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ABSTRACT 

Bottleneck Management through Strategic Sequencing in Smart Manufacturing Systems 

Sayantee Roy 

Nowadays, industries put a significant emphasis on finding the optimum order for carrying out 

jobs in sequence. This is a crucial element in determining net productivity. Depending on the 

demand criterion, all production systems, including flexible manufacturing systems, follow a 

predefined sequence of job-based machine operations. The complexity of the problem increases 

with increasing machines and jobs to sequence, demanding the use of an appropriate sequencing 

technique. The major contribution of this work is to modify an existing algorithm with a very 

unusual machine setup and find the optimal sequence which will really minimize the makespan. 

This custom machine setup completes all tasks by maintaining precedence and satisfying all other 

constraints. This thesis concentrates on identifying the most effective technique of sequencing 

which will be validated in a lab environment and a simulated environment. It illustrates some of 

the key methods of addressing a circular non permutation flow shop sequencing problem with 

some additional constraints. Additionally, comparisons among the various heuristics algorithms 

are presented based on different sequencing criteria. The optimum sequence is provided as an input 

to a real-life machine set up and a simulated environment for selecting the best performing 

algorithm which is the basic goal of this research. To achieve this goal, at first, a code using python 

programming language was generated to find an optimum sequence. By analyzing the results, the 

makespan is increasing with the number of jobs but additional pallet constraint shows, adding more 

pallets will help to reduce makespan for both flow shops and job shops. Though the sequence 

obtained from both algorithms is different, for flow shops the makespan remains same for both 

cases but in the job shop scenario Nawaz, Enscore and Ham (NEH) algorithms always perform 

better than Campbell Dudek Smith (CDS) algorithms. For job shops with different combinations 

the makespan decreases mostly for maximum percentage of easy category jobs combined with 

equal percentage of medium and complex category jobs. 
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CHAPTER 1 

INTRODUCTION 

Manufacturers must fulfill orders quickly and on time in the competitive marketplaces of today. 

Failing to do so, at the minimum, may result in a considerable loss of goodwill. Sequencing is one 

of the operations that manufacturers use to complete tasks on time and produce goods within the 

lead time, among many other approaches that make manufacturers competent in the commercial 

world (Kassu & Eshetie, 2015). Customer happiness is the result of organizations. This calls for 

an efficient sequencing system that distributes limited resources. To meet customer needs, 

sequencing is the process of assigning shared resources over a period of time to competing tasks 

(Sumathi et al., 2015).  

(Al-Harkan, 2010) categorized sequencing contexts based on the types of information: 

1. The jobs and procedures to be carried out 

2. The quantity and variety of machines in the shop 

3. The field that places limitations on how assignments can be made 

4. The criteria used to evaluate a sequence 

The sequencing issue in the manufacturing sector is characterized by the placement of tasks on 

machines and determining the ideal order for those tasks to be performed in order to maximize a 

predetermined criterion. The path to be traveled in the workshop's production cycle for each job is 

defined by a group of tasks. In the industrial process, each machine has a running period for each 

work that is launched (Belabid et al., 2020a).  

Several classifications are distinguished: 

 Single Machine: In this sequencing method, each machine's jobs are first sorted in a 

specific order. When jobs are arranged according to process time, which means that jobs 

with shorter process times are more advanced than those with longer process times, the 

goal of lowering the makespan is best achieved (Das, 2014). 

 

 Flow Shop: The following options are available for processing work in the flow shop's m 

machines in series: 

 Permutation Flow Shop: The fundamental idea behind a permutation flow shop is 

that each machine accepts the jobs in a specific order, requiring that every work be 

completed on every machine in the flow shop environment. Additionally, each 

machine has a unique processing time for each job. As a result, when analyzing a 

flow shop problem, various possible workflows are taken into account, and the best 

one is ultimately selected. 

 Non-permutation Flow Shop: Jobs are processed by a series of m machines, not 

always in the same order, in a non-permutational flow shop. 
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 Job Shop: The primary distinction between job shop sequencing and flow shop sequencing 

is that, in contrast to flow shop, here it is not required that all projects be completed on 

every machine available; rather, each unique job may be completed on any unique number 

of machines as necessary. 

The optimal sequence out of a number of potential sequences is chosen in this case based 

on the requirements of the problem. Jobs can be processed using one of the following 

methods on one of the m machines according to (Al-Harkan, 2010): 

 Assembly Job Shop: Assembly job shop is one that does jobs that require at least 

two component items and one assembly step. 

 Hybrid Job Shop: Some jobs' operations are prioritized in the same sequence. 

 Hybrid Assembly Job Shop: The characteristics of both an assembly and a hybrid 

workshop are combined in a hybrid assembly job shop. 

 

 General shop: A general shop is one in which all jobs can be processed in any order. There 

are m machines, and there are no restrictions on how each job can be routed through them. 

For any job, there is no predetermined flow pattern. 

 

The performance of heuristics in sequencing is directly impacted by job distinction and 

sequencing. Based on job sequencing, numerous effective sequencing rules and algorithms have 

been created, including the Shortest Processing Time rule (SPT), the Longest Processing Time rule 

(LPT), the First Come First Serve rule (FCFS), the Page algorithm (Page, 1961), the NEH heuristic 

(Nawaz et al., 1983), the Palmer algorithm (Drezner, 1987), etc. Prioritizing jobs still remains to 

be challenging in flow shop sequencing, particularly for mass customized production of today (W. 

Liu et al., 2017).  

The bottleneck is one of the highly debated topics in industrial systems. The production line's 

bottlenecks and waiting periods are being addressed by managers and engineers. Additionally, 

industrial firms are working to maintain their competitiveness by reducing bottlenecks, raising 

productivity, and lowering overall costs. One of the helpful techniques for assessing various 

manufacturing implementation scenarios to increase productivity and reduce bottlenecks is 

computer simulation. Additionally, there are numerous benefits to using computer simulation in 

various contexts, such as industrial processes, building projects, etc., including reduced costs, 

improved throughput, increased resource utilization, and decreased cycle times (Zahraee et al., 

2014). The planning and control of manufacturing is one of the components of lean manufacturing. 

This element focuses on methods on how to maximize the utilization of the resources, minimize 

waste and improve the quality of both processes and products (Salihah et al., 2018).  Numerous 

manufacturing and service sectors employ sequencing on a regular basis as a key decision-making 

process. It involves allocating resources among jobs within set time constraints with the intention 

of maximizing one or more goals. An organization's tasks and resources might take on a variety of 

shapes. The resources might include tools at a workshop, airport runways, laborers working on a 

construction site, processing capacity in a data center, and so on. Tasks could also involve running 

computer programs, taking part in industrial process operations, landing and taking off at airports, 

and other activities. Each work may have a certain priority level, the earliest time it can begin, and 

a due date. The goals can also be expressed in a variety of ways. Reducing the number of 

assignments that are finished after their respective due dates may be one goal. Sequencing is a key 

decision-making process in the majority of manufacturing and production systems as well as in 

the majority of information processing environments. Additionally, it is crucial in the context of 
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transportation and distribution, as well as in other service-related industries. The short-term 

sequences show the best order and timing for processing jobs together with timelines for all other 

resources needed to support the production plan, such as jobs, equipment, staff, supplies, and 

facilities (Das, 2014). The sequences should utilize the resources as effectively as possible to 

ensure low costs and high utilization. Other goals of sequencing include reducing consumer wait 

times for products, meeting delivery deadlines, maintaining low stock levels, providing preferred 

working sequences, and reducing patient wait times in hospitals for various sorts of examinations, 

among others (Uzorh & Innocent, 2014). 

 

  

Figure 1.1 Information flow diagram in a manufacturing system (Das, 2014) 
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The basic elements of a system are resources and tasks. The resources (machines) are required to 

perform a service on the tasks and are classified as being of one or several types. Single-stage 

resources are those of a single type, while multiple-stage or multistage resources are those of 

several different types. Both types of resources can be available for parallel or serial processing of 

the tasks. When more than one resource is available for performing the same set of tasks, then such 

resources are called parallel processors. On the other hand, resources are referred to as serial 

processors if a task is multistage in nature and needs more than one processor for subsequent 

actions. If the set of tasks available for sequencing does not change over time, the system is 

considered static. However, the system is regarded as dynamic if the list of available tasks does 

change over time. Additionally, a problem is referred to as deterministic if its parameters (such as 

processing times, arrival timings, due dates, etc.) are known in advance. Otherwise, it is called a 

stochastic problem. Whichever type of system is under study, there are common measures of 

performance. These performance evaluations are typically one-dimensional and include data from 

all jobs. Some examples of measures of performance are machine utilization, maximum job 

completion time (makespan), waiting time (as a function of tardiness, due dates, or setup times, 

etc.). 

The concept of assembly lines has been introduced for mass production as well as cost efficiency. 

The multiple steps are carried out on the products as they pass through the system on assembly 

lines, which are flow-oriented mass production systems. These workstations are typically arranged 

in a series, parallel, U-shape, and two-sided configuration. To accomplish assembly processes, a 

transportation system (such as conveyor belts, robotic arms, or automatic guided vehicles) is 

employed to carry the product from one workstation to another. Cycle time is the amount of time 

it takes for each workstation to complete various operations on the product. Assembly lines are 

categorized into three categories according to (Mönch et al., 2021): 

o Single Model Assembly Lines (SMALs) 

o Multi Model Assembly Lines (MuMALs) 

o Mixed Model Assembly Lines (MMALs) 

The environment of mass customization makes extensive use of MMALs. The need for customized 

products is growing rapidly, encouraging industries to adopt MMALs. This naturally resolves 

MuMAL's batch sizing and inventory issues. Additionally, MMALs require significantly less 

investment than distinct SMALs, but at the expense of added complexity. On the other hand, 

inefficient usage of MMAL increases cycle time and production cost per unit. In MMALs, there 

are two significant challenges: 

 Model Sequencing Problem (MSP): Sequence/order of various models is determined while 

optimizing the makespan, flow time, cycle time, idle time, and lateness etc. 

 Assembly Line Balancing Problem (ALBP): Various tasks/operations are assigned to 

different stations while optimizing cycle time, balance efficiency and smoothness index 

etc.  
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Figure 1.2: Assembly lines for single and multiple products (Haque et al., 2018) 

 

According to (Baker, 1984) there are decision making goals in sequencing: 

 Efficient utilization of resources: Arrange all activities to maintain high utilization of 

people, tools, and space. 

 Rapid response to demands: Job processing should be facilitated by sequencing so that 

there is little work-in-progress inventory. 

 Close conformance to meet deadlines: By utilizing shorter lead times, sequencing should 

guarantee that deadlines are always met. 

The research addresses the problem of resource utilization when n jobs, each made up of m 

processes, need to be processed non-preemptively on m machines. Each job must be completed in 

a different order (i.e., routing does not differ from one job to another). Despite a machine only 

being capable of processing one job at a time, the capacity of the intermediate buffer space is 

infinite. (Sauvey & Sauer, 2020). The goal is to reduce the overall completion time, often known 

as makespan. The difficulty is determining a sequence (a throughput order of jobs in the constant 

suite of machines). This sequence needs to be precise (as close to the ideal makespan as possible) 

and easily attainable.  

The structure of this article is as follows. The state of the art is discussed, and the problem 

definition is provided in Section 2. In Section 3, the research objective is defined and explained. 

In Section 4, research methodology is developed including a general theoretical framework.  

Section 5 deals with the development of the data collection and validation of the model. Section 6 

is all about result analysis and discussions. Finally, Section 7, concludes this paper, and 

perspectives are given for this research work. 
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CHAPTER 2 

STATE OF THE ART & PROBLEM DEFINITION 

 

This chapter provides a description of the context of reference to which this research is related to. 

To understand it correctly, a review of the existing literature on the topic has been performed. 

Moreover, the state of the art for sequencing in smart manufacturing systems has been defined to 

find the current gap and issues that this research aims at covering by proposing a new type of 

solution. 

 

2.1 Overall Throughput 

The methods created using Overall Throughput Effectiveness (OTE) (Muthiah et al., 2008) to 

automate the factory-level performance monitoring and diagnostics process are described. The 

algorithms are included in a software program called SIMPRO that enables factory specialists to 

track performance and carry out factory-level diagnostics, locating bottlenecks and untapped 

potential to create a methodical improvement strategy. The impact of an improvement plan may 

be immediately evaluated, and the return on investment can be computed, when cost data is 

accessible. A case study in glass manufacturing is presented to demonstrate automated 

performance diagnostics and the benefits of employing the method. 

The Throughput Maximization Strategy (TMS) proposed by (Adhianto et al., 2010) contains two 

different approaches for scheduling transaction-intensive operations at the instance and task levels. 

For instance, the opposite average load algorithm is used for scheduling, but the extended min-

min algorithm is utilized for task scheduling. By maximizing the rate of resource usage within 

each local autonomous group, the second method, extended min-min, aims to further maximize 

total throughput at the task level. It was explained that these two algorithms are theoretically 

superior to their respective original algorithms. By seeking overall load balance at the instance 

level, the first algorithm, opposite average load, aims to maximize throughput overall. Our 

approach can greatly increase overall throughput when scheduling transaction-intensive 

workflows over existing scheduling methods, according to comparison and simulation results on 

Swinburne Decentralized Workflow for Grid (SwinDeW-G), a peer-to-peer-based grid workflow 

environment. 

For factory-level performance monitoring and diagnosis, the developed Overall Throughput 

Effectiveness (OTE) measurements are presented in (Muthiah & Huang, 2007). Examples are used 

to explain the concept of OTE development and the OTE validation methodology. A sensitivity 

study is performed to confirm the bottleneck detection methodology utilizing OTE, and the overall 

factory effectiveness (OFE) computation and bottleneck detection methods are shown. Finally, 

two case studies highlight OTE's diagnostic ability while also explaining the OTE development 

process, validating the generated OTE measures, and demonstrating its development technique. It 

was discovered that productivity bottlenecks and improvement possibilities can be measured 

through the use of OTE in a case study involving a wafer fab and the production of glass. 
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2.2 Industry 4.0 and Bottleneck 

In order to prioritize process improvement efforts, (Ongbali et al., 2021) makes an effort to 

discover and analyze numerous variables in order to locate the critical variables that influence and 

turn manufacturing elements into bottleneck problems. The respondents' scores were compiled 

into a (m x n) data matrix that was used as an input variable into the factor analysis model, and the 

data matrix was evaluated using StatistiXL software. The 95 percent confidence level was chosen 

to ensure adequate representation of the population and to validate the data for the study. 

According to the results, the "process capability index" accounts for 25% of the variables studied, 

making it the main bottleneck factor. Equipment failure, operations, material scarcity, and market 

demand, among other factors, all have an impact on the cluster. Based on the size of their respective 

variable factor loadings, such as random events, raw material flow, process technology, and 

random environmental factors, manufacturing process restraint, resources, weather, 

communication, logistics, and line dedication are other important aspects. The issues identified 

and solutions proposed in this study are generic, and improvement efforts should concentrate on 

fixing the primary variables while not ignoring the minor and weaker variables, even when 

bottleneck challenges vary from one manufacturing system to another. 

(Prasetyo & Veroya, 2020) offer a conceptual framework for implementing OEE using the 

DMAIC method of lean six sigma in a bottleneck process of a multinational semiconductor 

company in the Philippines. The researcher hypothesizes that the application of DMAIC approach 

integrated with OEE will increase the bottleneck process' productivity indices. Both classical and 

modern approaches have been taken into consideration and synthesized to create the suggested 

framework, which uses lean six sigma tools like FMEA, DOE, SMED, Visual Management, and 

Mistake Proofing. 

To assist developing nations in improving their management practices, (Cezarino et al., 2019) seek 

to look into how the ideas of Industry 4.0 and Circular Economy (CE) relate to one another. By 

researching scientific production patterns to understand the interface of both constructions, 

attempts are made to identify obstacles to industry 4.0 and CE adoption in Brazil. They also make 

unique framework and tactical suggestions to get around obstacles for developing nations. 

(Lanke et al., 2016) introduced the Mine Production Index, MPI, which is an operational measure 

that helps to accurately spot bottlenecks in mine production processes with an extension of the 

OEE idea that can be applied more clearly in the field. Assigning different weights to the OEE 

components aids engineers in detecting the bottleneck and determining the main cause in a timely 

and accurate manner. From the perspective of MPI evaluation, the crusher is the production 

bottleneck machine in a Swedish open pit mine. With the mine production department and 

management, the validity of the crusher being a bottleneck for the study period was established. 

The performance of the crusher can be significantly related with the reason for it being a 

bottleneck, according to the weights assigned and MPI value calculated. The performance of a 

crusher appears to be linked to its design parameter, as well as scheduling and planning. An 

algorithm that combines MPI to find bottlenecks in continuous mining operations has been 

proposed as a methodical technique. 
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Based on analytically discovered bottlenecks, (Wedel et al., 2016) propose and test effective fault 

repair prioritizing approaches. The three novel approaches are aimed at detecting short-term and 

real-time bottlenecks, as well as near-future constraints, and their effectiveness is demonstrated 

using a simulation model of a real automobile machining line. 

Based on the novel SCORE (Simulation-based COnstraint REmoval)-method, which treats 

bottleneck identification and improvement as a multi-objective optimization problem for 

identifying the optimal (minimal) number of changes to maximize throughput, (Bernedixen et al., 

2016) shows how a generic way of defining improvements of the decision variables, in terms of 

processing times, availabilities, and repair times, can largely automate the analysis process. It is 

important to recognize the value of such automated assistance for users, who are typically 

simulation or production engineers, as manually defining variables is not only time consuming but 

also prone to error. The effectiveness of the automated SCORE-analysis process is demonstrated 

by small academic research and its application to a challenging real-world industrial improvement 

project. Furthermore, when compared to other bottleneck detection techniques like machine 

utilization monitoring and shifting bottleneck detection, the results of both trials vividly illustrated 

the advantages of SCORE. 

(Roser et al., 2001) offer a unique method for determining the bottleneck in a discrete event system 

by looking at the average duration of a machine's active time for all machines. The bottleneck is 

defined as the machine with the longest average unbroken active period, and the method is 

generally applicable and capable of assessing complicated and sophisticated systems. The results 

are extremely accurate, with a high level of confidence in discriminating between bottleneck and 

non-bottleneck machines. This method is simple to use and can be integrated into existing 

simulation tools with minimal effort, requiring only the analysis of a log file, which practically all 

simulation systems have readily available. This approach not only meets academic requirements 

for correctness, but also meets industry requirements for use. 

 

2.3 Bottleneck in Different Systems 

(Subramaniyan et al., 2018) provide a data-driven approach to throughput bottleneck analysis 

based on the active period theory that integrates the machine data from the manufacturing 

execution systems (MES) and evaluates the statistical significance of any bottlenecks found. 

Throughput can be increased by automating the algorithm to enable data-driven decision making 

on the work floor. Using an interdisciplinary strategy focused on production and data sciences, the 

algorithm was created and evaluated using real-world MES datasets, generating research outputs 

helpful to manufacturing businesses and expanding throughput bottleneck analysis standards. 

(Li et al., 2009) present a new data-driven technique for both short and long-term throughput 

bottleneck diagnosis. The method employs production line blockage and starvation probability, as 

well as buffer content statistics, to pinpoint production bottlenecks without constructing an 

analytical or simulation model. 
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(Out, 2010) contrast their developed shifting bottleneck detection method with the two most 

popular bottleneck identification techniques for AGV systems, which are based on utilization and 

waiting time. The two standard approaches are significantly flawed when compared to the shifting 

bottleneck detection method because the latter not only discovers bottlenecks but also calculates 

their magnitude. The two conventional methods either fail to detect bottlenecks at all or detect 

them inaccurately. It was found that none of the bottleneck identification techniques—utilization, 

waiting time, and switching in all respects. While the utilization and waiting time approaches have 

certain restrictions in terms of usage and accuracy, the shifting bottleneck detection method has 

the drawback of being slightly more challenging to execute than the other two methods. The 

shifting bottleneck identification method performs better than the others overall, and it has been 

incorporated into a program called GAROPS analyzer. This program analyzes data from the 

GAROPS simulation and identifies bottlenecks, which are then displayed in an understandable MS 

Excel spreadsheet.  

A brand-new technique for identifying bottlenecks in manufacturing systems and relocating them 

is put forth by (Roser et al., 2002). Every industrial system has one or more bottlenecks and 

eliminating them would improve the system. Finding the bottleneck is a challenging task, though, 

as the system may change over time or due to unexpected events, moving the bottleneck from one 

machine to another. The shifting bottleneck detection method, which is extremely reliable, simple 

to implement, and capable of identifying primary and secondary bottlenecks in a variety of 

production systems, as well as enabling simulation to anticipate bottlenecks for both steady state 

and variable systems, establishes the bottleneck based on the length of time a machine is running 

uninterruptedly. Making choices about how to distribute the available resources can be improved 

by considering the likelihood that a machine will be the bottleneck. 

2.4 Flow Production and Bottleneck 

(Urban & Rogowska, 2020) solves a critical problem in the manufacturing sector: the location of 

a bottleneck. It aims to provide a detailed analysis of bottleneck identification methods based on a 

thorough literature review, as well as the design of a generalized methodology for bottleneck 

identification in the production system using a combination of a narrative and scoping literature 

review, as well as logical design. Several approaches to finding bottlenecks are compared and 

studied, with some producing the same results while others offering distinctive insights into the 

production system under examination. Various processes arranged in logical steps are included in 

a technique for bottleneck identification that should be used when seeking to locate the bottleneck 

in a production system. The suggested method is likely to be helpful in implementing the Theory 

of Constraints (TOC) for locating bottlenecks in a production system and will be a helpful resource 

for managers and TOC experts. The proposed bottleneck detection methodology is an original 

proposal based on recent literature output that advances production management theory as a useful 

managerial tool, however it is still a theoretical concept that must be practically proven.  

 

 



10 
 

The new methodology was developed by observing processes and inventories (Roser et al., 2015). 

Blocked processes and overstocked inventories are signs of a downstream bottleneck. Empty 

stockpiles and starving processes are signs of an upstream bottleneck. By watching various process 

phases and inventory levels inside a system, it is possible to identify the direction of the bottleneck 

at any given time and identify the system's current bottleneck. Work sampling approaches, which 

can be utilized to generate a long-term image of the dynamically shifting bottleneck, can directly 

see bottleneck shifting. The new methodology is suitable for use by shop floor supervisors and 

clerks because it does not involve any computations, statistics, or time measurements. Direct 

observation of the bottleneck also provides additional information about the underlying causes of 

bottlenecks, making system capacity enhancement and optimization easier. Extensive field testing 

of the concept garnered excellent feedback from both management and shop floor operators, and 

it is now in use at Robert Bosch GmbH, where it is referred to as the bottleneck walk. 

The simulation program WITNESS and a discrete event simulation approach are used by (Noguera 

et al., 2015) to examine several production line bottleneck analysis methodologies. An 

experimental framework has been developed for processing and analyzing the results received 

from the WITNESS simulation experiments. The benefits and limitations of the stated approaches 

are examined. 

Using a discrete event simulation approach and the simulation program WITNESS, (Králová & 

Leporis, 2010) compares various techniques for production line bottleneck analysis. By setting up 

an experimental framework for processing and comparing the findings from the WITNESS 

simulation experiments, the model's benefits and limitations are examined. 

The implementation of a method for detecting bottlenecks in discrete event models created by 

Toyota motor company is described in (Faget et al., 2005). The goal in this situation is to automate 

the bottleneck analysis, making simulation easier to understand and adopt for decision makers who 

are unfamiliar with simulation. The validation of the bottleneck detection approach and its 

connection with MS Excel spreadsheets are the key findings, and design of experiments is used to 

give system improvement options.  

Process networks with bottlenecks are investigated and shown to be simple multi-source maximal 

flow linear programming problems (Troutt et al., 2001). According to a review of more than 30 

production/operations management and management science/OR textbooks, only iterative trial-

and-error procedures are currently recommended for this type of analysis. The maximal flow 

network approach is simpler for complex problems and offers several advantages not available 

with trial-and-error approaches. The modeling approach, which describes the use of a fundamental 

linear programming sensitivity result known as radial change, might offer fresh insights for 

enhancing system capacity after the implementation of theory of constraints techniques. 
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2.5 Sequencing 

(Bean, 1994) presents a general genetic algorithm that can be used to solve a wide range of 

sequencing and optimization problems, such as multiple machine scheduling, resource allocation, 

and the quadratic assignment problem, all of which have a problem controlling feasibility from 

parent to offspring. This is overcome using a robust representation technique known as random 

keys, and the computational results are shown for multiple machine scheduling problems, resource 

allocation problems, and quadratic assignment problems, all of which effectively address a wide 

range of sequencing and optimization problems. 

(Storer et al., 1992) propose a straightforward and flexible framework for creating search spaces 

and simple local search algorithms for a range of sequencing problems. The inclusion of problem-

specific information into the definition of the search area with known heuristics and the heuristic 

problem solution encoding is the method's key feature. As a result, good solutions are clustered 

together, making local search more convenient. Simulated annealing and genetic algorithms are 

two probabilistic search methods that can be applied directly to the search spaces. The method's 

utility was proved by the development of heuristics for workshop scheduling. The strategy can be 

easily applied to any scheduling problem with any purpose in this arena. On test issues with the 

makespan objective, the provided heuristics produced high-quality answers. When compared to 

the shifting bottleneck approach, these findings are highly promising. 

(Baker, 1984) examines the interaction between sequencing priorities and the method of 

identifying assignment due dates, focusing primarily on average tardiness as a measure of 

scheduling effectiveness, which highlights several factors that can affect the performance of 

dispatching rules, including average flow allowance, due date assignment method, and the use of 

progress milestones. A series of simulation tests give insight on how these variables interact with 

the dispatching rule, and the results show which combinations are most effective in a scheduling 

system. 

(CAMPBELL HG et al., 1970) describe a simple and direct algorithm for solving very large 

sequence problems without the use of computers. The algorithm produces approximations to 

solutions to n job, m machine sequencing problems where no passing is taken into account and the 

criterion is minimum total elapsed time. The solutions are optimal or nearly optimal and can be 

produced quickly and easily. 

Theorems that establish the relative order in which pairs of jobs are processed in an optimal 

schedule are proven in (EMMONS H, 1969) which frequently enables the jobs to be completely 

ordered, thereby solving the problem without the need for searching. The problem is to sequence 

n jobs on one machine to minimize total tardiness. Sequencing in order of non-decreasing 

processing times and sequencing in order of non-decreasing due dates is best under more extensive 

conditions than are currently recognized by corollaries. In general, even large problems can be 

ordered to the point where only a few schedules need to be searched. These findings are then partly 

extended to the more general criterion of minimizing a sum of identical, convex, nondecreasing 

functions of job tardiness, and an efficient algorithm is proposed. 
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In order to decrease the amount of late jobs, (Moore, 1968) came up with a computationally 

practical plan for scheduling n jobs through a single facility. The problem of each work having a 

continuous, monotone, non-diminishing deferral cost function is then addressed using this strategy, 

with the aim of creating a timetable that incurs the fewest deferral costs possible.  

By providing a sequencing approach to determine the order in which models should flow down 

the line, (Thomopoulos, 1967) proposes a way for converting single-model line balancing 

procedures to mixed-model schedules. Although the results are not completely optimal, analysis 

indicates that they are close to it. The technique has already proven to be valuable as an assembly 

line simulator for examining the consequences of changing line characteristics, and it may be used 

for both existing lines and as a prediction of the efficiency of future lines. 

2.6 Job Shop Sequencing 

(Mellor, 1965) discusses the more recent literature on job shop sequencing problems classified as 

due date or minimum makespan and among the solutions described particular focus is on the 

increasing adaptation of heuristic devices.  

The basic theoretical method does not accurately capture the reality of open job shop scheduling, 

and its applicability is restricted to those circumstances that are essentially static and behave like 

the models, as demonstrated by an early field research by (Mckay et al., 1988).  

(Cheng et al., 1996) provide a tutorial survey of current efforts on applying evolutionary 

algorithms to solve classical job shop problems. The representation strategies for the job shop 

problem that have been presented as well as several hybrid genetic algorithms and traditional 

heuristic approaches are explored. Other scheduling issues in contemporary flexible production 

systems as well as other combinatorial optimization issues may benefit from the methodologies 

developed for limited combinatorial optimization challenges. 

(Brucker & Schlie, 1990) showed a well-known graphical method for solving the job shop 

scheduling problem with two jobs generalizing to job shops with multipurpose machines. To find 

a schedule which minimizes the makespan in an efficient way they reduced the multipurpose 

machines job shop problem with two jobs to a shortest path problem. The method also works for 

arbitrary objective functions which depend monotonically on the finish times of the two jobs. 

The well-known 10*10 problem can be solved using an optimization method that combines the 

heuristic method and the combinatorial branch and bound algorithm (Applegate & Cook, 1991). 

Simulated annealing is a generalization of the well-known iterative improvement approach to the 

combinatorial optimization issue of determining the minimal makespan in a job shop, as described 

in (Laarhoven et al., 1992). Even though the Markov chains it generates are frequently not 

irreducible and that it requires accepting cost-increasing transitions with a non-zero probability to 

avoid becoming stuck in local minima, the technique asymptotically converges in the possibility 

to a globally minimum solution. The algorithm can produce shorter makespan in computational 

experiments than two recent approximation algorithms that are more suited to the job shop 

scheduling challenge. 
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(Jain & Meeran, n.d.) attempts to analyze a subclass of this problem where the goal is minimizing 

makespan by giving an overview of the history, the techniques utilized, and the direction of the 

work is reviewed by evaluating the reported results of the strategies on the available benchmark 

problems. 

(A. S. Manne, 1960) suggests using discrete linear programming to solve the typical job shop 

scheduling problem, which includes noninterference constraints for individual pieces of equipment 

as well as sequencing restrictions. 

A case study for job scheduling when components are handled on available machines was 

presented by (Abbas et al., 2016b). Setup and operation times are calculated as the overall 

processing time for a variety of items using various manufacturing processes through time and 

motion studies. Different levels of priority are assigned to the tasks based on the due dates, and 

the tasks are scheduled according to priority. The processing times for certain new workloads are 

predicted, and an algorithm is suggested and tested to make the best use of the machines available. 

(Kassu & Eshetie, 2015) uses a shifting bottleneck algorithm to focus on reducing the makespan 

of the job shop production system of the Dejena Aviation Industry (DAVI) production system. 

Five machines were taken into consideration throughout the manufacturing of five jobs, and 

secondary data was taken from the production logbook. 

2.7 Flow Shop Sequencing 

Using makespan criterion, (Su & Yi, 2017) provides a two-phase heuristic solution to solve the no 

wait flow shop scheduling problem. The original and reverse problems were solved using the 

Nawaz-Enscore-Ham (NEH) method to discover a better schedule as the initial answer. The 

solution was quickly improved using a swap-based local search. The experimental results of 

benchmark examples show that the suggested algorithm works well. 

According to the multi-machine and multi-product situation, (Rahman et al., 2018) expected mixed 

integer linear-programming approach for machine scheduling in flow shop environments. A local 

production system was visited multiple times to collect real data from the industry. The model was 

then examined using What's Best Excel Solver. The results show that by using the right sequence, 

it is feasible to complete tasks in the shortest amount of time when compared to other alternative 

sequence combinations of products. In addition, using the right sequence would reduce idle times 

for some machines while increasing their utilization. 

In case of equivalency between two job orders or partial sequences, (Sauvey & Sauer, 2020) 

offered two approaches to improve the original Nawaz-Encore-Ham (NEH), based on the two 

points in the process where decisions must be taken. Two results are equivalent but may produce 

different results when an equality arises in a sorting technique. The factorial basis decomposition 

approach, which transforms a number computationally into a permutation, is proposed as the first 

enhancement to NEH. This approach is highly beneficial for the initial improvement and enables 

testing of all sequencing options for issues involving up to 50 jobs. Where NEH maintains the best 

partial sequence is where the second improvement is found. 
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In order to reduce the maximum job completion time, (Belabid et al., 2020b) investigate the 

solution of a permutation flow shop problem with sequence-independent setup time. A Mixed-

Integer Linear Programming (MILP) model, Johnson's rule and NEH-based heuristics, and 

metaheuristics based on the iterative local search method and other metaheuristics of the iterated 

greedy algorithm are all included in this contribution. To verify the efficiency of solution 

strategies, a collection of test problems is numerically simulated. It has been discovered that the 

Johnson-based heuristic performs worse than the adapted NEH heuristic for problems of a 

reasonable size. 

The Nawaz-Enscore-Ham (NEH) heuristic is used by (W. Liu et al., 2017) to create a new priority 

rule that is then utilized to resolve scheduling issues in permutation flow shops. By reducing partial 

system idle time without increasing computing complexity, a unique tie-breaking rule is also 

created, outperforming the best NEH-based heuristics previously mentioned in the literature. 

2.8 Missing Areas in Existing Research: 

The method (Brucker & Schlie, 1990) deals with is an  inefficient algorithm for problems with 

three or more jobs. The research does not concentrate on heuristics or branch and bound methods. 

(Su & Yi, 2017) employing the same heuristic technique in real-world scenarios can be used to 

solve no wait flow shop sequencing problems with various goal functions, and swap-based local 

search and the reversibility property can be used to create a metaheuristic solution. (Sauvey & 

Sauer, 2020) takes long computation time for the improvement method. The problem can be 

considered for big problems to reduce the number of tests and time taken to identify the best 

solutions. Global algorithms can be applied for more effective results. 

(Rahman et al., 2018) considered a single machine per stage of the production. Multi stages of 

parallel machines of multi products production can be considered. Other strategies can be used to 

improvise the makespan of the production system with more advanced methods. (Belabid et al., 

2020b) can consider no idle machines or unavailability of machines as other constraints.  

(A. S. Manne, 1960) appears to include significantly less variables than other ideas and makes no 

attempt to determine the computing feasibility of the strategy in the case of large-scale realistic 

problems. Similarly, (K. Liu et al., 2008) also does not try to apply the throughput maximization 

strategy to real world applications. 

Analyzing the previous literature, one exciting concept, which has not yet been researched, 

involves the non-permutational circular flow shop with different category of multiple products 

following specific work orders on multiple machines. The special structure provides formulations 

using different algorithms that has the potential to open a new horizon for looking at a sequencing 

problem. Comparing the result with a simulated environment and for more realistic approach the 

case study can be performed for precision analysis. 
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2.9 Problem Definition 

Consider a typical circular flow shop with m machines and n jobs. There is no requirement that all 

jobs be processed through all machines; instead, each job will only be processed through one 

machine once. Every job will be processed in a specific order. Each job's processing time is 

predetermined and known. The machine performs the jobs in the order they are received (Abbas 

et al., 2016a). 

 

The following criteria must be determined before sequencing jobs: 

 The facilities on the shop floor. 

 Number of jobs in the system. 

 The amount of time needed to set up and run each job on each machine. 

 

Following parameter identification, the jobs are sequenced based on the following assumptions. 

1. At the start of the planning period, all n jobs are available at once (a case of static problem). 

2. No more than one machine can work on the same job at once. 

3. Each job's processing time on each machine is known and deterministic. 

4. Setup and transportation times are not adjusted during the computation and are not 

dependent on the sequence. 

5. At the start of the planning period, all m machines are available and prepared to start 

working on any of the n projects. 

6. No machine is capable of handling more than one job at once. 

7. Each type of machine in the shop has just one unit. 

8. Pre-emption is not permitted, i.e., once a job has started its processing on any machine, it 

must be carried through to completion on that machine. 

9. Job has a specific order of operation to follow. 

10. Jobs may travel in a circular path to complete all processes. 

11. Job may skip one or more process temporarily to maintain the order 

12. At a time, the maximum number of jobs in circulation must be equal to the number of 

pallets. 

13. There are various types of machines that can be used. That is, no two machines can perform 

similar operations. 

14. Buffer capacity between machines is infinite. 

15. Anticipatory sequencing is responsible for the issue. To put it another way, machine setup 

for processing a group can begin before any jobs associated with the group physically 

arrive at that stage. 

16. Every job is equally important (weight). 

17. Jobs may wait in between two machines.  

18. The feeds are assumed to be available from time zero onwards. 

19. All model parameters are deterministic. 

20. Machines are available without breakdown. 

 

Machines i=1, 2...., m processed job j, j=1, 2......, n, in with a nonnegative processing time p. (i, j). 

Job j's completion time on machine i's is indicated by c (i, j). The objective is to identify a job 

sequence that reduces the makespan, or Min {𝑚𝑎𝑥1≤𝑗≤𝑛𝐶(𝑚, 𝑗)} 
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When the machine is processing, each operation may have to wait. The goal is to reduce the 

makespan, or the amount of time it takes from the start of the first job's execution on the first 

machine to the end of the final job's execution on the last machine. 

The main challenge is to create a sequence that meets the requirements listed below. 

 All tasks are completed 

 All constraints are satisfied, and  

 All selected criteria are optimized. 

The necessary notations are presented in the following to introduce the model. 

i  Machine index, i {1, …..., m}  

j  Job index, j {1, …., n}  

k  Position index, k n {1…., n}  

    {1,2…. n} Is a feasible sequence  

Pij  Processing time of job j on machine i  

Pik  Processing time of job k on machine i  

𝑥𝑗𝑘 = {
1, If job j occupies position k

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Cik  Completion time of job k on machine i  

Cmax  Makespan 

Iij  Idle time on machine j from the end of job (j - 1) to the start of job i. 

The important Terminologies are described here: 

 Number of Machines: The term "number of machines" refers to the total number of service 

locations that a job must pass through to be considered finished. 

 Processing Time: This is how long a job takes to complete on each machine. 

 Processing Order: This term describes the order (or sequence) in which machines are 

needed to complete a job. 

 Idle Time on a Machine: This is the period during which a machine is not processing a job, 

i.e., the period between the conclusion of job (i-1) and the beginning of job i. 

 No Passing Rule: This rule specifies that jobs must continue to be processed on specific 

machines in the same order. For instance, each work should go to machine M1 first, 

followed by M2, if n jobs are to be processed on machines M1 and M2 in the order M1 

M2.(Su & Yi, 2017) 

 Makespan: This term is used to describe the amount of time that passes between the 

beginning of the first job in the sequence on the first machine and the end of the final job 

in the sequence on the last machine. 
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CHAPTER 3 

RESEARCH OBJECTIVE 

Manufacturing systems design is shifting away from the job shop perspective and toward a flow 

shop or hybrid job shop orientation because of the current expanding interest in Group Technology 

(GT), Computer-Integrated Manufacturing (CIM), Just-In-Time manufacturing (JIT) and other 

concepts. Consequently, flow shop-oriented research is expected to become more significant in 

the future. (Stafford, 1988). As stated earlier in the previous section, productivity of the flow shop 

is affected directly by the sequencing decisions made. The objectives of this investigation are to 

examine the n-job, m-machine static sequencing problem with the objective of minimizing 

makespan, to review the literature, and to compare if an effective, approximate algorithm can be 

applied to get the optimal output. There are three main areas of concentration in this investigation.  

1. Investigation of the previous approaches to understand the underlying assumptions and to 

study the effectiveness of those assumptions in solving the problem.  

2. Analysis of some effective algorithm which is both efficient and accurate in giving 

optimal/near optimal solutions for the static case of the problem.  

3. Evaluation of the algorithms by comparing its performance.  

The next section describes the methodology adopted to cover each one of the three main areas of 

investigation. 

3.1 Research Question: 

How different techniques can apply in the SM lab system and simulated environment to compare 

the ability to mitigate bottlenecks? 

For many years the optimal sequencing has been a problem of interest for researchers in the field 

of operation research. In most manufacturing and production systems, Sequencing is considered 

as an important tool which decides the order in which jobs pass through the machines or 

workstations. There are different sequencing techniques to solve the real-life job shop and flow 

shop problem. A common approach problem where it is impossible to find the optimal solution in 

feasible time is to solve them using heuristics. Computer simulation is an effective tool to analyze 

the validation of the approximate heuristics solution. The SM lab system is selected as a case study 

and the basic application of Arena software is used to analyze the production line bottleneck. A 

hybrid model of job shop and flow shop presented in a complex circular system is proposed to 

solve using different techniques and comparing the impact on real life and simulated environment. 

Different job categories are selected to make the scenario complicated, and the existing complex 

machine setup added the new era in sequencing. The methodology used to solve the problem is 

technically used to get the approximate optimal sequence and analysis of makespan and other times 

are adding values for comparison. 
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3.2 General Theoretical Framework 

The purpose of this research is to find the near optimal solution for sequencing using heuristics 

algorithms. The focus is to compare the makespan of a sequence in a simulated environment and 

lab system. To pursue this mission and achieve the target, a general theoretical framework has 

been scrupulously and accurately investigated and developed.  

 

 

Figure 3.2.1: A block diagram to summarize the proposed framework 

The framework aims to compare different heuristics solution methodology in real life as well as 

simulated environments. As a first step, it is necessary to understand different algorithms, the lab 

system, and the available dataset. The obtained data are not properly arranged to feed them in 

different algorithms; therefore, a virtual job concept is created, and some intermediate steps need 

to be performed to adjust some other real life environment constraints. A simulated environment 

is created using Arena software to replicate the lab environment. In comparison, the makespan and 

other time may vary as transportation time and other non-value-added time is not considered in 

this model.  

The framework proposed provides an effective smart manufacturing solution that will allow 

sequence in a complicated circular system with different types of job category and variety of 

machines with specific work orders.  
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CHAPTER 4  

RESEARCH METHODOLOGY 

Scientific methodology of analysis, synthesis and evaluation is used during this investigation. 

During the analysis stage of this investigation, existing heuristic solutions for the flow shop 

problems are studied thoroughly. Although the heuristics chosen for analysis are wide-ranging in 

their approaches to the problem, they are representative, rather than an exhaustive collection of the 

sequencing heuristics. The analysis performed in this study revealed patterns and characteristics 

of some efficient heuristics. Some cases where these heuristics tend to perform less accurately are 

identified (Aalla, n.d.). Based on these observations, a set of rules for effective sequencing of n 

jobs on m-machine static and deterministic flow shops is developed. In the evaluation stage of this 

investigation, these heuristics are tested for accurate performance in terms of makespan, efficiency 

in terms of idle time and bottleneck and effectiveness in terms of accuracy vs computational effort. 

Comparisons are made with some well-known heuristics: Primarily CDS heuristic, and NEH 

heuristic. Various graphical, empirical, and statistical methods are planned to use for comparison. 

Finally, based on the results, some appropriate suggestions and conclusions will be mentioned. 

The next section provides the necessary data collection and validation for an investigation of this 

methodology. It will help to discuss the results compared with real life scenarios and simulated 

environments as well. 

4.1 Method of Analysis 

Appropriate technologies have been chosen to allow for a partial automation of tasks. The core 

idea is to leverage on open-source tools and software to support broad adoption and lower the entry 

barriers of sequencing problems. The tools and software that have been selected for each step of 

the framework are presented here. (Torlino, H, 2020) 

 

4.1.1 Data Source and Dataset 

 

Data Source 

The collection of a dataset that triggers the framework has been performed through the WVU 

Smart Manufacturing Lab. It is endowed with a Festo Didactic Learning System (Figure 4.1.1), 

that is composed of eight modules that correspond to eight different steps provided by different 

sensors and RFIDs that simulate eight different manufacturing processes. The modules of the 

Cyber-Physical Lab are industry-oriented, and the hardware consists of industrial components for 

didactic training. 
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Figure 4.1.1: WVU's Festo Didactic Learning System.( Torlino, H, 2020) 

The eight modules are: 

1. CM-AM-MAG-FRONT (Magazine): For feeding parts. Differentiated in magazine front 

cover and back cover. This releases front covers. 

2. CP-AM-MEAS (Measuring): For quality assurance. Processing of analog input signals. 

3. CP-AM-iDRILL (iDrilling): For drilling parts. With a controller with a web interface for 

CPS. 

4. CP-AM-MAG.BACK (Magazine): For feeding parts. Differentiated in magazine front 

cover and back cover. This releases back covers. 

5. CP-AM-MPRESS (Muscle press): For pressing parts. 

6. CP-AM-HEAT (Heat tunnel): For heating workpieces with thermal processing. 

7. CP-AM-TURN (Turning): For turning workpieces. 

8. CP-AM-OUT (Output): For removing workpieces from output. 
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In addition, eight resources to move parts and workpieces are present. They are pallet carriers for 

transporting the pallet. Pallets are put on the carriers, for receiving one workpiece. The workpiece 

location can be identified through RFID present on the pallets carriers, they automatically 

communicate the position to the system and the process execution is triggered. 

 

Figure 4.1.2: A pallet carrier with pallet.( Torlino, H, 2020) 

The modules are connected through a conveyor system. It is made of 8 conveyor belts, assembled 

in a rectangle shape connected with passive corners. The carrier can be moved by using the balls 

that are fitted in the corners. Sensors activate and deactivate the conveyor belts when the carrier 

passes through the workstations. Every workstation is equipped with a Programmable Logic 

Controller (PLC) to individually control and visualize the process, and to set parameters. The CP 

Lab conveyor is an 80 mm wide and 700 mm long pallet transfer system. At the start and the end 

of the CP Lab conveyor there are capacitive sensors which recognize the pallet on it. 
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Each of the eight modules is equipped with touch panels provided with an emergency stop 

mushroom actuator. The operation mode is automatic, and all the processes are executed and 

monitored by an MES software. The data source is an MES4 software system present in the Festo 

CP Lab. It is a revolutionary manufacturing execution system that has been exclusively created for 

industry 4.0 learning platforms. It can  

 Reading orders and status updates.  

 Arrange the order lines. 

 Write the order's distribution of the goods carriers. 

 Provide a material master that shows a graphic of the workpiece. 

 Prepare machines, considering costs and energy usage. 

 Establish a material and data buffer for the warehouse. 

 Develop and control customer data. 

 Use icons to describe system layouts. 

 Automated routing based on machine capabilities and routing cards. 

 The creation of reports on OEE, PLC, and malfunctions using graphics. 
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Considering the modules provided in the Festo Didactic Learning System, a brief description of 

the functioning of each module is here presented: 

Front Part of Magazine: 

This application module is designed to place a front cover on the carrier. The carrier is recognized 

and stopped. The condition of the carrier is checked by some sensors. In case of front cover 

magazine, if there is no workpiece on the carrier, then the front cover is released. The operation 

performed by this module has an average processing time of 2 seconds. The front cover piece is 

defined by the part number 110.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.3: Magazine module: Front cover.( Torlino, H, 2020)  
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OUTPUT: 

This application module is designed for using an electro-pneumatic, two-axis handling device that 

dispenses good and bad parts into two different ramps. The carrier is detected when fed into the 

module and then stopped. The application module removes the good part from the carrier and 

places it on one of the two sides, while it removes the bad part placing it on the other one. The 

definition of which ramp to use can be freely defined in MES. The operation performed by this 

module has an average processing time of 7 seconds. The left ramp is chosen for a good product, 

while the right ramp is destined for scraps. 

 

Figure 4.1.4: Output module.( Torlino, H, 2020) 
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MUSCLE PRESS: 

This application module is designed for pressing the front cover and the back cover together. When 

moving into the module, the workpiece is recognized, and the carrier is stopped. The covers on the 

carrier are pressed together with the help of the muscle with a defined pressure (N). Then the 

carrier leaves the module. The operation performed by this module has an average processing time 

of 25 seconds. The pressing pressure is 50N for a time of 5 seconds. 

 

Figure 4.1.5: Pressing module.( Torlino, H, 2020) 
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HEATING TUNNEL: 

This application module is designed to heat workpieces to prepare them for thermal processing. 

The workpiece is recognized during the infeed into the module and the carrier is stopped. The 

temperature of the workpiece is measured, then the piece is heated until the desired temperature is 

reached. Then, after a waiting time, the carrier is released from the module. The operation 

performed by this module has an average processing time of 55 seconds. The heating temperature 

is set at 25 °C. 

 

Figure 4.1.6: Heating module.( Torlino, H, 2020) 
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TURNING: 

This application module is designed for turning the workpiece 180°. The carrier is recognized and 

stopped. The workpiece is gripped from the turn unit and turned for 180°. Then the workpiece is 

placed back on the carrier, which is then released. The operation performed by this module has an 

average processing time of 3 seconds. 

 

Figure 4.1.7: Turning module.( Torlino, H, 2020) 
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Back Part of Magazine 

This application module is designed to place a back cover on the carrier. The carrier is recognized 

and stopped. The condition of the carrier is checked by some sensors. In case of front back cover 

magazine, if there is the front cover on the carriers, then the back cover is released. The operation 

performed by this module has an average processing time of 2 seconds. The back cover pieces are 

defined by the part number 111. 

 

Figure 4.1.8: Magazine module: Back cover.( Torlino, H, 2020) 
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MEASURING: 

This application module is designed for quality control, it checks the height of workpieces and 

announces bad parts. This module has two analog sensors that measure the height difference of 

two detected points. The workpiece is recognized, and the carrier is stopped, then the quality 

control takes place: if the difference is within a defined range the workpiece is good, otherwise is 

considered a scrap. Then the carrier leaves the module. The operation performed has an average 

processing time of 2 seconds. Upper Limit and lower limit and default difference can be set, and 

according to this setting there might be scarps during the production. 

 

 Figure 4.1.9: Measuring module.( Torlino, H, 2020) 
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DRILLING: 

This application module is designed to drill 4 holes in the front cover. The workpiece is recognized 

when moving into this application module and the carrier is stopped. Then the workpiece is 

checked and the machine questions itself if the workpiece is correctly formed by only a front cover 

without back cover. Then the machine makes 2 drilled holes in the left part, and it moves the 

workpiece to make 2 additional holes on the right. After that the carrier leaves this application 

module. The operation performed by the module has an average processing time of 10 seconds. 

 

Figure 4.1.10: Drilling module.( Torlino, H, 2020) 
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Dataset 

To retrieve a satisfactory sample of data it has been decided to create an optimized production 

sequence, launch it on the Festo System and monitor the total throughput time. To make this step 

as much as possible like a real manufacturing situation, three products have been defined that are 

characterized by three different working plans (i.e., the sequence of the modules needed to produce 

the specific product). 

 Product E: Defined by the code 3000 (Figure 4.1.11a). Its working plan in n. 6, defined as 

easy in terms of complexity (Figure 4.1.11b). The path followed is:  

 Module 1 feed the front cover from magazine; 

 Module 2 measuring the part.  

 Module 4 feed the back cover from magazine;  

 Module 8 delivers the workpiece. 

    

Product E.       Working plan 6. 

Figure 4.1.11: Product E and its relative working plan.( Torlino, H, 2020) 
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 Product M: Defined by the code 3001 (Figure 4.1.12a). Its working plan is n.7, defined as 

medium in terms of complexity (Figure 4.1.12b). The path followed is:  

 Module 1 feed the front cover from magazine;  

 Module 2 measuring the part.  

 Module 4 feed the back cover from magazine;  

 Module 5 pressing the two covers together.  

 Module 7 turn the workpiece.  

 Module 8 delivers the workpiece. 

   

Product M.     Working plan 7. 

Figure 4.1.12: Product M and its relative working plan.( Torlino, H, 2020) 
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 Product C: Defined by the code 3002 (Figure 4.1.13a). Its working plan is n.8, defined as 

complex (Figure 4.1.13b). The path followed is:  

 Module 1 feed the front cover from magazine;  

 Module 2 measuring the part.  

 Module 3 drilling the holes in the workpiece. 

 Module 4 feed the back cover from magazine;  

 Module 5 pressing the two covers together.  

 Module 6 heating the workpiece.  

 Module 7 turn the workpiece.  

 Module 8 delivers the workpiece. 

    

Product C.       Working plan 8. 

Figure 4.1.13: Product C and its relative working plan.( Torlino, H, 2020) 
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Figure 4.1.14: Schema of Festo Didactic Learning System with relative product paths. 

The different machines cannot be bypassed. If a machine is busy, pallets must wait in queue, which 

can lead to the creation of bottlenecks. Each machine can work only one product at a time, 

therefore if it is busy, it cannot work another piece. Each piece can be processed at each machine 

only once according to the established paths. The interruption of the workpiece being processed is 

not allowed; each operation once started must be completed. As there are only eight pallets, up to 

eight products can be worked simultaneously on the line. If no more pallets are available, it is not 

possible to start a new production; a pallet is again available when its product reaches the eighth 

module. 

It has been considered a production plan of different pieces in the three product types: type E, type 

M, and type C. Some assumptions have been made before retrieving this dataset. It has been 

considered that orders are coming from the same customer. Job orders are known and ready for 

processing. It is assumed that all jobs are available at the start of production and may be performed 

in any order. Moreover, each job order has a size equal to one, which means that each job order 

corresponds to only one production piece. Finally, no scraps have been considered, as it is not 

relevant for the type of analysis performed. To do so, on the MES interface, in the setting of each 

working plan for the measuring production step, where the quality control happens, Upper Limit 
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and lower limit have been set in a way that no scraps could be produced, they are respectively 

10mm and 0mm, with a default difference of 2mm. In addition, at the starting time of the 

production all the pallets are needed to be immediately available, therefore they have been put in 

queue right before module 1. 

The initial situation of the analysis is supposed to be completely optimized using a different 

algorithm, to define a specific-case scenario. 

4.2 Methodology of Research: 

The availability of machines and the appropriate operations to be carried out on each machine are 

used to examine the manufacturing facility. The manufacturing facility is segmented into front 

machine, output machine, muscle press, heating tunnel, turning machine, back machine, measuring 

machine, and drilling machine centers based on similarity. The facility is analyzed before the jobs 

to be processed are chosen. Using a stopwatch, the operating time for each task on each machine 

center was measured. (Abbas et al., 2016a) 

 

After collecting the dataset from the data source, the methodology is implemented to find the 

optimal sequence using different algorithms. The research problem is complicated because it is a 

hybrid problem of circular flow shop problem additionally constrained with job shop problem. To 

solve the constraint, virtual jobs are considered.  

Virtual jobs 

According to the model, the operational order for processing is not the same as the machine setup 

order. Different category jobs have different precedence to follow. To adjust this constraint, an 

actual cycle of process is split in some sub-cycles. The tables below will help to easy visualization 

of this topic: 

Table 4.2.1: Operational Order of Process 

Product 

Category 

Front 

Machine 

Measuring 

Machine 

Drilling  

Machine 

Back 

Machine 

Muscle 

Press 

Heating 

Tunnel 

Turning 

Machine 

Output 

Easy 2 2 0 2 0 0 0 7 

Medium 2 2 0 2 25 0 3 7 

Complex 2 2 10 2 25 55 3 7 

 

Table 4.2 2: Precedence for Each Job 
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Table 4.2 3: Creating Virtual Jobs by maintaining Precedence according to their Processing Times 

Product 

Category 

Virtual Job Front 

Machine 

Output Muscle 

Press 

Heating 

Tunnel 

Turning 

Machine 

Back 

Machine 

Measuring 

Machine 

Drilling  

Machine 

E
as

y
 Easy 1.1 2 0 0 0 0 0 2 0 

Easy 1.2 0 0 0 0 0 2 0 0 

Easy 1.3 0 7 0 0 0 0 0 0 

M
ed

iu
m

 Medium 1.1 2 0 0 0 0 0 2 0 

Medium 1.2 0 0 0 0 0 2 0 0 

Medium 1.3 0 0 25 0 3 0 0 0 

Medium 1.4 0 7 0 0 0 0 0 0 

C
o
m

p
le

x
 Complex 1.1 2 0 0 0 0 0 2 10 

Complex 1.2 0 0 0 0 0 2 0 0 

Complex 1.3 0 0 25 55 3 0 0 0 

Complex 1.4 0 7 0 0 0 0 0 0 

 

Creating Virtual jobs and maintaining precedence, the processing time is assigned. This dataset is 

used as the input of different algorithms. Initially some algorithms are selected to analyze, which 

will fit in this model. After some experimentation, heuristics works better for its approximate 

optimal solution. Next the optimal sequence is reorganized to keep pace with the precedence and 

pallet constraints are adjusted to replicate the real model. The final output of that system is 

considered as the final optimal sequence and then the makespan is calculated. This output is also 

useful for calculating the idle time and bottleneck of the system. 
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Figure 4.2.1: Flowchart of Methodology 
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4.3 Selection of Algorithms: 

Both accurate and approximate methods of solving the problem of determining an optimal or 

nearly optimal sequence of jobs being sequenced in a flow shop environment have been 

considered. Exact procedures, which in fact require an electronic computer, have been created to 

reduce a problem comprising a small number of jobs and a set of well-defined criteria. 

(CAMPBELL HG et al., 1970) must be concerned not only with finding the best solution but also 

with using the solution technique in a useful and cost-effective way. At this point in time, 

companies with sequencing problems involving large numbers of jobs and machines must use 

approximate methods while awaiting further development of exact techniques or faster or more 

economical computers. The fact that the procedural steps can be kept simple enough to prevent the 

problem solver from losing sight of the overall view of the problem is another incentive to look 

into approximate methods (Byung Park, 1984). 

For a setup where the number of jobs and machines are not very small there is usually a tradeoff 

between the quality of the sequence and the computational effort involved in arriving at the 

sequence. When computing an optimal solution is impractical, one must accept choosing a good 

solution. These problem-solving techniques are known as heuristics. Heuristics frequently have an 

intuitive justification, but they are not always guaranteed to produce an optimum or even a good 

answer. 

Considering all the scenario, algorithms can classify as follows: 

 

Figure 4.3.1: Classification of algorithms 

 

Sequencing Algorithm

Solutions are not 
guaranteed to be close to 

the optimum

Heuristic Algorithm

Start without a schedule 
and Add one job at a time

Construction Heuristics

Start with a schedule and 
Try to find a better 

similar schedule

Improvement Heuristics

Solutions are guaranteed 
to be within a fixed 

percentage of the actual 
optimum

Approximation Algorithm

Solutions are optimal

Exact Algorithm
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This section deals with different types of algorithms which are tested to fit in the research model. 

The brief explanation is attached here about different algorithms to specify which algorithms fit in 

the model and the reasons behind rejecting some other algorithms. 

4.3.1 Johnson’s Algorithm: -  

Johnson's algorithm is a method of sequencing jobs in two work centers. Its primary objective is 

to find an optimal sequence of jobs to reduce makespan. It also reduces the amount of idle time 

between the two work centers. Furthermore, the method finds the shortest makespan in the case of 

more than two work centers if additional constraints are met. 

4.3.1.1 Processing n Jobs through Two Machines  

Let there be n jobs, each of which is to be processed through two machines, M1 and M2 in the 

order M1 M2, i.e., each job must be passed through the same sequence of operations. In other 

words, a job is assigned on machine M1 first and after it has been completely processed on machine 

M1, it is assigned to machine M2. If the machine M2 is not free now for processing the same job, 

then the job must wait in the waiting line for its turn on machine M2, i.e., passing is not allowed. 

(Aalla, n.d.) 

Since passing is not allowed, therefore, machine M1 will remain busy in processing all the n jobs 

one-by-one while machine M2 may remain idle for the second machine. Only by planning the 

order in which n jobs are to be processed on the two machines M1 and M2 would this be possible 

(Becker et al., 2015). The method Johnson suggests for figuring out the best order can be summed 

up as follows: 

Step 1: List the jobs along with their processing times on each machine in a table as shown below: 

Job Number Processing Time on machine 

M1 M2 

1 T11 T21 

2 T12 T22 

3 T13 T23 

….. ….. ….. 

n T1n T2n 

 

Step 2: Examine the columns for processing times on machines M1 and M2, and find the smallest 

processing time in each column, i.e., find out, min. (t1j, t2j) for all j.  

Step 3: If the smallest processing time is on machine M1, then schedule the job as early as possible 

without moving jobs already scheduled, i.e., place the job in the first available position in the 

sequence. If the processing time is on machine M2, then schedule the job as late as possible without 

moving any jobs already scheduled, i.e., place the job in the last available position in the sequence.  

There are three possibilities if choosing the shortest processing time results in a tie: 

https://en.wikipedia.org/wiki/Primary_objective
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Idleness
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a. Minimum among all processing times is the same for the machine i.e., min (t1j, t2j) = t2k = t2r, 

then process the kth job first and the rth job last.  

b. If the tie for the minimum occurs among processing times t1j on machine M1 only, then select 

the job corresponding to the smallest job subscript first. 

c. If the tie for the minimum occurs among processing times t2j on machine M2, then select the job 

corresponding to the largest job corresponding to the largest job subscript last.  

Step 4: Remove the assigned jobs from the table. If the table is empty, stop. Otherwise, go to Step 

2.  

 

 

Figure 4.3.2: Flowchart of Johnson’s Algorithm for N jobs through 2 machines 

 



42 
 

The model of this research problem deals with sequencing jobs in multiple work centers. So, these 

are the necessary steps to follow Johnson’s Algorithm and the other constraints are also described 

here. 

4.3.1.2 Processing n Jobs through m Machines  

Let there be n jobs, each of which is to be processed through m machines, say M1, M2, ......Mm in 

the order M1, M2, ......Mm.  

Job 

Number 

Processing Time on machine 

M1 M2 M3 ….. M(m-1) Mm 

1 T11 T21 T31 ….. T(m-1)1 tm1 

2 T12 T22 T32 ….. T(m-1)2 tm2 

3 T13 T23 T33 ….. T(m-1)3 tm3 

….. ….. ….. ….. ….. ….. ….. 

n T1n T2n T3n ….. T(m-1) n tmn 

 

Step 1: Find Min {t1j}, Min {tmj} and max {tij}and verify conditions.  

Condition 1:  Min {t1j} ≥ Max {tij};      j = 2, 3, ...... m - 1  

Condition 2:  Min {tmj} ≥ Max {tij};      j = 2, 3, ...... m - 1  

That is, the minimum processing time on machines M1 and Mm is as great as the maximum 

processing time on any of the remaining (m - 1) machines.  

If either or both the conditions mentioned above hold, then go to step 2. Otherwise, the algorithm 

fails.  

Step 2: Convert m-machine problem into 2-machine problem by introducing two fictitious 

machines, say 

tGj = t1j + t2j + t3j +......+t (m – 1) j =∑ 𝑡𝑖𝑗
𝑚−1
𝑖=1    j = 1, 2, 3, ......n. 

i.e., processing time of n-jobs on machine G is the sum of the processing times on Machines  

M1, M2 ......M (m – 1) j  

tHj = t2j + t3j + t4j +......+ tmj =∑ 𝑡𝑖𝑗
𝑚
𝑖=2     j = 1, 2, 3, ......n. 

i.e., processing time of n-jobs on machine H is the sum of the processing times on Machines  

M1, M2 ......Mmj.  

Step 3: The new processing times so obtained can now be used for solving n-job, two machines 

equivalent sequencing problem with the prescribed ordering HG in the same way as  

t2j + t3j +......+t (m – 1) j = constant 
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for all j = 1, 2, 3, ...... m - 1, then the optimal sequence can be obtained for n-jobs and two machines 

M1 and Mm in the order M1 Mm as usual.  

If t1j = tmj and tGj = tHj, for all j = 1, 2, 3, .... n, then total number of optimal sequences will be n and 

total minimum elapsed time in these cases would also be the same.  

The approach described above is not the universal approach to solve the problem of sequencing n 

jobs among m machines. It only applies to specific situations where processing jobs through the 

first and/or last machine would cost more or take longer than processing jobs through the other 

machines. 

For the data presented in table 4.2, any of the conditions mentioned before are not satisfied. So, 

the algorithm fails. 

As Johnson’s Rule is not working for this model, the selection of an approximate solutions may 

help to solve this problem. For approximate solution, heuristics work better. Now, Different types 

of heuristics will be applied here to find out the best optimal solution for this model. 

4.3.2 CDS (Campbell Dudek Smith) Algorithm: -  

In order to find a better optimal solution, the CDS algorithm utilizes Johnson's method at each 

iteration.(Das, 2014) 

(CAMPBELL HG et al., 1970) proposed a completely new heuristic strategy that essentially 

involves dividing the m machines into two groups, the first of which includes machines 1, 2,...., k, 

and the second of which includes machines  m-k+ 1, m-k+ 2,...., m, where k = 1, 2,..., m -1(King 

& Spachis, 1980) 

The combined times for every task i inside each of the two machine groups may be generated as 

follows if Pij is the processing time for job i on machine j. 

∑ 𝑃𝑖𝑗

𝑘

𝑗=1
 

∑ 𝑃𝑖𝑗

𝑚

𝑗=𝑚−𝑘+1
 

Johnson's technique can be used to solve this issue if we now think of the two groups as trying to 

make up an artificially produced two-machine problem with jobs times determined by the 

combined times above. Thus, the best possible sequence for this fictitious problem creates a 

permutation sequence for the original issue. For each of the possible m-1 artificial two-machine 

issues, this approach is repeated. The optimal answer to the original problem is determined by the 

heuristic solution that has the shortest makespan time. 
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Procedure for CDS Algorithm for m Machine: M1, M2, M3…... M (m) & n Jobs: - 

Step 1: - Create (M-1) Sequence i.e.  

S1 M1 M(m) 

S2 M1+M2 M(m-1) +M(m) 

S3 M1+M2+M3 M(m-2) +M(m-1) +M(m) 

….. ….. ….. 

S(m-1) M1+M2+M3+…. +M(m-1) M2+M3+…...+M(m) 

 

Step 2: - Apply extension of Johnson’ algorithm to each of the above (m-1) sequences.  

Step 3: - Take the best possible makespan out of them.  

Step 4: - CDS evaluates (m-1) sequences. 
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Figure 4.3.3: Flowchart of CDS algorithm 
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4.3.3 NEH (Nawaz, Enscore and Ham) Algorithm: -  

According to Nawaz, Enscore, and Ham (1983), a task that takes longer to complete overall 

requires more attention than a task that takes less time (Byung Park, 1988). They proposed a new 

curtailed-enumeration algorithm (NEH) which finds the best partial sequence by an exhaustive 

search. It builds the final sequence in a constructive way, adding at each step a new job and finding 

the best partial solution. Each time a new job is added by fixing the relative position of the jobs 

already sequenced, the new job is tried at various relative positions and the best position is 

finalized. 

 

Procedure for this NEH Algorithm: -  

Step 1: - Calculate the total sum of processing time for each job.  

Step 2: - Sort the jobs in the decreasing order of processing times.  

Step 3: - Take the first to jobs in the sorted sequence and formulate different combinations.  

Step 4: - Calculate the makespan for each of the combinations.  

Step 5: - Select the combination with minimum makespan.  

Step 6: - Insert the next job from the sequence obtained in Step 2.   

Step 7: - Carry out all possible combinations of the 3 jobs now.  

Step 8: - Repeat Step 4 followed by Step 5 followed by Step 6.  

Step 9: - Continue the process till all jobs are completed. 
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Figure 4.3.4: Flowchart of NEH Algorithm 
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4.3.4 Palmer’s Algorithm: -  

To determine the sequence in which jobs should be processed in flow shop sequencing problems, 

Palmer proposed the concept of a job priority function, specifically a slope index for the job based 

on work processing times. The design of the priority function was chosen specifically to provide 

precedence to tasks that frequently progress from short to long processing periods as they move 

through the machines.(King & Spachis, 1980) 

Procedure for this Palmer’s algorithm: 

This method will try and find out a weighted sum for each of these jobs. So, assign weights to each 

of these machines and then try to find out the weighted sum of each job.  

Step 1: - Consider a job sequencing problem for m machine and n jobs.  

Step 2: - Assign some specific weights to each machine by the formula: -    

S (j) = -∑ [(𝑚 − (2 ∗ 𝑗 − 1)) ∗ 𝑝(𝑖, 𝑗)𝑚
𝑗=1     

Sep 3: - Evaluate the weight of each job by a given procedure by multiplying the weights with the 

processing times.  

Step 4: - Sort the jobs in the decreasing order of their weights.  

Step 5: - Formulate a sequence based on the sorting done in Step 4.  

Step 6: - Calculate the makespan for the above sequence. 

According to this algorithm, machines are weighted. The research problem deals with the machines 

where all of them carry the same importance. So, this is not a proper fit for the research model. 
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4.3.5 Dispatching Rules 

Examples of the construction heuristics are dispatching rules. Each job that is awaiting processing 

on a machine is given a priority using dispatching rules. A dispatching rule examines the waiting 

jobs whenever a machine has been freed and chooses the one with the highest priority. A job's 

priority is established based on its requirements, the requirements of the machine, or the features 

of the shop. Jobs are sorted after their priorities have been established, and the one with the highest 

priority is then chosen to be processed first (Nageswara et al., 2017). 

Some of the dispatching rules that have been created, examined, and put into practice include the 

following: 

 Shortest Processing Time (SPT): The work with the least operation processing time is 

processed first, and this is also known as the Shortest Expected Processing Time. There are 

numerous alternatives: Least Work Remaining (LWR) in terms of the number of 

operations, Total Work in terms of Processing Time (TWORK), Truncated Shortest 

Processing Time (TSPT), Weighted Shortest Processing Time (WSPT), Total Shortest 

Remaining Processing Time (SRPT), and Assembly Jobs First with Shortest Processing 

Time (AJF-SPT). 

 

 Longest Processing Time (LPT): The job with the longest operation processing time is 

processed first, also known as Longest Expected Processing Time (LEPT). Other versions 

include: Most Work Remaining (MWR) in terms of the number of operations, Total 

Longest Processing Time (TLPT), and Total Longest Remaining Processing Time (LRPT).  

The above-mentioned dispatching rules prioritized jobs based on processing time. In the research 

model, the processing time is mentioned. But there is some precedence which each category of 

jobs needs to be followed and this rules specially followed by single machine problem. So, these 

rules cannot be utilized in the research model. 

 Earliest Due Date (EDD): The task that has the earliest due date gets processed first. There 

are some variations: Operation Due Date (ODD), Modified Due Date (MDD), Modified 

Operation Due Date (MODD). 

 

 Job Slack Time (JST): The job with the least amount of slack is completed first. The time 

between the job due date, the amount of work still to be done, and the current time is used 

to calculate the job slack time. The variations are Operation Slack Time (OST or S/OPN), 

Allowance over remaining number of operation (A/OPN), Slack Time over Allowance 

(S/A), Weighted Processing Time plus Weighted Operation slack Time (WPT+WOST), 

Slack Over Remaining work Time (S/RPT) (Al-Harkan, 2010). 

 

 Critical Ratio (CR): First, the job with the smallest ratio is completed. By dividing the job's 

allowance by the remaining work time, one can get the critical ratio. The Critical Ratio 

version known as Operation Critical Ration (OCR) selects which operation has the smallest 

ratio and gets handled first. By dividing the operation's allowance by the operation process 

time, the operation critical ratio is calculated. 
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The above-mentioned dispatching rules prioritized jobs based on due dates. For the lab 

environment used for this research, there is no mentioned due date for each job assignment and no 

previous data is found for further analysis. 

 Random: A job is chosen at random from the group of jobs that are in queue at the machine. 

Jobs are equally likely to be chosen from the waiting list when the random rule is used. 

The biased-random rule, however, does not select jobs with an equally high probability. 

According to one or more of the other dispatching rules, the selection process is biased. 

First, a group of jobs that are waiting are sorted by dispatching rules before applying the 

biased-random. The waiting jobs are then sorted using the chosen dispatching rule. Next, 

selection probabilities are assigned to the jobs in the ordered list. These probabilities are 

typically estimated using a geometric distribution. The position with the highest selection 

probability will be in the first place, and the position with the lowest selection probability 

will be in the last place. By doing this, the jobs that are listed first in the ordered list are 

more likely to be chosen, but the ones that are listed last are less likely to be chosen (Al-

Harkan, 2010). 

 

 First Come, First Served (FCFS): This is also called Smallest Ready Time (SORT) which 

selects the job which arrives first at the machine will be served first. First Smallest Release 

Time (SRT) or First Served (FASFS) deals with a work arriving at the shop first being 

given precedence to go first in all machines. 

 

 Last Come First Served (LCFS): The job that arrives last will be served first 

 

 Least Flexible Job (LJF): The least flexible job is the job that requires the least amount of 

flexibility. 

 

 First Off, First On (FOFO): Even if the operation is not yet in the queue, the job with the 

operation that might be finished the earliest will be processed first. In this scenario, the 

device will be inactive until the time of the operation. 

 

 

 Least Anticipated Work in Next Queue (LAWINQ): A work that will face the least queue 

at the next machine along its journey will be chosen from the group of jobs awaiting a 

certain machine. 

The above-mentioned dispatching rules prioritized jobs based on shop and/ or job characteristics. 

The rules are a bit arbitrary based on system data and there is no previous analysis of this data to 

go further. 

 

 Cost OVER Time (COVERT): A composite rule known as Cost OVER Time (COVERT) 

places the task with the highest COVERT ratio in first place. The COVERT ratio is 

calculated by dividing the expected tardiness for the associated job by the processing time 

for that activity. Apparent Tardiness Cost (ATC) and Apparent Tardiness and Earliness 

Cost (ATEC) are two versions of the rule (Al-Harkan, 2010). 
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A ranking expression that combines a few basic dispatching rules is called a composite dispatching 

rule. The scaling parameters for each basic rule in the composite dispatching rule are specifically 

chosen to scale the basic rule's contribution to the total ranking expression. 

Dispatching rules are quick, easy to use, and can provide a reasonably good solution in a short 

amount of time. The solution might be the best one in some unique situations. However, their 

usefulness in real-world situations is constrained since occasionally they can produce unexpectedly 

poor results (Hübl, 2018). 

Among the algorithms described in this section, CDS Heuristics and NEH heuristics fit in the 

model. The optimal sequence received from this model will be adjusted with the precedence and 

pallet constraints. The final optimal solution will be implemented in a simulated environment and 

lab environment to compare the total makespan for each algorithm. The Arena simulation software 

is used to replicate the lab environment of this model. 
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CHAPTER 5 

DATA PROCESSING AND VALIDATION 

In this chapter a model for the theoretical framework above described is presented as well as an 

implementation of the lab environment for its validation. The framework has been conceived in 

order to pursue a first testing of the proposed idea for the general theoretical framework. The 

validation test has been performed exploiting Dr. Thorsten Wuest's Smart Manufacturing 

Laboratory at West Virginia University (WVU). 

5.1 Preparing Input Dataset: 

Using Jupyter notebook, a python code is prepared to input processing times of each category of 

jobs. For each different category of products, the processing time is different. The number of 

necessary cycles is also different for each category of jobs. By assigning machine name, number 

of cycles, processing time for each cycle and number of jobs on each category is forms a matrix 

as input dataset.  

Next step is to process each job as a virtual job and assign them in a processing order considering 

the available number of pallets. The file is stored as CSV format for further analysis. Table 5.1 is 

an example of each equal category job shop.  

5.2 Algorithm Inputs and Outputs Processing: 

For each algorithm input, table 5.1.1 is converted to figure 5.2 which is actually the .txt version of 

that previous CSV format with some manual input as machine number and number of virtual jobs.  

After completing calculation of specific algorithms another CSV file is produced with optimal 

sequence for virtual jobs (Table 5.2). 

5.3 Conversion of Optimal Virtual Job to Machine Setup: 

From the previous step, the output CSV file (Table 5.2) is imported here as input. After necessary 

calculation to adjust with machine setup it returns with reorganized optimal sequence. This 

reorganized optimal sequence worked as lab environment input and simulated environment input. 
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5.4 Mathematical Calculation: 

Processing times are the primary input for all jobs. For a fixed sequence, total processing time will 

be the same for all scenarios (Table 5.4.1). A graph 5.4.1 is plotted based on that data. This graph 

represents the total processing time for each machine for a fixed sequence. Total processing time 

represents the sum of the processing time for a particular machine travelled by different categories 

of jobs in that ongoing sequence. As an example, front machine, back machine and measuring 

machine are travelled by all categories of jobs. So, for the considered sequence, there are three 

jobs from different categories. The average processing time considered for this calculation is 2 

seconds. So, total processing time represents the sum of the processing time for each category of 

jobs which is 6 seconds.     

 

Graph 5.4. 1: Sample Processing Time 

 

 

To calculate makespan, a machine in/ out table is formed after necessary calculation (Table 5.4.2). 

Machine in/out table actually represents the total time a particular job takes to complete the whole 

process and necessary waiting time if the previous job is under work in process at that certain 

moment. It also includes the machine idle time. For example, medium cycle 1.4 completed 

processing in the front machine at 14 seconds. But, as the complex cycle 4 starts working on the 

output machine at that time, medium parts need to wait till 28 seconds to start its processing. This 

time can be considered as the bottleneck for medium cycle 1.4.  Next, for all other machines, as 

transportation time is not adjusted, the machines behave like idle stations for all other cycles. 

Finally, the last value found from this table is the makespan time for the whole process. 
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Idle time for all machines is calculated and stored in a CSV file (Table: 5.4.3). As previously 

mentioned, the sum of individual idle time for each machine is presented as total idle time. The 

sum of idle time is huge compared with processing time, as virtual jobs are travelling in a loop to 

complete all the process. This large idle time represents the machine is not efficient enough to 

utilize all the resourses due to this complicated machine setup. Graph 5.4.3 is plotted based on that 

data. A Gantt chart is presented on figure 5.4.1 to show the idle time.  

 

Graph 5.4. 2: Sample idle time 

 

Figure 5.4. 1 Gantt chart showing idle time 

 

 

Bottleneck for all jobs is calculated and stored in a CSV file (Table 5.4.4). Graph 5.4.4 showed the 

sub of possible bottlenecks for all jobs. Similarly, Figure 5.4.2 presents a gantt chart to show the 

bottleneck for all jobs.  
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Graph 5.4. 3 Sample bottleneck Calculation 

 

 

Figure 5.4.2: Gantt chart showing bottleneck 

 

 

5.5 Machine Data Transformation and Pre-Processing:  

This step consists in the automated transformation and pre-processing of the dataset in order to 

obtain an organized file. As data is coming from an excel format file, the output of this 

transformation is in excel format as well. The preprocessing of the data consists in an analysis of 

the raw data in order to extract a first level of information. This pre-processing is considered to be 

case specific and depends on data requirements. It is necessary to consider the type of analytics 

that has to be performed in the end, as well as the final purpose of the knowledge that could be 

extracted by the analyzed data. Based on that, a first screening of the data is performed in order to 

understand what subsets of data are relevant for that purpose. The transformation of the original 

dataset into an organized data consists in retrieving only the relevant collections of data and 

rearranging them in order to reach a first level of information. Automatizing this task would reduce 
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potential errors and reduce the time to perform it, especially if it is performed repeatedly. With the 

purpose of automating this phase, the tools that have been considered and selected are python. 

The dataset retrieved from the MES of WVU SM Lab is an excel format file with a table containing 

a variety of raw data about the production process of the defined production plan. In order to obtain 

meaningful information, it is necessary to transform and pre-process that data. Not all the raw data 

here presented are useful to perform an analysis. Therefore, it is necessary to understand which 

type of data is valuable for the specific purpose. For this specific implementation of the framework, 

it has been decided to perform a simulation analysis to optimize the total makespan of a defined 

production plan. Arena simulation has been selected as analytical tools to accomplish this study. 

Carefully analyzing the dataset and considering the purpose of the analysis, it was possible to 

determine the crucial information required as input for the analytical simulation tool. In order to 

carry on this type of analysis it is necessary to know the number of job orders present in the 

production plan, as well as the number of products required for each defined typology. To get this 

first level of information, it is required to filter the original set of data, understanding what the 

beneficial raw data are, then it is fundamental to clean those data and initiate a first transformation 

process. Pre-processing the obtained output is analyzed in order to get to the comparison for a 

simulated environment. Thoroughly studying the original dataset, it has been decided to consider 

as valuable the columns of product number, the code identifying the type of product (“PNo”); step 

number, the code identifying the module that has been working on the product (“StepNo”); the 

order number, the unique code identifying the job order (“Ono”) where all the unique job orders 

are listed, specifying the product type code and whether each of the eight modules has worked the 

relative product or not. For Arena simulation it requires .TXT format typology to read data. Indeed, 

the here obtained file contains the number of total job orders present in the production plan, as 

well as the way they are split among the three specified product typologies. 

Table 5.5 represents the CSV file exported from MES software. This dataset works as input for 

processing machine data. By calculating makespan, processing time, idle time and bottleneck 

graph 5.5.1, graph 5.5.2, graph 5.5.3 is presented.  

 

Graph 5.5. 1 Total processing time 
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Total processing time should be the same for both input dataset and machine. There may be some 

variations due to some uncontrollable factors in lab machines. 

Graph 5.5. 2: Total idle time 

 

Idle time obtained from machine data is comparatively higher than simulated environment due to 

additional transportation time. The machine which has the longest processing time has the least 

idle time. Due to multiple necessary cycles to complete jobs, machine utilization is very low. The 

comparison between processing time and idle time figures out this issue.  

Graph 5.5. 3: Total bottleneck 
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That’s why, easy job enters at last in the machine, but is disposed of earlier than a medium job. 

So, the bottleneck is high for medium category jobs.  

For result analysis, makespan is chosen for all comparisons because it considers all of the times to 

complete a sequence. Processing time, idle time and bottleneck data already existed in makespan 

time. So, minimizing makespan will obviously help to minimize bottleneck and increase utilization 

for this custom machine setup. 

 

5.6 Modeling and Validation: 

The modeling and the validation phases of the framework presented are strictly connected and they 

have been carried out in parallel. Nevertheless, the models here presented can be easily adjusted 

in order to adapt to specific cases. The WVU Smart Manufacturing Lab, endowed with a Festo 

Didactic Learning System, has been chosen in order to practically implement the framework and 

validate it. The idea is to prepare a production plan of an optimized sequence of orders and launch 

its production on the system, monitoring the total makespan time necessary for its completion. A 

set of manufacturing data about the performed production can be retrieved allowing for the 

automatic flow and processing of these data. A first level of information is obtained and can be 

read by the simulation software Arena where a simulation model of the lab system is built. Through 

a simulation analysis, it is possible to optimize the total makespan time by finding a relative 

optimum one relative to a different production sequence that can be launched in production on the 

WVU SM Lab system. In the end, making a comparison between the total makespan time of the 

sequence coming from the analysis and the original makespan time relative to the optimized 

sequence, it should be possible to discover an improvement in the makespan time changing the job 

category and number of jobs. In this way, it is possible to create a loop that allows testing the 

functioning of the framework from the beginning to the end. 
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Graph 5.6. 1: Comparison of data for machine and simulated environment 

 

Graph 5.6 represents the comparison between machine data and simulated data. Machine data 

collected randomly for different numbers of jobs for all environments (flow shop and job shop). 

As collecting machine data is time consuming and adding transportation time does not create any 

effect on optimal sequencing, the comparison shown in the next chapter is based on simulated data. 

For machine data, there is some randomness at the very beginning part of this graph but for 

simulated environments it is smooth enough. For the rest of the graph showing almost the same 

trend of change. The range between two-line charts has some variation, as the dataset is large and 

random.  

 

5.7 Simulations Analysis 

Once the simulation model has been completed, it is possible to run the simulation and analyze the 

output. It has been decided to perform single replications in one simulation in order to obtain a 

fairly good result. In each replication, the optimized sequence input is unique, therefore all the 

replications refer to different production sequences of the job orders. From the output report 

generated by Arena software, it was possible to find the replication with the lowest makespan time 

for the respective production sequence. The sequence of 9 jobs with equal percentage of product 

category selected correspond to a replication time equal to 262 seconds (4 minutes and 36 seconds), 

The sequence selected as the relative optimum one from the results of the simulation performed 

on Arena, has been implemented on the Festo Didactic System in order to monitor the real 

throughput time. This sequence was launched in production on 10.23.2022 at 16:53:00, and it 
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ended at 17:04:43, with a total throughput time of 11 minutes and 43 seconds. It is evident how 

the real time differs from the replication one. The reason resides in the fact that the simulation 

model does not consider the transportation time and the non-value-added time that is the time that 

the product is stopped at each machine to allow sensor reading.  

 

5.7.1 Arena Simulation 

More than ever, manufacturing operations must increase their efficiency. They are also 

specializing at the same time. Understanding the interactions, variability, and resource interactions 

of a current manufacturing system is crucial when optimization of the system is being addressed. 

Manufacturing depends on these interactions, which are nearly impossible to model in a 

spreadsheet. A computer-based model of an actual manufacturing process that can be used to 

validate, test, and enhance the performance of the process can be used to address manufacturing 

optimization. It involves imitating reality in the digital realm, and the outcomes can be utilized to 

forecast and enhance actual performance rapidly, inexpensively, and with less risk than tests in the 

physical realm (Kelton et al., 2010). Therefore, for the implementation of the prototypical 

framework it has been chosen to perform analysis on the data available. In manufacturing 

simulation has been widely adopted and it is very flexible and useful to solve manufacturing 

problems rather than using complex mathematical models (Brunner & Funck, 2015). In fact, it is 

useful when it comes to evaluate different manufacturing scenarios with the aim of improving 

productivity and decreasing bottlenecks or it can help decrease the process cycle time, increase 

resource utilization etc. (Zahraee et al., 2014). 

Simulating a process or system's behavior over time is referred to as simulation. To simulate the 

behavior of real systems, a wide range of techniques and tools are used, therefore simulation 

involves genuine systems as well as models of such systems. A real or planned facility or process, 

such as a manufacturing plant with machines, workers, transportation equipment, conveyor belts, 

and storage space, is referred to as a system. A system is frequently studied to assess its 

effectiveness, enhance its functionality, or create it from scratch if one doesn't already exist. Using 

software created to replicate the actions and characteristics of the real system over time, computer 

simulation enables the study of a model of a real-world system to comprehend its behavior for a 

given set of conditions by carrying out numerical experiments. To perform a simulation, a model 

needs to be created on the computer software. A model can be either static or dynamic when time 

is involved. Operational models are typically dynamic. Then, it may be continuous or discrete; in 

the former, the system's state is updated only at distinct intervals of time, whereas the last is 

updated constantly over time. In a manufacturing system, for example, it happens when parts arrive 

or leave the system and its resources. Finally, it can be deterministic if no random input is 

considered, otherwise it is stochastic if inputs are random and defined by probability distributions. 

Arena simulation has been selected as software to perform this step in the simulated environment 

(figure 3.2.1). Arena models dynamic processes using a flowcharting, entity-based approach. It 

has a vast library of pre-built components that may be used to simulate any process. The user can 

build a model by combining modules present in the software that represent processes and logics 

that imitate the real system. Connector lines join the modules and specify how entities flow in the 



61 
 

system. Arena is very user friendly; its modeling methodology is easy and intuitive without the 

need for customized code or programming. Most other commercial simulation systems are code-

based and demand scripting in exclusive languages. Arena is simpler to learn than other simulation 

programs, easier to validate and debug, and simpler to explain the details of complex processes to 

others thanks to its flowchart style. Arena has been leading the simulation industry for the past 24 

years. Arena has been available for close to 25 years. During this time, a lot of additional 

simulation companies have entered and exited the market. No other simulation provider has 

endured and prevailed in Arena. Additionally, arena advice and assistance are simple to locate, it 

is the most thoroughly documented simulation program available, and it has academic support. 

Finally, this software can be integrated with Microsoft technologies as reading from or sending 

output to MS Excel spreadsheets. Considering that, for the implementation and validation of the 

framework no data conversion is needed and it is possible to directly import the excel file into 

Arena. 

5.7.2 Data Analytics 

In the development of this framework, it has been decided to pursue an optimization analysis of a 

predefined production plan. Specifically, the aim was to improve the makespan of the implemented 

production plan and demonstrate this feasibility by applying a simulation-based analysis. Arena 

simulation software has been selected as a tool to perform this type of analysis. Given the set of 

job orders present in the production plan and the willingness of improving their makespan, it has 

been decided to create the model so as an optimized sequence of these job orders is created at one 

replication. The aim is to find a sequence who’s associated makespan is lower compared to the 

monitored one on the production system. Nevertheless, it is not possible to find the very optimal 

time as it is not feasible to try all the possible combinations of the job orders and the algorithm 

applied for optimized sequence are all heuristics. Therefore, it has been decided to accept a 

relatively optimum solution with the aim of demonstrating that by implementing this framework 

and applying a simulation analysis it is possible to find a sequence of the job order whose 

makespan is improved compared to the original random sequence. 

Using Arena simulation software and its flowcharting methodology, it has been possible to create 

a digital model of the CP Festo Didactic Learning Systems present in the WVU Smart 

Manufacturing Lab. In the construction of the model, blocks and elements have been used. The 

overall model can be divided into 10 groups: the reading part of the input data, the entity creation 

part and the 8 stations corresponding to the 8 modules in the real system. In this section they are 

going to be described in detail following the order according to which the machines are physically 

ordered. First, it is possible to define all the elements needed for the correct functioning of the 

model. 
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Elements 

 

Figure 5.7.2.1: Arena model elements 

 Files: It defines the Input File (i.e., final optimal sequence) where data must be read. It is 

necessary to specify the file path on the computer, the access type that is text, the end of 

file action that is dispose as once read the file is no longer needed 

 

 Entities: 

 An entity called Part, referring to a generic part. 

 An entity called Pallet, referring to the pallet carrier that moves the product around. 

 

 Resources: They are called Front Machine, Measure Machine, Drill Machine, Back 

Machine, Press Machine, Heat Machine, Turning Machine, and Output machine 

representing the 8 modules/machines that work the pieces. 

 

 Stations: They are called Station Front, Station Measure, Station Back, Station Press, 

Station Heat, Station Turning, Station Drill, and Station Output that represent the 8 

different steps that each job order must go through and are necessary to model the way the 

station are ordered and therefore the route the pieces need to follow. There are some 

additional stations for specific categories of products as models need some cycles to 

complete each job. For easy jobs there are two additional stations named easy cycle 2 and 

easy cycle out. Similarly for medium and complex jobs there are some stations named 

medium cycle 2, medium cycle 3, medium cycle out, complex cycle 2, complex cycle 3 

and complex cycle out. Finally, there is a station named Finished from where the completed 

jobs go to the disposal module. 

 

 Queues: Front Machine. Queue, Measure Machine. Queue, Drill Machine. Queue, Back 

Machine. Queue, Press Machine. Queue, Heat Machine. Queue, Turning Machine. Queue, 

and Output Machine. Queue, referring to the possibility of product queuing in front of each 
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machine. Similarly, there is a queue in front of the seize pallet module which is named 

Seize Pallet. Queue. There are additional two queues in front of the Match module to create 

a batch of a pallet and a product named Match. Queue Pallet and Match. Queue Product. 

 

 Attributes: They are called Front, Measure, Output, Drill, Back, Press, Heat, Turn and are 

necessary to trace the machine for each product type. Product Type Easy, Medium and 

Complex is defined by other attributes named Parts. Remember that a product of type Easy 

is doing only 4 steps (Front Machine, Measure Machine, Back Machine and Output 

Machine), while a product of type Medium is doing 6 steps (Front Machine, Measure 

Machine, Back Machine, Press Machine, Turning Machine and Output Machine), and a 

product of type Complex is doing all the 8 steps (from M1 to M8). Another attribute is 

mentioned as a pallet. 

 

  Sequence:  

 For Sequence Easy Job cycle 1 follows: 

Station front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Easy cycle 2 

 

 For Sequence Easy Job cycle 2 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Easy Cycle 2 Station Front Station 

Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Easy Cycle Out 

 

 For Sequence Easy Job Cycle 3 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Easy Cycle 2 Station Front Station 

Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Easy Cycle Out Station Front Station Output 

Station Finished 

 

 For Sequence Medium Job Cycle 1 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Medium Cycle 2 

 

 For Sequence Medium Job Cycle 2 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Medium cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Medium Cycle 3 

 

 

 For Sequence Medium Job Cycle 3 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Medium Cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 
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Measure Station Drill Station Medium Cycle 3 Station Front Station Output 

Station Press Station Heat Station Turning Station Back Station Measure 

Station Drill Station Medium Cycle Out 

 

 For Sequence Medium Job Cycle 4 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Medium Cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Medium Cycle 3 Station Front Station Output 

Station Press Station Heat Station Turning Station Back Station Measure 

Station Drill Station Medium Cycle Out Station Front Station Output Station 

Finished 

 

 For Sequence Complex Job Cycle 1 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Complex Cycle 2 

 

 For Sequence Complex Job Cycle 2 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Complex Cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Complex Cycle 3 

 

 For Sequence Complex Job Cycle 3 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Complex Cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Complex Cycle 3 Station Front Station Output 

Station Press Station Heat Station Turning Station Back Station Measure 

Station Drill Station Complex Cycle Out 

 

 For Sequence Complex Job Cycle 4 follows: 

Station Front Station Output Station Press Station Heat Station Turning Station 

Back Station Measure Station Drill Station Complex Cycle 2 Station Front 

Station Output Station Press Station Heat Station Turning Station Back Station 

Measure Station Drill Station Complex Cycle 3 Station Front Station Output 

Station Press Station Heat Station Turning Station Back Station Measure 

Station Drill Station Complex Cycle Out Station Front Station Output Station 

Finished 
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Read Input Data 

The blocks needed to allow Arena to read the necessary input data are a create and a readwrite. 

The readwrite block is triggered by the flow of an entity, therefore the create block is necessary to 

generate an entity that has been previously defined as Part. As the only purpose of this entity is to 

activate the readwrite block, it can be directly disposed of and removed from the overall system. 

A create block generates an entity at time 0 that flows into and triggers the readwrite block which 

respectively reads form the Input File the value of the File elements.  

Processing Time Identification 

In the construction of the simulation model, for each station for each machine it is necessary to 

define the processing time. This data is known and does not depend on the number of products 

present in the production plan or their typology. Nevertheless, it has been discovered that the 

processing time of each module is not fixed, but it may vary by a few seconds in the processing of 

the different products. Machine processing times have been recorded and for each module for each 

single piece the processing time has been analyzed. Therefore, it has been computed the average 

processing time corresponding to each machine, then it has been rounded up to the closest integer. 

This time has been selected as processing time for each machine. 

 

Figure 5.7.2.2: Arena Modelling 
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Section A Input and Output of the Model 

Input: 

In the group of the model, at the beginning it is necessary to consider the presence of the 8 pallet 

carriers that are in queue ready to receive a product. For this purpose, a Creation block is needed 

to create exactly 8 entities Pallet at time 0. Then there is a Seize module where the resource is 

PalletCar and the resource capacity is fixed with 8. 

Another Create module is used for Part arrival to create exactly the number of entities Part at time 

0.  

A match module is used for creating a temporary batch based on entities when exactly one pallet 

and one part will match. The group is temporary, which means that at the end of the simulation the 

two entities need to be separated again, because the product must leave the system after its 

processing, while the pallet keeps going through the machine and accepts new products. As the 

number of pallets is lower than the number of parts, parts should wait till the next pallet will return 

after the release pallet. After receiving the released pallet, they seized the pallet again and made 

another temporary batch using the match module. 

A readwrite module is used for reading data from csv input file considering attribute type part. 

A decision module is used for categorizing the attribute part as easy, medium, and complex. 

 

Figure 5.7.2.3: Detailed picture of section A 
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Output: 

When the jobs completed all the cycles they reached at Finished Station. Then a Separate module 

is used to split existing Batch retaining original entity values by pallet and part. Another Decide 

module is used to identify the entity type. If the entity type is part, it will use the dispose module 

to complete the process and when the entity type is Pallet it will go to a release module where the 

resource is the same as previously named PalletCar. The released Pallet car will go to the Seize 

module again to create a batch with another new part. 

 

Section B Assignment for Stations and Respective Routes 

After deciding which part started travelling the model there are separate routes for each job to 

follow their respective paths. For easy jobs, there are 3 assigned modules and 2 stations which 

guide them to follow the appropriate path to complete the jobs. For medium and complex jobs, 

they required 4 assigned modules and 3 stations to reach their destinations.  

The Assign module defines different attributes of processing time for each machine and the entity 

sequence which defines which sequence they will follow for their processing.  

The Route modules connected all assigned stations to follow their sequence by respecting their 

destinations. 

 

Figure 5.7.2.4: Detailed picture of Section B 
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Section C Stations and Route of the Model 

The modeling of this section begins with a Station block referring to Station Front, followed by 

the Process block (Front Machine) and a Route to direct the product to the next station by sequence 

(Station Output). Then a Station block referring to Station Output, followed by the Process block 

(Output Machine) and a Route to direct the product to the next station by sequence (Station Press). 

Next a Station block referring to Station Press, followed by the Process block (Press Machine) and 

a Route to direct the product to the next station by sequence (Station Heat). After pressing the 

Complex job, the same way is followed by a Station block referring to Station Heat, which is also 

followed by the Process block (Heat Machine) and a Route to direct the product to the next station 

by sequence (Station Turning). The Medium and Complex job followed another Station block 

referring to Station turning, followed by the Process block (Turning Machine) and a Route to direct 

the product to the next station by sequence (Station Back). After that a Station block referring to 

Station Back, followed by the Process block (Back Machine) and a Route to direct the product to 

the next station by sequence (Station Measure). Another Station block referring to Station 

Measure, followed by the Process block (Measure Machine) and a Route to direct the product to 

the next station by sequence (Station Drill). After quality assurance of complex parts, a Station 

block referring to Station Drill, followed by the Process block (Drill Machine) and a Route to 

direct the product to the next station by sequence (Station Front). This cycle continues unless the 

predefined sequence elements refer them to a Station named Finished. For Processing action Seize 

Delay Release is chosen for all the machines with the resource of the name of that respective 

Machine. 

 

Figure 5.7.2.5: Detailed picture of section C 
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In this chapter details of the proposed framework, the model that have been built as well as the 

framework validation have been described. A list and thorough descriptions of the tools used have 

been presented in conjunction with the reason for these choices. It has been shown how the WVU 

Smart Manufacturing Lab has been useful for validating the framework. There has been a 

comprehensive description of the system present in the lab with all the parts involved to process a 

defined production plan. As well as, it has been showed that launching the production plan on the 

system requires a certain makespan for its completion. For each step of the framework, it has been 

accurately and deeply detailed the models built. First it has been made clear how the preferred data 

format is MS Excel as it allows to obtain only the relevant data. For the analysis step, it has been 

displayed the built simulation model that is the computer model of the real system present in the 

WVU Lab, capable of reading the obtained optimized sequence. In addition, it has been presented 

how the simulation analysis has been performed to compare the makespan of the selected 

production plan. Finally, in order to prove the flexibility and adaptability of the framework, it has 

been shown how the data can be converted into another format and analyzed by a different 

analytical tool. It has been demonstrated how this output can be read by an open-source python-

based web application such as Jupyter to further visualize and analyze the related data. 
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CHAPTER 6 

Result Analysis and Discussion 

The study that has been carried out has underlined the need for developing a solution that allows 

sequencing effectively and efficiently. In doing so, it was necessary to consider that machine data 

are often stored and/or available in spreadsheet-based documents and that during their flow. 

Therefore, a framework was developed that enables the data flow from an MES system to an 

analytical software (Arena simulation), by having them in MS Excel format. Furthermore, this 

framework has been conceived so that tasks could be performed in an automatic way in order to 

avoid possible errors and reduce time for repetitive actions. To prove the effectiveness of the 

framework and validate it, it was evaluated in some specific user case. The aim was to improve 

the throughput time of a production plan by finding a relative optimum sequence to launch in 

production so that the makespan could be improved by comparing two scenarios of both algorithms 

of the defined production plan. In this way it was possible to prove that from a production process, 

MS Excel format data could be retrieved and make them flow, with appropriate processing, to 

Arena in order to perform a simulation analysis for optimization purposes. In addition, it was also 

possible to prove the effectiveness of the analysis by testing the new sequence on the real system 

and monitoring the new makespan in order to show its improvement compared to the other 

situation. 

For different algorithms, the final optimal sequence should be different. Comparing the NEH and 

CDS algorithm, the makespan time is compared to analysis for better performance. Considering 

the system as a flow shop and job shop will give different outputs. Also considering job shop with 

the same ratio for all three categories and a different ratio for different categories will provide 

varieties of output. The figure 6.1 is visually representing the process of comparing the result 

section.  

 

Figure 6.1: Process of comparing result analysis 
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6.1 Flow Shop 

In flow shop sequencing there is a strict order of all operations to be performed on all jobs. For 

this case, for three categories of jobs, three different types of flow shops are considered. For both 

algorithms, the sequence obtained is different, but the makespan is equal for all cases.  

6.1.1 Job Category: Easy 

 

Easy job processed through four machines. The processing times are lower compared to other 

category. It needs three cycles to process the whole job. 

 

Graph 6.1.1. 1: Makespan time for different number of easy category jobs in flow shop  

 

 

Focusing on the graph 6.1.1.1, it is clear that if the number of jobs increases, total makespan will 

also increase for each pallet number. This graph and from the data table also shows that for most 

of the cases, with the increase in pallet number results decrease in makespan. For jobs 1 through 8 

can travel once to complete the jobs. But as there is a limitation of pallet number, the maximum 

pallet available in the lab scenario is 8. So, when the job number is more than 8, considering 9 to 

16, they have to wait for completing one single job, then the new part for the next job can enter 

that sequence. Similar scenario happened for greater than multiple of number 8.  
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The table 6.1.1.2 focuses that utilizing a higher number of pallets will give the minimum output. 

For easy category jobs, the minimum unit makespan obtained for 11 jobs using all available pallets.  

Table 6.1.1. 2 Per unit makespan time for different number of pallets for easy category jobs in flow shop 

Per unit makespan time for different number of pallets 

Number 

of jobs 

1  

Pallet 

2 

Pallets 

3  

Pallets 

4 

Pallets 

5 

Pallets 

6 

Pallets 

7 

Pallets 

8 

Pallets 

1 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 

2 13.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

3 13.00 9.67 9.67 9.67 9.67 9.67 9.67 9.67 

4 13.00 9.50 9.00 9.50 9.50 9.50 9.50 9.50 

5 13.00 9.40 9.40 9.00 9.40 9.40 9.40 9.40 

6 13.00 9.33 9.33 9.00 9.00 9.33 9.33 9.33 

7 13.00 9.29 9.00 9.29 8.71 9.00 9.29 9.29 

8 13.00 9.25 9.25 9.25 9.00 8.75 9.00 9.25 

9 13.00 9.22 9.22 9.00 9.22 8.78 8.78 9.00 

10 13.00 9.20 9.00 9.00 9.20 9.00 8.60 8.80 

11 13.00 9.18 9.18 9.18 9.00 9.18 8.82 8.64 

12 13.00 9.17 9.17 9.17 8.83 9.17 9.00 8.67 

13 13.00 9.15 9.00 9.00 9.00 9.00 9.15 8.85 

14 13.00 9.14 9.14 9.00 9.14 8.86 9.14 9.00 

15 13.00 9.13 9.13 9.13 9.13 8.87 9.00 9.13 

 

6.1.2 Job Category: Medium 

 

Medium category jobs need 6 machines to complete the whole job. The longest processing time 

for that case needs in a muscle press to join the front and back part of the magazine. Total 

processing time will depend on the total cycle length which is actually 4 cycles for this category 

of jobs.  
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Graph 6.1.2. 1: Makespan time for different number of medium category jobs in flow shop  

 

The graph 6.1.2.1 focuses that for each pallet, by increasing the number of jobs, the total makespan 

will always increase similarly as previous. But if the number of pallets increases, the makespan 

starts decreasing. Following the same trend as easy jobs, they have to complete one full job to 

receive the next job which is higher than the available pallet number.  

Table 6.1.2.2: Per unit makespan time for different number of pallets for medium category jobs in flow shop 

Per unit makespan time for different number of pallets 

Job 

Number 

1 

Pallet 

2 

Pallets 

3 

Pallets 

4 

Pallets 

5 

Pallets 

6 

Pallets 

7 

Pallets 

8 

Pallets 

1 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 

2 41.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 

3 41.00 32.00 31.00 31.00 31.00 31.00 31.00 31.00 

4 41.00 32.50 30.25 30.00 30.00 30.00 30.00 30.00 

5 41.00 32.00 30.00 29.60 29.40 29.40 29.40 29.40 

6 41.00 32.33 30.67 29.17 29.17 29.00 29.00 29.00 

7 41.00 32.00 30.29 29.14 28.57 28.86 28.71 28.71 

8 41.00 32.25 30.13 29.75 28.63 28.38 28.63 28.50 

9 41.00 32.00 30.56 29.56 28.67 28.22 28.22 28.44 

10 41.00 32.20 30.30 29.30 29.20 28.30 27.90 28.10 

11 41.00 32.00 30.18 29.27 29.09 28.36 28.00 27.82 

12 41.00 32.17 30.50 29.67 28.75 28.83 28.08 27.75 

13 41.00 32.00 30.31 29.54 28.77 28.77 28.15 27.85 

14 41.00 32.14 30.21 29.36 28.79 28.50 28.57 27.93 

15 41.00 32.00 30.47 29.33 29.13 28.40 28.53 28.00 
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The table 6.1.2.2 focuses on the per unit makespan time for different numbers of jobs. As this is a 

flow shop category and all jobs are following the same processes, it is easier to calculate the per 

unit makespan time for comparison. Utilizing all available pallets will also give the minimum 

makespan for this case which is 12th number of jobs.  

 

6.1.3 Job Category: Complex 

To complete a full complex job, it will go through all the available machines. Though it’s a flow 

shop, but due to an unusual machine setup, it needs 4 cycles to complete a full job. For better job 

quality, it ensures heat treatment after muscle press which actually creates a huge difference in 

processing time rather than other categories of jobs. 

 

Graph 6.1.3. 1: Makespan time for different number of complex category jobs in flow shop 

 

 

The graph 6.1.3.1 indicates increasing the number of jobs will increase makespan for each pallet. 

But the increase of pallet number creates a declining trend for makespan for most of the cases.  
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Table 6.1.3.2: Per unit makespan time for different number of pallets for complex category jobs in flow shop 

Per unit makespan time for different number of pallets 

Number 

of jobs 

1 

Pallet 

2 

Pallets 3 Pallets 

4 

Pallets 

5 

Pallets 

6 

Pallets 

7 

Pallets 

8 

Pallets 

1 106.00 106.00 106.00 106.00 106.00 106.00 106.00 106.00 

2 106.00 84.50 84.50 84.50 84.50 84.50 84.50 84.50 

3 106.00 88.00 78.00 78.00 78.00 78.00 78.00 78.00 

4 106.00 84.00 79.25 74.75 74.75 74.75 74.75 74.75 

5 106.00 86.20 78.80 76.40 72.80 72.80 72.80 72.80 

6 106.00 83.83 77.67 74.83 74.50 71.50 71.50 71.50 

7 106.00 85.43 78.43 74.86 71.71 73.14 70.57 70.57 

8 106.00 83.75 78.25 74.50 72.38 70.88 72.13 69.88 

9 106.00 85.00 77.56 75.44 72.67 70.44 70.22 71.33 

10 106.00 83.70 78.10 74.60 72.60 70.90 68.70 69.70 

11 106.00 84.73 78.00 74.64 73.55 71.27 69.45 68.36 

12 106.00 83.67 77.50 74.42 72.00 71.33 69.92 68.25 

13 106.00 84.54 77.92 75.08 72.38 72.23 70.31 68.77 

14 106.00 83.64 77.86 74.50 72.57 71.00 70.43 69.21 

15 106.00 84.40 77.47 74.53 72.53 70.73 71.27 69.60 

 

This table 6.1.3.2 represents the per unit makespan time for complex category jobs. Increasing 

pallet numbers causes downward slope for each job. For complex category job per unit makespan 

obtained minimum for utilizing higher number of pallets which is 12 jobs again.  

6.1.4 Comparison 

To summarize the above discussion, the graph is presented to explain that for a number of jobs in 

flow shops, if the pallet number increases, total makespan will follow a downward trend. But for 

complex category products, the trend is steeper because of its long processing time in the heating 

tunnel.  Medium category products are also showing a declining trend which is not as steep as 

complex ones because there is no heating tunnel used for this category of products but the stepper 

trend shows the effect of muscle press on the processing times. Whereas, easy jobs are showing 

an almost negligible declining trend as the machines used for processing easy jobs have the lowest 

processing time compared with other two categories. Graph 6.1.4.1 represents the comparison 

among different categories of jobs and the significant variation based on available pallet numbers.  
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Graph 6.1.4. 1: Total makespan time decreased with number of pallets for flow shop 

 

 

Graph 6.1.4.2 compares the makespan time for all category jobs in two different algorithms. 

Though the sequence obtained from those algorithms are not identical but as the product category 

is same, the different sequence cannot affect the makespan time for this scenario.  
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Graph 6.1.4. 2: Makespan time for different algorithms for different category of flow shop 
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Graph 6.1.4. 3: Average percentage change in makespan with increasing pallet number for flow shops 

 

 

Graph 6.1.4.3 visualizes changes the average percentage increase for pallet 1 to 2 is significantly 

higher than any pallet. For easy category jobs, the other changes are quite negligible. For medium 

and complex category jobs, the average changes due to increasing numbers from pallet 1 to 2 is 

pretty close. Medium jobs average percentage change increasing from pallet 2 to 3 and 3 to 4 are 

quite significant. Same situation happens for complex category jobs increasing from pallets 2 to 3, 

3 to 4 and 4 to 5. Though the complex jobs show a higher percentage change than medium jobs. 
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6.2 Job Shop 

Job shops are typically considered as small manufacturing systems that handle custom job 

production for different batches. Job shops typically move on to different jobs when each job is 

completed. Job shops may contain different machines which are aggregated in shops by the nature 

of skills and technological process involved which gives the production system processing 

flexibility.  

Normally in a job shop, there are a number of identical machines which allow to process jobs 

based on availability if there is no strict processing order. In the lab scenario, the additional 

constraint is there is a single machine for each category and no process can be done skipping the 

prerequisite process order.  

6.2.1 Job Category: Mixed Category but Equal Percentage 

Here, all three category jobs are involved. The unique setup for this scenario is that each category 

of jobs should maintain 33.33% for total sequence which is actually 1/3 of total job numbers. So, 

they are mainly multiple of 3 jobs with different sequences from different algorithms.  

 

Graph 6.2.1. 1: Makespan time for different number of all category jobs in job shop following NEH Algorithm 

 

 

For both NEH and CDS algorithms, the sequence obtained is showing the same behavior as flow 

shop. When the number of jobs increases, the total makespan is increasing. But due to the increase 

of pallet number, creating a declining trend for most of the cases. Graph 6.2.1.1 and graph 6.2.1.2 

is showing the visual representation of that scenario for both algorithms. Utilizing a higher number 

of pallets will give the minimum makespan for both scenarios. 
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Graph 6.2.1. 2: Makespan time for different number of all category jobs in job shop following CDS Algorithm 

 

 

A mixed category with equal percentage of jobs also behaves the same as a flow shop for a single 

pallet. Though the sequence is different for different algorithms, the pallets constraint creates the 

scenario where the calculated makespan is equal for both cases.  Focusing on the graph 6.2.2.1 it 

is clear that if the number of jobs increases, total makespan will also increase for each pallet 

number. But comparing both algorithms, the makespan obtained from the NEH algorithm is always 

lower than the CDS one.  
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Comparison 
Graph 6.2.2. 1: Makespan time for different algorithms for mixed category with equal percentage of job shop 

  

  

  

  

 

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

1 Pallet

NEH CDS

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 101112131415

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

2 Pallets

NEH CDS

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

3 Pallets

NEH CDS

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 101112131415M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

4 Pallets

NEH CDS

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

5 Pallets

NEH CDS

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 101112131415

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

6 Pallets

NEH CDS

0

1000

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

7 Pallets

NEH CDS

0

1000

2000

1 2 3 4 5 6 7 8 9 101112131415

M
ak

es
p

an
 (

se
co

n
d

s)

Number of jobs

8 Pallets

NEH CDS



82 
 

Graph 6.2.2. 2: Average percentage change in makespan with increasing pallet number for CDS algorithm with equal 

percentage of job shop 

 

 

Graph 6.2.2.2 focuses on the comparison between two algorithms for percentage increase due to 

changes in pallet number. For change in pallet 1 to 2, NEH shows the highest increase. For change 

in pallet 2 to 3, they are almost the same for both algorithms. Lastly, the CDS algorithm shows 

almost negligible changes for pallet 6 to 7 and 7 to 8. 
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6.2.2 Job category: Mixed category with different percentage 

 

For this scenario, the number of jobs is fixed but there can be different combinations possible 

based on job category. The minimum number of jobs for this category is 4. As there are three 

categories of job, it’s not possible to combine less than 4 jobs.  

 

Graph 6.2.2.1: Makespan time for different number of combinations of 4 jobs in job shop  

  

 

Graph 6.2.2.1 represents the scenario of 4 jobs with various number of combinations. If the number 

of complex jobs is higher than the easy and medium jobs, total makespan time will always be 

higher than all the cases. The minimum makespan found for the combination with a higher number 

of easy jobs than the other category. 
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Comparison 
Graph 6.2.2.2: Makespan time for different algorithms for mixed category with different percentage of job shop for 4 jobs 

 

  

  

 

Graph 6.2.2.2 presents the variation of makesapn using two different algorithms. For a single 

pallet, the scenario is as similar as the flow shop due to pallet constraint. Rather than that, all the 

scenarios prove that NEH performs better than CDS.  
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Graph 6.2.2.3: Percentage deviation in makespan with increasing pallet number for combination of 4 jobs 

  

 

Graph 6.2.2.3 represents the scenario that increasing pallet number changes the makespan. 

Significant deviation shown for NEH algorithm. From pallet 1 to 2, the change is lower for 

maximum complex jobs. For maximum medium jobs, from pallet 2 to 3, the percentage increases 

but decreases again from pallet 3 to 4. Again, maximum percentage change for maximum easy 

category jobs found increasing pallet from 3 to 4.    
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Graph 6.2.2.4: Makespan time for different number of combinations of 5 jobs in job shop  

  

 

Graph 6.2.2.4 presents the case for 5 jobs with various numbers of combinations. The minimum 

makespan found for the combination with a higher number of easy jobs than the other category. If 

the number of complex jobs is higher than the easy and medium jobs, total makespan time will 

always be higher than all the cases. Sometimes there are some fluctuations due to the ratio of 

number of jobs in each category as the processing time varies for all three categories.  

 

There is a comparison presented in graph 6.2.2.5. This focuses on the increase of makespan with 

the number of jobs. Compared with the CDS algorithm NEH always performs better except for 

single pallets. This different situation is the same for flow shops due to pallet constraints. 
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Comparison 

Graph 6.2.2.5: Makespan time for different algorithms for mixed category with different percentage of job shop for 4 jobs 
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Graph 6.2.2.6: Percentage deviation in makespan with increasing pallet number for combination of 5 jobs 

  

Similarly Graph 6.2.2.6 shows the highest percentage change for the NEH algorithm. For 

maximum complex category jobs, the percentage increase from pallet 1 to 2 is always higher than 

any other combination in the NEH algorithm. For equal complex and medium jobs, percentage 

change is highest, increasing pallet number from 2 to 3 for NEH algorithm but CDS algorithm 

shows the same for equal percentage of easy and complex jobs. Increasing the pallet number from 

3 to 4 shows random behavior for both algorithms. For NEH algorithm, from pallet changes 4 to 

5 shows the increasing trend. But for the CDS algorithm, it increases for some combinations and 

declines most for maximum percentage of easy jobs. 
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Graph 6.2.2.7: Makespan time for different number of combinations of 6 jobs in job shop  

  

 

Graph 6.2.2.7 presents the 6 jobs with various combinations. Sometimes there are some 

fluctuations with the ratio of number of jobs in each category due to the variation of processing 

time for all categories. Normally, if the number of complex jobs is higher than the easy and 

medium jobs, total makespan time will always be higher than all the cases. On the contrary, the 

minimum makespan found for the combination with a higher number of easy jobs than the other 

category. 

 

Graph 6.2.2.8 compares the makespan for two different algorithms. NEH always performs better 

than the CDS due to two different sequences. Single pallet scenario behaves as usual due to the 

pallet constraints.  
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Comparison 

Graph 6.2.2.8: Makespan time for different algorithms for mixed category with different percentage of job shop for 6 jobs 
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Graph 6.2.2.9: Percentage deviation in makespan with increasing pallet number for combination of 6 jobs 

  

 

Graph 6.2.2.9 shows the same result for the NEH algorithm that, from changes in pallet 1 to 2 will 

always show an increasing trend. For almost all of the combinations, it is showing random changes. 

But for the combination with maximum easy category, showing percentage increase for NEH 

algorithm whereas CDS algorithm shows decrease for increasing pallet from 5 to 6. 
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Graph 6.2.2.10: Makespan time for different number of combinations of 7 jobs in job shop  

  

 

For different combinations of 7 jobs, for both algorithms, they behave almost the same for each 

specific combination. Graph 6.2.2.10 represents the visual representation of the declining trend for 

increasing pallet number in each combination. 

 

Graph 6.2.2.11 visuals the better performance of NEH algorithm except single pallet. 
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Comparison 

Graph 6.2.2.11: Makespan time for different algorithms for mixed category with different percentage of job shop for 7 jobs 
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Graph 6.2.2.12: Percentage deviation in makespan with increasing pallet number for combination of 7 jobs 

 

 

 

For the NEH algorithm, graph 6.2.2.12 shows the higher increasing trend for changing pallet 

number from 1 to 2. Similarly, CDS goes upward for that case, but there are some discrepancies 

in between. Mostly, for CDS algorithm shows, increasing pallet number cannot help the makespan 

to go down. The reverse behavior shows for maximum easy category jobs. From changing Pallet 

number to 6 to 7, NEH algorithm shows percentage changes are increasing which means makespan 

are literally decreasing with increase of pallet number. But for CDS algorithms it is a downward 

trend.  
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Graph 6.2.2.13: Makespan time for different number of combinations of 8 jobs in job shop  

 

 

As the number of jobs increases, the possible combination is also increasing. Here, the number of 

jobs is equal to the all-available pallets. For specific combinations, both algorithms behave almost 

the same and by utilizing the highest number of pallets will give the minimum makespan. There 

are some variations due to some specific combination as the sequences are different for both 

algorithms. Though in most of the cases, makespan decreases with the increasing number of 

pallets. Graph 6.2.2.13 visually represents that scenario.  
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Comparison 

Graph 6.2.2.14: Makespan time for different algorithms for mixed category with different percentage of job shop for 8 jobs 
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On the other hand, graph 6.2.2.14 presents the better performance of the NEH algorithm for all 

cases except single pallets. 

 

Graph 6.2.2.15: Percentage deviation in makespan with increasing pallet number for combination of 8 jobs 

 

 

Finally, graph 6.2.2.15 represents, NEH algorithm has a clear effect on changes in pallet number 

whereas in most of the cases, the CDS algorithm shows random behavior. The highest percentage 

increase from pallet 1 to 2 is also for maximum easy category jobs for NEH algorithm. But the 

CDS algorithm shows a mixed combination for this case where medium category jobs are 

prioritized. 
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CHAPTER 7 

CONCLUSION 

The aim of the thesis has been to evaluate the role of an optimized sequence within a multi-stage 

manufacturing system. More specifically, the objective has been to model a specific machine setup 

and find the optimal sequencing technique to improve the efficiency of that specific system using 

existing algorithms. This work has allowed to achieve the contribution by modifying different 

heuristics algorithm accommodated with a special machine setup and the related constraints to 

generate the optimum sequence. The optimal sequence obtained from both algorithms is used in 

both real-life machine setup and simulated environment to validate the algorithm output and select 

the best algorithms. Based on the result, makespan showing different behavior for pallet constraints 

and different shop setup. 

A review of the current literature on the topic has been the first task of the research in order to 

clearly understand the overall context of the manufacturing world and the new era it is undergoing. 

This analysis led to the acquisition of adequate knowledge on the topic to develop the research and 

determine the main gaps that have not been addressed yet. The main topic to which this study 

belongs is Industry 4.0 with a focus on Industrial sequencing practices. The output of this 

investigation led to the identification of the main gap regarding to take an existing established 

algorithm and show how that can be used in a very unusual setup, like in a new type of setup in 

the lab environment that the algorithm was previously not applied off on and was not optimized 

for. Despite the presence of numerous mathematically established algorithms that are advanced 

and provide sophisticated solutions that overcome any difficulties in large industries, they are not 

suitable for customized lab machine setup that have particular needs and limitations compared to 

big companies. Therefore, it was crucial to investigate this theme in order to support sequencing 

problems and provide them with something appropriate to the profile. This gap led to the 

formulation of the research questions with the purpose of developing an appropriate framework 

that could enable a simulated environment considering their special setup, as well as involving the 

use of tools and existing software. 

The methodology section deals with different algorithms and their adjustments for customized 

machine setup. In real life, there are so many established algorithms to solve sequencing problems 

but all cannot be applied in that case. The reason behind rejecting some algorithms and other 

constraints is focusing on developing new methodology to solve the problem. Modifying existing 

algorithms helps to find the better optimal solution in that case. Comparison of heuristics 

algorithms helps to identify a better approach to solve this complicated circular flow shop problem. 

Next, validating the framework has been the task of this research. It involved the use of the Festo 

Didactic CP Lab Learning Systems present in the Smart Manufacturing Lab at WVU in order to 

perform a production and retrieve the relative data from the MES system connected to it. Indeed, 

it has been created a simulation model using Arena simulation software that mirrors the existing 

system in laboratory. It has performed a simulation analysis reading the processed data with the 

aim of improving the makespan of the production plan optimally launched on the system, by 
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identifying a better sequence using other algorithms that would have required a lower amount of 

time from its completion. This last task proves the effectiveness of the devised framework by 

demonstrating how its application could provide help to optimize an aspect of the manufacturing 

system. Finally, in order to prove the effectiveness of the solution, an additional specific objective 

has been defined: test how manufacturing data, stored in excel documents, properly processed in 

an automatic way, compared by a simulation software as Arena, to perform a simulation analysis 

in order to improve a value adding parameter as the makespan of a production plan launched on a 

manufacturing system. Python has been the programming language to carry out all of the activities 

linked to data preparation, data handling and data modeling. Different simulations of the complete 

sequence of the CP lab manufacturing processes have been executed to collect the needed data for 

the subsequent modeling and validation phases. 

The result analysis focuses on different types of assembly line of production constraints with the 

existing constraints of the lab environment. The most important effect is created by the pallet 

number which is actually an important constraint for this unusual machine setup. For all cases, if 

a single pallet is used, job shops are behaving similarly to flow shops. Comparison of algorithms 

shows the better performance for NEH heuristics for all of the cases. Increasing pallet numbers 

will create a significant percentage change for all scenarios. The different ratio of different 

categories of jobs are taking the minimum time to complete a sequence, when the number of easy 

category jobs is highest for that specific combination. 

 

7.1 Answer to Research Question 

Research Question: How different techniques can apply in the SM lab system and simulated 

environment to compare the ability to mitigate bottlenecks? 

This research question has been conceived with the purpose of providing proof that the 

methodology development and data validation helps to meet the research objective. The result 

analysis section answers this question by comparing two different heuristics algorithms and 

showing their efficiency for both flow shop and job shop scenarios. From the data validation 

section, it is clear that real machine setup and the simulated data follow the same trend. Comparing 

the simulated environment result helps to identify the factors influencing the bottleneck. Three 

different job categories and their processing time with additional cycle time is adding extra idle 

time for machines and unnecessary non value adding time including transportation time helps to 

create bottleneck in that scenario. Moreover, a limited number of pallets are an additional 

constraint to add more time to the makespan. The heuristics algorithm helps to find the best optimal 

sequence for this irregular machine setup which basically helps to minimize total makespan. 

Another important finding is that utilizing all available pallets will help to reduce the makespan 

too for most of the cases. Though easy jobs have lowest utilization of the machines but as the 

necessary cycles and processing times are minimum for this category, using more easy jobs for a 

specific combination can also help to minimize the makespan.  
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7.2 Relevant Real-World Scenarios 

Nowadays manufacturing technologies are modified in a vast range after the era of additive 

manufacturing. CNC machine, injection molding makes the manufacturing world a new scope to 

develop day by day. The Festo didactic learning system is used for this study to mimic the concept 

of real-world scenarios.  

According to (PCB SHINE International Company Limited 2005), most of the PCB manufacturing 

companies use drilling, punching and heat treatment to produce a qualified PCB board. Normally 

after drilling the inner layer, baking and deburring is performed. After platting the second panel, 

the image should be transferred. Next etching is performed and checked before the solder mask. 

Then the process goes for CIM printing, gold platting and surface finish. Next completing 

punching and cleaning, it goes for QC gating and electrical test. Visual inspection is performed 

before packing and after overall quality assurance it is shipped. 

For (RAYMING TECHNOLOGY 2021), if the PCB is double sided, after solder paste printing, it 

waits for SMD parts placement. Then reflow the soldering it permits to flipping. Again, after solder 

paste printing and SMD parts placement, it allows reflow soldering. Finally, after THT component 

placement it goes for hand soldering. 

(Song et al., 2016) proposed the engine production line, where the basic steps include installation 

of left and right crack part bearing. The mounting shock absorption set is pressed. Then after 

loading the transmission mechanism and shifting mechanism the mold closed. The other steps 

including fastening combined box bolt, loading neutral position switch, sealing driving shaft oil, 

loading shift examination, clamping engine, loading lube oil pump, loading side clutch assembly, 

loading piston cylinder, loading timing chains, loading chain tensioner, loading left crankcase, 

loading shift control system, fastening left crankcase cover, adjustment of clutch, check 

backflushing, loading carburetor, leak detection will help to make a qualified engine. 

In case of motor production, according to (Attia et al., 2016), after die casting CNC turning is 

performed. Then drilling, reaming and tapping operation finally goes for motor assembly. 

According to (MechGuru 2021), in the bolt fastener manufacturing process, after raw material 

inspection, casting or forging is performed. Then for facing and grooving, CNC machining is 

performed. After heat treatment grinding is done for better surface finish. Next after thread rolling, 

coating is completed to prevent rust. Finally, dimensional inspection happened to ensure form, fit 

and finish. 

(MECHTECH GURU 2014) follows the following procedure for manufacturing rail. After 

marking, cutting is done at the right angle. Then after drilling the fish hole is chamfered. Necessary 

Machining is performed before bending. Then after the magnetic particle test it goes for finishing. 

After final assembly operation, it goes for internal inspection. Next documentation and 

certification are done based on quality in the final inspection section. After stamping, final 

painting, stenciling and packing it is gone for market.   
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To produce a coupler (P. Manne et al., 2016) suggested, after purchasing material it is cut into bulk 

metal. Then heat the metal and use a conveyor belt to send it to the impression die machine. After 

making the forge die for the coupler, put material on the forge die. Next force is applied to make 

proper shape and allow the parts to solidify. After nanoparticle coating and inspection, it will ship. 

Following (CCS online clothing study 2013) in the textile industry, especially the garment 

finishing process works with thread cutting. After initial checking, pressing is done and go for 

measurement checking. After final checking, tagging, folding and packing is done. Then packing 

the box leads to inspection of ready to ship goods. 

(Pharmaguideline 2022) provides a pathway in the pharmaceutical industry, after receiving raw 

material from stores and verification of material and weights, individual material shifted for tablet 

manufacturing. Then dry mixing and drying was performed to analyze moisture level. Next milling 

is performed for sizing granules and after lubricating, compression is performed. After visual 

inspection it goes for coating. Again, visual inspection was performed to verify the batch code. 

Next packing section sends it for finished good analysis. 

For the automotive industry (Orbak, 2012) guided, after foam production it is cut in respect to the 

length of the block. Then completing the settling and drilling process it goes for lamination. 

In the field of sliding aluminum windows (HONSTAR 2020) following, after designing phase 

aluminum profiles are cut. Then it goes for drilling, milling and punching operations. Next going 

through seal brush, roller and window frame and sash assembly, window lock, thrust block and 

cushion are installed. Finally, after glass installation it goes for finished aluminum window 

assembly and then tested for acceptance. 

For producing tempered glass (CITEHRBLOG 2012) suggest, after receiving raw glass and 

inspection of glass it is marked for cutting. After completing edging, holes and cutouts another 

inspection happens. Then it goes for washing, toughening, pressing, silicon sealing, finishing and 

curing and final inspection before dispatching. 

In the pipe fitting industry such as (B.M Meters Private Limited 2008), after passing the material 

test, cut materials go for heating. After forming, a boring operation is performed before lathe 

machining. Finished product inspection is performed before marking and packing to ship on 

market. 

From (B.M Meters Private Limited 2008), flanges are actually metal parts which start working 

after receiving and inspection of raw materials. Heating is performed before forging and 

machining. Next passing a different level of inspection it goes more marking, painting and ready 

to ship. 

In oil manufacturing company like (GOYUM GROUP 2021), shea seeds are cleaned from nuts. 

Clean seed goes through kernel, conditioning and press to produce shea butter. Almost the same 

process is followed for the sunflower oil and cocoa butter industry. 
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Focusing on the food industry (Nikken Foods Company Limited 2022) follows that, there are some 

spices in the form of powder. After collecting raw material and proper inspection they blend them 

all before going to heat sterilization. Next completing drying and sieve distribution, inspection 

happens before filling and packaging. 

To produce functionally graded materials as per (Parihar et al., 2018) research, powder metallurgy 

is involved by mixing two types of materials. They are stacked and pressed before sintering. 

In the field of paper manufacturing (ECPlaza Network Incorporate 2022) suggests that, woods are 

converted to wood chips and go for blow thank. After washing it forms pulp and passes through 

necessary steps to make different types of papers. 

For magnet production (Star Trace Private Limited 2022) follows that, raw materials are melted 

and casted before hydrogen decrepitation. After jet milling, pressing, sintering, machining, plating 

is performed before inspection. Finally, it goes for magnetizing. 

 

7.3 Limitations  

As this research is still at its beginning, the results can be seen as an initial proof of concept or 

feasibility study for comparison between sequencing algorithms. Therefore, there are some 

limitations that give room for improvement and future possible developments. The obstacles 

encountered and the limits of this specific research are going to be listed according to the different 

steps of the framework.  

In the methodology section, heuristics algorithms are chosen to find the optimum sequence. For 

customized machine setup it is not possible to select other specific algorithms to analyze the best 

optimal solution for those approaches. 

The only data source that was possible to consider was the MES system present in the WVU SM 

Lab. From the system it was possible to retrieve only data about the production of the different 

workpieces and the output was a fixed selection of data. Besides, data needed to be exported 

manually from the MES and they were in csv format. Therefore, as the very first step it was 

necessary to import these data into an excel file for a better visualization of their content. After the 

dataset has been created and deeply analyzed, every following step has been conceived in order to 

fit with the specific structure of the file. Everything has been adapted based on its configuration 

and its content. For what concerns the transformation and pre-processing of this dataset, this task 

has been arranged based on what information needed to perform its analysis. The Arena model has 

been built in order to represent the Festo System present in the lab because running simulations 

would have been faster than testing on the real system. However, this means that all the parameters 

of the model are fixed and mirror the real system. In addition, the configuration of the real system 

could not be rearranged, and it was not the best configuration possible for production. After 

analyzing the specific context, it emerged that the only variables were the number of job orders 

for each production and how they were split according to the three different products. Therefore, 

the .txt file has been created in order to provide what Arena exactly required. As well as, the flow 

that performs the processing task is specifically created to fit the case. If a different dataset is 



103 
 

available and a different kind of analysis wants to be performed, with a different tool, it is 

necessary to change the data structure accordingly, as well as the process to build it.  

There is no previous record to analyze what is the optimum number of jobs for this machine or 

what trend they are using for increasing makespan or transportation time for different numbers and 

combinations of jobs. The maximum available pallet for this job is 8. So, it is not possible to check 

that if the pallet number is more than 8, what should be the possible results. The category of job is 

fixed and they are repeatedly performing the same task. The machine is not performing continually 

well for a long time which creates unnecessary bottlenecks in some stations. There happens some 

sensor issue or other mechanical problem which makes the data collection process longer than 

expected.  

Considering the simulation analysis performed on arena, in order to input the necessary data, it has 

been built a part of the model that allows for reading them from an external file. Arena was able 

to directly read data coming from excel or text files, nevertheless in order to appropriately retrieve 

the data, it has been necessary to rename the single cells containing the data based on how arena 

was expecting to find them, which depended on how they have been defined in the model. 

Furthermore, in the construction of the simulation model it has not been possible to model some 

features and times of the systems due to lack of information. For example, it was not possible to 

model the transportation times of the workpieces between two consecutive workstations, as well 

as the time necessary to allow machines' sensors to read the workpiece code. Finally, considering 

that the production plan was composed of different job orders, it was not feasible to test all the 

possible scenarios and therefore combinations. For this reason, it was not possible to find the 

absolute best production sequence. 

 

7.4 FUTURE DEVELOPMENTS  

This research is still at its beginning and it is making its first steps, therefore the work developed 

is not intended to be an end itself. It is more a starting point for future developments, and it aims 

at fostering new research in this field. 

Considering the limitations of this work, a first short-term development for this research could be 

to test the framework and optimize it for much bigger data samples since for validating this model 

a relatively small data sample has been considered for time frame reasons and other constraints. 

Under this perspective it would be valuable to verify if there is a limitation in the data sample size, 

and check if excel can handle a huge amount of data and what is its limit. It will also be helpful to 

develop any statistical approach to find the behavior of analyzed data and their relationship 

according to different time calculations. 

Adding transportation time considering pallet numbers will also create another value to this 

research. Trying to apply any analytical tool for large different combinatorial problems and make 

it user friendly to handle large datasets. Regarding the limitations, the number of simulations 

carried out to develop the datasets represents an additional aspect that should be improved; indeed, 

a higher number of simulations would provide further samples to increase the reliability of the 

models. 
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Further specific long-term research would be to take the data and test them with different analytical 

suites and different algorithms to study how the connections work and if and what kind of issues 

might emerge. Currently, the framework is case and algorithm specific, the idea would be to make 

it more standard and developing mathematical models for exact algorithms will open a new era in 

the sequencing field.  

Finally, it would be of extreme relevance to increase the level of automation of the whole 

workflow, allowing for a complete automatic flow of the data from the source to the analytical 

tool, without additional manual inputs in between for applying algorithms or other calculations. It 

would be worthwhile to make further research to provide with appropriate tools that would allow 

to create an overall automatic process and provide the end user with a best optimal sequence by 

entering job number and category of products.  

The fourth industrial revolution is happening now, hence, the potentialities that can be triggered 

by new technologies have to be explored and investigated now. This work does not want to be an 

end in itself. On the contrary, the final aim of this work is the fostering of further research in this 

field to study more in depth the possibilities that different categories of products and related 

optimized sequence can generate, both for the efficiency of the sector and for its environmental 

impact. 
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Appendix 

A. Data Validation
Table 5.1.1: Input file preparation to feed an algorithm 

 Index Number 0 1 2 3 4 5 6 7 8 9 10 

Machine a1.1 a1.2 a1.3 b1.1 b1.2 b1.3 b1.4 c1.1 c1.2 c1.3 c1.4 

Front 2 0 0 2 0 0 0 2 0 0 0 

Output 0 0 7 0 0 0 7 0 0 0 7 

Muscle Press 0 0 0 0 0 25 0 0 0 25 0 

Heat Tunnel 0 0 0 0 0 0 0 0 0 55 0 

Turning 0 0 0 0 0 3 0 0 0 3 0 

Back 0 2 0 0 2 0 0 0 2 0 0 

Measuring 2 0 0 2 0 0 0 2 0 0 0 

Drilling 0 0 0 0 0 0 0 10 0 0 0 

Figure 5.2: Algorithm input 
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Table: 5.2: Algorithm outputs 

8 4 1 7 9 3 0 10 6 2 5 
 

Table 5.4.1: Total Processing time calculation 

Job Front Output 
Muscle 
Press 

Heat 
Tunnel 

Turning Back Measuring Drilling 

C1.1 2 0 0 0 0 0 2 0 

M1.1 0 0 0 0 0 2 0 0 

E1.1 0 7 0 0 0 0 0 0 

C1.2 2 0 0 0 0 0 2 0 

M1.2 0 0 0 0 0 2 0 0 

E1.2 0 0 25 0 3 0 0 0 

C1.3 0 7 0 0 0 0 0 0 

M1.3 2 0 0 0 0 0 2 10 

E1.3 0 0 0 0 0 2 0 0 

C1.4 0 0 25 55 3 0 0 0 

M1.4 0 7 0 0 0 0 0 0 

Sum 6 21 50 55 6 6 6 10 
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Table: 5.4.2: Makespan calculation in/out table 

JOB Front 
in 

Front 
out 

Output 
in 

Output 
out 

Muscle 
press 

in 

Muscle 
press 
out 

Heating 
tunnel 

in 

Heating 
tunnel 

out 

Turning 
in 

Turning 
out 

Back 
in 

Back 
out 

Measuring 
in 

Measuring 
out 

Drilling 
in 

Drilling 
out 

C1.1 0 2 2 2 2 2 2 2 2 2 2 2 2 4 4 14 

M1.1 2 4 4 4 4 4 4 4 4 4 4 4 4 6 14 14 

E1.1 4 6 6 6 6 6 6 6 6 6 6 6 6 8 14 14 

C1.2 6 6 6 6 6 6 6 6 6 6 6 8 8 8 14 14 

M1.2 6 6 6 6 6 6 6 6 6 6 8 10 10 10 14 14 

E1.2 6 6 6 6 6 6 6 6 6 6 10 12 12 12 14 14 

C1.3 6 6 6 6 6 31 31 86 86 89 89 89 89 89 89 89 

M1.3 6 6 6 6 31 56 86 86 89 92 92 92 92 92 92 92 

E1.3 14 14 14 21 56 56 86 86 92 92 92 92 92 92 92 92 

C1.4 14 14 21 28 56 56 86 86 92 92 92 92 92 92 92 92 

M1.4 14 14 28 35 56 56 86 86 92 92 92 92 92 92 92 92 
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Table 5.4.3: Idle time calculation 

JOB Front out Output out Muscle press out Heating tunnel out Turning out Back out Measuring out Drilling out 

C1.1 0 2 2 2 2 2 2 4 

M1.1 0 2 2 2 2 2 0 0 

E1.1 0 2 2 2 2 2 0 0 

C1.2 0 0 0 0 0 0 0 0 

M1.2 0 0 0 0 0 0 2 0 

E1.2 0 0 0 0 0 0 2 0 

C1.3 0 0 0 25 80 77 77 75 

M1.3 0 0 0 0 0 3 3 3 

E1.3 8 8 0 0 0 0 0 0 

C1.4 0 0 0 0 0 0 0 0 

M1.4 78 57 36 6 0 0 0 0 

Sum 86 71 42 37 86 86 86 82 

Table 5.4.4: Bottleneck Calculation 

JOB Front out Output out Muscle press out Heating tunnel out Turning out Back out Measuring out Drilling out 

C1.1 0 0 0 0 0 0 0 0 

M1.1 0 0 0 0 0 0 0 8 

E1.1 0 0 0 0 0 0 0 6 

C1.2 0 0 0 0 0 0 0 6 

M1.2 0 0 0 0 0 2 0 4 

E1.2 0 0 0 0 0 4 0 2 

C1.3 0 0 0 0 0 0 0 0 

M1.3 0 0 25 30 3 0 0 0 

E1.3 0 0 35 30 6 0 0 0 

C1.4 0 7 28 30 6 0 0 0 

M1.4 0 14 21 30 6 0 0 0 
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Table 5.5: Legend for the first 15 header columns of the machine dataset CSV file 

Column Meaning Note 

PNo 
Product Number Product Number 3000 3001 3002 

Meaning Easy Medium Complex 

WPNo 
Working Plan Number Working Plan Number 6 7 8 

Meaning Easy Medium Complex 

StepNo 
Step/ Module Number Step/ Module Number 10 20 30 40 50 60 70 80,200  

Meaning Front Measure Drill Back Muscle Press Heat Tunnel Turn Deliver 

ONo Order Number Specific customer order number 

OPos Order Position Specific job position number according to input 

Description Module Task Description of the activity performed 

OpNo Operation Number Number of the operation performed by the relative module 

NextStepNo 
Next step Number Next step Number 0 20 30 40 50 60 70 80 

Meaning Deliver Measure Drill Back Muscle Press Heat Tunnel Turn Deliver 

FirstStep  TRUE/FALSE depending whether the considered step is the first one or not 

ErrorStepNo  200: defines the error step for the relative module 

NewPNo New Product Number The product n. of the product worked on the relative module. 111 is the product n. for front cover 

PlannedStart Planned Start Date-time of planned production start for the step 

PlannedEnd Planned End Date-time of planned production end for the step 

Start  Date-time of real production start for the step 

End  Date-time of real production end for the step 
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Table 5.5 continued: 

PNo WPNo StepNo ONo OPos Description OpNo NextStepNo FirstStep ErrorStepNo NewPNo 

3002 8 10 2709 1 feed part from magazin 200 20 TRUE 200 0 

3002 8 20 2709 1 measure a part (analog) 115 30 FALSE 200 0 

3002 8 30 2709 1 drilling custom 123 40 FALSE 200 111 

3002 8 40 2709 1 feed part from magazin 200 50 FALSE 200 3002 

3002 8 50 2709 1 pressing with force regulation 111 60 FALSE 200 0 

3002 8 60 2709 1 heating Part 112 70 FALSE 200 0 

3002 8 70 2709 1 turning part 113 80 FALSE 200 0 

3002 8 80 2709 1 deliver part 205 0 FALSE 200 0 

3002 8 200 2709 1 deliver part 205 0 FALSE 0 0 

3001 7 10 2709 2 feed part from magazin 200 20 TRUE 200 0 

3001 7 20 2709 2 measure a part (analog) 115 40 FALSE 200 111 

3001 7 40 2709 2 feed part from magazin 200 50 FALSE 200 3001 

3001 7 50 2709 2 pressing with force regulation 111 70 FALSE 200 0 

3001 7 70 2709 2 turning part 113 80 FALSE 200 0 

3001 7 80 2709 2 deliver part 205 0 FALSE 200 0 

3001 7 200 2709 2 deliver part 205 0 FALSE 0 0 

3000 6 10 2709 3 feed part from magazin 200 20 TRUE 200 0 

3000 6 20 2709 3 measure a part (analog) 115 40 FALSE 200 111 

3000 6 40 2709 3 feed part from magazin 200 80 FALSE 200 3000 

3000 6 80 2709 3 deliver part 205 0 FALSE 200 0 

3000 6 200 2709 3 deliver part 205 0 FALSE 0 0 
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Table 5.5 Continued: 

PlanedStart PlanedEnd Start End OPNoType ResourceID TransportTime ErrorStep 

10/23/2022 16:52 10/23/2022 16:52 10/23/2022 16:53 10/23/2022 16:53 1 1 0 FALSE 

10/23/2022 16:52 10/23/2022 16:52 10/23/2022 16:54 10/23/2022 16:54 1 2 8 FALSE 

10/23/2022 16:52 10/23/2022 16:53 10/23/2022 16:54 10/23/2022 16:54 1 3 2 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:55 10/23/2022 16:55 1 4 9 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:56 10/23/2022 16:57 1 5 7 FALSE 

10/23/2022 16:53 10/23/2022 16:54 10/23/2022 16:57 10/23/2022 16:57 1 6 2 FALSE 

10/23/2022 16:54 10/23/2022 16:54 10/23/2022 16:58 10/23/2022 16:58 1 7 2 FALSE 

10/23/2022 16:54 10/23/2022 16:54 10/23/2022 16:59 10/23/2022 16:59 1 8 6 FALSE 

10/23/2022 16:52 10/23/2022 16:52 1 8 6 TRUE 

10/23/2022 16:52 10/23/2022 16:52 10/23/2022 16:53 10/23/2022 16:53 1 1 0 FALSE 

10/23/2022 16:52 10/23/2022 16:53 10/23/2022 16:54 10/23/2022 16:54 1 2 8 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:56 10/23/2022 16:56 1 4 10 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:58 10/23/2022 16:58 1 5 7 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:59 10/23/2022 16:59 1 7 4 FALSE 

10/23/2022 16:53 10/23/2022 16:54 10/23/2022 17:00 10/23/2022 17:00 1 8 6 FALSE 

10/23/2022 16:52 10/23/2022 16:52 1 8 6 TRUE 

10/23/2022 16:52 10/23/2022 16:52 10/23/2022 16:54 10/23/2022 16:54 1 1 0 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:55 10/23/2022 16:55 1 2 8 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:56 10/23/2022 16:57 1 4 10 FALSE 

10/23/2022 16:53 10/23/2022 16:53 10/23/2022 16:58 10/23/2022 16:58 1 8 5 FALSE 

10/23/2022 16:52 10/23/2022 16:52 1 8 5 TRUE 
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Table 5.5 continued: 

ElectricEnergyCalc ElectricEnergyReal CompressedAirCalc CompressedAirReal FreeString StaffId 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 

0 0 0 0   0 
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Table 5.6: Comparison of machine data and simulated data 

EASY MEDIUM COMPLEX TOTAL SEQUENCE MACHINE SIMULATION 

1 0 0 1 Flow 198 13 

5 0 0 5 Flow 290 47 

7 0 0 7 Flow 297 65 

9 0 0 9 Flow 503 81 

11 0 0 11 Flow 540 95 

12 0 0 12 Flow 555 104 

15 0 0 15 Flow 604 137 

18 0 0 18 Flow 823 160 

0 7 0 7 Flow 517 201 

0 8 0 8 Flow 542 228 

0 10 0 10 Flow 907 281 

0 19 0 19 Flow 1604 532 

0 0 1 1 Flow 367 106 

0 0 5 5 Flow 514 364 

0 0 18 18 Flow 1627 1254 

0 0 20 20 Flow 1682 1376 

3 3 3 9 CDS 876 352 

4 4 4 12 CDS 852 453 

6 6 6 18 CDS 1323 655 

3 3 3 9 NEH 703 262 

5 5 5 15 NEH 866 554 
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Figure 5.7: Arena Simulation Input 
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B. Flow Shop
Table 6.1.1.1: Makespan time for different number of easy category jobs in flow shop 

Number of 
jobs 

Sequence obtained from 
NEH algorithm 

Sequence obtained from CDS 
algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

1 E1 E1 13 13 13 13 13 13 13 13 

2 E2, E1 E1, E2 26 20 20 20 20 20 20 20 

3 E3, E2, E1 E1, E2, E3 39 29 29 29 29 29 29 29 

4 E4, E3, E2, E1 E1, E2, E3, E4 52 38 36 38 38 38 38 38 

5 E5, E4, E3, E2, E1 E1, E2, E3, E4, E5 65 47 47 45 47 47 47 47 

6 E6, E5, E4, E3, E2, E1 E1, E2, E3, E4, E5, E6 78 56 56 54 54 56 56 56 

7 E7, E6, E5, E4, E3, E2, E1 E1, E2, E3, E4, E5, E6, E7 91 65 63 65 61 63 65 65 

8 
E8, E7, E6, E5, E4, E3, E2, 

E1 
E1, E2, E3, E4, E5, E6, E7, E8 

104 74 74 74 72 70 72 74 

9 
E9, E8, E7, E6, E5, E4, E3, 

E2, E1 
E1, E2, E3, E4, E5, E6, E7, E8, 

E9 117 83 83 81 83 79 79 81 

10 
E10, E9, E8, E7, E6, E5, E4, 

E3, E2, E1 
E1, E2, E3, E4, E5, E6, E7, E8, 

E9, E10 130 92 90 90 92 90 86 88 

11 
E11, E10, E9, E8, E7, E6, 

E5, E4, E3, E2, E1 
E1, E2, E3, E4, E5, E6, E7, E8, 

E9, E10, E11 143 101 101 101 99 101 97 95 

12 
E12, E11, E10, E9, E8, E7, 

E6, E5, E4, E3, E2, E1 
E1, E2, E3, E4, E5, E6, E7, E8, 

E9, E10, E11, E12 156 110 110 110 106 110 108 104 

13 
E13, E12, 11, E10, E9, E8, 
E7, E6, E5, E4, E3, E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13 169 119 117 117 117 117 119 115 

14 

E14, E13, E12, E11, E10, 
E9, E8, E7, E6, E5, E4, E3, 

E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14 

182 128 128 126 128 124 128 126 

15 

E15, E14, E13, E12, E11, 
E10, E9, E8, E7, E6, E5, E4, 

E3, E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15 195 137 137 137 137 133 135 137 

16 

E16, E15, E14, E13, E12, 
E11, E10, E9, E8, E7, E6, 

E5, E4, E3, E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15, E16 208 146 144 146 144 144 142 146 
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Table 6.1.1.1 Continued: 

Number of 
jobs 

Sequence obtained from 
NEH algorithm 

Sequence obtained from CDS 
algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

17 

E17, E16, E15, E14, E13, 
E12, E11, E10, E9, E8, E7, 

E6, E5, E4, E3, E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15, E16, E17 221 155 155 153 151 155 149 153 

18 

E18, 17, 16, E15, E14, 
E13, E12, E11, E10, E9, 

E8, E7, E6, E5, E4, E3, E2, 
E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15, E16, E17, E18 
234 164 164 162 162 164 160 160 

19 

E19, E18, E17, E16, E15, 
E14, E13, E12, E11, E10, 

E9, E8, E7, E6, E5, E4, E3, 
E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15, E16, E17, E18, E19 
247 173 171 173 173 171 171 167 

20 

E20, E19, E18, E17, E16, 
E15, E14, E13, E12, E11, 

E10, E9, E8, E7, E6, E5, E4, 
E3, E2, E1 

E1, E2, E3, E4, E5, E6, E7, E8, 
E9, E10, E11, E12, E13, E14, 

E15, E16, E17, E18, E19, E20 
260 182 182 182 182 178 182 176 
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Table 6.1.2.1: Makespan time for different number of medium category jobs in flow shop 

Number 
of jobs 

Sequence obtained from NEH 
algorithm 

Sequence obtained 
from CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

1 M1 M1 41 41 41 41 41 41 41 41 

2 M2, M1 M1, M2 82 66 66 66 66 66 66 66 

3 M3, M2, M1 M1, M2, M3 123 96 93 93 93 93 93 93 

4 M4, M3, M2, M1 M1, M2, M3, M4 164 130 121 120 120 120 120 120 

5 M5, M4, M3, M2, M1 M1, M2, M3, M4, M5 205 160 150 148 147 147 147 147 

6 
M6, M5, M4, M3, M2, M1 M1, M2, M3, M4, M5, 

M6 246 194 184 175 175 174 174 174 

7 
M7, M6, M5, M4, M3, M2, M1 M1, M2, M3, M4, M5, 

M6, M7 287 224 212 204 200 202 201 201 

8 
M8, M7, M6, M5, M4, M3, M2, 

M1 
M1, M2, M3, M4, M5, 

M6, M7, M8 328 258 241 238 229 227 229 228 

9 
M9, M8, M7, M6, M5, M4, M3, 

M2, M1 
M1, M2, M3, M4, M5, 

M6, M7, M8, M9 369 288 275 266 258 254 254 256 

10 
M10, M9, M8, M7, M6, M5, 

M4, M3, M2, M1 
M1, M2, M3, M4, M5, 

M6, M7, M8, M9, M10 410 322 303 293 292 283 279 281 

11 

M11, M10, M9, M8, M7, M6, 
M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 

M11 451 352 332 322 320 312 308 306 

12 

M12, M11, M10, M9, M8, M7, 
M6, M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 

M11, M12,  492 386 366 356 345 346 337 333 

13 

M13, M12, M11, M10, M9, M8, 
M7, M6, M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 

M11, M12, M13,  533 416 394 384 374 374 366 362 

14 

M14, M13, M12, M11, M10, 
M9, M8, M7, M6, M5, M4, M3, 

M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14,  

574 450 423 411 403 399 400 391 
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Table 6.1.2.1 Continued: 

Number 
of jobs 

Sequence obtained from NEH 
algorithm 

Sequence obtained 
from CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

15 

M15, M14, M13, M12, M11, 
M10, M9, M8, M7, M6, M5, 

M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 

M15, 615 480 457 440 437 426 428 420 

16 

M16, M15, M14, M13, M12, 
M11, M10, M9, M8, M7, M6, 

M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 

M15, M16, 656 514 485 474 465 455 453 454 

17 

M17, ,16, M15, M14, M13, 
M12, M11, M10, M9, M8, M7, 

M6, M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 

M15, M16, M17 697 544 514 502 490 484 478 482 

18 

M18, M17, M16, M15, M14, 
M13, M12, M11, M10, M9, M8, 
M7, M6, M5, M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 
M15, M16, M17, M18 738 578 548 529 519 518 507 507 

19 

M19, M18, M17, M16, M15, 
M14, M13, M12, M11, M10, 

M9, M8, M7, M6, M5, M4, M3, 
M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 
M15, M16, M17, M18, 

M19 779 608 576 558 548 546 536 532 

20 

M20, M19, M18, M17, M16, 
M15, M14, M13, M12, M11, 
M10, M9, M8, M7, M6, M5, 

M4, M3, M2, M1 

M1, M2, M3, M4, M5, 
M6, M7, M8, M9, M10, 
M11, M12, M13, M14, 
M15, M16, M17, M18, 

M19, M20 820 642 605 592 582 571 565 559 
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Table 6.1.3.1: Makespan time for different number of complex category jobs in flow shop 

Number 
Of jobs 

Sequence obtained from 
NEH algorithm 

Sequence obtained from 
CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

1 C1 C1 106 106 106 106 106 106 106 106 

2 C2, C1 C1, C2 212 169 169 169 169 169 169 169 

3 C3, C2, C1 C1, C2, C3 318 264 234 234 234 234 234 234 

4 C4, C3, C2, C1 C1, C2, C3, C4 424 336 317 299 299 299 299 299 

5 C5, C4, C3, C2, C1 C1, C2, C3, C4, C5 530 431 394 382 364 364 364 364 

6 C6, C5, C4, C3, C2, C1 C1, C2, C3, C4, C5, C6 636 503 466 449 447 429 429 429 

7 C7, C6, C5, C4, C3, C2, C1 C1, C2, C3, C4, C5, C6, C7 742 598 549 524 502 512 494 494 

8 
C8, C7, C6, C5, C4, C3, C2, 

C1 
C1, C2, C3, C4, C5, C6, C7, 

C8 848 670 626 596 579 567 577 559 

9 
C9, C8, C7, C6, C5, C4, C3, 

C2, C1 
C1, C2, C3, C4, C5, C6, C7, 

C8, C9 954 765 698 679 654 634 632 642 

10 
C10, C9, C8, C7, C6, C5, 

C4, C3, C2, C1 
C1, C2, C3, C4, C5, C6, C7, 

C8, C9, C10 1060 837 781 746 726 709 687 697 

11 
C11, C10, C9, C8, C7, C6, 

C5, C4, C3, C2, C1 
C1, C2, C3, C4, C5, C6, C7, 

C8, C9, C10, C11 1166 932 858 821 809 784 764 752 

12 
C12, C11, C10, C9, C8, C7, 

C6, C5, C4, C3, C2, C1 
C1, C2, C3, C4, C5, C6, C7, 

C8, C9, C10, C11, C12 1272 1004 930 893 864 856 839 819 

13 

C13, C12, C11, C10, C9, 
C8, C7, C6, C5, C4, C3, C2, 

C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13 1378 1099 1013 976 941 939 914 894 

14 

C14, C13, C12, C11, C10, 
C9, C8, C7, C6, C5, C4, C3, 

C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14 1484 1171 1090 1043 1016 994 986 969 

15 

C15, C14, C13, C12, C11, 
C10, C9, C8, C7, C6, C5, 

C4, C3, C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15 1590 1266 1162 1118 1088 1061 1069 1044 

16 

C16, C15, C14, C13, C12, 
C11, C10, C9, C8, C7, C6, 

C5, C4, C3, C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15, C16 1696 1338 1245 1190 1171 1136 1124 1116 
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Table 6.1.3.1 Continued: 

Number 
Of jobs 

Sequence obtained from 
NEH algorithm 

Sequence obtained from 
CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

17 

C17, C16, C15, C14, C13, 
C12, C11, C10, C9, C8, C7, 

C6, C5, C4, C3, C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15, C16, C17 1802 1433 1322 1273 1226 1211 1179 1199 

18 

C18, C17, C16, C15, C14, 
C13, C12, C11, C10, C9, 

C8, C7, C6, C5, C4, C3, C2, 
C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15, C16, C17, 
C18 1908 1505 1394 1340 1303 1283 1256 1254 

19 

C19, C18, C17, C16, C15, 
C14, C13, C12, C11, C10, 

C9, C8, C7, C6, C5, C4, C3, 
C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15, C16, C17, 
C18, C19 2014 1600 1477 1415 1378 1366 1331 1309 

20 

C20, C19, C18, C17, C16, 
C15, C14, C13, C12, C11, 

C10, C9, C8, C7, C6, C5, 
C4, C3, C2, C1 

C1, C2, C3, C4, C5, C6, C7, 
C8, C9, C10, C11, C12, 

C13, C14, C15, C16, C17, 
C18, C19, C20 2120 1672 1554 1487 1450 1421 1406 1376 
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Table 6.1.4.2: Makespan time for different algorithms for different category of flow shop 

Number of Jobs 1 Pallet 2 Pallets 

Job Category Easy Medium Complex Easy Medium Complex 

Algorithms NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS 

1 13 13 41 41 106 106 13 13 41 41 106 106 

2 26 26 82 82 212 212 20 20 66 66 169 169 

3 39 39 123 123 318 318 29 29 96 96 264 264 

4 52 52 164 164 424 424 38 38 130 130 336 336 

5 65 65 205 205 530 530 47 47 160 160 431 431 

6 78 78 246 246 636 636 56 56 194 194 503 503 

7 91 91 287 287 742 742 65 65 224 224 598 598 

8 104 104 328 328 848 848 74 74 258 258 670 670 

9 117 117 369 369 954 954 83 83 288 288 765 765 

10 130 130 410 410 1060 1060 92 92 322 322 837 837 

11 143 143 451 451 1166 1166 101 101 352 352 932 932 

12 156 156 492 492 1272 1272 110 110 386 386 1004 1004 

13 169 169 533 533 1378 1378 119 119 416 416 1099 1099 

14 182 182 574 574 1484 1484 128 128 450 450 1171 1171 

15 195 195 615 615 1590 1590 137 137 480 480 1266 1266 

16 208 208 656 656 1696 1696 146 146 514 514 1338 1338 

17 221 221 697 697 1802 1802 155 155 544 544 1433 1433 

18 234 234 738 738 1908 1908 164 164 578 578 1505 1505 

19 247 247 779 779 2014 2014 173 173 608 608 1600 1600 

20 260 260 820 820 2120 2120 182 182 642 642 1672 1672 
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Table 6.1.4.2 Continued: 

3 Pallets 4 Pallets 5 Pallets 
 

Easy Medium Complex Easy Medium Complex Easy Medium Complex  

NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS  

13 13 41 41 106 106 13 13 41 41 106 106 13 13 41 41 106 106  

20 20 66 66 169 169 20 20 66 66 169 169 20 20 66 66 169 169  

29 29 93 93 234 234 29 29 93 93 234 234 29 29 93 93 234 234  

36 36 121 121 317 317 38 38 120 120 299 299 38 38 120 120 299 299  

47 47 150 150 394 394 45 45 148 148 382 382 47 47 147 147 364 364  

56 56 184 184 466 466 54 54 175 175 449 449 54 54 175 175 447 447  

63 63 212 212 549 549 65 65 204 204 524 524 61 61 200 200 502 502  

74 74 241 241 626 626 74 74 238 238 596 596 72 72 229 229 579 579  

83 83 275 275 698 698 81 81 266 266 679 679 83 83 258 258 654 654  

90 90 303 303 781 781 90 90 293 293 746 746 92 92 292 292 726 726  

101 101 332 332 858 858 101 101 322 322 821 821 99 99 320 320 809 809  

110 110 366 366 930 930 110 110 356 356 893 893 106 106 345 345 864 864  

117 117 394 394 1013 1013 117 117 384 384 976 976 117 117 374 374 941 941  

128 128 423 423 1090 1090 126 126 411 411 1043 1043 128 128 403 403 1016 1016  

137 137 457 457 1162 1162 137 137 440 440 1118 1118 137 137 437 437 1088 1088  

144 144 485 485 1245 1245 146 146 474 474 1190 1190 144 144 465 465 1171 1171  

155 155 514 514 1322 1322 153 153 502 502 1273 1273 151 151 490 490 1226 1226  

164 164 548 548 1394 1394 162 162 529 529 1340 1340 162 162 519 519 1303 1303  

171 171 576 576 1477 1477 173 173 558 558 1415 1415 173 173 548 548 1378 1378  

182 182 605 605 1554 1554 182 182 592 592 1487 1487 182 182 582 582 1450 1450  
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Table 6.1.4.2 Continued: 

6 Pallets 7 Pallets 8 Pallets 
 

Easy Medium Complex Easy Medium Complex Easy Medium Complex  

NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS  

13 13 41 41 106 106 13 13 41 41 106 106 13 13 41 41 106 106  

20 20 66 66 169 169 20 20 66 66 169 169 20 20 66 66 169 169  

29 29 93 93 234 234 29 29 93 93 234 234 29 29 93 93 234 234  

38 38 120 120 299 299 38 38 120 120 299 299 38 38 120 120 299 299  

47 47 147 147 364 364 47 47 147 147 364 364 47 47 147 147 364 364  

56 56 174 174 429 429 56 56 174 174 429 429 56 56 174 174 429 429  

63 63 202 202 512 512 65 65 201 201 494 494 65 65 201 201 494 494  

70 70 227 227 567 567 72 72 229 229 577 577 74 74 228 228 559 559  

79 79 254 254 634 634 79 79 254 254 632 632 81 81 256 256 642 642  

90 90 283 283 709 709 86 86 279 279 687 687 88 88 281 281 697 697  

101 101 312 312 784 784 97 97 308 308 764 764 95 95 306 306 752 752  

110 110 346 346 856 856 108 108 337 337 839 839 104 104 333 333 819 819  

117 117 374 374 939 939 119 119 366 366 914 914 115 115 362 362 894 894  

124 124 399 399 994 994 128 128 400 400 986 986 126 126 391 391 969 969  

133 133 426 426 1061 1061 135 135 428 428 1069 1069 137 137 420 420 1044 1044  

144 144 455 455 1136 1136 142 142 453 453 1124 1124 146 146 454 454 1116 1116  

155 155 484 484 1211 1211 149 149 478 478 1179 1179 153 153 482 482 1199 1199  

164 164 518 518 1283 1283 160 160 507 507 1256 1256 160 160 507 507 1254 1254  

171 171 546 546 1366 1366 171 171 536 536 1331 1331 167 167 532 532 1309 1309  

178 178 571 571 1421 1421 182 182 565 565 1406 1406 176 176 559 559 1376 1376  
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Table 6.1.4.3.1: Average percentage change in makespan with increasing pallet number for easy jobs 

Number of 
jobs 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

Percentage 
change from 
pallet 6 to 7 

Percentage 
change from 
pallet 7 to 8 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 23.08 0.00 0.00 0.00 0.00 0.00 0.00 

3 25.64 0.00 0.00 0.00 0.00 0.00 0.00 

4 26.92 5.26 -5.56 0.00 0.00 0.00 0.00 

5 27.69 0.00 4.26 -4.44 0.00 0.00 0.00 

6 28.21 0.00 3.57 0.00 -3.70 0.00 0.00 

7 28.57 3.08 -3.17 6.15 -3.28 -3.17 0.00 

8 28.85 0.00 0.00 2.70 2.78 -2.86 -2.78 

9 29.06 0.00 2.41 -2.47 4.82 0.00 -2.53 

10 29.23 2.17 0.00 -2.22 2.17 4.44 -2.33 

11 29.37 0.00 0.00 1.98 -2.02 3.96 2.06 

12 29.49 0.00 0.00 3.64 -3.77 1.82 3.70 

13 29.59 1.68 0.00 0.00 0.00 -1.71 3.36 

14 29.67 0.00 1.56 -1.59 3.13 -3.23 1.56 

15 29.74 0.00 0.00 0.00 2.92 -1.50 -1.48 

16 29.81 1.37 -1.39 1.37 0.00 1.39 -2.82 

17 29.86 0.00 1.29 1.31 -2.65 3.87 -2.68 

18 29.91 0.00 1.22 0.00 -1.23 2.44 0.00 

19 29.96 1.16 -1.17 0.00 1.16 0.00 2.34 

20 30.00 0.00 0.00 0.00 2.20 -2.25 3.30 

Average 29.58 0.49 0.30 0.36 0.73 0.49 0.13 
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Table 6.1.4.3.2: Average percentage change in makespan with increasing pallet number for medium jobs 

Number of 
jobs 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

Percentage 
change from 
pallet 6 to 7 

Percentage 
change from 
pallet 7 to 8 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 19.51 0.00 0.00 0.00 0.00 0.00 0.00 

3 21.95 3.13 0.00 0.00 0.00 0.00 0.00 

4 20.73 6.92 0.83 0.00 0.00 0.00 0.00 

5 21.95 6.25 1.33 0.68 0.00 0.00 0.00 

6 21.14 5.15 4.89 0.00 0.57 0.00 0.00 

7 21.95 5.36 3.77 1.96 -1.00 0.50 0.00 

8 21.34 6.59 1.24 3.78 0.87 -0.88 0.44 

9 21.95 4.51 3.27 3.01 1.55 0.00 -0.79

10 21.46 5.90 3.30 0.34 3.08 1.41 -0.72

11 21.95 5.68 3.01 0.62 2.50 1.28 0.65 

12 21.54 5.18 2.73 3.09 -0.29 2.60 1.19 

13 21.95 5.29 2.54 2.60 0.00 2.14 1.09 

14 21.60 6.00 2.84 1.95 0.99 -0.25 2.25 

15 21.95 4.79 3.72 0.68 2.52 -0.47 1.87 

16 21.65 5.64 2.27 1.90 2.15 0.44 -0.22

17 21.95 5.51 2.33 2.39 1.22 1.24 -0.84

18 21.68 5.19 3.47 1.89 0.19 2.12 0.00 

19 21.95 5.26 3.13 1.79 0.36 1.83 0.75 

20 21.71 5.76 2.15 1.69 1.89 1.05 1.06 

Average 21.79 5.40 2.80 1.89 1.29 0.87 0.67 
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Table 6.1.4.3.3: Average percentage change in makespan with increasing pallet number for complex jobs 

Number of 
jobs 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

Percentage 
change from 
pallet 6 to 7 

Percentage 
change from 
pallet 7 to 8 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 20.28 0.00 0.00 0.00 0.00 0.00 0.00 

3 16.98 11.36 0.00 0.00 0.00 0.00 0.00 

4 20.75 5.65 5.68 0.00 0.00 0.00 0.00 

5 18.68 8.58 3.05 4.71 0.00 0.00 0.00 

6 20.91 7.36 3.65 0.45 4.03 0.00 0.00 

7 19.41 8.19 4.55 4.20 -1.99 3.52 0.00 

8 20.99 6.57 4.79 2.85 2.07 -1.76 3.12 

9 19.81 8.76 2.72 3.68 3.06 0.32 -1.58

10 21.04 6.69 4.48 2.68 2.34 3.10 -1.46

11 20.07 7.94 4.31 1.46 3.09 2.55 1.57 

12 21.07 7.37 3.98 3.25 0.93 1.99 2.38 

13 20.25 7.83 3.65 3.59 0.21 2.66 2.19 

14 21.09 6.92 4.31 2.59 2.17 0.80 1.72 

15 20.38 8.21 3.79 2.68 2.48 -0.75 2.34 

16 21.11 6.95 4.42 1.60 2.99 1.06 0.71 

17 20.48 7.75 3.71 3.69 1.22 2.64 -1.70

18 21.12 7.38 3.87 2.76 1.53 2.10 0.16 

19 20.56 7.69 4.20 2.61 0.87 2.56 1.65 

20 21.13 7.06 4.31 2.49 2.00 1.06 2.13 

Average 20.25 8.03 4.01 2.71 1.89 1.32 1.10 
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C. Job Shop with Equal Percentage

Table6.2.1.1: Makespan time for different number of all category jobs in job shop following NEH algorithm 

Number 
Of jobs Sequence obtained from NEH algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

3 C1, M1, E1 160 122 113 113 113 113 113 113 

6 C2, C1, M2, M1, E2, E1 320 251 217 199 190 183 183 183 

9 C3, C2, C1, M3, M2, M1, E3, E2, E1 480 371 352 316 284 278 269 262 

12 C4, C3, C2, C1, M4, M3, M2, M1, E4, E3, E2, E1 640 500 445 453 415 385 365 357 

15 
C5, C4, C3, C2, C1, M5, M4, M3, M2, M1, E5, E4, E3, 

E2, E1 800 620 567 519 554 516 484 452 

18 C6, C5, C4, C3, C2, C1, M6, M5, M4, M3, M2, M1 960 749 702 650 608 655 617 583 

21 
C7, C6, C5, C4, C3, C2, C1, M7, M6, M5, M4, M3, M2, 

M1, E7, E6, E5, E4, E3, E2, E1 1120 869 795 767 724 698 756 718 

24 
C8, C7, C6, C5, C4, C3, C2, C1, M8, M7, M6, M5, M4, 

M3, M2, M1, E8, E7, E6, E5, E4, E3, E2, E1 1280 998 917 904 836 800 788 857 

27 
C9, C8, C7, C6, C5, C4, C3, C2, C1, M9, M8, M7, M6, 

M5, M4, M3, M2, M1, E9, E8, E7, E6, E5, E4, E3, E2, E1 1440 1118 1052 970 967 931 879 882 

30 

C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, M10, M9, M8, 
M7, M6, M5, M4, M3, M2, M1, E10, E9, E8, E7, E6, E5, 

E4, E3, E2, E1 1600 1247 1145 1101 1106 1038 1005 969 

33 

C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, M11, 
M10, M9, M8, M7, M6, M5, M4, M3, M2, M1, E11, 

E10, E9, E8, E7, E6, E5, E4, E3, E2, E1 1760 1367 1267 1218 1160 1169 1117 1081 

36 

C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, M12, 
M11, M10, M9, M8, M7, M6, M5, M4, M3, M2, M1, 

E12, E11, E10, E9, E8, E7, E6, E5, E4, E3, E2, E1 1920 1496 1402 1355 1276 1308 1238 1212 
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Table 6.2.1.1 Continued: 

Number 
Of jobs Sequence obtained from NEH algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

39 

C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, 
M13, M12, M11, M10, M9, M8, M7, M6, M5, M4, M3, 
M2, M1, E13, E12, E11, E10, E9, E8, E7, E6, E5, E4, E3, 

E2, E1 2080 1616 1495 1421 1388 1351 1371 1307 

42 

C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, 
C1, M14, M13, M12, M11, M10, M9, M8, M7, M6, 

M5, M4, M3, M2, M1, E14, E13, E12, E11, E10, E9, E8, 
E7, E6, E5, E4, E3, E2, E1 2240 1745 1617 1552 1519 1453 1510 1438 

45 

C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, 
C3, C2, C1, M15, M14, M13, M12, M11, M10, M9, 
M8, M7, M6, M5, M4, M3, M2, M1, E15, E14, E13, 

E12, E11, E10, E9, E8, E7, E6, E5, E4, E3, E2, E1 2400 1865 1752 1669 1658 1584 1542 1573 
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Table 6.2.1.2: Makespan time for different number of all category jobs in job shop following CDS algorithm 

Number 
Of jobs Sequence obtained from CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

3 E1, M1, C1 160 160 160 160 160 160 160 160 

6 E1, E2, M1, M2, C1, C2 320 251 251 251 251 251 251 251 

9 E1, E2, E3, M1, M2, M3, C1, C2, C3 480 413 352 352 352 352 352 352 

12 E1, E2, E3, E4, M1, M2, M3, M4, C1, C2, C3, C4 640 500 491 453 453 453 453 453 

15 E1, E2, E3, E4, E5, M1, M2, M3, M4, M5, C1, C2, C3, C4, C5 800 690 640 575 554 554 554 554 

18 
E1, E2, E3, E4, E5, E6, M1, M2, M3, M4, M5, M6, C1, C2, 

C3, C4, C5, C6 960 749 702 704 644 655 655 655 

21 
E1, E2, E3, E4, E5, E6, E7, M1, M2, M3, M4, M5, M6, M7, 

C1, C2, C3, C4, C5, C6, C7 1120 967 859 858 813 745 756 756 

24 
E1, E2, E3, E4, E5, E6, E7, E8, M1, M2, M3, M4, M5, M6, 

M7, M8, C1, C2, C3, C4, C5, C6, C7, C8 1280 998 1016 904 925 868 846 857 

27 
E1, E2, E3, E4, E5, E6, E7, E8, E9, M1, M2, M3, M4, M5, 

M6, M7, M8, M9, C1, C2, C3, C4, C5, C6, C7, C8, C9 1440 1244 1052 1034 1061 998 954 947 

30 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, M1, M2, M3, M4, 
M5, M6, M7, M8, M9, M10, C1, C2, C3, C4, C5, C6, C7, C8, 

C9, C10 1600 1247 1227 1171 1106 1126 1108 1019 

33 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, M1, M2, M3, 
M4, M5, M6, M7, M8, M9, M10, M11, C1, C2, C3, C4, C5, 

C6, C7, C8, C9, C10, C11 1760 1521 1392 1333 1195 1263 1192 1181 

36 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, M1, M2, 
M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, C1, C2, 

C3, C4, C5, C6, C7, C8, C9, C10, C11, C12 1920 1496 1402 1355 1372 1308 1318 1293 

39 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, M1, 
M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, 

M13, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13 2080 1798 1595 1493 1492 1389 1465 1414 
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Table 6.2.1.2 Continued: 

Number 
Of jobs Sequence obtained from CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

6 
Pallets 

7 
Pallets 

8 
Pallets 

42 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, 
M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, 

M13, M14, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, 
C12, C13, C14 2240 1745 1768 1638 1636 1520 1510 1510 

45 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, 
E15 M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, 
M12, M13, M14, M15, C1, C2, C3, C4, C5, C6, C7, C8, C9, 

C10, C11, C12, C13, C14, C15 2400 2075 1752 1808 1658 1658 1583 1667 
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Table 6.2.2.1: Makespan time for different algorithms for mixed category with equal percentage of job shop 

Number of Jobs 1 Pallet 2 Pallets 3 Pallets 4 Pallets 5 Pallets 6 Pallets 7 Pallets 8 Pallets 
 

Algorithms NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS  

3 160 160 122 160 113 160 113 160 113 160 113 160 113 160 113 160  

6 320 320 251 251 217 251 199 251 190 251 183 251 183 251 183 251  

9 480 480 371 413 352 352 316 352 284 352 278 352 269 352 262 352  

12 640 640 500 500 445 491 453 453 415 453 385 453 365 453 357 453  

15 800 800 620 690 567 640 519 575 554 554 516 554 484 554 452 554  

18 960 960 749 749 702 702 650 704 608 644 655 655 617 655 583 655  

21 1120 1120 869 967 795 859 767 858 724 813 698 745 756 756 718 756  

24 1280 1280 998 998 917 1016 904 904 836 925 800 868 788 846 857 857  

27 1440 1440 1118 1244 1052 1052 970 1034 967 1061 931 998 879 954 882 947  

30 1600 1600 1247 1247 1145 1227 1101 1171 1106 1106 1038 1126 1005 1108 969 1019  

33 1760 1760 1367 1521 1267 1392 1218 1333 1160 1195 1169 1263 1117 1192 1081 1181  

36 1920 1920 1496 1496 1402 1402 1355 1355 1276 1372 1308 1308 1238 1318 1212 1293  

39 2080 2080 1616 1798 1495 1595 1421 1493 1388 1492 1351 1389 1371 1465 1307 1414  

42 2240 2240 1745 1745 1617 1768 1552 1638 1519 1636 1453 1520 1510 1510 1438 1510  

45 2400 2400 1865 2075 1752 1752 1669 1808 1658 1658 1584 1658 1542 1583 1573 1667  
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Table6.2.2.2.2.1: Average percentage change in makespan with increasing pallet number for NEH algorithm with equal percentage of job shop 

Number 
of jobs 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

Percentage 
change from 
pallet 6 to 7 

Percentage 
change from 
pallet 7 to 8 

9 22.71 5.12 10.23 10.13 2.11 3.24 2.60 

12 21.88 11.00 -1.80 8.39 7.23 5.19 2.19 

15 22.50 8.55 8.47 -6.74 6.86 6.20 6.61 

18 21.98 6.28 7.41 6.46 -7.73 5.80 5.51 

21 22.41 8.52 3.52 5.61 3.59 -8.31 5.03 

24 22.03 8.12 1.42 7.52 4.31 1.50 -8.76

27 22.36 5.90 7.79 0.31 3.72 5.59 -0.34

30 22.06 8.18 3.84 -0.45 6.15 3.18 3.58 

33 22.33 7.32 3.87 4.76 -0.78 4.45 3.22 

36 22.08 6.28 3.35 5.83 -2.51 5.35 2.10 

39 22.31 7.49 4.95 2.32 2.67 -1.48 4.67 

42 22.10 7.34 4.02 2.13 4.34 -3.92 4.77 

45 22.29 6.06 4.74 0.66 4.46 2.65 -2.01

Average 22.23 7.40 4.75 3.61 2.65 2.26 2.24 
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Table 6.2.2.2.2.2: Average percentage change in makespan with increasing pallet number for CDS algorithm with equal percentage of job shop 

Number of 
jobs 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

Percentage 
change from 
pallet 6 to 7 

Percentage 
change from 
pallet 7 to 8 

9 13.96 14.77 0.00 0.00 0.00 0.00 0.00 

12 21.88 1.80 7.74 0.00 0.00 0.00 0.00 

15 13.75 7.25 10.16 3.65 0.00 0.00 0.00 

18 21.98 6.28 -0.28 8.52 -1.71 0.00 0.00 

21 13.66 11.17 0.12 5.24 8.36 -1.48 0.00 

24 22.03 -1.80 11.02 -2.32 6.16 2.53 -1.30

27 13.61 15.43 1.71 -2.61 5.94 4.41 0.73 

30 22.06 1.60 4.56 5.55 -1.81 1.60 8.03 

33 13.58 8.48 4.24 10.35 -5.69 5.62 0.92 

36 22.08 6.28 3.35 -1.25 4.66 -0.76 1.90 

39 13.56 11.29 6.39 0.07 6.90 -5.47 3.48 

42 22.10 -1.32 7.35 0.12 7.09 0.66 0.00 

45 13.54 15.57 -3.20 8.30 0.00 4.52 -5.31

Average 17.52 7.45 4.09 2.74 2.30 0.89 0.65 
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D. Job Shop with Different Percentage

Table 6.2.2.1.1: Makespan time for different number of combinations of 4 jobs in job shop following NEH algorithm 

Series 
number 

Number 
of Easy 

jobs 

Number of 
Medium 

jobs 

Number of 
Complex 

jobs Easy % Medium % Complex % 

Sequence 
obtained from 
NEH algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

1 1 1 2 25 25 50 C2, C1, M1, E1 266 208 183 176 

2 1 2 1 25 50 25 C1, M2, M1, E1 201 152 127 120 

3 2 1 1 50 25 25 C1, M1, E2, E1 173 131 120 113 

Table 6.2.2.1.2: Makespan time for different number of combinations of 4 jobs in job shop following CDS algorithm 

Series 
number 

Number 
of Easy 

jobs 

Number of 
Medium 

jobs 

Number of 
Complex 

jobs Easy % Medium % Complex % 
Sequence obtained 
from CDS algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

1 1 1 2 25 25 50 E1, M1, C1, C2 266 228 228 228 

2 1 2 1 25 50 25 E1, M1, M2, C1 201 168 163 163 

3 2 1 1 50 25 25 E1, E2, M1, C1 173 149 145 145 
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Table 6.2.2.2: Makespan time for different algorithms for mixed category with different percentage of job shop for 4 jobs 
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number 
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1 1 1 2 25 25 50 266 266 208 228 183 228 176 228 

2 1 2 1 25 50 25 201 201 152 168 127 163 120 163 

3 2 1 1 50 25 25 173 173 131 149 120 145 113 145 

 

Table 6.2.2.3: Percentage deviation in makespan with increasing pallet number for combination of 4 jobs 

 
 
Series 
number 

 
 
Number of 
Easy jobs 

 
Number of 
Medium 
jobs 

 
Number of 
Complex 
jobs 

 
 
 
Easy % 

 
 
 
Medium % 

 
 
 
Complex % 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

NEH CDS NEH CDS NEH CDS 

1 1 1 2 25 25 50 21.80 14.29 24.38 16.42 24.28 13.87 

2 1 2 1 25 50 25 12.02 0.00 16.45 2.98 8.40 2.68 

3 2 1 1 50 25 25 3.83 0.00 5.51 0.00 5.83 0.00 
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Table 6.2.2.4.1: Makespan time for different number of combinations of 5 jobs in job shop for NEH Algorithm 

Series 
number 

Number 
of Easy 
jobs 

Number 
of 
Medium 
jobs 

Number 
of 
Complex 
jobs Easy % Medium % Complex % 

Sequence 
obtained from 
NEH algorithm 

1 
Pallet 

2 
Pallets 

3 
Pallets 

4 
Pallets 

5 
Pallets 

1 
1 1 3 20 20 60 

C3, C2, C1, M1, 
E1 372 289 266 248 241 

2 
1 2 2 20 40 40 

C2, C1, M2, 
M1, E1 307 242 208 190 183 

3 
2 1 2 40 20 40 

C2, C1, M1, E2, 
E1 279 217 194 183 176 

4 
1 3 1 20 60 20 

C1, M3, M2, 
M1, E1 242 186 152 134 127 

5 
2 2 1 40 40 20 

C1, M2, M1, 
E2, E1 214 161 138 127 120 

6 
3 1 1 60 20 20 

C1, M1, E3, E2, 
E1 186 140 131 120 113 
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Table 6.2.2.4.2: Makespan time for different number of combinations of 5 jobs in job shop for CDS Algorithm 

Series 
number 

Number 
of Easy 

jobs 

Number of 
Medium 

jobs 

Number of 
Complex 

jobs 
Easy 

% 
Medium 

% 
Complex 

% 
Sequence obtained from 

CDS algorithm 
1 

Pallet 
2 

Pallets 
3 

Pallets 
4 

Pallets 
5 

Pallets 

1 
1 1 3 20 20 60 

E1, M1, C1, C2, C3 
372 323 313 293 263 

2 
1 2 2 20 40 40 

E1, M1, M2, C1, C2 
307 263 248 255 225 

3 
2 1 2 40 20 40 

E1, E2, M1, C1, C2 
279 244 210 237 207 

4 
1 3 1 20 60 20 

E1, M1, M2, M3, C1 
242 208 186 190 187 

5 
2 2 1 40 40 20 

E1, E2, M1, M2, C1 
214 179 172 172 169 

6 
3 1 1 60 20 20 

E1, E2, E3, M1, C1 
186 154 151 142 151 
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Table 6.2.2.5: Makespan time for different algorithms for mixed category with different percentage of job shop for 5 jobs

Series 
Number 

Number of Jobs Percentage 1 Pallet 2 Pallets 3 Pallets 4 Pallets 5 Pallets 
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1 1 1 3 20 20 60 372 372 289 323 266 313 248 293 241 263 

2 1 2 2 20 40 40 307 307 242 263 208 248 190 255 183 225 

3 2 1 2 40 20 40 279 279 217 244 194 210 183 237 176 207 

4 1 3 1 20 60 20 242 242 186 208 152 186 134 190 127 187 

5 2 2 1 40 40 20 214 214 161 179 138 172 127 172 120 169 

6 3 1 1 60 20 20 186 186 140 154 131 151 120 142 113 151 
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Table 6.2.2.6: Percentage deviation in makespan with increasing pallet number for combination of 5 jobs 

Series 
number 

Number 
of Easy 

jobs 

Number of 
Medium 

jobs 

Number of 
Complex 

jobs 
Easy 

% 
Medium 

% 
Complex 

% 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

NEH CDS NEH CDS NEH CDS NEH CDS 

1 1 1 3 20 20 60 22.31 13.17 7.96 3.10 6.77 6.39 2.82 10.24 

2 1 2 2 20 40 40 21.17 14.33 14.05 5.70 8.65 -2.82 3.68 11.76 

3 2 1 2 40 20 40 22.22 12.54 10.60 13.93 5.67 -12.86 3.83 12.66 

4 1 3 1 20 60 20 23.14 14.05 18.28 10.58 11.84 -2.15 5.22 1.58 

5 2 2 1 40 40 20 24.77 16.36 14.29 3.91 7.97 0.00 5.51 1.74 

6 3 1 1 60 20 20 24.73 17.20 6.43 1.95 8.40 5.96 5.83 -6.34

Table 6.2.2.7.1: Makespan time for different number of combinations of 6 jobs in job shop following NEH Algorithm 

Se
ri

es
 

n
u

m
b

er
 

N
u

m
b

er
 o

f 
Ea

sy
 jo

b
s 

N
u

m
b

er
 o

f 
M

ed
iu

m
 

jo
b

s 

N
u

m
b

er
 o

f 

C
o

m
p

le
x 

jo
b

s 

Ea
sy

 %
 

M
ed

iu
m

 %
 

C
o

m
p

le
x 

%
 

Se
q

u
en

ce
 

o
b

ta
in

ed
 

fr
o

m
 N

EH
 

al
go

ri
th

m
 

1
 P

al
le

t 

2
 P

al
le

ts
 

3
 P

al
le

ts
 

4
 P

al
le

ts
 

5
 P

al
le

ts
 

6
 P

al
le

ts
 

1 1 1 4 16.67 16.67 66.67 C4, C3, C2, C1, M1, E1 478 375 345 329 313 306 

2 1 2 3 16.67 33.33 50 C3, C2, C1, M2, M1, E1 413 319 300 271 255 248 

3 2 1 3 33.33 16.67 50 C3, C2, C1, M1, E2, E1 385 298 275 257 248 241 

4 1 3 2 16.67 50 33.33 C2, C1, M3, M2, M1, E1 348 272 242 213 197 190 

5 3 1 2 50 16.67 33.33 C2, C1, M1, E3, E2, E1 292 226 203 192 183 176 

6 1 4 1 16.67 66.67 16.67 C1, M4, M3, M2, M1, E1 283 216 186 157 158 151 

7 2 3 1 33.33 50 16.67 C1, M3, M2, M1, E2, E1 255 195 161 143 134 127 

8 3 2 1 50 33.33 16.67 C1, M2, M3, E3, E2, E1 227 170 147 136 127 120 

9 4 1 1 66.67 16.67 16.67 C1, M1, E4, E3, E2, E1 199 149 140 129 120 113 
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Table 6.2.2.7.2: Makespan time for different number of combinations of 6 jobs in job shop following CDS Algorithm 
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1 1 1 4 16.67 16.67 66.67 E1, M1, C1, C2, C3, C4 478 415 377 350 358 328 

2 1 2 3 16.67 33.33 50 E1, M1, M2, C1, C2, C3 413 355 312 312 320 290 

3 2 1 3 33.33 16.67 50 E1, E2, M1, C1, C2, C3 385 316 302 302 302 272 

4 1 3 2 16.67 50 33.33 E1, M1, M2, M3, C1, C2 348 300 250 247 282 252 

5 3 1 2 50 16.67 33.33 E1, E2, E3, M1, C1, C2 292 246 223 219 234 216 

6 1 4 1 16.67 66.67 16.67 E1, M1, M2, M3, M4, C1 283 240 220 210 217 214 

7 2 3 1 33.33 50 16.67 E1, E2, M1, M2, M3, C1 255 213 202 199 199 196 

8 3 2 1 50 33.33 16.67 E1, E2, E3, M1, M2, C1 227 186 185 181 169 178 

9 4 1 1 66.67 16.67 16.67 E1, E2, E3, E4, M1, C1 199 167 160 148 148 160 
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Table 6.2.2.8: Makespan time for different algorithms for mixed category with different percentage of job shop for 6 jobs

Series 
number 

Number of jobs Percentage 
1 Pallet 2 Pallets 3 Pallets 4 Pallets 5 Pallets 6 Pallets 
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C
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C
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S 
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1 1 1 4 16.67 16.67 66.67 478 478 375 415 345 377 329 350 313 358 306 328 

2 1 2 3 16.67 33.33 50 413 413 319 355 300 312 271 312 255 320 248 290 

3 2 1 3 33.33 16.67 50 385 385 298 316 275 302 257 302 248 302 241 272 

4 1 3 2 16.67 50 33.33 348 348 272 300 242 250 213 247 197 282 190 252 

5 3 1 2 50 16.67 33.33 292 292 226 246 203 223 192 219 183 234 176 216 

6 1 4 1 16.67 66.67 16.67 283 283 216 240 186 220 157 210 158 217 151 214 

7 2 3 1 33.33 50 16.67 255 255 195 213 161 202 143 199 134 199 127 196 

8 3 2 1 50 33.33 16.67 227 227 170 186 147 185 136 181 127 169 120 178 

9 4 1 1 66.67 16.67 16.67 199 199 149 167 140 160 129 148 120 148 113 160 
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Table 6.2.2.9: Percentage deviation in makespan with increasing pallet number for combination of 6 jobs 

Series 
number 

Number 
of Easy 

jobs 

Number of 
Medium 

jobs 

Number of 
Complex 

jobs 
Easy 

% 
Medium 

% 
Complex 

% 

Percentage 
change from 
pallet 1 to 2 

Percentage 
change from 
pallet 2 to 3 

Percentage 
change from 
pallet 3 to 4 

Percentage 
change from 
pallet 4 to 5 

Percentage 
change from 
pallet 5 to 6 

NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS 

1 1 1 4 16.67 16.67 66.67 21.55 13.18 8.00 9.16 4.64 7.16 4.86 -2.29 2.24 8.38 

2 1 2 3 16.67 33.33 50 22.76 14.04 5.96 12.11 9.67 0.00 5.90 -2.56 2.75 9.38 

3 2 1 3 33.33 16.67 50 22.60 17.92 7.72 4.43 6.55 0.00 3.50 0.00 2.82 9.93 

4 1 3 2 16.67 50 33.33 21.84 13.79 11.03 16.67 11.98 1.20 7.51 -14.17 3.55 10.64 

5 3 1 2 50 16.67 33.33 22.60 15.75 10.18 9.35 5.42 1.79 4.69 -6.85 3.83 7.69 

6 1 4 1 16.67 66.67 16.67 23.67 15.19 13.89 8.33 15.59 4.55 -0.64 -3.33 4.43 1.38 

7 2 3 1 33.33 50 16.67 23.53 16.47 17.44 5.16 11.18 1.49 6.29 0.00 5.22 1.51 

8 3 2 1 50 33.33 16.67 25.11 18.06 13.53 0.54 7.48 2.16 6.62 6.63 5.51 -5.33

9 4 1 1 66.67 16.67 16.67 25.13 16.08 6.04 4.19 7.86 7.50 6.98 0.00 5.83 -8.11
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Table 6.2.2.10.1: Makespan time for different number of combinations of 7 jobs in job shop following NEH algorithm 
Se
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1 1 1 5 14.29 14.29 71.43 C5, C4, C3, C2, C1, M1, E1 584 456 415 401 392 378 371 

2 1 2 4 14.29 28.57 57.14 C4, C3, C2, C1, M2, M1, E1 519 409 359 358 334 320 313 

3 2 1 4 28.57 14.29 57.14 C4, C3, C2, C1, M1, E2, E1 491 384 352 333 320 313 306 

4 1 3 3 14.29 42.86 42.86 C3, C2, C1, M3, M2, M1, E1 454 353 332 300 276 262 255 

5 2 2 3 28.57 28.57 42.86 C3, C2, C1, M2, M1, E2, E1 426 328 307 275 262 255 248 

6 3 1 3 42.86 14.29 42.86 C3, C2, C1, M1, E3, E2, E1 398 307 282 268 255 248 241 

7 1 4 2 14.29 57.14 28.57 C2, C1, M4, M3, M2, M1, E1 389 306 274 242 218 204 197 

8 2 3 2 28.57 42.86 28.57 C2, C1, M3, M2, M1, E2, E1 361 281 249 217 204 197 190 

9 3 2 2 42.86 28.57 28.57 C2, C1, M2, M1, E3, E2, E1 333 260 224 210 197 190 183 

10 1 5 1 14.29 71.43 14.29 C1, M5, M4, M3, M2, M1, E1 324 250 218 186 179 183 176 

11 4 1 2 57.14 14.29 28.57 C2, C1, M1, E4, E3, E2, E1 305 235 210 203 190 183 176 

12 2 4 1 28.57 57.14 14.29 C1, M4, M3, M2, M1, E2, E1 296 225 193 161 165 158 151 

13 3 3 1 42.86 42.86 14.29 C1, M3, M2, M1, E3, E2, E1 268 204 168 154 141 134 127 

14 4 2 1 57.14 28.57 14.29 C1, M2, M1, E4, E3, E2, E1 240 179 154 147 134 127 120 

15 5 1 1 71.43 14.29 14.29 C1, M1, E5, E4, E3, E2, E1 212 158 147 140 127 120 113 
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Table 6.2.2.10.2: Makespan time for different number of combinations of 7 jobs in job shop following CDS algorithm 
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1 1 1 5 14.29 14.29 71.43 E1, M1, C1, C2, C3, C4, C5 584 510 472 435 415 423 393 

2 1 2 4 14.29 28.57 57.14 E1, M1, M2, C1, C2, C3, C4 519 450 407 397 377 385 355 

3 2 1 4 28.57 14.29 57.14 E1, E2, M1, C1, C2, C3, C4 491 411 397 387 367 367 337 

4 1 3 3 14.29 42.86 42.86 E1, M1, M2, M3, C1, C2, C3 454 395 345 332 339 347 317 

5 2 2 3 28.57 28.57 42.86 E1, E2, M1, M2, C1, C2, C3 426 346 359 322 329 329 299 

6 3 1 3 42.86 14.29 42.86 E1, E2, E3, M1, C1, C2, C3 398 341 306 284 311 299 281 

7 1 4 2 14.29 57.14 28.57 E1, M1, M2, M3, M4, C1, C2 389 335 315 271 274 309 279 

8 2 3 2 28.57 42.86 28.57 E1, E2, M1, M2, M3, C1, C2 361 308 297 284 264 291 261 

9 3 2 2 42.86 28.57 28.57 E1, E2, E3, M1, M2, C1, C2 333 281 268 246 246 261 243 

10 1 5 1 14.29 71.43 14.29 E1, M1, M2, M3, M4, M5, C1 324 280 260 238 237 244 241 

11 4 1 2 57.14 14.29 28.57 E1, E2, E3, E4, M1, C1, C2 305 262 255 225 218 215 225 

12 2 4 1 28.57 57.14 14.29 E1, E2, M1, M2, M3, M4, C1 296 243 242 220 226 226 223 

13 3 3 1 42.86 42.86 14.29 E1, E2, E3, M1, M2, M3, C1 268 226 203 208 208 196 205 

14 4 2 1 57.14 28.57 14.29 E1, E2, E3, E4, M1, M2, C1 240 197 190 187 178 175 187 

15 5 1 1 71.43 14.29 14.29 E1, E2, E3, E4, E5, M1, C1 212 172 172 169 155 157 169 
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Table 6.2.2.11: Makespan time for different algorithms for mixed category with different percentage of job shop for 7 jobs 

Series 
Number 

Number of 
jobs 

Percentage 1 Pallet 2 Pallets 3 Pallets 4 Pallets 5 Pallets 6 Pallets 7 Pallets 
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C
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C
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1 1 1 5 14.29 14.29 71.43 584 584 456 510 415 472 401 435 392 415 378 423 371 393 

2 1 2 4 14.29 28.57 57.14 519 519 409 450 359 407 358 397 334 377 320 385 313 355 

3 2 1 4 28.57 14.29 57.14 491 491 384 411 352 397 333 387 320 367 313 367 306 337 

4 1 3 3 14.29 42.86 42.86 454 454 353 395 332 345 300 332 276 339 262 347 255 317 

5 2 2 3 28.57 28.57 42.86 426 426 328 346 307 359 275 322 262 329 255 329 248 299 

6 3 1 3 42.86 14.29 42.86 398 398 307 341 282 306 268 284 255 311 248 299 241 281 

7 1 4 2 14.29 57.14 28.57 389 389 306 335 274 315 242 271 218 274 204 309 197 279 

8 2 3 2 28.57 42.86 28.57 361 361 281 308 249 297 217 284 204 264 197 291 190 261 

9 3 2 2 42.86 28.57 28.57 333 333 260 281 224 268 210 246 197 246 190 261 183 243 

10 1 5 1 14.29 71.43 14.29 324 324 250 280 218 260 186 238 179 237 183 244 176 241 

11 4 1 2 57.14 14.29 28.57 305 305 235 262 210 255 203 225 190 218 183 215 176 225 

12 2 4 1 28.57 57.14 14.29 296 296 225 243 193 242 161 220 165 226 158 226 151 223 

13 3 3 1 42.86 42.86 14.29 268 268 204 226 168 203 154 208 141 208 134 196 127 205 

14 4 2 1 57.14 28.57 14.29 240 240 179 197 154 190 147 187 134 178 127 175 120 187 

15 5 1 1 71.43 14.29 14.29 212 212 158 172 147 172 140 169 127 155 120 157 113 169 
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Table 6.2.2.12: Percentage deviation in makespan with increasing pallet number for combination of 7 jobs 
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 f
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NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS 

1 1 1 5 14.29 14.29 71.43 21.92 12.67 8.99 7.45 3.37 7.84 2.24 4.60 3.57 -1.93 1.85 7.09 

2 1 2 4 14.29 28.57 57.14 21.19 13.29 12.22 9.56 0.28 2.46 6.70 5.04 4.19 -2.12 2.19 7.79 

3 2 1 4 28.57 14.29 57.14 21.79 16.29 8.33 3.41 5.40 2.52 3.90 5.17 2.19 0.00 2.24 8.17 

4 1 3 3 14.29 42.86 42.86 22.25 13.00 5.95 12.66 9.64 3.77 8.00 -2.11 5.07 -2.36 2.67 8.65 

5 2 2 3 28.57 28.57 42.86 23.00 18.78 6.40 -3.76 10.42 10.31 4.73 -2.17 2.67 0.00 2.75 9.12 

6 3 1 3 42.86 14.29 42.86 22.86 14.32 8.14 10.26 4.96 7.19 4.85 -9.51 2.75 3.86 2.82 6.02 

7 1 4 2 14.29 57.14 28.57 21.34 13.88 10.46 5.97 11.68 13.97 9.92 -1.11 6.42 -12.77 3.43 9.71 

8 2 3 2 28.57 42.86 28.57 22.16 14.68 11.39 3.57 12.85 4.38 5.99 7.04 3.43 -10.23 3.55 10.31 

9 3 2 2 42.86 28.57 28.57 21.92 15.62 13.85 4.63 6.25 8.21 6.19 0.00 3.55 -6.10 3.68 6.90 

10 1 5 1 14.29 71.43 14.29 22.84 13.58 12.80 7.14 14.68 8.46 3.76 0.42 -2.23 -2.95 3.83 1.23 

11 4 1 2 57.14 14.29 28.57 22.95 14.10 10.64 2.67 3.33 11.76 6.40 3.11 3.68 1.38 3.83 -4.65

12 2 4 1 28.57 57.14 14.29 23.99 17.91 14.22 0.41 16.58 9.09 -2.48 -2.73 4.24 0.00 4.43 1.33 

13 3 3 1 42.86 42.86 14.29 23.88 15.67 17.65 10.18 8.33 -2.46 8.44 0.00 4.96 5.77 5.22 -4.59

14 4 2 1 57.14 28.57 14.29 25.42 17.92 13.97 3.55 4.55 1.58 8.84 4.81 5.22 1.69 5.51 -6.86

15 5 1 1 71.43 14.29 14.29 25.47 18.87 6.96 0.00 4.76 1.74 9.29 8.28 5.51 -1.29 5.83 -7.64
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Table 6.2.2.13.1: Makespan time for different number of combinations of 8 jobs in job shop following NEH Algorithm 
Se

ri
es

 
n

u
m

b
er

 

N
u

m
b

er
 o

f 

Ea
sy

 jo
b

s 

N
u

m
b

er
 o

f 
M

ed
iu

m
 

jo
b

s 

N
u

m
b

er
 o

f 
C

o
m

p
le

x 
jo

b
s 

Ea
sy

 %
 

M
ed

iu
m

 %
 

C
o

m
p

le
x 

%
 

Se
q

u
en

ce
 

o
b

ta
in

ed
 

fr
o

m
 N

EH
 

al
go

ri
th

m
 

1
 P

al
le

t 

2
 P

al
le

ts
 

3
 P

al
le

ts
 

4
 P

al
le

ts
 

5
 P

al
le

ts
 

6
 P

al
le

ts
 

7
 P

al
le

ts
 

8
 P

al
le

ts
 

1 
1 1 6 12.5 12.5 75 

C6, C5, C4, C3, 
C2, C1, M1, E1 690 542 498 473 462 457 443 436 

2 

1 2 5 12.5 25 62.5 

C5, C4, C3, C2, 
C1, M2, M1, 

E1 625 486 440 417 421 399 385 378 

3 
2 1 5 25 12.5 62.5 

C5, C4, C3, C2, 
C1, M1, E2, E1 597 465 426 410 396 385 378 371 

4 

1 3 4 12.5 37.5 50 

C4, C3, C2, C1, 
M3, M2, M1, 

E1 560 439 384 392 363 341 327 320 

5 
2 2 4 25 25 50 

C4, C3, C2, C1, 
M2, M1, E2, E1 532 418 370 367 338 327 320 313 

6 
3 1 4 37.5 12.5 50 

C4, C3, C2, C1, 
M1, E3, E2, E1 504 393 363 342 331 320 313 306 

7 

1 4 3 12.5 50 37.5 

C3, C2, C1, 
M4, M3, M2, 

M1, E1 495 383 357 334 305 283 269 262 

8 

2 3 3 25 37.5 37.5 

C3, C2, C1, 
M3, M2, M1, 

E2, E1 467 362 343 309 280 269 262 255 

9 

3 2 3 37.5 25 37.5 

C3, C2, C1, 
M2, M1, E3, 

E2, E1 439 337 318 284 273 262 255 248 
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Table 6.2.2.13.1 Continued: 
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10 

1 5 2 12.5 62.5 25 

C2, C1, M5, 
M4, M3, M2, 

M1, E1 430 336 299 276 247 225 216 209 

11 

4 1 3 50 12.5 37.5 

C3, C2, C1, 
M1, E4, E3, E2, 

E1 411 316 293 277 266 255 248 241 

12 

2 4 2 25 50 25 

C2, C1, M4, 
M3, M2, M1, 

E2, E1 402 315 285 251 222 211 204 197 

13 

3 3 2 37.5 37.5 25 

C2, C1, M3, 
M2, M1, E3, 

E2, E1 374 290 260 226 215 204 197 190 

14 

1 6 1 12.5 75 12.5 

C1, M6, M5, 
M4, M3, M2, 

M1, E1 365 280 243 220 208 204 208 203 

15 

4 2 2 50 25 25 

C2, C1, M2, 
M1, E4, E3, E2, 

E1 346 269 235 219 208 197 190 183 

16 
2 5 1 25 62.5 12.5 

C1, M5, M4, 
M3, M2, M1 337 259 229 195 183 190 183 178 

17 
5 1 2 62.5 12.5 25 

C2, C1, M1, E5, 
E4, E3, E2, E1 318 244 221 212 201 190 183 176 

18 

3 4 1 37.5 50 12.5 

C1, M4, M3, 
M2, M1, E3, 

E2, E1 309 234 204 170 176 165 158 153 
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Table 6.2.2.13.1 Continued: 
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19 

4 3 1 50 37.5 12.5 

C1, M3, M2, 
M1, E4, E3, E2, 

E1 281 213 179 163 152 141 134 129 

20 

5 2 1 62.5 25 12.5 

C1, M2, M1, 
E5, E4, E3, E2, 

E1 253 188 165 156 145 134 127 122 

21 
6 1 1 75 12.5 12.5 

C1, M1, E6, E5, 
E4, E3, E2, E1 225 167 158 149 138 127 120 115 
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Table 6.2.2.13.2: Makespan time for different number of combinations of 8 jobs in job shop following CDS Algorithm 
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1 
1 1 6 12.5 12.5 75 

E1, M1, C1, C2, 
C3, C4, C5, C6 690 602 557 499 472 480 488 458 

2 

1 2 5 12.5 25 62.5 

E1, M1, M2, 
C1, C2, C3, C4, 

C5 625 542 492 461 434 442 450 420 

3 
2 1 5 25 12.5 62.5 

E1, E2, M1, C1, 
C2, C3, C4, C5 597 483 462 451 424 432 432 402 

4 

1 3 4 12.5 37.5 50 

E1, M1, M2, 
M3, C1, C2, 

C3, C4 560 487 430 396 396 404 412 382 

5 

2 2 4 25 25 50 

E1, E2, M1, 
M2, C1, C2, 

C3, C4 532 418 424 386 386 394 394 364 

6 
3 1 4 37.5 12.5 50 

E1, E2, E3, M1, 
C1, C2, C3, C4 504 433 383 376 376 376 364 346 

7 

1 4 3 12.5 50 37.5 

E1, M1, M2, 
M3, M4, C1, 

C2, C3 495 427 400 336 331 366 374 344 

8 

2 3 3 25 37.5 37.5 

E1, E2, M1, 
M2, M3, C1, 

C2, C3 467 380 362 348 321 356 356 326 
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Table 6.2.2.13.2 Continued: 
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9 
3 2 3 37.5 25 37.5 

E1, E2, E3, M1, 
M1, C1, C2, C3 439 373 345 338 311 338 326 308 

10 

1 5 2 12.5 62.5 25 

E1, M1, M2, 
M3, M4, M5, 

C1, C2 430 372 345 302 292 301 336 306 

11 
4 1 3 50 12.5 37.5 

E1, E2, E3, E4, 
M1, C1, C2, C3 411 334 340 297 293 310 280 290 

12 

2 4 2 25 50 25 

E1, E2, M1, 
M2, M3, M4, 

C1, C2 402 315 307 284 283 291 318 288 

13 

3 3 2 37.5 37.5 25 

E1, E2, E3, M1, 
M2, M3, C1, 

C2 374 318 280 300 273 273 288 270 

14 

1 6 1 12.5 75 12.5 

E1, M1, M2, 
M3, M4, M5, 

M6, C1 365 312 283 272 262 264 271 268 

15 

4 2 2 50 25 25 

E1, E2, E3, E4, 
M1, M2, C1, 

C2 337 277 269 254 244 253 253 250 

16 

2 5 1 25 62.5 12.5 

E1, E2, M1, 
M2, M3, M4, 

M5, C1 346 269 275 259 255 245 242 252 

17 
5 1 2 62.5 12.5 25 

E1, E2, E3, E4, 
E5, M1, C1, C2 318 264 237 234 224 215 224 234 

18 

3 4 1 37.5 50 12.5 

E1, E2, E3, M1, 
M2, M3, M4, 

C1 309 258 242 236 235 235 223 232 
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Table 6.2.2.13.2 Continued: 
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19 

4 3 1 50 37.5 12.5 

E1, E2, E3, E4, 
M1, M2, M3, 

C1 281 231 213 221 217 205 202 214 

20 

5 2 1 62.5 25 12.5 

E1, E2, E3, E4, 
E5, M1, M2, 

C1 253 204 199 196 184 185 184 196 

21 
6 1 1 75 12.5 12.5 

E1, E2, E3, E4, 
E5, E6, M1, C1 225 185 178 178 171 164 166 178 
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Table 4.2.2.14: Makespan time for different algorithms for mixed category with different percentage of job shop for 8 jobs 

Number of 
Jobs 

Percentage 
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1 1 1 6 12.5 12.5 75 690 690 542 602 498 557 473 499 462 472 457 480 443 488 436 458 

2 1 2 5 12.5 25 62.5 625 625 486 542 440 492 417 461 421 434 399 442 385 450 378 420 

3 2 1 5 25 12.5 62.5 597 597 465 483 426 462 410 451 396 424 385 432 378 432 371 402 

4 1 3 4 12.5 37.5 50 560 560 439 487 384 430 392 396 363 396 341 404 327 412 320 382 

5 2 2 4 25 25 50 532 532 418 418 370 424 367 386 338 386 327 394 320 394 313 364 

6 3 1 4 37.5 12.5 50 504 504 393 433 363 383 342 376 331 376 320 376 313 364 306 346 

7 1 4 3 12.5 50 37.5 495 495 383 427 357 400 334 336 305 331 283 366 269 374 262 344 

8 2 3 3 25 37.5 37.5 467 467 362 380 343 362 309 348 280 321 269 356 262 356 255 326 

9 3 2 3 37.5 25 37.5 439 439 337 373 318 345 284 338 273 311 262 338 255 326 248 308 

10 1 5 2 12.5 62.5 25 430 430 336 372 299 345 276 302 247 292 225 301 216 336 209 306 

11 4 1 3 50 12.5 37.5 411 411 316 334 293 340 277 297 266 293 255 310 248 280 241 290 

12 2 4 2 25 50 25 402 402 315 315 285 307 251 284 222 283 211 291 204 318 197 288 
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Table 5.2.2.14 Continued: 

Number of 
Jobs 

Percentage 
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Pallet 
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Pallets 
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13 3 3 2 37.5 37.5 25 374 374 290 318 260 280 226 300 215 273 204 273 197 288 190 270 

14 1 6 1 12.5 75 12.5 365 365 280 312 243 283 220 272 208 262 204 264 208 271 203 268 

15 2 5 1 25 62.5 12.5 337 337 259 277 229 269 195 254 183 244 190 253 183 253 178 250 

16 4 2 2 50 25 25 346 346 269 269 235 275 219 259 208 255 197 245 190 242 183 252 

17 5 1 2 62.5 12.5 25 318 318 244 264 221 237 212 234 201 224 190 215 183 224 176 234 

18 3 4 1 37.5 50 12.5 309 309 234 258 204 242 170 236 176 235 165 235 158 223 153 232 

19 4 3 1 50 37.5 12.5 281 281 213 231 179 213 163 221 152 217 141 205 134 202 129 214 

20 5 2 1 62.5 25 12.5 253 253 188 204 165 199 156 196 145 184 134 185 127 184 122 196 

21 6 1 1 75 12.5 12.5 225 225 167 185 158 178 149 178 138 171 127 164 120 166 115 178 
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Table 6.2.2.15: Percentage deviation in makespan with increasing pallet number for combination of 8 jobs
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NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS NEH CDS 

1 1 1 6 12.5 12.5 75 21.45 12.75 8.12 7.48 5.02 10.41 2.33 5.41 1.08 -1.69 3.06 -1.67 1.58 6.15 

2 1 2 5 12.5 25 62.5 22.24 13.28 9.47 9.23 5.23 6.30 -0.96 5.86 5.23 -1.84 3.51 -1.81 1.82 6.67 

3 2 1 5 25 12.5 62.5 22.11 19.10 8.39 4.35 3.76 2.38 3.41 5.99 2.78 -1.89 1.82 0.00 1.85 6.94 

4 1 3 4 12.5 37.5 50 21.61 13.04 12.53 11.70 -2.08 7.91 7.40 0.00 6.06 -2.02 4.11 -1.98 2.14 7.28 

5 2 2 4 25 25 50 21.43 21.43 11.48 -1.44 0.81 8.96 7.90 0.00 3.25 -2.07 2.14 0.00 2.19 7.61 

6 3 1 4 37.5 12.5 50 22.02 14.09 7.63 11.55 5.79 1.83 3.22 0.00 3.32 0.00 2.19 3.19 2.24 4.95 

7 1 4 3 12.5 50 37.5 22.63 13.74 6.79 6.32 6.44 16.00 8.68 1.49 7.21 -10.57 4.95 -2.19 2.60 8.02 

8 2 3 3 25 37.5 37.5 22.48 18.63 5.25 4.74 9.91 3.87 9.39 7.76 3.93 -10.90 2.60 0.00 2.67 8.43 

9 3 2 3 37.5 25 37.5 23.23 15.03 5.64 7.51 10.69 2.03 3.87 7.99 4.03 -8.68 2.67 3.55 2.75 5.52 

10 1 5 2 12.5 62.5 25 21.86 13.49 11.01 7.26 7.69 12.46 10.51 3.31 8.91 -3.08 4.00 -11.63 3.24 8.93 

11 4 1 3 50 12.5 37.5 23.11 18.73 7.28 -1.80 5.46 12.65 3.97 1.35 4.14 -5.80 2.75 9.68 2.82 -3.57

12 2 4 2 25 50 25 21.64 21.64 9.52 2.54 11.93 7.49 11.55 0.35 4.95 -2.83 3.32 -9.28 3.43 9.43 

13 3 3 2 37.5 37.5 25 22.46 14.97 10.34 11.95 13.08 -7.14 4.87 9.00 5.12 0.00 3.43 -5.49 3.55 6.25 

14 1 6 1 12.5 75 12.5 23.29 14.52 13.21 9.29 9.47 3.89 5.45 3.68 1.92 -0.76 -1.96 -2.65 2.40 1.11 

15 4 2 2 50 25 25 22.25 17.80 12.64 2.89 6.81 5.58 5.02 3.94 5.29 -3.69 3.55 0.00 3.68 1.19 

16 2 5 1 25 62.5 12.5 23.15 22.25 11.58 -2.23 14.85 5.82 6.15 1.54 -3.83 3.92 3.68 1.22 2.73 -4.13

17 5 1 2 62.5 12.5 25 23.27 16.98 9.43 10.23 4.07 1.27 5.19 4.27 5.47 4.02 3.68 -4.19 3.83 -4.46

18 3 4 1 37.5 50 12.5 24.27 16.50 12.82 6.20 16.67 2.48 -3.53 0.42 6.25 0.00 4.24 5.11 3.16 -4.04

19 4 3 1 50 37.5 12.5 24.20 17.79 15.96 7.79 8.94 -3.76 6.75 1.81 7.24 5.53 4.96 1.46 3.73 -5.94

20 5 2 1 62.5 25 12.5 25.69 19.37 12.23 2.45 5.45 1.51 7.05 6.12 7.59 -0.54 5.22 0.54 3.94 -6.52

21 6 1 1 75 12.5 12.5 25.78 17.78 5.39 3.78 5.70 0.00 7.38 3.93 7.97 4.09 5.51 -1.22 4.17 -7.23
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