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Abstract

In this research, we explore different types of flexible job-shop scheduling problems (FJSP) and compare
the performance of two advanced algorithms. Our goal is to determine which algorithm is better suited
for scheduling automation in large-scale manufacturing processes. Through a series of experiments, we
have concluded that our proposed self-learning effective genetic algorithm (SLEGA) outperforms the
end-to-end deep reinforcement learning (E2E-DRL) approach in most scenarios.

The SLEGA combines traditional genetic algorithms with a self-learning module that can automati-
cally adjust important parameters during the optimization process. On the other hand, the E2E-DRL
approach treats scheduling as a graph problem, where a reinforcement learning agent selects which
operations should be performed on which machines based on graph representations.

We evaluated both algorithms using various job scheduling problems, including standard FJSP, FJSP
with sequence-dependent setup times, and a highly-constrained FJSP scenario inspired by real-world
manufacturing situations. This scenario involved additional factors such as release dates, order deadlines,
night times, and sequence-dependent setup times between operations.

Our findings indicate that the SLEGA algorithm is more adaptable to different types of scheduling
problems and performs better overall compared to the E2E-DRL approach. Additionally, the SLEGA
algorithm can be parallelized, which means that it can handle computations more efficiently and scale
well with larger problem sizes. E2E-DRL is more usable in scenarios where scheduling decisions are
required to be available in real-time (i.e., online scheduling).

In conclusion, our research provides valuable insights into the automation of scheduling in manufactur-
ing. The SLEGA algorithm shows great potential for optimizing job-shop scheduling and improving
manufacturing efficiency.
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Executive Summary

This summary serves as a brief overview of the executed research project. It describes the research
problem at hand, the research approach taken to tackle the problem, the identified solution methods,
the results obtained with these solution methods, and the conclusions and recommendations.

Research Problem

We are collaborating with Wefabricate on a research project aimed at addressing machine scheduling
problems in the milling process of their factory. Specifically, we are focusing on the highly constrained
flexible job-shop scheduling problem (FJSP), with the goal of selecting the optimal operation and machine
pair at each point in time to minimize the total makespan of the schedule and minimize associated
costs. In literature, the vanilla FJSP with minimal additional characteristics is usually investigated.
Furthermore, problem instance sizes usually do not scale up to industry scenarios.

The environment under which this problem arises is the milling process of Wefabricate. The raw material
that arrives at the factory is first sawed, then milled, cleaned inspected and finally packaged. The milling
process itself is executed in one or more stages. Each stage can be executed by different machines and
could require an operator for setup and execution, which are not available during the night. For each
stage, several different resources are required. Resources required are both consumed (i.e., raw material)
or renewed (i.e., machining tools). Raw material stock is not infinite, and thus jobs are released at a
certain point in time. The customer also prescribes a product quantity and delivery deadline as well.
Furthermore, the setup between different operations is sequence-dependent, furthermore increasing the
complexity of finding an efficient schedule. Wefabricate desires an algorithm that could compute these
schedules automatically.

The performance of this schedule is generally described using the makespan. The makespan is defined
as the moment at which the last operation is finished. Besides makespan, we also optimize for the cost
incurred by the schedule. The total cost consists of six different components: (1) missing deadlines, (2)
finished good inventory, (3) work-in-progress inventory, (4) logistic movements, (5) manual operations and
(6) addition of resources. Finding the Pareto front along these two objectives should enable Wefabricate
to select highly efficient and effective schedules.

Research Approach

This thesis aims to create a flexible planning algorithm to solve the FJSP. The algorithm should be
generally applicable, to current manufacturing processes and future manufacturing processes. Besides
solution quality, scalability and generalizability play an important role for Wefabricate, as the set of
input jobs to schedule will change over the coming years. In the literature, we have already seen various
reinforcement learning-based job scheduling algorithms. More specifically, we have seen a state-of-the-
art end-to-end deep reinforcement learning (E2E-DRL) approach based on graph neural networks, and
a self-learning genetic algorithm (SLGA) approach in order to tackle the vanilla FJSP. However, the
literature does not test these solutions on industry problems such as the highly constrained FJSP that
Wefabricate is dealing with. This insight led to the formulation of the following main research question,
which is central to this master thesis:

How can we integrate machine learning into job-scheduling algorithms for a highly constrained FJSP?

In order to explore the different approaches for solving the vanilla FJSP problem, we conduct an in-depth
analysis by proposing a self-learning effective genetic algorithm (SLEGA) and by benchmarking this
against the E2E-DRL approach. Our methodology involves implementing these algorithms and training
them on various instance sizes. We evaluate the trained models using several benchmark literature
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datasets, including mkdata, edata, rdata, vdata and ftdata. Additionally, we test the models on a custom
FJSP benchmark dataset that spans job and machine sizes from 5x5 to 100x100. This allows us to
compare the performance of the two approaches and identify their strengths and weaknesses on the
vanilla FJSP. To further examine the algorithms’ capabilities, we introduce a variant of the FJSP problem
that includes sequence-dependent setup times. This enables us to assess how each model performs
when faced with a new problem characteristic. Moving on to a real-world application, we consider the
highly constrained FJSP of Wefabricate and compare the performance of E2E-DRL and the implemented
SLEGA. Finally, we explore the flexibility and performance of the SLEGA in a multi-objective setting.
Overall, our analysis provides a comprehensive understanding of the SLEGA and E2E-DRL approaches
in the context of the FJSP problem and sheds light on their suitability for real-world applications.

Solution Methods

To compare our two solution methods, we developed a single schedule evaluation function that returns
the two main objectives of interest for Wefabricate: the makespan and the cost of the schedule. We
use this function to evaluate both the highly-constrained instances of Wefabricate and the vanilla FJSP
instances from the literature. The function takes as input a schedule representation and a problem
instance. A schedule is represented using the double-layer encoding technique, consisting of an operation
sequence string and a machine allocation string. Using the problem instance, we decode the schedule
representation into a feasible schedule that takes into account various constraints, including release dates,
precedence constraints, setup times, night times, and backfilling. Backfilling allows for operations to be
scheduled in gaps between already scheduled operations. We designed the evaluation function to be
executed in parallel, enabling fast evaluations. This allows us to properly compare the performance of
our two algorithms on both types of instances.

The SLEGA implementation consists of two components, the underlying genetic algorithm, and a self-
learning module to adjust the hyperparameters of the genetic algorithm during execution. The genetic
algorithm works in the following way. Individuals are represented following the double-layer encoding
approach mentioned above. Individuals are evaluated following the evaluation function defined in the
previous paragraph. For initialization, the population size is set to 100 and initialized using global se-
lection (60%), local selection (30%) and random selection (10%). The evolutionary algorithm is then
generally executed for 100 generations, with the following genetic operations. For selection, we use tour-
nament selection (k=3) when considering the single-objective setting or NSGA-II in the multi-objective
setting. For crossover, we use a 2-point crossover (p=0.5) and uniform crossover (p=0.5) for the machine
allocation string, and precedence preserving crossover for the operation sequence string. For mutation,
we use greedy mutation for the machine allocation string, and swap mutation for the operation sequence
string.

This genetic algorithm is then wrapped in a DRL environment to create the self-learning module. In
every generation, a PPO agent is fed the following state: (1) average normalized mean fitness of objectives
of the current population, (2) average normalized best fitness of objectives of the current population,
(3) average normalized standard deviation of fitness of the current population, (4) normalized remaining
budget, (5) normalized stagnation count, (6) normalized hypervolume indicator and (7) normalized
Pareto size. Note that (6) and (7) are only emitted by the environment for the multi-objective setting.
This state space is then embedded with an MLP policy. From this embedding, the PPO agent then
picks the crossover probability, individual mutation probability and gene mutation probability. The next
iteration of the genetic algorithm is then executed. The agent then receives a reward or penalty for
each objective value. For the single-objective setting, we use absolute increase/decrease as the reward
function. While for the multi-objective setting, we use binary increase/decrease as a reward function.
Overall, this approach allows the genetic algorithm to self-learn and improve over time by incorporating
feedback from the PPO agent.

In the E2E-DRL approach, we formulate an FJSP instance as a heterogeneous graph. This graph
consists of operation and machine nodes. Bi-directional arcs represent operation-machine pairs, while
directional arcs represent the order of the jobs. The graph represents the state space of an environment
and contains different features. Operations nodes contain (1) scheduling status, (2) the number of
neighbouring machines, (3) processing time, (4) the number of unscheduled operations in the job, (5)
start time, (6) setup time, (7) night schedule flag, (8) night setup flag, (9) deadline flag and (10) time to
release. The machine nodes contain (1) the number of neighbouring operations, (2) available time, (3)
utilization, (4) time of scheduling, (5) remaining time until night. O-M pairs contain (1) processing time,
(2) sequence-dependent setup time (3) time running at night. This graph is then embedded using a two-
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stage embedding scheme. First, the machine nodes are embedded using several graph attention networks
(GATs). GATs are selected as they automatically learn the importance of different nodes by applying
the attention mechanism. Next, operation nodes are embedded using several MLPs. After stacking and
pooling, the critic network computes the value of the state with an additional MLP, whereas the actor
network computes the probability of selecting a certain action. This probability distribution can then
be used to greedily select actions or selection actions on a sampling basis. The sampling approach is
usually deployed, but for testing purposes, results of greedily selecting actions are reported too.

Both the SLEGA and E2E-DRL implementations are trained using a sampling-based actor-critic ap-
proach. The PPO loss is considered as the loss function during training. The trained policies are
evaluated every x timesteps on a validation dataset. The model with the highest validation score is then
saved and used during testing.

Results

In Experiment One, we have seen that in the vanilla FJSP, the instance size is of importance when
selecting a scheduling approach according to its performance (i.e., makespan). More specifically, we saw
that E2E-DRL outperformed SLEGA for instances which have relatively few good solutions and a larger
search space. In those cases, the makespan was reduced by up to 30%. For instances where the number
of good solutions was relatively higher, the SLEGA outperformed E2E-DRL and reduced makespan up
to 20%. In terms of execution times, E2E-DRL was faster by 20 to 90%, where execution time gain was
less for larger instances. Hence, for the vanilla FJSP problem, we consider both algorithms to be scalable
and efficient, where the E2E-DRL approach is more efficient than the SLEGA approach.

In Experiment Two, we compared the performance of two approaches for solving the FJSP with SDSTs.
Our results showed that the SLEGA approach outperformed E2E-DRL in terms of makespan, with a
5% improvement. Moreover, we found that retraining improved the performance of E2E-DRL, while the
SLEGA approach demonstrated better generalization to unseen characteristics, making it more flexible.
In terms of inference time, E2E-DRL was significantly faster, although the execution time of the SLEGA
approach was still within acceptable limits. Overall, our findings suggest that the SLEGA approach is
a more reliable and flexible option for solving the FJSP with SDSTs, whereas E2E-DRL is a faster but
less adaptable approach.

In Experiment Three, we investigated the performance of two approaches for solving the highly con-
strained FJSP of Wefabricate. Our results demonstrated that the SLEGA approach outperformed E2E-
DRL in terms of makespan, even when considering new and previously unseen instance sizes. This
suggests that the SLEGA approach is more flexible and robust to changes in problem characteristics.
Moreover, we found that the performance of the SLEGA approach could be further improved by increas-
ing the population size and the number of generations, although this trade-off with efficiency should
be considered. Nevertheless, our results showed that the SLEGA approach was able to outperform
traditional heuristics while still achieving acceptable execution times. Overall, these findings indicate
that the SLEGA approach is a reliable and effective option for solving the highly constrained FJSP of
Wefabricate.

In Experiment Four, we tested the performance of the SLEGA approach on the highly-constrained FJSP
in a multi-objective setting. Our results demonstrated that the SLEGA approach was able to handle
the multi-objective nature of the problem. E2E-DRL in the multi-objective context was not attempted,
due to the fact that there is no E2E-DRL approach in literature for this problem. These findings
further emphasize the flexibility of the SLEGA scheduling approach. Our experiments also revealed
that incorporating a self-learning module into the SLEGA approach improved its performance when
compared to a vanilla genetic algorithm. Moreover, the algorithm remained efficient enough to be used
in production. Overall, these results suggest that the SLEGA approach is a robust and adaptable option
for handling the highly-constrained FJSP in a multi-objective setting, and its performance can be further
enhanced through the incorporation of self-learning modules.

Conclusion and Recommendations

Based on our findings in the previous paragraphs, we recommend that Wefabricate adopt the SLEGA
algorithm as a standard scheduling approach for various operation scheduling problems when integrat-
ing machine learning into job scheduling. This is because the SLEGA approach outperforms E2E-DRL
in terms of flexibility, performance, and generalization. Specifically, the SLEGA approach can handle
various constraints and objectives more effectively, achieve lower makespan and cost, and require less
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retraining than E2E-DRL. Additionally, the SLEGA approach is efficient enough to achieve acceptable
execution times, is highly scalable through parallelization, and can adapt to dynamic events during sched-
ule execution. The evaluation function can be controlled to adjust the preferences of the company, such
as buffers and working hour capacity, and the SLEGA approach can learn the setting of hyperparameters
based on the given evaluation function. Overall, the SLEGA approach is a generic and reliable option
for machine learning-based job scheduling at Wefabricate. This answers our main research question.

With the SLEGA scheduling approach, onboarding a new process only requires creating an evaluation
function and potentially genetic operations. The algorithm remains the same, unlike the E2E-DRL
approach, which would require significant effort. Additionally, the SLEGA approach can be applied
to various optimization problems as long as a solution can be represented as an individual and this
individual can be evaluated given the business context.

Potential areas for future research on the E2E-DRL approach include investigating its graph formulation
and modelling setup times in different ways, such as by adding them to processing time. Additional
features could also be added to improve its performance, and hyperparameter tuning should be explored
to improve the training procedure and objective values. Warm starts could be investigated to optimize
existing schedules in case of dynamic events. Furthermore, the E2E-DRL approach could be used for
multi-objective optimization, which would be an interesting area to explore.

Regarding Wefabricate, we recommend two specific actions. Firstly, fine-tuning the evaluation function is
crucial to getting accurate schedules, and it should be of the highest quality possible. Secondly, we suggest
adopting the SLEGA approach for scheduling, which is a generic approach that can be easily extended
to new production processes and other business problems, provided that a solution representation and
evaluation function can be created. By splitting jobs into multiple ones and spreading out the quantity,
optimization becomes more flexible and can lead to better results.
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WF Wefabricate
WIP work-in-progress
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Chapter 1

Introduction

This Chapter introduces the business context of the company and introduces the problem by providing
an overview of the problem characteristics at play. Then, the research is introduced by formulating the
research questions and research approach.

1.1 Problem Context

Wefabricate (WF) is a startup company in the manufacturing industry focused on value-added manufac-
turing, products (parts or final products) that leave the production lines are worth more than the value
that was put into the product throughout the manufacturing process. Wefabricate currently has four lo-
cations, three locations near Eindhoven (Best, Duizel, and Budel) and one more location in China. Since
the company was founded about three years ago, Wefabricate grew a lot through the customers they
have been able to add to their sales funnel. Wefabricate has significantly large customers for parts and
finished products across different industries. Examples of industries customers operate in are healthcare,
automotive, and semiconductors.

The added value manufacturing materializes through the different production cells displayed in Figure
1.1. Examples of production cells are injection moulding, machining, and assembly. Outside of the added-
value manufacturing, WF also sells a couple of in-house products. Fyllar, for example, is a subsidiary
company focused on creating refilling solutions for customers like supermarkets. Finally, to support the
goal of Wefabricate, WeAutomate was founded and focused on the automation of all operations.

Figure 1.1: Business setup of Wefabricate.

1.1.1 Automation

WeAutomate is a very important department as it is a major goal of Wefabricate to automate all of
the operations within the factory, which would enable the so-called “lights out factory”, where there are
no operators required in order to fulfil customer demands. In the long term, the entire factory will be
automated such that customers are only required to upload a design of a product/part to the website.
Then, the customers will receive pricing and design for manufacturing feedback. If customers accept the
quotation, the rest of the operations within the factory are kick-started, and the product is produced
without human touch (from input raw material to packaged product).

Full automation will enable customization for production orders with a quantity of a single item. This
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would make ordering a fully custom product as easy as the purchase of a new device or book from
e-commerce websites. An example use case is the purchase of a new bicycle. Right now, customers can
select a predefined frame size with standard conventional sizes (e.g., S, M, or L). Through automation, the
customer would be prompted to fill in their length per body part, after which the perfect frame size would
be calculated and produced for the customer. When this make-to-order (MTO) manufacturing setting
is fully automated, the cost and speed would not differ from traditional make-to-stock manufacturing.

MTO combined with decentralized manufacturing (i.e., producing close to the customer) would disrupt
the manufacturing market. First of all, products are only created as required by customers, no resources
are wasted on products which never seen the light of day. Furthermore, raw materials are the only
items that are required to be shipped to and from the factory. This required significantly less capacity
than shipping boxes of final products. This again can only be realized when the factory is completely
automated.

1.1.2 Machining

Products that are machined generally follow the process illustrated in Figure 1.2. Input raw material
is sawed such that we remain with a “blank” that has dimensions the milling machine can work with.
The blank is then milled until the required features are achieved. Then, products have to be cleaned as
various substances (e.g., oil) is used for cooling in the milling process. Next, the quality of features is
checked (i.e. ensuring specified tolerances are met) and products are packed and now considered finished
products. This marks the last step of the end-to-end (E2E) machining process. In case machined parts
are required for assembly, they would not have been packaged but transferred to the assembly process
instead.

Figure 1.2: E2E machining process

In this research we will mainly address the milling operation of the machining process, hence this process
is further illustrated below. As can be seen in Figure 1.3 below, a block of raw material is held by a
pair of clamps. Then, a milling tool moves across the piece of raw material. This is repeated at several
different angles using various tools until the desired shape and features of the required part are achieved.
Since this is done using robotics, the precision is extremely high, and the features of the parts are very
accurate. The type of raw material can be different depending on what is required by the customer (e.g.,
copper, steel, or aluminium). Within each milling operation, a product requires one or multiple set-ups
of a machine in order to arrive at the required output part. This process is illustrated in Figure 1.4.

Figure 1.3: Close-up of raw material in a milling machine.

There are over 20.000 different parts for which Wefabricate has sets of machining instructions available.
Furthermore, machining instructions can be generated automatically using the computer-aided design
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(CAD) of a part. Hence, the company can technically produce an infinite amount of different parts.
Each milling operation has its own required production time, tools, pallet configuration, fixtures, tops,
and type of input raw material. Furthermore, there are currently multiple different machines that can
handle the execution of these milling operations. However, the production times for each step can differ
per machine. Furthermore, some operations require an operator to pay close attention to the production
process (and interrupt where necessary). Finally, the setup time between different milling operations is
sequence-dependent, since the raw material, pallet, fixture, clamp tops, and required tools could have to
be changed depending on what was milled previously.

(a) Setup 1 (b) Setup 2

Figure 1.4: Illustration of different stages of the milling process.

1.1.3 Scheduling

Following the setting outlined in the paragraph above, it is not hard to see that the scheduling of the
jobs on the different machines isn’t particularly straightforward. Especially since each customer order
also has additional requirements such as a deadline and order quantity. The order quantity can vary
significantly, whereas series jobs could have more than a hundred units, and prototype or one-off jobs
only would have a quantity of one. While production scheduling is difficult, it is key for manufacturing
systems to improve efficiency and utilization rate of resources (R. Chen et al., 2020).

Besides the job-specific characteristics described above, the schedule is also influenced by the environ-
ment. For example, express jobs could arrive which have to be prioritized or a machine could break
down. While all of these characteristics are at play, Wefabricate would like to find the schedule that
optimizes for the makespan and the total incurred cost associated with the schedule. The total cost is
made up of multiple factors, such as missing deadlines, inventory cost, required physical labour, and
more. These are further described in Chapter 2.

While a (near) optimality of the scheduling algorithm is important, the algorithm should also be flexible,
robust and efficient. The flexibility of the scheduling algorithm would allow Wefabricate to extend to
the algorithm by including different production cells such as sawing or cleaning. The robustness of the
scheduling algorithm would allow a near-optimal solution to be found if the set of input job drastically
changes. Efficiency, or fast computation, would mean that in case of any dynamic events (like an operator
that doesn’t follow the planning), a new optimal schedule could be computed relatively fast. Furthermore,
creating a scheduling algorithm would also enable full factory automation, the most important goal of
Wefabricate. Right now, the schedule is created by hand using the earliest deadline first (EDF) heuristic.
This indicates that there is a huge amount of improvements to be made in the scheduling field.

1.2 Research Questions
The scheduling problem outlined in the previous section is generally described as flexible job-shop schedul-
ing problem (FJSP) in literature. The FJSP is usually decomposed into two sub-problems. A machine
allocation problem, and a job sequencing problem. Literature shows that using AI-based optimization
methods, such as E2E deep-reinforcement learning (DRL) and self-learning genetic algorithms (SLGAs),
minimizes schedule computation time. Based on these findings, the main research question is defined as
followed:
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How can we integrate machine learning into job scheduling algorithms for a highly constrained FJSP?

To answer this question, we define the following sub-questions:

1. How can the scheduling problem at Wefabricate be formulated according to the literature?

2. What traditional- and learning-based approaches exist for the scheduling problem of Wefabricate?

3. How do the identified methods compare on different scheduling problems and in different scheduling
scenarios?

Answering the sub-questions would allow us to formulate an answer to the main research question at
hand.

1.2.1 Scope

As previously mentioned, the goal of this project is to generate an optimal schedule of jobs for the
products created on the milling machines. These jobs consist of one or more stages. We plan to solve
this problem by creating two AI-based solutions, an self-learning effective genetic algorithm (SLEGA) and
an E2E-DRL framework. We propose these methods after the literature review and problem formulation
are conducted. Furthermore, generating interesting datasets that could describe future scenarios for the
company is also considered in scope.

In order to evaluate the performance of different methods, we conduct four different types of bench-
marking. First, we benchmark the algorithms on non-company related existing benchmark datasets, in
order to compare our performance against the performance of literature on standard datasets. Next, we
benchmark our algorithms across these three different datasets against other existing (meta)-heuristics,
in order to identify performance gain.

The first company-specific benchmark executed is on actual datasets of Wefabricate. Here, we derive
performance differences between executed schedules versus proposed schedules by our algorithms, giving
an idea of how optimal the current schedule is and what improvements can be made. Finally, we
benchmark our implemented algorithms on different scenario datasets in order to measure the flexibility,
performance, robustness and scalability of the algorithms.

For Wefabricate, the main goal is to integrate the best methods then in day-to-day operations in order
to improve the quality of the existing job scheduling algorithm. This would enable their operations to
run more efficiently, thus increasing performance and eventually profitability of operations.

What is considered out of scope, for now, is the following: The addition of other stages (cleaning, quality
control, sawing) of the production process. The integration of logistic resources (e.g., schedule jobs such
that they finish right as AGV is available), and job scheduling of other production cells of WF (e.g.
injection moulding) is also out of scope.

1.2.2 Research Setup

To address the research gap identified in the previous section, we formulate the research setup as visu-
alized in Figure 1.5 below. It consists of five sections: (1) Literature Review (2) Problem Formulation,
(3) Methods (4) Data Generation, and (5) Results.

For each category, we define one or more research objectives. For the literature review, we define three
topics that have to be investigated. The first objective (Q1) is to investigate existing methods in literature
used to formulate and solve FJSP’s. Next, we investigate how the FJSP can be approached in the context
of multi-objective optimization (MOO) (Q2) and AI-based optimization (Q3). In parallel to the previous
two objectives, we can define the FJSP of Wefabricate (Q4) using the results from Q1. Next, to solve
the problem defined in Q4, we develop different frameworks. These frameworks are an SLEGA (Q5) and
E2E-DRL (Q6). In parallel to all of this, we have to generate scenario datasets (Q7) to benchmark (Q8)
the frameworks defined in Q5 and Q6 in terms of quality (flexibility, scalability, performance, robustness).

For Q7, it is important to acknowledge that the existing data available to Wefabricate does not encompass
all potential scenarios that may arise in the future. Hence it is important to generate datasets that would
cover various edge cases. Example edge cases are situations where the list of jobs only consists of series
or only consists of prototype jobs. The optimal execution of operations is very different in that case.
Hence it is interesting to identify the performance of the created framework under different scenarios, to
evaluate the robustness and flexibility of the framework.
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Figure 1.5: Research setup

For Q5 and Q6, we implement two AI-based solutions to solve the FJSP problem at WF. The goal also
is to benchmark these implemented algorithms against the simpler heuristics identified in Q1.

1.2.3 Outline

The rest of the document is structured as follows. Chapter 2 thoroughly describes the problem at hand, by
listing all existing characteristics and by formulating the problem as an mixed-integer linear programming
(MILP). Chapter 3 covers relevant literature from previous work that has addressed similar problems.
More specifically, we describe exact, heuristic, and reinforcement learning-based solutions. Chapter 4
covers the solutions methods proposed to solve the problem at hand using the reviewed literature. The
implemented solution will then be taken through various experiments, which are described in Chapter
5. Chapter 6 covers the results of these experiments. Finally, this research is concluded in Chapter 7,
where recommendations for the company are made.

1.2.4 Contributions

The research aims to enhance our understanding of job scheduling by applying AI-based optimization
algorithms to specific job-scheduling scenarios. This approach provides new insights into job scheduling
and represents a novel contribution to the field. More specifically:

1. We propose SLEGA, a hybrid heuristic based on the work of G. Zhang et al. (2011) and R. Chen
et al. (2020).

2. We compare the performance of the SLEGA and E2E-DRL approaches for the vanilla FJSP, filling
the gap in the existing literature that lacks such a comparison.

3. We illustrate how the FJSP instance size and complexity influence the difference in the makespan
performance of these algorithms, showing that there is no “one-size-fits-all” for this type of problem.

4. We show that to effectively tackle the FJSP with SDSTs using the E2E-DRL approach, the setup
times can be represented as an additional feature on the arcs of the heterogeneous graph. This
is a novel extension to the work of Song et al. (2022) which has not been done before, showing
competitive results in this particular context.

5. We show that the SLEGA approach is better at generalizing to new instance sizes and more flexible
in adopting new problem characteristics.

6. We show that a self-learning module helps guide optimization for highly-constraint FJSPs, both in
a single- and multi-objective setting.
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Chapter 2

Problem Formulation

In this chapter, we outline the problem that is being studied. More specifically, we first introduce the
general problem setting. Then, we deep dive into different problem characteristics within the scheduling
environment of Wefabricate, formalizing the problem as a linear programming model. Finally, we detail
how the objective values are calculated.

2.1 Job Scheduling

Job scheduling, also known as job sequencing, is a well-known combinatorial optimization problem (Potts,
1980). Combinatorial optimization (CO) problems are usually situated in discrete space. Korte and
Vygen (2012) defined combinatorial optimization more formally as such:

Definition 2.1.1 (Combinatorial Optimization). Let V be a set of elements and f : V 7−→ R be a cost
function. Combinatorial optimization problems aim to find an optimal value of the function f and any
corresponding optimal element that achieves the optimal value on the domain V .

In the case of job scheduling, V is the set of all feasible sequences of jobs, and the makespan of a
solution usually represents the function f . The goal of this CO problem thus is to find the solution
which minimizes the makespan. The size of the set V is of size O(n!) in the simplest variant of the job
scheduling problems, where n represents the number of jobs to schedule. More difficult variants will thus
have an even larger search space.

Job scheduling is especially popular in industrial engineering, and the problem exists in various types
with different characteristics. Graham et al. (1979) introduced a convenient notation to indicate the type
of job scheduling problem at hand. The notation is as follows: (α, β, γ), where α indicates the machining
environment, β the job characteristics and γ the objective function.

2.1.1 Environment

For the machining environment (α), there are 7 different options. Single-machine scheduling (1),
Identical-machine scheduling (P), Uniform-machine scheduling (Q), Unrelated-machine scheduling (R),
Open-shop scheduling (O), Flow-shop scheduling (F) and Job-shop scheduling (J). Job-shop scheduling
refers to the situation where there exist j jobs consisting of nj operations which have to be executed
in the given order (Graham et al., 1979). Figure 2.1 illustrates the job-shop problem with six jobs, six
stages and six machines. The length of the bar reflects the processing time of scheduling a stage of a job
on a certain machine. Notice that each job has a different order of machines.

In case there exist multiple types of machines capable of executing each operation, the definition of job-
shop scheduling is generally extended to flexible job-shop scheduling (FJSP) (Chan et al., 2006). This
extension is displayed in Figure 2.2. Note how stage 2 of job 2 is moved from machine 1 to machine 3,
indicating that both machines 1 and 3 are capable of executing this operation.

This definition is further extended to account for parallel machines, which means that for each type of
machine, there are multiple machines available. These available machines share processing times and
setup times for each operation. Figure 2.3 below illustrates this new setting, where jobs are allocated to
machine groups rather than to machines (J. C. Chen et al., 2012).
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Figure 2.1: Job-Shop Scheduling, adopted from Yamada and Nakano (1992)

Figure 2.2: Flexible Job-Shop Scheduling

Figure 2.3: FJSP with parallel machines, adopted from J. C. Chen et al. (2012)

2.1.2 Characteristics

The job characteristics (β) are diverse and likely different for each scheduling environment. Example
characteristics are given in Table 2.1 below. In Section 2.2.1 we display the job characteristics at play
at Wefabricate, and indicate how these characteristics can be modelled according to literature.

Symbol Name

lij Sequence Dependent Setup Times between job i and job j
rj Release Date of job j
Various (e.g. chains) Precedence Constraints between job/operation i, j
Due date (dj) or strict deadline (d̄j) Time Windows of job j
tmn Transportation Delays between machines m and n
DJA Dynamic Job Arrival
PM Planned Maintenance
O Outsourcing
RR Renewable Resources
CR Consumable Resources
Mj Multi-purpose Machines (set of purposes of machine j)
PaMa Parallel Machines

Table 2.1: Example characteristics of job scheduling environment.1
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2.1.3 Objectives

The most common objective function (γ) in job scheduling is the minimization of the maximum com-
pletion time (makespan). Besides this objective function, various other objectives are considered within
job scheduling. Other example objectives are listed in Table 2.2 below.

Symbol Name Objective

Cmax Maximum completion time, or makespan Minimize∑
j∈J Cj Total completion time of all jobs J. Minimize

Lmax Minimize maximum lateness Minimize∑
j∈J Uj Number of tardy jobs (J) Minimize∑
i∈J

∑
j∈J,i ̸=j lij Setup time between two jobs i and j Minimize

P Profit Maximize
T Throughput Maximize

Table 2.2: Example objectives in job scheduling.

Job scheduling can also be considered in a multi-objective setting. For example, Zhu and Tianyu (2019)
tried to minimize total energy consumption while also minimizing the total weighted completion time.
Wang and Pan (2019) tried to minimize the makespan while also minimizing the total tardiness of jobs.
Sekkal and Belkaid (2020) also tried to minimize the makespan, but rather also tried to minimize the
consumed resources rather than the tardiness of a job. In the next chapter, we illustrate how multi-
objective problems can be tackled.
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2.2 Job Scheduling at Wefabricate
Now that we have described the general problem, we describe the specific scheduling problem at play
at Wefabricate in this section. Using the notation from Graham et al. (1979) outlined in the previous
section, the specific scheduling problem could be formulated as such:

(J, {dj , lij , rj , DJA,RR,PM,PaMa,NT},MOO) (2.1)

As we have a job-shop scheduling problem (JSP) problem (symbolized with J , abbreviated as JSP) with
the following characteristics: Due dates (dj), sequence-dependent setup times (lij), release dates (rj),
dynamic job arrival (DJA), renewable resources (RR), planned maintenance (PM), Night Times (NT )
Identical Machines (IM). Furthermore, we are dealing with a multi-objective optimization (MOO)
problem, for which the multiple objectives are to minimize the makespan, while also accounting for the
costs incurred in doing so. Similar to (Chan et al., 2006), we extend the definition of JSP to FJSP. We do
so as there exist multiple types of machines capable of executing each stage per job. Furthermore, looking
towards the future setting of Wefabricate, an FJSP setting is even more flexible than a flexible flow-shop
scheduling problem (FFSP) setting (Lunardi, 2020), hence an FJSP framework is further explored. The
next section further details the specific problem characteristics.

2.2.1 Problem Characteristics

Table 2.3 below displays all of the characteristics of the FJSP environment at Wefabricate, and indicates
how those characteristics can be modelled. The characteristics are the following. Each machining job
(creating a part) consists of one or more stages (i.e., milling steps, also referred to as operation). Each
of these stages can be executed on a different type of machine, for which the processing time differs
per machine. This characteristic is known as “flexible machines” in literature. Furthermore, for some
machines, we have more than one machine available, which is known as “identical machines”. Setups
required between each operation are referred to as sequence-dependent setup-times (SDST). For each
job, customers define an order quantity and deadline. Internally, a bill of materials is also defined.

The machines on which the operations are scheduled, also have standard maintenance jobs (single stage)
which have to be executed. Furthermore, each operation requires a set of resources, both consumable
(tools, raw material) and renewable (operator, clamps, pallet). For a created schedule, we require a set
of resources (e.g., pallets and tools). The inventory of resources can be increased by means of purchasing
(i.e., incurring cost). The schedule also results in an inventory level, which also has a cost attached.
Next, dynamic job arrival or machine breakdowns could occur throughout the execution of a schedule.

Since Wefabricate would like to control how the algorithms select the planning horizon, and how the
algorithm weights certain factors, this is also included in the job characteristic list. Finally, the problem
at hand is considered to be a multi-objective optimization problem as we are optimizing for both the
makespan and operational costs incurred because of the schedule. An overview of these characteristics
that play a role in the is given in Table 2.3.

We note that most characteristics are static, but that there also exists some dynamic characteristics
within the problem (job arrival, tool/machine breakdown). Furthermore, we note that MOO is required.
Planning decisions are made at two different moments in time. The first decision is a weekly recurring
decision, where the operations for the configured timeframe are scheduled. The next moment is when any
dynamic events (like machine breakdowns) occur. At such events, the activities should be rescheduled
in order to re-optimize for the new situation. Finally, the created algorithm should be flexible, robust
and efficient as explained in Section 1.1.3.
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Name Type Nature Applicable to Description Modeling Approach

Multi-Stage Milling
Process

Characteristic Static Jobs Each milling job is executed in one or
more stages (i.e., products can have
multiple production steps).

Inherent to FJSP.

Flexible Machines Characteristic Static Jobs Each stage of a job can be executed on
different types of machines.

Inherent to FJSP.

Identical Machines Characteristic Static Machine For each type of machine, we have 1 or
more machines available.

Introduce a variable Mi, which indi-
cates the number of machines that are
available for type machine type i (J. C.
Chen et al., 2012).

Sequence-
Dependent Setup
Times

Characteristic Static Machine In between jobs, material, waste flow,
pallets, clamps, tops and tools might
have to be adjusted for the next job.

Introduce a variable sij which repre-
sents the set-up time for immediately
scheduling job j after job i, use this
variable when calculating performance
(Ying and Cheng, 2010)

Job Deadline Characteristic Static Jobs A job needs to be finished before a set
moment in time.

Model deadline as a soft or hard con-
straint (Kaplan and Rabadi, 2012).

Job Release Date Characteristic Static Jobs A job cannot start before a certain mo-
ment.

Release dates can be modelled by fix-
ing proposed solutions (Al-harkan and
Qamhan, 2019).

Job Quantity Characteristic Static Jobs Multiple products are made under a
single job

Quantity can be modelled by splitting
jobs into multiple jobs, or by increasing
operation duration.

Maintenance jobs Constraint Static Machine Machines need an hour a week of main-
tenance and a longer session of 4 hours
per month, which can be scheduled as
preferred.

Introduce the notion of timeslots, jobs
have to be allocated to a timeslot (Lei
and Yang, 2022). Timeslots are created
to ensure planned maintenance times
aren’t crossed. For flexible maintenance
jobs, add to the list of jobs to plan.

Resource Required Constraint Static Jobs An operation requires different re-
sources, both consumable (bill of ma-
terial and tool lifetime) and renewable
(operator, tools, pallet, clamps, tops)

Fix created solutions based on resource
constraints (Al-harkan and Qamhan,
2019).

Cost of Resources Characteristic Static Jobs Resources can be added at a cost (e.g.,
extra tool costs $300).

Add to the cost function, applied when
soft resource constraint is broken.

Cost of Inventory Characteristic Static Jobs Inventory in the factory could lead to a
certain cost. (e.g., when jobs finished
early or WIP inventory is generated).

Add to cost function.

Night times Characteristic Static Environment There are no operators available at
night.

Similar to maintenance jobs, timeslots
are blocked for when scheduling is un-
available.

Dynamic Job Ar-
rival

Characteristic Dynamic Jobs Customers might send express orders
which might have to be prioritized.

Complete reschedule or warm-start
(Hamzadayi and Yildiz, 2016).

Breakdowns Characteristic Dynamic Machine Machines and tools might break down
and go in to error state and require un-
foreseen maintenance.

Complete reschedule or warm-start
(Hamzadayi and Yildiz, 2016).

Planning Horizon Characteristic - Environment The planning horizon should be control-
lable.

Input to scheduling.

Controls Characteristic - Environment The company would like to be able
to control parameters of the objective
function and decision points.

Adjust objective function.

Multi-Objective
Optimization

Objective - Environment For now, the goal is to optimize for both
1) the makespan and 2) cost incurred
due to operations. I.e., there is a trade-
off between speed and cost.

Multiple objective values.

Flexibility, Robust-
ness and Efficiency

Algorithm reqs. - Environment The created algorithm should be robust
to different lists of jobs, flexible to in-
clude other production cells, and effi-
cient for fast re-planning.

-

Table 2.3: Problem characteristics applicable in the business context.
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2.2.2 Mathematical model

To illustrate the problem at hand, we proceed to formulate the problem as a linear programming model
while making the following simplifications: (1) Dynamic job characteristics are not included within the
model. (2) Maintenance jobs are excluded. (3) An infinite number of tools, materials, clamps, clamp
tops and operators is assumed. (4) Identical machines and order quantity are ignored. Furthermore, we
only consider costs incurred by missing deadlines. We define the following formulation for the remainder
of the problem characteristics. The formulation is based on the work conducted by Özgüven et al. (2010).

Type Variable Description

Set J = {J1, J2, . . . , Jn} Set of jobs, where n is the total number of jobs
Set O = {O1,1, O1,2, . . . , Oi,j} Set of operations, where i is the job number and j is the stage

number
Set Oi Set of ordered operations, for job Ji.
Set M = {M1,M2, . . . ,Mm} Set of machines, where m is the machine number
Set Mij Set of alternative machines where operation Oij can be processed.
Constant tijm Processing time for operation Oij on machine Mm

Constant piji′j′ Sequence-dependent setup times for scheduling operation Oij after
operation Oi′,j′ on machine Mm.

Constant di Deadline of job Ji.
Constant ei Cost of missing deadline of job Ji.
Constant ni Length of job Ji
Constant H A huge number.
Decision variable Sijk Starting time of operation Oi,j on machine k.
Decision variable Xijk Decision to schedule operation Oi,j on machine Mk.
Decision variable Yiji′j′ Decision indicating whether operation Oij preceeds operation

Oi′j′ .
Decision variable Ci Completion time of job Ji.
Decision variable Cmax Maximum completion time over all jobs (makespan).
Decision variable zi Variable indicating whether job Ji is missed the deadline or not.

Table 2.4: Variable definition

With this notation, we can now introduce the mathematical model and we define the following objectives.
2.2 is the first objective and covers the goal of minimizing the completion of the whole schedule (i.e., the
makespan), 2.3 covers minimization of the cost incurred due to missing deadlines.

min Cmax (2.2)

min
∑
i∈J

zi × ei (2.3)

Subject to:

∑
k∈Mij

Xi,j,k = 1 ∀i, j ∈ O (2.4)

Sij ≥ Si(j−1) +
∑

k∈Mi(j−1)

ti(j−1)k ×Xi(j−1)k ∀j ∈ {2, . . . , , ni},∀i ∈ J (2.5)

Sij ≥ Si′j′+ti′j′k+pi′j′ijk−(2−Xijk−Xi′j′k+Yi′j′ij)×H∀Oij , Oi′j′ ∈ O×O,Oij ̸= Oi′j′ , k ∈Mij∩Mi′j′

(2.6)

Si′j′ ≥ Sij+tijk+pi′j′ijk−(3−Xijk−Xi′j′k+Yi′j′ij)×H∀Oij , Oi′j′ ∈ O×O,Oij ̸= Oi′j′ , k ∈Mij∩Mi′j′

(2.7)

Ci ≥ Sini +
∑

k∈Mini

tinik ×Xinik ∀i ∈ J (2.8)
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Ci + zi ×H ≤ di ∀i ∈ J (2.9)

Cmax ≥ Ci ∀i ∈ J (2.10)

and

Xi,j,k ∈ 0, 1 ∀i, j ∈ O,∀k ∈M

zi ∈ 0, 1 ∀i ∈ J

Yi,j,i′,j′ ∈ 0, 1 ∀i, j ∈ O,∀i′, j′ ∈ O

Sijk ≥ 0 ∀i, j ∈ O,∀k ∈M

Ci ≥ 0 ∀i ∈ J

In words, Constraint 2.4 ensures all operations are allocated to one and only one eligible machine. Con-
straint 2.5 ensures the presence of relations between jobs. Constraints 2.6 and 2.7 help avoid overlapping
operations on the same machine Mk. Constraint 2.8 sets the completion time of each job. Constraint 2.9
then indicates whether this completion time met the deadline or not. Finally, Constraint 2.10 calculates
the total makespan. The remaining equations ensure the decision variables take values on a feasible
space.

This formulation encompasses several key problem characteristics, including milling processes, flexible
machines, sequence-dependent setup times, and order deadlines. The remaining problem characteristics
will be modelled as such. Identical machines can be included by adding additional machines to the set
of machines with identical processing times. The Bill of Materials of jobs will be modelled as a release
date, this date represents the moment that all input materials are available for the job to be executed.

Order quantity can be modelled by creating an individual job for every item in an order. Since this
might explode the number of jobs (i.e., an order size of 100 would result in 100 separate jobs), a batch
size will be used for grouping identical products. A limitation here is that the precedence constraints for
the different stages limit the search space. For example, if we assume a batch size of 25, the second stage
can only be started when all 25 products have finished stage 1. While in practice, stage 2 could already
start when the first product of the batch is finished. The batch size will be tuned and adjusted later.

Regarding resources, we will assume the infinite capacity of tool lifetimes, as tools can be created in
parallel to the execution of jobs. Tools are created on a different machine with a very low utilization
so this assumption is quite reasonable. For renewable resources, we will assume that the number of
resources available can be added at a certain price, and thus it will be modelled as a soft constraint.
E.g., exceeding resource capacity will result in a cost (e.g., purchasing extra clamps), rather than an
unfeasible schedule. Furthermore, during operating hours, infinite operators will be assumed available.
At night, no operators are available. The operating hours are to be defined and can be adjusted for every
scheduling instance.

Next, inventory costs are also added as a soft constraint, and will be included within the schedule
evaluation function. Finally, dynamic characteristics (breakdowns, express orders) happen on a very
infrequent basis. Hence they are ignored in the model but are tackled by complete rescheduling when a
dynamic event occurs.
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2.2.3 Objective Values

The linear program defined in the previous section relaxes the cost objective. This section further details
the actual cost considered at Wefabricate which will be considered in the experiments of this research.
In case time units are considered below, they are given in seconds.

The first objective, makespan, is minimized. The makespan is given by the latest moment in time a job
is finished, or:

Cmax = max∀i∈JCi (2.11)

The second objective, operational cost, is a little more complicated and consists of the components
outlined below. We follow the same notation as in the previous section, defining new notation where
necessary.

Missed Deadlines

Missing deadlines damages customer satisfaction and customer goodwill towards Wefabricate, which will
eventually lead to decreased customer retention. In order to account for this in the scheduling algorithm,
a missed deadline is considered to cost 50% of the product price (pj). The total cost for missing deadlines
(cdl) is thus calculated as such:

cdl =
∑
j∈J

1{Cj > dj} × 0.5pj (2.12)

Finished Goods Inventory

If products are finished before the deadline, they are stored in the warehouse until they can be shipped to
the customer. Wefabricate has the possibility to rent out pallet slots to third parties. This is considered
an opportunity cost when utilizing its own storage capacity. The opportunity cost comes at a value of 5
euros per pallet per week. For simplicity, we consider that 25 units can be placed on each pallet, whereas
the quantity per job (qj) varies per job. The total finished goods inventory cost (cfgi) is thus calculated
as such:

cfgi =
5

(7× 24× 60× 60× 25)

∑
j∈J

(dj − Cj)× qj (2.13)

where the fraction of the formula covers the cost of a pallet per week, given the right part of the formula
is given in seconds.

Work-In-Progress Inventory

Work-in-progress (WIP) inventory arises because of a potential slack between the completion of a certain
stage, and the start of the consecutive stage. As this WIP inventory is placed close to the machines, a
high amount of inconvenience is experienced by operations. More specifically, the threshold for the wip
at any moment in time (wipt) considered inconvenient is set at 25 units. The cost associated then is
10e per minute this threshold is exceeded, hence the fraction divides by 60.

cwip =

Cmax∑
t=0

1{wipt > 25} × 10

60
(2.14)

Addition of Resources

In order to execute the schedule, various different renewable resources are used. Resources (R) consist of
pallets, clamp tops and tools. During scheduling, these resources might be allocated to different machines
at the same time. As the amount of inventory for that resource (Ir) might not meet the required quantity
(Qr), resources might have to be added at a certain cost. The cost considered here is the value vr of the
resource.

car =
∑
r∈R

max(Qr − Ir, 0)× vr (2.15)
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Manual Operations

Even though switching materials and tools might be parallelizable, they still require an operator to
execute this manual labour. Manual labour is valued at 1.5e per minute and is used as a proxy to
compute total manual cost (cmo). The formula below also indicates the number of minutes each manual
operation takes. E.g., an orientation change takes 3 minutes.

cmo = 1.5× (3× |OrientationChanges|+ 8× |PalletChanges|+ 5× |WasteF lowChanges|+
1× |ToolChanges|+ 5× |NewTools|+ 3× |TopChanges|)

(2.16)

Logistic Operations

As we have multiple different machine options per stage, it could occur that a second stage is executed on
a different machine, while it also could have been executed on the machine that handled the first stage.
In this case, we require extra logistic operations (i.e., moving the product from machine A to machine
B). For each mandatory logistical operation, a cost of 50e is considered as we require the products
to travel a certain distance. Logistic operations are minimized in a subroutine by delaying all logistic
operations as long as possible while grouping those operations that could be executed at the same time
(i.e., both preceding stages are completed before the start time of either following stages). The total cost
of logistics (clo) are calculated as such:

clo = 50× |LogisticOperations| (2.17)

The total cost of schedule execution (ctot) is then simply given by taking the sum of the above cost. Or:

ctot = cdl + cfgi + cwip + car + cmo + clo (2.18)

Now that the problem formulation is complete, we explore solution directions according to the literature
in the next chapter.
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Chapter 3

Literature Review

In this chapter, the existing literature is reviewed to identify solution directions for the problem that is
formulated in the previous chapter. This chapter consists of the following sections. First, we describe how
multi-objective optimizations are generally tackled in Section 3.1. Then, we explore solutions directions.
According to Lunardi (2020), combinatorial optimization problems can be approached using either exact
or heuristic methods. Table 3.1 below displays the prevalence in literature for each class of optimization
technique. As can be seen, FJSPs have been more frequently solved using heuristic methods rather than
exact methods. Exact and approximation solutions are covered in Section 3.2, heuristic solutions are
covered in Section 3.3 and reinforcement learning-based approaches in Section 3.4. Finally, we draw
conclusions based on the overview of the current state of the literature on solving the problem at hand
in Section 3.5.

Figure 3.1: Overview of optimization methods

Technique Class Number of papers Percentage

Hybrid Mix of heuristic methods 69 35.03%
Evolutionary algorithm Population-Based 47 23.86%
Constructive algorithm Heuristic methods 19 9.64%
Tabu search Single solution based 12 6.09%
Integer linear programming Exact methods 10 5.08%

Table 3.1: Techniques applied to solve FJSP, 1990 - 2016 (Lunardi, 2020).
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3.1 Multi-Objective Optimization
Multi-objective optimization originally grew out of 3 main areas; economic equilibrium and welfare
theories, game theory, and mathematical optimization (Marler and Arora, 2004). In this field, we try
to optimize for not one but two or more objectives. In order to solve a multi-objective optimization
problem, one can take several approaches. The book of Burke and Graham (2014) gives an overview of
what approaches could work. Generally, these approaches follow two steps; (1) Find multiple trade-off
optimal solutions with a wide range of values for objectives, and (2) Choose one of the obtained solutions
using higher-level information. From step 1, a Pareto front follows (see Figure 3.2). This front contains
all non-dominated solutions. A dominated solution is defined as such:

Definition 3.1.1 (Domination). A solution j is said to dominate a solution i if the following two
conditions are met (Burke and Graham, 2014).

fa(xj) ≥ fa(xi) for all objective functions a

fa(xj) > fa(xi) for at least one objective functions a

In words, the objective values for solution j are no worse than those of solution i, and solution j has at
least one objective value where solution j is better than solution i. Such a solution is also called Pareto
optimal (Marler and Arora, 2004).

In case the Pareto front only exists of a single point (i.e. this point has optimized values for all objectives),
then this point is called a utopia point (Marler and Arora, 2004).

Figure 3.2: Pareto front illustrated for a two objective minimization problem.

To determine the Pareto front, one simple approach would be to deploy an iterative procedure that
retains a set of non-dominated solutions and checks whether any of these solutions is dominated by
other potential solutions. After doing so, the set of non-dominated solutions remains which resembles
the Pareto front. This procedure runs in O(MN2), where M is the number of objectives and N is the
number of possible solutions (Burke and Graham, 2014). The computational cost thus increases rapidly
when the number of possible solutions does too.

In order to evaluate the quality of the approximated Pareto front (PF), a popular measure is the front’s
hypervolume (Cao et al., 2015). The hypervolume measures the size of the space enclosed by all solutions
on the Pareto front and a user-defined reference point. More formally, the hypervolume (IH(PF, r)) is
defined as such:

IH(PF, r) = λ(∪s∈PF space(s, r)) (3.1)

where s and r are vectors with the length equal to the number of dimensions (in this case, objectives). λ
is the Lebesgue measure. The hypervolume for a Pareto front with two objectives is visualized in Figure
3.3 below.

Cao et al. (2015) mention there are multiple drawbacks of evaluating the Pareto front using the hyper-
volume. The most important drawback is the reference point selection. The reference point is usually
set to the nadir point (or slightly worse) of the Pareto front under investigation when the true Pareto
front is unknown. The nadir point is defined as the point which has the worst criteria in all objectives
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Figure 3.3: Hypervolume of Pareto front in 2D space, from Fonseca et al. (2017)

(point (7, 6) in Figure 3.3). Because of the fixed reference point, hypervolume measures can decrease in
magnitude (i.e., the magnitude of improvement) whilst the Pareto front keeps evolving in quality.

Now we have a basic understanding of multi-objective optimization, we dive into flexible job-shop schedul-
ing solutions in the next sections.

3.2 Exact Computation and Approximation Schemes
The JSP problem is well-known to be NP-hard, the problem is even considered one of the hardest
CO problems by many (Lunardi, 2020). Since FJSP is a combination of an assignment problem and a
classical JSP, the problem is at least as hard as the classic JSP. Since the assignment problem is NP-hard
as well (Özbakir et al., 2010), it can be safely concluded that the FJSP is very complicated to solve too.
Nonetheless, there exist different approaches to solving the FJSP. These are further outlined below.

3.2.1 Mathematical Programming

Mathematical programming is the first mathematical approach outlined here. Within mathematical
programming, linear programming (LP) is one of the most satisfactory models for solving optimization
problems (Talbi and El-Ghazali, 2009). LP models can be solved using efficient exact algorithms such
as the simplex-type method or inferior-point method within continuous decision space (Lunardi, 2020).
These methods are efficient since the feasible region of the problem is a convex set.

Within discrete decision space, on the other hand, efficient exact algorithms are less developed (Talbi
and El-Ghazali, 2009). For example, in integer programming (IP) decision variables are discrete (i.e.
∈ Z). There are also mixed integer programming (MIP) models. Both MIP and IP models can be solved
using the branch and bound algorithm.

The branch and bound (BB) algorithm searches a dynamically constructed tree representing all feasible
solutions (i.e. exhaustive search). According to Burke and Graham (2014), BB reduces the number
of alternatives that need to be considered by partitioning possible solutions into a smaller set of sub-
problems which can then be shown to be sub-optimal and thus eliminated from the set. Even though
this procedure has evolved to exclude large proportions of the tree that is searched, the algorithm is still
not capable of handling the explosive growth of the solution space. That is, the complete enumeration
of allocating n operations to n machines would result in n! terminal nodes. Which approximates to
2.4× 1018 terminal nodes for n = 20 (Lunardi, 2020).

3.2.2 Constraint Programming

Constraint programming (CP) builds upon mathematical programming in a smart way Talbi and El-
Ghazali, 2009. For example, let’s assume we are trying to model the constraint that all jobs (I) should
be allocated to a different machine within all machines (M). Rather than introducing a binary variable

17



xim for allocating a job i to a certain machine m, we can create an integer variable xi, xi ∈ 1, . . . , |M |.
Thus the number of decision variables is reduced from O(|I| × |M |) to O(|I|), allowing for more efficient
computation and optimization (Lunardi, 2020).

With numerical experiments, Lunardi (2020) shows that a CP Optimizer is able to find feasible solutions
to large-scale instances (e.g. 50 machines 100 jobs, 1000 operations), unlike the MIP solver. However,
the author also mentioned that ad-hoc heuristics most likely outperform the CP optimizer, as they are
able to fully exploit the specificities of the problem.

Approximation algorithms

A way to go about NP-hard problems is to deploy approximation algorithms. Approximation algorithms
are defined as such:

Definition 3.2.1 (Approximation algorithm). f(x) is a p−approximation algorithm if:{
OPT ≤ f(x) ≤ p×OPT, if p > 1.

p×OPT ≤ f(x) ≤ OPT, if p < 1.

Where p < 1 is used for maximization and p > 1 is used for minimization problems.

The goal of the approximation algorithm is to create an algorithm which runs in polynomial time and
has a bound on the error margin (denoted with ϵ). These algorithms are called polynomial time ap-
proximation schemes, or PTAS in short. For example, Arora (1998) designed a 1 + ϵ approximation for

the Euclidean TSP, which had a prohibitive running time of nO( 1
ϵ ). This was improved later to run in

near-linear time.

Regarding the FJSP, we have seen that each of its components has a PTAS available for a specific
case. Generalized assignment problems can be approximated using LP-relaxation, resulting in a (1− 1

ε )-
approximation (Fleischer et al., 2006). Furthermore, standard JSPs can be approximated using a PTAS
which gives a (1 + O(ϵ)) bound on the makespan (Jansen et al., 2000). Jansen et al. even finds a
(1+O(ϵ)) bound on discrete problem examples. However, they assume that the processing times of jobs
are controllable.

Regarding the direct approximation of the FJSP, Jansen and Mastrolilli (2004) present a (2 + ϵ) linear
time approximation scheme for the situation where the number of machines m and number of operators u
is fixed. Besides the author’s work, there has not much work been conducted on approximation schemes
for FJSP.

All in all, we conclude that it is not possible to efficiently or effectively solve a heavy constraint, multi-
objective, FJSP situated in discrete decision space, mathematically. Furthermore, there are few to
no approximation schemes available which provided a good bound on the solution. Particularly for the
FJSP with the characteristics of Wefabicate, no approximation scheme exists. Thus we further investigate
solving the FJSP of Wefabicate using machine learning and other AI-based algorithms and heuristics in
the next chapter.

3.3 Heuristic Solutions

According to Lunardi (2020), heuristic methods can be divided into three categories; Constructive heuris-
tics and single-solution or population-based metaheuristics (Figure 3.1). Each of these categories is fur-
ther explored in the following sections. Furthermore, hybrid heuristics are also investigated as they have
been proven to be most popular for the FJSP (see Table 3.1).

3.3.1 Constructive Heuristics

In this section, constructive heuristic solutions are covered which aim at solving FJSPs. Constructive
heuristics generally start with an empty solution, and repeatedly extend the current solution until a
complete solution is obtained (Lunardi, 2020). Koulamas (1998) were one of the first to solve a job
scheduling problem using a constructive heuristic. In their work, the authors solved a non-constraint
flow shop scheduling problem using a constructive heuristic. This constructive heuristic consists of two
phases. In phase one a permutation sequence is created as input for phase two. Subsequently, phase
two then has the capability of consuming this permutation sequence and can produce a non-permutation
sequence if it is found appropriate. The created algorithm still had a computational complexity of
O(m2n2), and only worked for non-permutational schedules.
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For FJSP specifically, Liang et al. (2021) use a constructive heuristic from Abreu et al. (2020) to create
the initial population used for their genetic algorithm. The constructive heuristic (called BICH-MIH)
works in the following way: A performance indicator (Ψij) is calculated for the insertion of operation πij .
Then, while all jobs are not allocated yet, find the machine that has the earliest finishing time. Next,
based on the performance indicator, find the remaining operation which is best suited for this machine,
and add the operation to the machine. In the paper, the performance indicator is designed to optimize
for a combination of idleness and completion time minimization (based on weight α).

3.3.2 Metaheuristics

In this section, we cover metaheuristics used for solving the FJSP at hand. These metaheuristics can be
both single-solution and population-based. Metaheuristics are defined as high-level problem-independent
frameworks that provide a set of guidelines or strategies to develop heuristic optimization algorithms
(Sörensen et al., 2012). There are many types of metaheuristics applied in the literature to the FJSP at
hand. The most prevalent algorithms are outlined below.

3.3.3 Local Search

Similar to Tabu search, Local Search (LS) is a heuristic method to solve computationally hard problems.
Local search algorithms move from solution to solution within a set of candidate solutions by applying
local changes, until a solution deemed optimal is found.

Bissoli and Amaral (2018) solve an FJSP using a hybrid iterated local search (HILS) heuristic, using
simulated annealing as a local search. After generating an initial solution, HILS works in the following
way: a perturbation in the best solution is applied, which is then submitted to a local search algorithm and
then evaluated by an acceptance criterion. The local search algorithm consists of the best improvement
method, simulated annealing and neighbourhood structures (Bissoli and Amaral, 2018). With empirical
research on benchmark datasets (HUdata, BRdata, DPdata and BCdata), the authors show that the
approach is robust and competitive when compared to state-of-the-art FJSP algorithms. HILS solves an
FSJP with 15 machines, 15 jobs, and 2-3 possible machines per job in 800 seconds.

3.3.4 Tabu Search

Tabu search (TS) uses a local or neighbourhood search procedure to iteratively move from one potential
solution x to an improved solution x′ in the neighbourhood of x, until some stopping criterion has
been satisfied (Glover, 1986). Tabu search works with a memory structure, i.e., a tabu list, in order to
keep track of what solutions are not to admit into the neighbourhood anymore. The memory structure
contains both short-term and long-term memory components. The tabu list helps with escaping local
minima, which is one of the difficulties search algorithms have.

Tabu search has been widely used to find optimal solutions for combinatorial optimization methods
(Saidi-Mehrabad and Fattahi, 2007). The authors specifically use it for finding a solution to the FJSP
optimizing for the makespan in two steps. The first step finds the best operations sequence and the
second step finds the best choice of the machine’s alternative. It was found that the tabu search algorithm
performs significantly better for larger problem instances than the exact branch and bound technique.
The authors are namely able to solve a 3 job, 3 machines, 9 operation problem in 2 minutes whereas
branch and bound took a full hour. The method takes 30 minutes to solve a 15 job 6 machine 88
operations problem.

3.3.5 Genetic Algorithms

Genetic Algorithms (GA) belongs to the class of Evolutionary Algorithms (EA) and its development
was inspired by the process of natural genetic evolution (Holland, 1992). Within genetic algorithms, an
initial population is evolved over several generations until certain termination criteria are met. Within
evolution, individuals are selected, crossed-over and mutated for the next generation, based on the
“survival of the fittest” principle. This process is displayed in Figure 3.4 below. In this figure, elitism
is also displayed. Elitism is implemented to ensure that during selection, the most promising solution is
not discarded, but kept in the loop for further evolution.

G. Zhang et al. (2011) applied a genetic algorithm to an FJSP as such. In order to represent a schedule,
individuals are encoded using the double-layer encoding technique. The first layer is a process-based
coding scheme (also called job sequence) and the second layer is based on machine allocation. In order
to compute the fitness (makespan in this case) of a solution, the individuals are decoded by iterating
over the job sequence and machine allocation. During decoding, potential opportunities for backfilling
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Figure 3.4: GA process with elitism

are checked in order to improve the solution. The first generation is initialized using local, global, and
random selection. Throughout the evolutionary process, the authors use tournament selection. Mutation
and selection operators occur for each coding layer separately. For the machine allocation layer, two-point
crossover and flip mutation are applied. For the job sequence layer, precedence preserving order-based
crossover (POX) and swap mutation are applied (G. Zhang et al., 2011). This approach manages to
obtain near-optimal solutions for instances containing 20 jobs and 10 machines in about 12 minutes.
However, the authors do not indicate to what instance size they could scale.

In the field of multi-objective optimization, a non-dominated sorting genetic algorithm (NSGA) is an
algorithm capable of dealing with multiple objectives. The algorithm has a second version too; NSGA-II.
NSGA-II was first proposed in Deb et al. (2002) and is still relevant today. As explained in Section 2.4.2,
the algorithm is able to find a set of Pareto optimal solutions in O(MN2) time, where M is the number
of objectives and N is the number of individuals. The algorithm is the first multi-objective genetic
algorithm able to handle constraints and elitism (Deb et al., 2002).

NSGA-II has the following procedure: (1) Perform a non-dominated sorting in the combination of parent
and offspring populations and classify them by fronts. (2) Fill the new population according to front
raking. (3) perform a Crowding-sort that uses crowding distance that is related to the density of solu-
tions around each solution. (4) Create an offspring population from this new population using crowded
tournament selection, crossover and mutation operators. This technique has been applied extensively to
FJSPs. Since genetic algorithms are usually the basis for hybrid heuristics, they are further introduced
and described in the next section.

In order to measure the quality of an iteration of a genetic algorithm, there exist multiple solutions. The
first one was to measure the hypervolume, which was explained in Section 2.4. Another approach is to
compare the input and output generation to a reference set. Liu et al. (2019) compare two generations
using the generational distance (GD) and inverse generational distance (IGD). Both IGD and GD cal-
culate the distance between the Pareto front (PF ), and the objective vector set (V ). The IGD and GD
are calculated as such:

IGD =

∑
p∈PF dist(p, V )

|PF |
(3.2)

GD =

∑
v∈V dist(v, PF )

|V |
(3.3)

These performance indicators are most common as they are simple and have low computational cost
(Santos and Xavier, 2018).

3.3.6 Hybrid Heuristics

Hybrid heuristics combine two or more (meta-)heuristics in order to find a solution to the problem at
hand. These hybrid heuristics could be combinations of any existing heuristics and thus are very diverse.
An example of a hybrid solution is the combination of differential evolution followed by local search used
in Yuan and Xu (2013). Since these hybrid approaches are very diverse, they will be covered paper by
paper.
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In order to apply NSGA to the FJSP, Liang et al. (2021) propose an improved and adaptive non-
dominated sorting genetic algorithm with an elitist strategy based on NSGA-II. It consists of 9 steps:
(1) set up basic parameters in the algorithm, (2) perform two types of population initialization; random
and using a constructive heuristic, (3) generate machine and operation sequence code, calculate fitness
values, (4) create child generation using NSGA adaption, (5) merge child and parent generation using
simulated annealing strategy, (6) perform non-dominated sorting for operation population, (7) calculate
crowding distance and congestion degree of previously created operation population, (8) screen out better
Pareto set, (9) check termination criteria, if no termination, return to step 5.

Dai et al. (2019) use a similar approach, where they enhance a genetic algorithm using simulated annealing
as mutation operator, and particle swarm optimization (PSO) as crossover operator. More specifically,
the same double-layer encoding method is used as in Liang et al. (2021). During crossover, both the
machine and operation string are crossed over in a similar fashion. The authors are able to solve problems
that consist of 80 jobs and 50 machines. Shahsavari-Pour and Ghasemishabankareh (2013) created a
novel hybrid genetic algorithm and simulated annealing (NHGASA) algorithm in order to solve the FJJS
problem. Here, SA is used to improve individuals. NHGASA outperforms 3 other methods on popular
benchmarks and is able to solve a 10-machine and 10-job problem in 18 seconds.

Rooyani and Defersha (2019) propose a two-stage genetic algorithm to solve an FJSP. Here, the authors
also consider sequence-dependent setup times, machine release dates, and time lag. As seen in Figure 4.2,
an FJSP individual is usually encoded by means of an order sequence string and a machine allocation
string. During the evolutionary process, both of these strings are then manipulated simultaneously.
Rooyani and Defersha (2019) propose a different approach, introducing a two-stage genetic algorithm
(2SGA) instead of simultaneous gene manipulation. Here, the first stage of the genetic algorithm covers
the operation sequence, similar to the operation sequence string in the double-layer encoding. While
optimizing the order sequence, the machine that would process an operation the fastest is always selected.
The second stage starts from the solutions of the first stage and then follows the common approach of
genetic algorithms to search the entire solution space.

In their work, the authors show that the algorithm is applicable to solve many other variants of the
FJSP, given the general scheme of the algorithm. More specifically, the algorithm is able to tackle an
FJSP with additional constraints, such as sequence-dependent setup times, release dates, and time lag,
effectively. Moreover, the authors show that the 2SGA can scale to instance sizes of 100x50 and 140x80,
reaching good solutions in 0.34h and 2.50h respectively. A regular genetic algorithm did not converge to
a solution while having searched 5h and 70h respectively.

3.4 Reinforcement Learning-Based Approaches
Within reinforcement learning-based Approaches, we distinguish between end-to-end reinforcement learn-
ing solutions and reinforcement learning-based heuristics. These are outlined below. However, we intro-
duce reinforcement learning first.

3.4.1 Reinforcement Learning

In Reinforcement Learning (RL), there exists an agent which performs an action on the environment
based on its current policy, for these actions the agent receives rewards and updates its policy accordingly.
To illustrate, let’s take the simple example of a game of pong 1. The action the agent can take is moving
the paddle. The location of the paddles, the location of the ball, and the direction of the ball make up
the state of the environment is in.

Starting off, the agent randomly moves the paddle until a reward is received. The reward can be positive
(scored a point) or negative (opponent scored a point). The reward allocation function then adjusts the
policy of the agent for the states which led up to the reward. For example, when a point was scored,
the actions taken by the agent (moving the paddle) in the states leading up to the point are more likely
to happen in the next iteration. Eventually, the policy of the agent is optimal and no more updates are
required.

The reinforcement learning approach can be used to solve the combinatorial problems outlined above.
In order to apply RL to CO, the problem is modelled as a Markov decision process (MDP). An MDP is
defined as such (Sutton and Barto, 2018):

1https://en.wikipedia.org/wiki/Pong
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Definition 3.4.1 (Markov decision process). An MDP is defined as tuple M = (S,A,R, T, γ,H) where

• S - state space

• A - action space

• R - reward function, mapping states and actions into real numbers (R : S ×A 7−→ R)

• T - transition function

• γ - scalar discount factor, 0 < γ ≤ 1

• H - horizon defining the length of episodes

In the MDP, the agent performs a sequence of actions on the environment based on its current policy
to find a solution. The states of the environment are encoded such that they can be consumed by the
RL algorithm. The encoder is required to map the state S to d-dimension space Rd. For example, the
connected nodes in a network of a TSP are encoded into a vector. The RL algorithm then determines
how the agent learns (i.e. updates its policy π(s)) and makes decisions for a given MDP.

3.4.2 Deep Reinforcement Learning for FJSP

Since job scheduling can be formulated as a sequential decision-making process, it can also be solved using
RL (Aydin and Öztemel, 2000). Chang et al. (2022) show that they are able to solve a dynamic FJSP
(DFSJP) with random job arrival using a double deep queue network (DDQN) with a soft ϵ-greedy policy,
outperforming other state-of-the-art RL approaches. Here, the authors optimized for penalties incurred
due to earliness and tardiness. The authors show that the DDQN outperforms five other methods in
terms of solution quality and generalization.

First of all, the DFJSP is modelled as MDP as such. The production state reflects the state the environ-
ment is in and contains information like the number of jobs, the number of operations, the number of
machines, the remaining working hours, the number of remaining operations, the load of machine tools
and the total processing time. This production state is then reduced to four production state features
between 0 and 1. The features represent the objectives based on the input features and are used to
represent the production state. The four production state features are (1) Average utilization rate, (2)
Estimated earliness and tardiness rate, (3) Actual earliness and tardiness rate (4) Actual earliness and
tardiness penalty.

The action set then covers both sub-problems FJSPs entail, operation sequencing and machine selection.
The action set is built out of four comprehensive dispatching rules, for which we refer back to Chang
et al. (2022). Actions are selected according to a soft ϵ-greedy policy, which was designed to adapt to
flexible scheduling problems of different scales. Since ϵ represents the probability of exploration over
exploitation, it should decay relative to the scale of the scheduling problem. This is exactly what the
soft ϵ-greedy policy achieves.

The DQQN architecture (see Figure 3.5) consists of two networks, a target and an online network. These
networks are decoupled in order to split the action selected from the action evaluation network. The
Q-value from the online network is provided as a basis for action selection, whereas the Q-value from
the target network is provided for the evaluation of the selected action. This approach reduces over-
estimations of evaluations. Both the target network and online network have the same architecture, such
that the weights and biases of the target network can be replaced by the online network’s weights and
biases every C step.
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Figure 3.5: DDQN for DFJSP, adopted from (Chang et al., 2022)

In order to learn the DDQN makes use of experience replay. State transition tuples (st, at, rt, at+1) are
stored in a replay memory D. This tuple data is then randomly sampled and the target and loss functions
are calculated according to the online and target network, to adjust the parameters (θt) of the online
network.

Song et al. (2022) on the other hand, solves the FJSP problem using a heterogeneous graph neural
network (HGNN) combined with deep reinforcement learning. In this paper, the authors also compare
results on the MK benchmark dataset with genetic algorithm approaches. The results show that their
DRL algorithm can solve 20-job, and 10-machine instances within 3.5 seconds. However, the solution
has an optimality gap of over 20%. The SLGA approach on the other hand solves the instance after 280
seconds, with an optimality gap of 6.21%. Google’s OR-tools (a CP solver) solves the instance in 900
seconds with an optimality gap of less than 2%. In the next Chapter, we will describe the work of Song
et al. (2022) more thoroughly as it serves as basis for one of our algorithms.

3.4.3 Heuristics Controlled by Reinforcement Learning

Even though we saw that DRL can help solve the FJSP at hand, there are other possibilities to leverage
the strengths of machine learning. As explained in Section 4.2.2., different parameters needed to be
initialized for the GA approach to FJSP. Moreover, the objective function weighting and parameters of
other algorithms also need tuning. Hence it is important this tuning is executed in a proper way, as
sub-optimal parameter configuration might lead to sub-optimal results and execution speed. Machine
learning became key in optimal parameter configuration for meta-heuristics (Karimi-Mamaghan et al.,
2022). ML can serve a broader purpose beyond parameter setting. It can be leveraged for tasks such as
algorithm selection, fitness evaluation, initialization, evolution, and cooperation. How ML can be used
is given in Table 3.2 below.

R. Chen et al. (2020) created a self-learning genetic algorithm (SLGA) for the FJSP by intelligently
adjusting the optimization method and key parameters using RL. More specifically, the authors try to
optimize for makespan under a standard FJSP setting. The same double-layer coding representation for
individuals is used as in Section 4.3. The initial population is initialized with two priority rules: (1)
(CMO) chooses the job that has the greatest number of operations remaining and (2) (HCMS) chooses
the machine that has the shortest processing time for the job with high probability. Regarding genetic
operations, precedence preserving order-based crossover (POX) and swap mutation are applied. Elitist
retention is taken as a strategy for selection. A flowchart of the SLGA is given in Figure 3.6 below.
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Where? How?

Algorithm selection ML can predict the performance of metaheuristics for solving problems.
Fitness evaluation ML techniques can estimate computationally expensive fitness functions.
Initialization ML can help generate good initial solutions.
Evolution ML can help select search strategies.
Parameter setting ML techniques can control parameter setting before or during evolution.
Cooperation ML can adjust the behaviour of metaheuristics.

Table 3.2: Where and how ML is used at the service of metaheuristics.

Figure 3.6: SLGA flowchart, adopted from (R. Chen et al., 2020)

These design choices are then combined with RL in the following way: rather than setting a fixed
probability of mutation and crossover (Pm and Pc), the values are set intelligently according to the
current population, previous and future states (see Figure 3.7). From an RL point of view, the state of
the GA is considered the state st of the environment, and the actions at are adjusting and updating (Pm
and Pc). The GA then takes these values to compute the new state st+1 and emits rewards to the agent.
Meanwhile, valuation calculation is performed with the value function, and the Q-value is updated in
the Q-table using the value and emitted reward. The state (i.e. population of a GA) is valued with
three factors: (1) average fitness of the population, (2) population diversity and (3) fitness of the best
individual. Regarding rewards, there is a reward for changing crossover (change in max. fitness) and a
reward for changing the mutation probability (change in average fitness). In experimental results, the
authors find that SLGA has a good performance on small-scale problems, even better than traditional
GA. Time consumption is reduced by 10%, and maximum and average RPD decrease by 20 and 30%
respectively.

Figure 3.7: Reinforcement process within GA, adopted from (R. Chen et al., 2020)
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Visutarrom et al. (2020) on the other hand, combine RL and differential evolution (DE) to propose
RL-DE. Again, RL is used to set the parameters cross-over rate (CR) and scaling factor (F). This is
conducted in a similar fashion as was done in R. Chen et al. (2020); In every step of the differential
evolution algorithm, the agent can select a sub-range the parameters CR and F can value in. The
authors conclude that RLDE shows competitive results.

To summarize this Section, we conclude that Dai et al. (2019) and Rooyani and Defersha (2019) tested
their algorithm on the largest instances of size 80x50 and 140x80 (jobs times machines) respectively. All
other listed algorithms aren’t tested on instances with (near) similar sizes. We have also seen that for
single objective optimization (usually makespan) local search and genetic algorithms achieve the highest
results. For MOO, on the other hand, genetic algorithms are mainly used. We have also seen that
extra constraints are rarely taken into account when investigating the FJSP. It is mainly Rooyani and
Defersha (2019) that have shown the generalizability of their 2SGA. We have seen that end-to-end DRL
approaches work well in case a solution needs to be obtained very fast (a couple of seconds of inference
time). However, models need to be trained beforehand in this case. Self-learning algorithms on the
other hand have also proven to be useful in order to speed up optimization, here also requiring training
time to learn an agent how to set the search parameters (such as crossover rate in genetic algorithms).
However, an overview of how well the solutions tend to generalize to unseen environments is missing.
When should each of these solutions be used? In the work of Song et al. (2022), generalization is touched
upon slightly, but this could use much more exploration. Furthermore, these approaches take the classic
FJSP scenario, whereas industry problems tend to have significantly more constraints than currently
considered.

3.5 Conclusion
In this Chapter, we have reviewed the state-of-the-art literature regarding FJSP solutions. More specifi-
cally, we have seen the various solution directions, among which are mathematical approaches, heuristic
solutions, meta-heuristics and AI-based solutions.

To conclude, we have seen that in order to solve the FJSP efficiently, the problem should not be ap-
proached mathematically. More specifically, we have seen that AI-based solutions offer the most promis-
ing results considering their results in terms of computation time and objective value. What is missing
in the literature however is knowledge of when to select which solution approach. For example, in case
job instances characteristics are volatile, would an SLGA or DRL approach perform better? Which of
the two approaches is more generalizable? Which of the two algorithms would perform better when
the instance scales up to industry-size datasets? Or should we then simply rely on heuristics? Which
approach should one take if fast schedule computation is required?

Furthermore, what is also missing is the performance of the algorithms in case additional constraints
are added. Which algorithm is most flexible to adapt and learn the behaviour of new constraints? Can
we easily adapt existing models? Or do we have to retrain in order for performance to be acceptable?
Similar to how some of these questions are addressed for heuristics in the 2SGA work of Rooyani and
Defersha (2019), they should be addressed for the AI-based approaches.

Identifying which algorithms are most modular is an important step in order to push towards more
generalizable job scheduling. These questions are the basis of the research questions defined in this work,
stated in Section 1.2.
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Chapter 4

Solution Methods

In this chapter, the proposed solution method will be outlined. These solutions methods are designed to
create a schedule of jobs, which optimizes for the objectives discussed in Chapter 2. Furthermore, the
solution methods are selected based on flexibility, efficiency, and robustness. The chapter covers the two
proposed algorithms, the self-learning effective genetic algorithm and the end-to-end deep reinforcement
learning algorithm. Both algorithms are designed to tackle the specific FJSP with sequence-dependent
setup times, release dates and night times. The first algorithm is a reinforcement learning-based heuristic
that combines the work of G. Zhang et al. (2011) and R. Chen et al. (2020), which can be customized to
operate in a single- (SO-SLEGA) and multi-objective (MO-SLEGA) setting. For benchmarking purposes,
the SLEGA will also be tested without the learning module. In this case, we refer to the algorithm as
SO-EGA and MO-EGA. The SO-EGA is following the exact implementation of G. Zhang et al. (2011),
where the MO-EGA is slightly different as described in Section 4.1.3. The second proposed algorithm
builds on the work of Song et al. (2022) to tackle this specific FJSP using E2E-DRL in a single-objective
setting which can be deployed using a greedy (DRL-G) or sampling (DRL-G) action strategy.

4.1 Self-Learning Effective Genetic Algorithm

In this section, we outline our first solution method, the self-learning effective genetic algorithm (SLEGA).
First, we describe the complete framework, after which we dive into individual components of the frame-
work. Finally, we describe how the algorithm is trained.

Figure 4.1 below illustrates the SLEGA framework. As can be seen, it consists of an initialization, a
decoder (i.e., the evaluation function), a genetic algorithm, and a deep reinforcement learning (DRL)
agent. First, the initial population is created. Each individual is then evaluated. This evaluated
population is then fed into a DRL agent, which determines the parameters of the genetic algorithm
based on the current state of the optimization process. After the parameters are set, one iteration of the
genetic algorithm is executed, and the new offspring population is sent back to the decoder for evaluation.
Once the termination criteria are met, the final population and hall of fame (i.e., best-found individuals)
are returned. The pseudocode for this algorithm is given at the end of Section 4.1.

26



Figure 4.1: SLEGA framework

The advantages of including a self-learning module in a genetic algorithm are as follows. As the agent
learns to make effective decisions on what value to set the mutation and crossover rates to, the search
space is traversed much more efficiently. More specifically, the SLEGA is able to converge faster to an
optimal solution, and the solution can even be better than the solution without this learning module.

Throughout the optimization process, schedules are encoded using the double-layer encoding method as
seen in the literature (Liang et al., 2021). This encoding represents a complete schedule as decisions
made in flexible job-shop scheduling can be divided into two categories; the operation sequence, and the
machine allocation.

Figure 4.2 displays an example encoding of a schedule. This schedule consists of three input jobs, J1,
J2 and J3. J1 has two operations O1,1 and O1,2, whereas J2 and J3 only have one operation each;
O2,1 and O3,1 respectively. A feasible schedule can be represented as given in the encoding below. In
the encoding, the operation sequence is given by [J1, J2, J1, J3] and the machine allocation is given by
[M1,M3,M1,M2]. The operation sequence determines the order in which operations should be scheduled.
In this case, this is [O1, O3, O2, O4], which is based on the occurrence of the job number. The machine
allocation determines on which an operation is scheduled. This layer of the encoding is given in order
of the operations of the FJSP instance, this thus means that operation (1,1) is scheduled on machine 1,
operation (1,2) on machine 3, operation (2,1) on machine 1 and operation (3,1) on machine 2.

Figure 4.2: Example encoding format of a job schedule.
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4.1.1 Population Initialization

The initialization of the population is a crucial task, as the initial population determines the quality and
convergence speed of the algorithm (Rahnamayan et al., 2007). In order to do so, we follow the approach
proposed by G. Zhang et al. (G. Zhang et al., 2011). More specifically, to initialize our population, we
combine global selection (GS) (60%), local selection (LS) (30%) and random selection (RS) (10%). How
each initialization algorithm generates machine allocation and operation sequence strings is explained
below.

Global selection is focused on balancing the load across all machines. More specifically, an array of size
|M | is initialized. Then, random jobs (J) are selected and their operations (Oij) are scheduled on the
machine with the least load so far. After scheduling an operation, the duration is added to the total load
of the selected machine. The pseudo-code for this algorithm is given in Algorithm 1.

Local selection is similar to the global selection, except for one important detail. Rather than optimizing
machine load across all jobs, in the local selection, the machine load is optimized per job specifically.
The pseudo-code for this variant is given in Algorithm 2. Note the initialization of the loaded array.

Finally, random selection is pretty straightforward. Both the machine allocation string and operation
sequence are randomly initialized.

Algorithm 1 Global Selection

Input
Job Instance Information (I)

Output
Machine allocation (allocation)
Operation sequence (sequence)

1: procedure GlobalSelection(I)
2: J ← random.sample(J, |J |)
3: load← []
4: sequence← []
5: allocation← []
6: for Ji ∈ J do
7: for Oij ∈ Ji do
8: tempLoad← []
9: for Mk ∈ opeMas(Oij) do ▷ for all eligible machines

10: tempLoad[Mk]← load[Mk] + duration(Oij ,Mk) ▷ load if schedule Oij on Mk.
11: end for
12: M∗ ← argMin(tempLoad) ▷ determine machine with least load
13: load[M∗]← load[M∗] + duration(o,M∗) ▷ add load to machine
14: allocation[Oij ]←M∗ ▷ allocate machine to operation
15: sequence[Oij ]← Ji ▷ add operation to sequence
16: end for
17: end for
18: end procedure

4.1.2 Schedule Decoding and Evaluation

Now that our population is initialized, we proceed to evaluate the population. The evaluation environ-
ment used here is Python 3, version 3.9. This evaluation environment is selected as it allows for parallel
evaluation of different schedules. This will be used in the experiments later, to test the scalability of the
execution times of the proposed algorithms.

Since our population consists of encoded individuals, this evaluation function is also referred to as the
“decoder”. Decoding individuals basically means that for each operation a start and completion time are
allocated. The main scheduling algorithm is illustrated in Algorithm 3 and consists of three subroutines,
CheckBackFill, NightPush and CalcSDST. Note that in all algorithms descriptions, very specific
implementation details (e.g., start-of-day timestamp configuration) are omitted. Besides the operation
sequence and machine allocation, the algorithm requires job instance information (I) as input as well.
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Algorithm 2 Local Selection

Input
Job Instance Information (I)

Output
Machine allocation (allocation)
Operation sequence (sequence)

1: procedure LocalSelection(I)
2: J ← random.sample(J, |J |)
3: sequence← []
4: allocation← []
5: for Ji ∈ J do
6: load← [] ▷ reinitialize load array every job
7: for Oij ∈ Ji do
8: tempLoad← []
9: for Mk ∈ opeMas(Oij) do ▷ for all eligible machines

10: tempLoad[Mk]← load[Mk] + duration(Oij ,Mk) ▷ load if schedule O on M.
11: end for
12: M∗ ← argMin(tempLoad) ▷ determine machine with least load
13: load[M∗]← load[M∗] + duration(Oij ,M

∗) ▷ add load to machine
14: allocation[Oij ]←M∗ ▷ allocate machine to operation
15: sequence[Oij ]← Ji ▷ add operation to sequence
16: end for
17: end for
18: end procedure

This dictionary contains all the required information for scheduling the operations. For example the
required resources, sequence-dependent setup times, and release dates.

Subroutine CheckBackFill looks at all pairs of subsequent operations A and B which have already
been scheduled, and checks whether it is feasible to schedule the current operation C at the end of
operation A, or before the start of operation B. Note that in algorithmic implementation, we guarantee
the correctness of the schedule in case operations are scheduled through backfilling. This is required as
backfilling operations adjusts the required setups before and after the scheduled operation.

Figure 4.3: Backfilling example, adopted from G. Zhang et al. (2011)
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Algorithm 3 Schedule decoding algorithm

Input:
Operation Ordering Encoding (O)
Operation Machine Allocation (M)
Job Instance Information (I)

1: procedure ScheduleOperations(O,M, I)
2: for Oij ∈ O do
3: Mk ←M(Oij) ▷ Extract machine from operation machine allocation.
4: a← max(Oij .preConstrSatis,Oij .releaseDate) ▷ Check min. start time of operation
5: b← max(Mk.timeState, a) ▷ Align start with machine
6: c← CheckBackFill(Oij ,Mk, a, b) ▷ Final start time, potentially backfilled
7: if c is feasible then ▷ Starts during day, only end during night without operator
8: Oij .startTime ← c
9: else

10: Oij .startTime ← NightPush(Oij ,Mk) ▷ Move start time to start of next day
11: end if
12: Oij .completionTime ← c+Oij .processingT ime+ CalcSDST(Oij ,Mk)
13: Mk.timeState← Oij .completionT ime
14: end for
15: end procedure

Subroutine NightPush sets the start time of a schedule to the start of the next day. Subroutine CalcS-
DST takes the current state of the machine and the operation. Using that information in determines
the required set-ups that the machine has to go through in order to start the operation.

When a schedule is decoded and timestamps are allocated to all individuals, the schedule can be replayed
in order to determine the makespan and cost of operations. This is conducted through simulation,
resulting in the objective values defined in Chapter 2.

4.1.3 Genetic Algorithm

In this section, we outline the effective genetic algorithm (G. Zhang et al., 2011) that is part of the
SLEGA framework shown in Figure 4.1. More specifically, here we address the genetic operations and
the parallelization framework used within the genetic algorithm. The population initialization is already
defined in Section 4.1.1.

The genetic algorithm has the following procedure. First, a population is initialized with a given size.
This population is initially evaluated given the evaluation function above, i.e., we are minimizing the
makespan and cost of the schedule. This is considered as the fitness of each individual. Then, the
population enters a generational process. The most promising individuals are filtered with a selection
function for a set number of generations. These selected individuals are then mated using a crossover
function. Finally, mutation is applied to improve exploration. Note that with our double-layer encoding,
we have different mutation and crossover functions for the operation sequence and machine allocation
string. The selection operator remains the same. Throughout the evolutionary process, individuals
evolve using different genetic operators. The three types of genetic operators are selection, crossover,
and mutation.

Selection

Selection is the first genetic operation. In our implemented algorithm we use tournament selection with
a tournament size of 3. This is similar to the implementation of G. Zhang et al. (2011). Note that
tournament selection can only take into account a single objective, in this case, the makespan is used to
select the individuals.

In order to deal with selection in a multi-objective setting, we deploy NSGA-II from Deb et al. (2002).
In the literature review, we have seen that this was the first multi-objective genetic algorithm that can
handle constraints and elitism. Since it is still very relevant today, we use it here.
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Crossover

Next, two individuals are taken and mated as explained below. As mentioned before, this process is
different for the machine allocation and operation sequence string.

The operation sequence string is crossed over using Precedence preserving order-based crossover (POX)
Lee et al. (1998). POX works as such. (1) Two sub-job sets Js1 and js2 are generated from all jobs and
two parent individuals p1 and p2 are randomly selected. (2) Any gene in p1/p2 that belong to Js1/Js2
are copied into child individuals c1/c2, and retain in the same position. (3) All genes that are already in
sub-job Js1/Js2 are deleted from p2/p1. (4) The empty positions in c1/c2 are orderly filled with genes
of p2/p1 that belong to their previous sequence. This approach is visualized in Figure 4.4 below.

The machine allocation string is crossed over using both two-point crossover and uniform crossover. For
two-point crossover, two random points in the individual are selected. Then, individuals are generated
by combining the genes between the two points of individual 1, with the genes outside the two points
of individual 2, and vice-versa. In uniform crossover, every gene of the new individual has an equal
probability of being selected from individual 1 or 2. These operators are further illustrated in Figure 4.5.

No changes are made to crossover for the multi-objective setting. Even though these crossover functions
are makespan focused, they offer sufficient exploration capabilities.

Figure 4.4: Operation sequence crossover, adopted from G. Zhang et al. (2011)

Figure 4.5: Machine allocation crossover operators, adopted from G. Zhang et al. (2011)

Mutation

The mutation operators for the single-objective setting are quite straightforward. For the machine
allocation string, we select the machine which for which the operation-machine pair has the lowest
operating time in case of mutation. In the case of sequence-dependent setup times, the required setup
between the current operation of the machine and eligible operations is added to the operating time
before the operation-machine pair is picked. For the operation sequence string, we generate a new index
0 ≤ i ≤ |OS|, and swap the gene under consideration with the gene in the generated index.
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For mutation, we add four additional mutation functions to deal with the multi-objective setting. Two
for the operations sequence string, and two for the machine allocation string. These operations are given
in Algorithm 4, and are the following four. (1) greedy deadline mutation: swap operation that misses
the deadline to the start of the operation sequence. (2 and 3) greedy WIP mutation: operations from the
same job are scheduled sequentially and on the same machine (4) greedy cost of addition mutation: an
operation is allocated on the machine on which the operation with the most similar required resources is
allocated. The similarity is determined through cosine similarity, which is given in Equation 4.1 below.
In this Equation, A and B are boolean vectors containing whether each item (i.e., the indices) is required
by operations a and b respectively.

SC(A,B) := cos(θ) =
A ·B
||A||||B||

=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(4.1)

Algorithm 4 MO-SLEGA Mutation

Input
Job Instance Information (I )
Machine allocation (allocation)
Operation sequence (sequence)
Individual mutation probability (indpb)

Output
Machine allocation (allocation)
Operation sequence (sequence)

1: procedure Mutation(I)
2: p1← random.random()
3: p2← random.random()
4: if p1 < 1

3 then
5: sequence ← WIPMutOS(sequence, I, indpb) ▷

schedule operations from same job sequentially.
6: else if p1 < 2

3 then
7: sequence ← SwapMut(sequence, I, indpb) ▷ swap order of two operations.
8: else
9: sequence ← DeadlineMut(sequence, I, indpb) ▷ move operation that missed

deadline to the front.
10: end if
11: if p2 < 1

3 then
12: allocation ← WIPMutMS(allocation, I, indpb) ▷ schedule operation on the

same machine as another op-
eration of the same job.

13: else if p2 < 2
3 then

14: allocation ← ProcTimeMut(allocation, I, indpb) ▷ schedule operation on ma-
chine with lowest processing
time.

15: else
16: allocation ← AddMut(allocation, I, indpb) ▷ schedule operation on ma-

chine that processes most sim-
ilar operation.

17: end if
18: end procedure

Figure 4.6 below displays an example Pareto front which is obtained after a single run of the MO-GA. On
the Pareto front, there are 9 points. From these 9 points, the company would have to select the schedule
seen as most fit with regards to the makespan/cost trade-off. That schedule can then be executed in
practice.
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Figure 4.6: Example Pareto front of company instance.

Parallelization

In order to speed up the aforementioned algorithm, we make use of parallelization. Parallelization is
possible for genetic algorithms as the fitness evaluations are independent, and can be executed at the
same time. This allows us to take advantage of the multiple cores that computational machines have.
Parallelization is realized by the use of a multiprocessing pool in Python, which is easily integrated with
the genetic algorithm framework. Figure 4.7 below displays the speed of running the genetic algorithm
for 100 generations. As can be seen from the figure, when multiprocessing is enabled, the algorithm
completes much faster. At first, the algorithm lacks behind as in the first 10 seconds the algorithm is
preparing the parallel workers (i.e., little overhead), shuffling around data where necessary. Then once
the workers are initialized, we can see that the algorithm with parallelization completes 100 generations
more than twice as fast (47 seconds or 101 seconds respectively).

Figure 4.7: Advantage of multiprocessing

4.1.4 Self-Learning Module

This section describes the third and final component of the proposed SLEGA, the self-learning module.
For this component, there are a couple of differences between the single-objective and multi-objective
settings. These differences are highlighted below. Note that the SLEGA is referred to as SO-SLEGA in
the single-objective setting and MO-SLEGA in the multi-objective setting during experiments.

To allow for parameter control by a deep reinforcement learning agent, we define the following Markov
decision process for the SO-SLEGA. In each generation, an agent is given the following state space (St):

• Normalized mean fitness of the current population.

• Normalized the best fitness of the current population.

• Normalized standard deviation of fitness of current population

• Normalized remaining budget.
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• Normalized stagnation count.

The fitness (f) values are normalized by scaling the fitness values on the range of worst (fmax) and
best-seen fitness (fmin) values so far. More specifically:

f̂ = (f − fmin)/(fmax − fmin) (4.2)

Following this formula, a value of 0 would indicate optimal fitness and a value of 1 would indicate worst
fitness.

Moreover, the budget (i.e., number of generations left, b) and stagnation count (sc) are normalized by
dividing the value by the total number of generations (n gen). Equations for the normalized stagnation
count and budget are given in Equations 4.3 and 4.4 respectively.

b̂ = b/n gen (4.3)

ŝc = sc/n gen (4.4)

The normalized standard deviation is clipped to 1, to reduce to impact of extreme observations. All
other values within the state space are clipped to 1 by definition as well.

The action space of the agent then consists of setting (1) the mutation probability (probability each
individual mutates), (2) the crossover probability, and (3) the mutation rate (probability each gene
mutates). More specifically, the agent can set these values between 0 and 1. This allows for radical
changes from one generation to the other.

Based on the selected probabilities (At), the algorithm then executes the next set of genetic operations.
If the makespan (Tc or f) of the output population has increased, the agent is rewarded with the absolute
increase of this makespan. If the makespan has decreased, the agent is punished accordingly.

Rt = Tct−1
− Tct (4.5)

This reward (Rt) is sent back together with the state space (St+1) based on the freshly created population
(Pt).

The Markov-decision process for the MO-SLEGA is slightly different and formulated as such. Note that
these changes are only implemented in Experiment 4. In each generation, we now have the following
state space (St):

• Normalized remaining budget.

• Normalized stagnation count.

• Average normalized best fitness of the current population.

• Average normalized mean fitness of the current population.

• Average normalized standard deviation of fitness of the current population.

• Normalized hypervolume indicator.

• Normalized Pareto size.

The normalized remaining budget and stagnation count are similar to before. For the fitness values, we
now average over the two objective values as given in Equation 4.6 below.

f̂ =
(f1

−f
1
min)/(f

1
max − f1

min) + (f2 − f2
min)/(f

2
max − f2

min)

2
(4.6)

In this case, f1 refers to the makespan and f2 refers to the cost of a schedule. Note that the hypervolume
indicator and Pareto size are new features, to represent the quality of the found Pareto front. The
hypervolume indicator (Equation 3.1) is the most used set-quality indicator for the assessment of multi-
objective optimizers where the actual Pareto front is unknown (Guerreiro et al., 2021). In order to
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normalize the hypervolume and objective values, we keep track of the best value that was found and
divide the value of the current value by the best value of that objective. In order to normalize the Pareto
set (PS), we divide the size of the Pareto set by the population size (Equation 4.8). We do so as the
actual Pareto set is unknown. This will ensure that all features are between 0 and 1.

ĥv = (hv − hvmin)/(hvmax − hvmin) (4.7)

p̂s =
|PS|
n pop

(4.8)

The action space is the same as in the setting before. However, the reward is now given as such
(Equation 4.9). For each objective value that has improved, a reward of 1 is received (usually called
binary objective value increase). For example, if makespan has improved, a reward of 1 is allocated. If
the cost also improved, another reward of 1 is allocated. The total reward thus equals 2. Similarly, in
case of a decrease in objective value, a penalty of 1 is also allocated. We change to this approach as
both objectives are of equal importance, meaning that increases and decreases should be rewarded on
the same scale.

Rt = 1{f1
t < f1

t−1} − 1{f1
t > f1

t−1}+ 1{f2
t < f2

t−1} − 1{f2
t > f2

t−1} (4.9)

Now that all components of the SLEGA are outlined, we proceed to give the full pseudocode in Algorithm
5 below. Note that selection , crossover, getstate reward refer to different subroutines for the SO and
MO setting. The differences of these procedures are outlined in the previous paragraphs.
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Algorithm 5 Self-Learning Effective Genetic Algorithm

Input
Job Instance Information (I)
DRL policy (π)
Population size (n pop)
Number of generations (n gen)

Output
Pareto Front (hof )

1: procedure SLEGA(I)
2: pop← []
3: hof ← []
4: for x ∈ range(n pop) do ▷ Generate population
5: rnd← random(0, 1) ▷ Random value between 0 and 1
6: if rnd < 0.6 then
7: Indv ← GlobalSelection
8: else if rnd < 0.9 then
9: Indv ← LocalSelection

10: else
11: Indv ← RandomSelection
12: end if
13: pop[x]← Indv
14: end for
15: for gen ∈ range(n gen) do
16: pop← evaluate(pop) ▷ Evaluate population
17: S ← getstate(pop) ▷ Determine state space
18: A← π(S) ▷ Get actions from agent
19: ofsp← selection(pop) ▷ Compute offspring
20: ofsp← crossover(ofsp)
21: new pop← mutation(ofsp) ▷ Compute new population
22: R← reward(new pop, pop) ▷ Compute reward (only for training).
23: pop← new pop ▷ Update population.
24: hof ← update(pop) ▷ Update pareto front.
25: end for
26: end procedure
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4.1.5 Training

The DRL agent is trained using proximal policy optimization (PPO). PPO is a policy-based reinforcement
learning algorithm that was first introduced by Schulman et al. (2017). The original motivation for
selecting this algorithm was the ease of implementation. Furthermore, this agent is also utilized in our
E2E-DRL solution, as described in Section 4.2. Selecting a single training policy makes for a more
equitable benchmark when experimenting. RL classically suffers from the fact that it’s training data
is generated by the agent on-the-fly, rather than relying own a static training set. As a result, the
parameters of the neural network are updated based off the data gathered with an not updated neural
network. trust region policy optimization (TRPO) is the first algorithm that attempts to overcome this
problem (Schulman et al., 2015). TRPO applies a surrogate objective function for updating the policy
network subject to a constraint on the size of the policy network, known as the Kullback-Leibler constant.
This idea ensures that the jump in old and updated policy is limited, enabling stability in the learning
process.

PPO essentially is a simplified version of TRPO and PPO exists in two main forms, PPO penalty, and
PPO clip. In this research on scheduling, clipped PPO is used as this is considered the most prevalent.
Clipped PPO simply restricts the range in which the policy can change. More specifically, the clipped
PPO loss is given in Equation 4.10 below. The clipped loss is then used to update the policy as given in
Equation 4.11.

LCLIP
θk

(θ) = Eτ∼πk
[

T∑
t=0

[min(rt(θ)Â
πk
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Âπk

t )] (4.10)

where Âπk
t indicates the estimated advantages for of a policy πk at time step t. Within our SLEGA,

this is interpreted as the advantage of selecting specific values for the crossover probability, mutation
rate, and mutation probability compared to the average value obtained when using different settings
for these parameters. [1 − ϵ, 1 + ϵ] indicates the clipping range, rt(θ) represents the reward obtained
at a particular time step t when using the hyperparameters θ selected in the genetic algorithm. rt(θ)
contains the clipped rewards obtained by the agent through setting the genetic operation parameters.
The clipped loss then is a function of the advantages and rewards, computed by tacking the expected
value over multiple trajectories, i.e., one or more optimization runs of the genetic algorithm.

θk+1 = argmaxθLCLIP
θk

(θ) (4.11)

The policy is updated in an actor-critic setting, where we have N actor networks and a critic network
which all share the same network architecture. The actors run the old policy πθold in an environment for
T timesteps. Within the SLEGA, this means that multiple genetic algorithms are executed before the
policy θ is updated. After the T timesteps, LCLIP

θk
(θ) is optimized for K epochs given a mini-batch size

M ≤ N × T . This will result in the new policy which is copied back to the actors.

In order to embed state information, the agent makes use of a standard multi-layer perceptron (MLP)
policy from stable-baselines3. This policy and value network both consist of two linear layers. The first
layer has 5 or 7 input features (i.e., our defined state space) and 64 output features. The second layer
has 64 in- and out features. Both layers have a Tanh activation function. This activation function is
given in Equation 4.12 below. Tanh became preferred over the Sigmoid activation function, as it gave
better performance for multi-layer neural networks (Schulman et al., 2017). Before the output layer,
the 64 hidden features represent the embedding of the current state of the optimization algorithm. To
estimate the value and actions of a state, we employ an additional output layer with 64 input features
and 1 output feature for the value network, and 3 output features for the action network. The value
network here outputs the expected value of a state, which is used during training. The action network
here outputs the crossover rate, mutation rate and mutation probability which are used in the genetic
algorithm.

f(x) =
ex − e−x

ex + e−x
(4.12)

To avoid overfitting, we validate the policy every 1000 time steps (i.e., 10 SLEGA runs) on a validation
environment. The model with best performance on validation environment is then saved. Furthermore,
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The pseudocode for this training algorithm is given in Algorithm 6 below. The algorithm already has
various hyperparameters filled in (e.g., validation every 1000 timesteps).

Algorithm 6 SLEGA training procedure

Input
MLP policy and genetic algorithm

1: procedure TrainPPOModelSLEGA
2: best reward ← 0
3: while t < T do ▷ until total training time steps are reached
4: if t mod 1000 == 0 then
5: sample new batch B of FJSP instances
6: end if
7: for b ∈ B do ▷ in parallel
8: initialize environment E based of b
9: for iter ∈ I do ▷ one run of SLEGA

10: compute mutation rate, crossover, and mutation probability from MLP policy
11: apply selection, crossover, and mutation
12: receive reward rt and next state st+1.
13: st ← st+1 ▷ update state of environments
14: end for
15: end for
16: compute PPO loss
17: update policy
18: t← t+ |B| × I ▷ update number of executed time steps
19: if t mod 1000 == 0 then
20: valid reward ← validate policy
21: if valid reward ≥ best reward then
22: save model
23: best reward ← valid reward
24: end if
25: end if
26: end while
27: end procedure
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4.2 End-to-End Deep Reinforcement Learning

For our second solution method, we make use of end-to-end deep reinforcement learning (E2E-DRL).
More specifically, we adopt the implementation of Song et al. (2022) and make adjustments to tailor
it specifically to our FJSP instances. These proposed adjustments introduce the novelty in our work.
The section is divided in the following way. First we describe the general framework used to train the
E2E-DRL solution. Then, we dive deeper into the state space, the GNN used for state embedding, and
the action space. Finally, we describe the training procedure.

Figure 4.8 below displays the E2E-DRL framework. As can be seen, the scheduling state is formulated as
heterogeneous graph. This graph is then embedded using a graph-neural network. After which a policy
network consumes the embedding to action probabilities. Based on this action probability, actions can
then either be sampled (DRL-S) or greedily selected (DRL-G).

Figure 4.8: E2E-DRL Framework, adopted from Song et al. (2022)

The Markov decision process (MDP) used by the authors to model the FJSP is as such. The scheduling
environment in the context of the Flexible Job-Shop Scheduling Problem (FJSP) operates based on dis-
crete events. These events represent specific points in time when certain changes occur. For example, an
event can occur when an operation is completed or when a machine becomes available. The environment
keeps track of the current moment in time during the scheduling process. The moment at which an
event occurs is also directly the new state of the environment. In this state, the agent decides which
operation-machine (O-M) pair to execute, taking into account the current various features described
below. The selected machine is then marked as unavailable for the duration of time it takes to process
the chosen operation.

If there are no eligible O-M pairs available for selection at a given state, the environment progresses to
the next point in time until a new O-M pair becomes available. This iterative process continues until
all operations are successfully scheduled. The makespan, which represents the total duration of the
scheduling process, is determined by identifying the first moment when all machines are available, and
all operations have been executed.

4.2.1 State space

To spice things up, the state space of the FJSP environment is represented as heterogeneous graph (HG).
Such representation is given in Figure 4.9 below. The graph is defined as such H = (O,M, C, Et). The
machine nodes (M) are given on the top side of the graph, and the operation nodes (O) are connected
from left to right to represent a job. The graph also has dummy start and end nodes. For example, job 1
has three operations, o11, o12, and o13, these are connected from left to right to indicate the order in the
operations are to be processed. The directional arcs (C) between these nodes thus indicate the precedence
constraints exciting between the operations. Furthermore, there exist bi-directional arcs (Et) between the
machine and operations nodes. These arcs represent either possible combinations of O-M pairs (dotted
lines) or scheduled O-M pairs (solid lines). This heterogeneous graph representation is used over the
original FJSP disjunctive graph (C. Zhang et al., 2020) as (1) the graph density is significantly reduced,
(2) information on O-M combinations can easily be represented and (3) information on machines can
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easily be represented. The bi-directional arc set Et changes over time as operations are scheduled, hence
the full graph representation Ht is also dependent on time t.

Figure 4.9: Heterogeneous Graph representation of FJSP. A dotted line means processable, while a solid
line means scheduled. Adopted from Song et al. (2022)

In all of our experiments outlined in the next chapter, the nodes and arcs have the features outlined
below at each timestep during scheduling. These features are either taken from the work of Song et al.
(2022), or are custom-made extensions to tackle our specific problem at hand. Most features are dynamic
and thus change over time, some features are static and are set during initialization. To compute some
of the features, we need to track the current partial schedule of operations and the partial schedule of
machines. To clarify computation of the features at state st, we define some new notation below.

For the partial operation schedule (SO) we track whether an operation Oij is scheduled (SO[0]ij), the
allocated machine (SO[1]ij), the calculated or actual start time (SO[2]ij), the expected or actual end
time (SO[3]ij). For the partial machine schedule (SM), we track whether a machineMk is idle (SM [0]k),
when the machine is next available (SM [1]k), the amount of time a machine is operating (SM [2]k) and
the operation that is running (SM [3]k). These variables are dynamic and dependent on state st.

Furthermore, static information at the start is collected from the FJSP environment. This static infor-
mation consists of (1) the processing time pijk of scheduling a operation Oij on machine Mk, (2) the
eligibility elijk of scheduling an operation Oij on machine Mk (binary indicator), (3) the precedence
constraints ciji′j′ that indicates whether an operation Oij preceeds operation Oi′j′ (binary indicator),
(4) reverse precedence constraint criji′j′ that indicates whether and operation Oij is a successor of Oi′j′

(binary indicator), (5) ojij represents the job number of operation Oij , (6) foj marking the first op-
eration of job Jj , (7) noj indicating the number of operations of job Jj , (8) the remaining number of
operations rij after completing operation Oij, (9) the sequence-dependent setup-times siji′j′ required
between operation Oij and operation Oi′j′ . (10) noij indicating whether operation Oij can be processed
at night (binary indicator), (11) nsij indicating whether operation Oij can be started at night (binary
indicator), (12) the release date rij of operation Oij . Given this information and the current state St at
time unit tt, we then can calculate the features of the nodes and arcs as such.

Operation nodes (∀Oij ∈ O)

1. I(Oij , st) : Binary indicator that equals 1 when an operation Oij is scheduled in state St. This is
directly equal to SO[0]ij .

2. NC(Oij): Number of connected machines. This attribute indicates how many possible machine
options an operation Oij has. This is set during initialization as such

∑
k∈M elijk.

3. P̂ (Oij , st): Average or actual processing time in state st. This attribute indicates the average pro-
cessing time over the connected machines in case an operation is not scheduled. 1∑

k∈M elijk

∑
k∈M elijk×

pijk. In case an operation is scheduled on any machine Mk, this feature represent the actual pro-
cessing time pijk.

4. NU(Oij , st): The number of unscheduled jobs at state st. This is computed using SO[0]ij and
ojij , by aggregating over the job instance Jj found in SO[0]ij .
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5. Ŝ(Oij , st): Potential or actual start time. This is calculated by recursively computing start times for

all preceding operationOi′j′ . This can be computed as such: Ŝ(Oij , st) = max [Ŝ(Oi′j′ , st) + P̂ (Oij , st), rij].
The precedence constraints are given in ciji′j′ .

6. Ĉ(Oij , st): Expected or actual operation completion time. This is computed in the following way:

Ĉ(Oij , st) = Ŝ(Oij , st) + P̂ (Oij , st).

7. no(Oij): Binary indicator that equals one when an operation can be processed at night. This is
static and comes directly from input information.

8. ns(Oij): Binary indicator that equals one when an operation can be started at night. This is static
and comes directly from input information.

9. ttr(Oij), st): Time until the release date of an operation is satisfied. Computed by taking subtract-
ing the current time unit at state st from the release date of operation. ttr(Oij , st) = rij − ttt.

Machine nodes (∀Mk ∈M)

1. NC(Mk): Number of connected operations. This attribute indicates how many possible operations
a machine has. This is set during initialization as such

∑
Oij∈O elijk.

2. A(Mk, st): Available time of machine Mk at state st. The time unit at which the machine becomes
available again. This is maintained in SM [1].

3. U(Mk, st): Utilization of machine Mk at in state st. This is calculated as such: U(Mk, st) =
SM [2]k/ttt.

4. TS(st): Time of scheduling, directly taken from ttt.

5. RTN(st): Remaining time until night. Calculated using: max[50400 − (ttt mod 86400), 0]. Note
that this variable is equal to 0 when it is already night, 86400 covers a full day in time units, and
night starts at 50400 time units. Note that we emit some logic here in case the night is about to
end.

O-M pairs (∀(Oij ,Mk) ∈ Et)

1. PT (Oij ,Mk): Processing time of operation Oij on machine Mk, directly taken from pijk.

2. ST (Oij ,Mk, st): Sequence-dependent setup time for scheduling operation Oij on machine Mk at
state st. Since this variable is dependent on the previous operation O′

ij
′, we extract O′

ij
′ from

SM [3]k. Then, siji
′j′ indicates the required setup time for scheduling operation Oij on machine

Mk.

3. TRN(Oij ,Mk, st): The number of time units an operation Oij would be running at night on ma-
chine Mk at state st. Calculated by as such: TRN(Oij ,Mk, st) = PT (Oij ,Mk)+ST (Oij ,Mk, st)−
RTN(st)

Compared to the original work of Song et al. 2022, seven new features were added. The motivation for
the features is given below. For operation nodes, three features were added. The first added feature is
night schedule (no(Oij)), which represents whether operations can be completed or executed during
the night. The second added feature is night setup, which represents whether features can be started
at night (ns(Oij). These two features should allow the agent to learn that certain operations can be
executed or started during the night, when no operators are available. This thus it should be scheduled
then to minimize makespan. The last feature is time to release (ttr(Oij , st)). Time until release allows
agents to understand the behaviour of when important operations will become available.

For machine nodes, we added information on current time of scheduling (TS(St)), and the remaining
time until night (RTN(st)). This should represent the logic required for understanding the time of day,
in order to be able to decide whether an operation that can run during the night should be considered.

For O-M pairs, we have two additional features: sequence-dependent setup times (ST (Oij ,Mk, sT ))
and time running at night (TRN(Oij ,Mk, st)). The first feature shows the setup time incurred when
an O-M pair is selected, whereas the second feature covers the time the operation would be running at
night. These features are interesting for the agent to select the operation with the least setup time, and
the most time running at night. All other features are directly taken from Song et al. (2022).
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4.2.2 State Embedding

Now, in order to allow a DRL agent to consume this graph as information, we embed the graph using the
HGNN proposed by Song et al. (2022). GNNs are size-agnostic, meaning that they can handle graphs
of varying sizes. This allows us to deploy the trained network on FJSP instances of different sizes than
the ones trained on. This property is achieved through their graph-based message-passing mechanism,
where information for each node is extracted from the neighbours of a node. The HGNN consists of
three parts, (1) machine node embedding, (2) operation node embedding and (3) stacking and pooling.
Similar to the authors work, we do not use the pooling layer (denoted with L) in our experiments. Hence
only the process of stacking is described in step 3 of the embedding.

Figure 4.10: HGNN architecture, adopted from Song et al. (2022)
.

Figure 4.11: Two-stage embedding scheme of the heterogeneous graph, adopted from Song et al. (2022)
.

Like in the work of Song et al. (2022), we use the graph attention network for machine node embedding,
as it able to learn the importance of different operation nodes. For example, operations expected to
start sooner might be more important than operations expected to start later. Under the same logic, the
network should also be able to learn that operations that run almost entirely during the night, are more
critical than operations that would finish just after the start of the night. The message-passing step here
is quite simple, a machine node aggregates information from only the first-order neighbourhood (only
the eligible operations on that machine). More specifically, the Song et al. (2022) propose the following
steps to embed the machine nodes M in the setting of a heterogeneous graph.

For a machine Mk, the attention coefficients eijk can be calculated as given in Equation 4.13. This
attention coefficient represents the importance of each neighboring operation Oij ∈ Nt(Mk).

eijk = LeakyReLU
(
a⊤

[
WMνk||WOµijk

])
(4.13)

where eijk represents the attention coefficient between machine Mk and operation Oij , LeakyReLU
denotes the Leaky Rectified Linear Unit activation function, a⊤ represents the weight parameter, WM

and WO denote the linear transformations that are used, νk represents the machine embedding, and µijk

represents the extended feature vector of the operation-machine arc. Here, only the neighborhood of the
machine node is considered. I.e., the attention coefficient does not include the attention coefficient of
the machine Mk to itself. In order to account for that, we calculate the attention coefficient ekk as listed
in Equation 4.14
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ekk = LeakyReLU
(
a [WMνk ||WMνk]

)
(4.14)

where ekk represents the attention coefficient for machineMk to itself, LeakyReLU denotes the activation
function, a represents the weight, and WM denotes the weight matrix for machine nodes. Then, all
attention coefficients eijk∀Oij ∈ Nt(Mk) are normalized together with ekk using a softmax to obtain the
normalized attention coefficients aijk and akk. The final machine embedding ν′k is then calculated using
equation 4.15.

ν′k = σ

 ∑
Oij∈Nt(Mk)

αijk W
Oµijk + αkk W

Mνk

 (4.15)

where ν′k represents the machine embedding for machine Mk, σ denotes the activation function, µijk

represents the raw feature vector of the arc between machine Mk and operation Oij .

The operation node is then embedded given the eligible machines, the previous node, the next node
and the node itself. Here, we are also able to learn the features of operation nodes such as the average
processing time, or the time until the release date (Song et al., 2022). more specifically, we generate
the operation node embedding µ′

ij using five different MLPs. Each of these networks has two hidden
dimensions with 64 features and uses ELU activation. These networks together are responsible for the
final projection of the operation node embedding. Since an operation can have multiple machines in
its first-order neighborhood an element wise sum is applied to obtain the aggregated machine node
embedding (ν′ij). This is calculated as such: ν′ij =

∑
k∈Nt(Oij)

ν′k. The final operation node embedding
is then given in Equation 4.16 below.

µ′
ij = MLPθ0

(
ELU

[
MLPθ1(µi,j−1) ||MLPθ2(µi,j+1) ||MLPθ3(ν

′
ij) ||MLPθ4(µij)

])
(4.16)

where µij represents the embedding for operation Oij , MLPθi denotes the MLP with parameters θi, ELU
denotes the activation function, µi,j−1 and µi,j+1 represent the embeddings of the immediate predecessor
and successor of Oij , respectively, ν

′
ij represents the aggregated embedding of the neighboring machines,

and µij represents the original embedding of operation Oij .

Once both the machine node and operation node embeddings are computed, they are stacked in order to
arrive at the final state embedding (ht). The two embeddings are concatenated (||) as given in Equation
4.17 below.

ht =

 1

|O|
∑

Oij∈O

µ′
ij ||

1

|M |
∑

Mk∈M

ν′k

 (4.17)

Action Space and Reward Function

Now that we have our state embedding (ht), we need to convert the state embedding into a O-M
allocation. We do so using the actor-critic set-up proposed by Song et al. (2022). Similar to the authors,
we only use a single actor network.

The actor network computes a probability distributed across the available actions given the current state
(π(at|st)). The actor consists of two MLP layers of 64 features with tanh activation (denoted as MLPω).
The MLP layers are used to calculate the preference (P (at, st) for selecting action at in state st (Equation
4.18). Then, a softmax is applied to convert the features into a probability density across the possible
different O-M allocations. The softmax is given in Equation 4.19 below.

P (at, st) = MLPω(µ
′
ij || ν′k ||ht) (4.18)

πω(at|st) =
exp(P (at, st))∑

a′
t∈At

exp(P (a′t, st))
∀at ∈ At (4.19)
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where πω(at|st) denotes the policy for selecting action at given state st, P (at, st) represents the preference
or score associated with action at and state st, At is the set of all possible actions at time t, and

∑
a′
t∈At

denotes the summation over all actions in At.

The critic network on the other hand computes the value of the current state (ν(st)). The critic network
is a simple MLP network (MLPθ) consisting of two hidden layers of 64 features with tanh activation.
The output layer of this network has a single feature, which represents the value of state st.

In order for the actions to be eligible given the constraints of Wefabricate. We make the following
adjustments. First, we ensure that the agent can only select feasible actions by removing all actions that
are not eligible from the decision set, similar to how this was implemented in Song et al. (2022). This is
implemented by masking the decision set (At) such that the agent will always select an available decision
(i.e., setting probabilities to invalid numbers).

The following extra checks are executed on the action set. Only operation-machine allocations which (1)
will finish during the day, or can run at night, (2) can start and run during the night or start during the
day, and (3) release dates have passed. The same addition is made to the transition function, where in
case the environment has no operation-machine pairs available, the environment will transition to the
nearest (1) new day-start, (2) release date, or (3) time at which the first machine comes available. After
this transition, the new state space st is computed.

Now, in order for the agent to learn, the reward function given in 4.20 is implemented. This reward
function compares the expected makespan (Ĉmax,t) in state st against the makespan in the previous state
st−1. If the makespan has increased, we get a penalty (negative reward rt). The estimated makespan is
recomputed after every decision made by the agent to calculate the reward. The estimated makespan is
calculated recursively as given in equation 4.21.

Rt = Ĉmax,t−1 − Ĉmax,t (4.20)

Ĉmax = max
∀Oij∈O

[ max
Oi′j′∈prec(Oij)

Ci′j′ + p̂ij ] (4.21)

where max
Oi′j′∈prec(Oij)

Ci′j′ is the first potential starting moment of operationOij (i.e., maximum completion

of all precedence constraints prec(Oij)), and p̂ij is the average processing time of this operation.

4.2.3 Training

Similar to our proposed SLEGA, we make use of PPO to train our DRL agent. For a general introduction
on this approach please refer back to Section 4.1.5. Again, we use the clipped PPO loss function given
in Equation 4.10 to train our agent. The loss function can now be interpreted as such. Âπk

t indicates
the advantage of selecting a specific O-M pair over the average value of selecting any O-M pair. rt(θ)
represents the reward obtained at a particular time step t when selecting the O-M pair the agent θ
prescribed rt(θ) contains the clipped rewards obtained by the agent through setting certain parameters.
The clipped loss then is a function of the advantages and rewards, computed by tacking the expected
value over multiple trajectories, i.e., one or more scheduling environments solved with the DRL agent.

Since the actor returns a probability density function that a certain action should be selected, we can take
several approaches for testing/training purposes. During training, actions are always picked by sampling
the probability density function in order to encourage exploration. During testing, actions can either be
taken based on sampling actions according to the distribution function (DRL-S), or by greedily picking
the action with the highest probability (DRL-G). Sampling actions will result in different schedules,
whereas greedily selecting actions will always result in the same schedule. Because sampling results in
different schedules, more optimal schedules can potentially be found. This is further described in the
next chapter.

The pseudocode for how the DRL agent is trained is given in Algorithm 7 below. Note that the algorithm
for testing is a subset of this algorithm. More specifically, lines 8-14 represent the procedure used
for testing. In this procedure, the sampled actions can be replaced by selecting actions greedily (i.e.,
change line 11). Every 20 iterations, we validate the policy on validation instances to avoid overfitting.
Furthermore, we notice that training occurs in parallel. This allows us to take advantage of the multi-
processing capabilities of modern computers, which significantly speeds up the process.
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Algorithm 7 E2E-DRL training procedure

Input
HGNN network, policy network, and critic network with trainable parameters θ, ω and ϕ

1: procedure TrainPPOModelE2E-DRL
2: for iter ∈ I do
3: best reward ← −infinite
4: if iter mod 10 == 0 then
5: sample new batch B of FJSP instances
6: end if
7: for b ∈ B do ▷ in parallel
8: initialize environment E based of b
9: while E not terminal do ▷ until all schedules are done

10: extract embeddings using HGNN.
11: sample at πω(·∥st).
12: receive reward rt and next state st+1.
13: st ← st+1 ▷ update state of environments
14: end while
15: end for
16: compute the PPO loss L, and optimize the parameters θ, ϕ and ω for R epochs.
17: update network parameters
18: if iter mod 20 == 0 then
19: valid reward ← validate policy
20: if valid reward ≥ best reward then
21: save model
22: best reward ← valid reward
23: end if
24: end if
25: end for
26: end procedure
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Chapter 5

Experimental Setup

Now that we have outlined two novel algorithms for tackling the FJSP problem of Wefabricate in the pre-
vious chapter, we continue defining the experiments in this chapter. More specifically, four experiments
will be executed. The experiments are outlined in Table 5.1 below. Note that experiments are done
both in a single-objective optimization (SOO) as MOO setting. For experiment four, only the SLEGA
is considered the E2E-DRL algorithm is not designed for the MOO setting. The proposed experiments
allow us to highlight performance differences between the two algorithms described in the previous sec-
tion across various scenarios. This benchmark provides novelty in the field of flexible job-shop scheduling
algorithms.

Exp. Setting Dataset Problem
Type1

Description Purpose Using re-
sults from

1 SOO mkdata
edata
rdata
vdata
cudata

FJSP Evaluate schedul-
ing algorithms on
traditional FJSP
setting.

Identify performance, scalability, and
flexibility of implemented algorithms.

-

2 SOO ftdata 1 &
SDST

Evaluate schedul-
ing algorithms on
traditional FJSP
with SDST.

Benchmark flexibility of algorithms to
new characteristics.

1

3 SOO WFdata 2 &
Release
Dates
& Night
Times

Evaluate schedul-
ing algorithms on
company-specific
datasets.

Evaluate the performance of imple-
mented algorithms for the company, an-
alyzing robustness, flexibility and scal-
ability.

1

4 MOO WFdata 3 Evaluate schedul-
ing algorithms in
a multi-objective
setting.

Benchmark algorithm flexibility and
scalability when dealing with multiple
objectives.

-

1 Building on previous experiments by adding constraints.

Table 5.1: Experiment design

5.1 Performance Indicators
In Chapter 6, we report various performance indicators during training and testing. During training, we
generally report the rewards obtained by the DRL agent, and the makespan. Furthermore, we define the
following performance indicators which will be used to benchmark the algorithms on top of the makespan
and operations cost objective. These performance indicators are the optimality gap, the ranking score,
the win count and computation time.

The reward functions are different for each algorithm and are explained in Chapter 4. When rolling
averages of rewards are shown, they are calculated according to Equation 5.1.

r̂t =
rt + r̂t−1(t− 1)

t
(5.1)
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Where r̂t is the rolling average at timestep t, and rt the reward at timestep t. The initial rolling average
reward is set to 0 (r̂0 = 0).

The optimality gap (in percentage) is calculated as given in Equation 5.2.

Gopt =
Ĉmax

LB − 1
∗ 100 (5.2)

where Ĉmax is the average makespan for an instance set, and LB the average lower bound of this set. In
case no lower bound is available for a certain problem instance, we consider our best-found solution to
be the lower bound of this instance. Note that this LB thus does not have to be equal to the optimal
solution of the instance.

We also introduce a ranking score and notion of wins in experiments 2 and 3. An algorithm is said to
have won an instance if it has (or ties with) the best makespan for that specific instance. It thus could
occur that multiple algorithms have “won” an instance. The win count is interesting as it helps identify
which algorithm performs best overall test instances, as the optimality gap is influenced significantly by
performance outliers in test instances. Table 5.2 shows an example of how the average ranking score and
win count are computed given 3 algorithms and 3 instances. As can be seen, algorithm A reaches an
average ranking score of 1 1

3 as it manages to obtain the lowest makespan in 2 out of 3 instances. Hence,
the win count is also 2 for this algorithm.

Algorithm Instance 1 Instance 2 Instance 3 Ranking Score Win Count

A 100 (1) 500 (1) 80 (2) 1 1
3 2

B 200 (2) 900 (3) 20 (1) 2 1
C 300 (3) 700 (2) 20 (1) 2 1

Table 5.2: Example win count and ranking score calculation.

Models are compared against benchmark information available from the literature. Benchmark ap-
proaches considered are the implemented GA (SO-EGA/MO-EGA), random scheduling (RANDOM),
greedy scheduling (GREEDY) and the following dispatching rules: shortest processing time (SPT),
most operations remaining (MOR), most work remaining (MWKR), first-in first-out (FIFO). Random
scheduling, greedy scheduling and most work remaining are also implemented for benchmarking pur-
poses on custom instances. Greedy scheduling is a constructive approach, where in each iteration, the
operation-machine combination which increases the total makespan the least is selected.

5.2 Training Approach
To train the models introduced in the coming sections, we use a standardized approach. All models
are trained on an AIME A4000 - Multi GPU HPC rack server with 96GB of GPU memory, 132GB of
RAM, and 48 cores. Throughout all of our experiments, we use the training algorithms defined in the
previous chapter. Note that little effort is taken to tune the hyperparameters of each training approach.
The training approach is different for the E2E-DRL and SLEGA solutions and is further outlined below
separately. Note that pseudocode of the training algorithms is given in Chapter 4.

5.2.1 SLEGA

The self-learning effective genetic algorithm (SLEGA) approach is trained using a custom OpenAI gym
environment, together with the PPO agent from Stable Baselines31. This implementation also uses
PyTorch in the back end. During training, the batch size was set to 1, and the number of generations
and population size per run were set to 100. Multi-processing was enabled as we saw that this was faster
than increasing the batch size. The number of steps for updating was set to 100 (i.e., update every GA
completion). For the updates, a mini-batch size for updates of 50 is used. The other parameters of the
PPO policy are unchanged, which results in a learning rate of 0.0003, a discount rate of 0.99, and a clip
range of 0.2. For each run of the genetic algorithm, a different FJSP instance is taken from the training
instances. Every 1000 steps, a new batch of FJSP instances is sampled to train the model on. The best

1https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
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model found during validation is saved. Validation is executed on 50 independent instances, every 1000
steps, by computing the total reward over these 50 instances.

5.2.2 E2E-DRL

The end-to-end deep reinforcement learning approach is trained in PyTorch 1.13.1, using a custom
OpenAI Gym environment2. For the PPO agent, the implementation from Song et al. (2022) is followed.
During training, the batch size is set to 100, which means that a hundred scheduling instances are solved
at the same time. During each selected action, memories are collected. When all instances are finally
solved, the PPO agent will sample actions from memory with a mini-batch size set to 512, and optimize
its parameters θ, ϕ, and ω for 3 epochs. In every iteration, the PPO policy is optimized. Each model is
trained for 1000 iterations. The discount factor is set to 1 which means that no discounting is applied to
the obtained rewards. This discount factor is set as the distant reward is based on the final makespan,
hence the distance reward should be valued more and no discounting should be applied. The clip range
is set to 0.2, and the learning rate is set to 0.0002 as this worked well in the paper of Song et al. (2022).

Every 20 iterations a new training batch of FJSP instances is sampled, in order to avoid overfitting.
Furthermore, every 20 iterations, the model is also validated on 50 validation instances. The model
with the lowest validation makespan is saved and returned at the end of the training procedure. The
size of the training instances is different per experiment and will be further elaborated on below. Note
that the validation reward (i.e., makespan) is thus different from the training reward (i.e., decrease in
makespan). When testing and validating the performance of the E2E-DRL approach, we consider both
a greedy action selection strategy (DRL-G) and a sampling action selection strategy (DRL-S). For the
sampling approach, a sample size of 20 is considered.

5.3 Literature Benchmark Instances
This section describes the literature benchmark datasets used in testing. These are the Brandimarte
dataset (mkdata), Hurink dataset (edata, rdata and vdata) and Fattahi dataset (ftdata). For literature
benchmark FJSP datasets, flexibility is an important consideration. The level of flexibility discussed
below considers the average amount of machines which are able to process a said action.

To describe the benchmark instances, we use the following formulation. n is the number of jobs, m is the
number of machines, hi indicates the number of operations per job i, |Mi,k| indicates the average number
of machines that can handle an operation, pi,j,k indicates the processing time range for operation-machine
pairs, and si,j,k,l indicates the sequence-dependent setup time range. LB indicates the instance lower
bound. E.g., the value that can not be outperformed by any algorithm as this is infeasible given the
instance. UB indicates the instance’s upper bound. E.g., the best-known feasible solution. CP indicates
the result found when constraint programming is executed for 10 minutes. The CP result supports
identifying the complex problem instances.

Brandimarte

Brandimarte (1993) introduced the general FJSP and provided a set of 15 problem instances with medium
flexibility (Behnke and Geiger, 2012). The parameters here are configured in the following way:

instance n m hi |Mi,k| pi,k,j LB UB CP

mk01 10 6 [5, 7] 3 [1,7] 36 39 40
mk02 10 6 [5, 7] 6 [1,7] 24 26 27
mk03 15 8 10 5 [1,20] 204 204 204
mk04 15 8 [3,10] 3 [1,10] 48 60 60
mk05 15 4 [5,10] 2 [5,10] 168 172 174
mk06 10 15 15 5 [1,10] 33 58 59
mk07 20 5 5 5 [1,20] 133 139 143
mk08 20 10 [5,15] 2 [5,20] 523 523 523
mk09 20 10 [10,15] 5 [5,20] 299 307 307
mk10 20 15 [10,15] 5 [5,20] 165 197 214

Table 5.3: Brandimarte FJSP instances description

2https://www.gymlibrary.dev/
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Hurink

Hurink et al. (1994) created the sdata dataset based of the instances mt06, mt10 and mt20 datasets from
Crowston et al. (1963), and the instances la01 to la40 generated by Lawrence (1984). For the sdata set,
every operation is assigned to exactly one particular machine. The sdata set was adjusted by enlarging
the respective set of adjustable machines to create three more datasets: edata, rdata and vdata (Behnke
and Geiger, 2012). The final datasets (4 datasets with 43 instances each) are described in Table 5.4 and
5.5 below. The average lower bound, average upper bound and average constraint programming results
equal (981.7, 1004.0, 1009.1) for edata, (899.6, 909.9, 917.9) for rdata and (894.8, 895.6, 895.9) for vdata
respectively.

instance n m

mt06 6 6
mt10 10 10
mt20 20 5
la01-05 10 5
la06-10 15 5
la11-15 20 5
la16-20 10 10
la21-25 15 10
la26-30 20 10
la31-35 30 10
la36-40 15 15

Table 5.4: Hurink instance description

avg |Mi,k| max |Mi,k| min |Mi,k|
sdata 1 1 1
edata 1.15 3 1
rdata 2 3 1
vdata 1

2m
4
5m 1

Table 5.5: Hurink dataset modification description
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Fattahi

The instances from Saidi-Mehrabad and Fattahi (2007) are described in Table 5.6. Because of their
relatively small size, they are generally used in mathematical programming benchmarking. Instances
1-10 are considered small, and instances 11-20 are considered of medium size. Partial flexibility here
includes that operations can be executed on a subset of machines, whereas total flexibility indicates that
all machines are able to process a said operation.

Instance n m s,i,j,k,l Flexibility LB UB CP

1 2 2 2 [3,8] Total 66 66 66
2 2 2 2 [3,10] Partial 107 107 107
3 3 2 2 [6,15] Partial 212 221 221
4 3 2 2 [8,21] Partial 331 355 355
5 3 2 2 [3,6] Total 107 119 119
6 3 2 2 [5,18] Partial 310 320 320
7 3 5 3 [8,23] Total 397 397 397
8 3 4 3 [4,13] Total 216 253 253
9 3 3 3 [4,11] Total 210 210 210
10 4 5 3 [10,28] Partial 427 516 516
11 5 6 3 [8,24] Partial 403 468 468
12 5 7 3 [9,26] Partial 396 446 446
13 6 7 3 [9,30] Partial 396 466 466
14 7 7 3 [10,31] Partial 496 554 554
15 7 7 3 [10,30] Partial 414 514 541
16 8 7 3 [10,30] Partial 614 635 634
17 8 7 4 [10,31] Partial 764 879 931
18 9 8 4 [10,30] Partial 764 884 884
19 11 8 4 [10,30] Partial 807 1088 1070
20 12 8 4 [10,33] Partial 944 1267 1208

Table 5.6: Fattahi dataset description

Based on the dataset descriptions above, the most complicated instances to solve are mk04, mk06 and
mk10 from mkdata, the edata from Hurink et al. (1994) and instances 11-20 from ftdata. This conclusion
is based on the CP result.

5.4 Custom FJSP instances
This section describes the datasets custom generated for this research. These are the custom vanilla
FJSP instances (cudata) and the constraint Wefabricate instances (WFdata).

Besides these instances, we also use the instances of Song et al. (2022) for testing purposes (sodata).
The data of Song et al. (2022) consists of 100 instances for sizes 10x05, 15x10, 20x10 and 20x05. A copy
of the sodata is made for Experiment 2, where a setup time between 1 and 15 is uniformly generated
for each possible combination of a machine and two operations (stdata). This range was selected as it is
quite similar to the testing dataset.

5.4.1 Vanilla FJSP instances

In order to further investigate the performance differences between the two algorithms on the vanilla
FJSP, we generate custom vanilla FJSP instances. These FJSP instances are referred to as cudata. These
instances have varying sizes between 5x5 and 95x95 and are generated using the FJSP case generator
from Song et al. (2022). In this case generator, we define a minimum and maximum number of operations
per job. These values are set to 5 and 10 respectively. The minimum and maximum number of machines
per operation is not set, but this will be between 1 and the total number of machines by definition. The
number of machine options is also uniformly randomly generated. The processing time is set uniformly
between 1 and 20 for each operation. This dataset thus includes extreme instances in terms of the jobs-
to-machine ratio. I.e., there are instances with 0.05 jobs per machine and instances with 19 jobs per
machine. Analysing the performance of the two proposed algorithms for these edge cases illustrates how
scalable and flexible the algorithms are.

50



5.4.2 Wefabricate instances

The Wefabricate-specific instances (WFdata) are generated using a set of products that customers can
potentially order. This set consists of 75 different jobs, each consisting of 1-5 operations. The jobs can
have a quantity between one and five. The processing time is given per operation per product, whereas
the total processing time for an operation is then calculated by multiplying the processing time by the
quantity. Figure 5.1 below displays the distribution of processing times for the different operations. As
can be seen, the duration of operations ranges anywhere from 0 to 5000. Because quantities are between
1 and 5, there exist 375 different jobs which can exist within an instance. The number of machines
and jobs is set before generation. The instance is considered completely flexible, which means that all
operations can be scheduled on all machines. Furthermore, the operations have equal processing time
on each of the available machines.

Sequence-dependent setup times are based on the pallet of an operation, in case the pallet is different for
two operations, a setup time of 10000-time units is considered. We consider this significant set-up time as
we would like to discourage any scheduling algorithm to schedule operations with different pallets back-
to-back. Deadlines are generated following the total work content (TWK) method of Blackstone et al.
(1982). More specifically, in order to generate deadlines, we initialize our deadlines to the processing times
of each operation. Then in order to calculate the actual deadline, we increase a tightness factor by 10%.
With this tightness factor, the new deadline is calculated by multiplying this with the processing time
per operation. This process is repeated until 75% of jobs can finish before their deadline when a shortest
processing time approach is taken. Release dates are then calculated by subtracting a constant value of
15000 from this deadline. Whether operations can run at night, or whether they can be started at night
is uniformly generated. A maintenance job per machine is added to the set of jobs. The hypervolume
reference point for the instance is set by computing 10 schedules and considering the highest cost and
highest makespan.

Figure 5.1: Example instance processing time distribution.

In order to create a reference point for the hypervolume, we create 10 random schedules. The 10 schedules
are then evaluated, and the highest makespan and highest cost are taken as the fixed reference point for
this company instance. The reference points are only used in the last experiment.
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Chapter 6

Results

This chapter covers the results of the experiments outlined in the previous chapter. The results are
discussed per experiment separately. In this Chapter, we mainly make observations of what we have
seen throughout the experiments. The conclusions for the company are made in the next chapter.

6.1 Experiment 1. E2E-DRL vs. SO-SLEGA for Traditional
FJSP

In the first experiment, we benchmark the implemented algorithms on traditional FJSP instances. We
also compare the implemented algorithms against simpler heuristics (Table 6.2). Furthermore, literature
and custom datasets of various sizes are considered. Finally, we also dive deep into the policy learned
by the SLEGA. Results for these sizes will be discussed separately.

6.1.1 Training and Validation

For Experiment 1, we dive into the traditional FJSP problem. We do so to bridge unexplored areas
in literature. For this, we train both our SO-SLEGA and E2E-DRL approaches on 100 different FJSP
instances. We do so for 5 different FJSP sizes from sodata, 10x05, 15x10, 20x05, 20x10, and a mix of the
aforementioned instance sizes. The E2E-DRL training algorithm is executed for a thousand iterations.

The resulting models are then validated on 10 FJSP instances with of similar size as the models are
trained on. The model that is trained on mixed instances is validated on 10 FJSP instances of size 20x10.
Validation is the first moment where we deploy both DRL-G and DRL-S for the E2E-DRL solution. Each
of the trained models is executed once on the validation set, where the sample size for DRL-S is set to
20. The result for training and validation is given in Table 6.1. As can be seen, training times are quite
similar for the E2E-DRL and SO-SLEGA approaches. For inference time, we see that our E2E-DRL
approach is much faster, both for sampling and greedily selecting actions. This makes sense as the
SLEGA conducts many more computations throughout the optimization process. From the validation
performance, we notice that the DRL-S performs better than DRL-G as expected. Furthermore, we
notice that the DRL-S and SO-SLEGA approaches are quite similar in terms of performance.

Furthermore, Figure 6.1 covers the train and validation curves for the E2E-DRL model trained on FJSP
instances of size 15x10. As can be seen, the reward curve is converging to approximately -30. This means
the average makespan across the training instances increased by 30 compared to the estimated makespan
from the start. We also notice that the validation makespan decreases quite rapidly and that it already
is close to optimal around 150 iterations.

Figure 6.2 display the first and best schedule from the validation dataset for the 15x10 FJSP instances.
The colors and numbers indicate the different jobs, the machines are on the y-axis, and the moment in
time is given on the x-axis. As can be seen, the makespan of the first created schedule on the dataset
is equal to 162, while the makespan of the best-created schedule is equal to 149. In the first schedule,
multiple gaps cause the difference in makespan.

Figure 6.3 displays the learning curves of the SO-SLEGA of instance sizes 20x10. The raw reward shows
a stagnation around a value of 80. The rolling average also shows how improvements are stagnating.
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Instances
Training Validation

E2E-DRL SO-SLEGA Inference Time Average Makespan
Duration Iteration1 Duration Timestep1 DRL-G DRL-S (20x) SO-SLEGA DRL-G DRL-S (20x) SO-SLEGA

10x05 0.67h 940 1.70h 31000 0.8s 2.6s 21.0s 116.1 111.0 111.2
15x10 2.96h 820 3.44h 34800 3.0s 15.8s 100.1s 183.8 178.7 174.4
20x05 1.59h 240 2.68h 50000 1.5s 7.2s 108.5s 242.1 228.7 214.4
20x10 4.58h 40 5.22h 21600 4.8s 30.8s 145.8s 278.8 224.8 219.6
Mixed 2.73h 200 3.18h 25000 2.3s 6.8s 36.0s 211.8 210.1 223.7

1 The iteration and timestep of the algorithms where the validation performance was highest.

Table 6.1: Training and Validation of Experiment 1.

(a) Reward per iteration. (b) Rolling average of reward. (c) Validation curve

Figure 6.1: Training and Validation of 10x15 E2E-DRL model for experiment 1.

6.1.2 Testing

Now, in order to test these models, we proceed with the following experiments. Each trained model is
tested on three datasets. The first two are the Brandimarte (mkdata) (Brandimarte, 1993) and Hurink
(e-, r- and v-data) datasets (Hurink et al., 1994). From the Hurink datasets, we only use the la instances,
1-40 for e- and r-data, and 1-30 for v-data. The third is the cudata dataset explained in the previous
Chapter. The first and second datasets are used to benchmark my implementation against existing
AI-based algorithms, heuristic solutions, and dispatching rules. Furthermore, the two implementations
are compared in order to identify key differences. Especially on the third dataset, key differences will be
investigated in order to analyze the scalability, flexibility, and generalizability of the algorithms.

In order to test the algorithms properly, we deploy both DRL-G and DRL-S. DRL-S is used with a
sample size of 20. For the mkdata, the SO-SLEGA will be executed 10 times and report the average
and best makespan, while running this algorithm only once on the e-, r- and v-data. Furthermore, we
execute random scheduling, greedy scheduling, and the SO-EGA implementation to compare against.
We report both average algorithm duration and objective values, to identify the trade-off between time
and optimality. The main results are given in Table 6.2.

Literature Datasets

On the mkdata of Brandimarte (1993), we note that the best optimality gap is obtained by the EGA
of G. Zhang et al. (2011) (6.11%). Since our SO-EGA is following this EGA implementation exactly,
similar results are expected. However, we only obtain an optimality gap of 17.09%. This is partially
because of our lower number of instances (n = 100, as to n = 300 for example for mk06). However, after
trying various parameter settings, we still do not manage to reach a makespan better than 67 for mk06,
whereas the EGA reached a makespan of 58. The authors did share the final schedule for this instance.
This is given in Figure 6.4 below. As can be seen, only three operations are scheduled on machine 4
(index 3). Where G. Zhang et al. (2011) scheduled 9 operations on machine 4. Perhaps this is where a
difference in optimal schedules is coming from. This is not further investigated.

Next, we notice that the 2SGA of Rooyani and Defersha (2019) performs very well on this dataset
(optimality gap of 7.29%). However, in this paper, the population size and number of generations range
from 1000 to 3000. Hence the performance gap is considered fair, as the number of schedules that are
evaluated is much larger.

We notice that the performance of DRL-S is significantly better than the performance of DRL-G, for all
literature datasets. More specifically, performance gaps decrease by 2-10 percentage points depending on
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(a) Iteration 20 (b) Iteration 820 (best)

Figure 6.2: First and best schedule for 15x10 E2E-DRL model of experiment 1 on the validation set.

(a) Reward per iteration. (b) Rolling average of rewards.

Figure 6.3: Training and Validation of 10x15 SO-SLEGA model for experiment 1.

the trained instance size. Mixed instance sizes seem to be the way to go for DRL-G, as the performance is
the highest for this training dataset. For DRL-S, performance is the highest for 15x10 training instances.
We also note that DRL-S is approximately three times as slow while solving 20 times as many instances
as DRL-G. Compared to the dispatching rules (i.e., SPT, MOR, MWKR and FIFO), DRL-S outperforms
all of them, except for when trained on 20x05 instances. The model does not generalize well to the test
dataset in this case.

For the MK datasets, the E2E-DRL approach is faster (6x as fast), but performance is still lacking
compared to the SO-SLEGA and SO-EGA implementations. The SO-SLEGA models namely reach an
optimality gap of around 10%, which is similar to the SLGA of R. Chen et al. (2020). The DRL-S
model only reaches an optimality gap of 18.25% at best. For the rdata and vdata however, we note that
the DRL-S approach reaches higher performance, with the lowest optimality gap of 7.26% and 2.87%
respectively. The SO-SLEGA only reaches an optimality gap of 9.93% and 12.71%. Training on mixed
instances appears to offer the highest benefits for these instances. The root cause of why the E2E-DRL
approach outperforms the SO-SLEGA approach will be further investigated in the next subsection.

When comparing our algorithms against more simple heuristics. We note that the SO-SLEGA outper-
forms all traditional heuristics. The optimality gap of the SLEGA has an improvement of 6.86 percentage
points over the traditional genetic algorithm (SO-EGA). Figure 6.5 illustrates this improvement. As can
be seen, the average makespan of the population for the SLEGA decreases more steadily than the av-
erage makespan for the population of the traditional GA. Furthermore, the final average makespan is
significantly lower for the SLEGA than this of the GA. The traditional GA seems to converge too early
to a sub-optimal solution.

Within the heuristics, the MWKR heuristic appears to work best next to the traditional genetic algo-
rithm.
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Approach
mkdata edata rdata vdata

Ĉmax Gopt t̂(s) Ĉmax Gopt Ĉmax Gopt Ĉmax Gopt

OPT* 163.3 - - 1005 - 923 - 807.9 -
SPT 283.2 73.48% - 1305.35 29.89% 1184.80 28.36% - -
MOR 202.3 23.89% - 1211.2 20.52% 1064.0 15.28% - -
MWKR 200.17 22.58% - 1179.9 17.40% 1046.2 13.35% - -
FIFO 206.1 26.20% - 1255.46 24.92% 1082.1 17.24% - -
RANDOM 637.5 290.39% 60.00 1225.9 21.98% 1212.9 31.41% 1041.7 28.94%
GREEDY 484.9 196.94% 1.30 1290.5 28.41% 1150.4 24.64% 894.5 10.72%
SO-EGA 192.2 17.09% 30.02 1144.6 13.89% 1105.3 19.75% 953.4 18.01%

EGA (G. Zhang et al., 2011) 173.3 6.11% - - - - - - -
SLGA (R. Chen et al., 2020) 181.3 11.02% - - - - - - -
2SGA (Rooyani and Defersha, 2019) 175.2 7.29% - - - - - 812.20 0.53%

DRL-G

10x05 200.1 22.54% 1.22 1193.1 18.72% 1049.7 13.73% 856.1 5.97%
15x10 200.3 22.66% 1.23 1197.5 19.15% 1054.3 14.23% 858.0 6.20%
20x05 220.1 34.78% 1.22 1269.5 26.32% 1125.1 21.90% 897.4 11.08%
20x10 199.3 22.05% 1.21 1192.5 18.66% 1046.2 13.35% 841.3 4.13%
Mixed 198.0 21.25% 1.29 1218.0 21.19% 1056.3 14.44% 845.0 4.59%

DRL-S

10x05 194.6 19.16% 4.60 1139.5 13.38% 1009.0 9.32% 827.6 2.44%
15x10 193.1 18.25% 4.32 1144.9 13.92% 1008.2 9.23% 828.8 2.59%
20x05 208.1 27.37% 4.25 1176.0 17.01% 1049.1 13.66% 857.8 6.18%
20x10 195.2 19.53% 4.24 1152.85 14.71% 1015.5 10.02% 830.9 2.85%
Mixed 196.8 20.51% 5.11 1107.5 10.20% 990.0 7.26% 831.1 2.87%

SO-SLEGA

10x05 180.7 10.66% 29.83 1103.5 9.80% 1047.8 13.52% 894.5 10.72%
15x10 184.5 12.98% 29.62 1110.3 10.48% 1061.0 14.95% 914.7 13.22%
20x05 180.1 10.29% 34.91 1097.7 9.22% 1040.3 12.71% 895.4 10.83%
20x10 180.5 10.53% 33.23 1099.5 9.40% 1034.9 12.12% 888.13 9.93%
Mixed 179.6 10.23% 28.18 1111.8 10.63% 1069.3 15.85% 955.8 18.31%

Table 6.2: Results of different algorithms on literature test data.

(a) EGA (58)

(b) SO-SLEGA (20x10) (67)

Figure 6.4: mk06 Schedule for EGA (G. Zhang et al., 2011) and SO-SLEGA (20x10).
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(a) Best makespan (b) Average makespan

Figure 6.5: Advantage of learning module

Custom Instances with Varying Sizes

In order to further explore the root cause of the performance difference between the E2E-DRL and SO-
SLEGA approaches, we test the E2E-DRL and SO-SLEGA models (both trained on 15x10 instances) on
the cudata. We also compare these approaches against the MWKR dispatching rule. Figure 6.6 below
displays two heatmaps, showcasing the percentual performance difference between SO-SLEGA/DRL-S
and the MWKR rule for various instance sizes. A negative value of e.g., -10% indicates a makespan im-
provement of the first mentioned algorithm. For example, in Figure 6.6a, DRL-S has a 25% improvement
on MWRK for the instance with 5 jobs and 5 machines.

As can be seen, DRL-S can improve the makespan of a schedule by up to 40%, whereas SO-SLEGA only
improves performance by up to 30%. We note that there appears to be a relationship between the number
of machines, jobs, and performance increase. More specifically, when the number of machines and jobs
(e.g., 50x50) increases simultaneously, the performance increase is much higher than when only one of
the two characteristics increases (e.g., 80x20). This relationship is not identified for the SO-SLEGA
(Figure 6.6b).

Now, comparing DRL-S against the SO-SLEGA directly, we note that this relationship exists here as
well. However, now the performance gain of the DRL-S approach only occurs within this same region (up
until 30%), whereas outside this region the SO-SLEGA outperforms DRL-S (up until 20%) makespan
increase. with regard to computation time, we note that DRL-S is always faster, but that the percentage
computation time difference is much lower for larger instances. This is most likely due to the genetic
algorithm approach’s large overhead, whereas this is not the case for E2E-DRL.

(a) DRL-S (15x10) (b) SO-SLEGA (15x10)

Figure 6.6: Makespan difference between SO-SLEGA (15x10), DRL-S (15x10), and MWKR.
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(a) Makespan (b) Computation time

Figure 6.7: Difference between DRL-S (15x10) and SO-SLEGA (15x10).

Figure 6.8 further investigates the relationship between the instance size and increase in performance by
plotting the performance gain against the job-to-machine (J-M) ratio. As can be seen, E2E-DRL performs
much better when instances have job-to-machine ratios around 2, whereas SO-SLEGA performs better
when instances have a very small ratio, or a ratio higher than 5. This is likely due to the fact that deep
reinforcement learning approaches aren’t as beneficial when dealing with very easy (low number of jobs
per machine) or very complicated (high number of per machine) instances.

Table 6.3 deep dives on three instances along different J-M ratios of Figure 6.8. More specifically, three
instances with J-R ratios of 0.2, 1.6 and 9.0 are taken. As these instances are custom generated, the
optimal performance is unknown. In order to compute a lower bound, we make use of the constraint
programming (CP) solver of OR-tools1. This solver finds a good lower bound for the 15x80 and 80x50
FJSP instance. The quality of the lower bound for the complex 90x10 instance (146) is uncertain, as it
is far from the best solution found (604). We follow these bounds nonetheless.

For the FJSP instance with a J-M ratio of 0.2, we notice that the optimal solution is found by the CP
model of OR tools and by the (self-learning effective) genetic algorithm. For this instance, the search
space is quite big and there also are a high number of good solutions as there are a lot of machines
available. The E2E-DRL approach only reaches a solution with a makespan of 120 (optimality gap of
21%). Thus we can conclude for such a simple instance, a search or constraint programming approach
is better.

For the FJSP instance with a J-M ratio of 1.6. For this instance, the solution space is relatively big, and
the fraction of good solutions is relatively small. This means that it is harder to make good decisions.
We note that the best solution is found by the constraint programming approach. This solution takes
6.5 hours to reach, however. The E2E-DRL approach performs better than the SO-SLEGA approach in
this case, as it reaches an optimality gap of 33% (153) whereas SO-SLEGA reaches an optimality gap of
63% (188).

The last investigated FJSP instance has a J-M ratio of 9.0. Here, the instance is typically considered a
difficult instance to solve as the number of machines is relatively low. This also means that the solution
space is relatively small. The fraction of good solutions is relatively high here because of the small
solution space. Here we notice that the CP approach finds the best solution with an optimality gap of
314% (604). SO-SLEGA outperforms DRL-S as the algorithms reach an optimality gap of 371% (687)
and 336% (637) respectively.

We thus conclude that for instances where the jobs are balanced with the resources, an E2E-DRL
approach performs better. This follows from Figure 6.8 and Table 6.3. Because of the balance, the
fraction of good solutions is rather small. It thus will be harder for constraint programming or search
approach (like SO-SLEGA) to find a good solution within the search space, while the E2E-DRL approach
is able to select the correct actions sequentially.

1https://github.com/google/or-tools/blob/stable/examples/python/flexible job shop sat.py
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Figure 6.8: Makespan difference (%) between DRL-S (15x10) and SO-SLEGA (15x10) over job-to-
machine ratios.

Instance J-M Ratio OR-Tools LB
OR-Tools
Computation Time

Gopt

OR-Tools DRL-S 15x10 SO-SLEGA 15x10 SO-EGA

15x80 0.2 991 30s 0% (991) 21% (120) 0% (991) 0% (991)
80x50 1.6 115 6.5h 6% (122) 33% (153) 63% (188) 75% (203)
90x10 9.0 146 7.5h 314% (604) 371% (687) 336% (637) 476% (695)

1Optimal solution found. 2 DRL-S computes a solution within 1-60 seconds, whereas the (SLE)GAs take from 1-5
minutes.

Table 6.3: Deep dive on optimality gap of three different instances.

In order to validate this performance improvement, we take a single instance (50x50 in this case) and
run each algorithm 20 times. Figure 6.9 displays the resulting distributions of those 20 runs. As can be
seen, the DRL-S distribution is centered around 117, whereas the SO-SLEGA is centered around 127.
In order to validate this difference in distribution, the Wilcoxon rank-sum test is conducted. From the
test, it is concluded that both distributions are significantly different (p = 1.91e−6) and that thus you
are more likely to get a lower makespan while using the DRL-S approach in this instance.

Figure 6.9: Distribution of makespan for 50-job, 50-machine instances for DRL-S(15x10) and SO-SLEGA
(15x10).
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6.1.3 SLEGA Policy Deep Dive

In this section, we dive deep into the SLEGA policy to understand what actions are taken and why, in
order to explain the performance difference.

An example of how the mutation rate, mutation probability, and crossover probabilities are set during a
run of the SLEGA is given in Figure 6.10 below. As can be seen, the agent generally sets the crossover rate
as high as possible, with few exceptions throughout the generational process. The individual mutation
probability is almost always set to 0, whereas there are few spikes to overcome stagnation seen in the
blue line.

Figure 6.10: SO-SLEGA: Actions of PPO agent per generation

Figure 6.11 displays the state space under which mutation rates were chosen for a different run. As
can be seen from the graph, the mutation rate is set larger than 0 for 4 different points in time. From
the state space, we can see that the agent might base the decision to set the mutation rate high on
the stagnation count; as the stagnation count goes up, the agent seems more likely to set the mutation
rate higher. This seems quite logical as this means the agent overcomes early convergence. After closer
investigation through a Pearson correlation test, the correlation between none of the state features and
mutation action was found to be significant. This was to be expected given the complex MLP policy of
the PPO agent. Figure 6.12 show a decision tree which tries to predict the agent’s decision of exploration
(i.e., setting an individual mutation rate bigger than 0) or exploitation given the current state space.
From the tree, we note that the remaining budget and stagnation count are of high importance. If the
population strayed away from the highest fitness seen so far, the agent also selects exploration. Hence,
this verifies our conclusions drawn from Figure 6.10.
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Figure 6.11: SO-SLEGA: Partial state space and mutation rate action per generation.

Figure 6.12: SO-SLEGA policy explanation in a decision tree.

From Figure 6.10 it appears that the crossover and mutation rates are almost constant. Learning would
thus not add any value, except the removal of the parameter tuning step. Hence we test whether learning
adds significant value using a Wilcoxon rank-sum test. This test checks whether two samples are taken
from the same population. For our use case, we take 20 solutions of a single instance from a trained
SLEGA model, and 20 solutions from the regular GA with a crossover rate set to 1, and a mutation
rate set to 0. The distributions of results are given in Figure 6.13. As can be seen from the figure, the
distributions overlap, but yet seem different. The Wilcoxon rank-sum test confirms this hypothesis, as
the null hypothesis of equal distributions is rejected (p ≤ 0.001). Hence we consider that learning still
adds significant value.
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Figure 6.13: Makespan distribution of mk06 for SO-EGA and SO-SLEGA.

To summarize the first experiment, we conclude that it depends on the instance size and training approach
which algorithm performs best in terms of generalizability and performance in the vanilla FJSP setting.
More specifically, we have seen that on the benchmark datasets, E2E-DRL outperformed the SO-SLEGA
on the rdata and vdata FJSP instances, while SO-SLEGA outperformed E2E-DRL on the mkdata and
edata FJSP instances. E2E-DRL is much faster (approximately 6 times as fast) than the SO-SLEGA
approach. We have seen that the performance (i.e., makespan) difference between E2E-DRL and SO-
SLEGA depends on the type of instances. When instances have relatively few good solutions and
a bigger search space (job-machine ratio of about 2.0), E2E-DRL can reduce makespan up to 30%.
While if instances have a higher/lower job-machine ratio, the SO-SLEGA approach performs up to 20%
better. SO-SLEGA and E2E-DRL outperform simple dispatching rules, while still being outperformed
by constraint programming. This is acceptable as constraint programming is generally much slower. In
terms of scalability, we have seen that E2E-DRL is generally much faster than SO-SLEGA, hence is
considered better.
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6.2 Experiment 2. E2E-DRL vs. SO-SLEGA for FJSP with
Sequence-Dependent Setup-Times

For our second experiment, we extend the classical FJSP definition with sequence-dependent setup times.
Again, we separate the section into training and validation, and testing.

6.2.1 Training and Validation

The training and validation data is similar to experiment 1. Again, both the SO-SLEGA and E2E-DRL
approaches are trained on instances of size 10x05, 15x10, 20x05, and 20x10. Mixed instances are no
longer considered here. Now, the instances are taken from the stdata.

Table 6.4 shows training and validation results for Experiment Two. We note that now the SO-SLEGA
performs slightly better on validation instances, except for the 15x10 SO-SLEGA. It appears the perfor-
mance here is lacking behind after closer inspection. From the learning curve, it appears that the model
had difficulty understanding how to interact with the environment. As this is only one of the models, we
proceed either way. It is also noted that training times have increased slightly, this could have been be-
cause multiple algorithms were running simultaneously on the machine. Figure 6.14 displays the training
curves for the 20x05 instance. As can be seen, the rolling average of the mean sequence-dependent setup
time per environment stabilizes and decreases only slightly. This indicates that in order to get the highest
reward, (i.e., the lowest makespan increase) it does not necessarily mean that sequence-dependent setup
times should be minimized. Furthermore, we note that both E2E-DRL and SO-SLEGA implementation
seem to manage to learn how to create schedules to optimize for the reward.

Instances
Training Validation

E2E-DRL SO-SLEGA Inference Time Average Makespan
Duration Iteration Duration Timestep DRL-G DRL-S (20x) SO-SLEGA DRL-G DRL-S (20x) SO-SLEGA

10x05 1.1h 260 1.3h 46500 0.3s 0.7s 13.1s 199.3 190.1 168.0
15x10 4.5h 580 6.1h 31900 1.1s 3.6s 78.4s 283.8 284.9 342.3
20x05 2.6h 660 4.0h 40400 0.6s 1.7s 36.1s 394.6 380.1 340.8
20x10 6.8h 80 6.2h 23200 1.3s 6.3s 39.8s 365.6 378.2 375.2

Table 6.4: Training and Validation of Experiment 2.

(a) Rolling average SDST, E2E-DRL. (b) Learning curve, E2E-DRL. (c) Learning curve, SO-SLEGA.

Figure 6.14: Training curves for Experiment 2.
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Catastrophic Interference

While training the models on the FJSP instances with the addition of sequence-dependent setup times,
we ran into the issue known as catastrophic interference. Catastrophic interference occurred when a
model loses the knowledge it has learned about a particular environment all of a sudden. As can be
seen from Figure 6.15 below, this is the case for our E2E-DRL model. Between iterations 600 and 800,
the reward the model obtains per run decreases significantly. The model doesn’t relearn any behaviour
afterwards. Trying several approaches, no solution was found to avoid this behaviour from occurring.
To proceed, we decided to save the model where the validation makespan was the lowest as we did in
the previous experiment.

(a) Reward per iteration (b) Rolling average of reward (c) Validation curve

Figure 6.15: Catastrophic interference of E2E-DRL model on 15x10 FJSP instances with SDSTs.

6.2.2 Testing

For testing purposes, we again benchmark trained models against traditional heuristics and dispatching
rules. We do so on the FJSP instances with SDSTs of Fattahi (Saidi-Mehrabad and Fattahi, 2007).
These instances range in size from 2x2 to 12x8. Furthermore, we compare our trained models against
our models that were trained on instances without SDSTs, to identify whether retraining is necessary.

As can be read from the table, we see that the SO-SLEGA approach outperforms E2E-DRL significantly.
SO-SLEGA manages to reach an optimality gap of 1.29%, whereas DRL-S only reaches an optimality
gap of 6.80% at best. Again, the computation time of E2E-DRL is much faster (below a second) than
SO-SLEGA which can take anywhere between 42 and 70 seconds. This difference is much larger than in
the first experiment, but this is mainly explained by the fact that this test dataset has smaller instances
(max. 12x8) than the MK dataset (max. 20x15) used in the previous experiment.

The win count and average rank also confirm that SO-SLEGA outperforms E2E-DRL for FJSP with
SDSTs. The win count of SO-SLEGA is 15 and 16 for the retrained and vanilla FJSP models respectively,
while DRL-S only reaches a win count of 7. The average rank of SO-SLEGA equals 1.20 and 1.25, which
is the highest performance across all algorithms. E2E-DRL only reaches an average rank of 2.70 and a
win count of 7.

We note that DRL-S still outperforms the traditional genetic algorithm, random scheduling, and simple
dispatching rules. This is confirmed by the optimality gap, where DRL-S reaches a value of 6.80%. The
vanilla genetic algorithm follows with an optimality gap of 13.28%. Random scheduling does have a
win count of 10, which is higher than the win count of DRL-S (7). However, the average rank (3.75)
of random scheduling is worse than the rank of DRL-S (2.70). This is due to the fact that random
scheduling is able to brute-force the first 10 instances which are relatively small (4 jobs 5 machines at
most). For larger instances, DRL-S achieves a much better makespan and thus ends up with a better
average rank.

When comparing the newly trained algorithms versus the ones from the previous experiment, we note
that retraining allows for a better makespan to be reached. SO-SLEGA improves from an optimality gap
of 1.71% to 1.29%. The average rank however decreased from 1.20 to 1.25. This could have happened
due to chance. Since this improvement is considered insignificant, we conclude that retraining doesn’t
add any extra benefits for SO-SLEGA, while it does for DRL-S, as here the best optimality gap decreases
from 8.04% (10x05) to 6.80% (15x10), and the average rank decreases from 3.10 to 2.70. This difference
between the increase in re-training makes sense, as for the SO-SLEGA we are simply learning how to
adjust the parameters of our search. In the E2E approach, on the other hand, we are required to extract
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information from the environment in order to select the best action directly, and thus nothing is learned
on sequence-dependent setup times for E2E-DRL in Experiment 1.

To summarize, we conclude that the SO-SLEGA approach is better at solving the FJSP setting with
SDSTs than the E2E-DRL approach. We have seen that the average rank for SO-SLEGA (1.20/1.25) is
much higher than that of E2E-DRL (2.70/3.10/5.25). We have also seen that DRL-S still outperforms
vanilla SO-EGA and simple dispatching rules, while DRL-G is beaten by random scheduling and by the
vanilla SO-EGA. We concluded that the performance increases for E2E-DRL when models are retrained
on datasets with SDSTs, while performance does not increase for SO-SLEGA. Hence we conclude that
SO-SLEGA generalizes better to FJSP instances with unseen characteristics. Generalizability is further
explored in the next couple of experiments.

ftdata

Ĉmax Gopt t̂(s) Win Count Average Rank

LB2 536.4 - - - -
MWKR 787.4 46.81% 0.73 0 8.85
RANDOM 638.6 19.06% 60.00 10 3.75
GREEDY 667.5 24.45% 0.92 0 7.30
SO-EGA 607.6 13.28% 59.24 4 5.10

DRL-G

10x05 643.2 19.91% 0.08

3 5.25
15x10 634.9 18.37% 0.08
20x05 681.3 27.03% 0.08
20x10 648.4 20.89% 0.08

DRL-S

10x05 577.0 7.57% 0.23

7 2.70
15x10 572.8 6.80% 0.22
20x05 594.6 10.86% 0.21
20x10 576.3 7.45% 0.24

DRL-S1

10x05 580.0 8.04% 0.22

7 3.10
15x10 580.3 8.18% 0.22
20x05 589.9 9.97% 0.25
20x10 583.3 8.74% 0.22

SO-SLEGA

10x05 543.3 1.29% 56.60

15 1.25
15x10 568.4 5.98% 42.22
20x05 556.4 3.74% 66.08
20x10 549.4 2.42% 70.22

SO-SLEGA1

10x05 547.7 2.12% 68.83

16 1.20
15x10 547.1 1.99% 55.21
20x05 552.2 2.96% 66.92
20x10 545.5 1.71% 68.20

1Models trained on vanilla FJSP (Experiment 1), 2lower bound calculated using best makespan found over various
algorithms.

Table 6.5: Results of different algorithms on SDST literature test data.
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6.3 Experiment 3. E2E-DRL vs. SO-SLEGA for Company-
Specific Instances

We proceed to benchmark our E2E-DRL and SO-SLEGA implementations on the company-specific
instances. This section is separated into training and validation, and testing. Furthermore, we add an
ablation study in order to deep dive into why the performance of E2E-DRL degrades. Note that we do
not use OR-tools to benchmark here, as it is complicated to configure for our custom instances.

6.3.1 Training and Validation

Similar to Experiments 1 and 2, we train the E2E-DRL and SO-SLEGA approaches on instance sets of
different sizes. Training instances with sizes of 17x02, 42x02, 64x04, and 88x08 are selected. Results are
given in Table 6.6 below.

Instances
Training Validation

E2E-DRL SO-SLEGA Inference Time Average Makespan
Duration Iteration Duration Timestep DRL-G DRL-S (20x) SO-SLEGA DRL-G DRL-S (20x) SO-SLEGA

17x02 0.8h 840 3.3h 14000 0.2s 2.8s 48.9s 142787 127219 101122
42x02 2.4h 460 6.2h 24000 0.5s 3.3s 93.8s 281604 282146 223935
64x04 4.8h 160 7.5h 16000 0.8s 3.8s 111.3s 243945 230984 192755
88x08 7.4h 460 10.9h 11000 1.1s 4.3s 142.1s 202454 185219 165779

Table 6.6: Training and Validation of Experiment 3.

From Table 6.6, we can see that training on these specific instances takes significantly longer than on
literature instances (Table 6.1). This is mostly because of the additional logic that is introduced in the
environment by characteristics such as release dates, deadlines, and night times. From the save itera-
tion/timestep, we can see that the lowest validation makespan is achieved on various points throughout
learning. Sometimes early, such as on the 64x04 instance for E2E-DRL (iteration 160). Looking at the
inference times, we note that E2E-DRL again is very fast at obtaining a solution. Even with sampling
(20x), all solutions are obtained within 5 seconds. On validation makespan, we note that SO-SLEGA
outperforms E2E-DRL for each instance set. A sampling approach tends to be better than a greedy
approach, except for the 42x02 instances. This is probably due to randomness.

Learning and validation curves for SO-SLEGA and E2E-DRL are given in Figures 6.16 and 6.17. For
the E2E-DRL curve, we see that the validation makespan decreases quite rapidly and reaches a low
at iteration 840. Whereas the SO-SLEGA validation reward increases slightly and then appears quite
random. SO-SLEGA reaches the highest validation performance on timestep 14000. The reward does
seem to stagnate around 14000.

(a) Rolling average rewards (b) Rolling average SDSTs (c) Validation makespan

Figure 6.16: Training and validation curves of E2E-DRL model on 17x02 instances.

6.3.2 Testing

To test these models, we consider a diverse set of instance sizes. More specifically, instances where the
number of jobs ranges between 5 and 100 and the number of machines ranges between 2 and 10 are
considered. An instance of size 100x10 should match the industry scale. We use these instances in
order to test generalizability and scalability. Furthermore, we compare the algorithms against simple
heuristics, random scheduling and the best-performing models from Experiment 1.

Table 6.7 below displays the results of the tested algorithms on the company-specific FJSP instances.
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(a) Rolling average of rewards. (b) Validation rewards per timestep.

Figure 6.17: Training and validation curves of SO-SLEGA model on 17x02 instances.

Note that the makespan is significantly larger than for literature instances. This is because the makespan
is given in seconds for these instances, whereas in literature there is usually no unit specified. From the
table, we notice that the SO-SLEGA approach trained on 17x02 instances is performing best, with
an optimality gap of 4.96%. We note that when training on different instance sizes, the performance
decreases significantly. Especially for the model that was trained on 42x02 where the optimality gap is
21.60%. Close inspection of this trained model shows that the model did not converge properly, which
might cause this performance issue. The models trained on 64x04 and 88x08 instances have an optimality
gap of 7.69% and 9.63% respectively. The average rank achieved by SO-SLEGA is 1.21, with a total win
count of 81 (81%).

DRL-S tends to outperform DRL-G, which is explained by the fact that DRL-S samples actions, whereas
DRL-G picks actions in a deterministic fashion. More specifically, when training on instances of sizes
17x02, 62x04 and 88x08, sampling actions improve performance by 1.5, 11.5 and 3.2 percentage points
respectively. Performance when training on 42x02 instances does decrease when sampling actions, but
this is less than 1 percentage point so considered insignificant. Where DRL-S outperformed greedy
scheduling and dispatching rules in experiments 1 and 2, it fails to outperform greedy scheduling and
the vanilla SO-EGA for company-specific instances. Greedy scheduling and vanilla SO-EGA achieve
an average rank of 3.16 and 3.14 respectively, which is better than DRL-S (3.51) and DRL-G (3.96).
This is further investigated below. Retraining seems necessary as the performance of both SO-SLEGA
and E2E-DRL increases significantly when models are retrained. The SO-SLEGA and E2E-DRL models
increase in performance by 3 and 10 percentage points respectively when retraining. Figure 6.18 displays
the approach that found the best solution for each test instance. From this figure, we note that greedy
tends to outperform the other tested algorithms when instances are larger in size (top right corner) and
more complicated (higher jobs/machines ratio). This is most likely due to the fact that all algorithms
do not perform well relative to the actual optimal solution, but this is not further explored. We see that
E2E-DRL obtains the best solution in the lower right corner. SO-SLEGA generally performs well.
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WFdata

Ĉmax Gopt t̂(s) Win Count Average Rank

LB2 132173 - - - -
MWKR 266848 101.89% 6.22 1 6.85
RANDOM 195869 46.95% 10.00 3 5.29
GREEDY 164040 23.07% 15.63 24 3.16
SO-EGA 161651 22.31% 37.45 13 3.14

DRL-G

17x02 177421 34.23% 1.68

1 3.96
42x02 181551 37.44% 1.47
64x04 192354 45.53% 2.32
88x08 187690 42.00% 2.20

DRL-S

17x02 175477 32.76% 5.46

5 3.51
42x02 182804 38.31% 4.35
64x04 177147 34.03% 2.87
88x08 183488 38.82% 3.35
15x101 188850 42.88% 2.88

SO-SLEGA

17x02 138733 4.96% 35.92

81 1.21
42x02 160726 21.60% 33.96
64x04 142333 7.69% 29.65
88x08 144898 9.63% 30.45
15x101 143992 8.03% 39.54

1Models trained on vanilla FJSP (Experiment 1), 2lower bound calculated using best makespan found per instance across
all algorithms.

Table 6.7: Results of different algorithms on WF-specific instances.

Figure 6.18: Approach with the best solution per test instance.

Table 6.8 displays the number of wins of the DRL-S and SO-SLEGA models (trained on 17x02) when
comparing them against the greedy scheduling. As can be seen, the SO-SLEGA model outperforms the
greedy scheduling model 76 times, ties 7 times, and loses 17 times. DRL-S only outperforms greedy
scheduling 35 times, ties 5 times and loses 60 times. To further identify why these differences occur,
we display heatmaps in makespan differences in Figure 6.19 for the models trained on 17x02 FJSP
instances. Figure 6.19a shows that greedy scheduling is better for instances in the top right corner. For
the instance of size 85x06, greedy scheduling is even 56% better than the genetic algorithm. While for the
instance of size 25x04, SO-SLEGA outperforms greedy scheduling by 55%. This is further investigated
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below. Figure 6.19b displays the differences between DRL-S and greedy scheduling. DRL-S tends to
outperform greedy scheduling for instances with only 2 machines, whereas greedy scheduling significantly
outperforms DRL-S for instances with 30 jobs or more, and 4 machines or more.

Algorithm Wins Losses Ties Win Rate (%)

SO-SLEGA 76 17 7 76%
DRL-S 35 60 5 35%

Table 6.8: Algorithms compared against greedy heuristic, performance aggregated by taking best per-
formance over the trained models.

(a) SO-SLEGA (17x02) (b) DRL-S (17x02)

Figure 6.19: Makespan difference between SO-SLEGA (17x02), DRL-S (17x02), and Greedy scheduling.

When comparing the algorithm to the vanilla SO-EGA (Figure 6.20), we notice that SO-SLEGA gen-
erally outperforms SO-EGA, improving up to 50%. For only a single instance (25x02), SO-SLEGA is
significantly outperformed (23%). This could be due to randomness. When comparing DRL-S against
the vanilla SO-EGA, we note that DRL-S can outperform SO-EGA in the top-right corner, which is
because of the increased complexity. Because of this complexity, the vanilla SO-EGA most likely did
not converge yet. Besides that, no relationships are identified between the performance difference and
instance characteristics.

(a) SO-SLEGA (17x02) (b) DRL-S (17x02)

Figure 6.20: Makespan difference between SO-SLEGA (17x02), DRL-S (17x02), and SO-EGA.

When comparing SO-SLEGA against DRL-S directly, we note that SO-SLEGA almost always outper-
forms DRL-S. The performance increase for SO-SLEGA is up to 55%, while only losing 4% of performance
at most. Regarding Computation time, DRL-S is much faster. The computation time gain is between
1000 and 9000% (10x and 90x as fast). These results are shown in Figure 6.8.
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(a) Makespan (b) Computation time

Figure 6.21: Comparison between SO-SLEGA (17x02) and DRL-S (17x02).

To further investigate why the performance difference between SO-SLEGA, DRL-S and greedy scheduling
is caused, we look at two specific instances. The 25x04 instance and the 85x06 instance. For the first
instance, SO-SLEGA performs best with a makespan of 59410, while DRL-S and greedy scheduling lack
behind with both a makespan of 133000. From figure 6.22 it can be seen that SO-SLEGA manages to
schedule everything within the first day. DRL-S and greedy scheduling do not; 4 and 8 operations remain
to be processed on the second day respectively. Generally, we see that SO-SLEGA manages to make the
schedule much tighter than either one of the other approaches. This could be because the SO-SLEGA
optimizes over different schedules with the notion of backfilling, whereas E2E-DRL does not have this
information available, and has to build up a schedule from scratch. The large gap in performance is
explained because if a slight mistake is made during scheduling, the operation is to be executed on the
second day, which includes the overhead of night times.
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(a) Greedy Scheduling (133000)

(b) SO-SLEGA (17x02) (59410)

(c) DRL-S (17x02) (133000)

Figure 6.22: Test instance (25x04) schedules.

Figure 6.23 displays the schedules computed for the different algorithms for the company-specific FJSP
instance of size 85x06. Here we note that greedy scheduling manages to obtain the best solution. As the
instance has much more operations than the previous one, the self-learning genetic algorithm does not
arrive at a good solution within the search process. Hence it arrives at a makespan of 208000. Greedy
scheduling manages to fit everything in two days this time around, managing a total makespan of 132980.
DRL-S ends at a total duration of 217050, just barely requiring to use of 3 days as well. After closer
inspection, greedy scheduling introduces a total setup time of 260000 within the instance, whereas the
SO-SLEGA and DRL-S introduce a total setup time of 460000 and 550000 respectively. This could cause
this difference in performance. This is most likely due to the fact that the genetic algorithm does not
mutate individuals well for setup times, as it greedily assigns a machine for which the processing time
and setup time are minimal, disregarding the setup that is required after the mutated operation. The
DRL agent did not learn enough about setup times generally speaking.

However, when looking at the SO-SLEGA trained on 64x04 (6.23c) and the SO-SLEGA trained on 88x08
(6.23d) FJSP instances, we note that it could occur that all operations are scheduled within a single
day (makespan of 151365). However, this seems to happen because of randomness, not because of the
training instances sizes. This is further investigated below.
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(a) Greedy Scheduling (132980)

(b) SO-SLEGA (17x02) (208000)

(c) SO-SLEGA (64x04) (151365)

(d) SO-SLEGA (88x08) (217050)

Figure 6.23: Test instance (85x06) schedules.
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We deep-dive further on the instance of size 85x06 to investigate the generalizability of the algorithms and
see if the performance of greedy scheduling can be equalled. When increasing the number of generations
and population size from 100 to 500 for the SO-SLEGA, we manage to obtain a makespan of 131336 on
the 85x06 instance. The algorithm took 232 seconds to execute. This increase in duration would still be
acceptable for the company, as schedules can be created on an ad-hoc basis, and are rarely required to
be available instantly. Figure 6.24 below shows the schedule that was found when increasing the number
of generations and population size. We conclude that SO-SLEGA still outperforms greedy scheduling.

Figure 6.24: Schedule (131336) for SO-SLEGA (17x02) with 500 individuals and 500 generations.

6.3.3 Ablation Study

To validate the features on the heterogeneous graph proposed in Chapter 4, we conduct a small ablation
study to identify the impact of adding these features. Table 6.9 below displays the results of this ablation
study. Here, we show the average makespan for 5 different types of FJSP instances, from the vanilla to
the company instances. For each of the instances, we report the average makespan across the company
test set. Note that for each situation, some characteristics are disabled, hence the same could be dataset
is used. We report the average makespan for (a) greedy scheduling, (b) the SO-SLEGA, (c) DRL-S
without any added features, (d) DRL-S with the features for the instance type and (e) DRL-S with all
proposed features. For example, in the instance of type 2 (FJSP with SDSTs), model (d) would only
have the sequence-dependent setup times as an extra feature on the arcs, while model (e) would also
have the night schedule and setup times. ∆ displays the performance difference between the SO-SLEGA
and DRL-S with stacking features.

Index Instance Type
Average makespan
GREEDY SO-SLEGA DRL-S DRL-S stack. feat. DRL-S all feat. ∆

1 FJSP 48170 45051 45821 45821 46556 770 (1.7%)
2 (1) with SDSTs 102778 93992 119522 118148 128335 25530 (20.5%)
3 (2) with Release Dates 115135 103773 129749 126371 132535 22598 (17.9%)
4 (3) with Night Times 164040 138733 184627 175447 175447 36714 (20.9%)
5 (1) with Night Times 71760 64261 68276 67727 73552 3466 (5.4%)

Table 6.9: Ablation study for FJSP characteristics and E2E-DRL features.

From the table, we note that for the vanilla FJSP, the SO-SLEGA only outperforms DRL-S by 1.7%.
Both DRL-S and SO-SLEGA outperform greedy scheduling for this instance type. As soon as sequence-
dependent setup times are added, the DRL-S approach fails to outperform greedy scheduling for any
other instance type. We note that adding features sequentially adds value for the agent to perform
better at creating schedules. For example, adding night times reduces the average makespan from 68.3k
to 67.7k for the instance types with index 5. For type 4, the average makespan is even decreased from
184.6k to 175.4k.

DRL-S still outperforms greedy scheduling for the instance type without SDSTs but with the addition
of night times (index 5). However, the performance gain for the additional features is not significant.
This is most likely due to the fact that most instances are solved within a day, not crossing the situation
where this agent would be most beneficial. Adding all proposed features from the start is not reasonable,
as the total performance is always lower than selecting features carefully based on the type of FJSP
instance.
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Since the SDSTs are higher than the processing times, they influence the final makespan significantly.
So far, no discounting has been applied to the received rewards. This means the agent cares more for the
distant reward (i.e., total makespan) than the immediate reward (mistake of setup times). This design
choice made sense initially, as we purely focused on makespan and the impact of individual decisions
was not as big. However, given the environment where immediate decisions are more important (high
setups could be resulting), considering reward discounting might be actually beneficial. We test this
hypothesis by retraining the DRL-S model with stacking features under the environment of type 2, with
the discount rate reduced to 0.95, 0.5 and 0.25. The resulting average makespan for these settings was
116758, 109068 and 105151. This shows that increasing the discount rate can be beneficial, indicating
the need to pay attention to immediate rewards rather than distant rewards. However, the performance
is still not as good as the performance of the SO-SLEGA or the performance of greedy scheduling.

To summarize this experiment, we conclude that SO-SLEGA performs better than E2E-DRL for all com-
pany instances. SO-SLEGA outperforms most traditional heuristics too. However, for larger instances,
a bigger population size and a higher number of generations are required to do so. This should not be a
problem as the computation time is this acceptable. Hence, we also conclude that SO-SLEGA is better
at generalizing to instances with unseen characteristics as well, as the SO-SLEGA model in Experiment 1
outperforms retrained DRL-S models. This indicates that in order to tackle different types of scheduling
problems, a SO-SLEGA approach is more general and will reach higher performance. No conclusions
are drawn on which model generalizes better to unseen instance sizes. From the ablation study, we have
seen that E2E-DRL stops performing well as soon as sequence-dependent setup times are added. This
is most likely because the immediate reward should be considered more important than the distance
reward, and can be improved by considering a discounting rate.
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6.4 Experiment 4. MO-GA vs. MO-SLEGA for Company-
Specific Instances

For the fourth experiment, we transition towards a MOO setting. More specifically, we use the same train-
ing and testing instances generated in Experiment 3, but now instead of only considering the makespan,
we also consider the cost of schedule incurred. The allocated cost of the schedule is calculated given the
evaluation function described in Chapter 4.

6.4.1 Training and Validation

We follow the same training procedure for the SLEGA but now use the MOO state space, action space,
reward function, and genetic operations for this setting are described in Section 4.1. Table 6.10 below
displays the results of training. Please note again that MO-GA refers to the SLEGA without the self-
learning module, as explained in Chapter 4.

From the first three experiments, we have seen that the instance size on which the model was trained
was important. More specifically, in Experiment 3, the models trained on the 17x02 instances performed
best. Hence in this experiment, we train a single model only using this type of instance. We do so as
training duration for MOO instances took a significant amount of time longer than training in an SOO
setting. This execution time increase is explained by the following. The evaluation function in MOO-
setting is harder to execute, as computing the cost is much more complex than the makespan given the
different components. Furthermore, rather than maintaining a single individual in the hall of fame, we
need to maintain the Pareto front as well. Furthermore, the state space is harder to compute, especially
the calculation of the hypervolume.

Instances
Training Validation

Duration Timestep Inference Time Best Makespan Best Cost Hypervolume

MO-SLEGA 24.01h 14800 22.60s 95105 3173 1.8e10
MO-GA - - 7.82s 105324 3772 1.6e10

Table 6.10: Training and Validation of Experiment 4.

From Table 6.10, we see that training of the MO-SLEGA model took just over a full day. The best
validation performance was found in timestep 14800. Figure 6.25 displays the learning and validation
curves. As can be seen, the model is indeed learning how to set the hyperparameters in order to obtain a
higher reward. The validation performance follows the training curve and stabilises at a reward of about
2.5.

On the validation dataset, the MO-SLEGA outperforms MO-GA. More specifically, the average best
makespan found is 9.5% better, the average best cost is 15.9% better, and the hypervolume is 12.5%
better for the MO-SLEGA. Hence we conclude that the model has learned well. Figure 6.26 below
displays an example Pareto front found by MO-SLEGA and MO-GA. From the Figure, we can indeed
conclude the front found by MO-SLEGA is better than the Pareto front found by the MO-GA.

(a) Training rewards. (b) Training reward rolling average. (c) Validation reward rolling average.

Figure 6.25: Training and validation curves of MO-SLEGA model on 17x02 instances.

For testing purposes, we take the same testing dataset as in the Experiment. We now compare the trained
MO-SLEGA against the trained MO-SLEGA from Experiment 1, the vanilla GA implementation (i.e.,
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described in Section 4.2.4). Note that we consider hyperparameter values (crossover rate etc.) from G.
Zhang et al. (2011).

Figure 6.26: Example Validation Pareto front difference between MO-SLEGA and MO-GA.

6.4.2 Testing

Now our MO-SLEGA is trained on company-specific instances, we put it to the test. Table 6.11 below
contains the results for the various algorithms on the test instances. For each approach, we present the
average duration, the average hypervolume, the mean and median makespan and cost (i.e., mean of best
makespan/cost of the Pareto front), and the optimality gap for the average makespan. The median is
presented as the mean is sensitive to outliers, which were present in the case of the MO-GA for the test
instances.

Approach Duration Hypervolume
Makespan Cost

Mean Median Gopt Mean Median

RANDOM 20.00 3.5e11 192144 152982 44.25% 746934 244174
MO-GA 34.45 5.2e11 184684 152445 38.65% 171733 11648
MO-SLEGA 89.46 6.8e11 158348 139793 19.78% 14094 8835
SO-SLEGA1 35.92 - 138733 130482 4.96% - -

1 Models trained Experiment 3.

Table 6.11: Results of models on company test set in MOO setting.

From the table, we note the following. First, we note that the average inference duration of the SLEGA
has increased from 35.92 to 89.46 (147%) when switching from a single- to multi-objective setting. This
is still acceptable to the company so this is not a big deal. Furthermore, we note that the MO-SLEGA
achieves the highest average hypervolume of 6.8e11. The vanilla MO-GA and random scheduling only
achieve a hypervolume of 5.2e11 (-24%) and 3.5e11 (-48%) respectively.

In terms of makespan, the MO-SLEGA degrades in performance by approximately 15 percentage points
when comparing it against the SO-SLEGA. Of course, when considering multiple objectives, the algo-
rithm won’t be as good at finding the best makespan. For example, various mutation actions are taken
to improve the cost, which will reduce the makespan on the other hand. Compared to the vanilla genetic
algorithm, adding a self-learning module allows for makespan to be improved from 184684 to 158358
(17% improvement). In Section 4.3.2 we have seen that the agent sets the individual and gene mutation
rates quite high, which is not the case for the vanilla genetic algorithm. Random scheduling is slightly
worse than the genetic algorithm with regard to makespan so the same conclusions hold.

In terms of cost, the MO-SLEGA improves performance by 92% when looking at the averages. When
looking at median cost, this is only an improvement of 24%. This large difference is explained by the
outliers in the best cost performance found by the genetic algorithm. The outliers in cost are caused by
the exponentially increasing WIP cost.
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Figure 6.27 shows the results in terms of hypervolume over the different instances. The results are pretty
self-explanatory. When instance sizes are not small (i.e., more than 10 jobs and 2 machines), MO-SLEGA
achieves the highest hypervolume at all times. For smaller instances, the MO-GA might outperform the
MO-SLEGA. This difference might be explained by the low mutation rate and higher crossover rate. The
performance difference is minimal (2-3% at most). Even though this small difference is caused by a loose
reference point, we consider it negligible. From Figure 6.28c we note that improvements in hypervolume
when considering the MO-SLEGA over MO-GA can be up to 170%. Generally speaking, improvements
are much higher when instance sizes are larger.

Looking at Figures 6.28a and 6.28b, we note that makespan performance can increase up until 51%
and cost improvements can be up until 99%. For cost improvements, we note that they generally
occur for larger instances, while for makespan improvements this isn’t necessarily true. The large cost
improvements again are explained by the exponential cost incurred due to WIP inventory.

Figure 6.27: Approach with the highest hypervolume per test instance.
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(a) Makespan (b) Cost

(c) Hypervolume

Figure 6.28: Comparison between MO-SLEGA and MO-GA

Figure 6.29 displays an example of found Pareto fronts by the different benchmarked approaches. As
can be seen, the performance displayed in Table 6.11 is confirmed. More specifically, we note that the
MO-SLEGA finds points where the cost is lower while obtaining a lower makespan as well. We note that
the reference point is not picked properly, as the lowest cost achieved goes beyond the reference point.
This is not considered problematic as from the Figure we note that MO-SLEGA still outperforms the
other algorithms for this region, thus it would not change the observations.

Figure 6.29: Pareto front of 30x08 FJSP instance.
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Now we displayed how and where the MO-SLEGA performs better, we dive into why this has happened.
Table 6.12 below displays the breakdown of incurred cost of 4 schedules created on the 85x06 instance.
The 4 schedules are created using (1) the schedule on the bottom-left (eyeballed) of the Pareto front
found using MO-SLEGA (Figure 6.30a), (2) the schedule with the lowest cost found using MO-SLEGA
(Figure 6.30b, (3) the schedule found using SO-SLEGA with 500 generations and 500 individuals (Figure
6.24) and (4) the schedule found using the original SO-SLEGA train on instances of size 64x04 (Figure
6.23c).

From the table, we note that the main cost incurred in schedules is due to WIP inventory. This makes
sense as this wasn’t penalized at all in the SOO setting. The cost incurred for deadlines is much higher
though for the MOO setting. This also makes sense, because when optimizing for the complete cost
picture, we increase the makespan, and miss more deadlines. The cost of deadlines in this case did not
weigh up against the cost of WIP inventory. More specifically, the cost of missing deadlines did not
weigh up against the cost of addiction and manual labour too, as in the worst case it only makes up
2.8% of the total cost.

For the situation with the best cost, we also notice that we manage to decrease the cost of resource
addition through the created mutation function. This cost namely decreases from about 23k to 18k for
the cheapest schedule. The finished product costs are negligible. We note that for the MOO setting, the
setup total setup times are extremely high. This means that the algorithm makes the additional setups
required to decrease the costs.

To summarize this experiment, we conclude that for a MOO setting, the MO-SLEGA performs better
than a vanilla MO-GA and random scheduling. We also see that makespan performance did not decrease
by more than 15 percentage points, while also accounting for the cost objective in the meantime. We also
note that the cost function could require a redesign in order to account for the various cost components
more equally.

Component
Schedule

MO-SLEGA MO-SLEGA SO-SLEGA SO-SLEGA
(ideal point) (best cost) (17x02) (64x05)

Figure 6.30a 6.30b 6.24 6.23c

Makespan 231278 398390 131336 151365
Setup Time 460000 460000 220000 370000
Cost 27056 22142 593282 390997

Addition 22850 17610 23390 33082
FP 34 32 36 36
WIP 201 0 565714 352430
Deadlines 350 600 75 150
Manual 3572 3900 3068 3299

Table 6.12: Schedule objective breakdowns.
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(a) Best Schedule (231278, 27056)

(b) Cheapest Schedule (39890, 22142)

Figure 6.30: Test instance (85x06) schedules created using MO-SLEGA.
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Chapter 7

Conclusion and Recommendations

This research project analyzes various scheduling algorithms on the flexible job-shop scheduling problem
(FJSP), which consists of machine allocation and operation sequencing sub-problems. In addition to
the vanilla FJSP, we investigate two variants: one with sequence-dependent setup times (SDSTs) and
another customized for Wefabricate, including SDSTs, night times, maintenance jobs, resources, release
dates, deadlines, inventory cost, and dynamic events. A literature review highlights previous approaches,
their limitations, and gaps, leading to our benchmarking study.

This research, commissioned by Wefabricate, aims to find scalable, flexible, efficient, generalizable, and
robust scheduling solutions. The approach should quickly find a near-optimal schedule and maintain per-
formance when input instances change. Additionally, it should adapt to new environments and processes.
This chapter presents conclusions drawn from the experiments conducted and provides recommendations
for Wefabricate.

7.1 Conclusion
In this research, we use a single evaluation function to assess the schedules produced by the algorithms.
This function is implemented twice to simulate schedules, one for decoding individuals of the (SLE)GA,
and one for E2E-DRL. Both implementations follow the same logic and return objective values that are
considered the standard for evaluating any schedule executed within the factory. All the conclusions
drawn in this study are based on the results obtained using this evaluation function.

We propose two algorithms for scheduling: a self-learning effective genetic algorithm (SLEGA) approach
and an end-to-end deep reinforcement learning (E2E-DRL) approach. In the SLEGA approach, individ-
uals are formulated using a double-layer encoding of operation sequence and machine allocation strings,
which are then decoded into feasible schedules. Population initialization involves local, global, and
random selection, while selection uses tournament selection (SO-SLEGA) and NSGA-II (MO-SLEGA).
Crossover is performed using precedence-preserving order-based crossover (POX), two-point crossover,
and uniform crossover, while mutation employs various greedy makespan (SO-SLEGA) and cost (MO-
SLEGA) mutations. To speed up the search process, individual evaluations are parallelized. The hyper-
parameters of search (crossover rate, individual mutation rate, gene mutation rate) are then optimized
by a PPO agent during the evolutionary process. The E2E-DRL approach formulates a schedule instance
as a heterogeneous graph with operation and machine nodes, where the arcs represent operation-machine
allocation decisions. Node and arc features are embedded using a heterogeneous graph neural network,
and the embedding is used by a PPO agent to select an operation-machine pair for scheduling.

In Experiment One, we have seen that in the vanilla FJSP, the instance size is of importance when
selecting a scheduling approach according to its performance (i.e., makespan). More specifically, we saw
that E2E-DRL outperformed SO-SLEGA for instances which have relatively few good solutions and a
larger search space. In those cases, the makespan was reduced by up to 30%. For instances where the
number of good solutions was relatively higher, the SO-SLEGA outperformed E2E-DRL and reduced
makespan up to 20%. In terms of execution times, E2E-DRL was faster by 20 to 90%, where execution
time gain was less for larger instances. Hence, for the vanilla FJSP problem, we consider both algorithms
to be scalable and efficient, where the E2E-DRL approach is more efficient than the SO-SLEGA approach.
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In Experiment Two, we compared the performance of two approaches for solving the FJSP with SDSTs.
Our results showed that the SO-SLEGA approach outperformed E2E-DRL in terms of makespan, with
a 5% improvement. Moreover, we found that retraining improved the performance of E2E-DRL, while
the SO-SLEGA approach demonstrated better generalization to unseen characteristics, making it more
flexible. In terms of efficiency, E2E-DRL was significantly faster, although the execution time of the SO-
SLEGA approach was still within acceptable limits. Overall, our findings suggest that the SO-SLEGA
approach is a more reliable and flexible option for solving the FJSP with SDSTs, whereas E2E-DRL is
a faster but less adaptable approach.

In Experiment Three, we investigated the performance of two approaches for solving the highly con-
strained FJSP of Wefabricate. Our results demonstrated that the SO-SLEGA approach outperformed
E2E-DRL in terms of makespan, even when considering new and previously unseen instance sizes. This
suggests that the SO-SLEGA approach is more flexible and robust to changes in problem characteristics.
Moreover, we found that the performance of the SO-SLEGA approach could be further improved by in-
creasing the population size and the number of generations, although this trade-off with efficiency should
be considered. Nevertheless, our results showed that the SO-SLEGA approach was able to outperform
traditional heuristics while still achieving acceptable execution times. Note that in this experiment,
E2E-DRL did not manage to outperform random scheduling. Overall, these findings indicate that the
SO-SLEGA approach is a reliable and effective option for solving the highly constrained FJSP of We-
fabricate.

In Experiment Four, we tested the performance of the MO-SLEGA approach on the highly-constrained
FJSP in a multi-objective setting. While we did not attempt to test E2E-DRL in this context due
to the extensive work required, our results demonstrated that the MO-SLEGA approach was able to
handle the multi-objective nature of the problem. These findings further emphasize the flexibility of
the MO-SLEGA scheduling approach. Our experiments also revealed that incorporating a self-learning
module into the MO-SLEGA approach improved its performance when compared to a vanilla genetic
algorithm. Moreover, the algorithm remained efficient enough to be used in production. Overall, these
results suggest that the MO-SLEGA approach is a robust and adaptable option for handling the highly-
constrained FJSP in a multi-objective setting, and its performance can be further enhanced through the
incorporation of self-learning modules.

Based on our conclusions from the previous paragraphs, we recommend that Wefabricate adopt the
SLEGA algorithm as a standard scheduling approach for various operation scheduling problems when
integrating machine learning into job scheduling. This is because the SLEGA approach outperforms
E2E-DRL in terms of flexibility, performance, and generalization. Specifically, the SLEGA approach
can handle various constraints and objectives more effectively, achieve lower makespan and cost, and
require less retraining than E2E-DRL. Additionally, the SLEGA approach is efficient enough to achieve
acceptable execution times, is highly scalable through parallelization, and can adapt to dynamic events
during schedule execution. The evaluation function can be controlled to adjust the preferences of the
company, such as buffers and working hour capacity, and the SLEGA approach can learn the setting
of hyperparameters based on the given evaluation function. Overall, the SLEGA approach is a generic
and reliable option for machine learning-based job scheduling at Wefabricate. This answers our main
research question.

With the SLEGA scheduling approach, onboarding a new process only requires creating an evaluation
function and potentially genetic operations. The algorithm remains the same, unlike the E2E-DRL
approach, which would require significant effort. Additionally, the SLEGA approach can be applied
to various optimization problems as long as a solution can be represented as an individual and this
individual can be evaluated given the business context.
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7.2 Limitations and Recommendations
In this work, we investigated two main algorithms for solving the flexible job shop scheduling problem.
Although this work laid a foundation towards generic job scheduling, this work is not complete. In this
work, we took various shortcuts which future researchers are recommended to look into:

In our implementation of E2E-DRL, sequence-dependent setup times were represented as a distinct
feature on the arcs of a heterogeneous graph. Alternatively, it may be possible to combine the setup
time and processing time of each O-M pair into a single feature. This approach may prevent catastrophic
interference during the learning process. Additionally, it would be beneficial to investigate the root cause
of the catastrophic interference and identify potential solutions. Furthermore, the E2E-DRL approach
needs a lot more exploration and fine-tuning for the company-specific instances.

During our comparison, we did not extensively tune the hyperparameters of the learning algorithms
(specifically PPO), which could potentially improve training times and outcomes. Additionally, we did
not tune the hyperparameters of the genetic algorithm, which can also have a significant impact on the
learning process. The number of generations or the population size could be interesting to look at.

To address dynamic events, it would be valuable to investigate the impact of a “warm start” on the
optimization speed of the SLEGA algorithm. This would enhance the flexibility of SLEGA and reduce
the time needed to recompute solutions, ultimately leading to faster execution times.

Our multi-objective approach revealed that the best makespan identified on the Pareto front was not
as optimal as the one obtained through single-objective optimization. To address this, it would be
worthwhile to investigate potential modifications to the multi-objective optimization search, with the
goal of also identifying the solutions found through single-objective optimization.

To evaluate the performance of the multi-objective approach more accurately, it would be worthwhile
to compute several actual Pareto fronts from real-world instances provided by the company. This would
provide a more accurate measure of how closely the found Pareto fronts align with the optimal solutions
and would offer a more realistic assessment of algorithm performance.

Our approach involved taking a fixed set of jobs as input, with a fixed execution quantity equal to the
total amount required by the customer. This meant that during the optimization process, there was no
consideration given to the possibility of splitting a single job into smaller ones. It would be worthwhile
to investigate how job-splitting decisions can be incorporated into the optimization process, to introduce
greater flexibility and improve scheduling outcomes.

For Wefabricate, it is important to fine-tune the evaluation function. Following the garbage-in garbage-
out principle, the evaluation function is of uttermost importance in order to arrive at proper schedules.
Hence the cost function should be carefully investigated and improved where possible. This could be
done by including the dimensions of products in order to represent the actual WIP cost for example.
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