16,921 research outputs found

    Natural User Interfaces for Virtual Character Full Body and Facial Animation in Immersive Virtual Worlds

    Get PDF
    In recent years, networked virtual environments have steadily grown to become a frontier in social computing. Such virtual cyberspaces are usually accessed by multiple users through their 3D avatars. Recent scientific activity has resulted in the release of both hardware and software components that enable users at home to interact with their virtual persona through natural body and facial activity performance. Based on 3D computer graphics methods and vision-based motion tracking algorithms, these techniques aspire to reinforce the sense of autonomy and telepresence within the virtual world. In this paper we present two distinct frameworks for avatar animation through user natural motion input. We specifically target the full body avatar control case using a Kinect sensor via a simple, networked skeletal joint retargeting pipeline, as well as an intuitive user facial animation 3D reconstruction pipeline for rendering highly realistic user facial puppets. Furthermore, we present a common networked architecture to enable multiple remote clients to capture and render any number of 3D animated characters within a shared virtual environment

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    Framework for Dynamic Evaluation of Muscle Fatigue in Manual Handling Work

    Get PDF
    Muscle fatigue is defined as the point at which the muscle is no longer able to sustain the required force or work output level. The overexertion of muscle force and muscle fatigue can induce acute pain and chronic pain in human body. When muscle fatigue is accumulated, the functional disability can be resulted as musculoskeletal disorders (MSD). There are several posture exposure analysis methods useful for rating the MSD risks, but they are mainly based on static postures. Even in some fatigue evaluation methods, muscle fatigue evaluation is only available for static postures, but not suitable for dynamic working process. Meanwhile, some existing muscle fatigue models based on physiological models cannot be easily used in industrial ergonomic evaluations. The external dynamic load is definitely the most important factor resulting muscle fatigue, thus we propose a new fatigue model under a framework for evaluating fatigue in dynamic working processes. Under this framework, virtual reality system is taken to generate virtual working environment, which can be interacted with the work with haptic interfaces and optical motion capture system. The motion information and load information are collected and further processed to evaluate the overall work load of the worker based on dynamic muscle fatigue models and other work evaluation criterions and to give new information to characterize the penibility of the task in design process.Comment: International Conference On Industrial Technology, Chengdu : Chine (2008

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Pedestrian Flow Simulation Validation and Verification Techniques

    Get PDF
    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this technique is to achieve a certain amount of accuracy required in the simulation model. This method is good at detecting the critical points in the pedestrians walking areas. For the calibration of suitable models we use the results obtained from analyzing the video recordings in Hajj 2009 and these results can be used to check the design sections of pedestrian facilities and exits. As practical examples, we present the simulation of pilgrim streams on the Jamarat bridge. The objectives of this study are twofold: first, to show through verification and validation that simulation tools can be used to reproduce realistic scenarios, and second, gather data for accurate predictions for designers and decision makers.Comment: 19 pages, 10 figure

    3D performance capture for facial animation

    Get PDF
    This work describes how a photogrammetry based 3D capture system can be used as an input device for animation. The 3D Dynamic Capture System is used to capture the motion of a human face, which is extracted from a sequence of 3D models captured at TV frame rate. Initially the positions of a set of landmarks on the face are extracted. These landmarks are then used to provide motion data in two different ways. First, a high level description of the movements is extracted, and these can be used as input to a procedural animation package (i.e. CreaToon). Second the landmarks can be used as registration points for a conformation process where the model to be animated is modified to match the captured model. This approach gives a new sequence of models, which have the structure of the drawn model but the movement of the captured sequence
    corecore