8 research outputs found

    Multicriteria hybrid flow shop scheduling problem: literature review, analysis, and future research

    Get PDF
    This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future researchon this topic, including the following: (i) use uniform and dedicated parallel machines, (ii) use exact and metaheuristics approaches, (iv) develop lower and uppers bounds, relations of dominance and different search strategiesto improve the computational time of the exact methods,  (v) develop  other types of metaheuristic, (vi) work with anticipatory setups, and (vii) add constraints faced by the production systems itself

    On the optimization of green multimodal transportation: A case study of the West German canal system

    Get PDF
    In this study, we address a biobjective multimodal routing problem that consists of selecting transportation modes and their respective quantities, optimizing transshipment locations, and allocating port orders. In the objective functions, we minimize total transportation costs and use the EcoTransit methodology to minimize total greenhouse gas emissions. The optimization model selects the transportation mode and transshipment port where quantities are transshipped from one mode to another. We compare inland waterway transportation and trucks encountering infrastructure failures that require rerouting or modal shifting in a real-life case study on the supply of goods for the chemical industry in the West German canal system. We propose a population-based heuristic to solve large instances in a reasonable computation time. A sensitivity analysis of demand, of varying lock times, and of infrastructure failure scenarios was conducted. We show that compared with inland waterway transportation, multimodal transportation reduces costs by 23% because of longer lock times. Our analysis shows that the use of inland waterway transportation only during infrastructure failures imposes nearly 28% higher costs per day depending on the failure location compared to that of the case of no failures. We also show that the use of a multimodal transportation system helps to reduce this cost increase in lock failure scenarios

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes

    Bottleneck Management through Strategic Sequencing in Smart Manufacturing Systems

    Get PDF
    Nowadays, industries put a significant emphasis on finding the optimum order for carrying out jobs in sequence. This is a crucial element in determining net productivity. Depending on the demand criterion, all production systems, including flexible manufacturing systems, follow a predefined sequence of job-based machine operations. The complexity of the problem increases with increasing machines and jobs to sequence, demanding the use of an appropriate sequencing technique. The major contribution of this work is to modify an existing algorithm with a very unusual machine setup and find the optimal sequence which will really minimize the makespan. This custom machine setup completes all tasks by maintaining precedence and satisfying all other constraints. This thesis concentrates on identifying the most effective technique of sequencing which will be validated in a lab environment and a simulated environment. It illustrates some of the key methods of addressing a circular non permutation flow shop sequencing problem with some additional constraints. Additionally, comparisons among the various heuristics algorithms are presented based on different sequencing criteria. The optimum sequence is provided as an input to a real-life machine set up and a simulated environment for selecting the best performing algorithm which is the basic goal of this research. To achieve this goal, at first, a code using python programming language was generated to find an optimum sequence. By analyzing the results, the makespan is increasing with the number of jobs but additional pallet constraint shows, adding more pallets will help to reduce makespan for both flow shops and job shops. Though the sequence obtained from both algorithms is different, for flow shops the makespan remains same for both cases but in the job shop scenario Nawaz, Enscore and Ham (NEH) algorithms always perform better than Campbell Dudek Smith (CDS) algorithms. For job shops with different combinations the makespan decreases mostly for maximum percentage of easy category jobs combined with equal percentage of medium and complex category jobs

    Inequity-averse decisions in operational research

    Get PDF
    This thesis is on inequity-averse decisions in operational research, and draws on concepts from economics and operational research such as multi-criteria decision making (MCDM) and mathematical modelling. The main focus of the study is developing systematic methods and modelling to help decision makers (DMs) in situations where equity concerns are important. We draw on insights from the economics literature and base our methods on some of the widely accepted principles in this area. We discuss two equity related concerns, namely equitability and balance, which are distinguished based on whether anonymity holds or not. We review applications involving these concerns and discuss alternative ways to incorporate such concerns into operational research (OR) models. We point out some future research directions especially in using MCDM concepts in this context. Specifically, we observe that research is needed to design interactive decision support systems. Motivated by this observation, we study an MCDM approach to equitability. Our interactive approach uses holistic judgements of the DM to refine the ranking of an explicitly given (discrete) set of alternatives. The DM is assumed to have a rational preference relation with two additional equity-related axioms, namely anonymity and the Pigou-Dalton principle of transfers. We provide theoretical results that help us handle the computational difficulties due to the anonymity property. We illustrate our approach by designing an interactive ranking algorithm and provide computational results to show computational feasibility. We then consider balance concerns in resource allocation settings. Balance concerns arise when the DM wants to ensure justice over entities, the identities of which might affect the decision. We propose a bi-criteria modelling approach that has efficiency (quantified by the total output) and balance (quantified by the imbalance indicators) related criteria. We solve the models using optimization and heuristic algorithms. Our extensive computational experiments show the satisfactory behaviour of our algorithms

    Quantum annealing and advanced optimization strategies of closed and open quantum systems

    Get PDF
    Adiabatic quantum computation and quantum annealing are powerful methods designed to solve optimization problems more efficiently than classical computers. The idea is to encode the solution to the optimization problem into the ground state of an Ising Hamiltonian, which can be hard to diagonalize exactly and can involve long-range and multiple-body interactions. The adiabatic theorem of quantum mechanics is exploited to drive a quantum system towards the target ground state. More precisely, the evolution starts from the ground state of a transverse field Hamiltonian, providing the quantum fluctuations needed for quantum tunneling between trial solution states. The Hamiltonian is slowly changed to target the Ising Hamiltonian of interest. If this evolution is infinitely slow, the system is guaranteed to stay in its ground state. Hence, at the end of the dynamics, the state can be measured, yielding the solution to the problem. In real devices, such as in the D-Wave quantum annealers, the evolution lasts a finite amount of time, which gives rise to Landau-Zener diabatic transitions, and occurs in the presence of an environment, inducing thermal excitations outside the ground state. Both these limitations have to be carefully addressed in order to understand the true potential of these devices. The present thesis aims to find strategies to overcome these limitations. In the first part of this work, we address the effects of dissipation. We show that a low-temperature Markovian environment can improve quantum annealing, compared with the closed-system case, supporting other previous results known in the literature as thermally-assisted quantum annealing. In the second part, we combine dissipation with advanced annealing schedules, featuring pauses and iterated or adiabatic reverse annealing, which, in combination with low-temperature environments, can favor relaxation to the ground state and improve quantum annealing compared to the standard algorithm. In general, however, dissipation is detrimental for quantum annealing especially when the annealing time is longer than the typical thermal relaxation and decoherence time scales. For this reason, it is essential to devise shortcuts to adiabaticity so as to reach the adiabatic limit for relatively short times in order to decrease the impact of thermal noise on the performances of QA. To this end, in the last part of this thesis we study the counterdiabatic driving approach to QA. In counterdiabatic driving, a new term is added to the Hamiltonian to suppress Landau-Zener transitions and achieve adiabaticity for any finite sweep rate. Although the counterdiabatic potential is nonlocal and hardly implementable on quantum devices, we can obtain approximate potentials that dramatically enhance the success probability of short-time quantum annealing following a variational formulation

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore