1,500 research outputs found

    Remote sensing observatory validation of surface soil moisture using Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River Region, Georgia, U.S.

    Get PDF
    Optimal soil moisture estimation may be characterized by intercomparisons among remotely sensed measurements, groundā€based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSRā€E), groundā€based measurements, and a Soilā€Vegetationā€Atmosphere Transfer (SVAT) model for the Soil Moisture Experiments in 2003 (SMEX03) Little River region, Georgia. The Common Land Model (CLM) reasonably replicated soil moisture patterns in dry down and wetting after rainfall though it had modest wet biases (0.001ā€“0.054 m3/m3) as compared to AMSRā€E and ground data. While the AMSRā€E average soil moisture agreed well with the other data sources, it had extremely low temporal variability, especially during the growing season from May to October. The comparison results showed that highest mean absolute error (MAE) and root mean squared error (RMSE) were 0.054 and 0.059 m3/m3 for short and long periods, respectively. Even if CLM and AMSRā€E had complementary strengths, low MAE (0.018ā€“0.054 m3/m3) and RMSE (0.023ā€“0.059 m3/m3) soil moisture errors for CLM and soil moisture low biases (0.003ā€“0.031 m3/m3) for AMSRā€E, care should be taken prior to employing AMSRā€E retrieved soil moisture products directly for hydrological application due to its failure to replicate temporal variability. AMSRā€E error characteristics identified in this study should be used to guide enhancement of retrieval algorithms and improve satellite observations for hydrological sciences

    Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    Get PDF
    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations

    AMSR2 Soil Moisture Product Validation

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W) mission. AMSR2 fills the void left by the loss of the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) after almost 10 years. Both missions provide brightness temperature observations that are used to retrieve soil moisture. Merging AMSR-E and AMSR2 will help build a consistent long-term dataset. Before tackling the integration of AMSR-E and AMSR2 it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites. Three products that rely on different algorithms were evaluated; the JAXA Soil Moisture Algorithm (JAXA), the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). Results indicate that overall the SCA has the best performance based upon the metrics considered

    Satellite Derived Volumetric Soil Moisture In A HEC-HMS Model

    Get PDF
    This research is intended to enhance recent hydrologic research that focused on a rainfall-runoff model of the Devils Lake basin in central North Dakota. This research employs the spatial volumetric soil moisture data collected by the National Aeronautics and Space Administration (NASA) Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument. The AMSR-E data, collected from 2002-2011 from the NASA EOS Aqua satellite, was used in the Land Parameter Retrieval Model (LPRM) to estimate the surface soil moisture at a scale of 25-km. AMSR-E data is used in collaboration with the current rainfall-runoff model to better understand the influences of spatial soil moisture data on hydrology in the Devils Lake basin. The hypothesis is that the spatial volumetric soil moisture data will increase the accuracy of a hydrologic model based on single soil moisture data points. The calibrated HEC-HMS model uses the soil moisture accounting method and produces a more accurate lake level hydrograph for Devils Lake. When comparing results from previous studies, this research produces an RMSE value of 0.85 ft during the same time frame in which previous studies produce values of 1.49 ft and 1.73 ft

    Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    Get PDF
    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions

    Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Get PDF
    Combining information derived from satellitebased passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 māˆ’3) from AMSR-E and degree of saturation (%) from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 (ā€œtransitional regionsā€), merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied Correspondence to: Y. Y. Liu ([email protected]) to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles

    The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Get PDF
    For several years passive microwave observations have been used to retrieve soil moisture from the Earth's surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS) and future Soil Moisture Active and Passive (SMAP) satellite missions observe the Earth's surface in the L-band frequency. In the past, several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used to retrieve surface soil moisture using multi-channel observations obtained at higher microwave frequencies. While AMSR-E and WindSat lack an L-band channel, they are able to leverage multi-channel microwave observations to estimate additional land surface parameters. In particular, the availability of Ka-band observations allows AMSR-E and WindSat to obtain coincident surface temperature estimates required for the retrieval of surface soil moisture. In contrast, SMOS and SMAP carry only a single frequency radiometer and therefore lack an instrument suited to estimate the physical temperature of the Earth. Instead, soil moisture algorithms from these new generation satellites rely on ancillary sources of surface temperature (e.g. re-analysis or near real time data from weather prediction centres). A consequence of relying on such ancillary data is the need for temporal and spatial interpolation, which may introduce uncertainties. Here, two newly-developed, large-scale soil moisture evaluation techniques, the triple collocation (TC) approach and the <i>R</i><sub>value</sub> data assimilation approach, are applied to quantify the global-scale impact of replacing Ka-band based surface temperature retrievals with Modern Era Retrospective-analysis for Research and Applications (MERRA) surface temperature output on the accuracy of WindSat and AMSR-E based surface soil moisture retrievals. Results demonstrate that under sparsely vegetated conditions, the use of MERRA land surface temperature instead of Ka-band radiometric land surface temperature leads to a relative decrease in skill (on average 9.7%) of soil moisture anomaly estimates. However the situation is reversed for highly vegetated conditions where soil moisture anomaly estimates show a relative increase in skill (on average 13.7%) when using MERRA land surface temperature. In addition, a pre-processing technique to shift phase of the modelled surface temperature is shown to generally enhance the value of MERRA surface temperature estimates for soil moisture retrieval. Finally, a very high correlation (<i>R</i><sup>2</sup> = 0.95) and consistency between the two evaluation techniques lends further credibility to the obtained results

    Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-Eā€™s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques
    • ā€¦
    corecore