
1 
 

Hybrid Differential Evolution Algorithms  

for the Optimal Camera Placement Problem  

Mathieu Brévilliers(a), Julien Lepagnot(a), Lhassane Idoumghar(a),  

Maher Rebai(b) and Julien Kritter(a) 

(a) IRIMAS (EA 7499) – Université de Haute-Alsace, Mulhouse, France  
(b) Ecole Supérieure d'Ingénieurs Léonard de Vinci, Paris, France 

Abstract: 

Purpose – This paper investigates to what extent hybrid differential evolution (DE) algorithms can be 

successful in solving the optimal camera placement problem.  

Design/methodology/approach – This problem is stated as a unicost set covering problem (USCP) 

and 18 problem instances are defined according to practical operational needs. Three methods are 

selected from the literature to solve these instances: a CPLEX solver, a greedy algorithm, and a row 

weighting local search (RWLS). Then, it is proposed to hybridize these algorithms with two DE 

approaches designed for combinatorial optimization problems. The first one is a set-based approach 

(DEset) from the literature. The second one is a new similarity-based approach (DEsim) that takes 

advantage of the geometric characteristics of a camera in order to find better solutions.  

Findings – The experimental study highlights that RWLS and DEsim-CPLEX are the best proposed 

algorithms. Both easily outperform CPLEX, and it turns out that RWLS performs better on one class of 

problem instances, whereas DEsim-CPLEX performs better on another class, depending on the 

minimal resolution needed in practice.  

Originality/value – Up to now, the efficiency of RWLS and the DEset approach has been investigated 

only for a few problems. Thus, the first contribution is to apply these methods for the first time in the 

context of camera placement. Moreover, new hybrid DE algorithms are proposed to solve the 

optimal camera placement problem when stated as a USCP. The second main contribution is the 

design of the DEsim approach that uses the distance between camera locations in order to fully 

benefit from the DE mutation scheme. 
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1 Introduction 
Nowadays, camera networks are widely used to monitor areas of interest. When connected to an 

intelligent video surveillance system, it can help to automatically identify targets, events or risks, 

depending on the given operational requirements. In this context, determining the optimal 

placement of the cameras is of high importance because of the underlying costs. 

For this kind of optimization problem, the area to be monitored and the camera parameters (space 

coordinates and orientation angles) can be discretized in order to define the following decision 

problem: given a set of candidate camera locations that cover some discrete points of the area, find 

an optimal subset that satisfies the operational constraints (Horster and Lienhart, 2009).  

Up to now, several coverage models have been proposed in the literature (Mavrinac and Chen, 2013; 

Zhang et al., 2015). In this paper, the problem is stated as a unicost set covering problem (USCP), and 

this USCP model is used together with a three-dimensional model of the monitored area. As already 

noticed in the literature, this 3D setting allows to avoid blind spot due to major simplifications in a 2D 

setting (Zhang et al., 2013), but it leads to a significant increase of the computational cost (Liu et al. 

2016). For example, a bi-objective variant of the problem (minimizing the total cost of the camera 

network, while maximizing the area coverage) has been recently solved optimally with exact 

methods (Rebai et al., 2016), but at least 4 hours of computation were needed for the largest 

instance, which was limited to a 3D grid of 15x15x7 discrete 3D points. It is thus of high interest to 

design new algorithms that can find high quality solutions in this much larger 3D search space. In this 

work, the full coverage constraint is also considered: on the one hand, no blind spot is allowed 

(which can be a strict requirement for some applications) and on the other hand, it is known to make 

easier the development of person tracking algorithms (Liu et al. 2016). 

According to a recent comprehensive survey (Liu et al. 2016), a wide range of methods have already 

been implemented to solve different variants in this class of problems. Actually, the optimal camera 

placement problem is often tackled by using binary integer programming methods at first (David et 

al. 2007; Horster and Lienhart, 2009). However, as soon as the size of the problem increases, these 

methods can not find an optimal solution within a reasonable run time. That’s why approximation 

methods were also designed, including greedy heuristics (Horster and Lienhart, 2009; Zhao, 2011), 

semi-definite programming (Ercan et al., 2006; Zhao, 2011), simulated annealing algorithms (Zhao, 

2011; Liu et al., 2014), genetic algorithms (David et al. 2007; Van den Hengel et al., 2009), particle 

swarm optimization algorithms (Morsly et al., 2012; Konda and Conci, 2013), and artificial bee colony 

algorithms (Chrysostomou and Gasteratos, 2012).  

This article focuses on a metaheuristic called differential evolution (DE), which was originally 

designed for solving continuous optimization problems (Storn and Price, 1997). This simple and 

efficient evolutionary algorithm is able to solve various theoretical and real-world optimization 

problems (Das et al., 2016). In DE, a population of individuals (i.e. candidate solutions) is evolving 

from generation to generation in order to converge on the global best solution. A generation is 

composed of three evolutionary operators. Firstly, a mutation operator creates a mutant individual 

by adding weighted differences to a reference individual. The most common DE mutation scheme, 

called DE/rand/1, is formulated as follows. For each variable 𝑗 of each individual 𝑖 of the population 

𝑃𝑜𝑝: 
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 Muti,j = Popr1,j + F × (Popr2,j − Popr3,j) (1) 

where 𝑀𝑢𝑡 refers to the mutant population, 𝑟1 , 𝑟2 and 𝑟3 to three randomly chosen individuals of 

𝑃𝑜𝑝 such that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖, and 𝐹𝜖[0,1] to the DE scaling factor. As soon as a variable gets out of 

the search space due to Equation 1, a new appropriate random value is generated. Secondly, a 

crossover operator is applied, generating a trial individual from a current individual and its 

corresponding mutant individual by using the classical so-called binomial crossover. Thirdly, a 

selection operator replaces any current individual in 𝑃𝑜𝑝 with its corresponding trial individual, if the 

latter performs better. 

To the best of our knowledge, only one study applied a DE algorithm in order to optimize the camera 

placement (Zhang et al., 2016). However, the considered problem significantly differs from the one 

formulated above. Indeed, the area to be covered is represented by the set of triangles in an input 

3D triangular mesh, the number of camera to be placed is known in advance, and the aim is to 

maximize the number of covered triangles. Moreover, the classical above-mentioned DE algorithm is 

implemented, and it is only compared to a greedy approach. 

This paper proposes to investigate the efficiency of two hybrid DE approaches in order to solve the 

optimal camera placement problem. The first one is a set-based method designed to solve general 

combinatorial optimization problems (Maravilha et al., 2013). DE has already been adapted to 

combinatorial optimization in various ways, but most of these adaptations can only be applied on 

permutation-based combinatorial optimization problems, and even the more general list-of-

movements approach (Prado et al., 2010) is not well-suited for tackling the optimal camera 

placement problem considered here. So, the set-based DE approach seems to be the most 

appropriate method from the literature. Moreover, it provides promising results when solving the 

capacitated centered clustering problem and the traveling salesman problem (Maravilha et al., 2013; 

Maravilha et al., 2014). The second one is a new similarity-based method that takes advantage of the 

geometric components of a camera location (i.e. space coordinates and orientation angles): it allows 

to make sense of the DE mutation scheme in this camera placement application.  

According to Talbi’s taxonomy of hybrid metaheuristics (Talbi, 2002), any implementation of both 

approaches is a low-level teamwork hybrid (LTH) algorithm. Actually, the mutation operator allows to 

define a much smaller subproblem, and the crossover consists in solving this subproblem with any 

appropriate method. Three state-of-the art algorithms have been selected for hybridization with 

these DE approaches: a CPLEX optimizer (IBM, 2017a), a greedy algorithm (Johnson, 1974), and a row 

weighting local search (RWLS) algorithm (Gao et al., 2015). CPLEX and the greedy algorithm are 

natural candidates to get first benchmark results: the former highlights where the limit of an exact 

method is, while the latter provides a first upper bound for instances that are beyond this limit. 

Furthermore, RWLS has been experimentally shown to be one of the best heuristic algorithms when 

solving a large set of USCP benchmark problems. Regarding practical applications, RWLS has been 

already implemented to solve test suite reduction problems (Chi et al., 2017). But, up to now, no use 

of RWLS has been reported for solving the optimal camera placement problem. 

The remaining of this article is organized as follows. Section 2 describes in detail the considered 

optimal camera placement problem, specifies the problem modelling, and defines a set of instances 

inspired by real-world applications. Section 3 first presents CPLEX, the greedy algorithm, RWLS, the 

set-based DE approach, and the new similarity-based DE approach. Then, it explains the 
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experimental settings, and the reported results are discussed. Finally, Section 4 sums up the 

contribution of this article and gives some perspectives for future work.  

2 Problem description 

2.1 Problem modelling 
This paper deals with the following optimal camera placement problem: given the technical 

specifications of a camera, given a three-dimensional area to monitor, and given the operational 

need to meet, the objective is to find a minimum set of locations (i.e. position and angular 

orientation) of this type of camera that ensures a total coverage of this area according to the 

requested operational need. 

The monitored area is a rectangular box whose point coordinates range from (0,0,0) to 

(𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥) in a Cartesian coordinate system of the three-dimensional Euclidean space 𝑅3, 

where 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥 and 𝑍𝑚𝑎𝑥 are user-defined values. This area is discretized and approximated by a 

regular grid of points, where the step size 𝑈 between two adjacent points is a user-defined 

parameter. If each of these points is covered by at least one camera, the area is said to be fully 

covered by the cameras.  

A camera is defined by the following technical specifications: its horizontal resolution 𝐻𝑟𝑒𝑠, its 

vertical resolution 𝑉𝑟𝑒𝑠, and its horizontal field of view 𝐻𝑓𝑜𝑣 (angle in degrees). It has a pyramid of 

vision, whose base is a rectangle with length  
𝐻𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
 and width 

𝑉𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
  (in meters), where 𝑂𝑝𝑁𝑒𝑒𝑑 is 

the operational need to be met (in pixels per meter). The height of this right pyramid corresponds to 

the maximal depth of view 𝐷𝑚𝑎𝑥 of the camera (in meters), which depends on the operational need. 

Figure 1 clearly illustrates the horizontal field of view 𝐻𝑓𝑜𝑣 and the height 𝐷𝑚𝑎𝑥 of the pyramid of 

vision. 𝐷𝑚𝑎𝑥 is computed with the following equation: 

 𝐷𝑚𝑎𝑥 =

1

2
×

𝐻𝑟𝑒𝑠
𝑂𝑝𝑁𝑒𝑒𝑑

tan(
𝐻𝑓𝑜𝑣

2
×

𝜋

180
)
. (2) 

Any point of the monitored area is said to be covered by a camera if it lies in the pyramid of vision of 

this camera. 

A camera location is characterized by a point in the considered discrete grid together with discrete 

pan and tilt angles. Camera coordinates can range from (0,0, 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚) to (𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚) with a 

step size 𝑈, where 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 and 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚 are user-defined values such that 𝑍𝑚𝑎𝑥  ≤  𝑍𝑚𝑖𝑛
𝑐𝑎𝑚  ≤  𝑍𝑚𝑎𝑥

𝑐𝑎𝑚. A 

camera can thus be placed anywhere in the grid, provided that it is above or at least on the top of 

the monitored area. The angular orientation of a camera is then given by two angles: 𝛼 is the pan 

angle, that is the rotation angle of the camera along the 𝑍 axis, and 𝛽 is the tilt angle, that is the 

rotation angle along the 𝑌 axis (see Figure 2). Values of 𝛼 and 𝛽 are discretized with the help of a 

user-defined integer 𝐴, which fixes the step size to the value 𝜋/𝐴. It means that 𝛼 can take 𝑁𝛼=2A 

different values that range in [0,2𝜋[. Regarding 𝛽, one can see that values in ]𝜋, 2𝜋[ are not needed, 

since each camera is placed above the points to be covered, and thus, it has to be oriented 

downward. Moreover, since 𝛼 ranges in [0,2𝜋[, any camera location with pan angle 𝛼 and tilt angle 

𝛽 = 𝑘
𝜋

𝐴
 such that 𝛽 <

𝜋

2
, will be identical to the camera location with same coordinates and pan 
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angle 𝛼’ = 𝛼 + 𝜋 and tilt angle 𝛽′ = 𝜋 − 𝑘
𝜋

𝐴
. It means that 𝛽 can be limited to 𝑁𝛽=⌊𝐴 2⁄ ⌋ + 1 

different values that range in [0, ⌊𝐴 2⁄ ⌋ ×
𝜋

𝐴
]. 

 

Figure 1: Example of a camera 𝐶 with horizontal field of view 𝐻𝑓𝑜𝑣, and whose pyramid of vision has 

height 𝐷𝑚𝑎𝑥. 

 

 

Figure 2: Example of camera location with coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐), pan angle 𝛼, and tilt angle 𝛽. 

Given that the objective is to find as few cameras as possible that can completely cover the space to 

be monitored, it follows that this camera placement problem can be formulated as a unicost set 

covering problem (USCP) in a straightforward manner. Actually, the points of the monitored area can 

be labelled with integers, representing the set of elements to be covered. Each camera location can 

then be modelled as a set of integers, corresponding to the labels of the points it covers. Now, given 

the set 𝐸 of elements (i.e. points) and a collection 𝑆 of sets (i.e. camera locations), solving the 

optimal camera placement problem comes down to find the minimum subset of 𝑆 that covers 𝐸. 

Once the problem is stated as a USCP, the following decision variables can be defined: 

 ∀𝑐𝜖𝑆, 𝑥𝑐 = {
1   if camera location 𝑐 is used,
0   otherwise.                                

 (3) 

𝐷𝑚𝑎𝑥 

𝐻𝑓𝑜𝑣 

𝐶 

𝑂 𝑥 

𝑦 

𝑧 

𝛼 
𝛽 

𝑥𝑐 

𝑦𝑐  

𝑧𝑐  

𝑋𝑚𝑎𝑥 

𝑍𝑚𝑎𝑥 

𝑌𝑚𝑎𝑥 
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Then, the corresponding binary integer linear programming model can be written as follows: 

 𝑀𝑖𝑛 ∑ 𝑥𝑐𝑐𝜖𝑆  (4) 

subject to  

 ∀𝑝𝜖𝐸, ∑ 𝑥𝑐𝑐𝜖𝑆:𝑝𝜖𝑐 ≥ 1 (5) 

 ∀𝑐𝜖𝑆, 𝑥𝑐𝜖{0,1}. (6) 

The objective function (see Equation 4) minimizes the total number of used cameras. The set of 

constraints (see Equation 5) indicates that each point of 𝐸 has to be covered by at least one camera 

location of 𝑆: it ensures the full coverage of the monitored area. Equation 6 gives the set of binary 

constraints needed for the decision variables (see Equation 3). 

2.2 Problem instances 
In this study, the efficiency of the proposed methods is investigated by using several problem 

instances inspired by real-world settings (see Table 1). In these instances, the size of the monitored 

area  goes from 5×5×2 meters to 70×70×2 meters. The areas are discretized with a step size of 0.5 

meter. Cameras have a resolution of 1920×1080 pixels with a horizontal field of view of 65 degrees, 

and are supposed to be fixed to the ceiling at a standard height of 2.5 meters (𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 = 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚). The 

pan and tilt angles are discretized with a step size of  
𝜋

4
. 

Table 1: List of instances. 

Instance 𝑋𝑚𝑎𝑥 𝑌𝑚𝑎𝑥 𝑍𝑚𝑎𝑥 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚 𝑈 𝑂𝑝𝑁𝑒𝑒𝑑 𝐻𝑟𝑒𝑠 𝑉𝑟𝑒𝑠 𝐻𝑓𝑜𝑣 𝐴 

1 5 5 2 2.5 2.5 0.5 100 1920 1080 65 4 

2 10 10 2 2.5 2.5 0.5 100 1920 1080 65 4 

3 15 15 2 2.5 2.5 0.5 100 1920 1080 65 4 

4 20 20 2 2.5 2.5 0.5 100 1920 1080 65 4 

5 25 25 2 2.5 2.5 0.5 100 1920 1080 65 4 

6 30 30 2 2.5 2.5 0.5 100 1920 1080 65 4 

7 40 40 2 2.5 2.5 0.5 100 1920 1080 65 4 

8 50 50 2 2.5 2.5 0.5 100 1920 1080 65 4 

9 5 5 2 2.5 2.5 0.5 500 1920 1080 65 4 

10 10 10 2 2.5 2.5 0.5 500 1920 1080 65 4 

11 15 15 2 2.5 2.5 0.5 500 1920 1080 65 4 

12 20 20 2 2.5 2.5 0.5 500 1920 1080 65 4 

13 25 25 2 2.5 2.5 0.5 500 1920 1080 65 4 

14 30 30 2 2.5 2.5 0.5 500 1920 1080 65 4 

15 40 40 2 2.5 2.5 0.5 500 1920 1080 65 4 

16 50 50 2 2.5 2.5 0.5 500 1920 1080 65 4 

17 60 60 2 2.5 2.5 0.5 500 1920 1080 65 4 

18 70 70 2 2.5 2.5 0.5 500 1920 1080 65 4 

 

There are two main classes of instances (1 to 8, and 9 to 18) that differ in the operational need: 100 

or 500 pixels per meter. The aim is to provide adequate resolutions for face recognition, human 

detection and gait recognition applications, as discussed below.  
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Regarding automatic face recognition, current commonly-used methods, such as principal 

component analysis (PCA), linear discriminant analysis (LDA) and local binary pattern (LBP), can reach 

high success rates (from 70% to 100%) with face image resolution of at least 64×64 pixels (Huang and 

Wang, 2008; Marciniak et al., 2015; Mahmood et al., 2016). In addition to that, according to recent 

anthropometric studies (Zhuang et al., 2010;  Gordon et al., 2014), the average face width of human 

people is about 14 centimeters, and the average head height is about 23.5 centimeters. Now, when 

considering an operational need of 500 pixels per meter, any face covered by a camera will have a 

resolution of at least 70×118 pixels, which meets the above-mentioned face recognition 

requirements. It also satisfies the requirements from the European norm “EN 50132-7: CCTV and 

alarm systems” (Marciniak et al., 2015), where a resolution of at least 330 pixels per meter is 

recommended for precise identification.  

For automatic human detection, it has been shown that a high success rate (higher than 70%) can be 

achieved with a resolution between 20 and 60 pixels per meter (Miyazaki et al., 2015). In the field of 

gait recognition, a recent study shows that current methods perform very well (success rate higher 

than 90%) with a resolution of at most 140 pixels per meter (Liang et al., 2016). However, another 

work points out that good results can also be achieved with lower resolution between 10 and 80 

pixels per meter (Zhang et al., 2010). In this paper, a resolution of 100 pixels per meter is considered 

as the requirement for automatic human detection or gait recognition applications. 

It is also worth noting that the selected operational needs are consistent with the requirements 

suggested by network video companies (Axis, 2017). 

2.3 Data pre-processing 
In order to solve the problem instances given in Section 2.2, they have to be processed in order to 

become standard USCP instances as defined in Section 2.1. Two types of pre-processing are 

implemented. The first one consists in computing the coverage of each possible camera location. The 

second one aims at reducing the problem by removing useless camera locations. 

For any instance whose characteristics are given in Table 1, the set of points and the set of possible 

camera locations can be created. Then, for each camera location and for each point, it has to be 

decided whether this point is visible or not from this camera location: the resulting sets of covered 

points correspond to the input sets needed for the USCP. The visibility test is performed in the 

following way (Zhang et al., 2013): new coordinates of the tested point are computed in a coordinate 

system centered on the camera, i.e. the origin is the camera position, the pyramid height from the 

base to the apex is included in the 𝑋 axis, and the length of the rectangular base is parallel to the 𝑌 

axis (see Figure 3). 

So, the original coordinates 𝑃 = [𝑥, 𝑦, 𝑧] are transformed into the new ones 𝑃′ = [𝑥′, 𝑦′, 𝑧′] with the 

help of homogeneous coordinate transformations by using the following equation: 

 𝑃′ = 𝑃𝑇𝑅𝑍𝑅𝑌 (7) 

Where 𝑇 = [

1 0 0 0
0 1 0 0
0 0 1 0

−𝑥𝑐 −𝑦𝑐 −𝑧𝑐 1

], 𝑅𝑍 = [

cos 𝛼 − sin 𝛼 0 0
sin 𝛼 cos 𝛼 0 0

0 0 1 0
0 0 0 1

], 𝑅𝑌 = [

cos 𝛽 0 sin 𝛽 0
0 1 0 0

− sin 𝛽 0 cos 𝛽 0
0 0 0 1

] 

are respectively: a translation such that [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐] are the camera coordinates in the monitored 
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area, a rotation about the 𝑍 axis by angle 𝛼, and a rotation about the 𝑌 axis by angle 𝛽. Once 𝑃’ is 

computed, the tested point lies inside the pyramid of vision if the following conditions are met: 

 0 ≤ 𝑥′ ≤ 𝐷𝑚𝑎𝑥 (8) 

 |𝑦′| ≤
1

2
×

𝐻𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
×

𝑥′

𝐷𝑚𝑎𝑥
 (9) 

 |𝑧′| ≤
1

2
×

𝑉𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
×

𝑥′

𝐷𝑚𝑎𝑥
 (10) 

 

Figure 3: Coordinate system centered on the camera. 

It is worth noting that these geometric computations are costly when increasing the size of the 

instance: for example, 1 756 920 visibility tests are needed for instance 1 (605 points and 2 904 

camera locations), and 1 661 500 920 visibility tests are needed for instance 6 (18 605 points and 

89 304 camera locations). This remark is even more important if 𝐴 is increased to get better angles, if 

𝑈 is increased to get a better coverage, or if the cameras are allowed to be placed at different 

heights (i.e. 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 ≠ 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚). However, since the visibility tests are independent, this first type of pre-

processing can benefit from the SIMD architecture of GPU devices in order to accelerate the 

geometric computations. Indeed, compared to the sequential C/C++ implementation on a Intel Core 

processor i5-3330 CPU (3.00GHz) with 4 GB of RAM, up to a 15 times speedup can be observed by 

using a simple CUDA C implementation on a NVIDIA GeForce GTX680. A better acceleration can 

certainly be achieved with a more clever and fine-tuned GPU implementation and with a more 

powerful GPU device. 

The second type of pre-processing consists in reducing the resulting USCP instance, mainly by 

decreasing the number of possible camera locations. At first, the camera locations that can not cover 

any point in the monitored area are removed. Then, so called dominated camera locations are 

removed: a camera location 𝑐 is said to be dominated by another camera location 𝑑 if 𝑑 covers at 

least the same points as 𝑐. 

These two types of pre-processing allow to provide reduced USCP instances related to the original 

optimal camera placement problems given in Table 1. Generally, the USCP input data are presented 

as a zero-one matrix, where the rows are the elements, and the columns are the sets: a one in row 𝑖 

and column 𝑗 means that the 𝑖-th element is covered by the 𝑗-th set. According to this remark, the 

characteristics of the resulting USCP instances are presented in Table 2: instance number, number of 

rows (i.e. elements to be covered, or points to be monitored), number of columns (i.e. sets of the 

𝑂 𝑥 

𝑦 

𝑧 
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USCP, or available camera locations) in the reduced instance and in the original instance in brackets, 

percentage of ones and maximum number of ones per row in the corresponding sparse matrix. The 

corresponding input data files are available on line for download[1]. 

Table 2: Characteristics of the reduced USCP instances. 

Instance 
Rows 

(i.e. elements, or points) 
Columns  

(i.e. sets, or camera locations) 
Density of 
ones (%) 

Maximum number 
of ones per row 

1  605  1 292  (2 904) 12.9  292 

2  2 205  908  (10 584) 13.7  628 

3  4 805  924  (23 064) 38.8  684 

4  8 405  4 572  (40 344) 24.9  2 144 

5  13 005  9 852  (62 424) 17.0  3 484 

6  18 605  16 732  (89 304) 12.3  4 568 

7  32 805  35 291 (157 464) 7.2  4 656 

8  51 005  60 251  (244 824) 4.8  4 656 

9  605  1 672  (2 904) 6.8  212 

10  2 205  7 352  (10 584) 2.0  216 

11  4 805  17 032  (23 064) 0.9  216 

12  8 405  30 712  (40 344) 0.5  216 

13  13 005  48 392  (62 424) 0.4  216 

14  18 605  70 072  (89 304) 0.2  216 

15  32 805  125 431  (157 464) 1.4e-3  216 

16  51 005  193 791  (244 824) 9.1e-4  216 

17  73 205  284 151   (351 384) 6.3e-4  216 

18  99 405  387 511  (477 144) 4.7e-4  216 

 

3 Optimization methods 

3.1 State-of-the-art algorithms 
This section presents the three state-of-the art algorithms selected for solving the optimal camera 

placement problem defined in Section 2. These algorithms will also be used in the next sections in 

order to design new hybrid algorithms and to see to what extent these hybridizations can help to 

improve the solution found so far. 

The first algorithm is IBM ILOG CPLEX optimizer (IBM, 2017a), which is commonly used for solving 

large integer programming problems, including the USCP. As noticed in the literature (Yelbay et al., 

2015; Demirović et al., 2016), general purpose optimizers can solve quite easily weighted instances of 

the set covering problem, but USCP instances are much harder to solve. In this paper, it is interesting 

to investigate where is the limit of CPLEX for the practical application of USCP in the context of 

camera placement, and to compare it with some state-of-the-art and also some new approximation 

algorithms. 

The second algorithm is a greedy one that uses a very intuitive idea to solve the USCP: starting from 

an empty solution, iteratively add in the solution the set that maximizes the number of new covered 

elements, i.e. elements covered by this set that were not covered so far (Johnson, 1974). Table 3 

shows how this idea is adapted to the context of optimal camera placement. With an adequate 

implementation (i.e. with  𝑂(𝑛 log 𝑛) complexity), such a greedy algorithm can quickly provide a 
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feasible solution. But, it has been proven that the size of a solution given by this algorithm is at most 

𝐻𝑑  times the size of an optimal solution (Johnson, 1974; Chvatal, 1979), where 𝐻𝑖 = ∑
1

𝑗
𝑖
𝑗=1   is the 

𝑖-th harmonic number and 𝑑 is the size of the largest set 𝑐𝑜𝑣(𝑐), ∀𝑐 ∈ 𝐶 , knowing that 𝐶 is the set of 

possible camera locations. In this paper, the greedy algorithm is used as a benchmark when CPLEX 

fails solving the instances defined in Section 2.2. 

Table 3: Greedy algorithm for the optimal camera placement problem formulated as a USCP. 

 Input : The set 𝐶 of possible camera locations. 
The set 𝑃 of points to be covered. 
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}. 

 Output : A set 𝑆 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆 . 
1 𝑆 = ∅ 
2 While ⋃ 𝑐𝑜𝑣(𝑐) ≠ 𝑃𝑐∈𝑆  do 
3  𝑆 = 𝑆 ∪ {𝑏}, where 𝑏 ∈ 𝐶\𝑆 such that |𝑐𝑜𝑣(𝑏)| is maximized 
4  ∀𝑐 ∈ 𝐶\𝑆, 𝑐𝑜𝑣(𝑐) = 𝑐𝑜𝑣(𝑐)\𝑐𝑜𝑣(𝑏) 
5 End while 

 

The third algorithm is a row weighting local search (RWLS) algorithm (Gao et al., 2015). The main 

feature of RWLS is its row weighting scheme that helps to identify hard-to-cover rows and to 

prioritize the columns to be selected in the candidate solution. Each row starts with a weight of 1. 

Then, after each iteration of the local search procedure, the weights of the uncovered rows are 

increased by 1. Since the local search first removes sets to get a partial solution and, then, add a new 

set to try to get a full coverage, the set of uncovered rows is changing at each iteration. Thus, with 

time, the rows that are harder to cover will get larger weights, given that they will be more often 

uncovered. These weights are used to define a score for each column as follows. On the one hand, 

when a column is not in the candidate solution, its score is set to the sum of the weights of all 

uncovered rows it can cover. Thus, the more a column can cover uncovered rows, especially hard-to-

cover uncovered rows (i.e. with larger weights), the more this column has a higher score, and the 

more it is likely this column will be selected to be added in the candidate solution. On the other 

hand, when a column is part of the candidate solution, its score is set to the negation of the sum of 

the weights of rows which are only covered by this column in the candidate solution. Thus, the more 

a column of the candidate solution is the only one that covers some rows, especially hard-to-cover 

rows (i.e. with larger weights), the more this column has a lower score, and the less it is likely this 

column will be removed from the candidate solution. The outline of RWLS is given in Table 4. 

This row weighting scheme together with two tabu strategies and a timestamp method allow RWLS 

to be very efficient (Gao et al., 2015). Actually, to the best of our knowledge, RWLS is the heuristic 

algorithm that leads to the best results when solving a large number of instances from the OR-Library 

(Beasley, 1990) and Steiner triple systems (Fulkerson et al., 1974). In the case of optimal camera 

placement, RWLS is used as an other (and more interesting) benchmark in order to highlight the 

benefits or the loss of the methods proposed in Sections 3.2 and 3.3. 

3.2 Set-based DE approach 
This section presents a set-based DE approach that was designed to solve general combinatorial 

optimization problems (Maravilha et al., 2013). In their work, a solution is formulated as a subset 
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(instead of a permutation) of combinatorial elements: for instance, a solution of the travelling 

salesman problem (TSP) is a subset of all possible edges between cities, instead of a permutation of 

all cities to be visited. In the case of the optimal camera placement problem, a solution is a subset of 

all the possible camera locations. 

Table 4: Outline of RWLS for the optimal camera placement problem. 

 Input: The set 𝐶 of possible camera locations. 
The set 𝑃 of points to be covered. 
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}. 

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
. 

1 Greedily compute an initial solution 𝑆 
2 Initialize point weights and camera location scores according to 𝑆 
3 While the stopping condition is not met do 
4 While ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆  do 
5 Update 𝑆𝑏𝑒𝑠𝑡 with 𝑆 if |𝑆| < |𝑆𝑏𝑒𝑠𝑡| 
6 Remove from 𝑆 the camera location with the highest score 
7 End while 
8 Remove from 𝑆 the camera location with the highest score 
9 Randomly select an uncovered point 𝑝 

10 Add in 𝑆 the camera location with the highest score and that covers 𝑝 
11 Update point weights and camera location scores 
12 End while 

 

According to this representation of the solution, DE/rand/1 mutation scheme is modified by using 

operations on sets in the following way, for each individual 𝑖 in the current population 𝑃𝑜𝑝: 

 𝑀𝑢𝑡𝑖 = 𝑆𝑜𝑙𝑟𝑎𝑛𝑑 ∪ 𝐹 ∙ (𝑃𝑜𝑝𝑟1
⊕ 𝑃𝑜𝑝𝑟2

) (11) 

Where 𝑆𝑜𝑙𝑟𝑎𝑛𝑑 is a randomly generated feasible solution, 𝑃𝑜𝑝𝑟1
≠ 𝑃𝑜𝑝𝑟2

≠ 𝑃𝑜𝑝𝑖 are individuals 

randomly chosen in the current population, and ⊕ is the XOR operator on sets. The arithmetic 

operations of the original DE/rand/1 mutation operator (see Equation 1) are replaced by union and 

XOR operations: given that the individuals are sets, these operations can be applied in a 

straightforward manner. Regarding the scaling factor 𝐹, the authors suggest to use one of the 

strategies defined in the literature (Prado et al., 2010) in order to control the size of the resulting set 

𝑀𝑢𝑡𝑖. Actually, in this paper, neither of those strategies is preferred since 𝐹 is set to 1 for the 

experimental study (see Table 9), which means that no elements are removed from the sets. 

Then, the crossover operator generates a trial solution by selecting only elements that are present in 

𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖. In other words, creating a good trial solution comes down to solve a subproblem of the 

original one. Since this subproblem is much smaller, the authors suggest to solve it with exact 

algorithms.  

It is proposed here to hybridize this set-based DE approach with the three state-of-the-art algorithms 

given in Section 3.1, in order to solve the optimal camera placement problems defined in Section 2. 

Table 5 gives the outline of the set-based DE approach (DEset, for short) in this context. 
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3.3 Similarity-based DE approach 
In the original DE/rand/1 mutation scheme (see Equation 1), the equation is applied for each variable 

𝑗 of each individual 𝑖. It makes sense when solving continuous optimization problems, where each 

decision variable represents one characteristic of the problem. However, in the case of the optimal 

camera placement problem, a solution is a set of unordered camera locations: it is the same solution 

whatever the permutation of its camera locations. Moreover, solutions in the population can have 

different sizes, i.e. two solutions can have different numbers of camera locations. Thus, it has no real 

sense to directly apply such a mutation equation in this context. 

Table 5: Outline of DEset for the optimal camera placement problem. 

 Input: The set 𝐶 of possible camera locations. 
The set 𝑃 of points to be covered. 
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}. 

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
. 

1 Generate a population 𝑃𝑜𝑝 of random feasible solutions 
2 Initialize 𝑆𝑏𝑒𝑠𝑡 with the best solution of 𝑃𝑜𝑝 
3 While the stopping condition is not met do 
4 For each individual  𝑃𝑜𝑝𝑖  do 
5  Randomly select  𝑃𝑜𝑝𝑟1

 and  𝑃𝑜𝑝𝑟2
 such that 𝑟1 ≠ 𝑟2 ≠ 𝑖 

6 Generate 𝑀𝑢𝑡𝑖 by following Equation 11 
7 Generate a trial solution 𝑇𝑖 by solving the optimal camera placement 

 subproblem where 𝐶 = 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖 
8  Update  𝑃𝑜𝑝𝑖  and eventually 𝑆𝑏𝑒𝑠𝑡 if 𝑇𝑖 is better 
9 End for 

10 End while 

 

The main feature of the similarity-based DE approach aims at overcoming this drawback by 

improving the DE mutation operator. Here, it generates a mutant individual 𝑀𝑢𝑡𝑖 for each individual 

𝑖 of 𝑃𝑜𝑝, by using the following DE/rand/1-like mutation equation: 

 𝑀𝑢𝑡𝑖,𝑗 = 𝑃𝑜𝑝𝑟1,𝑗 + 𝐹 × (𝑃𝑜𝑝𝑟2,𝑢𝑗
− 𝑃𝑜𝑝𝑟3,𝑣𝑗

), (12) 

Where 𝑃𝑜𝑝𝑟1
≠ 𝑃𝑜𝑝𝑟2

≠ 𝑃𝑜𝑝𝑟3
≠ 𝑃𝑜𝑝𝑖  are individuals randomly chosen in the current population, 

and 𝑢𝑗 and 𝑣𝑗 are camera locations of 𝑃𝑜𝑝𝑟2
 and 𝑃𝑜𝑝𝑟3

 selected according to the similarity rule 

explained hereafter. The key point is that the camera locations coming from 𝑃𝑜𝑝𝑟2
 and 𝑃𝑜𝑝𝑟3

 are 

selected depending on their similarity with the camera location coming from 𝑃𝑜𝑝𝑟1
. Actually, for 

each camera location 𝑗 of 𝑃𝑜𝑝𝑟1
, the camera location 𝑢𝑗 of 𝑃𝑜𝑝𝑟2

 that is the most similar to 𝑃𝑜𝑝𝑟1,𝑗  is 

selected. In the same way, the camera location 𝑣𝑗 of 𝑃𝑜𝑝𝑟3
 that is the most similar to 𝑃𝑜𝑝𝑟1,𝑗 is 

selected. This strategy is inspired by the similar-metavariable recombination for genetic algorithms, 

in order to solve variable-length optimization problems (Ryerkerk et al., 2017). But, it is applied here 

in the mutation operator and with a different similarity definition. Actually, the similarity is defined 

as the Euclidean distance as follows: 

 𝑑𝑐1,𝑐2
= √(𝑥𝑐2

− 𝑥𝑐1
)

2
+ (𝑦𝑐2

− 𝑦𝑐1
)

2
+ (𝑧𝑐2

− 𝑧𝑐1
)

2
+ (𝛼𝑐2

− 𝛼𝑐1
)

2
+ (𝛽𝑐2

− 𝛽𝑐1
)

2
 (13) 
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Where 𝑐1 and 𝑐2 are two camera locations whose coordinates are (𝑥𝑐1
, 𝑦𝑐1

, 𝑧𝑐1
) and (𝑥𝑐2

, 𝑦𝑐2
, 𝑧𝑐2

) 

respectively, and whose orientation angles are (𝛼𝑐1
, 𝛽𝑐1

) and (𝛼𝑐2
, 𝛽𝑐2

) respectively. 

A first remark is that the size of 𝑀𝑢𝑡𝑖 is the same as 𝑃𝑜𝑝𝑟1
, i.e. 𝑀𝑢𝑡𝑖 contains exactly as many camera 

locations as 𝑃𝑜𝑝𝑟1
. It is also worth noting that a camera location 𝑐 can be defined as a metavariable 

which is composed of five design variables (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , 𝛼𝑐 , 𝛽𝑐). Thus, Equation 12 is actually applied on 

each of these design variables, and the resulting real values are rounded down in order to generate a 

camera location that exists in the discrete search space. Due to the arithmetic computations in 

Equation 12, the design variables of 𝑀𝑢𝑡𝑖 can take values that are out of the search space. In case of 

a coordinate, it is randomly regenerated inside the search space. In case of an angle, possible values 

are considered as a cycle from which a new feasible value is deduced. Then, it remains to check 

whether the camera locations of 𝑀𝑢𝑡𝑖 are desirable camera locations or not. Firstly, each dominated 

camera location is replaced with the one which dominates it. Secondly, redundant or blind camera 

locations are removed. 

The second main feature of the approach proposed here is a diversification strategy that helps the 

algorithm to escape from local optima. Stagnation is detected by using a user-defined integer 𝑔 that 

defines how many generations are allowed without improving the best solution found so far. In case 

of stagnation, each individual of the current population is replaced by a randomly generated feasible 

solution with a user-defined probability 𝜌. 

The crossover operator used here in the DE framework is the same as the one defined in Section 3.2: 

it has to solve the optimal camera placement subproblem with camera locations in 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖. 

Given that 𝑀𝑢𝑡𝑖 has the same size as 𝑃𝑜𝑝𝑟1
, it follows that these subproblems are smaller than those 

of DEset. In the same way as DEset, this similarity-based DE approach (DEsim, for short) is hybridized 

with the algorithms given in Section 3.1. Table 6 gives the outline of the DEsim approach in the 

context of optimal camera placement. 

3.4 Experimentations 
In this section, two experimentations are presented. The first one aims at comparing the three state-

of-the art algorithms from Section 3.1 and their hybridization with the set-based DE and the 

similarity-based DE approaches proposed in Section 3.2 and Section 3.3, respectively. This study 

focuses on the smallest problem instances (in term of volume to monitor, i.e. in term of points to 

cover) in order to investigate which hybridization is the most appropriate to solve the optimal 

camera placement problem defined in this paper. The second one compares more specifically the 

best proposed hybridization with the best state-of-the art algorithm on a larger set of instances in 

order to analyze the type of situations where it can get better results. 

3.4.1 Comparison of the proposed algorithms 

A first experimental study has been performed, where the above-mentioned algorithms were used to 

solve the 12 smallest problem instances (1 to 6, and 9 to 14) defined in Tables 1 and 2. For these 

experimentations, all the corresponding programs are written in C/C++ and executed with a time 

limit of 1 000 seconds, on a computer with an Intel Core i5-3330 processor (3.00GHz) and 4 GB of 

RAM. 
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Regarding the algorithms of Section 3.1, the first one is implemented by calling CPLEX 12.7.0 with the 

help of ILOG Concert Technology. Here, CPLEX optimizer is set up in order to use only one single 

thread: it implies that the algorithm is deterministic and runs sequentially (IBM, 2017b). This setting 

allows a fair comparison with the other tested algorithms, and only one run per instance is needed 

for comparison. The greedy algorithm is also deterministic and thus only one run per instance has 

been performed. The third algorithm is RWLS: since it uses random numbers (as depicted in Table 4), 

30 runs per instance have been performed in order to see its average behavior. Results of these 

three algorithms (CPLEX, Greedy, RWLS) are reported in Table 7. 

Table 6: Outline of DEsim for the optimal camera placement problem. 

 Input: The set 𝐶 of possible camera locations. 
The set 𝑃 of points to be covered. 
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}. 

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
. 

1 Generate a population 𝑃𝑜𝑝 of random feasible solutions 
2 Initialize 𝑆𝑏𝑒𝑠𝑡 with the best solution of 𝑃𝑜𝑝 
3 Set to 0 the counter 𝑐𝑛𝑡 of generations without improvement 
4 While the stopping condition is not met do 
5  If 𝑐𝑛𝑡 = 𝑔 then 
6  For each individual  𝑃𝑜𝑝𝑖  do 
7  Replace  𝑃𝑜𝑝𝑖  by a new random feasible solution with probability 𝜌 
8  End for 
9  End if 

10 For each individual  𝑃𝑜𝑝𝑖  do 
11  Randomly select  𝑃𝑜𝑝𝑟1

,  𝑃𝑜𝑝𝑟2
 and  𝑃𝑜𝑝𝑟3

 such that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 

12  For each camera location 𝑗 in 𝑃𝑜𝑝𝑟1
 do 

13   Select  𝑃𝑜𝑝𝑟2,𝑢𝑗
 and  𝑃𝑜𝑝𝑟3,𝑣𝑗

 according to similarity-based approach 

14  Generate 𝑀𝑢𝑡𝑖,𝑗 by following Equation 12 

15 End for 
16 Generate a trial solution 𝑇𝑖 by solving the optimal camera placement 

 subproblem where 𝐶 = 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖 
17  Update  𝑃𝑜𝑝𝑖  and eventually 𝑆𝑏𝑒𝑠𝑡 if 𝑇𝑖 is better 
18  Update 𝑐𝑛𝑡 
19 End for 
20 End while 

 

For this experimental study, the three previous algorithms (CPLEX, Greedy, RWLS) have also been 

used as crossover operators of the DE algorithms presented in Sections 3.2 and 3.3 (DEset and DEsim, 

respectively). 

CPLEX and RWLS algorithms are set up with a 10 seconds time limit. It means that either CPLEX can 

solve the sub-problem within 10 seconds and returns the corresponding optimal solution, or CPLEX 

returns a feasible solution that is not optimal. Regarding RWLS, it means that the algorithm always 

runs 10 seconds and it returns the best solution found so far. On the contrary, no time limit is given 

for the greedy algorithm, since it can not provide a feasible solution before it ends. Anyway, it never 

needs more than 10 seconds to solve the full problem, even the largest instance (see Table 7). Thus 
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the greedy algorithm should not take longer than 10 seconds to solve the sub-problem when used as 

a crossover operator. 

Table 7: Results and statistics for CPLEX, Greedy and RWLS (best results are depicted in bold font). 

 
CPLEX Greedy RWLS 

Instance Solution Lower bound Gap Time Solution Time Mean Best STD 

1 7 7.00 0.00% 1.11 9 0.01 7.00 7 0.00 

2 4 4.00 0.00% 0.33 4 0.02 4.00 4 0.00 

3 3 3.00 0.00% 5.30 4 0.13 3.00 3 0.00 

4 5 5.00 0.00% 10.58 7 1.06 5.00 5 0.00 

5 7 7.00 0.00% 330.94 11 2.74 7.03 7 0.18 

6 16 732 0.00 100.00% - 15 6.22 10.53 10 0.51 

9 21 17.02 18.97% 1 000.00 24 0.01 20.00 20 0.00 

10 71 52.21 26.47% 1 000.09 83 0.11 67.77 67 0.63 

11 17 032 0.00 100.00% 1 000.59 173 0.53 151.67 150 0.99 

12 30 712 0.00 100.00% 1 000.15 299 1.75 270.63 267 1.69 

13 48 392 0.00 100.00% 1 000.63 441 4.32 428.33 422 3.12 

14 70 072 0.00 100.00% 1 001.14 641 9.16 626.80 619 3.91 

 

From Table 5 and Table 6, DEset and DEsim need a random feasible solution generator: Table 8 

shows the method used in this experimentation. In addition to that, the parameter settings of DEset 

and DEsim are given in Table 9. 

Table 8: Random feasible solution generation. 

 Input : The set 𝐶 of possible camera locations. 
The set 𝑃 of points to be covered. 
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}. 

 Output : A set 𝑆 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆 . 
1 𝑆 = ∅ 
2 While ⋃ 𝑐𝑜𝑣(𝑐) ≠ 𝑃𝑐∈𝑆  do 
3  Randomly select an uncovered point 𝑝 
4  Randomly select an unused camera location 𝑐 that covers 𝑝 
5  𝑆 = 𝑆 ∪ {𝑐} 
6 End while 

 

Table 9: Parameter settings for DEset and DEsim. 

Parameter DEset DEsim 

Population size 20 20 
Scaling factor 𝐹 1 0.6 

Number 𝑔 of allowed 
generations without 

improvement 

- 50 

Probability 𝜌 for an individual to 
be randomly regenerated 

- 1

3
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The results of the 6 proposed hybridizations are given in Table 10 and Table 11 (based on 30 runs per 

instance for each algorithm). 

Table 10: Results and statistics for DEset-CPLEX, DEset-Greedy and DEset-RWLS (best results are 

depicted in bold font). 

 
Deset-CPLEX DEset-Greedy DEset-RWLS 

Instance Mean Best STD Mean Best STD Mean Best STD 

1 7.00 7 0.00 7.00 7 0.00 7.00 7 0.00 

2 4.00 4 0.00 4.00 4 0.00 4.00 4 0.00 

3 3.00 3 0.00 3.00 3 0.00 3.00 3 0.00 

4 5.00 5 0.00 5.27 5 0.45 5.03 5 0.18 

5 7.93 7 0.25 8.53 8 0.51 8.00 8 0.00 

6 11.03 11 0.18 13.17 12 0.46 11.70 11 0.47 

9 20.47 20 0.51 23.70 22 0.70 21.33 21 0.48 

10 76.50 74 1.22 97.93 93 1.68 75.53 74 0.68 

11 183.63 179 3.08 212.73 208 2.16 172.40 170 1.48 

12 566.80 558 5.24 371.77 365 2.81 326.53 317 2.66 

13 876.00 864 6.18 571.60 564 3.66 518.07 510 2.74 

14 1 247.33 1 226 8.35 818.83 812 3.59 748.30 737 3.46 

 

Table 11: Results and statistics for DEsim-CPLEX, DEsim-Greedy and DEsim-RWLS (best results are 

depicted in bold font). 

 
DEsim-CPLEX DEsim-Greedy DEsim-RWLS 

Instance Mean Best STD Mean Best STD Mean Best STD 

1 7.00 7 0.00 7.10 7 0.31 7.00 7 0.00 

2 4.00 4 0.00 4.00 4 0.00 4.00 4 0.00 

3 3.00 3 0.00 3.00 3 0.00 3.00 3 0.00 

4 5.00 5 0.00 5.27 5 0.45 5.00 5 0.00 

5 7.53 7 0.51 7.83 7 0.46 8.00 8 0.00 

6 10.97 10 0.18 11.77 11 0.43 11.93 11 0.25 

9 21.07 21 0.25 24.30 23 0.88 21.27 21 0.45 

10 70.97 70 0.67 99.43 97 1.91 73.60 72 0.97 

11 152.13 149 1.41 230.07 217 6.78 163.87 159 2.43 

12 268.27 262 4.47 413.00 408 2.24 318.23 293 10.98 

13 424.47 414 5.36 638.70 629 5.10 532.80 520 5.48 

14 612.33 600 6.59 912.30 902 5.07 790.70 772 6.50 

 

From Table 7, one can see that CPLEX finds the optimal solution within the time limit for instances 1 

to 5. For instance 6, no runtime is reported: CPLEX stops because it needs more RAM than available 

on the computer. By default, the solution is thus set to the number of possible camera locations in 

the reduced instance (taken from Table 2). Regarding the second group of instances (9 to 14), CPLEX 
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gets decent solutions only for instances 9 and 10. For instances 11 to 14, CPLEX provides no better 

solution than the number of possible camera locations available in the reduced instance. These 

results clearly show that CPLEX can not be used to solve large instances within the given time limit. 

On the contrary, Greedy succeeds to find a solution for all instances. It is fast whatever the size of the 

instance, but it gives poor results in comparison with RWLS, which beats Greedy and CPLEX on 11 

instances. 

From Table 10, DEset-CPLEX is slightly better than DEset-RWLS when solving instances 1 to 6 and 

instance 9. However, when the size of the solutions increases (as in instances 10 to 14), DEset-RWLS 

outperforms DEset-CPLEX. The main reason is that the XOR operation in Equation 11 is not so helpful 

for the considered problem: the probability of having exactly the same camera location in 𝑃𝑜𝑝𝑟1
 and 

𝑃𝑜𝑝𝑟2
 is very low, thus the XOR operation removes only a few camera locations. As a consequence, it 

can not reduce the size of 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖, which means that the subproblem in the crossover is harder 

to solve within the given time limit: CPLEX do not have enough time to find interesting solutions. On 

the contrary, RWLS is faster and is able to reach better solutions for the subproblem, which leads to 

the final better results of DEset-RWLS. Not surprisingly, DEset-Greedy can not compete with DEset-

RWLS. However, as it is fast compared to CPLEX, it outperforms DEset-CPLEX as soon as the size of 

the solutions increases (instances 12 to 14). 

From Table 11, DEsim-CPLEX clearly outperforms the other hybridizations. Compared to DEsim-

RWLS, the gap grows up to about 22.5% for instance 14 (according to the reported mean values). The 

similarity-based approach allows to reduce the size of 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖, which makes the subproblem 

easier to solve for CPLEX. 

When comparing the results of Table 7 and Table 10, it can be observed that CPLEX clearly benefits 

from the hybridization with DEset: obviously, the subproblem in the crossover is much smaller than 

the full instance, and thus it is easier to solve. DEset-Greedy succeeds in improving the results of 

Greedy for instances 1 to 6 and for instance 9, but it fails for the largest instances (10 to 14). 

Regarding RWLS, no improvement is achieved by using DEset-RWLS. 

When focusing on Table 10 and Table 11, it turns out that the DEsim-CPLEX hybridization benefits 

most from the DEsim approach with more than 50% of improvement (with regard to DEset-CPLEX) on 

the largest instances (12 to 14), and it is equivalent to or better than DEset-CPLEX for all instances 

except instance 9. Moreover DEsim-CPLEX outperforms DEset-RWLS for all instances. In the 

meantime, DEsim-Greedy gets not convincing results: it improves the results of DEset-Greedy for 

instances 5 and 6, but it is worse regarding instances 1 and 9 to 14. It is the same for DEsim-RWLS, 

which improves the results of DEset-RWLS for 5 instances (4 and 9 to 12) and fails for 3 other 

instances (6, 13 and 14). 

Now, from Table 7 and Table 11, DEsim-Greedy provides equivalent or better results compared to 

Greedy for instances 1 to 6, but it is not successful for instances 9 to 14. Similar results are observed 

for DEsim-RWLS against RWLS: the latter wins for instances 5 and 6 and for instances 9 to 14 while 

the former is equivalent only for instances 1 to 4. However, DEsim-CPLEX is equivalent or competitive 

with regard to RWLS for instances 1 to 6, and 9 to 11. And it is worth noting that DEsim-CPLEX 

outperforms RWLS for the largest instances (12 to 14).  
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Finally, a global comparison between CPLEX, Greedy, RWLS, and their hybridizations with DEset and 

DEsim, is presented in Table 12. In this table, statistical significance is tested using the Kruskal-Wallis 

statistical test at 95% confidence level followed by Fisher's least significant difference post hoc test. 

The results that are significantly better than the ones of the other algorithms, according to this 

statistical test, are preceded with a star symbol. As one can see, RWLS obtains the best results for all 

the considered small instances. However, DEsim-CPLEX achieves a similar performance for instances 

1 to 4, instance 6, and instances 11 to 14, i.e. no significant difference is found between RWLS and 

DEsim-CPLEX for these instances. It is especially interesting to notice that these two algorithms are 

the only ones to obtain significantly better results than the others for instances 11 to 14, which are 

the largest among the considered ones. 

Table 12: Results for all tested algorithms (best results are depicted in bold font, and a star denotes 

the results that are significantly better than the others according to the Kruskal-Wallis statistical test 

at 95% confidence level followed by Fisher's least significant difference post hoc test). 

 CPLEX Greedy RWLS 
DEset-
CPLEX 

DEset-
Greedy 

DEset-
RWLS 

DEsim-
CPLEX 

DEsim-
Greedy 

DEsim-
RWLS 

Inst. Solution Solution Mean Mean Mean Mean Mean Mean Mean 

1 * 7  9 * 7.00 * 7.00 * 7.00 * 7.00 * 7.00 * 7.10 * 7.00 

2 * 4 * 4 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00 

3 * 3  4 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00 

4 * 5  7 * 5.00 * 5.00  5.27 * 5.03 * 5.00  5.27 * 5.00 

5 * 7  11 * 7.03  7.93  8.53  8.00  7.53  7.83  8.00 

6  16 732  15 * 10.53 * 11.03  13.17  11.70 * 10.97  11.77  11.93 

9  21  24 * 20.00 * 20.47  23.70  21.33  21.07  24.30  21.27 

10  71  83 * 67.77  76.50  97.93  75.53  70.97  99.43  73.60 

11  17 032  173 * 151.67  183.63  212.73  172.40 * 152.13  230.07  163.87 

12  30 712  299 * 270.63  566.80  371.77  326.53 * 268.27  413.00  318.23 

13  48 392  441 * 428.33  876.00  571.60  518.07 * 424.47  638.70  532.80 

14  70 072  641 * 626.80  1 247.33  818.83  748.30 * 612.33  912.30  790.70 

 

This first experimentation points out that RWLS is the best algorithm for solving the considered 

instances. Moreover, DEsim-CPLEX is the best proposed hybridization. It seems also competitive with 

RWLS when the size of the problem increases, and the next section is devoted to a more detailed 

comparison of these two algorithms. 

3.4.2 Comparison of RWLS and DEsim-CPLEX 

A second experimental study has been performed by solving the largest problem instances (7 to 8, 

and 15 to 18) with RWLS and DEsim-CPLEX. This setting allows to compare these algorithms on the 

whole set of problem instances defined in Tables 1 and 2. For these additional experimentations, the 

runtime limit depends on the size of the problem instance in the following way. The considered large 

instances have been solved first by using Greedy (results are reported in Table 13), then it is decided 

that 100 × ⌈𝑡𝑖⌉ seconds are allowed for each run, where 𝑡𝑖 refers to the runtime of Greedy when 

solving instance 𝑖. This setting is similar to the one observed for instance 14 in Section 3.4.1 (i.e. 9.16 

seconds for Greedy, and a time limit of 1 000 seconds). Regarding DEsim-CPLEX, the time limit for the 

crossover is set to ⌈𝑡𝑖⌉, which is also similar to the setting defined in Section 3.4.1 (where 10 seconds 
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are allowed for the crossover, i.e. 1% of the allowed total runtime). The results of RWLS and DEsim-

CPLEX are given in Table 13 (based on 30 runs per instance for each algorithm). In Table 13, results 

for instance 1 to 6 and 9 to 14 are taken from Table 7 and Table 11. 

Table 13: Results for Greedy, RWLS and DEsim-CPLEX (best results are depicted in bold font, and a 

star denotes which algorithm, between DEsim-CPLEX and RWLS, significantly outperforms the other 

according to the Wilcoxon-Mann-Whitney statistical test at 95% confidence level). 

 
Greedy RWLS DEsim-CPLEX  

Instance Solution Time Mean Best STD Mean Best STD Gap (%) 

1 9 0.01 * 7.00 7 0.00 * 7.00 7 0.00 0.00 

2 4 0.02 * 4.00 4 0.00 * 4.00 4 0.00 0.00 

3 4 0.13 * 3.00 3 0.00 * 3.00 3 0.00 0.00 

4 7 1.06 * 5.00 5 0.00 * 5.00 5 0.00 0.00 

5 11 2.74 * 7.03 7 0.18  7.53 7 0.51 7.11 

6 15 6.22 * 10.53 10 0.51  10.97 10 0.18 4.11 

7 25 18.40 * 18.07 17 0.45  19.50 19 0.51 7.93 

8 38 46.21 * 28.69 28 0.65  30.80 30 0.41 7.32 

9 24 0.01 * 20.00 20 0.00  21.07 21 0.25 5.33 

10 83 0.11 * 67.77 67 0.63  70.97 70 0.67 4.72 

11 173 0.53 * 151.67 150 0.99 * 152.13 149 1.41 0.31 

12 299 1.75  270.63 267 1.69 * 268.27 262 4.47 -0.87 

13 441 4.32  428.33 422 3.12 * 424.47 414 5.36 -0.90 

14 641 9.16  626.80 619 3.91 * 612.33 600 6.59 -2.31 
15 1 139 30.56  1 108.70 1 095 6.79 * 1 061.93 1 043 7.60 -4.22 
16 1 748 75.16  1 723.33 1 710 7.83 * 1 621.27 1 601 13.57 -5.92 
17 2 498 156.44  2 482.93 2 468 8.16 * 2 299.47 2 277 12.26 -7.39 
18 3 415 290.31  3 393.50 3 352 20.62 * 3 127.67 3 104 19.48 -7.83 

 

The mean values in Table 13 show that both algorithms are equivalent for the smallest instances of 

the first class (1 to 4). Moreover, RWLS performs better for the largest instances of the first class (5 

to 8) and for the smallest instances of the second class (9 to 11). However, DEsim-CPLEX wins for the 

7 largest instances of the second class (12 to 18) and the percentage gap increases with the size of 

the problem instance (see last column of Table 13, and Figure 4). 

In addition to that, the Wilcoxon-Mann-Whitney statistical test is used, at 95% confidence level, to 

determine which algorithm, between DEsim-CPLEX and RWLS, obtains significantly better results 

than the other. In Table 13, for each instance, the result obtained by the best performing algorithm is 

preceded with a star symbol. If the results of both algorithms are preceded with a star, then no 

significant difference is found for the corresponding instance. One can see that RWLS significantly 

outperforms DEsim-CPLEX for instances 5 to 10. However, for the largest instances 12 to 18, the 

opposite situation occurs, i.e. DEsim-CPLEX significantly outperforms RWLS, which confirms the 

above analysis of the reported mean values. 

From this second experimentation, it can be concluded that RWLS is best suited when an operational 

need of 100 pixels per meter is needed (instances 1 to 8), whereas DEsim-CPLEX is best suited for 
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large problems with an operational need of 500 pixels per meter (instances 9 to 18). In term of USCP, 

DEsim-CPLEX seems more appropriate when the zero-one input matrix (see Section 2.3 and Table 2) 

is sparser and when the number of ones per row is lower. But this observation can not extend to 

general USCP benchmark problems, since the DEsim approach uses a context-dependent information 

of the given sets (i.e. the similarity between the camera locations), which is not available in case of 

general USCP. 

 

Figure 4: Evolution of the gap percentage between DEsim-CPLEX and RWLS for instances 9 to18. 

4 Conclusion 
This paper deals with the optimal camera placement problem with the constraint that a full three-

dimensional coverage of the monitored area is needed.  

After explaining in detail the problem modelling, this optimization problem is stated as a unicost set 

covering problem (USCP). Then, 18 instances inspired by real-world applications are provided in 

order to investigate the efficiency of the proposed algorithms.  

The aim of this work is to estimate the benefit of the differential evolution (DE) paradigm in the 

context of this combinatorial optimization problem. A selection of 3 state-of-the-art algorithms 

(CPLEX, Greedy and RWLS) is presented, and 2 differential evolution approaches (DEset and DEsim) 

are proposed for the purpose of hybridization. The main contribution consists in the design of DEsim, 

which is a simple similarity-based approach that allows to make sense of the DE mutation scheme for 

the considered optimization problem.  

An experimental study has been performed in order to compare all these algorithms when solving 

the considered instances. The reported results show that RWLS and DEsim-CPLEX are the most 

interesting. Each of them can find better results on different class of problem instances, depending 

on the operational need and, thus also, on the nature of the input visibility matrix. 
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A first perspective is to achieve a comprehensive study of the influence of the algorithm parameters. 

For example, regarding the DEset approach, the impact of the scaling factor strategies from the 

literature (Prado et al., 2010) can be determined. Then, the DEsim can be certainly fine-tuned by 

testing a large set of values for 𝐹, 𝑔 and 𝜌. And for both approaches, other stopping conditions can 

be proposed when using RWLS in the crossover operator. It can also be considered to add self-

adaptive techniques so that the proposed algorithms will be less user-dependent and will potentially 

give better results. Since the similarity-based DE approach takes advantage of the real nature of the 

sets (camera locations, here), another perspective would be to examine to what extent it can help to 

improve the solution quality in other real-world applications that can be stated as USCP. In future 

work, it can also be planned to try other hybridizations by considering other exact methods or local 

search heuristics when solving the subproblem given in the crossover operator: it will be interesting 

to determine which method is the most appropriate for such an hybridization. Another direction 

would be to consider different coverage models from the literature (Mavrinac and Chen, 2013) in 

order to investigate the efficiency of the proposed methods for other practical applications, such as 

inspection or measurement of industrial products. 
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