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introduction
Adiabatic quantum computation and quantum annealing are powerful methods
designed to solve optimization problems more efficiently than classical computers.
The idea is to encode the solution to the optimization problem into the ground state
of an Ising Hamiltonian, which can be hard to diagonalize exactly and can involve
long-range and multiple-body interactions. The adiabatic theorem of quantum
mechanics is exploited to drive a quantum system towards the target ground state.

More precisely, the evolution starts from the ground state of a transverse field
Hamiltonian, providing the quantum fluctuations needed for quantum tunneling
between trial solution states. The Hamiltonian is slowly changed to target the
Ising Hamiltonian of interest. If this evolution is infinitely slow, the system is
guaranteed to stay in its ground state. Hence, at the end of the dynamics, the
state can be measured, yielding the solution to the problem. In real devices, such
as in the D-Wave quantum annealers, the evolution lasts a finite amount of time,
which gives rise to Landau-Zener diabatic transitions, and occurs in the presence
of an environment, inducing thermal excitations outside the ground state. Both
these limitations have to be carefully addressed in order to understand the true
potential of these devices. The present thesis aims to find strategies to overcome
these limitations.

In the first part of this work, we address the effects of dissipation. We show
that a low-temperature Markovian environment can improve quantum annealing,
compared with the closed-system case, supporting other previous results known in
the literature as thermally-assisted quantum annealing.

In the second part, we combine dissipation with advanced annealing schedules,
featuring pauses and iterated or adiabatic reverse annealing, which, in combination
with low-temperature environments, can favor relaxation to the ground state and
improve quantum annealing compared to the standard algorithm. In general,
however, dissipation is detrimental for quantum annealing especially when the
annealing time is longer than the typical thermal relaxation and decoherence time
scales. For this reason, it is essential to devise shortcuts to adiabaticity so as to
reach the adiabatic limit for relatively short times in order to decrease the impact
of thermal noise on the performances of QA.

To this end, in the last part of this thesis we study the counterdiabatic driving

VIII



introduction IX

approach to quantum annealing. In counterdiabatic driving, a new term is added
to the Hamiltonian to suppress Landau-Zener transitions and achieve adiabaticity
for any finite sweep rate. Although the counterdiabatic potential is nonlocal and
hardly implementable on quantum devices, we can obtain approximate potentials
that dramatically enhance the success probability of short-time quantum annealing
following a variational formulation.

The themes here outlined are thoroughly discussed throughout this thesis,
which is organized as follows.

in chapter 1 we give an extended summary of the main results of this project,
leaving all technical details to later chapters.

in chapter 2 we describe adiabatic quantum computation and some of its vari-
ants. Moreover, we briefly discuss the adiabatic theorem and the problem of
embedding NP-hard problems into sparsely-connected quantum annealers.
Some results concerning adiabatic quantum computation in the unitary limit
are presented.

in chapter 3 we introduce the ferromagnetic p-spin model, which constitutes the
leitmotiv of this project. Despite being exactly tractable in the thermodynamic
limit, this system is a good toy model of NP-hard optimization tasks and can
be used as a test bed for numerical simulations.

in chapter 4 we discuss open quantum systems. Physical quantum annealers
interact with their surrounding environment, inducing thermal relaxation and
decoherence. In order to correctly capture the physics of quantum annealing,
it is essential to include the effects of dissipation in the description of the
dynamics. In the weak-coupling limit, this is done by using adiabatic master
equations that can be either integrated numerically as they are, or by using
Monte Carlo wave function. If the coupling with the environment is stronger,
other techniques are necessary.

in chapter 5 we collect our results concerning quantum annealing of the p-
spin model in dissipative environments. We discuss the standard annealing
schedule and also variants such as iterated and adiabatic reverse annealing,
and quantum annealing with pauses.

in chapter 6 we turn our attention to shortcuts to adiabaticity and counterdia-
batic driving to speed up adiabatic quantum computation. We revise the
variational approach and propose an alternative method to build approximate
shortcuts to adiabaticity based on genetic optimization.
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1summary of the main results
This chapter aims to be an extended summary of the main results of this work. We
will outline our motivations and findings so as to support the reader in following
the rest of the manuscript. In doing so, we will postpone all technical details to
later chapters.

1.1 quantum annealing
Quantum annealing (QA) is the physical realization of adiabatic quantum computation
(AQC), a quantum computation paradigm polynomially equivalent to the quantum
gate model, engineered to solve quadratic unconstrained binary optimization (QUBO)
problems that classical computers would struggle to solve [10, 11]. In standard
QA, a qubit system is prepared in the ground state of a simple transverse field
Hamiltonian HTF = −Γ ∑i σx

i . The target is to read the ground state of a problem
Hamiltonian Hp, which encodes the solution to the optimization task at hand. To
do so, a time-dependent Hamiltonian is built which reads

H0(s) = A(s)HTF + B(s)Hp, (1.1)

where A(s) and B(s) are the annealing schedules and the annealing fraction s = s(t)
is a function of time. In standard annealing, s(0) = 0 and s(tf) = 1, where tf is the
annealing time. At s = 0, A(0) ≫ B(0) ≈ 0, while, at s = 1, B(1) ≫ A(1) ≈ 0, see
figure 1.1. Therefore, at the beginning of the evolution the transverse field term
induces quantum tunneling between computational basis states, which allows for
the exploration of the Hilbert space in the search of the target solution. Near the
end of the dynamics, quantum fluctuations vanish and the system is frozen in a
local minimum of the target Hamiltonian, hopefully the ground state. This idea
is inherited from simulated annealing (SA), a classical optimization strategy where
the role of quantum fluctuations is played by the temperature, slowly annealed to
zero [12].

In order for the algorithm to succeed, the evolution must respect the adiabatic
theorem and thus be slow on a time scale of the order of 1/∆min, where ∆min is
the minimal gap between the ground state and the first excited state, otherwise
diabatic Landau-Zener (LZ) transitions would take place and degrade the ground

1
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Figure 1.1 | Annealing schedules used by the D-Wave 2000Q QPU.

state (success) probability, or fidelity [13]. Computationally demanding tasks often
feature exponentially small spectral gaps in the size of the system, such as when
the system undergoes a first-order quantum phase transition (QPT), thus the time to
solution (TTS) usually diverges exponentially as well.

A major downside of having a long annealing time comes from the fact that
the quantum processor is an open quantum system and, as such, it interacts
with the surrounding environment [14]. Therefore, a longer walltime leaves the
qubit system more prone to errors due to thermal noise and can degrade the
performance of QA. This is what happens in the D-Wave machines, physical
quantum annealers based on superconducting electronics that have been extensively
studied in recent years [15–17]. For this reason, an optimal working tf can usually
(but not always [18]) be identified as a compromise between adiabaticity and the
necessity of limiting noise [19–21].

1.2 d-wave and the embedding problem
The D-Wave machines are built upon the Chimera graph, a sparse architecture
where qubits are arranged in a bipartite lattice and coupled to at most six other
qubits [22, 23]. The unit cell is depicted in figure 1.2. In the latest model of
D-Wave machines, the D-Wave 2000Q, there are M = 2048 phsyical qubits but
only Nc = 6016 couplers between them [15]. This poses a severe limitation as
many relevant optimization problems are formulated in terms of fully connected
Hamiltonians Hp, sometimes even featuring p-body interactions with p > 2, such
as in satisfiability problems. Therefore, in order to use D-Wave annealers to solve
such problems, the preliminary steps are i) decomposing the p-body interactions
into 2-body interactions using ancillae and ii) performing minor embedding to
represent logical qubits of the original problem as clusters of physical qubits on
the machine. D-Wave’s pieces of software PyQUBO [24] and minorminer [25] allow
one to perform both these steps with ease.
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Figure 1.2 | Two unit cells of the Chimera graph.

We contributed to the field by testing the feasibility of a genetic algorithm to
perform the p-to-2-body decomposition step, i. e., to find an effective Hamiltonian
H′

p containing just 1- and 2-body operators featuring the same spectral properties
as the original one [1]. Genetic algorithms are evolutionary strategies inspired by
the Darwinian theory of the survival of the fittest. A random set of trial effective
Hamiltonians, or chromosomes, undergoes three different genetic operators in
succession: mutation, crossing over, and selection of the best candidates according
to a problem-specific fitness value. In this case, the fitness function is the mismatch
between the spectra of Hp and H′

p. After a suitable number of generations, a
close-to-optimal set of trial solutions is returned.

Our results are discussed in section 3.7. The genetic algorithm works well
for small system sizes, as summarized in table 3.1, and allows one to replicate
eigenvalues and eigenvectors of a 3-body Hamiltonian with 2-body interactions.
The main problem is that this decomposition quickly saturates the available physical
qubits. As shown in figure 1.3, only small instances of fully connected models with
p-body interactions can be embedded in the Chimera graph. Therefore, numerical
simulations are of fundamental importance to understand the physics behind
these models. In this work, we focus on one of them, the ferromagnetic p-spin
model [26, 27]. Its symmetry properties allow us to simulate its dynamics on
classical computers. Besides, this system undergoes a first-order QPT when p > 2,
thus mimicking the hardness of optimization tasks [28].

1.3 ferromagnetic p-spin model
The ferromagnetic p-spin model is an Ising spin system where each qubit interacts
with p − 1 other qubits via infinite-range interactions. In the limit of large and odd
p, this model corresponds to the adiabatic search algorithm [29]. Its Hamiltonian
reads

Hp = −N

(︄
1
N

N

∑
i=1

σz
i

)︄p

. (1.2)

The ground state is ferromagnetic and nondegenerate (twofold degenerate) for odd
(even) values of p. The annealing Hamiltonian of equation (1.1) then commutes
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Figure 1.3 | Number of physical qubits M versus logical qubits N needed to decompose a
p-body Hamiltonian into an effective 2-body model. The blue dotted line represents
the number of physical qubits to perform both the p-to-2-body decomposition and the
minor embedding for p = 3.

with the total spin operator S2 at all times:
[︁
H0(s), S2]︁ = 0. Both the starting and

the target state belong to the subspace with maximal spin and there cannot be any
transitions outside this subspace due to the Hamiltonian dynamics, hence we can
always work in the symmetry subspace with maximal spin, substantially reducing
the computational effort of simulating this model. This scenario can change in the
presence of dissipation, except in some special cases.

The phase diagram of this model can be obtained within a mean-field the-
ory [28]. It is easy to show that for p = 2 the p-spin model undergoes a continuous
second-order QPT as a function of the transverse field Γ, separating the starting
paramagnetic phase and the final ferromagnetic phase. At the quantum critical
point, the minimal gap closes as polynomially in the system size N and quantum
annealing is efficient. By contrast, for p > 2 the QPT is first-order; the minimum
of the free energy suddenly jumps from the paramagnetic state m = 0 to m ̸= 0 at
a critical value of the transverse field Γc. The free energy of the p-spin system is
shown in figure 1.4.

1.4 open quantum systems
When the coupling with the environment is weak, the dynamics of the quantum
annealer can be described via an adiabatic master equation (AME) in the Lindblad
form [30, 31] for the reduced density matrix of the qubit system [32]. This form
ensures the complete positivity of the density operator at all times and is derived
within the Born, Markov, and rotating-wave approximation. This entails disre-
garding correlations, memory effects, and virtual processes that violate energy
conservation. The AME reads

∂tρS(t) = − i [H0(t) + HLS(t), ρS(t)] +D[ρS(t)], (1.3)
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Figure 1.4 | Free energy density as a function of the magnetization m, p-spin model. For
p = 2, there is a second-order QPT at Γ = Γc. The QPT is first-order when p ≥ 3.

where HLS(t) is the Lamb shift Hamiltonian and D is the adiabatic dissipator [see
equation (4.13)]. These terms appear in the Lindblad equation due to the interaction
with the environment, and are proportional to Lindblad operators, constituting
the possible dissipative channels of the qubit system. The system-bath coupling
strength η and the channel frequency affect the rate of each dissipative process.

The computational cost of simulating equation (1.3) numerically scales as D3,
where D is the Hilbert space dimension. A more efficient approach is to recover
the adiabatic master equation via the Monte Carlo wave function (MCWF) technique,
which rewrites the master equation as a Schrödinger equation for a ket state, in
which a non-Hermitian Hamiltonian incorporates the dissipative effects of the
environment [33]. Many trajectories are run in parallel. In each trajectory, quantum
jumps occur at random times and project the reduced system onto its instantaneous
eigenstates. Taking averages over all trajectories allows for the reconstruction
of the AME dynamics. The computational effort of each trajectory scales as D2,
therefore this approach is to be preferred when a large number of computer cores
are available to run multiple trajectories in parallel. Another advantage of the
MCWF approach is that it outputs the spectrum of thermal processes taking place
during the dynamics.

To go beyond the Born-Markov approximation, in reference [2] we discussed an
alternative technique to account for relaxation and decoherence. In this approach,
we combined a discretization scheme of the bath density of states, described as
a finite set of harmonic oscillators, a truncation scheme of the bosonic Hilbert
space of the bath, and Lanczos propagation of the system + bath ket state. The two
main advantages of this technique, known as short-iterative Lanczos (SIL), are that
we have access to the full state of the combined system and that we can include
multiple-phonon processes to improve the accuracy out of the weak-coupling
regime, as opposed to the AME, still maintaining a sizable computational effort.
The major downside is that the maximum time allowed in simulations is the
Poincaré time, determined by the minimal frequency of the discretization, after
which the collection of harmonic oscillators ceases to be a good approximation of
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an ergodic bath. To compensate, a large number of harmonic modes is needed,
increasing the computational cost of the technique.

Short-iterative Lanczos is described extensively in section 4.5 and allows us to
recover known results concerning the spin-boson model. We have also applied it
to the quantum annealing of a single qubit with dephasing at T = 0. Our main
result is that the Born-Markov approximation is no longer valid at T = 0 except
qualitatively at very weak couplings, due to correlations with the bath playing
a major role. Nonetheless, we can still ask what the predictions of the adiabatic
master equation are, irrespective of its validity.

1.5 dissipative dynamics: p-spin model

1.5.1 Quantum and simulated annealing
In reference [4], we have studied the dissipative quantum annealing of a p-spin
system using the AME approach. Our results are reported in section 5.2. As
indicator of the annealing performance, we refer to the residual energy, i. e., the
difference between the average energy of the final state and the exact ground state
energy at t = tf:

ϵres =

⟨︁
Hp
⟩︁

tf
− E0(tf)

N
. (1.4)

Our main conclusion is that, if the bath temperature is large enough, the unitary
dynamics always yield a smaller residual energy compared to the dissipative
setting, whereas, on the other hand, at low temperatures the dissipative residual
energy is smaller than that of the closed system at short times if the system-bath
coupling strength is not too weak. This indicates that a stronger coupling might be
beneficial for quantum annealing.

In addition to that, we have also compared the scaling of the residual energy
in quantum and simulated annealing for several values of the exponent p. At low
temperature, SA is known to perform better than unitary QA at adiabatic times [34].
However, in the intermediate-tf regime it is not immediate to see which technique
performs best.

Indeed, QA performs better than SA when the system-bath coupling strength
is not too weak. We note that the time at which simulated annealing starts to
outperform its quantum counterpart is loosely proportional to the exponent p. This
could suggest that, for very large values of p, quantum annealing could perform
better than simulated annealing, in an accessible time window in the presence of a
realistic (i. e., not extremely weak) coupling to the environment, making quantum
annealing the method of choice to study the Grover’s limit p → ∞.

1.5.2 Pausing the annealing
Recent literature has shown that pausing the quantum annealing in the presence
of dissipation can enhance the performance of the standard algorithm. Indeed, a
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pause inserted some time after the minimal gap enhances thermal recombination
and increases the ground state probability [35, 36].

This experimental finding is recovered also numerically within the AME approx-
imation, as we show in our recent paper [6], discussed in section 5.3. The aim of
that work is to prove that pauses can be beneficial not only for sparse Ising models
that can be embedded in the Chimera graph, but also for fully-connected models
such as the p-spin system. In addition, we show that even a simple Markovian
model of collective dephasing is able to reproduce qualitatively the same features
found in the D-Wave devices.

By testing various pause lengths tp and pausing times sp during the dynamics
of the p-spin system, we found four different regimes resembling the experimental
ones.

1. When the pause is inserted well before the time of the minimal gap s∆, the
fidelity is not affected by pausing because the level spacing is large compared
with the temperature energy scale.

2. When sp ≈ s∆, thermal processes are more frequent and pauses can have
either a positive or a negative impact on the dynamics according to the
populations of the first two energy levels: when sp ≲ s∆, excitations are
predominant and the fidelity is decreased, whereas if sp ≳ s∆ disexcitations
are favored and the fidelity is increased.

3. When the pause is inserted around an optimal pausing point, the fidelity
has a peak independently of the pause length. The existence of an optimal
pausing point is due to incomplete thermal relaxation and is related to some
properties of the thermal relaxation rate [36].

4. When sp is around s = 1, the fidelity is not affected by pausing because the
level spacing is large and the dynamics are frozen.

In conclusion, pausing the annealing at the optimal pausing point can substan-
tially enhance the success probability in the case of the p-spin system.

1.5.3 Iterated reverse annealing
Recently, iterated reverse annealing (IRA) has been proposed and implemented as
a way to refine a trial solution of an optimization problem [37]. As opposed to
standard quantum annealing, IRA starts at s = 1 from a candidate solution rather
than from the ground state of the transverse field Hamiltonian. Then, s is decreased
and quantum fluctuations are increased up to an inversion point s = sinv, after
which the annealing resumes as usual towards s = 1. Wise choices of the turning
point and of the starting state can improve the trial solution iteratively, hence its
name.

Unitary reverse annealing is not able to improve the annealing performance
of the p-spin model, as proven by a recent paper [38]. Yet, experimentation on
the D-Wave machines demonstrated that a substantial enhancement in success
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probabilities for random spin glass instances under reverse annealing compared
to standard (forward) annealing can be achieved [35]. In order to resolve this
apparent contradiction, we numerically studied the dynamics of reverse annealing
in the presence of Markovian dephasing for the p-spin model [7]. Our results are
reported in section 5.4. We show that the associated thermal relaxation results
in significant increase in the success probabilities, if sinv is chosen to be close to
the avoided crossing point, or before it. Pausing at the inversion point further
improves performance. This result is found for two different forms of dissipation:
individual dephasing, where each qubit is coupled to its own independent bath,
and collective dephasing, where all qubits are coupled to the same bath. In the
latter case, we additionally showed that a low-temperature environment can yield
a success probability close to one even if the starting state is very far in Hamming
distance to the target ferromagnetic solution, as opposed to the unitary case. The
thermal effects are further enhanced by inserting a pause at the inversion point.

Simulations using the collective dephasing model have larger success probabili-
ties for almost every sinv, compared to individual dephasing. This is because, in the
independent dephasing model, other states not in the subspace of maximum spin
become accessible by thermal excitation or diabatic transition during the reverse
anneal. Moreover, the maximum success probability achievable is always smaller
for the independent dephasing model but still larger than the unitary case. Thus,
our conclusion is that thermal relaxation to the ground state (possibly with a pause)
improves the performance for both dephasing models compared to unitary IRA.

1.5.4 Adiabatic reverse annealing
Adiabatic reverse annealing (ARA) is a variant of QA similar in spirit to IRA. In this
implementation of reverse annealing, another term is added to the Hamiltonian of
equation (1.1) so as to enforce a classical starting condition and to make quantum
fluctuations nonmonotonic. The aim of the technique is to use this additional
degree of freedom to circumvent first-order QPTs in order to speed up AQC, with
promising results so far [39]. The ARA Hamiltonian reads

H0(s, λ) = sHp + (1 − s)λHTF + (1 − s)(1 − λ)Hinit, (1.5)

where the evolution goes from (s, λ) = (0, 0) to (s, λ) = (1, 1). There are several
possible choices for the function λ = λ(s), the simplest one being λ(s) = s. The
initial Hamiltonian Hinit enforces the starting condition and is used to prepare the
qubit system in a classical configuration supposedly close in Hamming distance
to the target solution. In the case of the p-spin system, a parameter c = N↑/N is
used to quantify the distance from the target state, having c = 1. When c is above a
certain threshold, the first-order QPT for p > 2 becomes second-order, thus making
quantum annealing exponentially more efficient in a unitary setting.

In reference [8], we studied the effects of the environment on the dynamics of
adiabatic reverse annealing using the Markovian AME approach. We quantified the
efficiency of ARA both in terms of the ground state probability and of the time to
solution, representing the effective time it takes to solve the given problem at least
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once with a probability greater than 0.99 using runs of duration tf. Our results are
thoroughly discussed in section 5.5 and can be summarized as follows:

1. Comparing unitary and dissipative dynamics for several values of c in the
presence of collective dephasing, we see that the low-temperature environ-
ment can improve the success probability compared with the unitary case if
the system-bath coupling strength is not too weak and c is below the afore-
mentioned threshold. On the other hand, dissipation is detrimental when c is
above the threshold.

2. Concerning the time to solution, in the case of collective dephasing we see
that generally the dissipative TTS is shorter than the unitary one for short
and intermediate annealing times, but is larger than the unitary TTS for
longer annealing times. In addition, while in the unitary case ARA yields a
shorter time to solution than standard quantum annealing, the presence of
dissipation changes this scenario and the performances of the two techniques
become comparable for many choices of the starting fraction c, casting doubts
on the actual advantages of adiabatic reverse annealing in real-life situations.

1 .6 speeding up adiabatic quantum computation
Quantum systems with small spectral gaps need impractically long evolution times
to have a nonvanishing fidelity at the end of quantum annealing. Not only is
this inconvenient for all the pratical purposes where the computational time and
resources might be limited, but it is also detrimental for realistic QA in the presence
of dissipation, where longer annealing times leave the system more prone to
thermal noise. This is the reason behind the recent interest of the AQC community
in shortcuts to adiabaticity (STA), i. e., alternative ways to achieve adiabaticity at short
times. In particular, the counterdiabatic (CD) driving approach to STA has gained a
lot of momentum.

In this approach, the recipe is to add a counterdiabatic operator Hcd(t) to the
standard annealing Hamiltonian of equation (1.1) so as to completely suppress
Landau-Zener diabatic transitions for any finite sweep rate. Demirplak and Rice
[40], and later Berry [41] have derived the analytical form of this potential, which
is however useless for all practical purposes as it requires the exact spectrum of
H0(t), is highly nonlocal and ill-defined around quantum critical points [42, 43].

Recently, the variational formulation of CD driving, proposed by Sels and
Polkovnikov [44], has allowed researchers to build approximate CD operators that
can be realized experimentally. To this end, local ansäze such as our proposal,
the cyclic ansatz (CA), or truncated series expansions of the exact CD operator,
such as the nested commutators (NC) ansatz [45], have proven useful for many-body
quantum systems. Details about these two ansäze can be found in chapter 6.

In our recent work [9], we analyzed the performance of CA and NC in the
case of the p-spin model. For a very short annealing time of tf = 1, we compared
standard and CD-driven quantum annealing in terms of the scaling of the success
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probability with the system size N for p = 3. We know that, in the standard case,
the success probability F exponentially decreases with N as a consequence of the
minimal gap closing exponentially in N. Working in the symmetry subspace of the
p-spin system, we were able to study large systems up to N = 100 qubits. More
details can be found in section 6.4. In short, we found that:

1. Using the NC series expansion, the scaling of the success probability with
N remains exponential, but the fidelity is increased of several orders of
magnitude compared to standard QA. The efficiency of the NC ansatz quickly
saturates with the order l of the truncated series expansion, meaning that
an impractically large number of terms (and, thus, variational parameters)
would be required to enhance the fidelity of large systems. On the other
hand, the cyclic ansatz yields an almost perfect fidelity F ≈ 1 independently
of the system size with just three variational parameters.

2. The efficiency of the cyclic ansatz remains comparable with that of the far
more general nested commutators ansatz even when applied to variants of
the p-spin model that give up on some of the defining characteristics of the
model, such as the full connectivity and/or the infinite-range interactions.
This evidence supports the fact that our cyclic ansatz can be successfully
applied not only to the p-spin system, but also to more experimentally-
realistic Ising models.

1 .7 conclusions
In this work, we discuss a number of results concerning unitary and dissipative
quantum annealing of the ferromagnetic p-spin model. The goal is to analyze
all aspects of quantum annealing for an exactly solvable model, in order to have
a test bed to validate the technique and gain more insight into the underlying
mechanisms. Our main results are as follows:

1. Global dephasing can be beneficial for quantum annealing at low temperature
and for nonadiabatic annealing times.

2. The dissipative enhancement can be improved by pausing the system at the
optimal pausing point.

3. Other variants of quantum annealing, such as IRA and ARA, can also benefit
from dissipation at low temperatures and for nonadiabatic annealing times.

4. Whenever the bath is detrimental for quantum annealing, shortcuts to adia-
baticity and CD driving can be used to speed up adiabatic quantum compu-
tation so that the impact of the environment is reduced.

These findings have been outlined here and will be discussed with more detail
throughout this work.



2quantum annealing
2.1 introduction
Quantum annealing and adiabatic quantum computation [10, 11, 46–48] are physics-
inspired heuristic methods whose aim is to solve optimization problems, NP-
hard tasks that classical algorithms usually struggle to solve. Using quantum
tunneling, quantum annealing can be used to efficiently sample the solution space
of optimization problems. The underlying physical idea is to exploit the adiabatic
theorem of quantum mechanics [13, 49, 50], that allows one to prepare a quantum
system in a trivial ground state and evolve it very slowly to target the ground state
of another Hamiltonian, encoding the solution to the optimization problem.

What makes quantum annealing interesting is that the largest quantum proces-
sors now on the market, the D-Wave machines, are indeed quantum annealers [16,
17]. They already allowed us to study systems beyond the current capabilities of
competitor quantum chips operating in the quantum circuit paradigm. These quan-
tum processors operate at dilution refrigerator temperatures of around 12 mK [15].
The electromagnetic environment and the thermal anchoring contribute to form a
dissipative environment. The interaction with the environment tends to destroy
quantum coherence, and, even though quantum annealing is found to be robust
with respect to decoherence [51, 52], there is no conclusive evidence that quantum
annealers are actually quantum machines and not just thermal samplers. In this
work, we do not enter this dispute and rather focus on the physical description of
quantum annealers, in order to understand their working principles for present
and future applications.

This chapter aims to be a brief introduction to adiabatic quantum computation
and quantum annealing. In section 2.2, we review the basics of these techniques.
In section 2.3, we discuss the adiabatic theorem and the adiabatic time scale for
quantum annealing. Section 2.4 provides a number of technical details concerning
the D-Wave hardware. In section 2.5, we discuss the latest annealing protocols
included in the D-Wave machines, that can sometimes help us reduce the time to
solution, compared to the standard algorithm.

11
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2.2 adiabatic quantum computation
Many interesting problems are expressed as unconstrained optimization tasks,
where the goal is to find a vector in a variable space that minimizes a given
cost function. Here, in particular, we shall focus on unconstrained combinatorial
optimization, where the optimal vector belongs to a finite (even though often
impractically large) set of states. Known examples of this sort include minimizing
traffic in big cities [53] or finding the most efficient traveling routes for parcel
deliveries [54], optimizing supply chains [55] or airline traffic [56]. In computational
biology, the study of protein folding [57, 58] and molecular structures for drug
discovery are optimization problems raising compelling attention in these days,
but similarly interesting problems are also found in chemistry [59], computer
science [29, 60], mathematics [61, 62], and physics [11, 63, 64].

There is a strong connection between quadratic unconstrained binary optimization
(QUBO) problems, where the cost function is a quadratic function of binary vari-
ables, and Ising spin lattices with pairwise interactions in statistical mechanics [65].
In fact, the two possible values assumed by classical spins in an Ising model rep-
resent the binary variables of the given problem. By tuning the local magnetic
fields and the coupling constants between the spins, the Ising lattice can be used to
physically embody the given cost function. The Ising energy can then be turned
into a quantum model by replacing every binary variable with a qubit described by
the Pauli operator σz, so that a QUBO can be expressed by a quantum Hamiltonian
Hp, diagonal in the computational basis. Therefore, finding the optimal vector
solving the optimization problems corresponds to finding the ground state of Hp.
A rather larger superclass of QUBO problems is that of polynomial unconstrained
binary optimization (PUBO) problems, where the cost function is a polynomial of
order greater than two. Any PUBO can be turned into an equivalent QUBO, using
ancillae and a suitable decomposition scheme [66], as we will discuss in section 3.7.

Optimization problems are NP-hard and digital computers usually struggle to
solve them exactly. However, a variety of heuristic methods have been designed
to tackle specific optimization tasks in the most efficient possible way. Among
global heuristics, searching in the whole configuration space, there is simulated
annealing (SA) [12], a classical physics-based optimization technique. It exploits
thermal energy to perform Monte Carlo spin-flip moves, resulting in a random
walk in the configuration space. The temperature is slowly annealed to zero and
the system is eventually frozen into a minimum of the cost function. Whether
or not this minimum is the global minimum is not assured unless the scaling of
the temperature with time is exponentially slow, which is impractical for real-life
applications. If the Ising system has a spin glass phase or the temperature is varied
too quickly, the technique can easily remain stuck in local minima [34].

Quantum annealing was introduced by Kadowaki and Nishimori [10] as a
modification of simulated annealing, in which thermal escape rates are replaced
by quantum tunneling. In SA, the temperature is used the provide the energy
necessary to overcome the energy barriers separating the local minima of the
potential landscape one wants to minimize. Even when the barriers are very thin,
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the classical system cannot possibly cross them if it does not have sufficient energy.
By contrast, a quantum mechanical system can tunnel through narrow energy
barriers even when its energy is below the barrier height. This feature makes
quantum annealing appealing for optimization, allowing it to drive a quantum
system towards its ground state more efficiently than its classical counterpart. In
figure 2.1, we show a visual comparison between the two algorithms. Quantum
fluctuations are typically introduced via a transverse field Hamiltonian HTF, whose
general form is

HTF = −
N

∑
i=1

Γiσ
x
i , (2.1)

where N is the number of logical qubits and Γi is the strength of the local magnetic
field acting on the ith qubit in the x-direction. Quantum fluctuations arise from
to the fact that Hp and HTF do not commute,

[︁
Hp, HTF

]︁
̸= 0, hence the transverse

field term mixes the eigenstates of the problem Hamiltonian. The transverse field
intensity is very large at the beginning of the computation, when the whole Hilbert
space has to be explored, and vanishes (i. e., is annealed) towards the end of the
dynamics, when the algorithm must focus on the low-energy configurations of Hp.
This is usually realized by employing the following parametric Hamiltonian,

H0(s) = A(s)HTF + B(s)Hp, (2.2)

where s ∈ [0, 1] is the annealing fraction, and the functions A(s) and B(s) denote
the annealing schedules and satisfy A(0) ≫ B(0) ∼ 0 and B(1) ≫ A(1) ∼ 0. In
standard quantum annealing, s = t/tf where tf is the annealing time. In theoretical
and numerical investigations, it is typical to resort to a linear annealing schedule,
where A(s) = 1 − s and B(s) = s, even though this form is very different from the
one realized in real quantum hardware (see figure 2.3). We will largely use this
form throughout this work, even though we will also show some results concerning
a more experimentally-realistic annealing schedule in sections 5.3 and 5.4.

In the standard formulation of quantum annealing, the system is prepared at
t = 0 in the ground state of H0(0). Then, the qubit state is evolved according to
the Schrödinger equation with Hamiltonian (2.2) up to a certain annealing time
t = tf, where s(tf) = sf = 1. Eventually, the system state is measured. If the
evolution has been sufficiently slow, then the qubit system will be found in the
target ground state of Hp with a large probability, thus providing a trial solution
to the optimization problem. How slow we must go in order to find the target
with a certain confidence level is quantified by the adiabatic theorem of quantum
mechanics.

2.3 adiabatic theorem
The annealing function s = s(t) determines how rapidly the Hamiltonian (2.2) is
varied in time. The adiabatic theorem of quantum mechanics establishes an upper
bound for the time derivative of s(t) needed to achieve a certain success probability
in quantum annealing.
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Figure 2.1 | Visual comparison between simulated and quantum annealing during the
minimization of a cost function. Simulated annealing (in red) has to overcome local
barriers using thermal energy, whereas quantum annealing (in blue) can tunnel through
them and reach the global minimum more efficiently.

If we denote by |ψ(t)⟩ the many-qubit system state subjected to the Hamiltonian
H0(s(t)) ≡ H0(t), the Schrödinger equation reads

i
d
dt

|ψ(t)⟩ = H0(t) |ψ(t)⟩ , (2.3)

with h̄ = 1. The Hamiltonian (2.2) can be diagonalized instantaneously, providing
the time-dependent eigenbasis { |En(t)⟩ }. Thus, the time-dependent state reads

|ψ(t)⟩ = ∑
n

an(t) e− i
∫︁ t

0 En(t′)dt′ |En(t)⟩ , (2.4)

which can be inserted in the Schrödinger equation to derive a system of differential
equations for the coefficients an(t). When the external driving of the Hamiltonian
is slow and we are in the adiabatic regime, this system can be solved perturbatively
and yields

am(t) ≈ am(0) ei γm(t) − i ∑
n ̸=m

a(0)n (t)
⟨Em(t)|∂tH0(t)|En(t)⟩

∆2
n,m(t)

ei ϕn,m

⃓⃓⃓⃓
⃓
t

0

, (2.5)

where a(0)n (t) = an(0) exp(i γn(t)), ϕn,m is a dynamical phase factor, γm is the
geometric phase

γm(t) = i
∫︂ t

0

⟨︁
Em(t′)

⃓⃓
∂t′Em(t′)

⟩︁
dt′ , (2.6)

and ∆n,m(t) = En(t)− Em(t) is the instantaneous gap between En(t) and Em(t). Re-
quiring that the system stays in an instantaneous eigenstate for the entire dynamics
translates into the usually stated adiabatic condition for the mth eigenstate

max
t,n ̸=m

⃓⃓⃓⃓ ⟨Em(t)|∂tH0(t)|En(t)⟩
∆2

n,m(t)

⃓⃓⃓⃓
= ϵm ≪ 1. (2.7)
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For instance, for constant annealing velocity ∂ts(t) = 1/tf and m = 0 (e. g., the
ground state), equation (2.7) gives the following estimate for the annealing time in
adiabatic quantum computation,

tf ≫ max
s,n>0

⃓⃓⃓⃓
⃓ ⟨E0(s)|∂sH0(s)|En(s)⟩

∆2
n,0(s)

⃓⃓⃓⃓
⃓, (2.8)

which in many cases can be expressed in terms of just the ground state and the
first excited state:

tf ≫ max
s

⃓⃓⃓⃓ ⟨E0(s)|∂sH0(s)|E1(s)⟩
∆2

min

⃓⃓⃓⃓
, (2.9)

where ∆min = mins ∆1,0(s) = ∆1,0(smin) is the minimal gap between the ground
state and the first excited state. In this sense, it is often stated that the minimal
gap is the bottleneck of adiabatic quantum computation [63]. The annealing
time must scale as the inverse of the square of ∆min in order to solve the given
optimization with a nonvanishing probability [13, 49]. However, many interesting
problems feature exponentially small minimal gaps for macroscopic systems, and
thus require an exponentially long annealing time to be solved. This happens
particularly (but not exclusively) when a quantum system is driven across a first-
order quantum phase transition, where the minimal gap at the quantum critical
point closes exponentially as a function of N in the thermodynamic limit [67]. This
finding is also reminiscent of the Landau-Zener (LZ) excitation probability Pexp =

exp
(︁
−2π∆2

mintf
)︁
, which is exponentially small provided that tf ≫ O

(︁
∆−2

min

)︁
[68, 69].

The LZ model can indeed be used to describe adiabatic quantum computation in a
two-level approximation.

It turns out that both adiabatic conditions, equations (2.7) and (2.9), are too
strict and do not always provide a good estimate of the error at the end of quantum
annealing [70]. First of all, both equations impose the adiabatic condition globally
on the entire dynamics, disregarding the fact that the minimal gap varies in time.
In fact, the derivative of s(t) could be adjusted locally in order to accommodate
for these changes, thus speeding up the dynamics far from the minimal gap and
slowing it down next to it, and resulting in an overall faster quantum annealing.
Indeed, this is the kind of adaptive schedule used by Roland and Cerf, providing
the only possible way to achieve Grover’s quadratic speedup in adiabatic search [29].
Secondly, it is important to stress that, for the purpose of quantum optimization,
we are not actually interested in keeping the qubit system in its ground state for the
entire dynamics, but rather we want it to be in its ground state at t = tf, i. e., when
we measure the state. Therefore, even if the adiabatic condition of equation (2.7) is
violated locally, we can still have a favorable combination of diabatic excitations
and relaxations that eventually brings the system in its ground state at t = tf with
a large probability (see figure 2.2). This statement is also the foundation of modern
tools denoted shortcuts to adiabaticity, which allow us to speed up AQC beyond
adiabaticity [71]. We will discuss these tools in chapter 6.

In reference [70], the authors take this fact into account and derive an adiabatic
condition which is more suitable for AQC, showing that the annealing time scales
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Figure 2.2 | (Left panel) Pictorial example of an adiabatic dynamics. The qubit system,
prepared in the ground state of H0(s = 0), evolves following exactly the instantaneous
ground state when the annealing time is sufficiently long. (Right panel) The adiabatic
condition can be locally violated, but quantum annealing can still manage to yield the
solution to the optimization problem at s = 1.

as ∆−1
min rather than ∆−2

min in many relevant cases. This provides a polynomial
speedup compared to the naive adiabatic condition (2.7). In particular, when the
annealing time is sufficiently long we can focus on just the ground state and the
first excited state. When the instantaneous gap has the form

∆1,0(s) =
[︂
(s − smin)

2a + ∆b
min

]︂1/b
(2.10)

with b > 0 and a ∈ N+, the inverse of its analytic continuation in the complex
plane has a pole at a point s̃ whose real part is close to smin and whose imaginary
part satisfies |Im s̃| ≪ 1. We can express the time derivative of s(t) in terms of the
gap and of an auxiliary function h(s) such that the following equation holds:

ds
dt

= ∆1,0(s)h(s). (2.11)

The authors of reference [70] prove that, as long as

h(0) + h(1) ≪ 1 ∨ Re
(︃

i
∫︂ Re s̃+i Im s̃/2

0

ds
h(s)

)︃
≫ 1, (2.12)

the upper bound for the annealing time in adiabatic quantum computation is given
by

tf =
∫︂ 1

0

ds
∆1,0(s)h(s)

∼ 1
∆1,0(Re s̃)h(Re s̃)

|Im s̃| ∼ O
(︂

∆−1
min

)︂
. (2.13)

This is a consequence of the fact that 1/∆1,0(s) is strongly peaked around Re s̃ and
has a width of |Im s̃|, whereas h is roughly constant in this interval and satisfies
h ≪ |Im s̃|. This estimate of tf is confirmed by numerical simulations [70]. If global
adiabaticity is required, we will still use equations (2.7) and (2.9) as an estimate of
the adiabatic time scale.
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Figure 2.3 | Annealing schedules used by the D-Wave 2000Q QPU. The dashed line
represents the thermal energy scale kBT with T = 12 mK. The vertical green line
indicates the single-qubit freeze-out time.

2.4 d-wave
The D-Wave QPUs realize finite-temperature adiabatic quantum computation
on a physical hardware, based on rf-SQUID qubits, that operate at a cryogenic
temperature of approximately T = 12 mK. The quantum chip is essentially an
open quantum system that interacts with a dilution refrigerator acting as a thermal
reservoir, which affects the quantum algorithm and provides a source of thermal
relaxation and decoherence [15]. Due to technological limitations, the qubits used
in superconducting architectures are arranged in a sparse graph known as Chimera
graph.

2.4.1 Chimera graph and embedding
The notation CK refers to a Chimera graph of K × K repeating unit cells arranged
on a square two-dimensional lattice [22, 23]. The unit cell of the Chimera graph is
shown in figure 2.4 and features eight qubits arranged on a bipartite lattice. The
largest quantum annealers available on the market feature a C16 graph, therefore
the number of physical qubits is M = 8 × 162 = 2048. Each qubit in the Chimera
graph is coupled to at most six other qubits, four within the same unit cell and two
that belong to adjacent unit cells. The total number of couplers in an ideal C16 is
Nc = 6016.

The Chimera graph is a sparse architecture. However, many interesting QUBO
problems are formulated in terms of fully-connected Ising Hamiltonians, sometimes
even featuring k-body interactions with k > 2 as in satisfiability problems [65, 72].
This makes it cumbersome to solve these problems using the D-Wave machines.
The problem one aims to solve is formulated on a graph G = (VG, EG), where VG
are vertices (qubits) and EG are bonds (couplers). The standard procedure is to
map G onto a physical quantum graph U = (VU , EU), which in this case is equal to
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Figure 2.4 | Two unit cells of the Chimera graph. The eight qubits of each cell are arranged
in a bipartite lattice.

the Chimera graph C16. This mapping involves two separate components: minor
embedding [23] and parameter setting [22]. The goal of minor embedding is to
find a subgraph Gemb of U such that the logical graph G can be obtained from
Gemb by contracting edges. In graph theory, we say that G is a minor of U, hence
the name. Physically, this means that each logical qubit of the original problem is
effectively represented by subtree of the hardware graph, where physical qubits
within the subtree are strongly ferromagnetically coupled and behave as a single
logical qubit. The parameter setting problem, on the other hand, is to determine
the parameters of the embedded model that allow to replicate experimentally the
original Hamiltonian, also taking into account the limitations of the analog QPU
used for computation. For example, there might be limits on the maximum allowed
coupling J between qubits. Thus, in order to have physical qubits within the same
subtree act as a single qubit, all other parameters in the Hamiltonian should be
rescaled accordingly so that the intra-subtree ferromagnetic coupling is the largest
energy scale. This rescaling, though necessary, inevitably impacts the performance
of the adiabatic algorithm: firstly, we need to use ancillary qubits to build these
trees and represent a smaller number of logical qubits, thus hindering the capability
of the QPU of solving large optimization problems; secondly, a smaller energy
scale means smaller spectral gaps, which in turn imply a longer run time. A side
effect of this fact is that the freeze-out time, i. e., the time after which a qubit state
is fixed due to the fact that quantum fluctuations and thermal energy are too small
compared with the level spacing, shifts towards s = 0 for multi-qubit clusters [15].
The single-qubit freeze-out time is indicated in figure 2.3 by a green vertical line.

More formally, a minor embedding of a graph G = (VG, EG) onto a fixed
hardware graph U = (VU , EU) is an application ϕ : G → U such that each vertex in
VG is mapped to a connected subtree Ti of U, and such that there is a map τ : VG ×
VG → VU such that, for each (i, j) ∈ EG, there exist corresponding vertices iτ(i,j) ∈
VTi and jτ(j,i) ∈ VTj with (iτ(i,j), jτ(j,i)) ∈ EU . An example of minor embedding is
shown in figure 2.5. Here, we want to embed a logical triangular cell into a square
lattice. Using minor embedding, two vertices of the square lattice are strongly
bound together and act as a single vertex of the original triangular lattice.

The problem of finding a minor embedding when no assumptions are made
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Figure 2.5 | Minor embedding of a triangular graph into a square lattice.

concerning both G and U is NP-hard [73]. However, when the target graph is
known (in particular, is the Chimera graph), there exist polynomial-time algorithms
that can perform exact minor embedding for graphs with a small number of
vertices, up to ∼10. The most used codes to perform minor embedding, such as
minorminer [25], are instead heuristics that trade off accuracy in exchange for
a more favorable scaling of the runtime with the graph size. This allows us to
perform minor embedding on the C16 graph with a reasonable effort.

2 .5 advanced annealing schedules
The standard schedules commonly used by superconducting quantum annealers
are shown in figure 2.3. The annealing fraction s = s(t) is normally defined as
s(t) = t/tf. However, it is also possible to study variants of quantum annealing
where the annealing schedule is changed so as to improve the performances of the
algorithm. In particular, recent theoretical and experimental works have shown
that inhomogeneous transverse driving [74, 75], mid-annealing quenches, pauses [6,
35, 76], and reverse quantum annealing [7, 37–39] can be beneficial to improve the
success probability of quantum annealing or can be used to gain more insight into
the physics of dissipative quantum annealing.

2.5.1 Pauses
Quantum annealing can be temporarily stopped at a certain fraction sp, and the
qubit system can evolve for a certain amount of time tp with a time-independent
Hamiltonian. Experimental and theoretical works have proven that inserting pauses
at favorable points during the dynamics can improve the success probability of
quantum annealing, under specific conditions regarding the ratio between the
thermal relaxation rate and the pause duration [6, 35, 76]. In general, increasing
the pause length increases the success probability. In fact, pausing a quantum
annealer allows it to relax towards its ground state, and mitigates the effects of
diabatic excitations. In order for it to be effective, the pause must be inserted
when the level spacing is small enough so that tunneling between eigenstates is not
exponentially suppressed, and after the minimal gap, so that a macroscopic fraction
of the system is in an excited state and has the chance to relax back by a phonon
emission. Moreover, the qubit system must be far from its thermal equilibrium
state. Pauses inserted before the minimal gap have generally no effects on the
dynamics.
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Due to this delicate balance between time and energy scales, pausing affects
open quantum systems in a nontrivial way, and only recently we have come to a
more in depth understanding of it. In fact, in a recent paper [36], the authors have
proven the following necessary conditions for the existence of an optimal pausing
point, i. e., a point sp for which the ground state probability shows a maximum:

1. The time-dependent thermal relaxation rate must be monotonically decreas-
ing after the minimal gap.

2. The relaxation rate must be large right after the minimal gap and small at the
end of the annealing (compared to the other energy scales).

3. The ground state population at the end of the annealing must be subthermal,
i. e., pgs(s = 1) ≤ 1/(1 + exp[−β∆1,0(s = 1)]).

This theorem allows to explain all previous numerical and experimental findings
concerning pauses in dissipative quantum annealing.

Pauses also affect isolated quantum systems, but the underlying mechanism
is far easier to understand and can be related to coherent oscillations and qubit
rotations. In particular, an isolated quantum system benefits from pauses inserted
specifically around the minimal gap, whereas the effects of pauses are negligible
elsewhere. In addition, the beneficial effect of pausing around the minimal gap
decreases when the annealing time grows and the dynamics are adiabatic. For
these reasons, we can generally disregard pausing effects on unitary dynamics.

Consider for example a single two-level system evolving with the Landau-
Zener-like Hamiltonian

H(s)
h̄ω

= −1 − s√
2

σx −
s√
2

σz, (2.14)

where ω fixes the energy and time scales. The minimal gap ∆min = 1 occurs at
smin = 1/2. The evolution starts from the +1 eigenstate of σx and the target state is
|0⟩.

First of all, if the evolution is adiabatic (tf ≫ 1), the state vector |ψ⟩ will move
along the arc ϕ = 0, θ ∈ [0,π/2] on the Bloch sphere [with θ(0) = π/2 and
θ(1) = 0]. A pause inserted at any point sp will lock the Hamiltonian to H(sp).
At s = sp, the adiabatically-evolved state would be the +1 eigenstate of H(sp).
Therefore, during the pause, the system state will trivially acquire a global phase
factor ∆α proportional to the pause length tp, which however will not affect the
dynamics later on after the pause. This is represented in figure 2.6(a), where the
green circle represents the time evolution operator, i. e., a rotation operator around
the axis k = v, with v representing the system state on the Bloch sphere.

Conversely, if the evolution is nonadiabatic, the effect of the pause will depend
on sp (and, of course, on tp). If sp is close to s = 0, the system state would still
be very close to the adiabatic eigenstate of H(sp) due to the fact that the gap is
large at the beginning of the dynamics and that the time evolution operator is
continuous. Therefore, the effect of the pause would be once again to produce



2 quantum annealing 21

x

y

z

θp

|ψ(0)⟩

v

|ψ(1)⟩

∆α

(a) Adiabatic

x

y

z

θp

|ψ(0)⟩

v

|0⟩

ϕp

k
∆θ, ∆ϕ

(b) Nonadiabatic

Figure 2.6 | Effect of pausing the unitary dynamics of the single qubit (2.14) at the minimal
gap. In panel 2.6(a), the dynamics is adiabatic (|ψ(s)⟩ ≈ |E0(s)⟩) and the pause only
adds an irrelevant global phase factor. By contrast, if the evolution is nonadiabatic as in
panel 2.6(b), the instantaneous state is not an eigenstate of the time evolution operator
at s = sp, and thus rotates around the k-axis during the pause.

a global tp-dependent phase factor that will not affect the dynamics afterwards.
On the other hand, if sp is close to s = 1, the system state before the pause is
no longer an adiabatic eigenstate of H(sp) but a vector on the Bloch sphere that
forms an angle θp with respect to the z-axis. The Hamiltonian is approximately
H(sp) ≈ −σz/

√
2 and the resulting time evolution operator is the rotation operator

around the z-axis. The rotation angle is ϕ(t) = ϕp +
√

2t, where ϕp is the state
phase at s = sp. This operator acts on the Bloch state by changing its azimuthal
angle ϕ but leaving its polar angle θp unchanged. However, since the success
probability in this case is given by |⟨0|ψ(1)⟩|2 = cos2 θ ≈ cos2 θp, the pause does
not affect the outcome of the algorithm.

The only case in which a pause can affect the success probability is when
sp ≈ smin. Before the pause, the system state ceases to follow the instantaneous
eigenstate of H(s) when the inverse of the instantaneous gap becomes too small,
therefore the system state at s = sp is described by the two angles (ϕp, θp), with
ϕp ̸= 0 in general. The time evolution operator during the pause is the rotation
operator around the axis k with angles ϕ = 0 and θ = π/4. The angle that the
system state forms with this axis evolves as α(t) = α0 +

√
2t. This rotation affects

both θp and ϕp in a complicated way that can be worked out using Rodrigues’
rotation formula [77]

vrot(t) = cos α(t)v + sin α(t)k × v + (k · v)[1 − cos α(t)]k. (2.15)

This is represented in figure 2.6(b). Of course, the overall changes ∆θ and ∆ϕ

periodically depend on tp (modulus
√

2π). Thus, the system state will be generally
modified by the pause, which can either be detrimental or beneficial for the success
probability according to tp. For this reason, and unlike the dissipative case, the
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The effect of the pause becomes less evident when the dynamics are more adiabatic,
see the main text for further details. The total annealing time is t′f = tf + tp.

success probability depends nonmonotonically on tp in the unitary case, and
acquires a periodicity of

√
2π, as evident from figure 2.7.

2.5.2 Iterated reverse annealing
In the standard annealing protocol (with or without pauses), s(t) is a nondecreasing
function of t that satisfies the boundary conditions s(0) = 0 and s(tf) = 1, thus
quantum fluctuations monotonically decrease. As for other heuristic methods, in
quantum annealing there is no control, a priori, of the accuracy of the output vector,
which is usually a suboptimal approximation of the correct solution. This limitation
can be partially softened by combining multiple heuristics together as steps of a
multistage optimization routine, where the output of each step is used as input
of the following one. In this way, we can often produce better trial solutions by
successive approximation. Reverse quantum annealing (or reverse annealing for
short) is a viable tool to perform this kind of multistage optimization.

In reverse annealing, the qubit system evolves according to a different annealing
path that starts and ends at s(0) = s(tf) = 1. At t = 0, the qubit system is initialized
at first in a certain classical state, for example the trial solution coming from another
optimization routine. This state is supposedly close to the target ground state
of the problem Hamiltonian. The algorithm occurs in two phases. In the first
phase, quantum fluctuations are increased by decreasing the annealing fraction
from s(0) = 1 to s(tinv) = sinv, where tinv (sinv) is the inversion time (point). At the
inversion point s = sinv, a pause can possibly be inserted. In the second phase, the
annealing resumes as usual, quantum fluctuations are decreased and the system
is measured at s(tf) = 1 [7]. In figure 2.8, we show a comparison between the
annealing paths in standard and reverse quantum annealing. In the standard and
reverse protocol, tf = 500 µs. In the paused protocol, we have inserted a pause of
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Figure 2.8 | Annealing fraction versus time, in standard quantum annealing (with and
without a pause) and in reverse annealing.

length tp = 300 µs at sp = 2/5, during an annealing of time tf = 200 µs, so that
the total evolution time is t′f = 500 µs. The inversion time for reverse annealing is
tinv = 200 µs and the inversion point is sinv = 3/5.

If the inversion point and the starting state are chosen conveniently, the output
is an improved trial solution, i. e., a quantum state having a larger superposition
with the target state. This state can either be kept as it is or fed again into reverse
annealing as a new starting state. In this way, we can systematically improve a
trial solution, if at each step the overlap with the target state increases. This is
the reason why this kind of reverse annealing is colloquially known as iterated
reverse annealing (IRA). Reverse annealing can also be employed by itself to study
topological systems [78], and for measuring tunneling and relaxation rates [15].

Similarly to pausing, reverse annealing generally fails to improve the success
probability of adiabatic quantum computation in a closed system setting. Suppose
that the starting state is an (excited) eigenstate of the problem Hamiltonian. Then,
if the dynamics are adiabatic, according to the adiabatic theorem the system will
remain in the corresponding instantaneous eigenstate for the entire dynamics and
reverse annealing will have no effect.

By contrast, if (i) the starting state is close to the target, (ii) the dynamics are
nonadiabatic, and (iii) the inversion time is chosen to be sinv < smin, then reverse
annealing can possibly change the state and improve the success probability,
although these requirements severely limit its range of application. In fact, in a
closed system setting, the only mechanism that can allow the qubit system to move
across its energy eigenstates is LZ transitions. Thus, in order for reverse annealing
to be effective we have to cross the minimal gap, i. e., sinv < smin. Unfortunately,
however, after tinv the system crosses its minimal gap once again, thus part of the
ground state probability recovered after the first crossing is lost after the second
passage across the gap. A recent theoretical paper indeed proved that IRA fails to
improve trial solutions of a fully-connected model in a closed system settings for
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these reasons [38].
Once again, this scenario changes drastically in the presence of dissipation.

When the quantum chip is coupled to an environment at low temperature, thermal
processes can induce jumps between energy eigenstates and affect the outcome
of reverse annealing. This is the reason why there are experimental and theoret-
ical papers claiming that iterated reverse annealing can be useful for quantum
annealing [7, 79]. We will discuss one example in section 5.4.

2.5.3 Adiabatic reverse annealing
Finally, adiabatic reverse annealing (ARA) is another variant of reverse annealing that
has been recently proposed as an alternative to iterated reverse annealing [38, 39].
This technique shares many similarities with IRA:

1. At t = 0 the qubit system is prepared in a trial classical state.

2. The qubits are evolved following a path where quantum fluctuations are
nonmonotonic.

3. The effectiveness of the technique is directly related to the overlap between
the starting state and the target state, the larger the better.

However, as opposed to IRA, the annealing fraction is monotonic in ARA and goes
from s(0) = 0 to s(tf) = 1 as in standard quantum annealing. At the same time, the
original Hamiltonian (2.2) has to be modified in order to include an additional term
used to enforce the starting condition without changing the boundary conditions
of s(t).

The proposed ARA Hamiltonian can be written as

H0(s, λ) = B(s)Hp + A(s)[λHTF + (1 − λ)Hinit], (2.16)

where λ is an additional time-dependent parameter that ranges in [0, 1]. Note that
we can recover the standard quantum annealing Hamiltonian (2.2) if we set λ = 1.
Now we adopt a linear annealing schedule. In adiabatic reverse annealing, we
start from (s, λ) = (0, 0), where the Hamiltonian is H0(0, 0) = Hinit. The initial
Hamiltonian is diagonal in the computational basis and can be written as

Hinit =
N

∑
i=1

ϵiσ
z
i . (2.17)

The parameters ϵi = ±1 are used to set the starting state for the annealing, i. e.,
the ground state of Hinit. This state is evolved adiabatically following a path (s, λ)

in the parameter space that ends at the point (1, 1), where the Hamiltonian is
H0(1, 1) = Hp.

The path in the parameter space is parametrized by the function λ(s). For
example, consider λ(s) = sα, with α > 0a. If 0 < α ≤ 1, the coefficient of the

aα = 0 gives standard quantum annealing. Instead, α < 0 is excluded because we must have
λ(s) ∈ [0, 1] for all s ∈ [0, 1].
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transverse field sα(1 − s) has a maximum at s∗ = α/(1 + α), hence quantum
fluctuations increase until s = s∗ and decrease thereafter. For α > 1, there is also a
minimum at s̄ = 0, and the coefficient of the transverse field remains nonmonotonic.

The choice of the annealing path (for example, the choice of α) affects the
performance of ARA. This additional freedom compared with standard quantum
annealing can allow us to build paths in the parameter space that avoid first-order
quantum critical points, therefore exponentially speeding up adiabatic quantum
computation. More details about this technique will be given in sections 3.3 and 5.5
and appendix A.2.

2 .6 conclusions
In this chapter, we have introduced quantum annealing and its variants. Quantum
annealing is used to perform optimization and solve NP-hard tasks that classical
computers have troubles solving. The performance of the quantum algorithm is
determined by the minimal gap between the ground state and the first excited
state encountered during the annealing. However, in many cases, we are not able
to diagonalize the quantum Hamiltonian corresponding to a given optimization
problem, hence it can be tricky (sometimes impossible) to estimate its minimal gap
and know a priori whether or not quantum annealing will be efficient in solving it.
Due to the fact that we do not know the target state in advance, it is also difficult
to understand if the algorithm converged to the correct solution. For this reason, it
is crucial to test quantum annealing by solving quantum models whose ground
states are exactly known. In this way, we can test the theoretical and numerical
predictions and gain more insight into the physics of quantum annealers.

There are not many interesting quantum models that are both exactly solvable
and hard enough to pose a realistic challenge for quantum annealing. In the next
chapter, we are going to introduce the ferromagnetic p-spin model, a quantum
system that meets both these requirements. The numerical part of this work will
be entirely based on this model, therefore we will introduce it and discuss its main
features to set the foundations for our subsequent investigation.
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3.1 introduction
In this work, we shall focus on the ferromagnetic p-spin model, featuring infinite-
range all-to-all p-body interactions [26, 27]. In the large N and p limit, this
model becomes the adiabatic version of Grover’s search problem [29, 60]. The
ferromagnetic p-spin model is simple enough to simulate its dynamics using
classical hardware, and even evaluate its exact ground state in the thermodynamic
limit using a mean field theory [28]. Yet, on the other hand, finding this ground
state by means of an adiabatic evolution poses some serious threats that closely
resemble the complexity of solving NP-hard optimization problems. The fact that
we have access to a reliable analytical solution means that we can use this model as
a benchmark of the performance of quantum annealing. This is the reason why it
is so popular in the adiabatic quantum computation community [1, 4–7, 28, 34, 38,
39, 63, 74, 80–83].

The simplicity of numerically simulating this system comes from its Hamilto-
nian being permutationally invariant: any permutation of qubit variables leaves all
properties of the system unchanged. Physically, this corresponds to the fact that the
Hamiltonian commutes with the square of the total angular momentum operator
S2, hence the total Hilbert space is decomposed as a direct sum of eigenspaces of S2.
This symmetry allows us to simulate the unitary adiabatic evolution of this system
with resources scaling as poly(N) rather than exponentially in N [84]. However,
when dissipation is present, this symmetry can be broken due to the environment
causing transitions between otherwise uncoupled symmetry eigenspaces. For in-
stance, this happens when each qubit is coupled to its own independent bath (IB).
There are cases, however, where the characteristic wavelength of the interaction is
much larger than the system size, so that all qubits are collectively coupled to the
same collective bath (CB). Numerically, this is a very favorable case that preserves
the permutational symmetry and allows us to study the dissipative dynamics of the
p-spin model for large N. Later in this work, we will show our results concerning
both kinds of dissipation.

This chapter aims to be a collection of known results concerning the p-spin
model, which will help us discuss our personal contributions to the field in the
next chapters. It is mainly based on Refs. [1, 28, 38, 39], where the interested reader
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will find additional information and more thorough discussion. This chapter
is organized as follows. In section 3.2, we present the p-spin Hamiltonian. In
section 3.4, we discuss the decomposition of the Hilbert space in spin sectors and
motivate our choice of focusing on the maximal spin subspace exclusively. In
section 3.5, we discuss the spectral properties of the p-spin model and the scaling of
the minimal gap in the thermodynamic limit. In addition, we recover the adiabatic
Grover’s search as the p → ∞ limit in section 3.6. Finally, in section 3.7, we discuss
the two interlaced problems of transforming the p-spin model into a QUBO and its
embedding in the Chimera graph of the D-Wave chip. More details regarding the
mean field analysis of the p-spin model can be found in appendix A.

3.2 hamiltonian
We consider a system of N qubits and define the transverse and local magnetization
operators in terms of single-qubit Pauli operators as

mx,z =
1
N

N

∑
i=1

σx,z
i =

2
N

Sx,z. (3.1)

The Hamiltonian of the infinite-range ferromagnetic p-spin model reads

Hp = −N(mz)p = − 1
Np−1

(︄
N

∑
i=1

σz
i

)︄p

= − 1
Np−1 ∑

i1,...,ip

σz
i1 · · · σz

ip
, (3.2)

with p ≥ 1. For odd values of p, its ground state is the product state with all qubits
in |0⟩. For even values of p, the ground state is twofold degenerate as the system
is Z2-invariant. We pair Hamiltonian (3.2) with a homogeneous transverse field
Hamiltonian [see equation (2.1) with Γi = Γ for all i], which reads

HTF = −NΓmx. (3.3)

In this section, we consider a linear annealing schedule A(s) = (1− s) and B(s) = s
[see equation (2.2)], hence the quantum annealing Hamiltonian of this model reads

H0(s) = sHp + (1 − s)HTF = −Ns(mz)p − NΓ(1 − s)mx. (3.4)

This Hamiltonian only features collective spin operators, hence it commutes with
the square of the total spin operator:

[︁
H0(s), S2]︁ = 0. The case p = 1 represents

a single (N + 1)-level system and is trivial, thus we will not discuss it here. The
case p = 2 is equivalent to the anisotropic Lipkin-Meshkov-Glick (LMG) model with
no interactions along the y direction [85–87]. We will show later that this system
undergoes a second-order QPT when the parameter s is swept from s = 0 to s = 1,
separating the starting disordered phase (where ⟨mz⟩ = 0) and the final magnetic
phase (where ⟨mz⟩ ̸= 0). The transition occurs at a quantum critical point sc. For
finite sizes, the minimal gap ∆min closes as 1/ poly(N) in the thermodynamic
limit [28, 88, 89], hence, according to the adiabatic criterion [equation (2.7)], the
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annealing time for adiabaticity scales as poly(N) and quantum annealing is efficient
in finding the ground state [90].

Instead, for p > 2 the p-spin model is subjected to a first-order QPT in the
thermodynamic limit. For finite-size systems, the signature of the first-order
QPT is usually the fact that ∆min scales as exp(−αN), even thought there are
tailored examples in which the gap closes nonexponentially at a first-order phase
transition [91, 92]. Usually, however, the annealing time grows exponentially in N,
thus finding the ferromagnetic ground state by means of an adiabatic evolution
is inefficient [93], and mimics the complexity of NP-hard problems, where the
computational time usually scales exponentially with the input size.

The appearance of this first-order quantum phase transition for p > 2 can be
avoided by adding nonstoquastic catalyst terms (such as XX interactions) [81, 94]
to the annealing Hamiltonian of equation (3.4), or by considering inhomogeneous
transverse fields [74]. The effect of nonstoquastic Hamiltonians has been demon-
strated in the thermodynamic limit, but there is still an open debate concerning
their actual effectiveness on finite-size systems, where, in many cases, nonstoquastic
Hamiltonians actually reduce the success probability of quantum annealing, as
proven by a recent paper [95].

An inhomogeneous transverse field allows each qubit to cross the quantum
critical point sc at different times. Hence, the quantum phase transition, a collective
phenomenon, is bound not to occur [67]. However, such a technique inevitably de-
stroys the permutational symmetry of the Hamiltonian (3.4), making the numerical
analysis of the system exponentially more demanding. For these reasons, we will
not discuss these two techniques in this work.

3.3 adiabatic reverse annealing
As mentioned in section 2.5.3, adiabatic reverse annealing [38, 39] is a type of
quantum annealing where the system starts from a given classical configuration
rather than from the ground state of the transverse field Hamiltonian, i. e., the
uniform quantum superposition of all computational basis states. The starting state
can be a trial solution of the optimization problem, such as the output of another
annealing routine, and is supposedly close to the target solution according to some
metrics [37, 96]. At first, quantum fluctuations are increased, and then decreased
again. This algorithm can improve the trial solution, if the starting state is already
sufficiently close to the target. The meaning of this statement will be clarified in
the following.

In section 3.2, we introduced the p-spin Hamiltonian Hp [equation (3.2)] and the
corresponding transverse field [equation (3.3)]. In the case of ARA, the annealing
Hamiltonian is defined as

H0(s, λ) = sHp + (1 − s)λHTF + (1 − s)(1 − λ)Hinit, (3.5)

where s, λ ∈ [0, 1]. Standard quantum annealing is recovered when λ = 1, in which
case the additional term drops out and we are left with Hamiltonian (3.4). In ARA,
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on the other hand, the quantum evolution starts from (s, λ) = (0, 0) at t = 0 and
goes to (s, λ) = (1, 1) at t = tf. Thus, the Hamiltonian at t = 0 is Hinit, which reads

Hinit = −
N

∑
i=1

ϵiσ
z
i , (3.6)

where ϵi = ±1 is used to set the initial condition. In fact, the starting state
is the ground state of Hinit and, in the computational basis, is equal to |ψ0⟩ =

|(1 − ϵ1)/2, (1 − ϵ2)/2, . . . , (1 − ϵN)/2⟩, which can be chosen to be close to the
target ferromagnetic solution |ψfm⟩ = |0, 0, . . . , 0⟩ (for odd p). How close the
starting state is to |ψfm⟩ is expressed by the fraction of spins that are in state |0⟩
and thus are already ferromagnetically aligned:

c =
1
N

N

∑
i=1

δϵi ,1. (3.7)

The ferromagnetic state has c = 1. Therefore, the larger is c in the starting state, the
closer the starting state is to the ferromagnetic solution at s = λ = 1. The fraction c
is given by the mean value over the starting state of the operator

C =
1
N

N

∑
i=1

σz
i + 1

2
=

1
2
(mz + 1). (3.8)

Due to the presence of Hinit, the Hamiltonian of equation (3.5) no longer com-
mutes with the total angular momentum:

[︁
H0(s, λ), S2]︁ ̸= 0. However, the qubit

system is partitioned into two groups according to ϵ = ±1 in Hamiltonian (3.6),
thus we can build total spin operators related to each of the two groups:

mx,z
1 =

1
N

N

∑
i=1

ϵ=+1

σx,z
i =

2
N

Sx,z
1 , mx,z

2 =
1
N

N

∑
i=1

ϵ=−1

σx,z
i =

2
N

Sx,z
2 . (3.9)

It is easy to show that the Hamiltonian of equation (3.5) commutes with the set of
commuting operators { S2

1, Sz
1, S2

2, Sz
2 }. Hence, each term in the Hamiltonian (3.5)

can be expressed as

Hp = −N(mz
1 + mz

2)
p, (3.10)

HTF = −N(mx
1 + mx

2), (3.11)

Hinit = −N(mz
1 − mz

2); (3.12)

we can also rewrite equation (3.8) as C = mz
1. In appendix A, we show that when c

is above a certain threshold (i. e., the starting state is already partially magnetized),
adiabatic reverse annealing can allow us to avoid the first-order quantum phase
transition for p > 2.
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3.4 spin sectors
The Hamiltonian of equation (3.4) is invariant with respect to any permutations
of spin indices, due to its highly-symmetric structure. Given any permutation
operator Pζ1,...,ζN which constitutes a bijection { 1, . . . , N } ↔ { ζ1, · · · , ζN }, we
have that

[︁
H0(s), Pζ1,...,ζN

]︁
= 0. Accordingly, the Hilbert space of the system can

be decomposed as a direct sum of vector subspaces, identified by their symmetry
properties. After fixing a basis in each subspace, using the theory of representations
and the Young diagrams, the Hamiltonian will then have a block-diagonal structure,
which provides an important simplification in the numerical analysis if, during the
dynamics, no external operators break this symmetry.

From a more practical viewpoint, we can simplify the construction of these
subspaces by noting that the permutational symmetry of the p-spin Hamiltonian is
equivalent to rotational invariance, i. e., the Hamiltonian of equation (3.4) commutes
with the total angular momentum at each s:

[︁
H0(s), S2]︁ = 0. The eigenvalues

of S2 can be written as S(S + 1), where S can be either integer or half-integer.
The maximum allowed angular momentum is obtained when all N qubits are up-
aligned, in which case the eigenvalue of the z-component of the angular momentum
operator is also equal to S = N/2. Therefore, the possible values of S are given by
S(K) = N/2− K, with K = 0, 1, . . . , ⌊N/2⌋. From the theory of addition of angular
momenta, we know that there are

N N
K =

(︃
N
K

)︃
−
(︃

N
K − 1

)︃
(3.13)

equivalent subspaces for each K, each having degeneracy DK = 2S(K) + 1 =

N + 1 − 2K. The total dimension of the Hilbert space is 2N ,

⌊N/2⌋
∑

K=0
N N

K (N + 1 − 2K) = 2N , (3.14)

but each subspace has a dimension that scales linearly with N. In particular,
the subspace with K = 0, i. e., the totally symmetric space with S = N/2, has
dimension D0 = N + 1 and is unique (N N

0 = 1).
Let us denote the restriction of H0(s) to one of the subspaces of spin S =

N/2 − K as H(K)
0 (s). These subspaces are spanned by the Davies basis, i. e., the

basis of common eigenvectors of { S2, mz }, which can be indicated as |m; K⟩a, with
m ∈ MN

K = {−1 + 2K/N,−1 + 2K/N + 2/N, . . . , 1 − 2K/N }. In this basis, the
matrix representation of H(K)

0 (s) is tridiagonal due to the fact that mx only couples
states differing by ∆m = ±2/N; its matrix elements are[︂

H(K)
0 (s)

]︂
m,m

= −Nsmp, (3.15)[︂
H(K)

0 (s)
]︂

m,m′
= −N

1 − s
2

√︂
[1 − 2k + max(m, m′)][1 − 2k − min(m, m′)], (3.16)

aWe can equivalently indicate these states in terms of the z-component of the total spin S, i. e., by
|(N/2 − K)m; K⟩.
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with k = K/N and m − m′ = ±2/N. We will extensively use this representation in
our numerical simulations.

In particular, as discussed in chapter 2, we can perform several kinds of quan-
tum annealing, which differ by the starting state and/or the form of the Hamilto-
nian used during the anneal. In standard QA, the system is originally prepared
in the ground state of the transverse field Hamiltonian. This state is the quantum
eigenstate of mx with eigenvalue m(x) = 1 and belongs to the subspace with K = 0.
In iterated reverse annealing, we start from a trial solution at s = 1, perform the
dynamics in reverse up to s = sinv, and go back to s = 1. As the starting state, we
can always choose an eigenstate of H(K=0)

0 (s = 1). In both cases, the target state is
the ferromagnetic state with m = 1, which belongs to the K = 0 subspace as well.
Therefore, both these two kinds of quantum annealing can be worked out in the
subspace with K = 0. For this reason, from now on, we will drop the superscript
(K) in the representation of the Hamiltonian H(K)

0 (s), and we will always work in
the fully symmetric subspace K = 0 unless explicitly mentioned. The dimension of
the relevant space is D = N + 1 and the total spin is S = N/2.

The case of adiabatic reverse annealing is only apparently more complicated. As
discussed in section 3.3, the Hamiltonian (3.5) can be expressed in terms of collective
operators related to the two subspaces, up and down, in which the ARA system is
partitioned. The dynamics entirely occurs in the subspaces with K = 0, for both S2

1
and S2

2. This is because at t = 0 both subsystems are prepared in the eigenstates
of mx

1,2 having the maximum allowed eigenvalues m(x)
1 = c and m(x)

2 = 1 − c,
respectively, which belong to the K = 0 subspaces, and the target state for the two
subsystems are the fully symmetric states with m1 = c and m2 = 1 − c (so that m =

m1 +m2 = 1). The Hamiltonian commutes with S2
1 and S2

2 and the dynamics cannot
leave the subspaces with K = 0. The total angular momenta of the two subspaces
read S1 = ⌊Nc⌋/2 and S2 = (N − ⌊Nc⌋)/2. Thus, the relevant Hilbert space for
the ARA dynamics has dimension D = (⌊Nc⌋+ 1)(N − ⌊Nc⌋+ 1), quadratic in
N. The maximum of this function of c is D = (N/2 + 1)2 = N2/4 + N + 1 for
c = 1/2.

In conclusion, we can always work in the subspace(s) with K = 0. Compared to
the total Hilbert space dimension D = 2N , this provides an exponential reduction
of walltime and resources in the numerical simulation of the p-spin model, which
allows us to study very large systems up to N = O

(︁
103)︁ with reasonable effort.

3.5 spectral properties and minimal gap
In this section, we will numerically discuss the relevant spectral properties of the
p-spin Hamiltonian at T = 0, and compare them with some analytical results
shown in reference [28]. We will not repeat analytical calculations here as they are
beyond the scope of this section.

We start from the case p = 2, where the mean-field analysis predicts a second-
order QPT at s = sc = Γ/(2 + Γ). For simplicity, we consider the case Γ = 1, so
that the critical annealing fraction is sc = 1/3. It is possible to analytically compute
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Figure 3.1 | Spectral gap of the p-spin model with Γ = 1 and p = 2. Left panel: scaling of
the gap at the critical point sc = 1/3 as a function of the system size N. The scaling
of the gap is compatible with a power law ∆min ∼ N−1/3 (red dashed line). Right
panel: instantaneous gap for finite size systems, compared to the thermodynamic limit
[equation (3.17)].

the instantaneous spectral gap between the ground state and the first excited state
in the thermodynamic limit. The final result is

lim
N→∞

[E1(s)− E0(s)] =

⎧⎨⎩
√︁

12(1 − s)(sc − s) s ≤ sc,

0 s > sc.
(3.17)

For s > sc, i. e., after the phase transition, the ground state and the first excited
state become degenerate in the thermodynamic limit, as a consequence of the Z2

symmetry, and exponentially close to each other for finite-size systems.
In the left panel of figure 3.1, we plot the scaling of the gap between the ground

state and the first excited state at s = 1/3, as a function of the system size. The
red dashed line represents the asymptotic behavior ∆min ∼ N−1/3, which is in
good agreement with numerical diagonalization for finite-size systems already for
N ∼ O

(︁
102)︁. In the right panel, we show the instantaneous gap of equation (3.17),

and compare it with the instantaneous gap of finite-size systems. The latter
approaches the square root behavior of equation (3.17) for large N.

For p = 3, the quantum phase transition is first-order and the minimal gap
closes exponentially with N. The instantaneous gap remains of order one until s is
very close to the critical point. At the critical point, the slope of the ground state
energy is discontinuous as a consequence of the first-order transition. The param-
agnetic state survives as a metastable state for all s. By contrast, the ferromagnetic
state only exists beyond the spinodal point. In reference [28], the authors have
proven that the exponential closing rate αp of the gap, i. e., the coefficient appearing
in the scaling relation ∆min(N) ∼ exp

(︁
−αpN

)︁
, can be written as

αp =
1
2

∫︂ mc

0
arcosh

ec + scmp

(sc − 1)
√

1 − m2
dm (3.18)



3 ferromagnetic p-spin model 33

20 40 60 80 100
10−3

10−2

10−1 ∼ e−αp N

N

∆
m

in

0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

s

e
Figure 3.2 | (Left panel) Minimal gap of the p-spin model with Γ = 1 and p = 3, as a

function of N. The red dashed line indicates the asymptotic exponential scaling, with
αp = 8.677 × 10−2. (Right panel) Instantaneous spectrum (over N) for N = 50. Visual
inspection confirms that the paramagnetic state survives as a metastable state beyond
the critical point (see the green dashed line), whereas the ferromagnetic state only
exists after the spinodal point, indicated by the red arrow.

for all p ≥ 3. For p = 3, this rate is αp=3 = 8.677 × 10−2. In figure 3.2 (left panel), we
show the scaling of the minimal gap obtained from the numerical diagonalization of
Hamiltonian (3.4), compared with the asymptotic exponential scaling with rate αp.
Numerical results are in excellent agreement with the predictions of equation (3.18).
We also show in the right-hand panel of figure 3.2 the instantaneous spectrum of
the p-spin model with p = 3, Γ = 1 and N = 50, in the symmetric sector K = 0.
The ferromagnetic state, existing as a stable state past the critical point, can be
analytically continued back as a metastable state up to the spinodal point, marked
by the red arrow. The metastable paramagnetic state after the critical point is
indicated by the green dashed line.

Finally, in figure 3.3 we show the scaling of the minimal gap in ARA as a
function of the system size, for p = 3 and Γ = 1, for several values of the starting
fraction c. The annealing path is λ(s) = s. Similarly to standard quantum annealing,
the scaling of the gap stays exponential for c = 0.7 and c = 0.8, although in the
latter case ∆min decreases more slowly. This is expected, as for these values of
c the chosen annealing path crosses the first-order QPT. By contrast, for c = 0.9
the minimal gap is almost constant in the displayed window of system sizes and
generally scales polynomially as a function of N [38].

3.6 the large- p limit
We can represent the p-spin Hamiltonian of equation (3.2) on the Davies basis
introduced in section 3.4, in the spin sector with K = 0. We obtain

Hp = −N ∑
m

mp |m; 0⟩⟨m; 0| , (3.19)
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Figure 3.3 | Minimal gap of the ARA Hamiltonian (3.5) with Γ = 1 and p = 3, as a function
of N.

where m ∈ {−1,−1 + 2/N, . . . , 1 }. When p is large, mp tends to zero for all
m ̸= ±1. Let us consider odd values of p, so that mp = −1 when m = −1. Thus,
the large-p limit (odd) of Hamiltonian (3.19) is

Hp=∞ = −N |1; 0⟩⟨1; 0|+ N |−1; 0⟩⟨−1; 0| . (3.20)

The eigenvalues of Hp=∞ are all zero except for the ground state (e0 = E0/N = −1)
and the highest excited state (eN = EN/N = 1). The ground state of this simplified
model can be interpreted as the target state of a quantum search. Following
reference [29], we can then use the following oracular Hamiltonian to perform the
search,

Hg = − |1; 0⟩⟨1; 0| , (3.21)

which is very similar to Hamiltonian (3.20) except for the fact that the energy does
not scale extensively with the number of entries (

⃦⃦
Hg
⃦⃦
= 1), and for the presence

of the highly excited state in the large-p Hamiltonian (3.20). In fact, in Grover’s
search, all excited states have energy E = 0 and the target ground state has energy
E = −1, so that only this state is selected by Grover’s filter. However, it is highly
unlikely that an adiabatic dynamics will involve the excited state with EN = N due
to the large separation with the low-energy spectrum, meaning that the occupation
probability of that state will be close to zero during the entire dynamics. Therefore,
from the adiabatic quantum computation standpoint, the large-p p-spin model and
the adiabatic Grover’s search are equivalent for all practical purposes. Additional
numerical proofs of this equality can be found in appendix B of reference [6] and
in section 5.3.

3.7 the embedding problem
We have mentioned in section 2.4 that the D-Wave machines are built upon a
sparse architecture known as Chimera graph, that makes it difficult to study
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fully-connected models such as the p-spin Hamiltonian (3.4) on the quantum chip
due to the necessity to perform minor embedding [22, 23]. On top of that, the
p-spin Hamiltonian also features infinite-range p-body interactions (e. g., it is a
PUBO problem), whereas the physical hardware only allows for 2-body interactions
between logical qubits (e. g., QUBO problems). Therefore, a preliminary step for
mapping the p-spin system onto the Chimera graph is the decomposition of the
p-body Hamiltonian (3.4) into an auxiliary Hamiltonian only featuring 2-body
interactions, which typically still corresponds to a dense graph. Then, after this
step, we can perform minor embedding and map the dense graph onto the sparse
Chimera graph. There are proposals for improving the latter step by making use of
denser architectures [97–101].

Concerning the D-Wave, both these steps require the introduction of ancillary
degrees of freedom, that substantially reduce the number of logical qubits that
can be embedded in the quantum chip. In fact, if M is the number of physical
qubits, the scaling relation between M and N is polynomial and takes the form
M(p) ∼ α(p)Nβ(p), where α and β both depend on the exponent p. Finding the
actual embedding is an NP-hard problem [73] and can only be tackled heuristically.

In this section, we focus on the p-to-2-body decomposition. Our goal is therefore
to rewrite the p-spin Hamiltonian (3.2) as

H′
p = K +

M

∑
i=1

hiσ
z
i +

M

∑
i,j>i

Ji,jσ
z
i σz

j , (3.22)

where Na is the number of ancillae we need to add to perform the embedding
(M = N + Na). The parameters {K, hi, Ji,j } are the unknowns of this problem. They
have to be chosen in such a way that the low-energy spectrum of Hamiltonian (3.22)
is equal (up to a certain tolerance) to the low-energy spectrum of Hamiltonian (3.2).
Moreover, all spurious energy levels introduced by the ancillae must be well-
separated from the relevant spectrum so that they do not affect significantly
the dynamics of the low-energy states. In this way, we can perform adiabatic
quantum computation using the effective Hamiltonian (3.22) and still obtain a
solution of the optimization problem we want to solve. We stress that even though
Hamiltonian (3.22) mimics the spectrum of the starting Hamiltonian, the quantum
dynamics produced by using it in the annealing Hamiltonian (3.4) can be totally
different from that of the original model, due to the additional ancillary qubits we
add. However, if we are only interested in reading the final state and disregard
the instantaneous dynamics, which is often the case in optimization tasks, this
approach constitute a viable method.

In the purely adiabatic limit, only the ground state and the first excited state
of Hamiltonian (3.22) are relevant. Even for faster dynamics, only few of the
eigenstates of the p-spin Hamiltonian might be involved in the quantum evolution.
For this reason, in general, we do not need to match the whole spectrum and we
can match just the first L eigenvalues of the two Hamiltonians. For very simple
instances, we can always consider L = 2N and match the entire spectrum of the
original Hamiltonian (3.2) without much effort.
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Figure 3.4 | Pictorial representation of the AND embedding of equation (3.24). On the
left, we show the graph corresponding to the 3-body term Jx1x2x3. On the right, we
show the resultant 2-body Hamiltonian. The blue circles are the original qubits and
the red circle is the ancilla. The blue lines represent the coupling J, the solid red lines
represent −2δ and the dashed red line corresponds to a coupling −δ.

In order to perform the p-to-2-body decomposition, we can use the AND
embedding [66]. This algorithm is more straightforward if we convert the binary
representation σ ∈ {−1, 1 } to the equivalent x ∈ { 0, 1 } by using the linear
transformation σ = 1 − 2x. Given two binary variables x1 and x2, we want to
associate their product x1x2 (corresponding to the logical AND) to an ancilla
x1,2, in such a way that x1,2 = x1 ∧ x2. When either x1 or x2 is zero (or both),
x1,2 = 0 as well. If both x1 and x2 are equal to one, also x1,2 = 1. When we use a
physical qubit to represent the new logical variable x1,2, however, it may happen
that during the dynamics the logical AND could be broken as the three variables
evolve independently, therefore at some point we can have x1,2 ̸= x1 ∧ x2. Naturally,
these configurations are not allowed due to the physical interpretation of x1,2 as
the product of x1 and x2, and must be disregarded. We can do that by applying a
large penalty Ea

pen(x1, x2, x1,2) every time the AND clause is violated. For example,
we can use the following function:

Ea
pen(x1, x2, x1,2) = δ(3x1,2 + x1x2 − 2x1,2x1 − 2x1,2x2), (3.23)

where δ > 0 is a large value compared to all other energies. The penalty term is
Ea

pen = 0 when the AND clause is satisfied, and is Ea
pen ≥ δ if x1,2 ̸= x1 ∧ x2.

As an example, consider the 3-body term Jx1x2x3. If we define x2,3 = x2 ∧ x3

and use equation (3.23), the resulting Hamiltonian can be written as

Jx1x2x3 ≡ Jx1x2,3 + δ(3x2,3 + x2x3 − 2x2,3x2 − 2x2,3x3), (3.24)

where the equivalence is intended as an equality between the L = 8 lowest eigen-
values of the two Hamiltonians. A schematic representation of this procedure is
shown in figure 3.4.

In terms of the binary representation xi ∈ { 0, 1 }, the 2-body Hamiltonian (3.22)
can be rewritten as

H′
p = c0 +

M

∑
i=1

cixi +
M

∑
i,j>i

di,jxixj, (3.25)
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where the correspondence between the free parameters in the σ and x representation
is given by

K = c0 +
1
2

M

∑
i=1

ci +
1
4

M

∑
i,j>i

di,j, (3.26a)

hi = −1
2

ci −
1
4

M

∑
j=1

(dj,i + di,j) (3.26b)

Ji,j =
1
4

di,j. (3.26c)

If we denote by { Ep,i } ({ E′
p,i }) the eigenvalues of the original (mapped) Hamil-

tonian, our goal is to minimize the objective fitness function

F =
1
L

L

∑
i=1

(︂
Ep,i − E′

p,i

)︂2
+ Ea

pen + Ev
pen, (3.27)

where the first term matches eigenvalues, the penalty term Ea
pen ensures that

all AND clauses are satisfied and the final term Ev
pen ensures that eigenvectors

are sorted correctly. If there are l unsorted eigenvectors, this term can be writ-
ten as Ev

pen = lδ. Once the fitness function is defined, the optimal solution is
{ c0, c∗i , d∗i,j } = arg min F.

There are many heuristic algorithms designed to face this problem. For example,
the piece of software PyQUBO [24] represents the starting Hamiltonian as a tree,
folds it into a polynomial of order p and then simplifies it to a second-order
polynomial by a convenient application of equation (3.24). Instead of using this
iterative scheme, we decided to test a genetic global optimization algorithm to
achieve the same goal.

3.7.1 Genetic algorithms
Genetic algorithms are population-based stochastic metaheuristics used to solve
optimization tasks, inspired by the Darwinian theory of evolution [102, 103]. Simi-
larly to natural selection, which leads to the survival of only the fittest individuals,
genetic algorithms perform an evolution process that favors the best solutions to
the optimization problem. More precisely, genetic algorithms operate on encoded
representations of the trial solution denoted as chromosomes, where each free
parameter is a gene. In our case, the chromosomes are

v ≡ (c0, c1, . . . , cM, d1,2, . . . , dM−1,M). (3.28)

The chromosome’s length is the number of free parameters in Hamiltonian (3.22),
i. e., W = (M2 + M + 2)/2. The criterion used to rank different chromosomes is the
fitness function of equation (3.27): the fittest individuals are those who minimize
the fitness function or, alternatively, maximize −F. It is implicit that choosing the
best fitness function is usually the most crucial step of genetic algorithms.
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Once the fitness function is specified, the algorithm goes through several
phases. Initially, a population of random individuals is generated. Then, the
chromosomes are propagated through a set of generations until a termination
criterion is satisfied, such as the achievement of a specific tolerance or a maximum
number of generations. In each generation, the population is subjected to three
different operators whose goal is to increase the genetic variability of the trial
solutions and to select the fittest individuals that will survive to next generations.
These are the following:

mutation In nature, individuals can spontaneously develop specific traits to
adapt to changes in their surroundings. This ability is mimicked in genetic
algorithms by assigning a mutation probability pm, so that chromosomes can
randomly mutate their genes to improve their fitness. Typically, the mutation
operator extracts a random number from a Gaussian distribution with zero
mean and variance σ2, and then adds it to a random gene.

crossover During the crossover phase, portions of two parent chromosomes are
combined together to produce two children. The crossover occurs with a
certain probability pc and can happen in multiple ways. For example, in
one-point crossover, a random gene is selected, the two parents are split at
this point and their tails are exchanged. Instead, in two-point crossover, two
random genes are extracted and the parent chromosomes are split into three
pieces; the offspring is built by combining alternating parts of the parent
chromosomes.

selection In the final step, the genetic algorithm selects the best individuals that
will become parents in the next generation. This is usually done by setting
up a tournament between NT randomly selected individuals at a time (with
repetitions allowed), and ranking them according to their fitness value.

In figure 3.5, we show a schematic representation of these steps. The net result is
the improvement of the average fitness of the individuals across the generations.

In reference [1], we tested the feasibility of using the genetic algorithm to
solve the p-to-2-body mapping. As a proof of principle, we focused on two very
simple instances whose QUBO decomposition can be worked out analytically using
equation (3.24), i. e., N = 3 and p = 3 (for which the number of physical qubits
after the decomposition is M = 4), and N = 4 with p = 3 (M = 6). We aimed to
match all L = 2N eigenvalues of the starting Hamiltonian. We used the Python
library DEAP [104] to perform the genetic evolution.

A preliminary step in every kind of heuristic optimization is the setting of
hyperparameters, which can be done by analyzing the performance of the algorithm
for several choices and by selecting the best configuration [105, 106]. In our case, we
varied the variance σ2 of the Gaussian mutation operator, the number of individuals
involved in the tournament selection NT, and the type of crossover, one- or two-
point. By contrast, the mutation and crossover probability have been fixed to
pc = 0.4 and pm = 0.7 as we verified that the performance of the algorithm was
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Population Mutation Crossover Selection

Figure 3.5 | Schematic representation of the elementary step of a genetic algorithm. The
genes of a starting population of chromosomes are randomly mutated; then, pairs of
individuals are crossed-over and the best children are selected according to their fitness
value (represented by the light blue bars above).

almost independent on the choice of these parameters. We performed Nr = 100
runs for each configuration of hyperparameters, where in each run we propagated
a population of Npop = 20 random individuals for Ng = 1000 generations. We then
chose the best configuration of hyperparameters according to the minimal median
fitness. In order to ensure a wide separation between the physical and unphysical
parts of the spectrum, we fixed δ = 50 in the penalty terms.

As an example, we report here our results concerning the case N = 3 and p = 3,
and point the readers to reference [1] for further details concerning N = 4. For
N = 3, the best configuration of hyperparameters involves a two-point crossover,
standard deviation of the mutation operator σ = 0.2, and a tournament pool
size NT = 5. Using this information, we evolved a population of Npop = 20
chromosomes for Ng = 25 000 generations. At the end of the algorithm, we
selected the best individual in the final population, i. e., the one having the smallest
fitness value (F = 9.88 × 10−8). In table 3.1, we report our results for N = 3,
compared to the analytic solution. We note that the both the free parameters and
the eigenvalues are very close to their theoretical value. Also the eigenvectors are
correctly replicated. In the genetic eigenvector column, the first qubit is the ancilla
and is defined as x1,2 = x1 ∧ x2. The AND clause is always satisfied in this lower
part of the spectrum. Eigenvectors that violate the AND clause have higher energy
and are not included in the comparison.

With this solution at hand, we can perform an adiabatic quantum computation
and compare it with the original p-spin Hamiltonian (3.4), with a caveat. In fact,
the global adiabatic criterion of equation (2.7) states that, in order for the evolution
to be adiabatic, the annealing time must satisfy the condition

tf ≫ max
s,a ̸=b

| ⟨Ea(s)|∂sH0(s)|Eb(s)⟩|
∆2

min
. (3.29)

Numerically, we can check that the minimal gap of the effective 2-body model is
very similar to the original model (∆min ∼ 1.3 versus ∆min ∼ 1.2). On the other
hand, due to the presence of energy penalties, the rate of variation of the effective
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Table 3.1 | Comparison between the best chromosome obtained by the genetic algorithm
and the analytically computed solution for N = 3 and p = 3 (M = 4). In the genetic
eigenvectors, the first qubit is the ancilla and is defined as x1,2 = x1 ∧ x2.

Free parameters Eigenvectors Eigenvalues
Analytic Genetic Analytic Genetic Analytic Genetic

−3 −2.99919 |000⟩ |0⟩ |000⟩ −3 −2.99919
−150 −150.853 |001⟩ |0⟩ |100⟩ −1/9 −0.11138
26/9 2.88781 |010⟩ |0⟩ |001⟩ −1/9 −0.11129
26/9 2.88795 |100⟩ |0⟩ |010⟩ −1/9 −0.11124
26/9 2.88790 |011⟩ |1⟩ |110⟩ 1/9 0.11111
100 100.720 |101⟩ |0⟩ |101⟩ 1/9 0.11120
100 101.118 |110⟩ |0⟩ |011⟩ 1/9 0.11120

16/3 5.33174 |111⟩ |1⟩ |111⟩ 3 2.99999
−158/3 −53.6496
−8/3 −2.66531
−8/3 −2.66545

Hamiltonian is typically much larger than that of the original p-body model, in
particular it scales linearly with δ. Therefore, a larger δ implies a wider separation
from the spurious part of the spectrum but a longer adiabatic time scale, and vice
versa, a smaller δ implies a shorter adiabatic time but closer unphysical energy
states that can potentially affect the dynamics. Naturally, this trade-off is present
in all kinds of QUBO mappings involving ancillae.

With that said, it makes little sense to compare the dynamics of the original
p-body model with those of the effective model for a fixed annealing time, as
the same numerical value has entirely different meanings in the two cases, in
relation to their own adiabatic time scale. The important thing to stress is that with
the p-to-2-body mapping we have access to a physically realizable Hamiltonian
whose ground state provides the solution to the starting problem, at the expense of
consuming more qubits and/or having to run the program for a longer annealing
time. Therefore, in the left panel of figure 3.6, we show the scaling of the error
probability pe(tf) = 1 − |⟨E0(tf)|ψ(tf)⟩|2 ≡ 1 − pgs(tf) with the annealing time tf
in three cases: the original 3-body Hamiltonian, the mapped 2-body model with
δ = 15, and the mapped model with δ = 50. The plot confirms our analysis,
as the error probability decreases more slowly with tf for larger δ, meaning that
the adiabatic regime of the effective model is reached at longer annealing times.
For example, if our goal were to find the ferromagnetic ground state with 95 %
probability, numerical simulations would yield tf(p = 3) = 5.4, tf(δ = 15) = 12.6,
and tf(δ = 50) = 31.5 in appropriate units. Indeed, as evident from the right panel
of figure 3.6, although the dynamics are different, the final ground state probability
is pgs = 0.95 in all cases if we use the aforementioned annealing times.
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Figure 3.6 | (Left panel) Error probability as a function of the annealing time for the p-body
model and the corresponding QUBO mapping. (Right panel) Instantaneous ground
state probability as a function of s. The annealing time has been chosen to yield a
confidence level of 95 % of finding the ferromagnetic ground state (see main text).

3 .8 conclusions
In this chapter, we have introduced the ferromagnetic p-spin model and discussed
its features both in the thermodynamic limit and for finite-size systems. Due
to its mean-field character and the fact that it resembles the adiabatic Grover’s
search, this model is heavily studied in the field of AQC as a template of NP-hard
problems. As it is a fully-connected system, many ancillae are necessary in order
to perform quantum annealing on the D-Wave machine. The largest chip now
available features 2048 physical qubits. As an example, for a p-spin system with
p = 3 we saturate M = 2048 physical qubits just by decomposing the p-body
Hamiltonian of a system of N = 86 logical qubits into a 2-body one, but the
maximum number of logical qubits quickly decreases with increasing p. For p = 7,
the maximum embeddable size is N = 20 logical qubits (see figure 3.7). These
numbers do not even factor in the additional ancillae needed for minor embedding,
which are usually the bottleneck for resources. If we take into account the Chimera
graph, the number of logical qubits that we can embed sharply drops. For p = 3,
we can only embed approximately N = 20 qubits, as shown by the blue dotted
line in figure 3.7. Therefore, numerical simulations are fundamental in order to
describe the behavior of larger instances of the p-spin system during a quantum
annealing, especially in the large-p limit.

D-Wave chips are physical objects, and as such they are embedded in an
environment and interact with it. Thus, any numerical analysis cannot leave aside
the environmental effects, which affect the quantum evolution in many ways [4, 19,
82, 83, 107–109]. Simulating the dissipative dynamics of a quantum annealer is a
very demanding problem involving several different approximations. However, it
appears that many qualitative features of dissipative quantum annealing can be
captured by just resorting to a Markovian approximation. Therefore, in the next
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Figure 3.7 | Number of physical qubits M versus logical qubits N needed to decompose
the p-body Hamiltonian (3.2) into the effective 2-body model of equation (3.22). The
blue dotted line represents the number of physical qubits to perform both the p-to-2-
body decomposition and the minor embedding for p = 3. These scalings have been
computed using PyQUBO [24] and minorminer [25].

chapter we will revisit the microscopic derivation of a Markovian quantum master
equation in the Lindblad form and we will discuss its numerical implementation.
We will then heavily use this tool in the following chapters.



4open quantum systems
4.1 introduction
In real-world devices, the ensemble of qubits constituting a QPU is an open
quantum system, whose dynamics cannot be described by a Schrödinger equation,
due to the interaction with the environment. In this chapter, we are going to
review the mathematical description of open quantum systems within the Born,
Markov, and rotating wave approximations. In the weak-coupling regime, the
dynamics of an open quantum system can be described by a quantum dynamical
semigroup leading to a time-local quantum master equation in the Lindblad form
for the reduced density matrix of the qubits. This equation can be rephrased as a
stochastic Schrödinger equation for a ket state, which simplifies numerical analysis
for large systems and allows for an easy parallelization. These tools are invaluable
to provide a qualitatively accurate description of physical quantum annealers.

This chapter is organized as follows. In section 4.2, we introduce the concept of
quantum dynamical semigroup and derive the adiabatic quantum master equation
in the Lindblad form that we will use in the remainder of this thesis. In section 4.3,
we show that the adiabatic master equation has an analogue formulation in terms
of a stochastic wave function approach, in which the environment induces quantum
jumps between pairs of energy eigenstates at random times. The cost comparison
between these two formulations as a function of the system size is discussed in
appendix B. As an example of an application, we discuss the ferromagnetic p-
spin model with collective dephasing in section 4.4. Finally, in section 4.5, we
discuss a way to include effects beyond the Born-Markov approximation using
exact diagonalization and a technique known as short-iterative Lanczos, and we
show our results for a single open qubit as a test bed for this approach.

4.2 dynamical semigroup
In quantum mechanics, the state of a system is a ket |ψ(t)⟩ that evolves in time
according to the Schrödinger equation, or, equivalently, a density operator ρ(t) that
evolves according to the Liouville-Von Neumann equation

∂tρ(t) = − i [H(t), ρ(t)] ≡ L(t)ρ(t) (4.1)

43
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where H(t) is the system Hamiltonian. The Liouvillian superoperator L(t) is
introduced so that we can formally write the dynamics of the density operator as

ρ(t) = T e
∫︁ t

0 L(t′)dt′ ρ(0), (4.2)

where T is the time ordering operator.
Suppose we have a quantum system whose dynamics we want to unveil, such

as the QPU of a quantum annealer. This system is never fully isolated as it interacts
with the surrounding environment, which acts as a thermal bath. If HS is the
Hilbert space of the qubit system S and HB is the Hilbert space of the environment
B, the total Hilbert space is H = HS ⊗HB. The system S + B is a closed quantum
system (see figure 4.1) and its dynamics is described by equation (4.2). On the
other hand, S is an open quantum system exchanging energy with B, therefore the
dynamics of the reduced density operator ρS(t) = trB ρ(t), obtained by taking the
partial trace over the degrees of freedom of the bath, cannot be expressed by the
right-hand side of equation (4.2). Generally, we are not interested in following the
dynamics of the bath and we want a closed-form equation that allows us to just
follow the reduced system S. In other words, we want to find the superoperator
V(t), denoted dynamical map, that gives us

ρS(t) = trB

[︂
T e

∫︁ t
0 L(t′)dt′ ρ(0)

]︂
≡ V(t)ρS(0). (4.3)

Under certain assumptions, the dynamical map V(t) has the structure of a semi-
group, i. e., it satisfies

V(t1)V(t2) = V(t1 + t2), t1, t2 > 0. (4.4)

In particular, this equation (Chapman-Kolmogorov) is valid when the bath cor-
relation functions decay more rapidly than the characteristic time scales of the
system evolution, which corresponds to a Markovian approximation where we can
disregard any memory effects. In turn, this corresponds to the fact that the reduced
system is only weakly coupled to its environment. The fact that we are limited to
t > 0 is a consequence of the irreversibility of dissipative dynamics [14].

When the reduced dynamics are expressed by the dynamical semigroup (4.4),
it is possible to find a generator L(t) so that V(t) = T exp

(︂∫︁ t
0 L(t′)dt′

)︂
and the

dynamical equation for ρS(t) takes the form of a time-local master equation in
the Gorini-Kossakowsky-Sudarshan-Lindblad form [30, 31] (Lindblad for brevity)
formally similar to equation (4.1). L(t) is the Lindbladian of the system. It contains
both the unitary part of the dynamics and a dissipative term that incorporates the
effects of the environment on the reduced dynamics. The Lindblad equation reads

∂tρS(t) = L(t)ρS(t) = − i
[︁
H̃(t), ρS(t)

]︁
+D[ρS(t)], (4.5)

where H̃(t) may contain additional terms due to the coupling with the environment
and D is the dissipator superoperator, whose general form is

D[ρS(t)] = ∑
k

γk

[︃
Lk(t)ρS(t)L†

k(t)−
1
2

{︂
L†

k(t)Lk(t), ρS(t)
}︂]︃

. (4.6)
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qpu

environment

Figure 4.1 | Schematic representation of an open quantum system.

The Lindblad operators Lk(t) represent the different dissipation channels, each
occurring with a rate γk. The Markovian approximation requires γk ≥ 0. The
Lindblad equation (4.5) ensures the complete positivity of the density operator at
all times and thus preserves the probabilistic interpretation of its diagonal elements
when represented on a basis [14].

4.2.1 Microscopic Lindblad equation
The Lindblad equation (4.5) can be derived from first principles in the adiabatic
limit when the system-bath coupling strength is weak compared to other energy
scales [32]. The corresponding master equation is known as adiabatic master equation
(AME) and is often used in the literature to model the dissipative dynamics of
quantum annealers [4, 6, 7, 110]. In this section, we want to briefly discuss this
derivation as the AME will be the starting point of our numerical analysis.

The S + B Hamiltonian reads

H(t) = H0(t) + HB + HSB, (4.7)

where HB is the bath Hamiltonian and HSB couples the two subsystems. In
particular, we model the environment as a collection of noninteracting harmonic
oscillators with Hamiltonian

HB = ∑
k

ωka†
k ak, (4.8)

in equilibrium at inverse temperature β = 1/T. The interaction Hamiltonian reads

HSB = ∑
α

gα Aα ⊗ Bα, (4.9)

where Aα (Bα) are dimensionless qubit (bath) operators and gα are coupling ener-
gies. The operators Bα(t) = exp(i HBt)Bα exp(− i HBt) enter the definition of the
bath correlation function Cαβ(t) =

⟨︁
Bα(t)Bβ(0)

⟩︁
B, where angular brackets denote

thermal averages. We expect the modulus of Cαβ to decay as
⃓⃓
Cαβ(t)

⃓⃓
∼ e−t/τB ,

where τB is a typical time scale of bath correlations [32].
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At t = 0, we can always prepare the full system in the uncorrelated state
ρ(0) = ρS(0) ⊗ ρB, where ρB is the Gibbs density operator at temperature T.
However, at t > 0 the system state will not be separable in general, which makes it
cumbersome to evaluate the partial traces over B. The AME is recovered when the
Born, Markov, and rotating wave approximation are valid:

born approximation At all times, we can neglect correlations among qubits and
bath, i. e., we can always write ρ(t) = ρS(t)⊗ ρB + χ(t) ≈ ρS(t)⊗ ρB. This is
valid in the weak coupling regime, where gτB ≪ 1.

markov approximation The system has no memory of itself at preceding times.
This happens because the correlation time scale τB is much shorter than
the relaxation time scale 1/g. Thus, if gτB ≪ 1, we can use the Markov
approximation and write the adiabatic master equation as a time-local equation.

rotating wave approximation In the interaction picture, we disregard terms in
the Hamiltonian that contain fast oscillating terms and only keep counterrotating
ones. This enforces the energy conservation and guarantees the complete
positivity of the reduced density matrix during the evolution.

More precisely, it is shown in reference [32] that these approximations are valid
when the following inequalities are satisfied,

vτB

tf∆min
≪ min

(︃
τB∆min,

1
τB∆min

)︃
, gτB ≪ min(1, ∆min/g), (4.10)

where v = maxs∈[0,1],a ̸=b ⟨Ea(s)|∂sH0(s)|Eb(s)⟩. The first inequality enforces the
(global) adiabatic condition of equation (2.9) and ensures that the instantaneous
changes in the energy eigenbasis are small in the time scale τB. The second
inequality ensures the validity of the Born-Markov approximation and of the
perturbative expansion of the Lindbladian.

In conclusion, the AME has the form

∂tρS(t) = − i [H0(t) + HLS(t), ρS(t)] +D[ρS(t)], (4.11)

where HLS(t) is the Lamb shift Hamiltonian and D is the adiabatic dissipator. They
are both expressed in terms of Lindblad jump operators, which are

Lα,ab(t) = ⟨Ea(t)|Aα|Eb(t)⟩ |Ea(t)⟩⟨Eb(t)| , (4.12)

where { |Ea(t)⟩ } are the instantaneous eigenstates of H0(t). Each Lindblad operator
Lα,ab(t) describes a jump of frequency ωba(t) = ∆ba(t) (h̄ = 1), from |Eb(t)⟩ to
|Ea(t)⟩ for a ̸= b. The Lindblad operators with a = b provide dephasing channels.
There are D2 independent Lindblad operators, where D is the dimension of the
Hilbert space HS. Omitting the time-dependence of all quantities and operators for
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brevity, the expressions of HLS and D are

HLS = ∑
αβ,a ̸=b

Sαβ(ωba)L†
α,abLβ,ab + ∑

αβab
Sαβ(0)L†

α,aaLβ,bb, (4.13a)

D[ρS] = ∑
αβ,a ̸=b

γαβ(ωba)

(︃
Lβ,abρSL†

α,ab −
1
2

{︂
L†

α,abLβ,ab, ρS

}︂)︃
+ ∑

αβab
γαβ(0)

(︃
Lβ,aaρSL†

α,bb −
1
2

{︂
L†

α,aaLβ,bb, ρS

}︂)︃
, (4.13b)

where the spectral functions γαβ(ω) and Sαβ(ω) are the real and imaginary part of
the Fourier transform of the bath correlation functions:

Γαβ(ω) = gαgβ

∫︂ ∞

0
ei ωt Cαβ(t)dt =

1
2

γαβ(ω) + i Sαβ(ω). (4.14)

The two functions γαβ and Sαβ are connected to each other via the Kramers-
Kronig relations. It can be proven that, if the bath is in thermal equilibrium, then
γαβ(ω) satisfies the detailed balance [or Kubo-Martin-Schwinger (KMS)] condition
γαβ(−ω) = e−βω γαβ(ω).

The function γαβ(ω) is related to the bath spectral density J(ω). In the continu-
ous limit, it is customary to model the low-frequency behavior of J(ω) as a power
law. At high frequencies, a rigid or exponential cutoff is usually employed to keep
a finite number of states, up to a frequency ωc:

J(ω) = ∑
k
δ(ω − ωk) = η̃ωνω1−ν

c e−ω/ωc . (4.15)

The parameter η̃ has the dimensions of time squared. The exponent ν > 0 distin-
guishes different kinds of dissipation: sub-Ohmic 0 < ν < 1, Ohmic (ν = 1), or
super-Ohmic (ν > 1). In terms of J(ω), we can write

γαβ(ω) = 2πηαβ
ωνω1−ν

c e−ω/ωc

1 − e−βω
, (4.16)

where ηαβ = η̃gαgβ is a dimensionless coupling strength. In the following, we
will always consider Ohmic baths (ν = 1) and equal couplings between system
and bath operators, i. e., gα = g. Moreover, we assume that γαβ is diagonal, thus
ηαβ = ηδαβ = η̃g2δαβ

a. We will use the parameter η to express the system-bath
coupling strength in a dimensionless way.

Since the spectral matrices are diagonal, equations (4.13) assume the form

HLS = ∑
α,ω

Sα(ω)L†
α,ω Lα,ω, (4.17a)

D[ρS] = ∑
α,ω

γα(ω)

(︃
Lα,ωρSL†

α,ω − 1
2

{︂
L†

α,ω Lα,ω, ρS

}︂)︃
(4.17b)

aIt is always possible to diagonalize the rate matrix γαβ by a unitary transformation u such that
γ′

iδij = ∑αβ uiαγαβu†
jβ. This transformation also redefines the Lindblad operators Lα,ω → ∑α u†

iαLα,ω .
Here, we are assuming that the spectral matrix is already diagonal, which corresponds to having
uncorrelated baths. Of course, the matrix Sαβ is diagonal as well.
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Figure 4.2 | Scaling of the CPU time as a function of N when simulating the Lindblad
master equation. Notice the logarithmic y axis.

where we also rewrote the sums over eigenvalues as a constrained sum over Bohr
frequencies, e. g., ω(t) = Eb(t)− Ea(t), in such a way that

Lα,ω(t) = ∑
Eb(t)−Ea(t)=ω

⟨Ea(t)|Aα|Eb(t)⟩ |Ea(t)⟩⟨Eb(t)| . (4.18)

Equations (4.17) and (4.18) are useful to write the Lindblad equation in a more
compact form. However, from the numerical standpoint, using the unconstrained
form of equation (4.13) is more efficient as it eliminates the additional step of
grouping equal frequencies together. In addition, we can easily work out the form
of the matrix elements of both HLS and D in the energy eigenbasis:

(HLS)ii = ∑
αa

Sα(ωia)|Aα|2ia; (4.19a)

(D)ii = ∑
αa

|Aα|2ia[γα(ωai)ρaa − γα(ωia)ρii]; (4.19b)

(D)ij = −ρij

2 ∑
α

[︄
γα(0)

(︂
(Aα)ii − (Aα)jj

)︂2
+ ∑

a ̸=i
γα(ωia)|Aα|2ia + ∑

a ̸=j
γα(ωja)|Aα|2ja

]︄
.

(4.19c)

The last equation holds for i ̸= j.
In figure 4.2, we show the scaling of the computational time for a typical master

equation simulation as a function of the number of qubits N. The Hilbert space
dimension is D = 2N . If we use the constrained sums of equation (4.18), the
computational time is more than exponential in N. By contrast, if we use the
unconstrained sums and the analytic matrix elements of equation (4.19), the scaling
of the computational time is ≈ 0.02 × 22N , which is far better than the previous
case. Even though this is the fastest scaling we can attain using a quantum master
equation, it is still not ideal for computation and only small systems up to O(10)
qubits can be actually simulated in a reasonable time.
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4 .3 quantum jumps
In order to improve the scaling of the CPU time with N, the quantum trajectories
method, or Monte Carlo wave function (MCWF), can be used for the unraveling of
the adiabatic master equation [14]. In this approach, the AME dynamics is recon-
structed as an ensemble average over a large number NT of quantum trajectories.
In each trajectory, a ket state is evolved, rather than a density matrix, subjected to
a non-Hermitian Hamiltonian and under the action of a stochastic force causing
instantaneous jumps between energy eigenstates. The resulting trajectory is the
result of a continuous indirect measurement of the environment in the energy
eigenbasis. In this way, the computational cost of the simulation is reduced from
D2 to (at least) D, at the cost of having to run multiple trajectories to recover the
correct dynamics. This tradeoff can be readily compensated by running the quan-
tum trajectories in parallel on high-performance computers using MPI/openMP, as
MCWF is particularly well-suited for parallelization.

The quantum jumps method is a common tool in quantum optics [111–113]
and statistical physics [114], and can also be extended to describe non-Markovian
quantum master equations [115]. Recently, it has been extended to systems with
time-dependent Hamiltonian [33], therefore paving the way to using the MCWF
method in quantum annealing.

It is useful to isolate the dephasing operator:

Lα,0(t) = ∑
a

⟨Ea(t)|Aα|Ea(t)⟩ |Ea(t)⟩⟨Ea(t)| . (4.20)

For each bath index α, the remaining D(D − 1) Lindblad operators can be labeled
using an index h = 1, . . . , D(D − 1), so that there are D(D − 1) + 1 Lindblad
operators per bath. Excluding accidental degeneracies, each of them is uniquely
accompanied by its frequency, which we shall indicate as ωh. Once the frequency is
specified, γα(ωh) and Sα(ωh) are real numbers, which we will indicate as γα,h and
Sα,h. If we define Cα,h =

√
γα,hLα,h, then the dissipator can be rewritten compactly

as

D[ρS] = ∑
α,h

(︃
Cα,hρSC†

α,h −
1
2

{︂
C†

α,hCα,h, ρS

}︂)︃
. (4.21)

We can rewrite the Lindblad equation as

dρS(t)
dt

= − i
(︂

Heff(t)ρS(t)− ρS(t)H†
eff(t)

)︂
+ ∑

α,h
Cα,h(t)ρS(t)C†

α,h(t), (4.22)

where we defined the non-Hermitian Hamiltonian Heff(t) as

Heff(t) = H0(t) + HLS(t)−
i
2 ∑

α,h
C†

α,h(t)Cα,h(t), (4.23)

diagonal in the energy eigenbasis:

(Heff)aa = Ea + ∑
α,b

[︃
Sα(ωba)−

i
2

γα(ωba)

]︃
|Aα|2ab. (4.24)
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Let us focus on the two terms on the right-hand side of equation (4.22). The
first term is deterministic and tells us that the reduced system effectively evolves
non-unitarily in time in presence of dissipation. The environment shifts the energy
levels of the spectrum of the Hamiltonian H0(t) and introduces a characteristic
decay time of the norm of the state of the reduced system. The power of this
mapping is that this part of the dynamics can be rephrased as a Schrödinger
equation for a ket state |ψ(t)⟩:

i
d
dt

|ψ(t)⟩ = Heff(t) |ψ(t)⟩ . (4.25)

Of course, this first term alone would violate the probability conservation. The
second term accounts of equation (4.22) accounts for this violation and restores
the correct probability, instantaneously projecting the ket state onto the energy
eigenbasis by applying a Lindblad operator on |ψ(t)⟩. The probability of a jump
(α, h) is given by dpα,h (t) = dt ∥Cα,h(t) |ψ(t)⟩∥2, therefore this term is stochastic.
Summarizing, at each time step dt, the ket states evolve non-unitarily with Heff;
however, there is a finite probability that the system may jump to an energy
eigenstate, and this projective measurement restores the norm of the states. The
jump rates for each Lindblad operator is

√
γα,h. We can distinguish three kinds of

processes: (i) decay from a higher state to a lower state, when ωba > 0; (ii) pump to
a higher state, when ωba < 0; (iii) dephasing, when ωba = 0.

The update rule at first order in the time step dt for the unnormalized ket state
|ψ̃(t)⟩ reads

d |ψ̃(t)⟩ = − i Heff(t)dt |ψ̃(t)⟩+ ∑
α,h

dNα,h(t) [Aα,h(t)− 1] |ψ̃(t)⟩ . (4.26)

The stochastic variable dNα,h(t) is the number of jumps of type (α, h) in the time
interval dt. The probability of having more than one jump per time step goes to
zero with dt → 0, therefore

dNα,h(t) =

{︄
1 with probability dpα,h (t)

0 with probability 1 − dpα,h (t).
(4.27)

Simulating equation (4.26) can be computationally inefficient. This is due to the fact
that, at each step, we have to extract a random number to check whether the evolu-
tion is deterministic or stochastic. However, in general, dp(t) = ∑α,h dpα,h (t) ≪ 1,
thus this computational time is largely wasted as the evolution is mostly deter-
ministic. In the rare cases where a jump occurs, we then have to extract another
random number to determine the index of the Lindblad operator to be applied.

A more efficient algorithm employs the waiting-time distribution [14], exploiting
the fact that the squared norm of the unnormalized state at t is equal to the
probability of not having jumps until t. We report here the pseudo code for the
single quantum trajectory:

1. Draw a random number r uniformly distributed in [0, 1].
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2. Starting from a normalized state |ψ(0)⟩, evolve non-unitarily using Heff(t)
until ⟨ψ̃(t∗)|ψ̃(t∗)⟩ = r. At t = t∗, a quantum jump occurs.

3. Draw another random number µ uniformly in [0, 1] and select the quantum
jump according to the probabilities dpα,h(t). The probability of a jump
k = (α, h) is given by Pk = dpk(t) / dp(t). The index of the occurring jump is
the smallest non-negative integer m satisfying ∑m

k=0 Pk ≥ µ.

4. Update the state as |ψ̃(t∗ + 0+)⟩ = Cm |ψ̃(t∗)⟩ and renormalize. Draw another
random number r and use |ψ(t∗ + 0+)⟩ as the new normalized starting state.

5. Repeat steps 1–4 until the wanted annealing time.

Once the simulation is complete, averaging over the NT trajectories returns the
correct observables. The Monte Carlo standard error affecting a given observable
O reads

σ2
t (O) =

λO(D)

NT
∼ 1

NT
, (4.28)

where λO(D) is the variance

λO(D) =
1

NT − 1

NT

∑
r=1

( ⟨ψr(t)|O|ψr(t)⟩ − Mt)
2, (4.29)

and Mt = ∑NT
r=1 ⟨ψr(t)|O|ψr(t)⟩ /NT. It can be proven that λO(D) is a nonincreas-

ing function of D, thus the number of trajectories needed to achieve a certain
standard error does not need to be increased with increasing N. In particular, it
scales as λO(D) = ΛOD−x, with 0 ≤ x ≤ 1, depending on the observable [14].

In order for the first-order update rule of equation (4.26) to be valid, the time
step dt must satisfy the following conditions:

dt ≪ min
t

{︃
2∥Heff(t)∥
∥Ḣeff(t)∥

,
1

∥Heff(t)∥
,
⃓⃓⃓⃓

λ(t)
λ2(t)− λ̇(t)

⃓⃓⃓⃓}︃
, (4.30)

where ∥·∥ is the operator norm (e. g., the largest singular value), and λ(t) = dp(t)
dt .

In practice, it is easier to proceed heuristically by decreasing dt until convergence
is obtained within the desired tolerance. In particular, the second term on the
right-hand side of equation (4.30) implies that the time step must be decreased for
increasing N to achieve convergence.

4 .4 p-spin model and dissipation
In chapter 3, we introduced the p-spin model as a useful test bed to benchmark
quantum annealing. Its main advantage is that its spin symmetry allows us to
work in a smaller subspace with dimension D = N + 1, simplifying numerical
simulations. This simplification is unfortunately lost in the presence of dissipation.
In fact, the coupling to an environment generally involves local (single-qubit)
operators that break the permutational symmetry of the p-spin model, due to the
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fact that each qubit is coupled to its own bath. This model is known as independent
bath (IB). In this case, numerical simulations are very demanding as we have to
represent states and operators in the whole Hilbert space, thus we are limited to
systems of ∼10 qubits, even factoring in the speedup provided by MCWF.

Under certain conditions, however, a different, collective form of dissipation can
arise. For example, if the qubit system is coupled to a low-temperature environment
with only low-energy modes, then this ensures that only long-wavelength bosonic
modes are occupied. If the qubits are spatially close to each other, the bosons will
not distinguish them and the permutational symmetry will be preserved. This kind
of dissipation is known as collective bath (CB) and allows us to perform dissipative
simulations for large systems sizes [6, 7].

As a side note, some forms of collective dissipation support decoherence-free
subspaces, i. e., subspaces that evolve unitarily despite the coupling to the bath
and are one of the reasons why QA is believed to be more robust to decoherence
compared to the quantum circuit model [51, 52]. For example, if the p-spin system
is subjected to collective dephasing, where the coupling to the environment occurs
via the mz operator, the S = 0 subspace is a decoherence-free subspace (for even
N). This subspace is unsuitable for quantum computation as the Hamiltonian of
the p-spin model preserves it, but could be used to perform quantum computation
if we added Heisenberg exchange terms to the p-spin Hamiltonian [7]. We will not
explore this possibility in this work.

In chapter 5, we will show many results concerning the dissipative QA of
the p-spin model subjected to both forms of dissipation. In the remainder of this
section, we will discuss some very simple tests showcasing convergence with NT. In
addition, we will highlight the fact that MCWF can provide information concerning
the spectrum of thermal processes affecting quantum dynamics, thus giving an
insight into the microscopic effects of the environment on the dynamics of the
ground state [33]. In turn, this knowledge can be useful to engineer error correction
codes based on control paths that push the system back to its ground state right
after thermal excitations, thus counteracting the effect of the bath.

Here, we consider a p-spin system of N = 8 qubits with p = 3 subjected
to a collective bath. The QPU is coupled to the environment via A = mz. We
consider standard forward annealing with no pauses and with a linear schedule,
i. e., s(t) = t/tf, A(s) = 1 − s, and B(s) = s. The transverse field is Γ = 1 GHz.
The minimal gap at smin = 0.42 is ∆min = 0.76. The annealing time is tf = 100 ns.
The bath is Ohmic and in equilibrium at T = 12 mK, with ωc = 25 GHz. The
dimensionless system-bath coupling strength is η = 1 × 10−4. This choice of
parameters is consistent with equation (4.10) and ensures that the hypotheses
underlying the AME are valid. In particular, the unitary evolution is adiabatic and
the ground state fidelity at t = tf is pgs(tf) = 0.999 98.

In figure 4.3(a), we show a comparison between the dynamics of the ground
state probability as described by the adiabatic master equation and those resulting
from the Monte Carlo wave function approach. Convergence with respect to dt is
achieved already for dt = 1 × 10−2 ns. Instead, even though NT = 100 is already
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Figure 4.3 | Convergence of MCWF to AME as a function of NT [panel 4.3(a)] and spectrum
of thermal processes for NT = 10 000 [panel 4.3(b)]. The coupling operator is A = mz.

loosely in agreement with the master equation solution within Monte Carlo errors
(shown only at one point per curve for visual clarity), we need NT ≈ 1000 to 10 000
to recover a behavior visually similar to the AME solution.

For NT = 10 000, we also plot in figure 4.3(b) the spectrum of thermal processes
affecting the qubit system, i. e., the number of processes per frequency after binning
the frequency interval into Nb = 1000 bins. Here, we can see that the mz-coupling
mostly induces dephasing, whereas the total number of thermal excitations and
disexcitations with ω ̸= 0 is one order of magnitude smaller. This happens
because, although the coupling operator is nondiagonal in the instantaneous
energy eigenbasis (e. g., where dissipation occurs in the weak coupling limit), its
off-diagonal elements are much smaller than its diagonal ones, therefore dephasing
is more likely to occur.

In figure 4.4, we repeat the same analysis when the QPU is coupled to the
environment via A = mx. Some differences arise due to the different coupling
direction. Indeed, the two couplings are complementary to each other as shown
in figure 4.5, where we plot the number of processes as a function of time. This is
easily understood as we can perform a global rotation around the y-axis in the spin
space so that mx → mz and mz → −mx, where the minus sign does not affect the
dynamics since the spectrum is symmetric, thus coupling via A = mx is equivalent
to using A = mz when performing an annealing in reverse from s = 1 to s = 0.

When the coupling is along z, the coupling with the environment would induce
pumps and decays between energy levels when s ≪ smin because mz is nondiagonal
in the energy eigenbasis. The p-spin system eventually freezes out right after the
minimal gap. After the gap, many dephasing processes occur but the only effect is
to mix the relative phases of the components over the different eigenstates, thus the
ground state probability is left unchanged. On the other hand, when the coupling
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Figure 4.4 | Convergence of MCWF to AME as a function of NT [panel 4.4(a)] and spectrum
of thermal processes for NT = 10 000 [panel 4.4(b)]. The coupling operator is A = mx.

is via mx, the system is unable to leave the starting ground state at the beginning
of the dynamics, hence there is a plateau in pgs for s close to zero. The reason is
that, for one, the starting state is approximately an eigenstate of the Hamiltonian
as s ≪ smin, and secondly, the system-bath coupling operator is almost diagonal in
the energy eigenbasis as well, thus it can only induce dephasing which, however,
has no effect on pgs as only the ground state is populated. After the minimal gap,
mx is no longer diagonal in the energy eigenbasis and the rate of dephasing is
substantially reduced. We can still have pumps and decays between energy levels.
As shown in figure 4.4(b), the two bands around ω = ±1 become larger, even
though the number of processes with ω ̸= 0 is still one order of magnitude smaller
than those at ω = 0. In the following, we will focus on the case A = mz as it is more
likely to occur in experiments [116]. Moreover, we will always consider NT = 5000
as a compromise between CPU time and accuracy. This leads to a relative Monte
Carlo error on the fidelity of about 1 % [6].

4 .5 beyond the born-markov approximation
The adiabatic master equation and the variant of MCWF presented in section 4.3
are based on the Born, Markov and rotating wave approximation, and are designed
to include the effects of the environment on the dynamics of the QPU in a sim-
plified way that can be treated numerically. There are many other approaches
similar to those presented in this work that allow one to go beyond the Born-
Markov approximation, extending this formalism to non-Markovian systems in
the non-weak-coupling limit. In recent years, some of these tools have gained a
lot of momentum, such as the density matrix renormalization group (DMRG) [117,
118], quasiadiabatic propagator (QUAPI) [119], real-time path-integral Monte Carlo
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Figure 4.5 | Number of thermal processes as a function of s, for NT = 10 000.

(PIMC) [120], non-Markovian master equations and quantum jumps [115, 121–123],
hierarchical equations of motion (HEOM) [124, 125], and many others.

All these methods disregard the back-action of the quantum processor on the
environment by tracing away the bath degrees of freedom, so that the environment
only acts as a static container that embed the qubit dynamics. This is what
happens in thermodynamics, where the thermal reservoir is so large that any
recurrence phenomena occur over time scales that are longer than any realistic
experiment. However, it may be also worth considering the feedback of the QPU
on the environment, in which case the aforementioned techniques are insufficient.

In reference [2], we discussed an alternative technique to account for relaxation
and decoherence of open quantum systems beyond the Born-Markov approxima-
tion. In this approach, we combined a discretization scheme of the bath density of
states, now described as a finite set of harmonic oscillators, a truncation scheme of
the bosonic Hilbert space of the bath, and Lanczos propagation of the system+bath
ket state. The two main advantages of this technique [short-iterative Lanczos (SIL)]
are that we have access to the full state of the combined system and that we can
include multiple-phonon processes in the description to improve the accuracy in
the non-weak-coupling regime, as opposed to the AME, still maintaining a sizable
computational effort.

In order to calculate the time evolution operator of the full S + B Hamiltonian
of equation (4.9), we start by discretizing the spectrum of bosonic frequencies by
considering M equally-spaced modes

ωk = k δω = k
ωc

M
, k = 1, 2, . . . , M. (4.31)

We consider a hard (Heaviside theta) cutoff in the bath spectral density J(ω) and
also include the coupling energy squared g2 in its definition. Moreover, we assume
that each mode is coupled differently to the qubit system by setting g → gk.
The couplings gk that replicate the correct spectral density can be obtained by
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Figure 4.6 | Discretized spectral density of the bath. The heights of the arrows increase
with k to represent the strength of the effective couplings [see equation (4.32)].

integrating equation (4.15) around ω = ωk, obtaining

g2
k ≈ ηων

k ω1−ν
c

kν

Mν+1 . (4.32)

This uniform sampling is the simplest one, and different alternatives have already
been proposed in the literature [126–129]. A schematic representation is shown in
figure 4.6.

After this discretization step, the bath space is spanned by the ket states
{ |n1, n2, . . . , nM⟩ }, where nk = 0, 1, . . . , Nmax is the occupation number of the k-th
mode and Nmax is a cutoff on the excitation number. The creation or annihilation
of a phonon leads to a variation ∆nk with respect to the equilibrium value. In order
to only keep relevant processes for the dynamics of the qubit system, we propose
to truncate the bath Hilbert spaces to those states with ∑k |∆nk| = Nph, where Nph
is the maximum number of allowed excitations. In the weak-coupling regime, it is
sufficient to consider Nph = 1. Stronger couplings require Nph > 1, but Nph = 3
is typically enough to describe coupling strengths of the order of η = 1 × 10−2

and computations remain affordable in this intermediate-coupling regime. Finite-
temperature simulations require taking averages over different possible extractions
of the bath starting state according to the Boltzmann distribution.

Once the bath basis is fixed, we can represent the full Hamiltonian of equa-
tion (4.9) and diagonalize it using Lanczos in order to evaluate the time evolution
operator similarly to equation (B.4). The main limitation of this approach is that
the minimum frequency ω1 is related to the Poincaré recurrence time TP = 2π/ω1,
which in turns determines an upper bound on the annealing time that we can
simulate with this method. After TP, in fact, the discretized collection of harmonic
oscillators is no longer a good approximation of the original, ergodic bath. There-
fore, this method is unfeasible to study long, adiabatic dynamics, except in the
weak-coupling limit, where the dimension of the bath Hilbert space with Nph = 1
scales linearly with M, allowing us to easily simulate a large number of modes and
reasonably long annealing times.
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4.5.1 Case study 1: single qubit, pure dephasing
We consider a single qubit with time-independent Hamiltonian HS = −ϵσz linearly
coupled to the environment via A = σz, so that the full S + B Hamiltonian reads

H = −ϵσz + ∑
k

ωkb†
k bk + σz ∑

k
gk

(︂
bk + b†

k

)︂
. (4.33)

This is the pure dephasing model. We use it as a test bed as its Hamiltonian can be
diagonalized exactly using the Lang-Firsov transformation [130]

V = e−S , S = σz ∑
k

gk

ωk

(︂
b†

k − bk

)︂
, (4.34)

which shifts the center of oscillations of the harmonic oscillators according to the
qubit state. The transformed Hamiltonian reads

˜︁H = V†HV = −ϵσz − ∑
k

g2
k

ωk
+ ∑

k
ωkb†

k bk. (4.35)

The eigenstates in the original basis are coherent states in the bath degrees of free-
dom. This Hamiltonian commutes with σz, therefore the occupation probabilities
of the qubit states are constant.

Conversely, we prepare the system in the tensor state ρ(0) = |x̂;+⟩⟨x̂;+| ⊗ ρB =

ρS(0) ⊗ ρB, where σx |x̂;+⟩ = |x̂;+⟩ and ρB is the thermal equilibrium density
operator of the environment:

ρB =
e−βHB

ZB
, ZB = ∏

k

1
1 − e−βωk

. (4.36)

We evaluate here the mean value ⟨σx(t)⟩, which, in this simple case, is proportional
to the off-diagonal elements of the reduced density matrix in the energy eigenbasis,
hence it is a decoherence indicator. The final result is

⟨σx(t)⟩ = cos(2ϵt) e
−8 ∑k

g2
k

ω2
k

sin2
(︂

ωkt
2

)︂
coth

(︂
βωk

2

)︂
≡ cos(2ϵt) e−ηK(t,β), (4.37)

where K(t, β) is the decoherence function [2].
On the other hand, solving the AME yields the following result [110],

⟨σx(t)⟩AME = cos(2ϵt) e−2γ(0)t . (4.38)

Comparing equations (4.37) and (4.38), we notice that the coherent part of the
dynamics is well-captured by the Lindblad approximation. However, the damping
factor of the AME is only correct in the adiabatic limit. In fact, using the Ohmic
spectral density J(ω), it is easy to show that the following limit in the space of
distributions holds (β < ∞)

lim
t→∞

K(t, β)

t
= 8 lim

t→∞

∫︂ ωc

0

1
ωt

sin2
(︃

ωt
2

)︃
coth

(︃
βω

2

)︃
dω

= 2
∫︂ ωc

0
πω δ(ω) coth

(︃
βω

2

)︃
dω

=
4π
β

= 2γ(0). (4.39)
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Figure 4.7 | SIL error δ(t) in the pure dephasing model, for η = 1 × 10−4 and η = 1 × 10−2.

Besides, the AME result is always incorrect in the zero-temperature limit β → ∞,
where the decoherence function can be computed exactly:

K(t, ∞) = 4[γ − Ci(ωct) + log(ωct)], (4.40)

where γ is the Euler-Mascheroni constant and Ci(x) is the cosine integral. This
term grows logarithmically in t, whereas any finite-temperature contributions
grow linearly in t. Therefore, K(t, ∞) is the relevant part of the decoherence
function when the annealing time is shorter than the bath self-correlation time scale
τB = β/2π [32], while the finite-temperature correction is relevant at longer times.
The Lindblad approximation does not contain the zero-temperature contribution.
However, the bath time scale τB diverges when T → 0, meaning that the Lindblad
equation is always inadequate in the zero-temperature limit.

In reference [2], we compared our SIL with the exact result of equation (4.37).
We used ϵ = 1 GHz as energy scale and 1/ϵ as unit time. The cutoff frequency
has been fixed to ωc = 10 in these units and we have simulated M = 200 bosonic
modes. The Poincaré recurrence time is TP = 40π, therefore we fixed tf = 40 < TP.
We considered a maximum of Nph = 3 bosonic excitations starting from the
equilibrium state at T = 0. The Hilbert space dimensions are D(Nph = 1) = 402,
D(Nph = 2) = 40 602, and D(Nph = 3) = 2 747 402. We used 30 Lanczos iterations.
We simulated η = 1 × 10−4 (weak coupling) and η = 1 × 10−2 (intermediate
coupling), and computed the relative error with respect to the exact solution, e. g.,

δ(t) =
⟨σx(t)⟩SIL − ⟨σx(t)⟩

⟨σx(t)⟩
. (4.41)

In figure 4.7, we plot δ(t) as a function of t in the analyzed cases. For η =

1 × 10−4, setting Nph = 1 is already sufficient to obtain a small error, and δ(t)
saturates when Nph = 2. The increasing trend is solely due to the fact that we are
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Figure 4.8 | Time evolution of ⟨σz(t)⟩ in the SBM, with η = 5 × 10−2, ωc = 10Γ and
T = 0. We fixed M = { 1000, 500, 300 }, for Nph = { 1, 2, 3 }, respectively. SIL results
are compared with the AME (black circles).

approaching TP and can be softened by increasing the number of modes. On the
other hand, for η = 1 × 10−2 just one phonon is not enough to recover the correct
solution. There is a very small difference between Nph = 2 and Nph = 3, therefore
we can conclude that two excitations are enough to obtain the correct solution with
a reasonable accuracy.

4.5.2 Case study 2: spin-boson model
The spin-boson model [116, 131] is described by the following Hamiltonian:

H = −Γσx + ∑
k

ωkb†
k bk + σz ∑

k
gk

(︂
bk + b†

k

)︂
. (4.42)

The energy scale is Γ = 1 GHz. No analytic solutions are known for the non-
trivial dynamics of ⟨σz(t)⟩ and ⟨σx(t)⟩, however several approximation schemes
have been proposed over the last four decades in order to tackle this problem
in various windows of system parameters, based on a standard path-integral
formulation [116].

We analyze the dynamics of the SBM using SIL at T = 0. We consider an
Ohmic bath and choose a cutoff frequency ωc = 10Γ. The coupling parameter
η is in the range η = 5 × 10−4 to 1 × 10−1. In addition, following this choice of
parameters, we perform the basis truncation including up to Nph = 3 excitations
per mode. We prepare the system at time t = 0 in a linear combination of
the basis states at fixed starting values ⟨σx(0)⟩ = ⟨σz(0)⟩ = 1/2, i. e., |ψ(0)⟩ =

cos(ξ/2) |0⟩+ sin(ξ/2) exp(i ϕ) |1⟩, with ξ = π/3 and ϕ = acos(1/
√

3). Then, we
calculate the time-evolved mean values ⟨σx(t)⟩ and ⟨σz(t)⟩ and compare them with
their analytic closed-form counterparts obtained from the AME.

In figure 4.8, we show the results for ⟨σz(t)⟩ for η = 5 × 10−2, compared with
the AME, for tf = 30. Choosing a minimum value of Nph = 2, the time evolu-
tion of ⟨σz(t)⟩ converges to the exact physical behavior, featuring underdamped
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Figure 4.9 | Equilibrium value ⟨σx⟩eq, extrapolated with exponential fits, as a function of
the dimensionless coupling η, at T = 0, for an Ohmic bath. The simulated data of the
numerical diagonalization, up to Nph = 3 bosonic excitations from the vacuum state,
are compared to the AME and Monte Carlo predictions at equilibrium.

oscillations due to decoherence. At long times, the equilibrium value ⟨σz⟩eq = 0 is
reached and the system completely loses its coherence. The Lindblad AME is able
to capture the behavior of quantum coherence accurately in this setting.

On the other hand, ⟨σx(t)⟩ is a measure of thermal relaxation. The AME predicts
that at long annealing times the system reaches equilibrium at temperature T = 0,
therefore ⟨σx⟩eq

AME → 1, which is correct only in the weak-coupling regime [110].
Instead, our calculations show that the stationary value is related to the ground
state of the qubit-bath system: at long times, qubit and bath remain entangled, as
expected at equilibrium. Therefore, we can plot the equilibrium values ⟨σx⟩eq as a
function of the coupling parameter η compared with the Lindblad result. These
values have been obtained by performing an exponential fit of ⟨σx(t)⟩ to extract
the saturation value. In figure 4.9, we show the fitted equilibrium values ⟨σx⟩eq

as a function of the coupling strength η compared with the Lindblad result. In
order to further test the reliability of our calculations, we also plot the equilibrium
values calculated using a Monte Carlo approach at thermal equilibrium, whose
errors are smaller than the point size. We note that, as the coupling factor becomes
larger than η = 1 × 10−3, the Born-Markov approach misses the correct physical
behavior. It follows that, at long times, the unavoidable system-bath entanglement
effects start to play a role, noticeably reducing the value of ⟨σx⟩eq. A good physical
description up to η = 1 × 10−1 can be achieved by truncating the phonon basis to
three excitations per mode.

4.5.3 Case study 3: single qubit, quantum annealing
Finally, we consider the QA Hamiltonian with a linear schedule

HS(s) = −(1 − s)Γσx − sϵσz. (4.43)
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Figure 4.10 | Error probability pe as a function of the annealing time tf for a single qubit with
the Hamiltonian of equation (4.43), coupled via σz to a zero-temperature environment
with several coupling constants η. The left panel is AME and the right panel is SIL. In
the inset, we plot the unitary curve and some points relative to η = 1 × 10−2 at longer
annealing times.

The transverse field strength is the energy scale (Γ = 1 GHz) and we consider
ϵ = Γ. We prepare the system in the +1 eigenstate of σx and the environment
in the vacuum state at T = 0. The coupling operator is A = σz. The AME for
the Hamiltonian of equation (4.43) can be solved exactly in the adiabatic limit
(see for instance reference [110]). In particular, the Lindblad equation predicts
that, when tf ≫ ∆−1

min, the ground state fidelity at T = 0 saturates at pgs(1) = 1,
hence the only effect of the environment is to drive the qubit towards its zero-
temperature equilibrium state. However, as already discussed in section 4.5.2, this
picture is short-sighted as it does not consider effects beyond the Born-Markov
approximation, especially arising at low temperatures.

Here, we consider M = 200 bosonic modes and a maximum of Nph = 3
excitations per mode, with ωc = 10. In figure 4.10, we plot the error probability
pe = 1 − pgs as a function of the annealing time, for several values of the system-
bath coupling strength η. The left panel shows the results obtained by using the
AME, whereas the right panel is the SIL method. The two panels suggest once again
that the AME is inadequate at T = 0, where the system-bath correlations play a role
and modify the error probability of quantum annealing. In particular, in the AME
approach, the sole effect of the environment is the damping of the nonadiabatic
oscillations seen in the unitary case. By contrast, SIL is in agreement with the
Lindblad approach at very short times, but at intermediate times the system-bath
interaction tends to increase the error probability relative to the isolated case. The
dissipative curves show a transient plateau at intermediate times, that anticipates a
decrease of the error probability towards the unitary (and AME) curve at adiabatic
times (see the inset in the right panel, obtained by considering M = 450 bosonic
modes to increase the recurrence time TP). The plateau exhaustion time inversely
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depends on η, thus we can observe a nonmonotonic behavior of the error probability
with η in the time window where this decrease takes place.

For these reasons, in the following, we will always consider T > 0 when using
the AME of MCWF, being sure to choose every other parameter within a range
where the Born, Markov, and rotating wave approximation are valid. However,
as we saw that at short times the AME dynamics is mostly in agreement with
the results of the exact diagonalization, in the following we will push the limit
of applicability of the AME by extending it also to nonadiabatic times, asking
ourselves what the predictions of the Lindblad equation are, irrespective of its
derivation.

4 .6 conclusions
In this chapter, we have discussed a number of approximations to the dynamics of
open quantum systems, which will allow us to study numerically the dynamics
of quantum annealers. In the next chapter, we will use these numerical tools
to study different kinds of quantum annealing: standard, iterated reverse, and
adiabatic reverse annealing. Our aim is to understand how the performance of the
different paradigms of adiabatic quantum computation is modified in the presence
of dissipation, and whether or not there are cases in which the environment
can improve the success probability of the algorithm, yielding higher fidelities
compared to the isolated case. We shall focus on the ferromagnetic p-spin system
as a toy model, easy to simulate numerically, that might give us an insight into the
mechanisms regulating dissipative quantum annealing.
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5.1 introduction
In this chapter, we are going to summarize some of our personal contributions to
the field of AQC with dissipation. To this end, we are going to use the numerical
tools described in the previous section, focusing on the ferromagnetic p-spin model.
This discussion is based on references [4, 6–8].

In particular, this chapter is organized as follows. In section 5.2, we will discuss
the standard quantum annealing of the p-spin model with and without dissipation,
and compare its performances with simulated annealing. We will show that,
although thermal annealing is more efficient than QA in the unitary limit, the
situation can change thanks to the coupling to a low-temperature environment. In
section 5.3, we will add pauses to the annealing and show that fully-connected
models can benefit from pauses inserted around an optimal pausing point, as
previously observed experimentally for sparse Ising models. In section 5.4, we
will move to reverse annealing and demonstrate the feasibility of this advanced
schedule to refine an already available trial solution. Finally, in section 5.5, we will
discuss adiabatic reverse annealing.

5.2 quantum annealing

5.2.1 The unitary limit
In this section, we describe the QA of the p-spin system, described by the Hamilto-
nian of equation (3.4) and reported here for convenience:

H0(s) = −Ns(mz)p − NΓ(1 − s)mx. (5.1)

At t = 0, the system is prepared in the paramagnetic ground state of the transverse
field Hamiltonian and then is slowly driven towards the ground state of the p-spin
Hamiltonian.

As discussed in appendix A.1 and section 3.5, for p = 2 the p-spin model
undergoes a second-order quantum phase transition where the minimal gap closes
as ∆min ∼ N−1/3 in the thermodynamic limit, whereas for p > 2 the QPT is of first-
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Figure 5.1 | Residual energy as a function of the annealing time, for several values of the
system size N, in the unitary case of p = 2. The dashed line denotes the asymptotic
behavior ϵres ∼ t−2

f .

order and the minimal gap vanishes exponentially with N, with a rate depending
on p [see equation (3.18)].

When p is even, the ground state is doubly degenerate and the fidelity, i. e., the
success probability of the adiabatic algorithm, must be defined as the sum of the
populations of the two degenerate ground states. Alternatively, a measure of the
accuracy of QA is given by the excess or residual energy, which is the difference
between the exact ground-state energy and the mean value of the Hamiltonian Hp

at t = tf. Energy is an extensive quantity, therefore we normalize it to the number
of qubits N so as to have a way to reliably compare results relative to different
system sizes:

ϵres =
⟨ψ(tf)|Hp|ψ(tf)⟩ − E0(tf)

N
. (5.2)

The residual energy depends on both tf and N. In this section, we show the scaling
of the residual energy with tf for several values of N, which reflects the dependence
of the gap with the system size. Units are chosen so that the transverse field is
Γ = 1 GHz. In figure 5.1, we show the scaling of ϵres as a function of tf for p = 2.

We observe three different regimes at short, intermediate, and long annealing
times. In the first one, the system is trapped in the starting paramagnetic state
as the annealing time is too short to follow the ground state across the critical
point, therefore the residual energy is almost constant and close to one. In the
long-time region, ϵres scales as t−2

f as a consequence of the adiabatic theorem. The
intermediate regime is governed by Landau-Zener transitions. Here, the residual
energy scales as

ϵres(tf) =
C
N

e−tf/τN , (5.3)

where C is a dimensional constant and τN is proportional to ∆−2
min and thus to N2/3.

Therefore, the larger is N, the longer is the adiabatic timescale [34].
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Figure 5.2 | Residual energy as a function of the annealing time, for several values of the
system size N, in the unitary case of p = 5.

In figure 5.2, we show the residual energy as a function of tf in the case of p = 5.
The first and third regimes and relative explanations are similar to those of the case
of p = 2. Conversely, in the intermediate-time regime, the characteristic time of
LZ transitions increases exponentially in N following the scaling law of the gap as
a function of the system size. Thus, we can only observe the adiabatic regime for
N = 8 and N = 16 in the analyzed time window.

5.2.2 Quantum annealing with dissipation
We now use of the tools discussed in chapter 4 to study QA with dissipation.
The dynamics of the open quantum p-spin system are derived within the Born,
Markov, and rotating-wave approximation, and unveiled either by solving the AME
directly or via MCWF. Here, we focus on a system of N = 8 qubits with p = 5,
collectively coupled to the an environment of harmonic oscillators via the total
spin operator A = mz. The energy scale is the transverse field Γ = 1 GHz. The
dimensionless coupling constant is varied between η = 1 × 10−4 and η = 1 × 10−1.
The cutoff frequency in the Ohmic spectral function is ωc = 25 and we study
two different temperatures: β = 2, corresponding to T = 4 mK in our units, and
β = 10 (T = 0.75 mK). Despite the fact that these temperatures are currently
beyond the reach of the available quantum devices, at these low temperatures
some very interesting effects can arise. For both these temperatures, the validity
conditions for the dynamical semigroup approximation [see equation (4.10)] are
satisfied for tf ≳ 50/Γ. Nonetheless, we will still use the adiabatic master equation
at shorter annealing times, where we have shown in section 4.5.3 that the Lindblad
equation gives results in agreement with our numerically exact short-iterative
Lanczos method.

In figure 5.3, we show the scaling of the residual energy as a function of the
annealing time, compared to the isolated case. We notice that the effect of the bath
is generally negligible at small tf and becomes relevant at longer tf. Except for very
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Figure 5.3 | Residual energy as a function of tf in the case of p = 5, comparison between
unitary and dissipative dynamics. The left-hand panel is for β = 2 and the right-hand
panel is for β = 10.

short times, where the accuracy of the AME is questionable, for β = 2 the unitary
dynamics always yield a smaller residual energy compared to the dissipative curves.
On the other hand, at the lowest temperature β = 10 the scenario becomes more
interesting. From the right-hand panel of figure 5.3, we indeed see that in the
weak-coupling regime η = 1 × 10−4 the bath has always a detrimental effect on
the annealing performance, but, unexpectedly enough, for larger values of η this
picture changes radically. In particular, for η = 1 × 10−2, the residual energy is
smaller than that of the closed system at short times, whereas for η = 1 × 10−1 it
is always smaller independently of tf. This scenario is very similar to the partial
thermal speed up discussed in section 4.5.3 for the single qubit case.

These results show that the velocity of convergence to the target ground state
at low temperatures is strongly influenced by the system-bath coupling strength,
in particular a stronger coupling is responsible for a faster decrease of the residual
energy as a function of the annealing time. This speed up can either be quantum or
thermal in nature, or a combination of both. We claim that this is indeed a quantum
effect because it occurs also at the zero-temperature limit β → ∞, as shown in
figure 5.4, and is probably due to the formation of an entangled system-bath state
that favors the driving of the reduced system towards its ground state.

Finally, we compare quantum annealing with simulated annealing. In order to
perform SA, we linearly decrease the system temperature from the initial tempera-
ture T0 = 2 GHz (in units in which kB = 1) to a final temperature Tf in a time tf. In
order to make a fair comparison between SA and QA, we set the final temperature
of SA as the equilibrium temperature of the bosonic bath in QA, i. e., Tf = 1/β.
The classical p-spin system is subjected to a classical phase transition (CPT) as a
function of the temperature, which can either be of second order (for p = 2) or first
order (for p > 2). The initial temperature is chosen to be larger than the critical
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Figure 5.4 | Residual energy as a function of tf in the case of p = 5, comparison between
unitary and dissipative dynamics at T = 0.

temperature Tc, so as to start from the paramagnetic phase and then move towards
the ferromagnetic phase, similarly to the QA procedure.

Thermal annealing simulations are carried out using Glauber’s master equation
for the probability P(m, t) of observing a magnetization m at time t:

∂P(m, t)
∂t

=
N
2 ∑

α=±

(︃
1 + αm +

2
N

)︃
Wm,m+2α/N P

(︃
m − α

2
N

)︃
− N

2 ∑
α=±

(1 + αm)Wm−2α/N,mP(m, t). (5.4)

The elements Wm,m±2/N are the rates for a single spin-flip, which we choose in the
heat bath form:

Wa,b =
e−β ∆Eab/2

e−β ∆Eab/2 + eβ ∆Eab/2 . (5.5)

There are four terms in the right-hand side of equation (5.4): the first two increase
the probability P(m, t) because of transitions from the states with a magnetization
that differs of ±2/N from m; the remaining two terms represent the inverse
processes.

The authors of reference [34] have shown that for p = 2 SA outperforms
quantum annealing due to a combination of two factors, i. e., the residual energy in
SA scaling exponentially in tf and it being independent of the system size N. On
the other hand, for p > 2 the residual energy in simulated annealing is no longer
size-independent. Therefore, we here focus on the two cases p = 5 and p = 7,
where there can be a competition between quantum and simulated annealing
in terms of performance. We consider β = 10. Our results are summarized in
figure 5.5.

At such a low temperature, SA is expected to perform better than QA, as the
adiabatic theorem predicts a t−2

f -scaling of ϵres in the quantum case, as opposed
to the t−1

f asymptotic behavior in simulated annealing [34]. However, the time at
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annealing and simulated annealing. The left-hand panel is for p = 5 and the right-hand
panel is for p = 7. The final temperature of SA is Tf = 1/β with β = 10.

which the system moves from the Landau-Zener regime to the adiabatic regime is
an exponential function of N, which for macroscopic systems is reached only at im-
practically long annealing times. Therefore, the performance of the two techniques
must be compared in the intermediate-tf regime, where it is not immediate to see
which technique performs best.

In particular, what we see is that, in the intermediate-time regime, QA performs
better than SA when the system-bath coupling strength is not too weak. The time
at which simulated annealing starts to outperform its quantum counterpart seems
to be proportional to the exponent p, as inferred from the comparison between the
left- and right-hand panels of figure 5.5 and with the case of p = 3 (not shown).

This could suggest that, for very large values of p, quantum annealing could
perform better than simulated annealing, in an accessible time window in the
presence of a realistic (i. e., not extremely weak) coupling to the environment. This
effect is probably not due to thermal fluctuations, but rather arises because of a
renormalization of the quantum p-spin Hamiltonian for the effect of the bath. For
p → ∞, this may indicate that quantum annealing is more efficient than thermal
annealing when studying the Grover’s limit (see section 3.6).

5 .3 quantum annealing with pauses
As anticipated in section 2.5.1, the success probability of quantum annealing can
be improved significantly by pausing the dynamics, thanks to the environment
favoring thermal relaxation towards the target ground state. The advanced schedule
mechanics of D-Wave machines have allowed the scientific community to test this
claim experimentally in various settings, all involving short-range sparse Ising
models that can be embedded in the Chimera architecture of current-generation
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quantum annealers. Our personal contribution to the field was to demonstrate
that this effect, rather than being problem-dependent, is quite general and found
also in fully-connected models such as the p-spin system. Not only do we observe
a similar effect in a model that is radically different from the ones that can be
studied experimentally, but we are also able to recover the fidelity enhancement
due to pauses even with the simplest model of dissipation at hand, i. e., the
Markovian AME. From another point of view, these results indicate once more
that a Markovian approximation is sufficient to describe, at least qualitatively, the
behavior of quantum annealers [132].

Here, we focus on a system of N = 20 qubits with p = 19. All energies are
expressed as multiples of Γ = 1 GHz and all times are multiples of Γ−1. In order to
make our simulations more similar to what we would observe should we use the
D-Wave device, we rescale the annealing Hamiltonian of equation (2.2) by a factor 2
and consider the experimentally-realistic annealing schedules of the D-Wave 2000Q
depicted in figure 2.3, with A(0) = 30 and B(1) = 40.

There are two main reasons why we decided to focus on p = 19. First of all, we
have shown in the previous section that, if a thermal speed up exists, we should
be able to detect it at short and intermediate annealing times compared with the
adiabatic time scale. Given the energy scales of the annealing schedules and of the
p-spin model Hamiltonian, this choice of p results in a minimal gap of ∆min = 0.14,
at s∆ = 0.334, corresponding to an adiabatic time scale tad

f ∼ 1 × 104 according to
equation (2.7). In the following, we will choose tf = 100 as annealing time, so that
we are far from the adiabatic regime and, at the same time, computations remain
affordable. With this choice of tf, the fidelity F = pgs(t = tf)

a in the unitary limit is
small (F ≈ 5.51 × 10−3).

The second reason is more conceptual and has to do with the large-p limit of
the p-spin model. In fact, we can easily see that for p = 19 the spectrum of the
p-spin system indeed closely resembles the one of the adiabatic Grover’s search, as
opposed to smaller values of p. For instance, in figure 5.6 we plot the eigenvalues
of the p-spin model compared to those of the adiabatic search Hamiltonian of
equation (3.21) rescaled by a factor N/2 to match energy scales, as a function of
the Hamming distance from the target ground state. The Hamming distance dH

between two states is defined as the number of spin flips connecting them. In the
case of the p-spin or search Hamiltonian, where the target state is ferromagnetic,
the Hamming distance counts the number of spins misaligned with respect to the
true ground state and is related to the magnetization via the rule dH = N(1− m)/2.
By analyzing figure 5.6 we realize that the p-spin model with p = 3 and p = 7
has quite a different spectrum than that of the search Hamiltonian, whereas, in
the case of p = 19, the eigenvalues are nonzero only close to the target state and
are similar to the search ones. As opposed to the search Hamiltonian, the p-spin
model features a highly excited eigenstate with energy EN+1 = −E0. However, this
state does not participate in the dynamics as it is unlikely to be coupled to the
low-energy subspace.

aF = pgs(t = t′f) if there is a pause, with t′f = tf + tp.
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Figure 5.6 | Eigenvalues of Hp, dimensionless, as a function of the Hamming weight of the
corresponding eigenstates, for p = 3, p = 7, and p = 19. They are compared with the
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guide the eye.

We collectively couple the p-spin system via the operator A = mz to a bath
of harmonic oscillators at T = 12 mK = 1.57 GHz. This is one order of magni-
tude larger than the minimal gap, therefore we expect thermal effects to play an
important role for this instance. The coupling constant is η = 1 × 10−3 and we
employ a cutoff frequency of ωc = 1 THz. These parameters allow us to adopt the
Born-Markov approximation and use the adiabatic master equation to study dy-
namics. For convenience, we use the MCWF unraveling with K = 5000 trajectories
as explained in section 4.3.

First of all, in figure 5.7 we show the dynamics of the ground state probability
pgs(s) for a standard quantum annealing with no pauses. The blue line is the unitary
case η = 0, while the red line corresponds to the dissipative simulation with η =

1 × 10−3. In the unitary case, Landau-Zener transitions due to the fast dynamics
compared with the adiabatic timescale are responsible for the abrupt decrease of
the ground state probability at the avoided crossing. After s = s∆, the energy levels
quickly separate and the population remains constant, yielding F = 5.51 × 10−3. In
the dissipative case, on the other hand, the bath acts around the gap and partly
compensates the diabatic excitations by favoring thermal relaxation towards the
ground state. The net result is an increase in the ground state probability and
hence the fidelity is substancially larger (F = 0.799). Once again, far from s = s∆,
the level spacing is too large for the bath to have an effect on the dynamics.

Right before s = s∆, we observe a small decrease in pgs(s) in the dissipative
case that can be easily explained using a two-level picture. Let us consider the
ground state and the first excited state, and focus on the region s ∈ [sT, s∆], where
sT is the time before s∆ where the instantaneous gap is equal to the temperature
T. At shorter times, the thermal processes have scarce influence on the dynamics.
At s = sT, the system is almost completely in its ground state. As our simplifying
hypothesis, we suppose that for s ∈ [sT, s∆] the gap is constant and equal to ∆min. In
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Figure 5.7 | Dynamics of the ground state probability without any pauses, unitary and dis-
sipative evolution. See the main text for details about the parameters of the simulation.

the energy eigenbasis, the density matrix of the qubit system at s = sT is diagonal
as B(s ≤ sT) ≪ A(s ≤ sT), and can be written as

ρ(sT) =

(︄
ρ11(sT) 0

0 ρ22(sT)

)︄
, (5.6)

where ρ11(sT) ≈ 1 and ρ22(sT) = 1 − ρ11(sT) ≈ 0. The population transfer due to
thermal processes can be effectively modeled by a classical master equation of the
form

1
tf

dρ11(s)
ds

= Γ2→1ρ22(s)− Γ1→2ρ11(s), (5.7)

where Γ1→2 = γ(−∆min) = e−β∆min γ(∆min) and Γ2→1 = γ(∆min). The solution to
this master equation reads

ρ11(s) = ρ11(sT)− C
[︁
1 − e−(s−sT)/s1

]︁
, (5.8)

where C = ρ11(sT)− tfs1γ(∆min) and s1 = 1/tf
√︁

γ(∆min)
(︁
1+ e−β∆min

)︁
. The ground

state population at s → s−∆ is then ρ11(s−∆ ) ≈ 0.975, in agreement with numerical
simulations.

Thermal effects can be enhanced by pausing the quantum annealing. We tested
various pause lengths tp, from 100 to 900. The maximum pause length tp gives
a total annealing time t′f = tf + tp = 10tf, whose corresponding fidelity, in the
absence of pauses, is F = 5.39 × 10−2 for the unitary dynamics and F = 0.664 for
the dissipative one. The effects of pausing substantially increase this fidelity. These
results are tp-independent, although there are small quantitative differences. In
figure 5.8, we show the fidelity F as a function of the pause time sp ∈ [0, 1], for
different values of the pause duration, tp = 100, 400 and 900. The right-hand panel
is a zoom in the region around the optimal pausing time sopt

p ≈ 0.55. Four different
regions can be distinguished for all tp.
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Figure 5.8 | Fidelity as a function of the pausing time sp, for several values of the pause
length tp. The right-hang panel zooms in on the region around the optimal pausing
point sopt

p = 0.55, highlighted by the vertical dashed line. The optimal pausing point is
tp-independent. Error bars represent MCWF errors [see equation (4.28)].

1. When sp < s∆, the fidelity is not affected by pausing. Here, the tunnel-
ing amplitude is large compared with the thermal relaxation rate, and the
system evolves quantum mechanically with negligible influence from the
environment.

2. When sp ≈ s∆, thermal processes are more frequent and, correspondingly,
the relaxation rate is maximum. In this region, exp(−β∆min) ∼ 1, hence the
excitation rate Γ1→2 is comparable with the decay rate Γ2→1. When sp ≲ s∆,
most of the population is in the adiabatic ground state. Thus, transitions
from the ground state to the first excited state are more probable than reverse
processes. This imbalance causes a decrease in the observed fidelity after the
pause, and the worst pausing time is sharply localized right before s∆. A
recent paper proves that this effect is likely to be an artifact of the Markovian
approximation and is not typically found in experimental data [132]. The
situation is reversed for sp ≳ s∆, and here the fidelity is slightly enhanced.
This effect is more pronounced for longer tp.

3. For sp = sopt
p , we observe a peak in the success probability for any tp > 100.

The peak height increases with increasing tp, following a saturation law of
the form

F(tp) = Fsat

[︂
1 − α e−(tp−l0)/Tr

]︂
, (5.9)

with fitted parameters Fsat = 0.976 ± 0.007, α = 0.160 ± 0.005, and Tr =

4.1 ns ± 0.4 ns, and l0 fixed to l0 = 100 ns. In particular, Tr is related to the
thermal relaxation time of the many-body system, and Fsat is an estimate
of the maximum fidelity that can be achieved by pausing the dynamics at
the optimal point. The fidelity shows a peak almost at the time sp = sopt

p

independently of the pause duration tp. By contrast, tp influences the time at
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Figure 5.9 | Fidelity as a function of pausing time sp and duration tp (in units of 1/Γ). The
right-hand panel is a zoom around s∆ = 0.334.

which the fidelity goes back to its baseline value. In particular, for tp = 900,
we register a 20 % increase of the fidelity with respect to the dissipative
dynamics with no pause and total annealing time tf, and a 45 % increase
with respect to a dissipative dynamics of total annealing time t′f. The optimal
pausing point sopt

p is independent of the pause length.

4. When sp ≫ s∆, the fidelity is not influenced much by pausing. The ground
state is well-separated in energy from the other levels. The eigenstates of the
Hamiltonian are almost diagonal in the σz basis and the qubit-bath coupling
operator has exponentially small off-diagonal matrix elements. The pertur-
bation theory predicts that thermal processes are exponentially suppressed,
and the dynamics are frozen.

All these results are summarized in figure 5.9, where we show the fidelity as a
function of both the pause time and pause duration. The right-hand panel is a zoom
in the region around s∆. The heat maps show even more evidently that around
an optimal pausing time sopt

p the fidelity abruptly increases, almost independently
of tp. This is evident in figure 5.9, where the dark shadow shows up at sp ≈ sopt

p

and tp > 100. At shorter pausing lengths tp < 100, this phenomenon is no longer
visible. The sharp decrease of the fidelity around s = s∆ can be better visualized
in the right-hand panel. For the fully-connected p-spin model, the largest fidelity
enhancement occurs for sopt

p ≈ 1.65 s∆, or, equivalently, sopt
p ≈ s∆ + 0.22, while the

worst pausing point is swor
p ≈ s∆ in the AME approximation.

Figure 5.10 shows the differences in the dynamics of pgs(s) when a pause of
duration tp = 500 is inserted at sopt

p (blue line) or swor
p (red line). When sp = sopt

p , the
ground state population grows monotonically during the pause because of thermal
relaxation. In fact, thermal excitations out of the ground state are suppressed as the
spectral gap is large compared to the temperature T, e. g., E1(s

opt
p )− E0(s

opt
p ) ≈ 100.

On the other hand, for sp = s∆, the system can be excited due to the fact that
∆min ≪ T and pgs(s) is reduced compared to the previous case. Excitations and
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Figure 5.10 | Ground state probability as a function of time, when a pause of length
tp = 500 is inserted during a quantum annealing of time tf = 100, either at the optimal
or at the worst pausing point.

decays are almost equally probable, and produce evident noisy oscillations of pgs(s)
around a stationary value p̄gs ≈ 0.25 during the pause.

5 .4 iterated reverse annealing
In this section, we shall apply iterated reverse annealing (see section 2.5.2) to the
ferromagnetic p-spin model with p = 3. We remind to the reader that in IRA
the system is prepared in a classical state or in an excited eigenstate of the final
Hamiltonian, rather than in the uniform quantum superposition. The annealing
starts from s(0) = 1, where quantum fluctuations are zero, and goes back up to
s(tinv) = sinv. At s = sinv, a pause can possibly inserted, and then the annealing
resumes towards s(tf) = 1 (or s(t′f) = 1 if there is a pause) once again. See figure 2.8
for a sketch of the IRA annealing schedule. This procedure can improve an already
available solution in an open system setting. Indeed, we will show in this section
using both collective and individual dephasing as a model of dissipation that
open system dynamics substantially enhance the performance of reverse annealing,
compared to the unitary case.

In general, sinv and tinv can be chosen independently of each other. However, in
this section we choose the following linear relation, in order to have only one free
parameter:

tinv = tf(1 − sinv), sinv ̸= 0, 1. (5.10)

In this way, we have that

s(t) =

⎧⎨⎩1 − t/tf for t ≤ tinv,
1−sinv
tfsinv

+ 2sinv−1
sinv

for t > tinv.
(5.11)

In addition, we use the D-Wave 2000Q annealing schedules of figure 2.3 and rescale
the p-spin Hamiltonian by a factor 2 as done in the previous section.
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In the following, we will start reverse annealing in each of the N excited states of
Hp in the symmetric sector with maximal spin, i. e., S = N/2. The similarity to the
ferromagnetic ground state is quantified by the corresponding starting eigenvalue
of mz, denoted m0. Note that the wth excited state differs from the ferromagnetic
ground state by w spin flips. Therefore, the initial state and the target solution
differ by a fraction c = N↑/N = 1 − w/N of up-aligned qubits. These parameters
are also related to the Hamming distance dH, via dH = N − N↑ = N(1 − c).

5.4.1 Unitary reverse annealing
In this section, we study the closed system case of a system of N = 20 qubits,
with p = 3. For our choice of parameters, the p-spin system has a minimal gap
∆min ≈ 2.45 at s∆ ≈ 0.309. We consider an annealing time of tf = 100.

In figure 5.11, we report the fidelity F = pgs(tf) as a function of the inversion
point sinv, for several initial states: m0 = 0.9, 0.8, 0 and −1.

The rightmost part of figure 5.11 corresponds to cases in which the anneal is
reversed too early, i. e., for sinv > s∆. The system does not cross the avoided crossing,
and the success probability is zero. Therefore, there are no visible effects on the
outcome of the procedure, as the dynamics is slow compared with the minimal
inverse level spacing and diabatic transitions are exponentially suppressed. Thus,
the system is forced to stay in its initial state, or is excited to other high-energy
states. In fact, avoided crossings between pairs of excited eigenstates occur at
s > s∆ for this model, and Landau-Zener processes can further excite the p-spin
system.

On the other hand, if sinv < s∆ the system crosses the minimal gap twice.
Here, the success probability benefits from Landau-Zener processes, inducing
transitions towards the ground state. In this region, we also note some non-
adiabatic oscillations of the success probability, due to the finite annealing time.
These oscillations are more evident for large m0. As expected from the adiabatic
theorem, they disappear by increasing the annealing time. The sharp rise of the
success probability for m0 = 0.9 occurs exactly at sinv = s∆. For smaller values of
m0, the success probability rises more smoothly, as the ground state is reached
after a preliminary sequence of Landau-Zener transitions between pairs of excited
states, whose corresponding avoided crossings occur at s > s∆. For m0 = 0.8, a very
small rise of the success probability can still be observed around sinv = s∆. This
is due to the fact that during the reverse annealing, the system, prepared in the
second excited state, firstly encounters an avoided crossing with the first excited
state, where part of the population is transferred to the latter, and then the avoided
crossing with the ground state, where the system populates its ground state. After
reversing the dynamics, the two avoided crossings are encountered again (in the
reverse order) and part of the population gets excited, thus reducing the success
probability F.

As expected, reverse annealing is more effective when the initial state is close to
the correct ground state. Moreover, as is also clear from figure 5.11, the inversion
time sinv must be increasingly close to sinv = 0 for decreasing m0, in order to obtain
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Figure 5.11 | Success probability in unitary reverse annealing as a function of the inversion
point sinv, for several values of the magnetization of the initial state. The dashed
vertical line indicates sinv = s∆ = 0.309. The annealing time is tf = 100. We sampled
the interval sinv ∈ (0, 1) using a step size of ∆sinv = 0.002 and repeated the dynamics
for each choice of sinv.

a nonzero success probability at t = tf. This means that almost the entire dynamics
is spent in the reverse part of the annealing, and the system is eventually quenched
towards s = 1 for t ≈ tf. Even so, if the initial state is too far in energy from the
correct solution, the success probability of reverse annealing is always close to zero,
as evident from the curves for m0 = 0 and m0 = −1 in figure 5.11.

The maximum success probability decreases rapidly as a function of m0. This
is clearly seen in figure 5.12, where we report the maximum attainable success
probability as a function of m0, for annealing times tf = 100 and 1000. Increasing
the annealing time reduces nonadiabaticity and results in a lower success proba-
bility, compared with that at the end of a faster reverse anneal. As shown in the
inset of figure 5.12, which zooms in on the region m0 ∈ [−1, 0], this decrease can
be of several orders of magnitude for poorly chosen trial solutions. The influence
of the annealing time is less pronounced close to m0 = 1, and more evident for
intermediate and lower values of m0. This is consistent with the adiabatic theorem,
since a longer anneal time guarantees that the system will have a higher probability
of remaining close to the initial eigenstate it has the largest overlap with (not
necessarily the ground state) [133].

Adopting a conventional quantum annealing procedure, the success probability
in the case of tf = 100 would be P0 = 0.96. This value is larger than any F
achievable using reverse annealing. However, this argument cannot be used to
discredit reverse annealing for two main reasons. First of all, it is clear that, in
the analyzed case, we are very close to adiabaticity, where conventional annealing
is efficient. Secondly, as clarified in the next sections, the role of dissipation may
strongly affect this scenario.

The results of this section are in agreement with those reported in reference [38].
Namely, as is clear from figure 5.12, upon iteration the IRA protocol will only
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Figure 5.12 | Maximum success probability achievable with unitary reverse annealing, as a
function of the magnetization of the initial state, for two annealing times: tf = 100 and
tf = 1000. The inset zooms in on the region m ∈ [−1, 0].

decrease the success probability under unitary, closed system dynamics, unless the
initial state was already chosen as the solution of the optimization problem.

5.4.2 Reverse annealing with dephasing
In this section, we couple the p-spin system to an environment of harmonic
oscillators and simulate its dynamics using the adiabatic master equation. We
consider two different models of dissipation: a collective bath where the qubit
system is coupled to the environment via the total magnetization, i. e., A = mz,
and an independent bath model where each qubit is coupled to its own bath. We
consider identical baths and all equal coupling constants for simplicity. Of course,
in the latter case, numerical simulations are more demanding as the interaction
with the environment destroys the spin symmetry. In fact, we have to include
N times as many Lindblad operators in our description, where each Lindblad
operator is

Lab,i(t) = ⟨Ea(t)|σz
i |Eb(t)⟩ |Ea(t)⟩⟨Eb(t)| . (5.12)

For this reason, in this case we will only investigate reverse annealing starting
from the first excited state in the symmetric subspace with maximum spin, i. e.,
|w = 1⟩, for N ∈ {3, . . . , 8}. Moreover, for the particular cases of N = 7 and N = 8,
we truncate our system to the lowest 29 and 37 eigenstates, respectively, to speed
up the numerics. This choice is made since the first three levels of the maximum
spin subspace at s = 1 are spanned by ∑2

i=0 (
7
i) = 29 (for N = 7) and ∑2

i=0 (
8
i) = 37

(for N = 8) energy eigenstates. We confirm that this is a good approximation
by checking that the total population among these levels is close to one during
the reverse annealing when additional levels are included in the simulation. The
parameters of the dissipative simulation are ωc = 1 THz, η = 1 × 10−3, and
T = 12.1 mK = 1.57 GHz. As always the energy scale is Γ = 1 GHz.
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Figure 5.13 | Success probability in IRA as a function of the inversion point sinv, for several
values of the magnetization of the initial state. The p-spin system is coupled to a
collective dephasing bosonic environment with a coupling strength of η = 1 × 10−3.
The dashed vertical line denotes the time s∆ of the avoided crossing between the ground
state and the first excited state.

First of all, we repeat the simulations we reported in section 5.4.1 for N = 20,
p = 3 and tf = 100, but now include the role of the collective environment.

In the left-hand panel of figure 5.13, we show the success probability F as
a function of the inversion time sinv, for the four initial magnetizations m0 =

0.9, 0.8, 0 and −1. Monte Carlo errors are of the order of the point size in all cases.
As in the unitary case, if the inversion occurs too early (i. e., for sinv ≫ s∆), the

reverse annealing protocol fails to find the ferromagnetic ground state. In fact,
thermal excitations are suppressed, as well as Landau-Zener transitions, due to
the large level spacing, compared with the temperature and the inverse of the
annealing time. For sinv ≈ s∆, however, the scenario is drastically different from
the unitary case of figure 5.11.

The first difference is that the success probability can be nonzero even if the
inversion occurs for sinv ≳ s∆, especially for m0 = 0.9, where the tail of the curve
protrudes to sinv ≈ 0.75. When the instantaneous gap is of the same order of
magnitude as the temperature, thermal processes influence reverse annealing even
before crossing the minimal gap. Secondly, for all m0 we observe a sudden increase
in the success probability around sinv ≈ s∆, that eventually brings all curves to
an almost flat region at sinv < s∆, where the success probability reaches the large
value F ≈ 0.957. The value of the maximum success probability at the plateau
is m0-independent within Monte Carlo errors. The time at which the success
probability starts to increase with respect to the baseline depends on m0. Moreover,
the flat region is wider for larger m0, although it has a finite width for all m0.

These results show that even trial solutions far in Hamming distance from the
ferromagnetic ground state can result in a large success probability at the end of a
reverse anneal. Moreover, the time window in which inverting the annealing favors
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Figure 5.14 | Success probability in reverse annealing as a function of the inversion time
sinv, for N ∈ {3, . . . , 8}. The initial state is the first excited state of the maximum spin
subspace (m0 = 1 − 2/N). The dashed vertical line denotes the time s∆ of the avoided
crossing between the ground state and the first excited state. The annealing time is
tf = 100.

the ferromagnetic ordering is relatively large.
We also studied a longer annealing time, tf = 500, as shown in the right-

hand panel of figure 5.13. Here, we note that the onset of the success probability
plateau shifts towards longer values of sinv, compared with the case of tf = 100.
Therefore, the plateau is wider, and the maximum success probability at the
plateau is F ≈ 1 within Monte Carlo errors for all considered m0. This is in
contrast with the unitary case of figure 5.12, where increasing the annealing time
had detrimental effects on the algorithm. This evidence supports the idea that the
success probability enhancement is due to thermal effects, rather than due to purely
quantum effects [4]. Moreover, the adiabatic theorem for open quantum system
guarantees convergence to the steady state of the superoperator generator of the
dynamics in the large tf limit [134, 135]. This helps to explain our observations: the
steady state of the Lindblad generator of the open system dynamics considered
here is the Gibbs distribution of the final Hamiltonian, which, at sufficiently low
temperature relative to the gap, is the ferromagnetic ground state. Recall that in
our case ∆min ≈ 2.45 GHz (at s∆ ≈ 0.309) and T = 1.57 GHz.

Comparing these results with conventional forward annealing in the presence
of dissipation, we note that the success probability at the plateau is similar to that
of standard quantum annealing for η = 1 × 10−3 (F = 0.98). The reason is that
collective dephasing favors the ferromagnetic ordering in the p-spin model and its
induced relaxation increases the success probability compared to the isolated case,
in agreement with previous findings [4]. We also observe that when the annealing
is far from adiabaticity (e.g. tf = 1), reverse annealing becomes a more favorable
approach to forward annealing for the p-spin model.

We also compare the collective and independent dephasing models of dissi-
pation. Figure 5.14 shows the simulation results for the two models using the
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Figure 5.15 | Maximum success probability achievable with reverse annealing as a function
of the number of qubits N, using the collective and the independent dephasing models
(tf = 100).

adiabatic master equation for N ∈ { 3, . . . , 8 }, with tf = 100 and starting from the
first excited state, having magnetization m0 = 1 − 2/N. As shown in the figure,
simulations using the collective dephasing model have larger success probabili-
ties for almost every sinv. This is because, in the independent dephasing model,
other states not in the subspace of maximum spin become accessible by thermal
excitation or diabatic transition during the reverse anneal. For all of the system
sizes we simulated, we had to reverse anneal to a smaller inversion point sinv for
the independent dephasing model to achieve the same success probability as the
collective dephasing model. Moreover, the maximum success probability achievable
is always smaller for the independent dephasing model. The success probabilities
from both models, however, are very similar as sinv → 0, i. e., in the quench limit of
the direct part of the evolution.

Figure 5.15 shows how the maximum success probability of both bath models
depends on the number of qubits. As N increases, the maximum success probability
of the independent dephasing model decreases more rapidly than that of the
collective dephasing model. While we can infer that if we modeled independent
dephasing for N = 20 we would not observe as large success probabilities as in
figure 5.13, we stress that reverse annealing in the independent dephasing model
still yields a significantly larger success probability (for the same N values) than
the unitary dynamics case described in section 5.4.1.

5.4.3 Pausing reverse annealing
We repeat the simulations inserting a pause of duration tp at t = tinv, so that the
total annealing time, including the pause, is t′f = tf + tp. In the case of collective
dissipation, we consider tp = 100 and tf = 400, so that the total annealing times
are t′f = 200 and t′f = 500, respectively.

In figure 5.16, we report the success probability as a function of the inversion
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Figure 5.16 | Success probability in IRA as a function of the inversion point sinv, for several
values of the magnetization of the initial state. A pause of length tp = 100 (left) or
tp = 400 (right) is added at the inversion point. The p-spin system is coupled to a
collective dephasing bosonic environment with a coupling strength of η = 1 × 10−3.
The other bath parameters are described in the main text. The dashed vertical line
denotes the time s∆ of the avoided crossing between the ground state and the first
excited state.

point, for starting magnetizations m0 = 0.9, 0.8, 0 and −1. The left-hand panel is
for tp = 100 and the right-hand panel is for tp = 400. We compare the paused
case with the “unpaused” case. Here again, if the dynamics is reversed too early
(sinv ≫ s∆), the success probability at the end of the anneal vanishes. The level
spacing is large compared with the temperature. The relaxation rate is small and
the pause is too short to have impact on the dynamics.

However, the presence of a pause significantly changes the outcome of the
annealing around sinv ≈ s∆. In fact, when a pause is inserted at sinv ≳ s∆, the
success probability reaches F ≈ 1 for a wide range of inversion points and for all
m0, within Monte Carlo errors. Here, the ground state is completely repopulated
by thermal relaxation. This is in contrast with conventional quantum annealing,
where the success probability exhibits a peak as a function of the pausing time,
when the pause is inserted about 20 % later than s∆, and then rapidly returns to its
baseline value (see section 5.3). Conversely, for sinv < s∆, the effect of the pause is
negligible; the solid (with pause) and dotted (no pause) lines in figure 5.16 overlap
in this region.

As shown in the right-hand panel of figure 5.16, the longer pause duration
affects the results only marginally. Comparing with the left-hand panel, we note
that the qualitative behavior of the curves is the same in the two cases. The pause
duration affects mostly the region sinv ≳ s∆. A longer pause enhances thermal
relaxation, thus the success probability starts to increase from its baseline earlier
than for shorter tp. This results in a wider plateau where the success probability is
large, compared with the case of tp = 100.
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Figure 5.17 | Success probability in reverse annealing as a function of the inversion time
sinv, for N ∈ {3, . . . , 8}. The initial state is the first excited state of the maximum spin
subspace (m0 = 1 − 2/N). The dashed vertical line denotes the time s∆ of the avoided
crossing between the ground state and the first excited state. The annealing time is
tf = 100 and a pause of tp = 100 is inserted at the inversion point.

Finally, we compare the collective and independent dephasing models while
including pausing, starting from the first excited state of the maximal spin sector
and for N = 3, 4, 5, 6, 7 and 8. The results are shown in figure 5.17, for a pause of
duration tp = 100 ns inserted at the inversion point. The collective dephasing model
continues to exhibit higher success probabilities than the independent dephasing
model, as in the case discussed in the previous section, but the results of the two
models coincide when sinv < s∆. Thus, relaxation to the ground state during the
pause improves performance for both dephasing models. Note that, as N increases,
the maximum success probability of the collective dephasing model is achieved
at sinv > s∆, while it is achieved at sinv < s∆ in the independent dephasing model.
This is in agreement with the N = 20 result shown in figure 5.13.

5 .5 adiabatic reverse annealing
In this last section, our aim is to study adiabatic reverse annealing applied to the
p-spin model in the presence of both collective and individual dissipation. We
work in the setting described in section 3.3. In particular, i) we adopt a linear
annealing schedule A(s) = 1− s, B(s) = s; ii) we use λ(s) = s as auxiliary function
in the ARA Hamiltonian of equation (2.16); iii) we use the p-spin and homogeneous
transverse field Hamiltonians of equations (2.1) and (3.2). We consider the case of
p = 3. The (Ohmic) environment is at equilibrium at T = 12 mK and the cutoff
frequency is ωc = 8π. This time we are also interested in varying the strength of the
transverse field relative to other parameters, therefore energies will be expressed
in terms of a fixed energy scale J = 1 GHz. The proximity of the starting state to
the target ferromagnetic state is quantified by the parameter c of equation (3.7),
expressing the fraction of up-aligned spins in the starting state. The target solution
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Figure 5.18 | Mean magnetization ⟨mz⟩ as a function of s, for Γ = 1, 2 and 4, and several
values of the system-bath coupling strength (η = 1 × 10−4, 5 × 10−4 and 1 × 10−3).
Other parameters are N = 50, c = 0.8, tf = 40.

has c = 1.

5.5.1 Dynamics
First of all, we study the dynamics of a system of N = 50 qubits and fix tf = 40.
We fix c = 0.8 so that N↑ = cN = 40. We vary the strength of the trans-
verse field (Γ = 1, 2 and 4) and the coupling to a collective dephasing bath
(η = 1 × 10−4, 5 × 10−4 and 1 × 10−3). The time evolution of the mean magne-
tization ⟨mz⟩ is plotted in figure 5.18, in which we also report the unitary curves
for comparison.

For Γ = 1, we see that if the system-bath coupling is weak (η = 1 × 10−4), then
dissipation negatively affects the mean magnetization compared to the unitary case.
However, the general features of the curve are still clearly discernible and similar
to the unitary case. By contrast, for stronger interactions the environment favors
the ferromagnetic alignment and the mean magnetization increases, confirming
previous findings concerning dissipation-assisted quantum annealing [4, 6, 7]. The
coherent oscillations are damped, compared to weaker and zero coupling strengths.

For Γ = 2, on the other hand, dissipation always reduces the mean mag-
netization compared to the unitary case, probably due to the fact that the final
magnetization is already very large for η = 0 (F > 0.95), therefore excitations from
the ground state are favored compared to the reverse processes. Overall, all curves
are very similar to each other and the impact of dissipation appears to be marginal.
Of course, this may change for longer annealing times, which we discuss later on.

Similarly to Γ = 2, for Γ = 4 dissipative dynamics are all very similar to each
other and to the unitary case. As opposed to Γ = 2, in this case the final mean
magnetization is slightly increased compared to η = 0.
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Figure 5.19 | Time to solution as a function of the annealing time tf for Γ = 1. Top-
left: c = 0.7; top-right: c = 0.8; bottom-left: c = 0.9; bottom-right: standard QA
(λ = 1). The unitary results (η = 0) are compared with the dissipative ones in the
presence of collective dephasing, for several values of the system-bath coupling strength
η = 1 × 10−4, 5 × 10−4 and 1 × 10−3.

5.5.2 Time to solution
The time to solution (TTS) is a performance indicator of quantum annealing and is
defined as

TTS(tf, pd) = tf
log(1 − pd)

log pe(tf)
, (5.13)

where pe(tf) = 1 − pgs(tf) is the error probability and pd is a threshold probability.
The TTS represents the effective time it takes to solve the given problem at least
once with a probability greater than pd using runs of duration tf. We fix pd = 0.99
as usual in the recent literature [38, 132]. Note that the typical behavior of the
error probability pe(tf) with tf for closed systems is that of an exponential decay at
short and intermediate annealing times reflecting the Landau-Zener formula [68,
69], followed by a power-law tail for adiabatic annealing times, where the error
probability scales as t−2

f . As a consequence, the time to solution is expected to
have a plateau in the Landau-Zener region, followed by a tf/ log tf growth in the
adiabatic regime. In the following, we will focus on the Landau-Zener region.

In this section, we study a system of N = 45 qubits. For annealing times
tf ∈ [1, 1000], we have computed the TTS for several values of the system-bath
coupling strength η and of the initial fraction of up-aligned spins c. In figure 5.19,
we report our results for a transverse field strength of Γ = 1. For η ̸= 0, the
error bars represent MCWF errors [see equation (4.28)] and are smaller than the
point size in many cases. We can distinguish three different behaviors at short,
intermediate, and long annealing times.
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Figure 5.20 | Time to solution as a function of the annealing time tf for Γ = 2. Top-
left: c = 0.7; top-right: c = 0.8; bottom-left: c = 0.9; bottom-right: standard QA
(λ = 1). The unitary results (η = 0) are compared with the dissipative ones in the
presence of collective dephasing, for several values of the system-bath coupling strength
η = 1 × 10−4, 5 × 10−4 and 1 × 10−3.

For η = 0, the time to solution is a monotonically decreasing function of tf.
At short tf, the fidelity of both standard QA and ARA is small, hence the TTS
is very large due to vanishingly small denominators in equation (5.13). For long
annealing times, the fidelity grows and the time to solution decreases, until the
adiabatic regime, where the TTS eventually saturates to a plateau. These results
are thoroughly discussed in reference [38].

Conversely, for η ̸= 0 some of the curves show a nonmonotonic behavior, more
evident for larger values of η. At short times, the environment is beneficial in
all analyzed cases and the TTS is reduced compared to the isolated result, in
agreement with many previous findings reporting the enhancement of the success
probability of (several kinds of) quantum annealing of the p-spin model subjected
to collective dephasing [4, 6, 7]. At intermediate times, the effect of the environment
is still generally beneficial for the TTS except for the case c = 0.9, η = 1 × 10−4. For
c = 0.8 and 0.9 the curves for larger values of η show a minimum, corresponding
to the optimal working point of dissipative quantum annealing [19]. The behavior
at long times depends on the value of c. If c ≲ 0.8, the TTS in the dissipative case
is reduced compared to the isolated case. Instead, if c > 0.8, the dissipative TTS
is larger than the unitary one. In the case of c = 0.9, the starting state is already
close to the target ground state, hence the TTS is already very short in the unitary
case and is harmed by dissipation. Concerning standard QA, in the analyzed time
window the dissipative TTS is always shorter than the unitary TTS.

By analyzing curves relative to the same coupling strength, we report that
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Figure 5.21 | Time to solution as a function of the annealing time tf for Γ = 1. Top-left:
η = 0; top-right: η = 1 × 10−4; bottom-left: η = 5 × 10−4; bottom-right: η = 1 × 10−3.
The unitary results (η = 0) are compared with the dissipative ones in the presence of
collective dephasing.

both at short and long annealing times the TTS for standard quantum annealing
is shorter that that of ARA. By contrast, for η > 1 × 10−4, at intermediate times
the TTS at the optimal working point in adiabatic reverse annealing for c ≳ 0.8 is
smaller than the time to solution of standard quantum annealing.

In figure 5.20, we report our results concerning the TTS as a function of the
annealing time tf for a transverse field strength of Γ = 2. In the unitary case of
ARA, previous findings show that increasing the transverse field strength from
Γ = 1 to Γ = 2 causes the appearance of a minimum TTS at intermediate annealing
times [38]. This feature survives also in the presence of dissipation, with the
minimum being lower as the system-bath coupling strength increases. For short
and intermediate annealing times (up to tf ∼ 50 to 100), we see that dissipation
is beneficial for ARA. On the other hand, for longer annealing times dissipation
increases the TTS compared to the isolated case. For tf = 103, the time to solution
decreases as η increases. In the case of standard quantum annealing, dissipation in
the presence of collective dephasing always reduces the time to solution, compared
to the isolated case. All curves are very similar to the case Γ = 1 of figure 5.19

(bottom-right panel). In the isolated case, this feature has already been reported
in reference [38]. In the dissipative case, we are not surprised to observe these
similarities as changing the transverse field mostly affects the beginning part of the
dynamics (before the avoided crossing), where the effect of dissipation is negligible.

By grouping our curves according to the system-bath strength η, we clearly see
that, while in the unitary case ARA outperforms standard QA at intermediate and
long annealing times, dissipation changes this feature. Our results for Γ = 1 and
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Figure 5.22 | Time to solution as a function of the annealing time tf for Γ = 2. Top-left:
η = 0; top-right: η = 1 × 10−4; bottom-left: η = 5 × 10−4; bottom-right: η = 1 × 10−3.
The unitary results (η = 0) are compared with the dissipative ones in the presence of
collective dephasing.

Γ = 2 are summarized in figures 5.21 and 5.22, respectively. In the unitary limit (top
left panel), we see that the time to solution of ARA is indeed shorter compared to
that of standard QA, in line with the mean filed analysis discussed in appendix A.2
and with the literature [38]. This means that, for finite-size closed quantum systems,
it is convenient to choose a starting state that is already sufficiently magnetized
(c ≳ 0.8) so as to be closer to the target ferromagnetic ground state of the p-spin
model and avoid exponentially vanishing spectral gaps.

On the other hand, the remaining panels tell a different story. By comparing
the curves of ARA and QA for a given coupling strength η, we notice that the
advantage that ARA has in the unitary case is lost in the presence of dissipation.
In particular, the time to solution of the two approaches is similar and, moreover,
changing the starting state of ARA does not yield any improvement. Therefore,
at this level, there is no evidence in favor of using adiabatic reverse annealing
in real-world devices to improve on standard quantum annealing, as dissipation
would likely negate any possible advantages of ARA. These findings concern global
dephasing dynamics. A possible future line of work would be to test these results
in the presence of individual dephasing.

5 .6 conclusions
In this chapter, we analyzed the quantum annealing of the ferromagnetic p-spin
model in the presence of dissipation. Contrary to common belief, we showed that
the presence of a low temperature environment can be beneficial for quantum
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annealing in some cases. In addition, the enhancing effects of the bath can be
improved by exploiting advanced annealing protocols, such as pauses and iterated
reverse annealing. Conversely, we have shown that novel proposals of quantum
annealing such as adiabatic reverse annealing, which promises to improve QA in a
unitary setting, are as effective as the standard algorithm when dissipation is taken
into account.

Except for some counterexamples that are mostly model-dependent, the fact
remains that the environment is often detrimental for the performance of quantum
computation. This is particularly relevant for the case of adiabatic quantum
computation, where the need for adiabatically long annealing times leaves the
quantum system more prone to thermal effects. Therefore, the ultimate goal in AQC
is to design alternative algorithms resulting in high-fidelity quantum optimization
even at antiadiabatic time scales. On the one hand, this would make the system
less sensitive to thermal effects. On the other hand, moving too fast across the
minimal gap reduces the success probability because of Landau-Zener transitions.
Promising results in this direction come from the counterdiabatic approach to
adiabatic quantum computation, allowing us to circumvent LZ transitions while
still achieving a large success probability. We will discuss this approach in the next
chapter.



6beyond adiabatic evolutions
6.1 introduction
Shortcuts to adiabaticity (STA) are a family of methods whose aim is to drive a
quantum system adiabatically, without the prerequisite of the evolution being slow.
A quantum evolution is adiabatic when the value of certain observables, denoted
adiabatic invariants, are left unchanged. The adiabatic theorem establishes a bridge
between these geometric quantities and the evolution time, which must be longer
that the inverse of the minimal gap. Nonetheless, it is possible for a dynamics
to be adiabatic even if the evolution time is shorter than the inverse of the level
spacing. This result is achieved by appropriately tuning the control parameters of
the Hamiltonian, or, alternatively, by including additional terms in the Hamiltonian
that suppress the diabatic transitions resulting from finite sweep rates.

In quantum annealing, STA often follows the latter approach. By adding a
so-called CD potential to the conventional annealing Hamiltonian, the quantum
system can be driven unscathed across vanishing spectral gaps, resulting in high-
fidelity adiabatic quantum computation even for short annealing times. Reducing
the walltime additionally results in less decoherence and thermal noise. Figure 6.1
informally represents this concept.

A formal expression for the CD operator has been derived by Demirplak
and Rice [40] and, later, by Berry [41]. However, this operator can hardly be
implemented in experiments, as it involves infinite-range multiple-body interactions
and, in addition, it diverges around quantum critical points in the thermodynamic
limit. Moreover, it requires the exact spectrum of the original Hamiltonian, which
is unknown in principle.

A lot of effort has been devoted, in recent years, in developing simpler strategies
to derive approximate CD operators that can be more readily implemented on the
available platforms and/or are well-defined also for many-body quantum systems
and do not require the exact spectrum of the original Hamiltonian to be computed.
One of the most successful attempts involves a variational approximation, and
expands the exact counterdiabatic operator in terms of local Pauli operators or
nested commutators between the Hamiltonian and its time derivative.

In this chapter, we are going to review some results concerning CD driving in

89
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Figure 6.1 | Pictorial representation of the CD driving approach to adiabatic quantum
computation. Image taken from reference [71] and inspired by the artistic work of
Andree Richmond [136].

quantum annealing, with a reference to the p-spin system. This chapter is organized
as follows. In section 6.2, we will introduce the several paradigms of STA, with
an in-depth focus on counterdiabatic driving. In section 6.3, we will review the
variational approach to CD driving as proposed by Sels and Polkovnikov [44], and
we will apply it to the ferromagnetic p-spin model in section 6.4. In section 6.5,
we will discuss our alternative proposal to derive an approximate CD operator by
means of a genetic algorithm. We apply it to the p-spin model in section 6.6.

6.2 shortcuts to adiabaticity
In figure 2.2, we showed that the global adiabatic condition is too strict for adiabatic
quantum computation. Indeed, in AQC the goal is to find the ground state of the
target Hamiltonian Hp. In order to do so, one usually prepares the qubit system in
the ground state of a simple Hamiltonian HTF and let it evolve slowly, changing
its Hamiltonian towards Hp, thus rigorously tracking the instantaneous ground
state at all times. In this approach, most of the QPU time is spent to track the
ground state for 0 < s < 1. This portion of the dynamics is of scarce interest for
optimization problems, whose goal is to read the ground state at s = 1. Therefore,
even if the QPU does not always follow the ground state, it can still end up in the
target GS at s = 1 thanks to a favorable combination of diabatic transitions. This
fact can help us engineer faster protocols that drive the system back to its ground
state despite the fact that it gets excited at intermediate times.

A faster schedule is well-suited to improve both adiabatic quantum computation,
because it reduces the effect of relaxation and decoherence by speeding up the
evolution, and the circuit model, where STA can be used to speed up gate operations
or state preparation. In addition, STA can be fruitfully applied to all platforms
currently used for quantum computation, such as superconducting qubits, nitrogen
vacancies, trapped ions, or cold atoms.

When STA are used to tune the control fields of a Hamiltonian so as to realize a
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specific quantum process as quickly as possible, they belong to the class of optimal
control theories (OCT) [71, 137].

Suppose we have a Hamiltonian H0 depending on a set of time-dependent
driving fields W(t)a. The goal in OCT is to find the optimal form of W(t) to
drive a starting state |ψ0⟩ into a target one |ψf⟩ in a time tf, according to some cost
functionals we want to minimize. Typical examples of cost functionals f include:

1. The infidelity in the preparation of the target state, i. e., f1(|ψ(tf)⟩) = 1 −
|⟨ψ(tf)|ψf⟩|2.

2. The energy of the final state. This is usually the case in AQC, where the
target state is the ground state of the final Hamiltonian Hp: f2(|ψ(tf)⟩) =

⟨ψ(tf)|Hp|ψ(tf)⟩.

3. More generally, a specific property of the final state; for instance, if we know
that the final state is ferromagnetic, we can use the functional f3(|ψ(tf)⟩) =
− ⟨ψ(tf)|mz|ψ(tf)⟩.

There may also be some constraints concerning the control fields. In particular,
fields that are too strong or too rapidly varying can be impossible to realize
experimentally, therefore sometimes it is useful to include constraints on the power
of the driving fields, so that the quantities

Ci =
∫︂ tf

0
|Wi(t)|2 dt (6.1)

are minimized. Optimal control theory aims to minimize one (or a linear com-
bination weighted by Lagrange multipliers) of the functionals here described,
while solving the Schrödinger equation with Hamiltonian H0[W(t)] and starting
condition |ψ(0)⟩ = |ψ0⟩.

Many algorithms have been developed in order to face this problem. The choice
of the control method is mostly driven by the number of control parameters and
by whether or not the control fields are analytic. Additionally, we can distinguish
between gradient-free methods, which do not require the gradient of the functional
to minimize, and methods that instead use it to achieve a faster convergence. When
the number of control parameters is small, gradient-free methods such as the
chopped random basis (CRAB) optimization routine, which expands the control fields
as a Fourier series on a suitably-chosen basis of special functions, are usually the
best choice. For more complex problems, where the user can supply the derivative
of f with respect to basis states, Krotov’s algorithm gives excellent convergence
and, more importantly, naturally provides an optimization scheme that improves
the solution at each iteration. Some of these methods are already present in
the QuTiP library [138, 139], whereas, for some others, external packages have
been developed. In figure 6.2, we report a decision tree for the choice of several
optimization algorithms as described in reference [140].

aIn the QA Hamiltonian of equation (2.2), for example, these are the two schedules A(t) and
B(t).
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Figure 6.2 | Decision tree of OCT methods, from reference [140]. See references [141]
and [142] for details about group and goat.

The major downside of optimal control theory is that control fields must
be extremely precise. Even a small deviation from the optimum can degrade
performance, therefore it is paramount to have a way to properly implement the
control pulses experimentally. So far, this level of accuracy is not available in
D-Wave quantum annealers, where the form of the annealing schedules is dictated
by the architecture and can only be changed rigidly as discussed in section 2.5. This
is the reason why the community of AQC has shifted towards the complementary
idea of counterdiabatic driving, that, especially in its variational formulation, can
offer more viable ways to implement approximate shortcuts to adiabaticity in
quantum annealers.

6.2.1 Counterdiabatic driving
A time-dependent Hamiltonian H0(t) generally induces transitions between instan-
taneous energy eigenstates for any finite sweep rates. The slower the change in the
control fields, the smaller is the probability of Landau-Zener diabatic transitions.
Counterdiabatic driving was originally proposed in references [40, 143, 144] and
then rediscovered by Berry [41], who showed that it is always possible, given a
Hamiltonian H0(t), to build a family of auxiliary counterdiabatic Hamiltonians
Hcd(t) so that H(t) = H0(t) + Hcd(t) would result in a transitionless driving of the
quantum system for any annealing times.

The eigenvalue problem for H0(t) reads

H0(t) |En(t)⟩ = En(t) |En(t)⟩ . (6.2)

If the system is prepared in the eigenstate |En(0)⟩, then in the adiabatic limit (i. e.,
for very slow evolutions) the quantum state at time t will be

|ψn(t)⟩ = ei ξn(t) |En(t)⟩ , (6.3)
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where ξn includes both the dynamical and the geometric phases:

ξn(t) = − i
∫︂ t

0
En(t′)dt′ −

∫︂ t

0

⟨︁
En(t′)

⃓⃓
∂t′En(t′)

⟩︁
dt′ . (6.4)

The key idea is to reverse-engineer a Hamiltonian H(t) that is able to replicate the
time evolution of equation (6.3) for any sweep velocity, thus suppressing diabatic
transitions. It is fairly easy to build H(t) by starting from the time evolution
operator U(t) and then using the equation H(t) = i [∂tU(t)]U†(t). The time
evolution operator is readily available and reads

U(t) = ∑
n

ei ξn(t) |En(t)⟩⟨En(0)| . (6.5)

It leads to the following Hamiltonian,

H(t) = ∑
n

En |En⟩⟨En|+ i ∑
n
(|∂tEn⟩⟨En| − ⟨En|∂tEn⟩ |En⟩⟨En|), (6.6)

where we omitted the explicit time dependence for brevity. The first term on the
right-hand side is H0(t). The additional term is responsible for the suppression of
LZ transitions and therefore is the CD Hamiltonian Hcd(t). It is nondiagonal in the
energy eigenbasis, as can be seen by rewriting it in the following form:

Hcd(t) = i ∑
m ̸=n

|Em(t)⟩ ⟨Em(t)|∂tH0(t)|En(t)⟩ ⟨En(t)|
En(t)− Em(t)

. (6.7)

This expression, albeit exact, can hardly be used in real-life applications to speed up
adiabatic quantum computation, for several reasons. First of all, the Hamiltonian of
equation (6.7) is ill-defined around quantum critical points, ubiquitous in adiabatic
quantum computation, due to the vanishingly small denominators in the thermo-
dynamic limit. Secondly, there are only a few (trivial) cases where we can actually
compute the CD operator. In addition, in all these cases the resultant operator is
highly nonlocal and impossible to implement on the available hardware. Finally,
the most compelling issue is that, in order to evaluate equation (6.7), we would
need access to the exact spectrum of the Hamiltonian H0(t) for all t. However,
should this information be available, there would be no reason to use AQC to solve
the corresponding optimization problem in the first place.

More realistically, we would need a way to build an approximate counterdiabatic
operator that does not suffer from these limitations and does not require the exact
spectrum of H0(t). Much effort has been devoted to this end in recent times [42,
145–150]. A substantial leap forward in this regard comes with the variational
approach to counterdiabatic driving, proposed in references [44, 146, 151].

6 .3 variational approach
We here consider a linear annealing schedule in the annealing Hamiltonian H0,
i. e., A(s) = 1 − s, B(s) = s. According to equation (6.7), the Hamiltonian is
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modified by a term proportional to ∂tH0(t). However, in standard forward AQC,
the Hamiltonian at t = 0 and t = tf has very precise meanings. At t = 0, we
want it to be the transverse field Hamiltonian of equation (2.1) so that the starting
condition is the uniform superposition state over all computational basis states.
In addition, at t = tf, the Hamiltonian must be Hp, i. e., the problem Hamiltonian
whose ground state we want to read. Therefore, the CD potential must vanish at
t = 0 and t = tf, thus in order to apply the CD approach in AQC we have to use an
annealing function s = s(t) such that ∂ts(t)|t=0,tf = 0. In addition, we must have
s(0) = 0 and s(1) = 1. There are many functions that satisfy these constraints. For
instance, we can use the polynomial function

s(t) = 10
(︃

t
tf

)︃3

− 15
(︃

t
tf

)︃4

+ 6
(︃

t
tf

)︃5

, (6.8)

or the sinusoidal function

s(t) = sin2
(︃
π

2
sin2

(︃
πt
2tf

)︃)︃
. (6.9)

In the following, we will prefer equation (6.9) for consistency with references [9, 44,
45]. The choice of the annealing function does not significantly affect the discussion.

The CD Hamiltonian of equation (6.7) now reads

Hcd(s) = i ∂ts ∑
m ̸=n

|Em(s)⟩ ⟨Em(s)|∂sH0(s)|En(s)⟩ ⟨En(s)|
En(s)− Em(s)

≡ ṡAs, (6.10)

where As is the counterdiabatic gauge potential and the dot denotes time derivation.
From here we also see that, when ṡ → 0, like in the adiabatic limit, the CD potential
goes to zero as well.

Starting from the Schrödinger equation, we switch to the adiabatic frame,
where the Hamiltonian H0(s) is diagonal at all times, using an s-dependent unitary
operator U(s) such that H̃0(s) = U†(s)H0(s)U(s) = ∑n En(s) |En(s)⟩⟨En(s)|. In this
frame, the rotated state |ψ̃⟩ = U(s) |ψ⟩ satisfies the equation

i ∂t |ψ̃⟩ =
[︁
H̃0(s(t))− ṡÃs

]︁
|ψ̃⟩ , (6.11)

where quantities with the tilde are in the adiabatic frameb. In particular,

H̃0(s) = U†(s)H0(s)U(s) = ∑
n

En(s) |En(s)⟩⟨En(s)| , (6.12)

Ãs = i U(s)∂sU†(s) = − i ∂sU(s)U†(s). (6.13)

By differentiating equation (6.12), one arrives to

i [∂sH0(s) + Fad(s)] = [As, H0(s)], (6.14)

bMore precisely, in equation (6.11) there should also be an additional diagonal term proportional
to the geometric term ⟨En(s)|∂sEn(s)⟩, but it is inessential in the derivation.
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where Fad(s) = −U†∂sH̃0U = −∑n ∂sEn(s) |En(s)⟩⟨En(s)| and As = i ∂sU†(s)U(s).
Therefore, As satisfies the following equation:

[i ∂sH0 − [As, H0], H0] = 0. (6.15)

Despite its apparent simplicity, solving equation (6.15) can be cumbersome. Sels
and Polkovnikov [44] proved that the problem of finding As can be rephrased as
the minimization of the Hilbert-Schmidt norm of the operator

Gs(As) = ∂sH0 + i [As, H0], (6.16)

that is, it is equivalent to minimizing the action S(As) = tr
[︁
G2

s (As)
]︁
,

δS(As)

δAs
= 0, (6.17)

in the operator space acting on the Hilbert space of the problem.
The exact counterdiabatic operator would allow one to track the whole eigen-

spectrum of the original Hamiltonian H0. For the purpose of adiabatic quantum
computation, however, this is often asking too much as we are only interested in
the low-energy spectrum. We can adapt this variational formulation to focus on
the low-energy spectrum by simply noting that traces in the whole Hilbert space
are thermal averages at infinite temperature (β → 0). By introducing a fictitious
temperature T < ∞, we can redefine the action S(As) as

S(As, β) = tr
[︃

e−βH0

Z G2
s (As)

]︃
(6.18)

and tune β = 1/T so that the procedure only focuses on the interesting part of the
spectrum. The downside of this scheme is that we would need the spectrum of H0

or at least an efficient way to compute the matrix exponential of equation (6.18).
Therefore, in the following we will focus on the infinite-temperature case.

The exact solution to equation (6.17) would yield the counterdiabatic gauge
field of equation (6.10). However, this variational formulation is particularly well-
suited to deriving approximate CD potentials. In particular, one can restrict the
minimization to a subspace of the operator space, containing only physically
relevant quantum operators. A trial CD gauge potential A∗

s can be built as a linear
combination of a basis of this subspace and the coefficients of the superposition
can be chosen so as to minimize the action S(A∗

s ).
To date, two different approaches have been proposed to this end.

local approximation The CD gauge potential is a linear combination of oper-
ators acting on a small number of qubits. For example, we can expand A∗

s
as a linear combination of 1- and 2-body operators so that we can readily
implement it on a quantum machine. There are also proposals in which
the technique is applied to other architectures that naturally host multiple-
body interactions [152]. Given an Ising chain, the relevant subspace is then
spanned by the following l operators, O = { σ

y
i , σ

y
i σx

i+1 + h. c., σ
y
i σz

i+1 + h. c. }.
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The exact CD operator breaks time reversal, therefore only operators contain-
ing an odd number of σy matrices are allowed in this expansion, yielding
A(l)

s = i ∑k αk(s)Ok. In this approach, only the coefficients of the linear
combination are time-dependent.

nested commutators The CD gauge potential is a linear combination of nested
commutators (NC) between the Hamiltonian H0 and its time derivative ∂sH0.
Only odd commutators, i. e., commutators involving an odd number of H0

operators, contribute to this expansion. The exact potential can be represented
in this form when the number l of nested commutators goes to infinity, or in
the case of closed algebras. More practically, we can truncate the series to a
finite (small) number l and obtain an approximation A(l)

s of As:

A(l)
s = i

l

∑
k=1

αk(s)[H0, [H0, . . . [H0⏞ ⏟⏟ ⏞
2k−1

, ∂sH0]]] = i
l

∑
k=1

αk(s)Ok(s). (6.19)

Matrix elements of equation (6.19) in the energy eigenbasis give

⟨Em|A(l)
s |En⟩ = i

l

∑
k=1

αk(Em − En)
2k−1 ⟨Em|∂sH|En⟩ ; (6.20)

these are very similar to the expression obtained by taking matrix elements
of the exact counterdiabatic potential of equation (6.10), except for the fact
that the factor 1/ωmn appearing in the exact case is replaced by a “series
expansion” ∑k αkω2k−1

mn . This expansion obviously fails around ωmn ∼ 0, but
can be used to approximate the CD potential elsewhere. In addition, this
form is particularly well-suited to be realized experimentally via Floquet
engineering [45].

Since As is a linear function of αk, the action S(As) is a quadratic form whose
minimum is easy to find. In fact, given the expansion A(l)

s = ∑k αkOk, we have that

S(A(l)
s ) = tr

(︁
T2

0
)︁
+ 2 ∑

k
αk tr(T0Tk) + ∑

jk
αjαk tr

(︁
TjTk

)︁
, (6.21)

where T0 = ∂sH0 and Tk = [H0,Ok]. We can define α = (α1, . . . , αl) and recast S as
a quadratic polynomial

S(α) = A + 2B · α + αT · C · α, (6.22)

A = tr
(︁
T2

0
)︁
, (6.23)

Bi = tr(T0Ti), (6.24)

Cij = tr
(︁
TiTj

)︁
. (6.25)

We can introduce the matrix U that diagonalizes C, i. e., D = UTCU. Then, S is
rewritten as

S(α′) = A +
l

∑
k=1

(︂
2B′

kα′
k + Dkkα′

k
2
)︂

, (6.26)
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with α′ = UTα and B′ = UTB. The stationary point is

∂S
∂α′

k
= 2B′

k + 2Dkkα′
k = 0 =⇒ α′

k = − B′
k

Dkk
. (6.27)

This allows us to avoid the usage of minimization routines in favor of more
efficient linear solvers. This algebraic discussion has been recently rediscovered in
reference [153].

6 .4 application: p-spin model, variational approach
We here apply the variational approach to the ferromagnetic p-spin model. The
energy scale is Γ = 1 GHz and we consider tf = 1/Γ. We consider three typical
values of the exponent p.

• p = 1: In this case, the qubit system is a single spin S = N/2. Using the
expansion into NC, it can be easily seen that all operators Ok are proportional
to the operator Sy = ∑N

i=1 σ
y
i . Thus, one variational parameter is sufficient

to recover the limit l → ∞ of the nested commutators ansatz and yields the
exact counterdiabatic operator up to numerical errors.

• p = 2: The system exhibits a second-order quantum phase transition, where
the minimal gap ∆min scales as ∆min ∼ N−1/3. In this case, the CD operator
derived within the nested commutator ansatz improves the success probability
of quantum annealing as a function of l. We show that the number of NC
required grows with the number of qubits N.

• p = 3: The system exhibits a nondegenerate ground state and shows a first-
order QPT. The exponent p = 3 is the smallest odd integer for which the
p-spin model has this property. A large number l of NC is needed in order
to have a significant improvement in the success probability of quantum
annealing. Moreover, this number increases with the system size. However,
in this case, we found an ansatz, denoted cyclic ansatz (CA), yielding an
almost perfectly-efficient and size-independent counterdiabatic driving in
the symmetry subspace with maximum spin, with just three variational
parameters. The corresponding gauge potential reads

ACA
s = α1Sy + α2S3

y + α3(SxSySz + h. c.)c. (6.28)

As a side note, the variational procedure described in the previous section requires
the traces in the action S(As) to be evaluated over the whole Hilbert space. How-
ever, in the case of the p-spin model, where we want to exploit the permutational
invariance and work in the maximum spin subspace, we can define another func-
tional S̄(As) where the traces are restricted to the D = N + 1 eigenstates of S2 with
maximum spin, which satisfies the same variational equations as the original S(As).
Therefore, in the following we will drop the overbar and work in the symmetry
subspace, unless explicitly mentioned.

cIt is easy to prove that SxSySz + h. c. = SySzSx + h. c. = SzSxSy + h. c.
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6.4.1 p = 1

Although the case p = 1 is trivial, it is however useful so as to set the stage for
further calculations. The Hamiltonian of the p-spin model for p = 1 is

H0(s) = −2(1 − s)Sx − 2sSz. (6.29)

It is easy to see that O0 = 2(Sx − Sz), while Ok ∝ Sy for all k > 0. Thus, the NC
ansatz only contains one variational parameter (l = 1):

A(1)
s = αSy. (6.30)

For l = 1, the quadratic action S1(α) is trivially minimized by

αmin = − tr[O0O1]

tr
[︁
O2

1

]︁ . (6.31)

For the p-spin system of equation (6.29), O1 = −8(1 − s)Sz + 8sSx, thus, in the
symmetric sector,

tr[O0O1] = 16 tr
[︁
S2

z + s(S2
x − S2

z)− SxSz
]︁

= 16
N

∑
i=0

(︃
N
2
− i
)︃2

=
16N(N + 1)(N + 2)

12
. (6.32)

Similarly, it is possible to prove that

tr
[︁
O2

1
]︁
=

64N(N + 1)(N + 2)
12

(︁
1 − 2s + 2s2)︁, (6.33)

so that
αmin = − 1

4 − 8s + 8s2 , (6.34)

independently of the system size.
We numerically simulate the dynamics of the p-spin system in the symmetric

spin sector, for tf = 1 in units 1/Γ, for system sizes ranging from N = 10 to 100.
The probability of being in the instantaneous ground state is

pgs(t) = | ⟨E0(t)|U(t)|ψ(t = 0)⟩|2, (6.35)

where U(t) is the time evolution operator, and the fidelity F is F = pgs(t = tf), i. e.,
the probability of being in the ground state at the annealing time t = tf. In the
absence of the CD term, the fidelity F is very small in the analyzed cases for this
choice of tf (F ≈ 1 × 10−3 for N = 10, F < 1 × 10−15 for N = 50 and above). The
scaling of the fidelity as a function of the system size is summarized in figure 6.3,
up to N = 100. This clearly shows that the ansatz of equation (6.30) indeed, in this
simple case, gives the exact counterdiabatic potential of equation (6.15).
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Figure 6.3 | Fidelity F as a function of the system size, for the bare annealing (blue line
with circles) and for the CD driving (red line with triangles), for p = 1 and tf = 1/Γ.
The ansatz of equation (6.30) yields a size-independent fidelity, up to truncation errors
of the numerical integrator.

6.4.2 p = 2

For p = 2, there are two degenerate ground states at t = tf. They both belong to
the subspace with maximum spin, i. e., they are the two fully spin polarized states
|N/2⟩ = |↑↑ · · · ↑⟩ and |−N/2⟩ = |↓↓ · · · ↓⟩. In this case, the fidelity is given by
F = pN/2(tf) + p−N/2(tf).

For p = 2, we simulate the quantum annealing up to a final time tf = 1 and
study the scaling of F as a function of the system size in the maximum spin
subspace and for different orders of approximation of the counterdiabatic operator
A(l)

s with the NC ansatz.
In particular, in figure 6.4 we report the scaling of F as a function of N, for

l = 1, 3, and 8, compared to standard quantum annealing with no CD terms. These
results are obtained using a time step of dt = 1 × 10−3. In the standard case, the
fidelity rapidly goes to zero as we increase the number of qubits N. This is easily
understood, as the energy levels become more and more dense for increasing N
and, for fixed tf, the dynamics quickly leaves the adiabatic regime. The starting
paramagnetic state is metastable for all t and the p-spin system occupies this state
for the whole dynamics. At the annealing time t = tf, the system state would be
almost identical to the starting state,

|ψ(tf)⟩ ≈
1

2N/2

N

∑
w=0

(︃
N
w

)︃1/2 ⃓⃓⃓⃓N
2
− w

⟩︃
, (6.36)

where |N/2 − w⟩ are Davies states in the K = 0 spin sector (see section 3.4). Only
two terms of this sum contribute to the fidelity:

F = |⟨−N/2|ψ(tf)⟩|2 + |⟨N/2|ψ(tf)⟩|2 ∼ 2−N . (6.37)

A single variational parameter (l = 1) yields a good improvement for small
systems, but eventually the fidelity goes to zero for large N. By increasing the
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Figure 6.4 | Fidelity F as a function of the system size N, for standard annealing and for
the CD ansatz at different orders (p = 2). Increasing the order of the approximation
yields a higher fidelity F.

number of variational parameters, the improvement in F can even be of several
orders of magnitude for small systems. However, the general trend is that, for
large N, this improvement still gives a fidelity very close to zero and the proposed
variational ansatz seems to be inefficient in the thermodynamic limit.

6.4.3 p = 3

For p = 3, the ground state is nondegenerate. We discovered an alternative ansatz
tailored for this case, which we named cyclic ansatz, yielding strikingly large
fidelities in the symmetric sector, almost independently of the system size, having
only three variational parameters [see equation (6.28)].

We start this section by showing the scaling of the fidelity as a function of the
system size. Due to the first-order QPT, we expect the fidelity to scale as

F = ϕ e−γN . (6.38)

We ask whether the CD driving can change this scaling law or not.
In figure 6.5, we show the fidelity F as a function of the system size for tf = 1/Γ

and we compare standard quantum annealing with the nested commutator ansatz
(l = 1, 3, and 8) and the CA. We perform a fit of the results conjecturing the
exponential behavior of equation (6.38) even in the presence of CD driving. The
coefficients ϕ and γ are summarized in table 6.1, comparing standard quantum
annealing, the NC ansatz (for several orders l), and the cyclic ansatz.

Note that the exponent γ in the CA is three orders of magnitude smaller than
both the unitary case and the NC ansatz. Moreover, in the latter case, we observe
that the fidelity grows with increasing order l only for small system sizes, whereas
for larger systems the fidelity shows a maximum as a function of l and then
decreases. In fact, the exponent γ for l = 8 is larger than that for l = 3.
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Figure 6.5 | Fidelity F as a function of the system size, for standard annealing and for the
CD driving with the nested commutators and cyclic ansätze (p = 3).

To summarize, in the presence of a CD driving the scaling of F with N remains
exponential, but the coefficient γ is reduced with respect to the bare case. Moreover,
the CA yields an almost constant fidelity up to N = 100, and a large one (F > 1/2)
up to N = 1000, providing a robust mechanism to counteract the exponentially
vanishing spectral gap for macroscopic systems.

In figure 6.6, we show the time evolution of the ground state probability pgs(s)
for tf = 1/Γ, for N = 10 (left) and N = 20 (right) in the maximum spin subspace.
The blue line indicates the fidelity of standard quantum annealing with no CD
driving. The lightest green line corresponds to a CD dynamics with l = 8. Darker
lines are for all orders starting from l = 1 (the lighter is the line, the larger is l).
The red line represents the CA. Figure 6.6 clearly shows that the NC ansatz can
improve the fidelity of quantum annealing for p = 3. However, the CA yields an
even larger fidelity. In comparison, a similar fidelity could be reached only going
beyond order l = 8. However, increasing the number of NC the improvement in the
fidelity is gradually smaller, and we guess that in order to achieve results similar to
the one obtained using the CA an unpractical large number of nested commutator
would be required. Moreover, as N grows, more and more variational parameters
are required to achieve a similar level of fidelity, whereas the CA requires only

Table 6.1 | Table of coefficients for the exponential fit in equation (6.38).

ϕ γ

No CD 0.903 5.96 × 10−1

NC, l = 1 0.492 2.11 × 10−1

NC, l = 3 0.999 1.09 × 10−1

NC, l = 8 2.438 1.29 × 10−1

CA 0.990 5.54 × 10−4



6 beyond adiabatic evolutions 102

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

p g
s(

s)
N = 10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

N = 20

No CD
NC, l = 1
NC, l = 8
CA

Figure 6.6 | Dynamics of the ground state probability pgs(s), for p = 3, tf = 1, and N = 10
(left) and N = 20 (right). The blue line represents the fidelity of the bare evolution
without CD driving. The darkest line is the ground state probability relative to l = 1
(NC). Analogously, the lightest line refers to l = 8 and all lines in between correspond
to increasing orders of the NC ansatz. The red line refers to the CA.

three variational parameters. Hence, in this particular case, the cyclic ansatz is
extremely efficient and outperforms the other known approximation schemes. This
is even more evident increasing the number of qubits. For instance, the right-hand
panel of figure 6.6 shows the same results for N = 20. Here, the fidelity for l = 8 is
significantly smaller than the previous case (F ≈ 0.20 versus F ≈ 0.68). By contrast,
the fidelity of the CA is almost unchanged with respect to N = 10, while the
ground state probability at intermediate times is still affected by the system size.

6.4.4 Finite range p-spin model
The efficiency of the CA could depend on the peculiarities of the p-spin model,
i. e., spin symmetry and infinite-range interactions. However, it is difficult to prove
this statement theoretically, therefore in the following we will try to limit the range
of the interactions and to break spin symmetry to gain some insights into this
problem.

In the absence of spin symmetry, we need to extend the analysis presented in
section 6.4.3 to the whole Hilbert space. Of course, this process is exponentially
more demanding, since now we have to consider all the 2N computational basis
states. Therefore, in this section, we will limit our analysis to small systems, i. e.,
N = 3 to 8.

The total Hilbert space can be decomposed as the direct sum of the eigenspaces
of the maximum total spin operator, corresponding to K = 0 (see section 3.4), and
of its orthogonal:

H = HK=0 ⊕H⊥
K=0. (6.39)
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In principle, all traces in equation (6.22) have to be evaluated over H. However, we
have already discussed that the variational procedure can be easily restricted to
the interesting subspace. Using a parameter 0 ≤ ξ ≤ 1, we can choose whether to
evaluate the traces in the whole Hilbert space or rather in the symmetric subspace.
For any operator O, we replace

tr(O) −→ (1 − ξ) tr(O)K=0 + ξ tr(O)⊥K=0. (6.40)

The case ξ = 0 is analogous to section 6.4.3. Minimizing in the whole Hilbert
space corresponds to choosing ξ = 1/2. Finally, ξ = 1 is the minimization in the
orthogonal subspace H⊥

K=0. Here, focus our attention on the cases in which ξ = 0
and ξ = 1/2.

To highlight the infinite-range nature of the p-spin model, it is more convenient
to rewrite its Hamiltonian [equation (3.2)] in the following form:

Hp = − 1
Np−1 ∑

i1,...,ip

Jσz
i1 . . . σz

ip
, (6.41)

where ij = 1, . . . , N for all j and we have introduced the unit energy J (J = Γ). As
{σz

i , σz
j } = 2δi,j, the Hamiltonian in equation (6.41) is a polynomial function of

order p of Pauli operators, containing terms of orders P = p, p − 2, . . . , 1 (odd p).
Each term represents an infinite-range P-body interaction between qubits, with
uniform coupling constant J.

A possible way for turning this infinite-range p-spin model into a finite-range
model is by weighting J with the “distance” between the qubits involved in the
p-body term. This can be easily understood by considering the simple case p = 2,
where the Hamiltonian would be

Hp=2 = const. − 2
N ∑

i,j
Jσz

i σz
j . (6.42)

In this case, we can replace J → Ji,j = J/|i − j|ν and build a finite-range version of
the p-spin model, where the exponent ν determines how punctual the interactions
between the qubits are: ν = 0 is the infinite-range model and ν → ∞ represents
nearest-neighbor interacting qubits.

The same reasoning holds for any value of p. In particular, we can always
replace J by Ji1,...,ip = J/ dist(i1, . . . , ip)ν. Here, we propose to consider the following
form for the distance function:

dist(i1, . . . , ip) =

⎧⎨⎩∑j,k>j
⃓⃓
ik − ij

⃓⃓
/Z if ij’s are all distinct;

1 otherwise.
(6.43)

The parameter Z = (p3 − p)/6 is chosen so that dist(1, 2, . . . , p) = 1. For p = 3,
that normalization factor is Z = 4. We also note that this choice of the distance
function does not allow us to have finite-range models for N = 3 with p = 3, as in
that case Ji1,i2,i3 = 1 for all combinations of indices. Of course, for all other values
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Figure 6.7 | Ground state probability pgs(s) as a function of time, for N = 8 and p = 3.
The annealing time is tf = 1/Γ. The minimization occurs in the whole Hilbert space
(ξ = 1/2). The left-hand panel is for ν = 1 and right-hand panel is for ν = 10 in
equation (6.43). In both panels, the green line refers to the NC ansatz (l = 8), while the
red line refers to the CA. The inset zooms in on the region s ∈ [0.5, 1].

of N, this procedure breaks the spin symmetry of the p-spin model, therefore we
will work in the whole Hilbert space and consider ξ = 1/2.

In figure 6.7, we show the ground state probability pgs(s) as a function of
time, for N = 8 and p = 3. The green line corresponds to NC while the red line
corresponds to the CA. Moving from the infinite-range model to the finite-range
one, we note that the efficiency of both ansätze, NC and CA, is improved, as both
curves are pushed upwards. In particular, for ν = 10, the fidelity F in the CA case
is F ≈ 0.995, comparable with the nested commutators ansatz with l = 4. Can we
conclude that the reason why the CA works so well cannot be the fact that the
model is infinite-range as it works even better without this feature? It is difficult to
compare to the p-spin model as (i) we are not working in the symmetric subspace
and (ii) the two models have different spectra, however the results of this section
motivated us to go even deeper and to analyze different (random) instances and
check our ansatz also in that case.

6.4.5 Random instances
Starting from the Hamiltonian of equation (6.41), here we randomly suppress some
of the coupling constants J with a certain probability. In this way, we can build a
family of infinite-range models, where the full-connectivity of the p-spin model is
progressively lost.

The resulting Hamiltonian is identical to that in equation (6.41), but the coupling
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Figure 6.8 | Fidelity distributions for the random p-spin model for several values of the
probability PJ of having nonzero coupling constants, for N = 5 and p = 3. The
annealing time is tf = 1 and there are no counterdiabatic terms. The vertical dashed
line indicates the fidelity for PJ = 1.

constant J is replaced by a random variable J satisfying

J =

⎧⎨⎩J with probability PJ ;

0 with probability 1 − PJ .
(6.44)

This model is the usual infinite-range ferromagnetic p-spin model when PJ = 1.
For any PJ ̸= 0, 1, this model breaks the spin symmetry and we have to work in the
whole Hilbert space, with ξ = 1/2.

For several choices of PJ , we performed dynamical simulations for M randomly
generated instances of this infinite-range random p-spin model and measured the
fidelity, both with and without CD terms. We focus here on the case N = 5 and
p = 3, however we obtained qualitatively similar results also for larger system sizes
up to N = 8.

In figure 6.8, we show the fidelity distributions for PJ = 0.1, 0.3, 0.5, 0.7 and 0.9.
We divided the fidelity interval [0.30, 0.45] into Nb = 100 bins and counted the
occurrences over M = 900 repetitions of the dynamics.

The peaks of the distributions are equally spaced, which implies that the mean
fidelity ⟨F⟩ linearly depends on PJ . According to the Landau-Zener formula, in a
two-level approximation around the avoided crossing the mean fidelity would be

⟨F⟩ ≈ 1 − e2π⟨∆min⟩2tf ≈ 2π ⟨∆min⟩2 tf. (6.45)

As a consequence, ⟨F⟩ ≈ ⟨∆min⟩2 ∝ PJ which implies that ⟨∆min⟩ ∼ P1/2
J .

As PJ < 1, all randomly generated instances have smaller gaps than the infinite-
range ferromagnetic p-spin model with PJ = 1, therefore the corresponding fidelity
is always smaller than that of the original model in the absence of CD terms. This
is shown in figure 6.8, using a black dashed line to highlight the fidelity for PJ = 1.
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Figure 6.9 | Fidelity distributions for the random p-spin model, in the presence of coun-
terdiabatic driving. The left-hand panel refers to the NC ansatz with l = 3. In the
right-hand panel, we show data for the cyclic ansatz. In both panels, the black dashed
line indicates the fidelity for PJ = 1.

In figure 6.9, we show the same fidelity distributions in the presence of CD
driving. The left-hand panel is for the NC ansatz of order l = 3. The right-
hand panel is for the cyclic ansatz. Here, we consider Nb = 100 bins for the
fidelity interval [0, 1]. Except for a few minor differences, such as the presence of
outliers around F = 0 for PJ = 0.1, the two plots look similar. However, we note
that the mean fidelity in the cyclic case is smaller than that in the NC case for
PJ ≤ 1/2, while the opposite is true for PJ > 1/2. In both cases, the presence of
counterdiabatic driving allows for a significantly larger fidelity (∼ 15–20 times),
compared to the case with no CD driving. Increasing the order l of the NC ansatz,
the mean values of all distributions move towards F = 1. Moreover, all distributions
become narrower and acquire a nonzero skewness.

As opposed to the case with no CD driving, here there are some instances
showing larger fidelity than that for PJ = 1. This is highlighted in figure 6.9,
where the black dashed line indicates the fidelity of the case PJ = 1. This evidence
confirms that the efficiency of counterdiabatic driving does not entirely depend on
the spectral properties of the analyzed model. In fact, even if the average minimal
gap is smaller than that for PJ = 1, there are instances of the PJ < 1 case where
quantum annealing with CD driving is more efficient than the case PJ = 1 with
CD.

6 .5 genetic approach
The aim of all kinds of STA discussed above is to determine the control fields of
the Hamiltonian or the coefficient of the counterdiabatic operator by minimizing
one or more of the functionals described in section 6.2. Here, we want to introduce
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a complementary approach that treats the time-dependence of the counterdiabatic
term as fixed and looks for the best time-independent operator so as to maximize
the fidelity with the target ground state. This idea is motivated by the fact that,
due to technological limitations, the functional form of the control fields on a
quantum machine cannot be varied within the range and accuracy required by
OCT, and, likewise, time-dependent operators such as the nested commutators
described in section 6.3 are difficult to implement. We stress that calling this
approach “counterdiabatic driving” is incorrect because we are not suppressing
diabatic transitions in any way. Therefore, we will refer to it as genetic optimal
control theory.

We propose to adopt the following form for the OCT potential, i. e.,

Hoct(s) = C(s)M, (6.46)

where C(0) = C(1) = 0 and M is a time-independent Hermitian operator. In the
following, we will choose C(s) = A(s)B(s) with A(s) = 1 − s and B(s) = s. In this
approach, M is the unknown optimal control theory operator that we aim to find.

In particular, our aim is to minimize the average energy at s = 1, i. e., the target
functional is f2 described in section 6.3. The minimization procedure follows the
genetic algorithm outlined in section 3.7.1.

The preliminary step here is the choice of the free parameters to optimize, i. e.,
of the chromosomes, which reflects the structure of M. We propose two different
approaches.

In the first one, the complex matrix elements of the upper triangular of M in
the computational basis are the genes of a real-valued chromosome, so that each
chromosome has a length of L = D2. In this way, we are looking for the OCT
operator in the whole Liouville space and the returned solution is generally close
to the optimum, however the obvious disadvantage of this strategy is that the
resulting operator is nonlocal. A variant of this approach is to assume that the OCT
operator has a specific structure, for example, it is represented by a banded matrix.
In this way, we can consider a family of matrices Mk, with k = 0, 1, . . . , D− 1, where
M0 is diagonal and Mk>0 has k nonzero subdiagonals and a nonzero diagonal. The
corresponding chromosome has length L = D + (2D − 1)k − k2.

In the second approach we propose, we consider M = ∑k αkOk, where Ok are
1- and 2-body operators and αk are rearranged to form the chromosome. In this
way, the resulting operator can easily be embedded in the quantum hardware, but
it is not guaranteed to be efficient as a OCT operator.

The genetic routine works as follows. We initialize a population of Npop random
individuals. We prepare the qubit system in the eigenstate of H0(0) as in standard
quantum annealing. For each individual, we propagate this state up to s = 1
using the time-dependent Hamiltonian H(s) = H0(s) + Hoct(s; M), and eventually
measure the mean energy f2 of the final state. We define the fitness value assigned
to each chromosome as f = − f2.
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Figure 6.10 | Behavior of the mean fitness, normalized to the optimal value fopt = 50, as
a function of the generations during the genetic optimization for forms M0 (red), M1
(blue), and MD−1 (green), for a typical run of the algorithm.

6 .6 application: p-spin model, genetic approach
Here, we apply the genetic approach to a p-spin system of N = 50 qubits with
p = 3. The ground state energy at t = tf is E0(tf) = −N and the optimal fitness
therefore is fopt = 50. The annealing time is tf = 1 (in units 1/Γ) and would lead
to a very small fidelity in the absence of STA mechanisms (F ≈ 6.16 × 10−11). The
minimal gap is ∆min = 0.079 in these units.

Following the genetic procedure, we repeatedly apply the three genetic opera-
tors, mutation with variance σ2 and a probability of pm, two-point crossover with
a probability of pc, and selection by tournament among NT individuals at a time,
until the termination criterion established by the maximum number of generations
Ng is reached. We tested the same operators as those of section 3.7.1. In this
case, we verified that the performance of the algorithm was scarcely dependent
on the numerical value of the hyperparameters. Therefore, we fixed Npop = 20,
Ng = 5000, pc = 0.7, pm = 0.3, σ = 1, and NT = 3.

In figure 6.10, we show the ratio between the average fitness of the chromosome
population and the optimal fitness as a function of the generation of the evolu-
tionary algorithm. We compare the results relative to three banded OCT matrices,
i. e., M0 (blue line), M1 (red line), and MD−1 (green line), for a typical run of the
algorithm. The chromosome sizes in these three cases are L = 51, 151 and 2601,
respectively. At the beginning of the procedure, the average fitness is small because
the starting population is random. With form M0, the fitness value eventually
saturates to a value that is one order of magnitude smaller than the optimal fitness
fopt = 50. This means that we cannot improve quantum annealing significantly
by merely affecting the diagonal entries of the Hamiltonian. By contrast, both M1

and MD−1 can produce close-to-optimal solutions, with fitness values very close to
fopt. Convergence with MD−1 is faster than with M1, as the larger number of free
parameters allows for a more efficient sampling of the solution space.
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Figure 6.11 | Ground state probability as a function of time, using the OCT operators
optimized via the genetic routine, following the same color scheme as of figure 6.10.
We compare with the same quantity without STA (black dotted line).

In figure 6.11, we show the ground state occupation probability pgs(s) as a
function of time, both with and without the OCT operator, following the same
color scheme as in figure 6.10. In the absence of OCT, pgs(s) is large until it reaches
the quantum critical point, at s ≈ 0.43. After that, diabatic excitations deplete the
ground state, which never regains population due to the large level spacing after
the minimal gap. This is shown by using a black dotted line.

With optimal control theory, on the other hand, the fidelity becomes nonmono-
tonic. The exact counterdiabatic potential would produce pgs(s) = 1 at all times.
Our approach maximizes the ground state probability at t = tf but allows for
diabatic transitions during the evolution. In the case of M1, this results in a com-
pletely depleted ground state in the middle part of the dynamics, and a sudden
recovery around t = tf. In the case of MD−1, the ground state probability has richer
features, showing oscillations that are absent in the other cases. Moreover, the
ground state is never completely depleted and the probability remains large for
the entire dynamics. By contrast, for matrix M0 the system jumps multiple times
between the ground state and the first excited state, and the final fidelity is small.

We could also have tested local OCT operators obtained by superposing 1-
and 2-body operators. However, in order not to break the spin symmetry of the
p-spin model, we would have to restrict to the following set of Hermitian operators,
{ Sx, Sy, Sz, S2

x, S2
y, S2

z , SxSy + h. c., SxSz + h. c., SySz + h. c. }, thus the chromosome
size would be rather small (L = 9). For this reason, we have decided not to adopt
the local strategy here.

The reason why the genetic routine works so well with the p-spin model is
twofold. First of all, energy gaps at t = tf are large, therefore minimizing the mean
energy of the final state always results in the system being in the objective ground
state. Indeed, if we repeated the same optimization using the fidelity as the fitness
function, the results would be quantitatively similar to those shown in this section.
Secondly, the minimal gap of the p-spin system is found approximately in the
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middle of the dynamics, where the coefficient C(t) of the OCT operator has its
maximum value. Thus, the effect of the optimal control theory operator is focused
on the region of the dynamics where most of the diabatic transitions involving the
ground state take place.

In these regards, hard test beds for our genetic approach are models having
small spectral gaps at t = tf in the low-energy spectrum, and whose minimal gap
is found around t = tf, where the coefficient C(t) of the OCT potential is small. In
these cases, due to the large probability of getting trapped in excited states, the
minimization of the average energy at t = tf will not necessarily imply a large
fidelity and convergence could be slow. Further work in this direction is already in
place and will be the subject of a forthcoming publication.

6 .7 conclusions
In this chapter, we reviewed the variational approach to CD driving and applied
it to improve the annealing performance of the ferromagnetic p-spin model. We
showed that the nested commutators ansatz by Claeys et al. [45] is able to enhance
the success probability for systems of moderate sizes, however there are other
successful ansätze that are more well-suited to the specific model at hand. In
particular, we show that the cyclic ansatz leads to a size-independent high-fidelity
quantum computation even for very short annealing times. What is more, we have
also shown that our CA is general enough to be applied also to other variants of
the p-spin model.

Finally, we proposed an alternative approach to STA based on a genetic algo-
rithm, which is rather general but can be specialized if additional information about
the system is known. Future work will explore other variants of this approach
and dig more into the cases where the energy minimization alone is not enough to
build a competitive optimal control operator.



conclusions
In this work, we discussed quantum annealing and some of its variants in the
presence of dissipation. Using numerical tools such as the adiabatic master equation
and the Monte Carlo wave function approach, we numerically investigated the
dissipative dynamics of the p-spin model, a simple fully-connected system that
resembles the hardness of more complex optimization problems due to presence of
a first-order quantum critical point in its phase diagram for p > 2.

We found numerous evidences that, within the Born-Markov approximation,
the presence of a low-temperature environment can have a positive impact on the
performance of quantum annealing for this system. Standard quantum annealing
benefits from low-temperature dephasing by means of an observed decrease in
the residual energy with respect to the true ferromagnetic ground state when the
system-environment coupling strength is not extremely weak.

Something similar is observed when a pause is inserted mid-annealing around
an optimal pausing point: the probability of ending up in the ferromagnetic
ground state is increased thanks to incomplete thermal recombination that favors
the relaxation of the p-spin system and brings it back to its ground state after the
avoided crossing. This fidelity enhancement would not be possible without the
presence of the environment.

Analogously, iterated reverse annealing, a more recent variant of QA, owes its
ability of refining trial solutions to the presence of the environment: in a unitary
setting, IRA would not be effective in improving the quality of the starting state,
both in the diabatic and in the adiabatic regime. Conversely, we have shown that
adiabatic reverse annealing, another proposed kind of reverse annealing, while
very promising in a unitary setting, is not as effective in the presence of dissipation.
In a closed system, there is a clear advantage in starting from a state that is
already closer to the ferromagnetic solution compared to the uniform quantum
superposition state in standard QA, as proven by the study of the time to solution.
However, this advantage, originating from the avoidance of the first-order phase
transition, is lost in the presence of dissipation.

All these results clearly show that in order to properly describe quantum
annealing theoretically and numerically, it is paramount to take the environment
into account. In some cases, the environment is even the main responsible for the
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success or failure of a given annealing protocol and its effect on the annealing must
be carefully addressed.

The results discussed in this thesis all concern the p-spin model. An immediate
ramification of this work would be to validate these findings for other models
that can be easily simulated numerically. Similarly, except for a brief parenthesis
concerning short-iterative Lanczos, here we mostly focused on the adiabatic mas-
ter equation approach to describe the dissipative dynamics of the p-spin model.
Numerous other master equations could indeed be tested to go beyond the Born-
Markov weak coupling approximation. Non-Markovian master equations could
provide a more quantitative agreement with experimental data, an interesting point
that we did not touch in this work. For example, it is well known that flux qubits
are mostly affected by 1/ f noise, which however cannot be incorporated easily in
the Markovian adiabatic master equation approach.

Concerning shortcuts to adiabaticity, in this work we have focused on the
counterdiabatic driving approach for closed quantum systems. As the environment
plays such an important role in quantum annealing, a future line of research,
already in place, will be devoted to develop a variational formulation to CD driving
for Lindbladian dynamics that will complement the results discussed here for
closed systems and will be the object of a future publication. In addition, another
possible way of implementing a shortcut to adiabaticity is to act on the scheduling
functions, A(s) and B(s). There are already proposals for variationally-optimized
annealing schedules that are worth exploring as an alternative to, or in conjunction
with, CD driving. In this regard, the genetic optimization method described in
this thesis might be a good starting point as it allows one to optimize both the
CD operator and the scheduling functions at the same time by redefining the
chromosome appropriately. This will be the object of a future publication.

Regarding this last point, genetic algorithms are the simplest representative of
a broader family of optimization methods based on evolutionary strategies. As
discussed in this work, they are global algorithms that look for the best solution to a
problem in the whole parameter space. Like all global methods, genetic algorithms
have a tendency of getting stuck in local minima of the cost function. This issue
can partially be lifted by implementing local searches as intermediate steps during
the genetic optimization, giving rise to the so-called memetic algorithms. We have
already tested the efficiency of memetic algorithms for minor embedding and the
preliminary results are promising so far. The related publication is already under
review. In the future, we will test the feasibility of memetic algorithms for the
optimization of counterdiabatic driving operators as well.

Finally, a technical note concerning the computational methods used for this
thesis. Our codes for the numerical integration of the AME and MCWF make use
of multi-threaded libraries and parallelized loops with the hybrid MPI/openMP
paradigm. In addition, quantum operators are represented as sparse objects to save
memory. However, in recent years there has been a strong interest of the scien-
tific community in general-purpose graphics processing units (GPGPUs) for heavily
parallelized tasks using GPUs. Graphics processing units allow for the usage of
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highly-efficient routines to speed up matrix-vector and/or matrix-matrix operations,
which are typically the bottleneck of numerical simulations of quantum dynamics.
Therefore, in the near future we plan to port our programs to this architecture.
Since the amount of VRAM per GPU is typically much smaller compared to the
CPU RAM available on high-performance computing facilities, this porting will
likely involve smart compression strategies for quantum states and operators such
as tensor networks, MPS’s and MPO’s, or quantum machine learning-inspired
representations such as restricted or deep Boltzmann machines. A code refactoring
will be necessary to reduce the amount of CPU-GPU communication, but the
analysis of this issue is beyond the scope of the present work.



Amean field analysis
In this appendix, we are going to discuss the mean field analysis of the ferromag-
netic p-spin model. We will discuss both the standard transverse field quantum
annealing and the adiabatic reverse annealing Hamiltonians.

a.1 quantum annealing
In order to evaluate the partition function Z of the p-spin model, we can apply the
Suzuki-Trotter formula to decouple the two noncommuting terms in the Hamil-
tonian (3.4), therefore mapping the quantum system to a classical system with
an extra dimension, the imaginary time [154]. Equivalently, we can expand the
operator function g(mz) = (mz)p around the mean value m = ⟨mz⟩, keeping terms
up to the first order in the difference mz − m:

g(mz) = g(m) +
dg(mz)

dmz

⃓⃓⃓⃓
mz=m

(mz − m) +O
(︂
(mz − m)2

)︂
. (A.1)

Replacing equation (A.1) into the Hamiltonian (3.4), we are left with N independent
2 × 2 problems that can be diagonalized exactly, thus allowing us to evaluate the
partition function Z and the free energy f (β, m) = (1/βN) limN→∞ logZ(β, m).
The final result is

f (β, m) = s(p − 1)mp − 1
β

log
[︃

2 cosh
(︃

β
√︂

Γ2(1 − s)2 + s2 p2m2p−2
)︃]︃

. (A.2)

The stationary condition ∂ f (β, m)/∂m = 0 yields the self-consistent equation

m =
spmp−1√︁

Γ2(1 − s)2 + s2 p2m2p−2
tanh

(︃
β
√︂

Γ2(1 − s)2 + s2 p2m2p−2
)︃

, (A.3)

which includes both the classical (Γ → 0) and the fully quantum (β → ∞) cases.
In figure A.1, we report the phase diagram [panel A.1(a)] and the mean mag-

netization m [panel A.1(b)] in the mean-field approximation for p = 2 and Γ = 1.
In the phase diagram, plotted as a function of s and T = 1/β, the darker color
represents the disordered phase, where m = 0, while the lighter color represents the
ordered phase, with m ̸= 0. The lighter is the color, the larger is m. The two phases
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Figure A.1 | Phase diagram and magnetization in the mean-field approximation, for p = 2.
In the left panel, the white dashed line is the critical line.

are separated by the critical line, indicated by the dashed line in figure A.1(a).
The x axis is the zero temperature limit (T = 0), while the line s = 1 is the fully
classical limit, where the transverse field is zero. The point m = 0 is always a
solution of the the self-consistent equation (A.3). In the paramagnetic phase, it is
the global minimum of the free energy. When the system approaches the critical
line, this minimum becomes broader and splits into two other minima, connected
by the symmetry m → −m. At the same time, m = 0 becomes a local maximum.
Focusing on m ≥ 0, the mean magnetization continuously grows from zero to a
saturation value that tends to m = 1 when T → 0. Therefore, the order parameter
is continuous and the quantum phase transition is second-order. The noticeable
smooth gradient from the dark, blue color to the yellow, light color in figure A.1(a)
is the signature of the continuous second-order QPT. At T = 0, a series expansion
of the order parameter around s = sc = 1/3 (see later) reveals the usual mean-field
behavior m ∼ |s − sc|1/2. This is represented by the red dashed line in figure A.1(b).

In figure A.2(a), we show the phase diagram and mean magnetization in the
case p = 3 and Γ = 1. For all p > 3, the system behaves similarly to the case
p = 3, except for the fact that for even p the free energy is even as for p = 2,
and there are two minima m → −m. Therefore, we will only discuss the case
p = 3. Moreover, in the following we will always avoid accidental degeneracies of
the ground state by restricting our analysis to odd values of p, without any loss
of generality. Also in this case, m = 0 is always a solution of the self-consistent
equation (A.3). However, as opposed to the case p = 2, for p = 3 the paramagnetic
solution is (meta)stable for every value of T and s. By approaching the critical
line, indicated by the white dashed line in figure A.2(a), the free energy density
starts to develop another minimum m1 ̸= 0, although this minimum is such that
f (β, m1) > f (β, 0) until the critical line is eventually crossed and the inequality is
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Figure A.2 | Phase diagram and magnetization in the mean-field approximation, for p = 3.
In the left panel, the white dashed line is the critical line; the dotted line is the spinodal
line, i. e., the limit of existence of a ferromagnetic metastable state in the paramagnetic
phase.

suddenly reversed. This metastable minimum shows up when (s, T) crosses the
spinodal line of the p-spin model [the green dotted line in figure A.2(a)], i. e., a line
in the phase diagram that represents the limit of existence of the ferromagnetic
phase as a metastable state. After the critical line, the metastable ferromagnetic
phase becomes stable and the mean magnetization jumps from m = 0 to m = m1.
In figure A.2(a), this corresponds to the fact that the transition from the dark to
the light color is very sharp, as opposed to the case p = 2. In figure A.2(b), the
transition is indicated by the vertical dotted line at sc = 0.435, i. e., the value of the
critical time at T = 0. Thus, the order parameter is discontinuous and the phase
transition is first-order.

The ground state energy is the limit β → ∞ of the free energy density of
equation (A.2). Using equation (A.3), we can write it as

egs(s) = inf
m

[︂
−smp − Γ(1 − s)

√︁
1 − m2

]︂
, (A.4)

where the inf is used to choose the correct minimum according to the phase. The
paramagnetic energy is epm(s) = −Γ(1− s). For p = 2 and p > 2 (past the spinodal

line), the ferromagnetic energy is efm(s) = −smp
1 − Γ(1− s)

√︂
1 − m2

1, where m1 ̸= 0
is the magnetization in the ordered phase at time s. The critical magnetization mc

is found by noting that, at the quantum critical point, efm(sc) = epm(sc). Simple
but tedious math finally yields the critical magnetization and critical time sc in the
zero-temperature limit:

mc =

√︄
p(p − 2)

(p − 1)2 , sc =
Γ

Γ + p
p−1

[︂
p(p−2)
(p−1)2

]︂(p−2)/2
, ec = −Γ(1 − sc), (A.5)
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which, in the large-p limit, yield

mc ∼ 1 − 1
2p2 +O

(︁
p−3)︁, sc ∼

Γ

1 + Γ

[︃
1 +

1
2(1 + Γ)p

]︃
+O

(︁
p−2)︁. (A.6)

Note that equations (A.5) are valid (as a limit) also for p = 2, where

mc(p = 2) = 0, sc(p = 2) =
Γ

2 + Γ
. (A.7)

a.2 adiabatic reverse annealing
The mean-field free energy in ARA can be derived following the same procedure as
for standard quantum annealing. We can consider s and λ in equation (3.5) as fixed
parameters and either perform a Suzuki-Trotter decomposition in the exponent of
the partition function Z or use the same series expansion of equation (A.1). The
final result for the free energy density in this static approximation is

f (β, m) = s(p − 1)mp−1

− 1
β

⟨︃
log
[︃

2 cosh
(︃

β

√︂
Γ2(1 − s)2λ2 + [spmp−1 + (1 − s)(1 − λ)ϵi]

2
)︃]︃⟩︃

i
,

(A.8)

where the angular brackets imply the average over all sites. Here, we focus on the
low temperature limit, where equation (A.8) simplifies to

f (β → ∞, m) = s(p − 1)mp−1 − c
√︂
[spmp−1 + (1 − s)(1 − λ)]

2
+ Γ2(1 − s)2λ2

− (1 − c)
√︂
[spmp−1 − (1 − s)(1 − λ)]

2
+ Γ2(1 − s)2λ2. (A.9)

The self-consistent equation for the average magnetization reads

m = c
spmp−1 + (1 − s)(1 − λ)√︂

[spmp−1 + (1 − s)(1 − λ)]
2
+ Γ2(1 − s)2λ2

+ (1 − c)
spmp−1 − (1 − s)(1 − λ)√︂

[spmp−1 − (1 − s)(1 − λ)]
2
+ Γ2(1 − s)2λ2

. (A.10)

We recover equations (A.2) and (A.3) for λ = 1. Instead, for λ = 0, i. e., in the
absence of the transverse field term, the model undergoes a first-order QPT where
the magnetization jumps from a value close to m = 2c − 1 to a value close to m = 1
at a critical time s = sc given by

sc(λ = 0) =
2(1 − c)

1 − (2c − 1)p + 2(1 − c)
. (A.11)

In figure A.3, we show the mean-field phase diagram of Hamiltonian (3.5)
at T = 0 as a function of s and λ. We fix p = 3 and discuss the two cases
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Figure A.3 | Phase diagram of ARA for p = 3. The top row corresponds to Γ = 1 and the
bottom row corresponds to Γ = 2. The left panel is c = 0.7, the mid panel is c = 0.8,
and the right panel is c = 0.9. (Top row) In the case c = 0.9, the line λ(s) = s (the
white dashed line) does not cross the line of the first-order quantum phase transition.
For c = 0.7, no functions λ(s) allow to avoid the first-order QPT. For c = 0.8, the linear
function λ(s) = s crosses the first-order critical line. However, as c > cc = 0.74, it is
still possible to find other paths in the parameter space that do not cross the critical
line. (Bottom row) The annealing path λ(s) = s does not cross the first-order QPT for
c = 0.8 and c = 0.9, but for c = 0.7 the critical line is continuous and the first-order
quantum phase transition cannot be avoided.
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Figure A.4 | Magnetization in ARA for p = 3. The annealing path is λ(s) = s. The left
panel is c = 0.7, the mid panel is c = 0.8, and the right panel is c = 0.9. In the case
c = 0.9, the magnetization is continuous for both Γ = 1 and Γ = 2. For c = 0.8, the
annealing path does not cross the quantum critical line for Γ = 2 and the magnetization
is continuous. For c = 0.7, the quantum phase transition is always first-order.

Γ = 1 (top row) and Γ = 2 (bottom row). The left panel is for c = 0.7, the mid
panel is for c = 0.8, and the right panel is for c = 0.9. The color represents the
mean magnetization corresponding to the minimum of the free energy density of
equation (A.9), obtained by numerically solving the self-consistent equation (A.10).

Consider the case Γ = 1. For c = 0.7 (left panel), the magnetization jumps
from zero to a finite value when (s, λ) crosses a critical line. The critical line
is continuous, meaning that there are no paths (s, λ(s)) in the parameter space
that allow to avoid the first-order QPT. Visually, this is represented by the sharp
transition from the lighter to the darker color. By contrast, when c is above a
critical threshold cc, the critical line breaks around the center of the phase diagram.
Visually, this corresponds to a smooth color gradient from the darker to the lighter
color. Therefore, it is possible to identify some paths (s, λ(s)) that do not cross the
quantum critical point. Hence, the first-order quantum phase transition does not
occur and is turned into a second-order QPT. For p = 3 and Γ = 1, the critical
value is cc = 0.74. For c = 0.8 (mid panel), we indeed see that the transition from
the starting phase to the final ferromagnetic phase is very sharp for λ close to zero
and to one, but becomes softer around λ = 0.5, which indicates that the first-order
transition can be circumvented. In the following, we will consider as a path in the
parameter space the curve λ(s) = s. This curve crosses the critical line for c = 0.7
and also for c = 0.8, as seen from the left and middle panels of figure A.3. By
contrast, for c = 0.9 the line λ(s) = s does not cross the critical line and the average
magnetization grows continuously from m = 2c − 1 to m = 1.

For Γ = 2, the phase diagram is similar to that for Γ = 1, except for the fact
that for c = 0.8 the annealing path λ(s) = s does not cross the first-order quantum
critical line. Therefore, the magnetization is continuous during the annealing.
These features are seen more clearly in figure A.4, where we plot the solution of
equation (A.10) as a function of s, for λ(s) = s. We observe a finite jump of the
magnetization for c = 0.7 and c = 0.8 (Γ = 1); by contrast, for c = 0.9 and c = 0.8
(Γ = 2) the magnetization is continuous.



Bame and mcwf cpu cost
In this appendix, we discuss a comparison between the computational costs of
the adiabatic master equation and of Monte Carlo wave function. In the AME
approach, the most expensive operation is the evaluation of the Lindbladian given
a density matrix ρ(t). This is done s1(D) times per each simulation. In MCWF, on
the other hand, the most computationally expensive operation is the matrix-vector
product Heff(t) |ψ(t)⟩ needed for the time evolution operator, which is evaluated
s2(D) times per trajectory. If we denote by NT(D) the number of trajectories needed
to achieve a certain standard error in MCWF, we then have that the serial CPU
times needed to simulate the dissipative dynamics of a quantum system using the
two approaches are

TAME = k1s1(D)Dβ, (B.1)

TMCWF = k2NT(D)s2(D)Dα, (B.2)

with β ≈ α + 1 as building the Lindbladian involves matrix-matrix operations
rather than matrix-vector operations as in MCWF. By contrast, the number of
operations s1 and s2 grow approximately in the same way with D.

Due to the fact that λO decreases with D, we expect that a threshold dimension
D∗ exists after which we can obtain the desired accuracy with just one trajectory,
i. e., NT(D ≥ D∗) = 1. In particular, D∗ =

(︁
ΛO/σ2

t
)︁1/x. Putting all together, we

find that

τ =
TAME

TMCWF

⎧⎨⎩= k1
k2

D for D ≥ D∗,

∈
[︂

k1
k′2

D, k1
k′2

D2
]︂

for D < D∗,
(B.3)

where k′2 = k2(ΛO/σ2
t ). This number is typically large, hence there is an ad-

vantage in using MCWF over AME (τ > 1) only when D is sufficiently large
or when trajectories are computed in parallel over C cores, in which case we
must replace k′2 → k′2/C in equation (B.3) and redefine the critical dimension as
D∗ =

[︁
ΛO/(Cσ2

t )
]︁1/x [33].

As an example, in figure B.1 we show the scaling of τ as a function of N
in a typical case, a transverse field Ising model. Here, we have fixed tf = 1 in
appropriate units and dt = 5 × 10−3. Each qubit is coupled via σz to an Ohmic
bath. The number of trajectories, simulated serially, is NT = 100. The shaded
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Figure B.1 | Scaling of τ as a function of N. The shaded area represents the interval of
equation (B.3) when D < D∗, while the dashed line indicates τ = 1.

area represents the interval of equation (B.3) when D < D∗, while the dashed line
indicates τ = 1. For small systems, the AME is faster than MCWF, but when the
system dimension grows the Monte Carlo wave function algorithm becomes more
efficient. These simulations have been performed using the two solvers mcsolve
and mesolve of the QuTiP toolbox in Python [138, 139]. To obtain the results of
this thesis, we have used custom-made Fortran 90 codes both for AME and for
MCWF that have the advantage of being faster and more memory-efficient than the
Python implementation. These codes have been thoroughly tested and compared
with reliable sources such as QuTiP itself to ensure the validity of our results.

In particular, the MCWF code is built using the Intel compiler and MKL
libraries for multi-threaded linear algebra operations, in conjunction with MPI
for the parallel evaluation of quantum trajectories. All quantum operators are
represented as sparse matrices using the sparse BLAS utilities built in the MKL
library. Numerical diagonalization is performed using one of three different
subroutines, i. e., exact diagonalization using LAPACK’s zhpevx if the system size
is sufficiently small, ARPACK’s znaupd and zneupd for Arnoldi diagonalization
with reverse communication to set the starting condition, and a more efficient
custom Lanczos routine with full Gram-Schmidt reorthogonalization for the ODE
solver for the waiting-time distribution when the system size is large. In order to
propagate the unnormalized state |ψ̃⟩ via Heff, we use the following approximation,

|ψ̃(t + dt)⟩ ≈ e− i Heff(t+dt/2)dt |ψ̃(t)⟩ , (B.4)

which is more accurate and less prone to convergence issues compared to a first
order approximation. The downside is that at each step we have to diagonalize
the Hamiltonian H0(t + dt /2), with a cost O

(︁
dD2)︁ if d is the number of Lanczos

iterationsa. Even for large system sizes (D ∼ 106), d = 20 to 100 is sufficient to
achieve convergence if the time step dt is small enough.

aEquivalently, we could evaluate the matrix exponential, but the computational cost is similar.
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