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Background and Objective: Cancer tumors constitute a complicated environment for conventional anti- 

cancer treatments to confront, so solutions with higher complexity and, thus, robustness to diverse con- 

ditions are required. Alternations in the tumor composition have been documented, as a result of a con- 

ventional treatment, making an ensemble of cells drug resistant. Consequently, a possible answer to this 

problem could be the delivery of the pharmaceutic compound with the assistance of nano-particles (NPs) 

that modify the delivery characteristics and biodistribution of the therapy. Nonetheless, to tackle the dy- 

namic response of the tumor, a variety of application times of different types of NPs could be a way 

forward. Methods: The in silico optimization was investigated here, in terms of the design parameters of 

multiple NPs and their application times. The optimization methodology used an open-source simulator 

to provide the fitness of each possible treatment. Because the number of different NPs that will achieve 

the best performance is not known a priori, the evolutionary algorithm utilizes a variable length genome 

approach, namely a metameric representation and accordingly modified operators. Results: The results 

highlight the fact that different application times have a significant effect on the robustness of a treat- 

ment. Whereas, applying all NPs at earlier time slots and without the ordered sequence unveiled by the 

optimization process, proved to be less effective. Conclusions: The design and development of a dynamic 

tool that will navigate through the large search space of possible combinations can provide efficient so- 

lutions that prove to be beyond human intuition. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Cancerous tumors have proved to have high heterogeneity in 

ypes of cancer cells [1,2] . Due to that fact, the effectiveness of 

herapeutic compounds, which are usually carefully designed in 

erms of targeting specific cells, can not be equally sufficient in the 

ynamic scenarios they face. Moreover, as the ensemble of cells 

re subjected to a therapy, they are stressed and this can result 

o higher heterogeneity [3,4] , thus, higher drug resistance is devel- 

ped [2,5] . 

Because of the aforementioned observations, higher complexity 

hould be pursued in future investigated treatments. For instance, 
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nanoparticles applied at different times, Computer Methods and Progra
he functionalization of nano-particles (NPs) with the therapeutic 

ompound is enhancing the biodistribution, tumor penetration and 

ellular uptake in targeted tissues [6–11] . Diverse behaviour of NPs 

ave also been examined as a possible solution to tackle the adapt- 

bility of the evolving environment of a tumor towards a “static”

reatment, either by developing multi-functional or multi-stimuli- 

esponsive nanoparticles [12–14] . Moreover, the differentiation of 

he application times of each type of NPs, can prove to enhance the 

ffectiveness, as different stages of the evolving tumor [15] can be 

argeted each time, namely a multistage treatment approach [16–

8] . 

Consequently, the differentiation of application times of NPs 

ithin the same treatment against a tumor was investigated. The 

n silico optimization of a possible treatment was examined with 

n open-source multi agent cell simulator, namely PhysiCell [19] . 
ote here that there are several works on the mathematical mod- 
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Table 1 

Unaltered parameters of PhysiCell simulator. 

Parameter Value 

Damage rate 0.03333 min −1 

Repair rate 0.004167 min −1 

Drug death rate 0.004167 min −1 

Elastic coefficient 0.05 min −1 

Cargo O 2 relative uptake 0.1 min −1 

Cargo apoptosis rate 4.065e-5 min −1 

Cargo relative adhesion 0 

Cargo relative repulsion 5 

Cargo release O 2 threshold 10 mmHg 

Maximum relative cell adhesion distance 1.25 

Maximum elastic displacement 50 μm 

Maximum attachment distance 18 μm 

Minimum attachment distance 14 μm 

Motility shutdown detection threshold 0.001 

Attachment receptor threshold 0.1 

Worker migration speed 2 μm/min 

Worker apoptosis rate 0 min −1 

Worker O 2 relative uptake 0.1 min −1 
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ling of the application of nanomedicine on cancerous tumors 

20,21] , that were utilized to design more effective therapies [6,22] . 

pecifically, PhysiCell has been previously used as a testbed for op- 

imization techniques of different types [23–25] . The consideration 

f in silico optimization of anti-cancer therapies was previously 

onsidered with single-NP [23,26,27] and multi-NP therapies [28] , 

owever, without differentiation of the application times, similar 

o the way it was implemented in the present study. 

An optimization problem was formalized with a search space 

efined by the application times and the physiological parame- 

ers of the NPs in the simulation, and with the fitness function 

s the remaining cancer cells. The treatments investigated as in- 

ividuals in the evolutionary algorithm, were characterized by a 

ariable-length genome, as the required complexity of the treat- 

ent (i.e. the amount of different NPs) is not known beforehand. 

his variable-length alternative is termed as metameric represen- 

ation [29,30] and has been applied to a wide variety of optimiza- 

ion problems, where the solutions can be fragmented into identi- 

al segments, like locating turbines in wind farms [31] or position- 

ng nodes for a network to optimize coverage [32] . Moreover, the 

perators of the evolutionary algorithm had to be adjusted to be 

ble to apply on the metameric representation. 

The optimized treatments found by the evolutionary algorithm 

roved to reach the highest possible complexity available by the 

imulator, however, this can prove to be challenging in practice. 

he fabrication of many different types of NPs would require dif- 

erent techniques and their combination may prove to have unex- 

ected toxic effects. Thus, the evolutionary algorithm was updated 

ith parsimony pressure to reduce the complexity of the discov- 

red treatments, i.e. the different types of NPs utilized. Compar- 

ng the results of the two methodologies, there was no statistically 

ifferent fitness provided by the discovered treatments, whereas 

he therapies provided by the updated technique were significantly 

ess complex. 

The results, also, revealed that when designing drug delivery 

ystems consisting of different types of NPs, their robustness is 

usceptible to multiple application times. After conducting statis- 

ical analysis on results provided with multiple NPs applied at ear- 

ier, arbitrary chosen time slots and results provided with time 

lots indicated by the optimization procedure, the latter proved 

o have higher robustness. Proving that the selection of randomly 

hronologically ordered time slots, that happen to be early in the 

imulation procedure is not a viable technique. 

. In silico treatment evaluation 

To test each different possible treatment, a sample project 

mplemented with PhysiCell [19] simulator, namely “anti-cancer 

iorobots”, is utilized. The basic scenario provided under this sam- 

le project, initializes a cancerous tumor of radius 200 μm, by ac- 

umulating c. 570 simulated cancer cell agents attached to each 

ther, located in the center of a simulated area. The division of 

hese cell agents is applied for one week of simulated time, in or- 

er to demonstrate tumor growth. After that, the therapy is intro- 

uced in close proximity to the tumor, by adding 500 new agents; 

0% of them are labeled as worker agents and represent the NPs, 

hereas the rest, 90% of them are labeled as cargo agents and rep- 

esent the drug. For the rest of the simulation, that is defined as 3 

ays, the worker agents adhere to cargo agents, move towards the 

enter of the simulated tumor (following an oxygen concentration 

radient) and deposit the cargo agents. The fact that cargo agents 

re in the vicinity of cancer cell agents cause them to decay and 

ventually die, thus simulating the effect that the drug has to ac- 

ual cancer cells. 

The simulator was executed on a system with an Intel® Xeon®

PU E5-2650 at 2.20GHz (using 8 of the 48 cores) and 64GB RAM, 
2 
nd the results of 10 days simulated time were provided after 

 min. To accelerate the execution of the simulator and mini- 

ize the effects of its stochastic mechanisms, appropriate addi- 

ions were applied in the source code [19] to load a tumor that 

as previously subjected to a simulated growth of one week. As a 

esult, each possible treatment will be tested on the same initial 

umor and the simulated time is now 3 days, leading to an execu- 

ion of 1.5 min on the aforementioned computational system. 

The simulation of the release of multiple different NPs within 

 treatment, during different application times was developed. The 

pplication time of each type of NP in the simulated therapy was 

efined to be within the range of 0 to 2880 min (2 days). Note 

ere, that the time from the initial application of the compound 

o the termination of the simulation is 3 days. Thus, even types 

f NPs with late application times, are given at least one day of 

imulated time to perform. 

Here, the maximum of different types of NPs that can be in- 

erted was set to 10. As mentioned previously, a total of 50 worker 

gents are introduced during the simulation, despite the amount 

f different types of NPs, in order to have comparable results. That 

mount of agents is equally divided among the diverse types of 

gents for every case. For instance, with 2 types of agents/NPs 

ests, 25 of each one are introduced; with 5 types of agents/NPs, 

0 of each one are introduced and so forth. 

The parameters of the simulator are not changed from the orig- 

nal version of the simulator [19] and are given in Table 1 . To for-

ulate the design of the treatment as an optimization problem, 

he parameters that define each type of NPs can be located in a 6- 

imensional space. Specifically the parameters under study are the 

ollowing (and their ranges are in brackets): attached worker mi- 

ration bias [0,1], unattached worker migration bias [0,1], worker 

elative adhesion [0,10], worker relative repulsion [0,10], worker 

otility persistence time (min) [0,10] and application time (min) 

0,2880]. The attached and unattached worker migration bias de- 

ermines the method of movement/migration of the worker agents, 

anging from deterministic (value 1) to Brownian (value 0), when 

he are attached and unattached to a cargo agent. Worker motility 

ersistence time controls the amount of time that worker agents 

ove towards one direction before electing a new migration di- 

ection. Worker relative adhesion and repulsion describe the phys- 

cal interaction of the worker agents with cargo and cancer cell 

gents, when they are in close proximity. Moreover, the fitness 

unction needed to evaluate each solution is regarded as the re- 

aining amount of cancer cell agents in the simulated area, after 

he simulated period of 3 days. 
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Fig. 1. Representation of two therapies. 

Fig. 2. Mutation operator. 
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. Optimization methodology 

Given that multiple types of NPs can be included in a candidate 

olution, but the best amount of different types is not known a pri- 

ri, conventional optimization methodology and operators can not 

e utilized. On the contrary, the operators need to be adjusted to a 

epresentation of a solution with multiple segments (each one rep- 

esenting one type of NPs), without the amount of these segments 

eing static. Consequently, a metameric representation [29,30] was 

mplemented, with a limitation of a maximum of 10 different types 

f NPs introduced, for algorithmic reasons and because the higher 

omplexity of these therapies is considered prohibitive for the fab- 

ication of the treatment in the lab. For instance, two different 

reatments are illustrated in Fig. 1 , one with four types of NPs and

ne with seven types of NPs. 

In the adopted optimization methodology, the evolution of the 

olutions is achieved through a modified steady state GA method- 

logy. The population size of possible solutions is set to P = 20 , 

hereas a tournament of size T = 2 is set for the selection and

eplacement operators. A modified mutation operator was imple- 

ented. The appropriate changes in this operator are that once 

 parent is selected, then with 50% probability, either one of the 

arameters is altered (one randomly selected gene modified with 

andom step size of s = [ −5 ; 5]% - depicted in Fig. 2 as Mutation

, where parameter # 3 of NP type # 3 is altered), or one additional

ype of NP is added to the treatment (depicted in Fig. 2 as Muta-
3 
ion B), with random parameters. A custom crossover operator for 

etameric representations was not incorporated in this study. 

In a second variation of the evolutionary methodology, instead 

f only adding one type of NP with the mutation operator, one 

ype of NP can be removed with equal probability. Moreover, to 

ontrol an anticipated emergence of bloat in the results parsimony 

ressure [33] was applied to the replacement operator. Namely, 

he offspring produced by the mutation operator, will have to be 

0% fitter than an individual in the previous population to replace 

t in the next generation. This is true only for mutated offspring 

ith higher genome length (different types of NPs), otherwise, if 

he two individuals are of similar genome lengths (or the offspring 

epresents fewer types of NPs) only the fitness is used as a com- 

arison measure without any adjustment. 

Note here, that the initialization of the population is set with 

olutions of only one type of NPs, in order to have the lowest pos- 

ible complexity. This option can contribute to bloat control (es- 

ecially in early generations) and the limited search space that is 

reated, may enhance the convergence rate, in contrast to cases 

ith more complex initial populations [30,34] . 

The computational budget of each test of evolutionary opti- 

ization was set to 10 0 0 evaluations with PhysiCell. Also, a 5- 

un static sampling technique was adopted, thus, the population 

s evolved for 200 generations (or evaluations of possible offspring 

olutions). The total of 10 0 0 evaluations result in 1500 min of wall- 

lock time on the aforementioned computer system, which trans- 
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Fig. 3. Average and confidence levels (95%) results from 5 runs of GA. (a) Evolution 

of average fitness of the population and (b) evolution of the best individual in the 

population. 
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Fig. 4. Scatter plot, linear regression fit and confidence bounds of application times 

for types of NPs and their fitness as a treatment for all new individuals tested 

throughout all 5 runs. 
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ates to 25 h per evolutionary optimization test. All tests were ex- 

cuted on the same initial population of 20 individuals/solutions, 

o render a valid statistical analysis and a fair comparison between 

ifferent methods. 

. Results 

.1. Conventional mutation-only evolution 

Initially, a steady state genetic algorithm with a conventional 

utation operator (Genetic Algorithm with Conventional Mutation 

A-CM ) and no crossover operator was tested as a benchmark. The 

onventional mutation operator only changes one parameter of the 

-dimentional space specified in a previous section, representing 

he behaviour of one type of NPs (and not altering the amount of 

ypes of NPs simulated - only Mutation A as depicted in Fig. 2 ). 

After, multiple executions (5 runs) of the GA-CM on the same 

nitial population the results are presented in Fig. 3 . The average 

nd 95% confidence levels are illustrated. In Fig. 3 (a) the average 

tness of the population is presented (initial value 1215 and final 

alue 1160 - a reduction of 4.4%), while in Fig. 3 (b) the best fitness

s presented (initial value 1195 and final value 1145 - a reduction 

f 4.2%). Note here that no additional executions were run (more 

han 5) as the results are consistent - as depicted from the small 

ange of the confidence levels in Fig. 3 - and the improvement in 

he final solutions is small. This is attributed to the low rate of 

xploration in the parameter space with the conventional mutation 

perator. 

The association of the time of application of the NPs and the 

tness of the treatment is depicted in Fig. 4 . As expected, the ear-
4 
iest the NPs are introduced as a therapy, the better the results in 

erms of remaining cancer cell agents. In Fig. 4 all the new indi- 

iduals tested throughout the evolution of all 5 runs were consid- 

red, and a linear regression model was fitted to illustrate the de- 

endence of application times and fitness, without considering the 

est of the parameters being changed with the mutation operator. 

he higher density on early application times unveils the fact that 

he GA converges fast to this area of application times search space 

nd, then, slowly fine-tunes all the other parameters to minimize 

he fitness. The slope of the fitted line reveals the intuitive notion 

f the connection between earlier application times and better fit- 

ess. 

.2. Mutation with addition evolution 

The application of the genetic algorithm with mutation oper- 

tor of updated functionality (adding random types of NPs, thus, 

sing both Mutations A and B in Fig. 2 ) is tested next (Genetic Al-

orithm with Mutation Additions GA-MA ). The results after 10 runs 

ith the updated mutation operator are summarized in Fig. 5 . The 

ata points presented are the average of the 10 runs, while the 

ashed lines refer to the 95% confidence levels. The average fitness 

f the population evolving throughout the generations is depicted 

n Fig. 5 (a) with the average values indicating a gain in fitness of 

0% (initial average at 1215 and final at 477). Moreover, the fitness 

f best individuals found throughout the evolution is displayed in 

ig. 5 (b) where a total advance of 61% in fitness is realised (initial

est at 1195 and final at 458). 

The composition (amount of different types of NPs) of the best 

olutions found throughout the evolution generations are illus- 

rated in Fig. 6 . The data points displayed are the average of the 

0 runs, while the dashed lines refer to the 95% confidence levels. 

here is a steady increase in the amount of NPs added throughout 

he evolution, with the final composition converging to the maxi- 

um of 10 types. However, when comparing the fitness of the best 

ndividuals ( Fig. 5 (b)) for generation 100 onward, we realize that 

nly slight improvements are achieved when more types of NPs 

re added. This situation is known as bloat and there are ways to 

void it, like parsimony control that is implemented in the follow- 

ng variation of the GA algorithm. 
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Fig. 5. Average and confidence levels (95%) results from 10 runs of GA with 

variable-length genome. (a) Evolution of average fitness of the population, (b) evo- 

lution of the best individual in the population. 
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Fig. 6. Average and confidence levels (95%) results from 10 runs of GA with 

variable-length genome for the composition of the best solution. 
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In Fig. 7 (a) a scatter plot is given, comparing the application 

ime of each type of NPs comprising a treatment and the combina- 

orial treatment fitness. Each horizontal line of dots (with the same 

olor), represent one treatment, thus, having the same fitness. The 
ig. 7. (a) Scatter plot of application times for types of NPs and their collective fitness a

reatment - thus, the same fitness). (b) Boxplot of application times per best treatment fo

nd amount of types of NPs per treatment. 

5 
est individual/treatment found in each of the previous 10 runs 

ere considered here. The association between the distribution 

f the application times of NPs and the fitness of the treatment 

as small variations, however, it seems that the better solutions 

more efficient treatments) release their NPs earlier in the simu- 

ation, an expected outcome given the results from Fig. 4 . To bet- 

er illustrate a comparison between the different treatments found, 

ig. 7 (b) presents a boxplot of the application times per treatment. 

lso, the fitness of each treatment and the amount of different 

ypes of NPs are given for the best treatment found after each 

est. It can be concluded that treatments with small range of NP 

pplication times, skewed towards t = 0 are more efficient. More- 

ver, counter-intuitive conclusions can be derived from Fig. 7 (b). 

amely, comparing treatment 1 and 4, while treatment 1 has a 

edian value of the application times on a later time slot, wider 
s a treatment (Each line of dots with the same color represents one combinatorial 

und on each optimization test. Additional information in the figure are the fitness 
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Fig. 8. Average and confidence levels (95%) results from 10 runs of GA with 

variable-length genome and parsimony pressure. (a) Evolution of average fitness of 

the population, (b) evolution of the best individual in the population. 
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Fig. 9. Average and confidence levels (95%) results from 10 runs of GA with 

variable-length genome and parsimony pressure for the composition of the best so- 

lution. 
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ange of application times and fewer types of NPs, it is fitter than 

reatment 4. 

.3. Mutation with addition, reduction and selection with parsimony 

ressure evolution 

As bloat was observed in the results of the previous section, 

ppropriate changes were made to the evolution methodology 

o control it. Namely, the mutation operator was updated to re- 

ove, with the same probability to adding, a type of NP from the 

enome. Moreover, parsimony pressure was applied to the selec- 

ion operator, requiring an improvement of at least 10% for solu- 

ions of longer length genomes (Genetic Algorithm with Mutation 

dditions and Parsimony Pressure GA-MAPP ). 

After replicating the evolution methodology for 10 tests, the 

ollective results are outlined in Fig. 8 . The average fitness of 

he population evolving throughout the generations is depicted in 

ig. 8 (a) with the average values indicating a gain of 58% (ini- 

ial average at 1215 and final at 462). Moreover, the best fitness 

hroughout the evolution are displayed in Fig. 8 (b), where a total 
Table 2 

Simulation parameters. 

Parameter NP # 1 NP # 2 NP #

attached worker migration bias 0.75710 0.71063 0.21

unattached worker migration bias 0.85409 0.94913 0.22

worker relative adhesion 5.22528 5.14334 8.47

worker relative repulsion 8.09247 3.53757 2.93

worker motility persistence time (min) 4.94834 4.00756 9.20

GA-MA application time (min) 1134 154 289

Early application time (min) 150 152 154

6 
dvance of 60% in fitness is realised (initial best at 1195 and final 

t 474). 

Moreover, the composition of the best solutions found through- 

ut the evolution generations are depicted in Fig. 9 . Here, in 

ontrast to the results from the previous methodology ( Fig. 6 ), 

he increase in types of NPs is slower and seems to converge 

round 6 types of NPs, as a consequence of applying parsimony 

ressure. 

In Fig. 10 (a) a scatter plot is given, comparing the application 

ime of each type of NPs comprising a treatment and the combi- 

atorial treatment fitness. Here the association between the distri- 

ution of the application times of NPs and the fitness of the treat- 

ent is not that apparent. In Fig. 10 (b) a boxplot of the applica-

ion times per treatment is presented. Correspondingly to previ- 

us results (presented in Fig. 7 (b)), the majority of solutions with 

mall range of application times and a median value closer to 0, 

erform better, as expected based on common sense. Nonethe- 

ess, based on the outcomes delivered from GA-MAPP , one can 

onclude that the improvements in fitness are not that signifi- 

ant to oppose possible unwanted side effects that may be caused 

y adding a higher amount of NPs, as described in the following 

ection. 

.4. Comparison results 

To better demonstrate the comparison of the results of the two 

volutionary optimization methods, Fig. 11 is depicting the box- 

lot of fitnesses of the best individuals found by both methods at 

he final generation. Note here that the results from the GA-CM 

re not included in this figure, as they are significantly worse and 
 3 NP # 4 NP # 5 NP # 6 NP # 7 NP # 8 

146 0.35434 0.20843 0.65137 0.79332 0.98463 

137 0.27906 0.78920 0.34177 0.67675 0.19820 

637 5.83786 5.72347 8.36366 0.83817 5.79598 

546 2.80705 6.66245 5.40435 5.17048 5.04158 

594 0.77420 9.28788 1.68606 4.90029 9.60829 

 533 826 307 193 389 

 156 158 160 162 164 
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Fig. 10. (a) Scatter plot of application times for types of NPs and their collective fitness as a treatment. (b) Boxplot of application times per best treatment found on each 

optimization test. Additional information in the figure are the fitness and amount of types of NPs per treatment. 

Fig. 11. Boxplot of fitness of best individuals found by two evolutionary methods 

(mutation operator adding one type of NPs GA-MA and mutation operator adding 

or removing one type of NPs with parsimony pressure GA-MAPP ). 
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Fig. 12. Boxplot of fitness of 10 0 0 simulations for solutions provided by evolution- 

ary algorithm GA-MA and with altered early application times. 
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f it was included, the y -axis would leave the differences of the 

ther two variations indistinct. The results are similarly distributed, 

nd when the two distributions were compared under the two- 

ided Wilcoxon rank sum test, they were not proved to be signifi- 

antly different (the null hypothesis that data in both distributions 

re samples from continuous distributions with equal medians is 

ot rejected with p = 0 . 3447 ). Thus, despite the small difference

f their sample median fitness values (460 for mutation operator 

dding on NP and 467 for parsimony pressure), the second method 

namely GA-MAPP ) is preferred, as it produces less complex treat- 

ents in terms of amounts of types of NPs. 

Nonetheless, to investigate whether the diversity in application 

imes found by the evolutionary methodologies is resulting in fitter 

olutions, one of the found solutions was tested by evaluating it on 

hysiCell 10 0 0 times. Then, the application times were arbitrarily 

ltered into earlier time slots within a smaller range, as described 

n Table 2 , whereas the rest of the parameters for the NPs were not

hanged. The results are presented in the boxplots of Fig. 12 , where 

he solution found by the GA-MA is clearly outperforming the other 
7 
ne. The distribution of the GA-MA solution fitness has a median of 

47 remaining cancer cell agents, while the early application time 

olution has a median of 501. 

. Conclusions 

In order to match the complexity of a dynamic cancer tumor, a 

ore elaborate drug delivery system is required to achieve a robust 

emedy. The possibility of releasing different kinds of NPs with the 

ame therapeutic compound during different times was tested in 

ilico . An evolutionary algorithm was implemented to optimize the 

esign of the treatment (parameters of different types of NPs and 

elease timetable), by using a metameric representation and ap- 

ropriately modified mutation operator. In order to control bloat, 

amely the advance of the genome lengths to higher lengths with- 

ut sufficient improvement in fitness, further alternations were ap- 

lied to the evolutionary optimization methodology. 

The results presented in this work, determine that the groups 

f NPs need to be released within a small range of time slots 

nd fairly early in the simulation, to exhibit increased effective- 

ess. Moreover, by including parsimony pressure in the replace- 

ent operator, simpler treatments (in terms of amount of types 

f NPs) can be found, without worsening their relative fitness. The 
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evelopment of simpler treatments is important for keeping costs 

ow during fabrication processes and alleviating the possibility of 

npredicted and unwanted toxic behaviour of the NPs when com- 

ined in vitro and in vivo . 

In order to further examine the relevance between application 

imes and fitness, one of the solutions found by the evolutionary 

ptimization methodology was compared with a solution where 

he application times were modified to earlier ones. The extensive 

valuation of the two solutions within the simulator proved that 

he specific order of application time slots is highly important for 

he fitness of the treatment and can not be arbitrarily set to just 

arlier time slots. Note here that the rest of the parameters de- 

cribing the behaviour of all NPs were the same. 

A possible direction of future work would be to implement 

rossover operators that will be specialized for metameric repre- 

entations [30] . Moreover, highly specialized [26] and innovative 

25] evolutionary algorithms can be implemented to reach better 

esults in a faster manner. Finally, due to the high computational 

ost of the simulator, a methodology of including machine learning 

echniques in the evolutionary optimization loop, like surrogate- 

ssisted evolutionary algorithms [23] , will be investigated to accel- 

rate the extraction of results. 
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