (i.e., towards the stabilization of the
perturbation).

By combining both positive and negative feedback, the system
can be maintained under control but pushed to its limits
(Camazine et al., 2002). For example, the simple rule “I nest where
other similar individuals nest unless there are too many fishes”
(Camazine et al., 2002), used to describe fish nesting, combines
positive and negative feedback: the first part uses positive feed-
back, allowing the aggregation of fishes in the same place to be
increased, and the second part uses negative feedback, thus
avoiding a high concentration of fishes in the same place. Other
similar coordination mechanisms are found in other areas of
science and nature, namely market laws (Markus et al., 1996)
and potential fields (Vaario and Ueda, 1996), based on regulating
the expectations of individuals with conflicts of interest.

2.2. Evolution and self-organization
The Darwinian theory of evolution is a form of adaptation to

dynamic environmental evolution. Darwin stated that nature is in
a permanent transformative state in which the species would

change from generation to generation, evolving to better suit their
environment. Basically, Darwin saw the evolution as a result of
environmental selection acting on a population of organisms
competing for resources. In this evolutionary process, the selec-
tion is natural in the sense that it is purely spontaneous without a
pre-defined plan. In other words, species tend to evolve to
overcome their limitations and to adapt to external natural
conditions. For example, a species can perform small spontaneous
changes within their chromosomes, which provokes some phy-
siological changes after a few generations.

Self-organization is another form of adaptation to dynamic
environmental evolution. Several distinct, not necessarily contra-
dictory, definitions can be found in the literature (Massotte, 1995;
Bousbia and Trentesaux, 2002; Tharumarajah, 1998). However,
the definition used in this paper is: “The ability of an entity/system
to adapt dynamically its behavior to external changing conditions
without external intervention” (Leitdao, 2008b). Self-organizing
systems do not follow an approximate, rigid organization, but
instead evolve through a dynamic, non-linear process with a
constant optimization of the individuals’ behavior.

Examples of self-organization can be found in several domains:

e Physics—In thermodynamics, the 2nd law states that every-
thing in the universe tends to move from a state of order
towards a state of chaos (introducing the concept of entropy),
which explains that hot bodies tend to get colder with an
external cold source (e.g., a refrigerator). Another example is
found on the Bénard rolls phenomenon in which the hot and
cold molecules self-organize themselves in order to create
a flow.

e Chemistry—For example, molecules exhibit self-assembly proper-
ties, which drive the molecular structure to self-organization
(Whitesides et al., 1991). Another example is the Belousov-
Zhabotinsky chemical oscillator, which is composed of a reaction
sequence that forms a loop (Shanks, 2001).

o Nature—The stigmergy phenomenon is used to achieve self-
organization in ant colonies.

The coordination mechanisms found in colonies of ants and
bees, besides allowing members of these species to communicate,
allow the whole community to achieve and display self-organiza-
tion behavior. Bonabeau et al. (1997) suggest that the basic
ingredients to achieve a self-organized system are positive feed-
back, negative feedback and fluctuations (e.g., random walks and
errors). They also suggest that self-organization relies on the
multiple interactions between the individuals.

3. Survey of bio-inspired applications for solving complex
problems

Several researchers used biological behavior (e.g., colonies of
insects) to solve complex mathematical engineering problems. In
this section, bio-inspired techniques and methods in engineering
are briefly reviewed, with special attention to their applicability
in manufacturing.

3.1. Applied to mathematical engineering problems

The insights inherited from the swarm intelligence principles
led researchers to design optimization evolutionary algorithms:
Ant Colony Optimization (ACO), the Artificial Bee Colony (ABC)
Algorithm and Particle Swarm Optimization (PSO).

Dorigo (1992) introduced the Ant Colony Optimization (ACO)
technique, inspired by the food foraging behavior of ants, to solve
problems that need to find optimal paths to some goal. In ACO,
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acting as ants, agents travel over a weighted graph randomly,
leaving marks (i.e., pheromones) wherever they go. After an initial
phase, the "ants” make their decisions according to the phero-
mone level, instead of making decisions randomly. Over time, the
pheromone trail becomes weaker in the less used paths, making
the most used path (i.e., the most optimized path) prevail.

The ACO algorithm has been used to solve diverse engineering
problems from different application domains. In fact, in the financial
domain, the ACO algorithm has been used to classify firms as to the
different levels of credit risk (Marinakis et al., 2008b) and, in the
medical field, to distinguish cancer from non-cancerous diseases, by
helping with the evaluation of proteomic patterns (Meng, 2006). In
engineering world, the ACO algorithm has been used to determine
the optimal values for the components in an electronics power
circuit (Zhang et al., 2008b), to achieve an optimal image threshold
by separating the object from its background (Malisia and Tizhoosh,
2006), and to update the telecommunications routing tables dyna-
mically and adaptively (Di Caro and Dorigo, 1998). In the army, this
algorithm has been applied for the dynamic re-planning of Unin-
habited Aerial Vehicles (UAV) (Duan et al, 2009) and for the
cooperation among swarm robots to accomplish a complex task
(Nouyan et al., 2009). In the real world, Air Liquide has used an ant-
based strategy to manage the truck routes for delivering industrial
and medical gases (Miller, 2007), and Bell and McMullen (2004) has
used a similar algorithm to optimize vehicle routing logistics.
Southwest Airlines has used an ant-based behavioral model to
improve its aircraft scheduling at the gates of the Sky Harbor
International Airport in Phoenix (Arizona, USA) (Miller, 2007).

The behavior of bees is the source of inspiration for the
development of the Artificial Bee Colony (ABC) algorithm. This
algorithm uses employed bees, onlooker bees and scout bees
(Karaboga and Basturk, 2007). Employed bees are those that have
found a food source and are responsible for recruiting onlooker
bees, which are waiting in the dance area. After being recruited by
employed bees, onlooker bees, become employed bees and are
responsible for recruiting. Scout bees are responsible to perform
random searches in order to discover new food sources. Briefly,
after recruiting onlooker bees, employed bees move to the food
source (i.e., possible solution) and search for a new nearby solution,
which is then transmitted to onlooker bees. When an employed bee
food source becomes exhausted, this bee becomes a scout, and this

Table 1
Bio-inspired applications to solve engineering and mathematical problems.

process is repeated until a good solution is found. Applications using
the ABC algorithm can be found on the parameter optimization of a
hybrid power system model (Chatterjee et al., 2010) or the dynamic
path planning of mobile robots in uncertain environments (Ma and
Lei, 2010).

Particle Swarm Optimization (PSO) was inspired by the social
behavior of bird flocks and fish schools. Initially, Kenedy and
Eberhart (1995) introduced PSO, which is a population-based
stochastic optimization technique. Briefly, the system is initialized
with a population of random solutions, and the algorithm searches
for optimal solutions by updating generations. The potential solu-
tions, called particles, fly through the problem space, following the
current optimum particles. As the swarm iterates, the fitness of the
overall best solution improves (i.e., decreases for minimization
problem). The PSO algorithm has been applied to solve problems
ranging from the social to the engineering fields. For example, it has
been used to optimize the parameters for PID controller design
(Gaing, 2004), to assess credit risks (Li and Pi, 2009), to design
evolvable hardware (Pefia et al, 2006), to route vehicles with
simultaneous pickup and delivery (Ai and Kachitvichyanukul,
2009) and to optimize the parameters for spatiotemporal retina
models (Niu et al., 2007).

The swarm intelligence principles have been used to forecast
Turkish energy demands (Miller, 2007) and to solve traffic and
transportation problems (Teodorovic, 2008). A more widespread
example of the application of the swarm intelligence principles is
Wikipedia (Leitdo, 2009b), in which a huge number of people
contribute to the constant evolution of the encyclopedia with their
individual knowledge. No single person knows everything; however,
collectively, it is possible to know far more than was expected.

Genetic Algorithms (GA), derived from natural evolution, are
based on a population of abstract representations of candidate
solutions to an optimization problem that evolves toward better
solutions. GA use evolutionary operators (i.e., inheritance, muta-
tion, selection and crossover), and they have been successfully
applied in various application domains: power distribution
(Ramirez-Rosado and Bernal-Agustin, 1998), image segmentation
(Peng et al., 2000) and scheduling and route selection for military
land moves (Montana et al., 1999).

Table 1 provides some applications that use insights from biology
and nature to solve complex engineering and mathematical problems.

Problem domain

Existing ACO-inspired solutions

Existing PSO-inspired solutions

Existing GA-inspired solutions

Communication
networks
Control

Finance

Hardware design
Image processing
Medicine
Military

Power energy
Robotics

Sensor networks

Vehicle routing/
traffic control

Di Caro and Dorigo (1998),

Zhao et al. (2009), Sim and Sun (2002)
Van Ast et al. (2009), Boubertakh et al.
(2009), Zhang and Wang (2008)

Fang and Bai (2009), Yuan and Zou (2009),

Hong et al. (2007), Marinakis et al. (2008b),

Kumar et al. (2009)

Zhang et al. (2008b), Abd-El-Barr et al.
(2003), Sethuram and Parashar (2006)
Malisia and Tizhoosh (2006), Tian et al.
(2008), Wang et al. (2005)

Meng (2006), Lee et al. (2009), Logeswari
and Karnan (2010), Yu et al. (2009)
Duan et al. (2009), Cheng et al. (2009),
Munirajan et al. (2004)

Lee and Vlachogiannis (2005), Liu et al.
(2009), Colson et al. (2009)

Nouyan et al. (2009)

Camilo et al. (2006), Muraleedharan and
Osadciw (2009)
Miller (2007), Bell and McMullen (2004)

Dongming et al. (2008), Li et al. (2008)

Gaing (2004), Jalilvand et al. (2008),
Hu et al. (2005)

Li and Pi (2009), Majhi et al. (2008),
Chen et al. (2009a)

Pefia et al. (2006), Goudos et al. (2008),
Ren and Cheng (2009)

Chen et al. (2009b), Chandramouli and
Izquierdo (2006), Ma et al. (2008)

Niu et al. (2007), Meng (2006), Marinakis
et al. (2008a)

Matlock et al. (2009), Cui and

Potok (2007), Thangaraj et al. (2009)
Liu and Ge (2008), Zhang et al. (2008a),
Leeton et al. (2010)

Zhengxiong and Xinsheng (2010)

Aziz et al. (2007), Tewolde et al. (2008),
Li and Lei (2009)

Ai and Kachitvichyanukul (2009),

Wu and Tan (2009)

Lima et al. (2007), Lee et al. (1997)

Wai and Su (2006), Toderici et al. (2010),
Bae et al. (2001)
Badawy et al. (2005)

Tsai and Chou (2006), Regue et al. (2001)
Peng et al. (2000), Katayama et al. (2006)

Maulik (2009), Das and Bhattacharya (2009),
Tohka et al. (2007)

Moore and Sinclair (1999), Montana et al. (1999),
Liu et al. (2005)

Ramirez-Rosado and Bernal-Agustin (1998)

Tohka et al. (2007) Karlra and Prakash (2003),
Pessin et al. (2009), Albert et al. (2009)

Jiang et al. (2009), Brown and McShane (2004),
Khanna et al. (2006)

Tong et al. (2004), Jun (2009), Tunjongsirigul
and Pongchairerks (2010)
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In this table, the problem domain can range from finance to energy.
This table does not intend to be exhaustive but instead to
demonstrate the many domains that are already using bio-inspired
solutions.

3.2. Applied to manufacturing problems

A similar analysis of the applicability of bio-inspired techni-
ques can be performed for manufacturing. In the manufacturing
domain, algorithms based on the ant behavior have been used to
optimize machine layouts (Corry and Kozan, 2004), schedule
continuous casting aluminum in a Quebec factory (Gravel et al.,
2002) and coordinate adaptive manufacturing control systems
(Hadeli et al., 2004). The food-foraging behavior of honey bees is
the source of inspiration for solving job scheduling problems
(Pham et al., 2007b) and optimizing the manufacturing layout
formation (Pham et al., 2007a). The behavior of wasps has been
used for task allocation (Cicirello and Smith, 2001a) and factory
routing and scheduling (Cicirello and Smith, 2001b).

In addition, the PSO technique has been applied to machinery
fault detection (Samanta and Nataraj, 2009), job shop scheduling
(Xia and Wu, 2005), machine load balance as part of a job shop
manufacturing system (Zhao et al., 2006) and manufacturing cells
layout and robot transport allocation optimization (Yamada et al.,
2003). GA have been used to generate and evaluate assembly
plans (Lazzerini et al., 1999), to design optimized layouts (Wang
et al., 2008), and to generate schedules for flexible job-shop
production systems (Qiu et al., 2009).

Self-organization principals have been used to solve complex
adaptive problems: in holonic manufacturing control (Leitdo and
Restivo, 2006), in dynamic resource allocation of a Daimler
Chrysler plant (Bussmann et al., 2004), in the development of self-
organized and self-assembled bio-inspired robots (Moudada et al.,
2004) and in manufacturing scheduling (Tharumarajah, 1998). A
stigmergic approach has also been used as the routing mechanism
in a flexible manufacturing system (Sallez et al., 2009).

The potential fields have been used to solve some manufactur-
ing problems. Although this is a concept usually found in physics,
in this paper, it is included in the bio-inspired world. This concept
has been used to allocate products within a group of resources
(Vaario and Ueda, 1998) and to guide Automated Guided Vehicle
(AGV) in a manufacturing site (Weyns et al., 2008). In addition, Zbib
et al. (in press) has used a potential fields approach for dynamic task
allocation and product routing. Table 2 provides some of the existing
bio-inspired applications in the manufacturing field.

Table 2
Bio-inspired Applications to Solve Manufacturing Problems.

4. Applicability of bio-inspired systems in manufacturing

The analysis in the previous section shows the tremendous
potential of using of bio-inspired systems to solve complex
engineering problems. This section discusses the applicability
and benefits of combining bio-inspired techniques with multi-
agent systems in the manufacturing domain in order to address
the current challenges.

The MAS paradigm has already inherited biological insights
(Barbosa and Leitdo, 2010):

e Distributed nature—multi-agent systems are based on a set of
distributed, autonomous and cooperative agents, and the
functioning of the whole system is determined by the inter-
action among these individuals.

e Division of labor—multi-agent systems define different types of
agents with distinct roles, objectives, behaviors and skills; in
insect colonies, "division of labor” means that an individual
usually does not perform all tasks but rather specializes in one
set of tasks (Bonabeau et al., 1999).

o Emergence from collective simple behavior—the obtained beha-
vior of the whole system is greater and much more complex
than the simple sum of the behaviors of its parts (Holland,
1998).

A MAS application that fulfils these insights offers an alter-
native way of designing intelligent, robust and adaptive systems
that replace traditional centralized control. These systems provide
robustness, since the system is not dependent on a centralized
entity and has the ability to continue working even if some
entities fail when performing their tasks, and flexibility, since
the society of the entities can dynamically be plugged in, plugged
out or modified to face changing environments on the fly.
Detecting new entities may remind readers of fluctuation ampli-
fications found in the ant food foraging behavior (e.g., the random
walks).

As illustrated in Fig. 2, the simple application of multi-agent
system principles usually allows the behavior to emerge, thus
guaranteeing the fulfilment of flexible and robustness require-
ments. However, these systems lack the capacity to evolve.
This capacity is related to how the system can adapt quickly
and efficiently to environmental volatility, thus addressing the
responsiveness property.

To face this challenge, biology and nature can provide
useful insights, especially the self-organization phenomenon.

Problem domain Existing solutions inspired by ant and

bee behavior

Existing solutions inspired by self-
organization or GA

Other existing bio-inspired solutions

Assembly/disassembly Shan et al. (2007), Sharma et al. (2009),
Lu et al. (2008)

Jain and Sharma (2005), Sun and Teng
(2002), Chen and Rogers (2009), Corry
and Kozan (2004)

Arnaout et al. (2008), Chen et al. (2008),

Layout optimization

Manufacturing scheduling
Gravel et al. (2002)

Production control Hadeli et al. (2004)

Supply chain Suva et al. (2004), Sun et al. (2008),

Caldeira et al. (2007)

Lazzerini et al. (1999), Gao and
Chen (2008)

Wang et al. (2008), Kulkarni and
Shanker (2007)

Qiu et al. (2009), Aggoune et al. (2001),
Xu et al. (2009), Blum and Sampels (2004), Tharumarajah (1998)
Leitdao and Restivo (2006), Bussmann

et al. (2004), Sallez et al. (2009)

Elmahi et al. (2004), Kaijun et al. (2010),
Jianhua and Xianfeng (2010)

Lv and Lu (2009), Dong et al. (2007)

Ning et al. (2004), Ohmori et al. (2010),
Lei et al. (2003), Pham et al. (2007a),
Yamada et al. (2003)

Shi et al. (2009), Zhang and Wu (2008),
Pham et al. (2007b), Cicirello and Smith
(2001a), Cicirello and Smith (2001b),
Xia and Wu (2005), Zhao et al. (2006)
Vaario and Ueda (1998), Ueda et al.
(2001) Weyns et al. (2008), Zbib et al.
(in press)

Sinha et al. (2009), Qi et al. (2008)
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Fig. 2. Emergence and evolution in the manufacturing system design.

Self-organization applied to multi-agent systems allows several
self-x properties to be achieved (Leitdao, 2008a):

e Self-configuration—the capacity to dynamically adapt to chan-
ging conditions by modifying the system’s own configuration,
thus permitting the addition/removal/modification of entities
on the fly, without disrupting the service.

e Self-optimization—the system’s capacity to adjust itself proac-
tively to respond to environmental stimuli.

e Self-healing—the capacity to diagnose deviations due to unex-
pected conditions and act proactively to normalize these
deviations, thus avoiding service disruptions.

The self-x properties are crucial for developing highly adap-
tive, evolvable systems, addressing the current requirements, and
supporting re-configurability in a quite natural manner.

Despite the enormous potential of the bio-inspired insights,
special care must be taken when translating these insights into
the real-world problem-solving. If the biological behaviors are
simply copied, the system will not work as expected. Mimicking
behaviors can drive the system into danger (e.g., the circular mill
in army ants) (Anderson and Bartholdi, 2000). Based on this
observation, we do not advise to copy the entire behavioral aspect
of the biological mechanism, but instead translate and adapt the
insights in order to match the system’s objectives. This transla-
tion/adaptation requires collaboration between experts in biology
and experts in engineering, which may lead to new insights from
a different point of view.

This observation may provoke a question related to the fact
that, in manufacturing, there is little space to send physical
entities (e.g., products or trucks) on a random walk to explore
alternative routes. It is important to remember that a multi-agent
manufacturing system is composed of two components: the
agents and the physical resources (i.e., products and machines).
Naturally, the product cannot be sent on a test trip, but agents,
running bio-inspired algorithms, can use virtual ants (i.e., agents)
to explore the best solutions in order to route products.

However, bio-inspired techniques to enhance multi-agent sys-
tems can be analyzed from another perspective. Manufacturing and
automation cover a wide range of application domains, presenting
different requirements and constraints. Sometimes, the manufactur-
ing areas can benefit more from using such bio-inspired techniques.
Based on the authors experience, using bio-inspired techniques
combined with multi-agent systems can help to design more

intelligent, modular, flexible and adaptive systems, especially in
the following manufacturing domains:

e Supply chains and virtual organizations, which require the
frequent re-organization of partners to achieve optimization
and responsiveness.

e Shop floor layout, which requires optimizing the shop floor
layout in order to minimize transport time and to minimize
transport distances, in situations where shop floor resources
move physically.

e Product demand, in which the manufacturing system re-orga-
nizes itself to adapt to the changes in the product demand (i.e.,
faced with the mass customization trend), increasing/reducing
the number of resources or modifying their capabilities, based
on the forecast production demands.

e Planning and scheduling, in which the goal is to find the most
current optimized plans and schedules, while taking the
product demands and the capabilities of the shop floor
resources into consideration.

e Adaptive control, in which the goal is to identify an adaptive,
dynamic production control strategy based on the dynamic
on-line schedule, which is adapted in cases of unexpected
disturbances.

e Predictive maintenance, in which predicting machinery failures
is essential for tolerating disturbances and malfunctions,
which helps to develop an adaptive production system.

e Diagnosis, in which distributed entities are able to cooperate to
achieve a dynamic, reliable and clear diagnosis of the detected
symptoms.

e Adaptive processes and equipment, in which developing new
sensors, actuators and controllers will help to design and
implement more adaptive manufacturing equipment.

These bio-inspired solutions can be more useful when the
environment in which they operate is unpredictable. The other
issue that must be taken into account is applying these mechan-
isms may not be advantageous in cases where strong real-time
constraints are needed. Special care must be taken, and the right
mechanisms applied, in order to not affect the system performance.

In spite of the promising prospects that bio-inspired principles
can bring to engineering systems, especially in the manufacturing
domain, these principles have been adopted less than expected in
industrial situations. The major problem is that industry demands
proven technology, without wanting to be the first ones to try it in
their production processes. The maturity of the technology and
the proofs of its real applicability and merits will solve this
problem. Furthermore, industry is usually afraid of using emer-
gent terminology associated to these new technologies, such as
ontologies, self-organization, emergence, distributed thinking and
learning.

The challenge for engineers developing bio-inspired solutions
for manufacturing is to convince people from industry of the real
advantages of using distributed systems based on the behavior of
simple, effective and adaptive entities regulated by simple coor-
dination mechanisms, such as those occurring in nature. For this
purpose, it is important to develop demonstrators and real case
studies to be used as a proof of concept. Simulation platforms
simplify the design, testing and debugging of these bio-inspired
applications, ensuring a framework to simulate/validate strate-
gies to support decision-making. This is a crucial issue. Several
computational platforms are currently available for the simula-
tion/validation of bio-inspired models (e.g., SWARM, RePastS and
NetLogo), in which the behaviors of biological entities (e.g., ants
and bees) are usually implemented using software agents. (More
information can be found in Railsback et al. (2006) and Arunachalam
et al. (2008)).
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An interesting example is using the NetLogo platform to
simulate the dynamic determination of the best path to route
the products in situations with disturbances (Sallez et al., 2009).
The idea here is to simulate the manufacturing system taking into
account the real conditions (e.g., the equipment status). In this
way, the model gets real information, performs the simulation,
and sends the commands to the real environment. The system
operates in a bidirectional manner: the real environment provides
fault inputs to the modeling system, and the modeling system
gives scheduling orders to the real environment.

5. An automation case study: a bio-inspired approach

An experimental case study was used to demonstrate the
applicability of bio-inspired multi-agent systems in manufactur-
ing. For this purpose, the full-size flexible manufacturing system
(FMS), located at the AIP-PRIMECA production center (Université
de Valenciennes et Hainaut-Cambrésis, France), was used. The FMS
is composed of seven work stations (i.e., assembly robots, quality
control units and load/unload units), interconnected by a flexible
conveyor system that uses shuttles to move pallets with the
products (Fig. 3).

The bio-inspired control system, with the goal of dynamic task
allocation and dynamic pallet routing, based on the concept of
potential fields, which generate attractive and repulsive fields to
govern the system behavior (Vaario and Ueda, 1998). In this
system, the resources emit attractive fields according to the
services they provide and their availability. The potential fields
are usually emitted in all directions (3D), but in this production
context, the fields are only emitted in 1D because of the typology

Fig. 3. The AIP-PRIMECA FMS.

of the conveying system. Since a resource can perform more than
one service, or operation, it emits a vector of potential fields. The
potential fields are hosted in the decisional nodes of the conveyor
system. The fields are propagated among decisional nodes, while
taking the reduction of their intensity according to the distance
into account. In each decisional node, the representation of the
potential fields uses a matrix correlating resources and services:

S1 S
Ri[A1 412
Ry | 421 422
R3 | 431 432

where /; represents the potential field emitted by the resource R;
to perform the service S;.

A shuttle is used to transport the product, and, for experi-
mental purposes, a notebook is used to host the product intelli-
gence. A product moving in the conveyor system senses the
potential fields in the decisional nodes. Taking into consideration
its service list that indicates the next service to be executed, the
product decides dynamically to allocate the service to the
resource that emits the highest potential field. (More details
about the potential-field control architecture can be found in
Zbib et al. (in press)).

Described in detail by Zbib et al. (in press), the experimental
results obtained shows an average production time gain of 10%
when compared with a contract-net approach, which is typically
used in multi-agent control solutions to implement the resource
allocation. In fact, the control system based on potential fields
results in the following advantages:

e Simpler and easier engineering process—the programming
effort to develop the potential fields approach is significantly
smaller than to develop the contract-net approach. In the
potential fields approach, the algorithm embedded in the
product has only to choose the maximal value of potential
fields for a specific service. On the other hand, in the contract-
net approach, the algorithms embedded in the product need to
handle the resource allocation process (implemented by using
the contract-net protocol) and then to select the best path to
convey the shuttle to the target resource, which has been
implemented in the experimentation by using the well-known
Dijkstra’s algorithm (Sallez et al., 2010). Please note that the
routing process is naturally included in the potential fields
approach.

e Better reactive behavior—the system perturbations (e.g.,
resource or conveyor breakdown) are easily managed by
decreasing the strength of the potential fields. The products
can easily react to the change in the potential fields and
dynamically re-allocate the service and the route towards
new resource.

This case study illustrates that bio-inspired applications are
promising, adaptive and reactive when faced with dynamic
complex environments, often found in manufacturing systems.
However, the potential fields approach, and generally the bio-
inspired methods, presents some drawbacks related to the local
perspective of the individuals, which leads to myopia and the lack
of future predictions. In fact, ants and bees act in a purely reactive
way and do not have any explicit knowledge about the actions
and goals of the other entities. In other words, they do not
consider the global aspects in their decision-making. This feature
is logically projected in bio-inspired control methods and should
be addressed in future research by combining different methods
that also introduce the global perspective.
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6. Conclusions

This paper analyzed some mechanisms found in biology and
nature, especially swarm intelligence and self-organization, and
tried to understand their potential benefits to solve complex
engineering problems. Special attention was devoted to the
existing bio-inspired applications, particularly in manufacturing.
This paper also discussed the application of bio-inspired techni-
ques to enhance multi-agent systems in the different manufactur-
ing areas and considered how to achieve a greater adoption in
industry.

The conclusions drawn from this analysis are the real applic-
ability of bio-inspired techniques for developing new control
solutions for manufacturing systems. These systems must exhibit
flexibility, robustness, re-configurability and responsiveness,
based on the decentralization of the control over distributed,
simple and autonomous entities, which cooperate to achieve the
system’s objectives. The main biological insight is to use simple
and effective mechanisms to obtain complex and adaptive sys-
tems. A bio-inspired solution, based on potential fields, for
controlling a flexible manufacturing system was used to illustrate
the applicability of these insights in manufacturing. The results
obtained show that these insights can really help to develop more
flexible and adaptive manufacturing systems. Future work should
study how bio-inspired solutions that have self-% properties will
ensure robustness, scalability, flexibility and re-configurability in
adaptive manufacturing systems, and then combine different bio-
inspired methods with the objective of obtaining adaptation
without degrading performance optimization.
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