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Remote sensing observatory validation of surface soil moisture

using Advanced Microwave Scanning Radiometer E, Common

Land Model, and ground based data: Case study in SMEX03

Little River Region, Georgia, U.S.

Minha Choi,1 Jennifer M. Jacobs,2 and David D. Bosch3

Received 30 September 2006; revised 24 March 2008; accepted 31 March 2008; published 14 August 2008.

[1] Optimal soil moisture estimation may be characterized by intercomparisons among
remotely sensed measurements, ground-based measurements, and land surface models.
In this study, we compared soil moisture from Advanced Microwave Scanning
Radiometer E (AMSR-E), ground-based measurements, and a Soil-Vegetation-Atmosphere
Transfer (SVAT) model for the Soil Moisture Experiments in 2003 (SMEX03)
Little River region, Georgia. The Common Land Model (CLM) reasonably replicated
soil moisture patterns in dry down and wetting after rainfall though it had modest wet biases
(0.001–0.054 m3/m3) as compared to AMSR-E and ground data. While the AMSR-E
average soil moisture agreed well with the other data sources, it had extremely
low temporal variability, especially during the growing season from May to October.
The comparison results showed that highest mean absolute error (MAE) and root mean
squared error (RMSE) were 0.054 and 0.059 m3/m3 for short and long periods,
respectively. Even if CLM and AMSR-E had complementary strengths, low MAE
(0.018–0.054 m3/m3) and RMSE (0.023–0.059 m3/m3) soil moisture errors for CLM
and soil moisture low biases (0.003–0.031 m3/m3) for AMSR-E, care should be taken prior
to employing AMSR-E retrieved soil moisture products directly for hydrological
application due to its failure to replicate temporal variability. AMSR-E error characteristics
identified in this study should be used to guide enhancement of retrieval algorithms
and improve satellite observations for hydrological sciences.

Citation: Choi, M., J. M. Jacobs, and D. D. Bosch (2008), Remote sensing observatory validation of surface soil moisture using

Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River

Region, Georgia, U.S., Water Resour. Res., 44, W08421, doi:10.1029/2006WR005578.

1. Introduction

[2] Soil moisture is one of the important variables in
hydrologic, climatologic, biologic, and ecological processes
[Pachepsky et al., 2003]. Its accurate assessment is a crucial
factor in understanding the complex interactions between the
land surface and the atmosphere [Kustas et al., 1996; Boegh
et al., 2004]. Generally, there are three approaches to char-
acterize regional soil moisture; remote sensing observations,
land surface models, and in situ field measurements.
[3] Recently, aircraft and satellite instruments have been

used to provide regional surface soil moisture (0–5 cm)
values at broad spatial scales [Jackson et al., 1995, 1999;
Schmugge et al., 2002]. These instruments measure the
natural thermal emission of the land surface and the intensity
of this emission as a brightness temperature (TB). Surface soil

moisture is retrieved from TB observations [Jackson et al.,
1995, 1999]. Remote sensing of soil moisture has many
advantages including large spatial scales and the ability to
collect data in all weather conditions [Jackson, 1993; Jackson
and Schmugge, 1995].
[4] Ground based in situ samples typically capture spatial

or temporal variability at a range of scales. Intensive field
experiments such as Washita’92, Southern Great Plains 1997
(SGP97), Southern Great Plains 1999 (SGP99), SMEX02,
and SMEX03 have provided validation data for satellite and
aircraft based microwave remote sensing instruments over a
wide range of vegetation conditions for short periods. In situ
networks such as the soil climate analysis network (SCAN)
operated by Natural Resources Conservation Service
(NRCS) [Cosh et al., 2004] and Steven-Vitel Hydra probes
networks operated by USDA-ARS Southeast Watershed
Research Lab (SEWRL) [Bosch et al., 2006] provide con-
tinuous longer-term data sets of soil moisture profiles.
[5] Soil-Vegetation-Atmosphere Transfer (SVAT) models

can characterize soil moisture at a range of scales [Lohmann
et al., 1998; Liang et al., 1998; Dai et al., 2003].
SVAT models combine land surface and atmosphere
processes modeling using both the water and energy balances
[Sellers et al., 1986;Dickinson et al., 1993]. There have been
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extensive efforts to improve SVAT parameterization of the
land-surface models during the past two decades including
the Project for Intercomparison of Landsurface Parameteri-
zation Schemes (PILPS) [Yang et al., 1995; Shao and
Henderson-Sellers, 1996; Pitman and Henderson-Sellers,
1998; Lohmann et al., 1998; Liang et al., 1998].
[6] Each of the three methods has unavoidable limitations.

Remotely sensed soil moisture cannot describe hydrology at
the watershed or field scale because its retrieved soil moisture
scale is overly coarse [Mohanty and Skaggs, 2001; Jacobs et
al., 2004; Choi and Jacobs, 2007]. Another critical issue
regarding remotely sensed soil moisture measurements is that
the retrieved soil moisture is for a shallow depth and may not
correct for heavily vegetated areas [Schmugge et al., 2002;
Margulis et al., 2002]. Ground-based measurements can
provide reasonable and direct values. However, aside from
the short duration, intensive field experiments, these meas-
urements are very sparse and field or regional mean soil
moisture is not properly represented [Reichle et al., 2004].
Modeled soil moisture also has inevitable restrictions due to
limited measurements of model physical parameters [Mohr et
al., 2000; Whitfield et al., 2006] and input data errors
[Reichle and Koster, 2004; Reichle et al., 2004].
[7] Given the inherent restrictions caused by scale mis-

match, network density, parameterization, and data errors,
ultimately the most effective soil moisture estimations may
be accomplished through data assimilation (i.e., data merging
procedure) of the remotely sensed measurements, ground-
based measurements, and models [Margulis et al., 2002;
Reichle et al., 2004]. A fundamental principle of assimilation
requires the characterization of error statistics from available
sources to optimally estimate soil moisture [Crow and Wood,
2003; Reichle and Koster, 2003]. Reichle and Koster [2004]
and Reichle et al. [2004] showed that bias estimation by
comparisons among different data types can be effective for
understanding the data errors and identifying major obstacles
to data assimilation.
[8] The objective of this study is to identify error

characteristics of different soil moisture products from
remotely sensed measurements, ground-based measure-
ments, and modeled results through an intercomparison
analysis. This is a site specific case study that focuses on
the Little River, GA region for 2003 as well as during an
intensive field campaign. For this study, we address a series
of issues: (1) How do surface soil moisture estimates com-
pare among sources?, (2) How well does the Common Land
Model (CLM) simulate the spatial and temporal variability of
surface soil moisture?, (3) How well does the Advanced
Microwave Scanning Radiometer-Earth Observing System
(AMSR-E) on Aqua satellite replicate surface soil moisture
patterns?, (4) Do the short duration field campaigns provide
reasonable insight as to AMSR-E’s annual error character-
istics?, and (5) What are the potential errors of different data
sources for optimal soil moisture?
[9] These specific objectives directly address current

issues in hydrological scaling recognized by Krajewski et
al. [2006] in that we (1) identify the error characteristics
across remotely sensed, ground-based, and modeled data
sources that are necessary prior to combining them for
hydrologic forecasting, (2) conduct comparisons for a year-
long period that includes a short field campaign, but is not
limited to the campaign period, and (3) demonstrate the

SVAT’s potential for long-term simulations of regional soil
moisture.

2. Study Area and Ground-Based Measurements

[10] The Little River watershed (334 km2) was included in
four 25 km by 25 km Equal-Area Scalable Earth Grids
(EASE-Grids) at Georgia region, U.S. (Figure 1). The wa-
tershed, near Tifton, GA, is managed by the USDA-ARS
Southeast Watershed Research Lab (SEWRL) to collect
hydrologic and climatic data. In the watershed, land use is
predominantly row-crop agriculture (40%), pasture (18%),
forest (36%), and wetlands and residential (6%) [Bosch et al.,
2006]. The main crops are cotton and peanuts with typical
growing seasons from May to October. The climate is humid
with average annual rainfall of 1160mm. The soils are mostly
sand and well-drained at surface and have relatively high
permeability [Miller and White, 1998]. Bosch et al. [2006]
provide addition detail on the study area.
[11] Table 1 identifies the geographic locations and field

attributes for each EASE grid. Major land uses are cropland
and pasture (58.1–71.8%), evergreen forest (18.0–35.8%),
and wetland (4.3–8.0%). Surface soil texture is almost
identical across grids (i.e., sand and clay contents are 78
and 6%, respectively).
[12] Soil moisture data are available from in situ meas-

urements, satellite observations, and SVAT model predic-
tions for each Grid. Vitel Hydra soil moisture sensors are
installed at 19 in situ network sites in or near the watershed
(Figure 1). The Hydra sensors measure the average dielec-
tric constant using 6 cm length tines [Bosch et al., 2006].
Seven, three, one, and six in situ network sites were included
in EASE-Grids A, B, C, and D, respectively (Table 1). Soil
moisture data were provided every 30 min at 5, 20, and 30 cm
during 2003 [Bosch et al., 2006]. There is also one Soil
Climate Analysis Network (SCAN 2027) site in Grid D
(Figure 1) with soil temperature and soil moisture content
measured by Vitel Hydra probes at 5.08, 10.16, 20.32, 50.80,
and 101.60 cm depths.
[13] For the 2003 study period, a representative in situ

network site was selected for each EASE-Grid based on the
results of a previous study [Bosch et al., 2006]. Thirteen
network sites of 19 network sites were drier than the
regional mean soil moisture content. On the basis of time
stability analysis [Vachaud et al., 1985] conducted sepa-
rately for each EASE-Grid and data conditions, sampling
locations that have the most time stable characteristics were
identified. These sites, RG50, RG32, and RG16, that best
represent EASE-Grids mean soil moisture were selected for
EASE-Grid A, B, and D, respectively [Bosch et al., 2006].
EASE-Grid C has only one existing in situ network, RG67,
measured from 29 May 2003 to 13 July 2003 (Figure 1).
[14] The SMEX03 field campaign occurred in the study

region from 23 June to 2 July, 2003 (Figure 1). During
SMEX03, intensive ground sampling was conducted daily
during the satellite overpass time (11:30 am to 2:30 pm
EST) at 37 regional sites within the four EASE-Grids. For
our study, nine, seven, eight, and 13 sampling points were
averaged to determine the mean soil moisture for EASE-
Grids A, B, C, and D, respectively (Table 1). During the
SMEX03 campaign, soil volumetric water content was
measured at each sampling point using theta probes [Bosch
et al., 2006]. The theta probe was inserted vertically into the

2 of 14

W08421 CHOI ET AL.: VALIDATION OF SURFACE SOIL MOISTURE W08421



soil until the tines were fully covered and then a
measurement was recorded. Theta probes provide soil
moisture measurements using four 6 cm length tines with
a total effective diameter of approximately 4 cm [Cosh et
al., 2005].
[15] The two types of impedance probes used in this

study, theta and hydra probes, use differences between soil
and water dielectric constant values, approximately four and
80, respectively, to estimate soil moisture. The probes
measure a voltage of relative impedance. The voltage is
used to determine the dielectric constant and, in turn, the
soil volumetric water content [Cosh et al., 2005]. For this
study, a general calibration equation for mineral soils was
used to obtain soil volumetric water content from the
measured voltage [Gaskin and Miller, 1996; Cosh et al.,
2005]. Cosh et al. [2005] found that ground based in situ
sampling using these impedance probes may have 2% soil
volumetric water content error and recommended the gen-
eral calibration method over a range of field conditions.

3. Satellite Observations (AMSR-E)

[16] The Advanced Microwave Scanning Radiometer-
Earth Observing System (AMSR-E) on the Aqua satellite
was launched in May 2002. AMSR-E is a modified passive
microwave radiometer deployed on Advanced Earth Ob-

serving Satellite-II(ADEOS-II) [Njoku et al., 2003]. It
measures brightness temperatures at six frequencies ranging
from 6.9 to 89.0 GHz using a dual-polarized passive micro-
wave radiometer system. The 6.9 GHz (C band) and
10.7 GHz (X band) are the frequencies on AMSR-E that
are the most useful for retrieving near surface soil moisture
on a global scale and a daily basis [Njoku et al., 2003].
This study uses the level-3 data soil moisture product that
is mapped to a standard, uniform grid and timescale. These
level-3 soil moisture products have a global cylindrical
25 km EASE-Grids cell spacing and a daily temporal
resolution (1:30 pm EST overpass). Level-3 soil moisture
products, derived using the retrieval algorithm, are acces-
sible from the National Snow and Ice Data Center
(NSIDC).
[17] AMSR-E’s soil moisture retrieval algorithm is based

on the iterative multichannel inversion procedure that uses a
microwave transfer model to compare observed brightness
temperature (TB) and computed brightness temperature
(TBp) [Njoku et al., 2003]. Brightness temperature is mainly
affected by soil volumetric water content, vegetation water
content (VWC), and surface temperature (Ts). AMSR-E’s
soil moisture retrieval algorithm is briefly described in here.
A more detailed description of the algorithm appears by
Njoku et al. [2003].

Figure 1. Little River watershed, SMEX03 GA regional sampling sites, network sites, NLDAS-Grids
(dotted lines), and EASE-Grids (A, B, C, and D).
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[18] The TBp of a homogeneous vegetation-soil layer is
described as [Njoku et al., 2003]

TBp ¼ Ts 1� rp
� �

exp 1� tð Þ þ Tc 1� wp

� �
1� exp 1� tð Þ½ �

� 1þ rp exp �tð Þ
� �

ð1Þ

t ¼ b � VWC= cos q ð2Þ

where Ts is the surface temperature, rp is the soil surface
reflectivity, t is the vegetation opacity, Tc is the vegetation
temperature, wp is vegetation single scattering albedo, b is a
function of canopy type, VWC is the vegetation water
content, and q is incidence angle. The vegetation tempera-
ture, Tc and surface temperature, Ts are assumed to be
roughly equal [Njoku et al., 2003]. Other parameters
including soil emissivity and surface reflectivity are crucial
to estimate reasonable brightness temperature associated
with major correction methods. To account for surface
roughness effects, a semi-empirical equation for surface
reflectivity is given by [Wang and Choudhury, 1981]

rp ¼ Qrv þ 1� Qð Þrh½ � exp �hð Þ ð3Þ

where Q is the polarization mixing parameter, rv and rh are
the vertical and horizontally polarized reflectivities on a
smooth surface and h is the height parameter. Two
parameters in equation (3), Q and h, are empirically
determined [Njoku et al., 2003]. The soil emissivity is
based on the dielectric constant of wet soil. The dielectric

constant of wet soil is evaluated using an empirical mixing
model [Wang and Schmugge, 1980].

4. Soil-Vegetation-Atmosphere Transfer Model

4.1. Common Land Model

[19] The Common Land Model (CLM) has been broadly
examined with observation data sets [Dai et al., 2003]. The
CLM combines three existing models: Land surface
model (LSM) [Bonan, 1996], biosphere-atmosphere transfer
scheme (BATS) [Dickinson et al., 1993], and the Chinese
Academy of Sciences Institute of Atmospheric Physics’
LSM, 1994 version [Dai and Zeng, 1997].
[20] The CLM requires preprocessed data sets of land

surface type, soil and vegetation parameters, model initiali-
zation, and atmospheric boundary conditions as input [Dai et
al., 2003]. Grids are subdivided into tiles where each tile
contains a single land cover type. The energy and water
balance are calculated for each tile and each time step using
the general mosaic concept [Avissar and Pielke, 1989]. Stores
and fluxes are determined for each grid by area weighted
averages of the tile values. The CLM has a 10 layer soil
profile and the layers’ thicknesses increase with depth. A
weighted average of the three top layers’ (0–6 cm) soil
moisture values were used for this study to match the other
data sources.

4.2. Forcing Data

[21] The required model forcing data are incoming solar
radiation, downward long wave radiation, air temperature,
wind speed (U and V), air pressure, specific humidity, and
precipitation. These data were obtained from the
North American Land Data Assimilation System (NLDAS)

Table 1. Geographic Locations, Field Characteristics, and Average and Standard Deviation of Forcing Data for

the Entire Year of 2003 (From 1 January 2003 to 31 December 2003) Obtained From NLDAS for Grids A, B, C,

and D

Grid A Grid B Grid C Grid D

Latitude and longitude of the grid’s
NE corner

31.88�N,
�83.69�W

31.88�N,
�83.43�W

31.65�N,
�83.69�W

31.65�N,
�83.43�W

Major IGBP Land Use Category, %
Cropland and pasture 68.7 58.1 65.2 71.8
Evergreen forest 23.6 35.8 26.6 18.0
Wetland 4.3 4.8 7.4 8.0
Reservoir 1.3 - 0.1 0.2
Mixed forest 1.0 0.5 - -
Deciduous forest 0.6 0.2 - -
Residential/urban 0.5 0.6 0.7 2.0

Surface Soil Texture
Sand [%] 78 79 78 78
Clay [%] 6 6 6 6

In Situ Sampling Points
Network 7 3 1 6
SMEX03 9 7 8 13

Forcing Data
Downward solar radiation, W/m2 505.2 506.2 506.9 507.3
Downward long wave radiation, W/m2 348.1 348.4 348.7 349.7
Air temperature, K 291.7 291.8 292.1 292.5
Scalar wind component, m/s 3 3 3 3.2
Surface pressure, kPa 100.6 100.7 100.6 100.9
Specific humidity, kg/kg 0.011 0.011 0.011 0.011
Total precipitation, m 1.41 1.31 1.49 1.38
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[Cosgrove et al., 2003]. The NLDAS data have an hourly
temporal resolution and a 0.125� (	15 km) resolution.
Meteorological variables are derived from Eta Data Assim-
ilation System (EDAS) and Geostationary Operational En-
vironmental Satellite (GOES) radiation data. Precipitation is
a combination of EDAS, National Center for Environmental
Prediction Climate Prediction Center (CPC) gauge-based
data, and National Weather Service Doppler radar-based
(WSR-88D) data [Cosgrove et al., 2003].
[22] For this study, the forcing data (15 km) at each

NLDAS grid point were regridded by weighted averaging
as a function of area fraction to match the EASE-Grids
spatial resolution (25 km). Weighted averaging may smooth
the subgrid variations associated with heterogeneous char-
acteristics of hydrological processes. However, the forcing
data had little variation among grids for the study area
(Table 1). The most notable difference is that Grid C had
slightly more rain and Grid B had slightly less rain than the
other grids. Although weighted averaging is considered a
valid up-scaling approach in homogeneous conditions
[Wood and Lakshmi, 1993], additional studies can be
performed using distributed point scale process models or
effective parameters to account for heterogeneous character-
istics [Katzenberger and Hassol, 1997].

4.3. Parameterization and Initialization

[23] The CLM’s required parameters are longitude, lati-
tude, soil texture profile (percentage of sand/clay/loam), soil
color index, and percentages of land cover types (based on
International Geosphere-Biosphere Programme (IGBP) clas-
sification). The CLM uses relatively simple parameteriza-
tions that require only a few user-defined variables to identify
soil and vegetation parameters. Table 2 describes the CLM’s
parameterization approach for soil and vegetation. Using the
soil texture, i.e., sand and clay percentages, the CLM esti-
mates soil matric potential and hydraulic conductivity as a
function of soil volumetric water content and soil texture
using the Clapp and Hornberger [1978] approach and Cosby

et al. [1984], [Oleson et al., 2004]. The pore size distribution
parameter of saturated hydraulic conductivity, water reten-
tion curve, porosity, and saturated matric potential are esti-
mated from the soil texture (Table 2). In this study, the soil’s
sand and clay percentages by soil layers were obtained from
the CONUS-SOIL database [Miller and White, 1998]. The
predominant surface soil texture is sand (	78%) and clay
(	6%) (Table 1). Sand percentage decreased as soil depth
increased. Clay percentage increased as soil depth increased.
Sand and clay percentages were about 55% and 20%,
respectively, for the bottom layer. The initial subsurface soil
temperature and moisture content values were obtained from
the NRCS SCAN (2027) site, located in southeast of the
watershed (Figure 1).
[24] For this study, the land cover classification was

obtained from the 1:250,000 scale U.S. Geological Survey
(USGS) Geographic Information and Analysis System
(GIRAS) data set [Mitchell et al., 1977]. Land cover classi-
fication was predominantly cropland, evergreen forest, and
wetland (Table 1). The CLM determines vegetation param-
eters including plant physiology (i.e., leaf dimension and leaf
transmittance) and vegetation structure (i.e., root profile and
leaf and stem area index) based on the corresponding IGBP
land cover classification. Vegetation parameters include both
time-invariant vegetation parameters such as leaf dimension
and time-varying vegetation parameters such as leaf area
index in the CLM [Dai et al., 2003].

5. Results

[25] Soil moisture products were compared for 2003 study
period (from 1 January 2003 to 31 December 2003) and
SMEX03 study period (from 23 June 2003 to 2 July 2003).
To match the time of the soil moisture products (Aqua
overpass (1:30 pm EST) and SMEX03 regional sampling
(11:30 am to 2:30 pm EST)), network and the CLM soil
moisture values at 2:00 pm EST were used for the statistical
analyses.

Table 2. Soil and Vegetation Parameterization for CLM

Parameters CLM

Soil texture [�] user defined: %sand and %clay
Porosity, m3/m3 empirical calculation: qsat = 0.489 � 0.00126(% sand)a

Saturated hydraulic conductivity, mm s�1 Clapp and Hornberger [1978]: ksat = 0.0070556 
 10�0.884+0.0153(%sand)a

Saturated matric potential, mm Clapp and Hornberger [1978]: ysat = �10 
 101.88�0.013(% sand)a

Pore size distribution parameter Clapp and Hornberger [1978]: b = 2.91 + 0.159(%clay)a

Hydraulic conductivity, mm s�1 Clapp and Hornberger [1978]: k = ksatq
2b+3a

Matric potential, mm Clapp and Hornberger [1978]: y = ysatq
�ba

Wilting point, m3/m3

user defined:
w ¼ ymax � y

ymsx � ysat

for T > Tf

w ¼ 0 for T � Tf

8<
:

where y is soil water matric potential, ymax is maximum soil water matric potential,

ysat is saturated soil matric potential, T is temperature [k], and

Tf is water freezing temperature [k].
Water retention curve [�] Clapp and Hornberger [1978]
Root Depth, m (related to vegetation typesb) empirical calculation/IGBP
Leaf area index [�] (based on satellite data) empirical calculation/IGBP
Canopy height, m (related to vegetation types) IGBP
Roughness length, m (related to canopy height,
fractional vegetation cover, leaf area index,
and leaf shapesa

IGBP

aDai et al. [2001].
bZeng [2001].
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5.1. 2003 Study Period

[26] Figure 2a shows the time series of the four soil
moisture products for the entire study period. The soil
moisture time series agreed well in drying and wetting

patterns among four different sources for all grids. Average
soil moisture ranged from 0.122 to 0.167 m3/m3. The
AMSR-E values had much lower variability (i.e., standard
deviation range from 0.013 to 0.015 m3/m3) than the other

Figure 2b. Time series of the four surface soil moisture products for 1 January 2003 to 31 December 2003
at EASE-Grid B. Upper and lower dashed lines indicate the porosity and wilting point, respectively.

Figure 2a. Time series of the four surface soil moisture products for 1 January 2003 to 31 December 2003
at EASE-Grid A. Upper and lower dashed lines indicate the porosity and wilting point, respectively.
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soil moisture values (i.e., standard deviation range from
0.039 to 0.053 m3/m3). Skew values were typically positive.
[27] The CLM and AMSR-E wet biases were typically less

than 0.02 m3/m3 as compared to ground data except for Grid
C and MAE values were less than 0.05 m3/m3 (Table 3).

Matched pair t-tests (Null hypothesis, Ho was that the mean
differences for any combination of different sources were
identical), were used to identify statistically significant differ-
ences between paired observations [Helsel and Hirsch, 2002]
and to show significant differences between the CLM and the

Figure 2c. Time series of the four surface soil moisture products for 1 January 2003 to 31 December 2003
at EASE-Grid C. Upper and lower dashed lines indicate the porosity and wilting point, respectively.

Figure 2d. Time series of the four surface soil moisture products for 1 January 2003 to 31 December 2003
at EASE-Grid D. Upper and lower dashed lines indicate the porosity and wilting point, respectively.
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network’s average annual soil moisture (Table 3). The CLM
simulated soil moisture tended to be wetter than the observed
soil moisture, particularly after rainfall events (Figure 2).
This may be caused by measurement scale differences that
resulted in lower Leaf Area Index (LAI) values for the grid
averaged crop/pasture landscape as compared to the network
sensors locations.
[28] The CLM and AMSR-E had similar MAE and RMSE

statistics. However, there were large differences between the
daily values (Figure 3). This is evident in the regression
relationship which indicates reasonable agreement between
the CLM and the in situ surface soil moisture. However, the
AMSR-E soil moisture values only weakly agree with in situ
measurements and CLM. Spearman’s Rho, a rank correla-
tion coefficient, was used to identify nonlinear monotonic
relationships between pairs of variables [Helsel and Hirsch,
2002] (Table 3). The correlation coefficient values close to 1
indicate strong agreement between the two variables. The
observed Spearman’s Rho values are consistently higher
than the correlation coefficients suggesting a somewhat
nonlinear relationship for all source combinations.
[29] A sensitivity analysis was conducted to envelop the

CLM predictions of soil moisture for the study area’s range
of vegetation and soil types. Soil moisture predictions using
the grid averaged values were compared to predictions

using a single vegetation or soil type. The CLM predictions
for the range of land covers and soil types shown for Grid A
(Figure 4) is comparable for the other grids and indicate
modest differences that do not exceed 5% soil moisture.
Crop and pasturelands were typically wetter than evergreen
forests. The lower LAI for the crops and pasture as compared
to forests likely accounts for the differences.
[30] The soil sensitivity analysis examined two soils hav-

ing relatively high and low clay content for the entire profile,
Georgia (GA) 043 and Georgia (GA) 051, respectively.
Greater variability among soil moisture predictions were
observed for relatively modest differences in soil texture.
The GA051 soil, slightly higher clay contents at surface (i.e.,
average clay content is 7%) and lower clay contents at deeper
layers (i.e., average clay content is 15%) as compared to grid-
averaged soil, showed wetter patterns for dry conditions and
slightly drier patterns for wet conditions as compared to grid-
averaged soil. GA051 had the maximum soil moisture
difference, 0.039 m3/m3, which occurred at a soil moisture
closed to the wilting point. The GA043 soil, higher clay
contents for all depths (i.e., average clay content is 8 and 32%
at surface and deeper layers, respectively), had drier soil
moisture for dry to moderate conditions and wetter patterns
for wet conditions. This result reflects the slower redistribu-
tion of moisture from lower layers to the drier surface layers.

Table 3. Error Estimation Among Three Soil Moisture Products [m3/m3] for the Entire Year of 2003, Except Grid C From 29 May 2003

to 13 July 2003a

Statistical
Measures

Grid A
(1 Jan 2003 to 31 Dec 2003)

Grid B
(1 Jan 2003 to 31 Dec 2003)

Grid C
(29 May 2003 to 13 Jul 2003)

Grid D
(1 Jan 2003 to 31 Dec 2003)

CLM
Network

AMSR-E
Network

CLM
AMSR-E

CLM
Network

AMSR-E
Network

CLM
AMSR-E

CLM
Network

AMSR-E
Network

CLM
AMSR-E

CLM
Network

AMSR-E
Network

CLM
AMSR-E

Bias 0.007* 0.003 0.003 0.017* 0.015* 0.001 0.045* 0.023* 0.029* 0.006* 0.004 0.002
Mean Absolute
Error (MAE)

0.029 0.029 0.040 0.038 0.040 0.039 0.047 0.039 0.046 0.032 0.027 0.038

Root Mean Squared
Error (RMSE)

0.039 0.037 0.050 0.047 0.049 0.047 0.055 0.046 0.058 0.039 0.038 0.045

Correlation
Coefficient (R2)

0.471* 0.195* 0.132* 0.416* 0.263* 0.138* 0.654* 0.298* 0.027 0.495* 0.289* 0.213*

Spearman’s Rho 0.710 0.461 0.405 0.654 0.445 0.361 0.868 0.441 0.204 0.760 0.547 0.446

aThe bias measure shows the results of matched pair t-tests where * indicates significant difference for the mean soil moisture between observation pairs
at the 0.05 probability level. Correlation coefficients that are significantly different from 0 at the 0.05 probability level are indicated with a *.

Figure 3a. Soil moisture comparison between network and CLM, between network and AMSR-E,
and AMSR-E and CLM for 1 January 2003 to 31 December 2003 at EASE-Grid A (Note: y = ax + b,
x = network or AMSR-E, y = CLM or AMSR-E).
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[31] Overall these patterns show a consistent system re-
sponse based on variations in soil texture and the CLM
retention curves determined using theClapp and Hornberger
[1978] relationship. Soil drying and drainage predictions are
strongly dependent upon these parameterized relationships
and the solid agreement observed here suggests that the
parameterizations are reasonable for long-term modeling in
this study region.

5.2. SMEX03 Study Period

[32] Soil moisture values were also compared for the two
week SMEX03 period to examine the ability of short-term
studies to validate satellite data (Table 4). Overall, observa-
tions made during the limited SMEX03 period concur with
many of the findings from the yearlong study. Key results
from the two periods are shown Figure 5. Average soil
moisture (0.092–0.151 m3/m3) and standard deviation
(0.012–0.051 m3/m3) of soil moisture showed reasonable
agreement among different data sources. The CLM and
AMSR-E soil moisture wet biases as compared to the in situ
values were also consistent with the annual results. The
relatively low AMSR-E variability (standard deviation val-
ues of 0.012–0.014 m3/m3) was again apparent. An impor-
tant difference between the two periods is that the correlation
values between AMSR-E and ground measurements were

much higher during SMEX03 than the annual period. The
CLM and ground measurements correlation values were also
somewhat elevated.
[33] During the SMEX03 period, the CLM simulated soil

moisture closely followed the drying and wetting patterns
of the surface soil moisture measurements (Figure 2).
However, the AMSR-E average soil moisture clearly did
not capture the temporal variability of observed dry down
and wetting for any of the grids (Figure 2). For example,
the AMSR-E soil moisture did have a small rise from 0.14
to 0.16 m3/m3 after rainfall on Julian day 181. However, a
comparable increase occurred during a period with no rain.
These unexpected temporal patterns across grids may be
induced by increased attenuation of soil emission due to
vegetation [Njoku et al., 2003].
[34] Comparisons between the network and SMEX03 soil

moisture measurements provide insight to the value of a
single well-defined network location as compared to a
coordinated ground sampling campaign. Both measurement
sets yield comparable results indicating that representative
sites can provide reasonable comparisons. This finding
extends Bosch et al.’s [2006] assertion that a network is a
reasonable data source for long-term validation of remotely
sensed soil moisture products. However, the correlation
between CLM or AMSR-E and SMEX03 showed better

Figure 3b. Soil moisture comparison between network and CLM, between network and AMSR-E,
and AMSR-E and CLM for 1 January 2003 to 31 December 2003 at EASE-Grid B (Note: y = ax + b,
x = network or AMSR-E, y = CLM or AMSR-E).

Figure 3c. Soil moisture comparison between network and CLM, between network and AMSR-E,
and AMSR-E and CLM for 1 January 2003 to 31 December 2003 at EASE-Grid C (Note: Grid C from
05/29/2003 to 07/13/2003 and y = ax + b, x = network or AMSR-E, y = CLM or AMSR-E).
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agreement than the correlation between network and
SMEX03. This indicates that differences between the repre-
sentative network sites and the grid scale measurements may
be related to spatial scale [Kachanoski and de Jong, 1988],
that a portion of the annual errors is related to the scale
differences, and suggests limitations to time stable network
sites.

6. Discussion

[35] Based on our results, the CLM simulated soil mois-
ture showed that highest MAE and RMSE were 0.054 and
0.059 m3/m3, respectively for both the long and short
periods. This error includes instrument measurement errors
for ground based in situ sampling using impedance probes
that are typically on the order of 2% soil volumetric water
content error [Cosh et al., 2005]. Because there are inevi-
table limitations including scale mismatch and parameteri-
zation, a 5% error range for near surface soil volumetric

water content is recognized as a reasonable error margin
from previous studies [Shao and Henderson-Sellers, 1996;
Mohr et al., 2000].
[36] Several previous SVAT calibration/validation studies

have identified typical errors and biases for different types
of landscape and climate. Whitfield et al.’s [2006] compar-
ison of two SVAT models, the CLM and the Land Surface
Process Model (LSP), showed that CLM’s soil moisture was
slightly drier than ground based measurements, while LSP’s
soil moisture was slightly wetter at field scale in southeast-
ern U.S. However, both the CLM and LSP provided
reasonable soil moisture simulations (i.e., highest MAE
and RMSE values were 0.032 and 0.033 m3/m3,
respectively). Dai et al. [2003] also found that CLM’s soil
moisture values were somewhat drier than observed ground
data at catchment in Russia for the period 1966–1983 even if
its simulated soil moisture reasonably replicated observed
soil moisture temporal variability. Mohr et al. [2000] dem-

Figure 3d. Soil moisture comparison between network and CLM, between network and AMSR-E, and
AMSR-E and CLM for 1 January 2003 to 31 December 2003 at EASE-Grid D (Note: y = ax + b, x =
network or AMSR-E, y = CLM or AMSR-E).

Figure 4. CLM soil moisture estimates using the area weighted average soil and vegetation parameters
as compared to estimates using single (a) land cover types and (b) soil types for 1 January 2003 to
31 December 2003 at EASE-Grid A. Sand and clay contents are identified for the surface layer. Dashed
lines indicate the error boundary of 5% soil volumetric water content.
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onstrated that the untuned PLACE model effectively simu-
lated the spatiotemporal variability of soil moisture in South-
ern Great Plains Hydrology experiment (SGP97). Again,
modeled soil moisture was slightly drier than ground based
data.
[37] In contrast to these previous studies, the CLM simu-

lated soil moisture was slightly wetter than the ground based
data for the long and short periods. This difference is likely
due to preferential siting of network sensors outside of active
agricultural areas that resulted in soil type and vegetation
differences between the EASE-Grid averaged values and the
local ground based values. Another source of difference
might result from the unavoidable shortcoming of the mosaic
concept, including the weak horizontal coupling and the
nonlinear characteristics of sensible heat and latent heat
fluxes [Li and Avissar, 1994; Molders et al., 1996]. The
mosaic approach, which was used to divide the grid into
subgrid tiles based on soil and land-use, does not identify the
actual geographical location of fluxes nor the conditions
specific to point measurements [Giorgi and Avissar, 1997].
However, the sensitivity analyses using end-members of the
grids’ land cover and soil types, showed only modest soil
moisture differences (Figure 4). This indicates that the
comparison between local measurements and the grid aver-

age by the mosaic approach may be roughly sufficient to
represent heterogeneity effects for realistic computation
efficiency in this study [Avissar and Pielke, 1989; Koster
and Suarez, 1992; Giorgi and Avissar, 1997]. Perhaps more
significant is that the same climate forcing was applied to all
tiles within a single grid following the approach of Avissar
and Pielke [1989] and Koster and Suarez [1992]. Although
some SVATS studies have shown a limited sensitivity to
precipitation variations [Sivapalan and Woods, 1995;Giorgi,
1997a, 1997b], Pitman et al. [1992] and Giorgi and Avissar
[1997] indicate that capturing the spatial variations in climate
data will provide a more realistic simulation. In this study, the
annual average forcing data at each NLDAS grid point show
little variation among grids, but local convective rainfall
events would not be captured at the subgrid scale and may
account for some differences during summer months.
[38] Several previous studies validated remote sensing

measurements using SVAT models and ground based in situ
data for a variety field conditions and durations. Sahoo et al.
[2006] showed similarly reasonable agreement between the
Noah land surface model and SMEX03 (r2 = 0.723) and
between AMSR-E and SMEX03 (r2 = 0.563) as compared to
our average values between the CLM and SMEX03 (r2 =
0.718) and between AMSR-E and SMEX03 (r2 = 0.695).

Figure 5. Summary of comparisons and results for 2003 and SMEX03 study periods.
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They also found that AMSR-E did not replicate the observed
soil moisture temporal evolution as well during SMEX03
(Georgia) as during SMEX02 (Iowa) and SMEX04
(Arizona). Their Noah land surface model was consistently
drier than AMSR-E and ground data during SMEX03.
During Southern Great Plains Hydrology 1997 (SGP97),
Mohr et al. [2000] found that remotely sensed Electronically
Scanned Thinned Array Radiometer (ESTAR) surface soil
moisture had less temporal variation as compared to model
and ground data. Reichle et al. [2004] found that Scanning
multichannel Microwave Radiometer (SMMR) soil moisture
products had no agreement with NASA Catchment Land
Surface model when LAI values exceeded unity. For lower
LAI values, SMMR was able to capture the same global soil
moisture patterns of wet and dry regions identified by models
and ground data (1979–1987). These findings support our
observation that AMSR-E had limited variation annually and
very poor agreement during the growing season.
[39] Differences among soil moisture changes over time

are not readily apparent from standard statistics. AMSR-E
had reasonable R2, MAE and RMSE values as well as
temporal wetting and drying patterns that matched the CLM
and ground based in situ soil moisture values. However,
AMSR-E had noteworthy less temporal variability com-
pared to the CLM and ground based in situ soil moisture.
The AMSR-E soil moisture’s low temporal variations
during the growing season may be influenced by the
passive microwave sensors’ inability to capture reasonable
brightness temperatures in densely vegetated surface con-
ditions [Schmugge et al., 2002; Margulis et al., 2002].
Njoku et al. [2003] pointed out that the soil moisture
retrieved from AMSR-E is most accurate for regions with
limited vegetation because vegetation attenuates the C-band
microwave signal.
[40] Based on the intercomparison analysis for 2003 and

SMEX03 study periods, each data source’s strengths and
weaknesses were identified. The CLM had relatively low
MAE and RMSE errors as well as strong correlations with
ground based measurement. However, it had modest wet
biases as compared to AMSR-E and ground data. AMSR-E
typically had very low biases as compared to the ground
based measurements. However, it had extremely low tem-
poral variability during the growing season. The direct
application of retrieved moisture values is not desirable
due to the limited range of AMSR-E values. This intercom-
parison analysis suggests that the most effective data set
might take advantages of the identified strengths [Reichle et
al., 2004]. Ultimately, the AMSR-E error characteristics
identified here should be used to guide enhancement of
retrieval algorithms and improve satellite observations. Ad-
ditional studies at a range of scales and vegetation conditions
are necessary to identify the robustness of this study’s results
related to the remotely sensed soil moisture products.

7. Conclusion

[41] In this study, intercomparisons of surface soil mois-
ture from remotely sensed data (AMSR-E), land surface
model (CLM), and ground data were conducted for entire
year of the 2003 and SMEX03 study period at SMEX03
Little River region. Overall, our results show that there is
reasonable agreement among the different soil moisture
products with the CLM andAMSR-E having complementary

benefits even though each data source has its own restric-
tions. These findings are consistent across the EASE-Grids.
The CLM simulated soil moisture agreed well with ground
based in situ soil moisture for long and short periods within
reasonable error ranges. While AMSR-E provided an unbi-
ased estimate of average soil moisture, it did not capture the
full range of observed soil moisture. Additionally, AMSR-E
had almost no variation from May to October. As with the
year long period, AMSR-E did not capture observed soil
moisture temporal variability during SMEX03 period. This
study’s characterization of each data source’s errors may
provide improved recognition of data errors, identify the
AMSR-E retrieval algorithm’s limitations, and facilitate data
use in assimilation systems.
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