32 research outputs found

    Metameric representations on optimization of nano particle cancer treatment

    Get PDF
    In silico evolutionary optimization of cancer treatment based on multiple nano-particle (NP) assisted drug delivery systems was investigated in this study. The use of multiple types of NPs is expected to increase the robustness of the treatment, due to imposing higher complexity on the solution tackling a problem of high complexity, namely the physiology of a tumor. Thus, the utilization of metameric representations in the evolutionary optimization method was examined, along with suitable crossover and mutation operators. An open-source physics-based simulator was utilized, namely PhysiCell, after appropriate modifications, to test the fitness of possible treatments with multiple types of NPs. The possible treatments could be comprised of up to ten types of NPs, simultaneously injected in an area close to the cancerous tumour. Initial results seem to suffer from bloat, namely the best solutions discovered are converging towards the maximum amount of different types of NPs, however, without providing a significant return in fitness when compared with solutions of fewer types of NPs. As the large diversity of NPs will most probably prove to be quite toxic in lab experiments, we opted for methods to reduce the bloat, thus, resolve to therapies with fewer types of NPs. Namely, the bloat control methods studied here were removing types of NPs from the optimization genome as part of the mutation operator and applying parsimony pressure in the replacement operator. By utilizing these techniques, the treatments discovered are composed of fewer types of NPs, while their fitness is not significantly smaller

    Solving the problem of optimizing wind farm design using genetic algorithms

    Get PDF
    Renewable energies have become a topic of great interest in recent years because the natural sources used for the generation of these energies are inexhaustible and non-polluting. In fact, environmental sustainability requires a considerable reduction in the use of fossil fuels, which are highly polluting and unsustainable [1]. In addition, serious environmental pollution is threatening human health, and many public concerns have been raised [2]. As a result, many countries have proposed ambitious plans for the production of green energy, including wind power, and consequently, the market for wind energy is expanding rapidly worldwide [3]. In this research, an evolutionary metaheuristic is implemented, specifically genetic algorithms

    In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times

    Get PDF
    © 2020 The Author(s) Background and Objective: Cancer tumors constitute a complicated environment for conventional anti-cancer treatments to confront, so solutions with higher complexity and, thus, robustness to diverse conditions are required. Alternations in the tumor composition have been documented, as a result of a conventional treatment, making an ensemble of cells drug resistant. Consequently, a possible answer to this problem could be the delivery of the pharmaceutic compound with the assistance of nano-particles (NPs) that modify the delivery characteristics and biodistribution of the therapy. Nonetheless, to tackle the dynamic response of the tumor, a variety of application times of different types of NPs could be a way forward. Methods: The in silico optimization was investigated here, in terms of the design parameters of multiple NPs and their application times. The optimization methodology used an open-source simulator to provide the fitness of each possible treatment. Because the number of different NPs that will achieve the best performance is not known a priori, the evolutionary algorithm utilizes a variable length genome approach, namely a metameric representation and accordingly modified operators. Results: The results highlight the fact that different application times have a significant effect on the robustness of a treatment. Whereas, applying all NPs at earlier time slots and without the ordered sequence unveiled by the optimization process, proved to be less effective. Conclusions: The design and development of a dynamic tool that will navigate through the large search space of possible combinations can provide efficient solutions that prove to be beyond human intuition

    Evolutionary algorithms designing nanoparticle cancer treatments with multiple particle types

    Get PDF
    There is a rich history of evolutionary algorithms tackling optimization problems where the most appropriate size of solutions, namely the genome length, is unclear a priori. Here, we investigated the applicability of this methodology on the problem of designing a nanoparticle (NP) based drug delivery system targeting cancer tumors. Utilizing a treatment comprised of multiple types of NPs is expected to be more effective due to the higher complexity of the treatment. This paper begins by using the well-known NK model to explore the effects of fitness landscape ruggedness on the evolution of genome length and, hence, solution complexity. The size of novel sequences and variations of the methodology with and without sequence deletion are also considered. Results show that whilst landscape ruggedness can alter the dynamics of the process, it does not hinder the evolution of genome length. On the contrary, the expansion of genome lengths can be encouraged by the topology of such landscapes. These findings are then explored within the aforementioned real-world problem. Variable sized treatments with multiple NP types are studied via an agent-based open source physics-based cell simulator. We demonstrate that the simultaneous evolution of multiple types of NPs leads to more than 50% reduction in tumor size. In contrast, evolution of a single NP type leads to only 7% reduction in tumor size. We also demonstrate that the initial stages of evolution are characterized by a fast increase in solution complexity (addition of new NP types), while later phases are characterized by a slower optimization of the best NP composition. Finally, the smaller the number of NP types added per mutation step, the shorter the length of the typical solution found

    Rapid design of aircraft fuel quantity indication systems via multi-objective evolutionary algorithms

    Get PDF
    The design of electrical, mechanical and fluid systems on aircraft is becoming increasingly integrated with the aircraft structure definition process. An example is the aircraft fuel quantity indication (FQI) system, of which the design is strongly dependent on the tank geometry definition. Flexible FQI design methods are therefore desirable to swiftly assess system-level impact due to aircraft level changes. For this purpose, a genetic algorithm with a two-stage fitness assignment and FQI specific crossover procedure is proposed (FQI-GA). It can handle multiple measurement accuracy constraints, is coupled to a parametric definition of the wing tank geometry and is tested with two performance objectives. A range of crossover procedures of comparable node placement problems were tested for FQI-GA. Results show that the combinatorial nature of the probe architecture and accuracy constraints require a probe set selection mechanism before any crossover process. A case study, using approximated Airbus A320 requirements and tank geometry, is conducted and shows good agreement with the probe position results obtained with the FQI-GA. For the objectives of accessibility and probe mass, the Pareto front is linear, with little variation in mass. The case study confirms that the FQI-GA method can incorporate complex requirements and that designers can employ it to swiftly investigate FQI probe layouts and trade-offs

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications

    Hybrid differential evolution algorithms for the optimal camera placement problem

    Get PDF
    Purpose – This paper investigates to what extent hybrid differential evolution (DE) algorithms can be successful in solving the optimal camera placement problem. Design/methodology/approach – This problem is stated as a unicost set covering problem (USCP) and 18 problem instances are defined according to practical operational needs. Three methods are selected from the literature to solve these instances: a CPLEX solver, a greedy algorithm, and a row weighting local search (RWLS). Then, it is proposed to hybridize these algorithms with two DE approaches designed for combinatorial optimization problems. The first one is a set-based approach (DEset) from the literature. The second one is a new similarity-based approach (DEsim) that takes advantage of the geometric characteristics of a camera in order to find better solutions. Findings – The experimental study highlights that RWLS and DEsim-CPLEX are the best proposed algorithms. Both easily outperform CPLEX, and it turns out that RWLS performs better on one class of problem instances, whereas DEsim-CPLEX performs better on another class, depending on the minimal resolution needed in practice. Originality/value – Up to now, the efficiency of RWLS and the DEset approach has been investigated only for a few problems. Thus, the first contribution is to apply these methods for the first time in the context of camera placement. Moreover, new hybrid DE algorithms are proposed to solve the optimal camera placement problem when stated as a USCP. The second main contribution is the design of the DEsim approach that uses the distance between camera locations in order to fully benefit from the DE mutation scheme
    corecore