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Abstract. For several years passive microwave observationgjlobal-scale impact of replacing Ka-band based surface tem-
have been used to retrieve soil moisture from the Earth’sperature retrievals with Modern Era Retrospective-analysis
surface. Low frequency observations have the most senfor Research and Applications (MERRA) surface tempera-
sitivity to soil moisture, therefore the current Soil Mois- ture output on the accuracy of WindSat and AMSR-E based
ture and Ocean Salinity (SMOS) and future Soil Moisture surface soil moisture retrievals. Results demonstrate that un-
Active and Passive (SMAP) satellite missions observe theder sparsely vegetated conditions, the use of MERRA land
Earth’s surface in the L-band frequency. In the past, severasurface temperature instead of Ka-band radiometric land sur-
satellite sensors such as the Advanced Microwave Scanninface temperature leads to a relative decrease in skill (on aver-
Radiometer-EOS (AMSR-E) and WindSat have been usedge 9.7 %) of soil moisture anomaly estimates. However the
to retrieve surface soil moisture using multi-channel obser-situation is reversed for highly vegetated conditions where
vations obtained at higher microwave frequencies. Whilesoil moisture anomaly estimates show a relative increase in
AMSR-E and WindSat lack an L-band channel, they are ableskill (on average 13.7 %) when using MERRA land surface
to leverage multi-channel microwave observations to esti-temperature. In addition, a pre-processing technique to shift
mate additional land surface parameters. In particular, thgophase of the modelled surface temperature is shown to gener-
availability of Ka-band observations allows AMSR-E and ally enhance the value of MERRA surface temperature esti-
WindSat to obtain coincident surface temperature estimatemates for soil moisture retrieval. Finally, a very high correla-
required for the retrieval of surface soil moisture. In contrast,tion (R%2 = 0.95) and consistency between the two evaluation
SMOS and SMAP carry only a single frequency radiometertechniques lends further credibility to the obtained results.
and therefore lack an instrument suited to estimate the phys-
ical temperature of the Earth. Instead, soil moisture algo-
rithms from these new generation satellites rely on ancillary .
sources of surface temperature (e.g. re-analysis or near re%l Introduction
time data from weather prediction centres). A consequenc

Surface soil moisture plays an important role in many water-

of relying on such ancillary data is the need for temporal . . ) .
o . . : .~ and energy related studies and is an important parameter in
and spatial interpolation, which may introduce uncertainties. | licati h ical h dicti
Here, two newly-developed, large-scale soil moisture evalua> S ere! app 'cations, such as numerical weather predictions
L . . ' . (e.g. Loew et al., 2009), global change monitoring, the pre-
tion techniques, the triple collocation (TC) approach and the’. ">,
R data assimilation approach, are applied to quantify thed|ct|on of surface runoff (Brocca et al., 2010) and the mod-
value pp ’ P q elling of evaporation (Miralles et al., 2011). Soil moisture is

the key to our understanding of the interaction between the
land and the atmosphere as it determines the distribution of

Correspondence tdR. M. Parinussa energy at the subsurface and consequently impacts associated
BY (robert.parinussa@falw.vu.nl) water fluxes. Most recently (November 2009) the European
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Space Agency (ESA) launched the Soil Moisture and Oceartrieve soil moisture from the new generation satellites rely
Salinity (SMOS) satellite, which is designed to retrieve sur- on ancillary temperature data, such as re-analysis or near
face soil moisture at coarse spatial resolution 40 km) real time data from weather prediction centres, to acquire
(Kerr et al., 2010). The upcoming National and Aeronau-temperature estimates and retrieve soil moisture. In contrast
tics and Space Administration (NASA) Soil Moisture Active with the multi-frequency approaches, which provide coinci-
and Passive (SMAP) satellite is designed for the same goaldent observations, this approach requires temporal and spa-
and currently scheduled for launch in November 2014 (En-tial interpolation of the ancillary data which may introduce
tekhabi et al., 2010b). Because of the combination of pasuncertainties.
sive and active microwave observation SMAP is expected One of the algorithms using exclusively satellite observa-
to retrieve surface soil moisture at a higher spatial resolutions is the Land Parameter Retrieval Model (LPRM; Owe
tion (10x 10 km). Both missions will operate in the L-band et al., 2008). This model uses a simple radiative trans-
frequency 1.4 GHz) which should, in theory, possess the fer equation to retrieve soil moisture and vegetation opti-
highest sensitivity to surface soil moisture (e.g. Jackson andaal depth from horizontal and vertical polarized brightness
Schmugge, 1989; Schmugge, 1983). temperatures by partitioning the observed signal into its re-
A variety of satellites have been observing the Earth sur-spective soil and vegetation emission components (e.g. de
face with multi-frequency (C-, X-, K- and Ka-band, re- Jeu and Owe, 2003; Meesters et al., 2005). Because soll
spectively ~6.8, ~10.7, ~19 and ~37 GHz) passive mi- moisture and vegetation optical depth are retrieved simulta-
crowave radiometers from the late 1970’s onwards and araeously, the temperature estimate affects both the soil and
used for the retrieval of surface soil moisture (e.g. Owe etthe vegetation component which could lead to a potential
al., 2008). The Advanced Microwave Scanning Radiometerfeedback in the LPRM that is not present in other soil mois-
for the Earth Observing System (EOS) program (AMSR-E) ture algorithms. As a result of this potential feedback, the
on board NASAs Agqua satellite was the first widely used LPRM may be one of the more sensitive algorithms with re-
sensor for soil moisture retrievals. The WindSat polarimet-spect to errors in LST. LPRM global soil moisture retrievals
ric radiometer on board of the Coriolis satellite is based onfrom the AMSR-E and WindSat sensor have been exten-
AMSR-E with small changes in specifications (Gaiser et al.,sively validated against in situ observations (e.g. de Jeu et
2004). Recently, Parinussa et al. (2011) showed that soiél., 2008; Draper et al., 2009; Parinussa et al., 2011), models
moisture retrievals from both satellites are of similar qual- (e.g. Loew et al., 2009; Crow et al., 2010; Bisselink et al.,
ity when compared to in situ data after the implementation2011) and other satellite soil moisture products (e.g. Wag-
of an inter-calibration procedure and consistent use of a rener et al., 2007; Scipal et al., 2008; Dorigo et al., 2010).
trieval algorithm. One of the major differences between theThese studies show that LPRM soil moisture captures a high
two satellites are the local equator overpass times, which ardegree of the temporal variability (correlation coefficient)
06:00 a.m./p.m. for the Coriolis satellite (identical to SMOS in spatially-averaged soil moisture estimated obtained from
and SMAP) and 01:30 a.m./p.m. for the Aqua satellite. An-high-density ground gauge networks (Wagner et al., 2007;
other important difference is the reduced temporal frequencyDraper et al., 2009; Jackson et al., 2010). This finding was
of WindSat at a fixed point on the ground due to its smallerconfirmed by Crow et al. (2010) using a completely different
swath width (1025 km) relative to AMSR-E (1445 km). approach (th&yaue method) and using soil moisture anoma-
Several algorithms to estimate surface soil moisture fromlies rather than absolute values. The skill to capture a high
AMSR-E and WindSat observations exist (e.g. Jackson etlegree of temporal variability of soil moisture was the main
al., 2004; Owe et al., 2008; Li et al., 2010). Results of driver to select LPRM soil moisture retrievals for this study.
these soil moisture algorithms have been validated on varyFor the majority of the applications and/or data assimilation
ing scales using several types of observations and methodgchniques that use remotely sensed soil moisture data the
(e.g. Wagner et al., 2007; Draper et al., 2009; Jackson etemporal correlation coefficient is arguably the most impor-
al., 2010; Crow et al., 2010; Li et al., 2010). All algo- tantindicator of utility. Especially for data assimilation it is a
rithms developed for the retrieval of soil moisture from these prerequisite to minimize systematic differences (Reichle and
two radiometers use a combination of observations in sevKoster, 2004), often by removing the climatology and scal-
eral frequencies and/or several polarizations. Land surfacéng the anomalies to match the models climatology (e.g. by
temperature (LST) is considered to be a critical input param-cumulative distribution function (CDF)-matching).
eter for soil moisture retrievals and several algorithms rely In this paper the impact of LST on the capability to detect
on Ka-band observations to retrieve this parameter. In parsoil moisture anomalies relative to a climatological expecta-
ticular, Holmes et al. (2009) developed a retrieval methodtion is evaluated. The analysis is executed on a quasi-global
which is based on a simple linear relation between vertical(50° N-50° S) scale, based on 8yr of data and two differ-
polarized Ka-band observations and LST. Because the newlgnt evaluation techniques. Large-scale validation/verification
designed missions (SMOS and SMAP) are single frequencyf surface soil moisture retrievals is generally hampered
(L-band) they lack an instrument suited to estimating theby a lack of ground-based observation networks with suf-
physical temperature of the Earth. Instead, algorithms to reficient spatial density to be accurately up-scaled to the
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resolution of satellite-based soil moisture retrievals (Scipalthis phase shift, we hope to better understand errors in SMOS
et al., 2008). Recently, ground-based observations havand SMAP soil moisture retrievals associated with the use of
been made more readily availabktp://www.ipf.tuwien.ac. temperature estimates from ancillary data. Also, potential
at/insitu/ and http://www.wcc.nrcs.usda.gov/scgnénhanc-  time-lagged pre-processing of the MERRA LST predictions
ing the evaluation of remotely sensed soil moisture usingfollowing Holmes et al. (2011) will be evaluated to deter-
ground-based observations over a wide range of land covemine the potential use of phase shifting approaches to en-
types (e.g. Brocca et al., 2011; Parinussa et al., 2011)hance the utility of LST products obtained from an atmo-
Nonetheless, global scale applications increasingly requirespheric re-analysis system.

global scale estimates of the skill of soil moisture data that This paper is organized as follows. Section 2 describes the
isolated monitoring networks cannot provide. For this rea-main characteristics of the data sets used in this study, and
son, two new evaluation techniques have been proposethe temporal and spatial selection procedures. This is fol-
which circumvent the need for extensive ground-based soilowed by a description of the two evaluation techniques and
moisture observations and can be applied globally. the different LST scenarios in Sect. 3. In Sect. 4 the results

The first technique is th&yaue method which was intro-  are presented and discussed, starting with the cross verifica-
duced by Crow and Zhan (2007) and was recently adaptedion of the two evaluation metrics followed by the results of
(Crow et al., 2010) to run on an anomaly basis and usingthe evaluated LST scenarios. Finally, Sect. 5 describes the
a Rauch-Tung-Striebel smoother instead of a Kalman filterconclusions and outline of future research.

This method is based on calculating the Pearson correlation

coefficient Ryaue) between rainfall errors and Kalman fil-

ter analysis increments realized during the assimilation of2 Data

remotely sensed soil moisture products into an antecedent

precipitation index (API). In this paper we used the recently2.1 Passive microwave observations
adapted version presented in Crow et al. (2010).

The second evaluation technique is based on the so-callefihe Advanced Microwave Scanning Radiometer for Earth
Triple Collocation (TC) analysis which was first applied to Observing System (AMSR-E) is a radiometer on board
soil moisture observations by Scipal et al. (2008). TC is aNASA's Aqua satellite which was launched on 4 May 2002.
powerful statistical tool for estimating root mean square errorThe satellite orbits the Earth at an altitude of 705km and
(RMSE) in a time series of geophysical data by simultane-scans with an incidence angle of °55 Observations are
ously solving for systematic differences in the climatology of made in vertical and horizontal polarization at six frequen-
a set of three linearly related data sources with independerties, three of which are relevant for this study — 6.9 GHz
error structures. Miralles et al. (2010) validated the TC tech-(C-band), 10.7 GHz (X-band) and 37 GHz (Ka-band). The
nique with in situ soil moisture data from four heavily instru- spatial resolution of the C-, X- and Ka-band observations
mented watersheds located in the United States. This techare 73x 43 km, 51x 30 km and 14« 8 km, respectively. For
nigue was also used by Dorigo et al. (2010) to rank the qualimore detailed information on the Aqua AMSR-E sensor
ity of different soil moisture products to inform a merger of readers are directed to NSIDC (2006). The design of the
active and passive microwave based soil moisture products.WindSat radiometer, on board the Coriolis satellite which

Our analysis is based on the application of both the TCwas launched on 6 January 2003, is based on AMSR-E
andRyaiue verification technigues to globally evaluate the im- and has only small changes in specifications (e.g. frequency,
pact of changing between Ka-band and MERRA-based LSTbandwidth, incidence angle and calibration procedure; Ta-
products on the anomaly detection accuracy of subsequeritle 2). Recently, Parinussa et al. (2011) showed that soil
LPRM-based AMSR-E and WindSat soil moisture retrievals. moisture retrievals from both satellites are of similar quality
The use of both TC an#ty4,e methods allows for the cross- when compared to in situ data after the implementation of an
verification of key results and the first attempt at comparinginter-calibration procedure and consistent use of the LPRM
results from both metrics on a global scale. It also allows forretrieval algorithm. The WindSat satellite orbits the Earth at
an initial global evaluation of various pre-processing strate-an altitude of 840 km and scans with an incidence angle of
gies for re-analysis based LST products. Recently, Holme$3.5, 49.9 and 53.0 for C-, X- and Ka-band, respectively.
et al. (2011) argued that time-lagged pre-processing of thd-or more detailed information on the Coriolis WindSat sen-
MERRA LST observations can improve their accuracy as asor readers are directed to Gaiser et al. (2004). The main
representation of the temperature for surface soil moistureharacteristics of the two radiometers and satellites which are
retrieval algorithms. Their approach is based on synchroniz+elevant for this study are summarized in Table 2.
ing temperature observations via the introduction of a phase Animportant difference between AMSR-E and WindSat is
shift to temperature observations at different depths. Thigthe reduced temporal frequency of WindSat observations as a
phase shift may vary with land cover and surface state, sinceesult of the reduced swath width. Another difference is the
these properties determine the propagation of heat througlocal equator overpass times, which are 06:00 a.m./p.m. for
deeper soil layers. In evaluating several scenarios, based dhe Coriolis satellite (identical to SMOS and SMAP) and
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01:30a.m./p.m. for the Aqua satellite. These differences mo2.3 Precipitation data
tivate the use of both WindSat and AMSR-E retrievals in this
analysis. In particular, the 06:00 a.m./p.m. overpass time offwo separate satellite based rainfall data sets produced
WindSat matches SMOS and SMAP. This is critical sinceby Tropical Rainfall Measuring Mission (TRMM) Multi-
at the 06:00 a.m./p.m. overpass times of the Coriolis satelsatellite Precipitation Analysis (TMPA; Huffman et al.,
lite, the soil temperature profile is considered to be more2007) are also utilizedPS® and p92U9¢ psatis pased on
vertically homogeneous than at the 01:30a.m./p.m. overthe real-time TRMM 3B42RT product calculated by combin-
pass times of the Aqua satellite. However, since the reding passive microwave with microwave calibrated infrared
duced temporal frequency of WindSat observations may insatellite data derived from different sensors (Huffman et al.,
troduce higher levels of sampling error in evaluation results,2007). P94 js based on the same satellite input data
we have also included the AMSR-E results in the analysis.(TRMM 3B42) but includes a retrospective correction based
Finally, the physical conditions of the observed surface areon monthly rain gauge data. Hufmann et al. (2007) demon-
significantly different for the day- (ascending) and night- strated the substantially higher quality ®$2"9€after the ret-
time (descending) overpass, and are therefore separated inspective correction aPS3 Both precipitation products are
the analysis. produced quasi-globally (8681-50° S) at a 3-hourly interval
Radio frequency interference (RFI) disturbs the naturalhaving a spatial resolution of 174In this study, precipitation
microwave emission in the C-band frequency over signifi-data was upscaled to E/2atitude by 1/2 longitude using
cantly large areas over the United States, India and Japarspatial averaging and daily representations were generated by
The RFI algorithm developed by Li et al. (2004) was usedaccumulating each precipitation product over a 24-h period.
to detect these areas for both satellites. If RFI was detected
on a specific location we switched back to observations in2.4 Scatterometer data
the somewhat higher X-band frequency (Fig. 1) for the entire

analysis period. The Advanced Scatterometer (ASCAT) on board ESA's
MetOp satellite is an active (radar) instrument operating
2.2 MERRA data in the C-band frequency (5.255 GHz) making observations

) ) since October 2006. Backscatter measurements at six dif-
The Modern Era Retrospective-analysis for Research anggrent azimuth angles are converted to surface soil mois-

Applications (MERRA) is a multi-decadal (30+yr) contin- -« (SSM) estimates by applying the TU Wien soil mois-

uous re-analysis data record developed to support NASAS,,re change detection algorithm (Naeimi et al., 2009). The
Earth science objectives (Rienecker et al., 2011). MERRAgtace soil moisture value is a relative measure of soil mois-
provides the science and application communities Withy,re ¢1_2 cm) ranging between wilting point and saturation.
global analysis with an emphasis on improved estimates ofy yecent validation study (Brocca et al., 2011) showed an
the global hydrological cycle. Three dimensional diagnos-gyera| high performance of the ASCAT SSM estimates for
tics are produced at a 6-hourly interval, while two dimen- 4 15196 number of in situ ground station distributed through-
sional diagnostics (including LST) are produced at an hourlyy ¢ Europe. Albergel et al. (2010) found high correlations

interval. This high temporal interval was the main driver of ponveen the ASCAT SSM estimates and the surface soil
using MERRA LST in this analysis. MERRA data products pistyre from the operational hydro-meteorological model

are coarse scale, having a spatial resolution of lH#tude 4 \jao-France for a region in south-western France. By
by 2/3 longitude. In this study, MERRA LST data are down- 6 time of the analysis, the product was available from Jan-
scaled to 1/2Ia_1t|tude by 1/2 Iong|tud_e using nearest nelgh-_ uary 2007 till September 2010 and is produced in time se-
bour re-sampling and observation times were matched withjeg ith a spatial resolution of 25km. In this study, the as-
the average 1f2observation times of the satellites. cending and descending swaths are combined, which leads

The MERRA surface temperature product was analysed, 4 nearly daily revisit frequency at the equator. Surface
by Holmes et al. (2011), with the focus on the implementa- i moisture data was upscaled to°Ligtitude by 1/2 lon-

tion fprsoil moisture retrievals. In order to acc,ount for possi- gitude using spatial averaging. For more detailed informa-
ble differences between the depth of MERRA' surface layetjon on the TU Wien soil moisture change detection algo-

and the shallow temperature sensing depth for C- and Xyjihm readers are directed to Wagner et al. (1999) and Naeimi

band, several scenarios of the MERRA re-analysis productg,; 4 (2009). For more detailed information on ASCAT

will be evaluated that reflect slightly different soil depths. o poard the MetOp satellite readers are directed to Figa-
MERRA data is publically available through the Goddard g5i4ana et al. (2002).

Earth Sciences Data and Information Services Ceimirz
/ldisc.sci.gsfc.nasa.gov/mdisc/data-holdifiggsmore infor-
mation on the MERRA data, readers are directedhttp:
/l[gmao.gsfc.nasa.gov/merra

2.5 Data selection

Due to differences in availability and characteristics (tempo-
ral and spatial resolution) of each dataset, some compromises
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Fig. 1. The green areas indicate the areas where C-band observations are used. The red areas indicate where C-band observations a
contaminated by RFI and X-band observations are used.

had to be ma'lde. B_y definition, the triple collocation (TC) Table 1. Boundaries to select different vegetation optical depjh (
method requires 3 independent data sources for the samg,qges.

geophysical variable (Sect. 3.1.2), which restricts the TC
analysis to the time period of ASCAT availability between Class Boundaries
January 2007 and September 2010. The time period for

which the data sets required for tfRgaue method are avail- 1 r<01
able is significantly longer, from February 2003 till De- g 8éif;j8§
cember 2010. This period was chosen to make the analy- 4 05707
sis periods of the two radiometers (AMSR-E and WindSat) 5 0.7<=17<0.9
identical. 6 >=0.9

The spatial resolution of the different data sets range from
the highest resolution for the ASCAT data (25 km) to the low-
est resolution for the MERRA re-analysis LST product {1/2
latitude by 2/3 longitude). The spatial resolution of the pas- signal becomes entirely masked due to the overlying canopy
sive microwave observations are typically available af 1/4 when the simultaneously retrieved vegetation optical depth
degree resolution. Also, the different data sets vary in theirin the C-band frequency exceeds a value of 0.80. Although
temporal resolution ranging from the highest resolution forthe LPRM rejects soil moisture retrievals in these areas on
the MERRA re-analysis (global hourly interval) to the low- a regular basis, they are considered in this analysis in or-
est resolution for the (active and passive) microwave obseréder to inter-compare TC anflyaue results over the widest
vation. To balance the differences in spatial and temporapossible range of land surface conditions. Only frozen sur-
availability of the data sets, the entire analysis was executedaces are completely removed from the analysis. For areas
quasi-globally (50 N-50 S) on a daily timescale for a 192  with detected Radio Frequency Interference, soil moisture
degree spatial resolution. Moreover, the brightness temperaretrievals are derived from X-band brightness temperature
tures from AMSR-E and WindSat were re-sampled to daily observations.
1/2° global grids and day- (ascending), and night (descend- Both evaluation techniques require anomaly data which
ing) time observations were analysed separate. was calculated by decomposing the raw time series data into

The results from the evaluation techniques were anallimatology and anomaly components. For a general geo-
ysed over 6 different land cover classes (Table 1; Fig. 3)Physical variablel, this decomposition can be represented as
in order to categorize results according to vegetation den-A, — A, — Apoy (1)
sity. The LPRM retrieves vegetation optical depth, simulta-
neously with the soil moisture retrievals. Daily LPRM veg- whereApoy is the climatological expectation of a geophysi-
etation optical depth retrievals from the night-time AMSR- cal variable from the entire analysis period, calculated using
E overpasses were averaged for the period February 2008 31-day moving window centred on a particular day of the
till December 2010 (Fig. 2). Based on this map, the globalyear (DOY), andA; are anomalies relative to these expecta-
area over which the analyses were executed KB&0 S) tions experienced on a particular day Prior to the appli-
is divided into 6 different classes (Table 1; Fig. 3). In the cation of either the TC oRy4ye metrics, all soil moisture
standard LPRM routine it is assumed that the soil moistureand precipitation inputs were decomposed into anomalies
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Average vegetation optical depth from AMSR-E nighttime retrievals
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Fig. 2. Average vegetation optical depth)(for the AMSR-E descending overpass retrieved in the period February 2003 till December 2010.
Red areas indicate low optical depth values and blue areas indicate high optical depth values.
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Fig. 3. Vegetation classes, of which the boundaries are indicated in Table 1, over whigtdfae method and the TC method were
evaluated based on the simultaneously derived average vegetation optical deptiihe AMSR-E descending overpass for the period
February 2003 till December 2010.

Table 2. Specifications of the AMSR-E and WindSat microwave 3 Methodology

sensors used in the soil moisture retrieval algorithm. ) _
3.1 Evaluation techniques

Parameter AMSR-E WindSat

Frequency (GHz) 6.9, 10.65& 36.5 6.8,10.7& 37 3.1.1 Rvae method

Bandwidth (GHz) 0.35,0.1&1 0.125,0.3& 2 _ _ . _ .

Altitude (km) 705 840 The first technique is th&yaue method which was intro-
Swath width (km) 1445 1025 duced by Crow and Zhan (2007) in a response to overcome
Orbittype — Polar Nearly polar practical difficulties associated with the evaluation of global
Ascending orbit 01:30p.m. 06:00 p.m. . . . -
Descending orbit ~ 01:30 a.m. 06:00 &.m. products with the course spatial scale€26 km) of soil mois-

Data period May 2002 to present  January 2003 to present ture retrievals. TheRyaue method is based on the obvious

connection between rainfall and subsequent changes in soil
moisture. It uses the relatively abundant rain gauge observa-
tions to indirectly evaluate the accuracy of remotely sensed
following Eqg. (1). As a result, this analysis will focus solely gyrface soil moisture. Th&yaue method is based on cal-
on evaluating the accuracy of soil moisture anomaly predic-cy|ating the Pearson correlation coefficieR4ue) between
tions relative to a fixed climatology. Finally, to allow for rainfall errors and Kalman filter analysis increments real-
direct comparisons between the different scenarios for thg,eg during the assimilation of remotely sensed soil mois-
LPRM, a particular 1/2 grid for a given overpass time is tyre products into an antecedent precipitation index (API).
only included in the analysis if it contains a viable retrieval Typical Rvaue magnitudes range from about 0 to 0.7, where
in all evaluated scenarios. a higherRyaie indicates high-quality soil moisture retrieval
and increased efficiency in the filtering of errors in the API
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predictions resulting from random error #Ftused to gen-  soil moisture as the third independent data product, to rank
erate API. Such errors are assumed known once the lowethe different satellite observed soil moisture products. Both
quality rainfall products £53), typically obtained from a papers used several combinations (different re-analysis or
real-time precipitation dataset, is retrospectively correctedmodelled data) for the third independent data product, and
using rain gauge data, resulting in a substantially highershowed that the error estimates are only marginally influ-
quality precipitation datase?9349¢(Huffman et al., 2007). enced by the choice of this third dataset.
Consequently, precipitation errors can be explicitly calcu- This paper aims to examine the relative quality of soil
lated from the differencgS3'— p93u9e which can be linked  moisture products generated by a single retrieval algorithm.
to remotely sensed surface soil moisture. The approaclior this reason, two soil moisture data sources (API cal-
is based on the rationale that the correlation between raneulated from P9249¢ and ASCAT) are fixed, while the
dom rainfall errors and filter correction should increase asother product (soil moisture from the LPRM) is evaluated
the accuracy of the assimilated soil moisture measurementfor varying scenarios. All three soil moisture data sets
increases. (i.e. OascaT.Oap1, and various scenarios 6{pryv) are de-
Recently, Crow et al. (2010) adapted tRgyjue approach  composed into anomalies using Etj) énd we choséascar
to run on an anomaly basis (i.e. after precipitation and soilas the reference data set. Since the truth is unknown, we ar-
moisture products have been decomposed by EQinfo bitrarily chose the ASCAT data sets as the reference which
anomaly components). In this case, APl anomalies arewill not affect subsequent manuscript conclusions. Never-
defined as theless, all subsequent RMSE values will be expressed in the
A A A dynamic range of this reference. Following Stofellen (1998),
APl =y -APli-1+Pi 2) Scipal et al. (2008) showed that a consequence of the un-
ona day andy is assumed equa| toa g|oba||y constant value known truth is that Only two of the three calibration factors
of 0.85. Analysis increments are then obtained by assimi-can be determined leading to E§) énd @).
lating soil moisture anomalies using a Rauch-Tung-Striebel

smoother an®Ryaeis defined as the sampled correlation co- , _d fascat - OLPRM 3)
efficient between 5-day moving averages of these analysigAP' — VAPl "
increments and 5-day moving averages of erré.in LPRM *ZAPI
Crow et al. (2010) verified this approach using three B
heavily-instrumented watersheds located in the Unitedj« _2 OascaT - Oapi 4
. 0*LPRM =0LPRM * | ———= (4)
States. Ryaiue Was calculated for a number of different Oap1 - OLPRM

AMSR-E soil moisture products over each site and compared

to the correlation coefficient calculated between each prodfollowing this decomposition Eql) and scaling Egs.3)
uct and extensive ground-based soil moisture observationsnd @), the RMSE of anomalies i) pry can be estimated as
Results from these comparisons demonstrated Bhatie

accurately captures the anomaly correlation-based skill o A _ A A A -

soil moisture retrievals without reliance on ground-basedeMSE(eLPRM)_ <<9LPRM_9ASCAT> (OLPRM_QAP'» ®)

soil moisture observations. The adapt®g,e method was ) o
used in this research and for more detailed information onVhere the outside angled brackets indicate temporal averag-

this method readers are directed to Crow et al. (2010). AdNg- The accuracy of Eq5J relies on two key theoretical
an example of this method, thByaue as determined for prerequisites of TC being met. First, TC requires a suffi-

the LPRM AMSR-E (descending) soil moisture product is ciently large samplex100) of common observations avail-
shown in Fig. 4. able for temporal averaging. Second, the mostimportant, TC

requires that errors in each of three data sets are substantially
3.1.2 Triple collocation uncorrelated. The latter prerequisite is difficult to fulfill (Sci-

pal et al., 2008; Miralles et al., 2010; Dorigo et al., 2010)
TC is a statistical tool for estimating root mean square er-for soil moisture estimates obtained from complex land sur-
ror (RMSE) in time series based on analyzing three linearlyface models and re-analysis systems since such approaches
related data sources with independent error structures. Thiend to integrate information from a wide, variety of sources.
approach has been proposed as a potential tool for the valAs a result, here we follow Crow and van den Berg (2010)
idation of remotely-sensed surface soil moisture retrievalsand apply TC to soil moisture estimates obtained from a sim-
(Scipal et al., 2008). Miralles et al. (2010) used remotely ple API modeling approach driven only by TMPA precipita-
sensed-, land surface modelled- and in situ soil moisture tdion products £92499. Miralles et al. (2010) examined the
estimate the magnitude of point-to-footprint upscaling errorimpact of replacing soil moisture estimates from a highly-
for ground-based surface soil moisture observations. Dorigaomplex land surface model with a simple API dataset and
et al. (2010) used remotely sensed soil moisture from 2 dif-found that both choices lead to essentially similar TC re-
ferent (active and passive) satellite platforms and re-analysisults. Additionally, the use of a simple APl model, instead
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Rvalue method for AMSR-E nighttime observations value
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Fig. 4. Example of theRy4ye method for the AMSR-E descending overpass, the analysis period was February 2003 till December 2010.
Red areas indicate higR,q,e Outputs and blue areas indicate I&y,,e Outputs.

of a re-analysis soil moisture product, for the third indepen-nique the analogous concern is ambiguity introduced by the
dent product minimizes possible cross-correlation when reuncertain choice of in Eqg. (2) and the potential confound-
placing Ka-band LST by MERRA re-analysis LST data. Fi- ing impact of auto-correlated soil moisture retrieval error
nally, the proposed model will only result in meaningful er- (Crow and Zhan, 2007). Here we present bB{jyeand TC
ror estimates if the three data sets represent the same physiaasults in an attempt to enhance the credibility of our global
quantity. If one of the products does not represent the samevaluation results by seeking results supported independently
guantity as the other two, then TC would naturally result in by both metrics.
unrealistic error estimates for all products (more unrealistic The analysis period of the TC method is limited due to the
for the non-representative data than other two), owing to theavailability of the ASCAT SSM dataset (2007—2010) and dif-
re-scaling process described above in Egs4) fers from the period used for th&5,,e method (2003—-2010).
TC analysis is known to give highly spurious results when For both methods the climatology was calculated based on
applied to low-accuracy data sets and some type of pretheir analysis periods. A consequence of these different anal-
processing is typically done to mask out such areas with pooysis periods is that the calculated anomalies for the longer
remotely sensing results. For example Scipal et al. (2008period of theR,41,e method are more statistically robust. On
masked out highly-vegetated and desert areas where nonhe other hand, the outcomes from thg,e method depend
significant correlation coefficients were sampled between theon the amount of precipitation events during the analysis pe-
collocated data sets. In this paper we aim to evaluate soitiod, both differences may result in spatial inconsistencies of
moisture retrievals over the widest possible range and a preevaluation results. Itis likely that the number of precipitation
selection procedure will eliminate some regions completely.events made available for thi&aue method is the dominant
Therefore, we did not apply any correlation coefficient andfactor in arid areas, since evaluation results from Rygue
masked out areas with clearly non-physical TC RMSE esti-verification technique appear unreliable and highly spatially
mates (i.e. estimated RMSE100 in the ASCAT soil mois-  heterogeneous in desert areas (Fig. 4).
ture index climatology). This relatively permissive threshold
allows us to evaluate soil moisture retrievals over the widest3.2 Land surface temperature scenarios
possible range. As an example, the application of TC to the
LPRM AMSR-E (descending) soil moisture retrievals prod- The analysis in this paper will focus on the application of the
uct is shown in Fig. 5. TC andRyqye verification techniques to AMSR-E and Wind-
While both theRyaue and TC verification techniques have Sat surface soil moisture retrievals generated using a variety
been successfully applied in previous soil moisture evalua-of scenarios for parameterizing LST. The first step of these
tion studies (Crow and Zhan, 2007; Crow et al., 2010; Scipalscenarios will be based on the synthetic degradation of LST
et al., 2008; Dorigo et al., 2010), their results have neverretrievals from Ka-band measurements (Sect. 3.2.1). This
been inter-compared and neither metric has achieved suffidegradation will be used to assess the sensitivity of LPRM
cient independent credibility to serve as true replacement fosurface soil moisture retrievals to LST error, and evaluating
ground-based soil moisture measurements. For TC-based afhie ability of both TC andRyae to detect the degrading im-
proaches, the primary concern is the potential for unreliablepact of this error on surface soil moisture retrievals. The sec-
results for the case of cross-correlated errors (Scipal et alond set of scenarios will be based on temperature estimates
2008; Crow and van den Berg, 2010). For tRgyue tech- acquired from MERRA. In order to examine issues related
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TC method for AMSR-E nighttime observations

o

45" Nl ......... ¥ : o ...... .......

o

g5 g b e s Frwis s R e e S e {pma e e el g
180" W 135 W 90" W ] ’ ]

45° 0 45 E 90 E
Fig. 5. Example of the TC method for the AMSR-E descending overpass, the analysis period was January 2007 till September 2010. Blue

areas indicate low TC outputs and red areas indicate high TC outputs.

Table 3. Evaluated land surface temperature scenarios. 3.2.2 MERRA scenarios

The LST from the MERRA re-analysis data set, referred to as
TMERRA, represents a much shallower layer as the C- and X-
band radiation originates from a somewhat deeper laygs(
2cm). Because the temperature gradients may be substantial

Ka-band LST
(Level of perturbation MERRA LST
in degrees Kelvin (K))  (Phase shift in hours)

0.5K 0h (original MERRA LST) in the top centimetres of the soil, even such a small differ-
1.0K 1/5 h ence in vertical representation may result in systemic diurnal
2.0K 1

biases in temperature. As a result, the phase and amplitude
of Tmerra is likely not optimally suited to represent the LST

in soil moisture retrieval algorithms like LPRM. In order to
better represent the temperature of the emitting layer of C-

to the vertical depth of the soil layer that is represented by2"d X- band microwave emission, and therefore make better
the MERRA temperature observations, several scenarios willS€ Of the MERRA dataset as input to LRPM, we test differ-
be constructed utilizing various phase and amplitude pre_ent scenarios in wh|§:h_the vertical depth of the soil layer of
processing modifications to the MERRA surface temperaturd/ERRA predictions is increased.

dataset (Holmes et al., 2011). Table 3 provides an overview 1he vertical distance between two measurement depths
of all LST scenarios as described in Sects. 3.2.1 and 3.2.8Nd the thermal properties of the medium determine the
which are used to detect the impact of LST on surface soil€n9th of the time lag between soil temperature measure-

4.0K

moisture retrievals. ments at two different depths. Van Wijk and de Vries (1963)
showed that a phase shift is accompanied by an exponen-
3.2.1 Ka-band scenarios tial reduction in amplitude4) and an increase in phase shift

(de) of the daily temperature cycle as the measurement depth
LST is considered to be a critical input parameter to retrieveis moved deeper into the soil Eg$§) @Gnd (7).
soil moisture and several algorithms use a method devel-

oped by Holmes et al. (2009) to retrieve this parameter. ThisA,, = A,1¢ (d—z> (6)
method is based on a simple linear relation between coinci- <d

dently observed vertical polarized Ka-band brightness tem- —dz

perature and the temperature of the land surface, referredy = —— (7)

to asTka. In this paper the Ka-band brightness tempera-

ture signal is degraded synthetically by adding a mean-zerowheredz is the vertical distancezf—z1) and the damping
Gaussian random noise signal (uncorrelated in both time andepth ¢q) is an expression of the thermal properties of the
space) to original Ka-band LST retrievals. Here, standardmedium. Holmes et al. (2011) demonstrated that by using
deviations of 0.5, 1, 2 and 4K are used for these synthetionly the measured phase shift between temperature records
random perturbations. These levels are chosen to represefrom two depths, a time series of temperature data can be
realistic error levels of various LST products (Holmes et al., synchronised to estimate the temperature at a second depth
2011), with the 4 K level being an extreme level of degrada-according to Egs.6) and (7). Specifically, they found that a
tion over the Ka-band temperature product. 3 h phase shift applied to the original MERRA product could
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Fig. 6. Detailed diurnal land surface temperature time series from MERRA for 1 July 2009 in Oklahoma, United States of America. Different
colours/line styles indicate different phase shifts which are related to different depths in the soil.

estimate the temperature at 5cm below the surface with ad  Results and discussion

RMSE of 1.8K for a dense in situ network located in Ok-

lahoma. For the present study a much smaller phase shi#.1 Cross-verification

should be appropriate to estimate the temperature lat

2cm, but the exact value is difficult to estimate because itS0il moisture retrievals from the night-time (descending)

may depend on land cover and surface state. For this reﬁMSR'E Observations are Used for CI‘OSS-Verification of the

son several different scenarios from the MERRA re-analysisoutputs of the two evaluation techniques introduced above

LST dataset were evaluated for three different cases: (1) néTC andRvaie. Since the soil moisture data sets have been

phase lag (i.e. the original estimate), (2) a phase shift ofProcessed (scaling procedure: 3.1.2), TC-based RMSE and

1/2h and (3) a phase shift of 1h. For a single pixel in Rvalue should contain essentially the same information (En-

Oklahoma (USA), Fig. 6 demonstrates the impact (time_|agtekhabi et al., 2010a) if both evaluation procedures are op-

and amplitude reduction) of these phase shift on MERRAe€rating correctly. Figure 7 explores this issue in greater de-

LST estimates. In addition to the evaluated MERRA sce-tail by showing a scatterplot between TC and fgue re-

narios (original, 1/2h and 1h), a 2 and 3h phase shift wassults over the entire range of LPRM-derived canopy optical

included in Fig. 6 (for visualization purposes only), show- depths £) (see Fig. 2). Over this range {0r < 1.10) global

ing the damping in the amplitude and the associated timeRMSE acquired from the TC technique and gloBg e re-

lag as a result of the introduced phase shift. This figuresults are selected and averaged within a series-610.01

also shows that the soil temperature profile is more verti-intervals, resulting in a set of 110 data pairs (Fig. 7). The

cally homogeneous at the Coriolis/WindSat overpass timecoefficient of determinationk?) between the two evaluation

(06:00 a.m./p.m. local solar time) than at the Aqua/AMSR- techniques was highRf = 0.90). However, Fig. 7 does show

E retrieval time (01:30 a.m./p.m.). deviations from the regression line in both the high and low
extremes of the vegetation (class 1 and 6). The high mutual
consistency between TC amjaue Which was shown in the
other classes, breaks down at extreme vegetation levels due
to a lack of variation in theRy5ye Metric, suggesting that
Ryalye may saturate at extreme vegetation amounts. Class
1 (r < 0.10) mainly represents desert areas with only few

Hydrol. Earth Syst. Sci., 15, 3138451, 2011 www.hydrol-earth-syst-sci.net/15/3135/2011/



R. M. Parinussa et al.: The impact of land surface temperature on soil moisture anomaly detection 3145

Global comparison evaluation metric
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Fig. 7. Comparison of soil moisture anomaly skill according to the TC andRhg,e techniques for AMSR-E night-time (descending)
retrievals. The vegetation classes refer to ranges of canopy optical depth defined in Table 1. Masked extremes refer to the vegetation classe
1 and 6 (Table 1 and Fig. 3).

precipitation events. For this reason tReyye verification  the skill according to the TC technique. Figure 8 shows that
technique, which requires sampling across a large number afesults of theRyye €valuation technique are again roughly
precipitation events, may lose sensitivity in very arid climate inversely related to those of the TC evaluation technique.
regions. On the other end of the scatterplot, class 6 (mainlyFor both satellites (AMSR-E and WindSat) in both day- (as-
rainforest areas), the deviation could be explained by the factending) and night-time (descending) retrievals, increasing
that the soil moisture signal becomes almost entirely maskedhe magnitude of the noise levels leads to a reduction in
due to the overlying canopy. When these two extreme veg-Ryaiue for all vegetation density classes (Fig. 8, left). The
etation regions (i.e. vegetation classes 1 and 6) are maskeifure also shows a steady decreaseRige With increas-

the coefficient of determination between the two evaluationing vegetation density which is consistent with expectations
techniques is very highR2 = 0.95). This high level of con-  about the impact of vegetation density on the attenuation of
sistency between the two techniques lends confidence to theinicrowave emission from the soil surface by the overlying
interpretation as robust evaluation metrics for soil moisturecanopy. As previously discussed (Sect. 4.1), this trend is bro-

retrievals. ken for AMSR-E retrievals within class 1 (i.e. mainly desert
areas) land cover conditions. For both satellites, the lowest
4.2 Ka-band scenarios Rvalue are found in class 6 where the LPRM does not typi-

. . ) _ cally report retrievals.
As described in Sect. 3.2.I, retrievals were synthetically

degraded using four different noise levels and then applied Figure 8 (right) shows comparable results for the TC
to generate a range of LPRM AMSR-E and WindSat-basedmethod. In contrast with th&y4ue method, where an in-
soil moisture products. These products were then evaluatedreasing value indicates a better soil moisture product, an in-
based on both th&,5,e and TC verification techniques. Re- creasing root mean square error (RMSE) indicates that the re-
sults within the 6 vegetation optical depth classes, as wasnotely sensed soil moisture product is of lower quality. For
shown in Fig. 3 (Table 1), were averaged resulting in Fig. 8.both satellites in both day- (ascending) and night-time (de-
The left part of this figure shows the anomaly detection skill scending) retrievals the TC method confirms the findings of
according to theRyaue technique, while the right part shows the Ryaue method. Increasing the artificial noise level on the
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Fig. 8. Effect of degrading thdka on the soil moisture anomaly detection skill according to Bygj e (left) and the TC method (right)

for the different overpass times of AMSR-E and WindSat. Each graph shows the average of the global results for six different vegetation
classes (Table 1), and the different symbols indicate the level of artificial Gaussian noise appliefiig ieéore inputting to the retrieval
algorithm.
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Fig. 9. The relative skill in anomaly detection according to the TC @4, e techniques for thre@\erra Scenarios representing dif-

ferent soil depths. The x-axis represents the different MERRA scenarios (Original, 1/2 h- and 1 h phase shift), and the y-axis captures the
improvements (red) or degradation (blue) relative to the baseline case. Each row shows the results for a different observation time as baset
on AMSR-E (01:30a.m./p.m.) and WindSat (06:00 a.m./p.m.). The results are further subdivided based on vegetation classes 2-5 (Table 1).
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Tka inputs into LPRM leads to an increase in TC-estimatedbreak down at the high and low extremes of vegetation den-
RMSE for subsequent LPRM soil moisture retrievals. Like- sity (Sect. 4.1), only the results for vegetation classes 2 to 5
wise, increasing vegetation density leads to a steady increasare presented here.
in TC-estimate RMSE for soil moisture retrievals. As was First, Fig. 9 is analyzed without differentiating results
the case forRygue, the highest TC-estimated RMSE values from the individual MERRA scenarios. Overall there is a
are found for very densely-vegetated surfaces (i.e. class &Yend between the relative performance of LPRM soil mois-
which are typically masked in LPRM applications. This of- ture retrievals usingiuerra (vVersusTka) and the vegeta-
fers some confidence that TC can accurately identify areasion density. In the lightly-vegetated classes (2 and 3), the
of very poor retrieval accuracy. Finally, the similar responseperformance of the soil moisture retrievals degrades when
for both satellites with regards to variations in LST noise and Tyyerra Was used relative tdx, (majority is blue), the aver-
vegetation density indicates that the lower spatial support olge degradation over all MERRA scenario’s in these classes
the WindSat sensor does not influence the results of the evals 9.7 %. However, the use of MERRA-based soil moisture
uation technigues. retrievals actually improves LPRM soil moisture retrieval ac-
Figure 8 also suggests that the LPRM has varying sensieuracy for class 4 and 5 (majority is red), on average this
tivity to the surface temperature input under different veg-improvement is 13.7 %. A general consistency between the
etation conditions. Generally, the results of the evaluationTC- and the Ryue evaluation techniques is again appar-
techniques for the different noise scenarios cluster in the exent. There are some deviations between the performance of
treme classes (1 and 6) suggesting a lower sensitivity of thehe two methods, but these are generally small (e.g. Wind-
LPRM to LST in these areas. In the other classes (2-5) th&Sat Ascending, class 2; AMSR-E Descending, class 3) or
distribution for the different noise scenarios show a widerthey are from observations taken under challenging condi-
spread, indicating a higher sensitivity. Generally, this trendtions (AMSR-E Ascending; dense vegetation class 5). The
was confirmed by both verification techniques. relative impact of changing betwedi, and Tyerra tend
Another important observations from Fig. 8, is that day- to be larger for AMSR-E than for WindSat. This suggests
time observations from both satellites become of higher qualthat 01:30 a.m./p.m. (i.e. AMSR-E) observations are gener-
ity when the vegetation density increases compared to thelly more sensitive to the transition from satellite observed
night-time observations over the same areas. Several stud-ST to re-analysis LST than 06:00 a.m./p.m. (i.e. WindSat)
ies (Loew and Schlenz, 2011; Brocca et al., 2011) indicatedbbservations.
this already, but none of them explained this phenomenon. Secondly, the impact of modifying the represented depth
One possible explanation is that the vegetation water conef Tyerra estimates, via Eqs6) and (7), is analyzed. Gen-
tent during the day decreases due to transpiration induced bgralizing these results is not straightforward since Fig. 9
photosynthesis, making the vegetation more transparent tshows a large variety of responses to this modification
microwave emission, and consequently increasing the serbetween the different satellites and their individual paths.
sitivity to the underlying soil moisture signal. In general, AMSR-E day-time (ascending) observations deviate signif-
for the majority of vegetation species the dry wood densityicantly when compared to the other analyses and generally
is smaller than the density of water leading to a decrease ishow improved results with increasing phase shift. A one
vegetation bulk densities when vegetation water content dehour phase shift shows the best results for AMSR-E day-time
creases. Also, higher canopy temperatures during the dagascending) observations, which could reflect an overestima-
could lead to decreased vegetation optical depth values, rdion of the diurnal heating as shown previously in Holmes et
sulting in the same higher penetration through the overlyingal. (2011). Conversely, for AMSR-E night-time (descending)
canopy. In any case, these findings show that the traditionahnd WindSat (both paths) a 1/2 h phase shift inTherra
view, which expects a higher quality of night-time observa- dataset is optimal under low- to sparsely vegetated conditions
tions since the environmental state is closer to equilibrium at(classes 2 and 3).
these times (de Jeu et al., 2008) might be incomplete.

4.3 MERRA scenarios 5 Conclusions and outlook

The TC andRy4ye evaluation techniques were also applied The results of this study show the impact of LST error on
to soil moisture retrievals using the 3 differéfiierra Sce- the anomaly detection skill of surface soil moisture retrievals
narios (Table 3) and results within the 6 vegetation classeslerived from the Land Parameter Retrieval Model (LPRM).
(Table 1; Fig. 3) were averaged. Figure 9 show these resultE ST is an input to the LPRM and is normally acquired from
for both evaluation techniques, where the relative degradaeoincident Ka-band observations. In this study retrieved soll
tion (negative values; blue areas) or improvement (positivemoisture from this default scenario is first compared to sev-
values; red areas) compared to the original retrieval strateral scenarios where the Ka-band temperature input is syn-
egy (LPRM usingTk,) are plotted. Since the mutual con- thetically degraded, and then to scenarios where LST is ac-
sistency between both evaluation techniques was shown tquired from the MERRA re-analysis data. Two large-scale

Hydrol. Earth Syst. Sci., 15, 3138451, 2011 www.hydrol-earth-syst-sci.net/15/3135/2011/



R. M. Parinussa et al.: The impact of land surface temperature on soil moisture anomaly detection 3149

evaluation techniques, th®,sue metric and the triple collo- The results further suggest that AMSR (01:30 a.m./p.m.)
cation (TC) method, both show sensitivity to soil moisture observations are more sensitive to the transition from
retrieval skill when the quality of the LST signal is synthet- satellite observed LST to re-analysis LST than WindSat
ically degraded. Moreover, a very high correlatioR? (= (06:00a.m./p.m.) observations. This is an important find-
0.95) between the two evaluation techniques was demoning, since the current (SMOS) and future (SMAP) satel-
strated when extreme vegetation conditions were maskedite both have similar overpass times (06:00a.m./p.m.) as
This consistency lends credibility to results obtained fromthe WindSat satellite. The transition from C-band WindSat
both metrics. and AMSR-E results to L-band SMAP and SMOS is widely
It was also shown that both evaluated LST products mani-expected to yield improved surface soil moisture retrievals.
fest themselves differently in the LPRM under different veg- However, WindSat and AMSR-E retain the advantage of a
etation conditions. This finding may be related to the natureKa-band for LST retrievals while SMAP and SMOS are (or
of MERRA and Ka-band LST estimates and how differenceswill be) forced to estimate LST from ancillary data (e.g. re-
between the two estimates manifest themselves and/or inteaenalysis or near real time data from weather prediction cen-
act under certain vegetation conditions. Ka-band LST is di-tres). Since, at least for some vegetation types, the use of
rectly related to the true radiometric temperature of the landthis ancillary data appears associated with degradation in re-
surface and is observed simultaneously to the other satekrieval accuracy, a recommendation for future studies would
lite observations while MERRA LST estimates are basedbe to include SMOS soil moisture retrievals to evaluate the
on the use of a coupled land-atmospheric model to temmagnitude of these LST degradations relative to the over-
porally smooth between assimilated observations of surfacall advantages associated with using lower frequency L-band
and atmospheric states. As a result, MERRA LST estimatesadiometry to retrieve surface soil moisture. The work pre-
tend to be temporally smoother than instantaneous Ka-bandented in this paper could be used as a framework for such
LST retrievals. Since vegetation also tends to reduce thevaluations.
(high frequency) temporal variation of LST, such conditions
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