61 research outputs found

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review

    Get PDF
    The use of Blockchain technology has recently become widespread. It has emerged as an essential tool in various academic and industrial fields, such as healthcare, transportation, finance, cybersecurity, and supply chain management. It is regarded as a decentralized, trustworthy, secure, transparent, and immutable solution that innovates data sharing and management. This survey aims to provide a systematic review of Blockchain application to intelligent transportation systems in general and the Internet of Vehicles (IoV) in particular. The survey is divided into four main parts. First, the Blockchain technology including its opportunities, relative taxonomies, and applications is introduced; basic cryptography is also discussed. Next, the evolution of Blockchain is presented, starting from the primary phase of pre-Bitcoin (fundamentally characterized by classic cryptography systems), followed by the Blockchain 1.0 phase, (characterized by Bitcoin implementation and common consensus protocols), and finally, the Blockchain 2.0 phase (characterized by the implementation of smart contracts, Ethereum, and Hyperledger). We compared and identified the strengths and limitations of each of these implementations. Then, the state of the art of Blockchain-based IoV solutions (BIoV) is explored by referring to a large and trusted source database from the Scopus data bank. For a well-structured and clear discussion, the reviewed literature is classified according to the research direction and implemented IoV layer. Useful tables, statistics, and analysis are also presented. Finally, the open problems and future directions in BIoV research are summarized

    Edge Intelligence Simulator:a platform for simulating intelligent edge orchestration solutions

    Get PDF
    Abstract. To support the stringent requirements of the future intelligent and interactive applications, intelligence needs to become an essential part of the resource management in the edge environment. Developing intelligent orchestration solutions is a challenging and arduous task, where the evaluation and comparison of the proposed solution is a focal point. Simulation is commonly used to evaluate and compare proposed solutions. However, there does not currently exist openly available simulators that would have a specific focus on supporting the research on intelligent edge orchestration methods. This thesis presents a simulation platform called Edge Intelligence Simulator (EISim), the purpose of which is to facilitate the research on intelligent edge orchestration solutions. In its current form, the platform supports simulating deep reinforcement learning based solutions and different orchestration control topologies in scenarios related to task offloading and resource pricing on edge. The platform also includes additional tools for creating simulation environments, running simulations for agent training and evaluation, and plotting results. This thesis gives a comprehensive overview of the state of the art in edge and fog simulation, orchestration, offloading, and resource pricing, which provides a basis for the design of EISim. The methods and tools that form the foundation of the current EISim implementation are also presented, along with a detailed description of the EISim architecture, default implementations, use, and additional tools. Finally, EISim with its default implementations is validated and evaluated through a large-scale simulation study with 24 simulation scenarios. The results of the simulation study verify the end-to-end performance of EISim and show its capability to produce sensible results. The results also illustrate how EISim can help the researcher in controlling and monitoring the training of intelligent agents, as well as in evaluating solutions against different control topologies.Reunaälysimulaattori : alusta älykkäiden reunalaskennan orkestrointiratkaisujen simulointiin. Tiivistelmä. Älykkäiden ratkaisujen täytyy tulla olennaiseksi osaksi reunaympäristön resurssien hallinnointia, jotta tulevaisuuden vuorovaikutteisten ja älykkäiden sovellusten suoritusta voidaan tukea tasolla, joka täyttää sovellusten tiukat suoritusvaatimukset. Älykkäiden orkestrointiratkaisujen kehitys on vaativa ja työläs prosessi, jonka keskiöön kuuluu olennaisesti menetelmien testaaminen ja vertailu muita menetelmiä vasten. Simulointia käytetään tyypillisesti menetelmien arviointiin ja vertailuun, mutta tällä hetkellä ei ole avoimesti saatavilla simulaattoreita, jotka eritoten keskittyisivät tukemaan älykkäiden reunaorkestrointiratkaisujen kehitystä. Tässä opinnäytetyössä esitellään simulaatioalusta nimeltään Edge Intelligence Simulator (EISim; Reunaälysimulaattori), jonka tarkoitus on helpottaa älykkäiden reunaorkestrointiratkaisujen tutkimusta. Nykymuodossaan se tukee vahvistusoppimispohjaisten ratkaisujen sekä erityyppisten orkestroinnin kontrollitopologioiden simulointia skenaarioissa, jotka liittyvät laskennan siirtoon ja resurssien hinnoitteluun reunaympäristössä. Alustan mukana tulee myös lisätyökaluja, joita voi käyttää simulaatioympäristöjen luomiseen, simulaatioiden ajamiseen agenttien koulutusta ja arviointia varten, sekä simulaatiotulosten visualisoimiseen. Tämä opinnäytetyö sisältää kattavan katsauksen reunaympäristön simuloinnin, reunaorkestroinnin, laskennan siirron ja resurssien hinnoittelun nykytilaan kirjallisuudessa, mikä tarjoaa kunnollisen lähtökohdan EISimin toteutukselle. Opinnäytetyö esittelee menetelmät ja työkalut, joihin EISimin tämänhetkinen toteutus perustuu, sekä antaa yksityiskohtaisen kuvauksen EISimin arkkitehtuurista, oletustoteutuksista, käytöstä ja lisätyökaluista. EISimin validointia ja arviointia varten esitellään laaja simulaatiotutkimus, jossa EISimin oletustoteutuksia simuloidaan 24 simulaatioskenaariossa. Simulaatiotutkimuksen tulokset todentavat EISimin kokonaisvaltaisen toimintakyvyn, sekä osoittavat EISimin kyvyn tuottaa järkeviä tuloksia. Tulokset myös havainnollistavat, miten EISim voi auttaa tutkijoita älykkäiden agenttien koulutuksessa ja ratkaisujen arvioinnissa eri kontrollitopologioita vasten

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Fog computing for sustainable smart cities: a survey

    Get PDF
    The Internet of Things (IoT) aims to connect billions of smart objects to the Internet, which can bring a promising future to smart cities. These objects are expected to generate large amounts of data and send the data to the cloud for further processing, specially for knowledge discovery, in order that appropriate actions can be taken. However, in reality sensing all possible data items captured by a smart object and then sending the complete captured data to the cloud is less useful. Further, such an approach would also lead to resource wastage (e.g. network, storage, etc.). The Fog (Edge) computing paradigm has been proposed to counterpart the weakness by pushing processes of knowledge discovery using data analytics to the edges. However, edge devices have limited computational capabilities. Due to inherited strengths and weaknesses, neither Cloud computing nor Fog computing paradigm addresses these challenges alone. Therefore, both paradigms need to work together in order to build an sustainable IoT infrastructure for smart cities. In this paper, we review existing approaches that have been proposed to tackle the challenges in the Fog computing domain. Specifically, we describe several inspiring use case scenarios of Fog computing, identify ten key characteristics and common features of Fog computing, and compare more than 30 existing research efforts in this domain. Based on our review, we further identify several major functionalities that ideal Fog computing platforms should support and a number of open challenges towards implementing them, so as to shed light on future research directions on realizing Fog computing for building sustainable smart cities
    corecore