
João André Almeida e Silva
M.Sc. in Computer Engineering

Data Storage and Dissemination in Pervasive
Edge Computing Environments

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in
Computer Science

Advisers: Hervé Miguel Cordeiro Paulino
Associate Professor, NOVA University Lisbon

João Manuel dos Santos Lourenço
Associate Professor, NOVA University Lisbon

Examination Committee:

Chair: José Augusto Legatheaux Martins
Full Professor, NOVA University Lisbon

Rapporteurs: Jon B. Weissman
Full Professor, University of Minnesota Twin Cities

Hugo Alexandre Tavares Miranda
Associate Professor, University of Lisbon

Members: Eduardo Resende Brandão Marques
Assistant Professor, University of Porto

Nuno Manuel Ribeiro Preguiça
Associate Professor, NOVA University Lisbon

Hervé Miguel Cordeiro Paulino
Associate Professor, NOVA University Lisbon

May, 2021

Data Storage and Dissemination in Pervasive Edge Computing Environments

Copyright © João André Almeida e Silva, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

To all those that contributed
in some way to this work.

Acknowledgements

No man is an island. John Donne coined this expression conveying that human beings

need to be part of a community in order to thrive. This can very well be applied to

the journey that is obtaining a Ph.D. degree. This thesis would not have been possible

without the direct or indirect collaboration of a considerable number of people to whom

I would like to express my gratitude. First and foremost, I would like to deeply thank my

advisers, Hervé Paulino and João Lourenço, for all their support, patience, and guidance

throughout all these years. Thank you for putting up with me for so long. I would also

like to extend my gratitude to Eduardo Marques and Nuno Preguiça for being part of my

Thesis Advisory Committee, giving me very insightful comments that helped this work

evolve. Additionally, I want to say a big thank you to João Leitão for all his effort, help,

and brainstorming.

I am grateful to the Department of Computer Science of the NOVA School of Science

and Technology (FCT NOVA) from NOVA University Lisbon for kindly providing me

with several grants during the course of my Ph.D. Also, for the opportunity to teach

lab classes of several courses—a passion I did not know I had—, and for being like a

second home to me during all these years. I would also like to thank the institutions

that provided me with funding so I could pursue my Ph.D. degree. This work was

partially supported by Fundação para a Ciência e Tecnologia (FCT-MCTES), through

NOVA LINCS (UID/CEC/04516/2013, UID/CEC/04516/2019, and UIDB/04516/2020),

grant SFRH/BD/99486/2014, and in the scope of the Hyrax (CMUP-ERI/FIA/0048/2013),

DeDuCe (PTDC/CCI-COM/32166/2017), and HiPSTr (PTDC/CCI-COM/32456/2017)

research projects.

To my co-workers and friends who frequented the lab of the NOVA LINCS Computer

Systems group throughout the years, Albert van der Linde, Bernardo Ferreira, Daniel

Porto, David Navalho, João Soares, Pedro Ákos Costa, Pedro Fouto, Ricardo Dias, Tiago

Vale, and Valter Sousa, for all the moments of work, fun, and distraction we shared. Also,

thanks to all the Master students I worked with during these years, their effort made this

thesis a much more robust work, specially to Filipe Cerqueira and Pedro Vieira, with

whom I worked more closely. Thank you to several people that I nagged during this work.

To Brad Karp, for the brainstorming about GPSR (and GHT) and quick email replies. To

Filipe Araújo, for helping me better understand CHR. To João Paiva, for assisting me into

fully grasp Rollerchain. And to Mohammad A. Khan, for the long emails helping me

vii

understand the full operation of MobiStore. Also, to the guys from the Department of

Computer Science (DCC) of the Faculty of Sciences from University of Porto, namely, Ed-

uardo Marques, Fernando Silva, João Rodrigues, Joaquim Silva, Luís Lopes, and Rolando

Martins, thank you for welcoming me in DCC, and for all the interesting discussions in

many meetings of the Hyrax project.

To Gang do Comes, namely, Catarina Gralha, Diogo Cordeiro, Gabriel Marcondes,

Hélder Martins, and Rita Pereira, for all the moments of fun and relaxation, and for

always cheering me up. Of course, a very special thanks to Catarina Gralha, for being

there for me along the way, for all her patience and affection, for all the adventures we

shared, and for being my #1 supporter throughout these years. Thank you for being

the rocket to my anchor. To my parents, Glória and Luís, I am heartily thankful for

all the opportunities and support over the years. To my sister, Sara, for her support

and understanding in my bad humour days. To all the people in my Scout group (CNE

Agrupamento 719 Arrentela), specially Hélder Marques, Joana Coelho, Patrícia Correia,

Ricardo Garcia, Sara Silva, and Susana Garcia, for their support when I needed the most

and for all the moments of fun we shared, I am very thankful. I really miss being around

the campfire under a starry sky. Finally, I wish to thank all my family and friends for

being part of my life and for their endless support throughout these years.

This document was created using the NOVAthesis LATEX template [159], developed at

the Department of Computer Science of FCT NOVA by prof. João Lourenço1. Thank you

for this magnificent template (it is a real time-saver).

1https://docentes.fct.unl.pt/joao-lourenco

viii

https://docentes.fct.unl.pt/joao-lourenco

“Success is not final. Failure is not fatal. It’s the courage to
continue that counts.”
— Winston Churchill

Abstract

Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings.

Much of that data has localized and ephemeral interest, but can be of great use if shared

among co-located devices. However, mobile devices often experience poor connectivity,

leading to availability issues if application storage and logic are fully delegated to a

remote cloud infrastructure. In turn, the edge computing paradigm pushes computations

and storage beyond the data center, closer to end-user devices where data is generated

and consumed. Hence, enabling the execution of certain components of edge-enabled

systems directly and cooperatively on edge devices.

This thesis focuses on the design and evaluation of resilient and efficient data storage

and dissemination solutions for pervasive edge computing environments, operating with

or without access to the network infrastructure. In line with this dichotomy, our goal can

be divided into two specific scenarios. The first one is related to the absence of network

infrastructure and the provision of a transient data storage and dissemination system

for networks of co-located mobile devices. The second one relates with the existence of

network infrastructure access and the corresponding edge computing capabilities.

First, the thesis presents time-aware reactive storage (TARS), a reactive data storage

and dissemination model with intrinsic time-awareness, that exploits synergies between

the storage substrate and the publish/subscribe paradigm, and allows queries within a

specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis-

semination system for wireless edge environments, implementing TARS; ii) Parsley, a

flexible and resilient group-based distributed hash table with preemptive peer relocation

and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework

for data storage and dissemination across multi-region edge networks, that makes use of

both device-to-device and edge interactions.

The developed solutions present low overheads, while providing adequate response

times for interactive usage and low energy consumption, proving to be practical in a

variety of situations. They also display good load balancing and fault tolerance properties.

Keywords: distributed data storage, data dissemination, edge computing, publish/subscribe,

peer-to-peer, mobile devices, wireless networks

xi

Resumo

Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados

em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca-

lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos

co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co-

nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das

aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua

vez, o paradigma de computação na periferia da rede leva as computações e o armazena-

mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores

finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos

componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede.

Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma-

zenamento e disseminação de dados em ambientes pervasivos de computação na periferia

da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico-

tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está

relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema

efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis

co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e

aos recursos de computação na periferia da rede correspondentes.

Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um

modelo reativo de armazenamento e disseminação de dados com percepção intrínseca

do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu-

blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida,

descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de

dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars-

ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com

realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e

iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em

redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e

com a periferia da rede.

As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res-

posta adequados para uso interativo e baixo consumo de energia, demonstrando serem

práticas nas mais diversas situações. Estas soluções também exibem boas propriedades

xiii

de balanceamento de carga e tolerância a faltas.

Palavras-chave: armazenamento de dados distribuído, disseminação de dados, computa-

ção na periferia da rede, publicação/subscrição, ponto-a-ponto, dispositivos móveis, redes

sem fios

xiv

Contents

List of Figures xxi

List of Tables xxv

List of Algorithms xxix

Acronyms xxix

1 Introduction 1

1.1 From Dumbphones to Smartphones . 1

1.2 One Step Closer to the Edge . 2

1.3 The Zettabyte Era . 5

1.4 Data Storage and Dissemination at the Network Edge 6

1.4.1 Research Statement . 7

1.4.2 Proposed Approach . 8

1.4.3 Contributions . 10

1.5 Document Outline . 11

2 Research Context 13

2.1 Off the Wire: A Primer on Wireless Networks 13

2.1.1 Wireless Infrastructure Networks 15

2.1.2 Wireless Ad-Hoc Networks . 15

2.1.3 Routing Protocols . 17

2.2 The Hitchhiker’s Guide to Publish/Subscribe 19

2.2.1 Loose Coupling . 19

2.2.2 Subscription Models . 21

2.2.3 System Architecture . 23

2.2.4 Event Routing . 25

2.2.5 Mobile and Wireless Environments 27

2.2.6 State Persistence . 28

2.2.7 Complex Event Processing . 29

2.3 Livin’ on the Edge: Data Management at the Network Edge 29

2.3.1 Data Storage . 30

xv

CONTENTS

2.3.2 Data Dissemination . 31

2.4 Put a Ring on It: A Review on Distributed Hash Tables 33

2.4.1 Overlay Networks . 33

2.4.2 Structured Overlay Networks & DHTs 34

2.5 Potpourri: Other Relevant Topics . 38

2.5.1 Information-Centric Networking 39

2.5.2 Tuple Spaces . 40

2.6 Concluding Remarks . 41

3 Time-Aware Reactive Storage 43

3.1 Introduction . 43

3.2 Related Work . 44

3.2.1 Publish/Subscribe . 44

3.2.2 Tuple Spaces . 45

3.2.3 Active Databases . 46

3.2.4 Continuous Queries . 46

3.3 Building Synergies Between Storage and Publish/Subscribe 47

3.3.1 Inserting Data . 48

3.3.2 Deleting Data . 49

3.3.3 Querying Data . 49

3.3.4 Retrieving Data . 51

3.3.5 TARS API . 52

3.4 Concluding Remarks . 53

3.4.1 Discussion . 54

3.4.2 Publications . 54

4 It’s About Thyme: TARS in Wireless Edge Environments 57

4.1 Introduction . 58

4.2 Related Work . 60

4.2.1 Publish/Subscribe . 60

4.2.2 Data Storage and Dissemination 61

4.2.3 Tuple Spaces . 62

4.2.4 Others . 63

4.3 The Many Leaves of Thyme . 63

4.3.1 Use Cases . 64

4.3.2 System Model . 64

4.3.3 Architecture . 65

4.4 An Unstructured Approach: Thyme-LS 66

4.5 A Structured Approach: Thyme-DCS 67

4.5.1 Inserting Data . 67

4.5.2 Replication . 68

xvi

CONTENTS

4.5.3 Deleting Data . 69

4.5.4 Querying Data . 69

4.5.5 Retrieving Data . 71

4.5.6 Storage Substrate & Routing Layer 71

4.5.7 Joining the System . 75

4.6 An Android Implementation . 75

4.6.1 Architecture . 75

4.6.2 Multiple Namespaces . 77

4.6.3 Handling Mobility . 77

4.6.4 Shared Photo Gallery . 78

4.7 Analytical Study . 79

4.7.1 Time Complexity . 79

4.7.2 Space Complexity . 80

4.7.3 Communication Costs . 80

4.7.4 Discussion . 83

4.8 Evaluation Through Simulation . 83

4.8.1 Implementation . 84

4.8.2 Setup and Methodology . 84

4.8.3 Results . 86

4.9 Evaluation Through Real Devices . 92

4.9.1 Implementation . 93

4.9.2 Setup and Methodology . 93

4.9.3 Results . 93

4.10 Concluding Remarks . 98

4.10.1 Discussion . 99

4.10.2 Future Work . 100

4.10.3 Publications . 100

5 Parsley: A Resilient DHT with Dynamic Data Sharding 103

5.1 Introduction . 104

5.2 Related Work . 105

5.3 Chopping Parsley: A Resilient DHT 107

5.3.1 System Model . 107

5.3.2 Overview and Definitions . 108

5.3.3 A Group-Based DHT . 109

5.4 Dynamic Data Sharding . 118

5.4.1 Algorithm . 119

5.4.2 Defining Hot-Spots . 122

5.4.3 DHT Operations . 123

5.5 Evaluation . 124

5.5.1 Experimental Setup . 125

xvii

CONTENTS

5.5.2 Churn & Peer Relocation . 125

5.5.3 Load Balancing Storage Hot-Spots 136

5.5.4 Overlay Management Overhead 144

5.6 Concluding Remarks . 145

5.6.1 Discussion . 146

5.6.2 Future Work . 147

6 Data Storage and Dissemination in Multi-region Edge Networks 149

6.1 Introduction . 149

6.2 Related Work . 151

6.3 The GardenBed Concept . 153

6.4 The Thyme GardenBed Ensemble . 155

6.4.1 The Mobile Clients . 156

6.4.2 The Edge Servers . 157

6.4.3 Intra-Region Publish/Subscribe 158

6.4.4 Inter-Region Publish/Subscribe 159

6.4.5 Retrieving Data . 161

6.4.6 Local Indexing of Remote Data 162

6.4.7 Deleting Data . 162

6.4.8 Election and Role of the Cluster-Head 163

6.4.9 Dealing with Mobility and Churn 164

6.5 The Anatomy of GardenBed’s Caches 164

6.6 Evaluation . 166

6.6.1 Real World Experiments . 166

6.6.2 Simulating Mobile Devices . 172

6.7 Concluding Remarks . 176

6.7.1 Discussion . 176

6.7.2 Future Work . 177

6.7.3 Publications . 177

7 Beyond Thyme: The Edge Garden Ecosystem 179

7.1 Ephesus: Ephemeral Storage for Mobile Devices 179

7.2 Jumper: Opportunistic Combination of MANETs and Infrastructure . 181

7.3 Oregano: Distributed Computing on Mobile Devices 182

7.4 Basil: A Key-Value Store on Mobile Devices 183

7.5 P/S-CRDTs: CRDTs for Dynamic Environments 184

7.6 Peppermint: A Framework for Local Multiplayer Games 185

7.7 Wasabi: Adaptive Replica Selection in Mobile Edge Networks 186

7.8 Chives: Dynamic Content-Based Indexing at the Edge 188

7.9 Basilicum: Basil in the Edge-Cloud Continuum 189

7.10 Concluding Remarks . 190

xviii

CONTENTS

8 Conclusion 191

8.1 Conclusions . 191

8.2 Future Research Directions . 193

Bibliography 197

Appendices

A Parsley’s Group Size Study 233

A.1 Experimental Setup . 233

A.2 Topology Operations and Data Transfers 235

A.3 Concerning Big Groups . 255

A.4 Discussion . 258

A.5 Complete Plots . 259

xix

List of Figures

1.1 Simplified network hierarchy in the edge-centric paradigm. 3

1.2 Overview of the thesis proposed architecture. 9

2.1 A basic publish/subscribe system model [85]. 19

2.2 Publish/subscribe decoupling dimensions [85]. 20

2.3 Examples of publish/subscribe system architectures (EB - event broker, P -

publisher, S - subscriber, P/S - publisher and subscriber). 24

2.4 Internet (left) and ICN (right) hourglass architectures [44]. 39

3.1 Comparison among a standard subscription, a standard query, and time-aware

subscription in a generic topic-based publish/subscribe system. Publish(x, t)

means publishing item x with topic t, and Subscribe(t, a, b) means subscribing

to topic t between timestamps a and b. The red circles are publications that

match the subscription. 50

4.1 Thyme layered system overview. 65

4.2 A geographic hash table and its virtual nodes. 66

4.3 Insert and subscribe operations in Thyme-DCS. The tags’ hashing deter-

mines the cells responsible for managing the object metadata (cells 3 and 10)

and the subscription (cells 3 and 13). If a subscription has matching tags with

an object, it will also have overlapping (responsible) cells, guaranteeing the

matching and sending of notifications to the subscriber. 68

4.4 Notification and retrieve operation in Thyme-DCS. The dotted arrow is

a notification sent to the subscriber. The other arrows represent a retrieve

operation (request and reply from the closest replica). 72

4.5 Message destination aggregation working examples. The dark squares are

populated cells, and black dots are the multiple message destinations. . . . 74

4.6 Thyme-DCS Android library architecture [46]. 75

4.7 Shared photo gallery Android application. 79

4.8 Average number of messages sent per node in Thyme-DCS, for 100 notifica-

tions processing. 83

4.9 Distribution of operations over time in a trace. 85

4.10 Precision and recall. 86

xxi

LIST OF FIGURES

4.11 Thyme lower layers metrics (static scenario). 87

4.12 Thyme application-level metrics (static scenario). 88

4.13 Thyme notification success ratio (permanent failures, 100 nodes). 90

4.14 Application metrics for Thyme-LS (transient failures, 100 nodes). 91

4.15 Transient failures scenario in Thyme (100 nodes). 91

4.16 Mobile scenario in Thyme (100 nodes, pause 120 seconds). 92

4.17 Operations latency in Thyme-DCS Android [46]. 94

4.18 Retrieve operation latency varying image size in Thyme-DCS Android [46]. 95

4.19 Energy usage when issuing an operation in Thyme-DCS Android [46]. . . 96

4.20 Energy usage when issuing an operation in a closed loop during one minute

in Thyme-DCS Android [46]. 96

4.21 Energy usage when processing a request in Thyme-DCS Android [46]. . . 97

4.22 Energy usage in the cell maintenance in Thyme-DCS Android [46]. . . . 98

5.1 Parsley’s architecture overview. 108

5.2 Group size with hard limits set to 4 and 11, and soft limits set to 6 and 9. . 109

5.3 Group split example scenario. 113

5.4 Key range in a group. The squares are keys, all owned by group 12. 113

5.5 Example scenario of the group merge communication workflow. 114

5.6 Exit-only topology operations in Parsley. 127

5.7 Relative change in the number of merge operations between No PPR and Full

PPR, for the exit-only scenario in Parsley. 128

5.8 Exit-only data transfers in Parsley. 129

5.9 Relative change in the amount of total data transfers between No PPR and Full

PPR, for the exit-only scenario in Parsley. 129

5.10 Enter-exit topology operations in Parsley. 130

5.11 Relative change in the number of merge operations between No PPR and Full

PPR, for the enter-exit scenario in Parsley. 131

5.12 Enter-exit data transfers in Parsley. 131

5.13 Relative change in the amount of total data transfers between No PPR and Full

PPR, for the enter-exit scenario in Parsley. 132

5.14 Average group size for both churn scenarios in Parsley. 133

5.15 Average percentage of lost keys for both churn scenarios in Parsley. . . . 133

5.16 Relative change between No PPR and Full PPR, for the exit-only scenario in

Parsley. 134

5.17 Relative change between No PPR and Full PPR, for the enter-exit scenario in

Parsley. 135

5.18 Total data transfers, for the enter-exit scenario with ε = 50% in Parsley. . 135

5.19 Average percentage of lost keys, for the exit-only scenario in Parsley. . . 135

5.20 Per group state in Parsley (left to right: maximum, average, standard devia-

tion). 138

xxii

LIST OF FIGURES

5.21 Transmitted messages related with the sharding mechanism in Parsley. . 142

5.22 Per peer overlay management overhead. 144

6.1 Thyme GardenBed example usage scenario in a football stadium [278]. 151

6.2 Architecture of Thyme GardenBed. 157

6.3 Global publish/subscribe execution process in Thyme GardenBed [278]. 159

6.4 Workflow of the retrieve operation triggered by a mobile client (red circle)

in Thyme GardenBed. The colors of the decision flows determine who

executes them. 161

6.5 Local indexing of a remote data item in Thyme GardenBed. 162

6.6 Delete operation in Thyme GardenBed [278]. 163

6.7 Adaptive multipart caching structure used in Thyme GardenBed. . . . 165

6.8 AMC timer scheme for inserting items in the cache used in Thyme Gar-

denBed [278]. 165

6.9 Retrieve operation latency in Thyme GardenBed [278]. 167

6.10 Operations latency in Thyme GardenBed [278]. 168

6.11 Retrieve latency varying object size in Thyme GardenBed [278]. 169

6.12 Operations’ energy usage in Thyme GardenBed [278]. 170

6.13 Energy usage for edge-specific operations in Thyme GardenBed [278]. . 171

6.14 Notifications sent from mobile nodes in Thyme GardenBed [278]. . . . 172

6.15 Total energy usage on over-utilized nodes in Thyme GardenBed [278]. . 172

6.16 Number of data items requested by the server to mobile clients per popularity

decision round in Thyme GardenBed [278]. 173

6.17 Popularity ranking and the LPC hit ratio in Thyme GardenBed [278]. . 174

6.18 Impact of consumption notification in Thyme GardenBed [278]. 174

6.19 Number of items served by the edge server in Thyme GardenBed [278]. 175

6.20 CPU time spent on the AMC used in Thyme GardenBed [278]. 176

A.1 Exit-only topology operations with group size XS (4–8) in Parsley. 236

A.2 Exit-only data transfers with group size XS (4–8) in Parsley. 237

A.3 Enter-exit topology operations with group size XS (4–8) in Parsley. . . . 238

A.4 Enter-exit data transfers with group size XS (4–8) in Parsley. 239

A.5 Exit-only topology operations with group size S (4–11) in Parsley. 240

A.6 Exit-only data transfers with group size S (4–11) in Parsley. 241

A.7 Enter-exit topology operations with group size S (4–11) in Parsley. 242

A.8 Enter-exit data transfers with group size S (4–11) in Parsley. 243

A.9 Exit-only topology operations with group size M (4–16) in Parsley. 244

A.10 Exit-only data transfers with group size M (4–16) in Parsley. 245

A.11 Enter-exit topology operations with group size M (4–16) in Parsley. . . . 246

A.12 Enter-exit data transfers with group size M (4–16) in Parsley. 247

A.13 Exit-only topology operations with group size L (4–32) in Parsley. 248

xxiii

LIST OF FIGURES

A.14 Exit-only data transfers with group size L (4–32) in Parsley. 249

A.15 Enter-exit topology operations with group size L (4–32) in Parsley. 250

A.16 Enter-exit data transfers with group size L (4–32) in Parsley. 251

A.17 Exit-only topology operations with group size XL (4–64) in Parsley. . . . 252

A.18 Exit-only data transfers with group size XL (4–64) in Parsley. 254

A.19 Enter-exit topology operations with group size XL (4–64) in Parsley. . . . 255

A.20 Enter-exit data transfers with group size XL (4–64) in Parsley. 256

A.21 Split-related traffic in Parsley (enter-exit, 90% churn, delta = 1). 257

A.22 Maintenance traffic in Parsley. 257

A.23 Per group state in Parsley. 258

A.24 Join state transfers in Parsley (enter-exit). 258

A.25 Complete exit-only data transfers with group size L (4–32) in Parsley. . . 260

A.25 Complete exit-only data transfers with group size L (4–32) in Parsley (cont.). 261

A.26 Complete enter-exit data transfers with group size L (4–32) in Parsley. . 261

A.26 Complete enter-exit data transfers with group size L (4–32) in Parsley (cont.). 262

A.27 Complete exit-only data transfers with group size XL (4–64) in Parsley. . 263

A.27 Complete exit-only data transfers with group size XL (4–64) in Parsley (cont.). 264

A.28 Complete enter-exit data transfers with group size XL (4–64) in Parsley. 264

A.28 Complete enter-exit data transfers with group size XL (4–64) in Parsley (cont.). 265

xxiv

List of Tables

2.1 Differences between infrastructure and infrastructure-less networks [227]. 14

2.2 Comparison of subscription models [155]. 23

2.3 Definition of variables for peer p, using m-bit identifiers [256]. 35

3.1 Comparison of TARS with publish/subscribe systems. 45

4.1 Comparison of Thyme with publish/subscribe systems. 60

4.2 Comparison of Thyme with data storage and dissemination systems. . . . 61

4.3 Comparison of Thyme with tuple spaces systems. 62

4.4 Signature of the insert and subscribe operations in the Android library. . . 76

4.5 Thyme operations time complexity. 80

4.6 Thyme operations communication costs. 81

4.7 Simulation area according to the number of nodes. 86

4.8 Mobile devices specifications for Thyme-DCS Android experiments. . . . 94

5.1 Comparison of Parsley with other related proposals. 106

5.2 Configuration of parameter c (i.e., churn) in Parsley. 126

5.3 Impact of the zipfian distribution parameter in the probability of the most

popular item (from a total of 10 000 items drawn 50 000 times). 136

5.4 Configuration parameters for the hot-spot detectors in Parsley. 137

6.1 Mobile devices specifications for Thyme GardenBed Android experiments. 166

6.2 Number of executed operations to reach a 1% battery consumption in Thyme

GardenBed (∗left - sent to a mobile node; right - sent to the edge server) [278]. 170

A.1 Group size parameters in Parsley, varying soft limits amplitude. 235

xxv

List of Algorithms

2.1 Ring DHT maintenance procedure [256]. 35

2.2 Ring DHT routing [256]. 36

3.1 TARS basic API. 52

5.1 New peer acceptance logic default implementation in Parsley. 111

5.2 Parsley’s dynamic data sharding mechanism. 121

5.3 Parsley’s modified DHT operations. 124

xxvii

Acronyms

AMC adaptive multipart caching xxiii, 164, 165, 166, 175

AP access point 14, 15, 28, 30, 31, 151, 152, 153, 154, 155, 156, 164, 192, 195

API application programming interface 11, 52, 194, 195

AR augmented reality 2

AWS Amazon web services 167

BSS basic service set 14

CBN content-based networking 39

CCN content-centric networking 39

CDN content distribution network 31

CEP complex event processing 29

CHR cell hash routing 65, 72, 73

CRDT conflict-free replicated data type 185

D2D device-to-device xi, 10, 58, 100, 149, 150, 151, 152, 155, 156, 162, 168, 169,

170, 176, 180, 192, 195

DCS data-centric storage 59, 65, 72, 98

DHT distributed hash table xi, 9, 10, 11, 13, 30, 34, 35, 36, 37, 38, 41, 61, 71, 72,

103, 104, 105, 106, 107, 108, 109, 110, 115, 117, 118, 120, 123, 124, 127, 136,

145, 156, 180, 192, 193, 233

DNF disjunctive normal form 69, 70

DNS domain name system 36

DONA data-oriented network architecture 39

DTN delay tolerant network 30, 33, 41

ECA event-condition-action 46, 47

ESS extended service set 13, 14

GHT geographic hash table xxi, 28, 59, 60, 61, 63, 65, 66, 67, 68, 69, 72, 74, 81, 97,

98, 99, 100, 192

xxix

ACRONYMS

gid group identifier 110

GPSR greedy perimeter stateless routing 72, 73, 77

IBSS independent basic service set 14

ICN information-centric networking 32, 38, 39, 41, 61

KBR key-based routing 34, 104

LPC local popularity cache 158, 160, 165, 166, 167, 173, 174, 175

MANET mobile ad-hoc network 16, 29, 30, 40, 61, 181

MDD mobile dynamic data set 183

MEC mobile edge computing 4, 6, 152, 187, 188

NACK negative acknowledgement 71, 74, 93

NDN named data networking 39

NetInf network of information 39

oid object identifier 107, 119, 120, 121, 141

opkey operation key 119, 120, 121, 122, 123, 141

ORC other regions cache 159, 161, 162, 166

P/S publish/subscribe xi, xxi, xxiii, xxv, 9, 10, 13, 19, 20, 21, 22, 23, 24, 25, 27, 28,

29, 30, 32, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 59, 60, 62, 63, 65, 66,

156, 159, 161, 171, 185, 189, 191

P2P peer-to-peer 4, 8, 14, 23, 25, 31, 33, 54, 59, 65, 68, 100, 125, 181

PDS peer data sharing 32

PPR preemptive peer relocation 109, 115, 124, 125, 127, 134, 145, 146, 193, 233

PreC prefetch cache 159, 160, 161, 162, 165, 166

PSIRP publish-subscribe internet routing paradigm 39

RAN radio access network 4

RPC remote procedure call 35

RWP random waypoint 92

sid shard identifier 120, 121, 123, 124, 141

SSID service set identifier 13

TARS time-aware reactive storage xi, xxv, 9, 10, 11, 43, 44, 45, 46, 47, 48, 49, 50, 52,

53, 54, 57, 59, 62, 63, 98, 100, 155, 156, 184, 190, 191, 192

xxx

ACRONYMS

TTL time-to-live 45, 110, 117, 162

TU time unit 125

VANET vehicular ad-hoc network 16

VR virtual reality 2

WANET wireless ad-hoc network 14, 15, 16, 18, 28, 32

WLAN wireless local area network 15, 28

WMN wireless mesh network 16

WSN wireless sensor network 14, 16, 17, 28, 40

YCSB Yahoo! cloud serving benchmark 136

ZRP zone routing protocol 18

xxxi

C
h
a
p
t
e
r

1
Introduction

“Everything is bold to those who dare nothing.”
— Fernando Pessoa

This Ph.D. thesis relates to the broad area of edge computing, focusing on its mobile

aspect. More specifically, it explores resilient and efficient ways to provide data storage

and dissemination among co-located mobile devices, both in settings with or without

network infrastructure access. This first chapter characterizes the context and motivation

for the conducted research work, as well as its main goals. Also, it presents the thesis’

research statement and achieved contributions.

We start by giving some context and motivation in §1.1 and §1.2, respectively. Then,

we present the main problem addressed in the thesis and its associated challenges in §1.3.

Next, in §1.4, we define our research statement and its dichotomy, and describe the

proposed approach and a summary of the achieved contributions. We conclude this

chapter with §1.5, by presenting the outline for the rest of the thesis.

1.1 From Dumbphones to Smartphones

Since the advent of mobile computing [230], mobile applications have traditionally been

devised under the de facto standard that mobile devices (e.g., smartphones, tablets) are

thin clients. That is, very resource-constrained devices that serve primarily for data gather-

ing (e.g., user or sensor input), relying on back-end servers to do all the work and respond

back with the final result. This was an intrinsic idea to mobile cloud computing [91] for

some time, whereby data storage and processing happened mainly outside the mobile

devices, while only a lightweight front-end application ran on them—a technique usually

referred to as computation offloading [54, 63].

1

CHAPTER 1. INTRODUCTION

However, we are witnessing a rapid and steady growth of both the capabilities and

amount of mobile devices worldwide [56]. With octa-core, 8+ RAM mobile devices readily

available on the market [119, 189], today’s devices have more computational power than

the desktop computers of a few years ago [52]. Likewise, the extensive proliferation of

these devices is making them increasingly ubiquitous, with their number expected to

exceed 13 billion by 2023 [59]. Thus, we can start harnessing those resources and make a

more judicious offload of only certain heavy computations.

As a consequence of these advancements, we are seeing a paradigm shift to a more

mobile world. In the past years, there has been a big rise in the adoption of mobile

devices for communicating with friends, performing daily activities, or even perform

work-related tasks. Both Cisco and Ericsson forecast that mobile data traffic will grow to

roughly 77 exabytes per month worldwide by 2022, a 11× increase comparing to the seven

monthly exabytes in 2016 [56, 58, 81]. Furthermore, analysts convey that the exponential

growth of mobile data traffic is directly related with the increase in user-generated content,

such as video (which will account for 80% of all mobile traffic by 2022 [58]), as well as

the arising of next generation resource-hungry applications [109], like augmented reality

(AR) and virtual reality (VR).

Despite all the developments in the mobile computing area, those next generation

applications are resource-intensive and latency-sensitive, even for what today’s devices

and networks can deliver. Furthermore, concerning mobile devices, even if they can

deliver the required computing power (and other resources), the trade-off is extremely
short battery life [115, 173, 275]. Additionally, the wireless communication technologies

used by these devices are unreliable and congestion-prone (e.g., Wi-Fi, 4G) [3, 125].

Likewise, caused by the sheer amount of data coming from those applications and user-

generated content [201], the strain in the core networks is becoming an issue. Usually, the

back-end services that support these use cases leverage on cloud data centers to process

and store data. Even though these infrastructures offer various benefits (e.g., elasticity,

massive redundancy, geo-replication), their consolidation and centralization represent a

large separation between mobile devices and data centers, resulting in high latencies

and low bandwidth [78, 110, 117]. Altogether, interactions between mobile devices and

distant cloud infrastructures can be unfeasible in certain situations and unwanted in others,

thus establishing the need for distributed cloud services closer to the end-user devices—at

the network edge (as opposed to the network core, where data centers reside).

1.2 One Step Closer to the Edge

Cloud infrastructures became the prominent focal point of every network, connecting

applications, services, and devices together. However, the billions of connected devices

worldwide, generating and exchanging enormous amounts of data, impose new chal-

lenges that make it really difficult to comply with the requirements of certain (mobile)

applications and start to surpass the capability of cloud computing infrastructures.

2

1.2. ONE STEP CLOSER TO THE EDGE

Cloud

Edge

End-User Devices

- Latency
+

R
es

ou
rc

es
Figure 1.1: Simplified network hierarchy in the edge-centric paradigm.

As such, several approaches (that we present ahead) proposed the idea of relocating

some of the cloud’s capabilities closer to the end-user devices. Cloud services are brought

to the physical edge of the network, providing an intermediate layer in the network

hierarchy—end-user devices, edge, cloud—and shortening the distance to such services,

as in Figure 1.1. The edge-centric paradigm [96, 240] was proposed to complement the

cloud computing model, exploiting resources available at the network edge and avoiding

the need to execute applications fully on the cloud (thus, possibly entailing reduced

latencies). Nonetheless, if necessary, complementary processing and storage can still be

performed at cloud data centers (e.g., for archival or analytics purposes), where resources

are more plentiful and powerful.

This paradigm can be seen as a distributed extension of the cloud computing model,

whereby the cloud core infrastructure is broken down into a network of smaller “clouds”

located close to the end-users. Since data is stored and processed close to its source, this

approach is able to be more responsive while reducing some of the load from both cloud

and network infrastructures, also yielding other benefits such as privacy or availability.

Although similar concepts have been proposed, such as cloudlets [231, 233, 262, 280],

fog computing [37, 121], and edge computing [96, 240], they all revolve around the same

idea of leveraging edge resources to perform computations and store data close to its

source, but each having its idiosyncrasies1 [232, 276, 287].

A cloudlet can be seen as a “data center in a box” located at the edge of a network, thus

bringing the cloud closer to the end-users. It is usually based on dedicated small-scale

servers, ideally located one wireless hop away from the devices, e.g., in a cellular or Wi-Fi

base station. Then, applications running on the devices connected to these stations can

harness these low-latency computing and storage resources.

As a cloud closer to the ground, fog computing brings processing capabilities down to

the local area network. Fog nodes (e.g., gateways, routers, access points, switches) gather,

process, and store data from multiple sources within the network. After processing,

pertinent data (and any additional information) is transmitted back to the necessary

devices (or to the cloud for further processing or long-term storage).

1Sometimes, even the same concept can have multiple slightly different definitions proposed by distinct
authors.

3

CHAPTER 1. INTRODUCTION

In turn, edge computing brings processing capabilities even further down, directly into

the end-user devices2. Instead of sending data to centralized entities in the local network

for processing (e.g., fog nodes), devices collect, analyze, and process data they generate.

Each device is independent of the rest and is capable of deciding what data should be

processed and stored locally, and what needs to be sent up the hierarchy (e.g., to the

cloud) for further use.

When compared to edge computing, fog solutions have the advantage of being able to

see the “bigger picture”, since they process data received from multiple sources. However,

edge computing leverages on the processing power of the end-user devices themselves,

thus it has inherently less (central) points of failure. Since it does not require the use of

dedicated network nodes, edge computing also reduces system and network architecture

complexity. Cloudlets are similar to fog nodes, but usually this term is used to refer to

dedicated servers (e.g., mini data centers) connected to base stations.

With the arrival of 5G networks [18], network providers and telecommunication com-

panies also brought the edge-centric paradigm into their domain. Mobile edge computing

(MEC)3 applies the ideas of cloudlets, fog and edge computing into the radio access net-

work (RAN). It provides computing and storage capabilities at the edge of the cellular

network, in close proximity to the mobile subscribers [118]. It also allows network oper-

ators to open their RAN to authorized third-parties, such as application developers and

content providers, by offering application and service hosting [154].

Another related concept is mobile edge cloud [78]. In many situations, mobile users

gather in a localized geographical area for some time (e.g., sporting events, conferences)

and use their mobile devices to access cloud services through Wi-Fi or cellular networks.

However, as already referred, both the amount and capabilities of mobile devices have

been increasing largely in the past years, and that growth does not seem to slow down.

Thus, it starts to become a possibility to obtain some of these traditional cloud services

locally from nearby mobile devices, using self-organized ad-hoc networks formed among

such devices. These clouds are of particular interest in low connectivity scenarios. A

single device may not own enough resources to carry out certain tasks, but collectively

co-located devices can provide sufficient capacity to satisfy the transient computational

and storage needs of the local users. Hence, these clouds harness the collective resources

of a group of mobile devices in close geographical proximity, collaborating together to

form opportunistic and ephemeral clouds that are very cost-effective but highly volatile.

In the end, the edge-centric paradigm, in all its forms, posits taking the control of

applications, data, and services away from the core, to the other end of the network.

It extends the concept of peer to all the devices at the network edge, presenting itself

as the natural confluence of peer-to-peer (P2P) and cloud computing to create hybrid

architectures that combine stable resources with mobile terminals [96].

2At least, in this document, we use this notion of edge computing, as depicted in Figure 1.1.
3More recently, the meaning of MEC was changed to now mean multi-access edge computing, in order to

reflect that the edge is not only based on mobile networks.

4

1.3. THE ZETTABYTE ERA

1.3 The Zettabyte Era

The pervasiveness of mobile devices makes them the primary tool for generating and

sharing all sorts of content (e.g., video, photos) [56, 59]. Accompanying that trend, there

is a big demand for the in loco (real-time) sharing and dissemination of content people

generate in all kinds of social gatherings (e.g., concerts, sports events) [57, 82]. Thus, mo-

bile users expect to use their devices (almost continuously) to both access and share those

contents. However, this usage pattern places a huge burden on network infrastructures

and cloud-based services alike, because they have to accommodate high loads to support

that continuous user activity [82].

The typical alternative to sustain such high demand is to set up special network infras-

tructures just for those events. Unfortunately, in some scenarios it might be logistically or

financially nonviable to deploy such setups. Communication infrastructures in crowded

venues are known to sometimes be overloaded or provide low or intermittent connec-

tivity [82]. In one-time events (e.g., conferences, reunions), it may not pay off to set up

communication infrastructures just for those occasions. In disaster situations, communi-

cation infrastructures may not even exist (e.g., they could have been destroyed) or may

not be feasible to set up [166].

Since the major part of this content is often (centrally) stored and processed at cloud

infrastructures, many concerns arise about how these extreme volumes of data should be

transferred, stored, processed, and made available. Such centralized solutions may lead

to privacy concerns, violate the latency constraints of mobile applications, or may be in-

feasible due to bandwidth or energy constraints of mobile devices. Thus, resorting (only)

to cloud infrastructures to support such uses cases can become unfeasible due to the

unprecedented amount of generated data. The transfer of such large amounts of data to

the cloud can lead to network congestion, processing delays, and possible monetary costs.

Additionally, in several scenarios (e.g., crowded venues [82], disaster situations [166]),

mobile devices often experience poor or intermittent connectivity, leading to availability

issues if application storage and logic are fully delegated to a remote cloud infrastructure.

Considering that analysts predict mobile data traffic will have an exponential growth

in the coming years [56, 57, 59, 81], those huge amounts of generated data are becoming

an issue, both from the network infrastructures and cloud services perspectives. Thus,

it is best if we start harnessing the available resources at the network edge, and dis-

perse (and process) those extreme amounts of data among the different levels of the

network hierarchy.

With the appearance of the edge-centric paradigm [96], data generated at the edge of

the network can be processed and stored near its source. Thus, diverting some of this data

from the cloud, and relieving some of the load from both cloud and network infrastruc-

tures. Avoiding data uploads to a centralized entity can not only help to preserve privacy,

but also to reduce network traffic congestion. However, this distributed and collaborative

data storage and processing still requires communication between devices (and possibly

5

CHAPTER 1. INTRODUCTION

other entities) over wireless links. Thus, the unreliability of wireless channels can sig-

nificantly affect the operation of edge solutions. Additionally, edge resources are not as

powerful as the ones in cloud infrastructures, i.e., we will not have high-end server racks

attached to base stations. Thus, the usage of such resources should be made judiciously,

so as not to overload them as well.

The general problem we address in the thesis is how to allow resilient and efficient

data storage, dissemination, and querying among co-located mobile devices, both with

or without access to network infrastructures and MEC capabilities. From a high-level

perspective, several challenges arise, such as what data to store persistently and what

data to cache; where to place what data; how and when to propagate data (and metadata);

how to query data and how to make it available to stakeholders; etc. Furthermore, several

other broad challenges typical of these dynamic environments ensue, including:

• support decentralized and loosely coupled settings (thus, with a lack of global state);

• allow a large number of heterogeneous (mobile) devices;

• efficiently detect and tolerate high membership dynamics (i.e., devices’ mobility

and churn);

• support intrinsically asynchronous environments;

• ensure data persistence;

• provide low latencies;

• minimize energy consumption; and

• endure poor/intermittent connectivity (i.e., frequent network partitions).

In the end, we design all our proposals in order to allow data storage and dissemina-

tion in pervasive edge computing environments with the mentioned characteristics. At

the same time, aiming at tackling all these challenges in a holistic way, as we will describe

in the next sections and chapters.

1.4 Data Storage and Dissemination at the Network Edge

The rise of the edge-centric paradigm, specifically directed to mobile ecosystems, leads

to a key insight. It is more efficient to communicate and distribute information among nearby
devices than to use distant centralized intermediaries [78, 110, 117]. This remark is even

more exacerbated when referring to mobile devices, known for having some constraints,

mostly regarding energy and communications. Note that when referring to mobile ecosys-

tems, mobile edge environments, or pervasive edge computing environments we mean

networks comprised of (possibly co-located) wirelessly connected mobile devices (using

either Wi-Fi, 3G/4G, etc., i.e., multi-access environments).

6

1.4. DATA STORAGE AND DISSEMINATION AT THE NETWORK EDGE

Our main goal is to provide resilient and efficient data storage and dissemination

in pervasive edge computing environments, either with or without access to network

infrastructures. On the one hand, it should be able to operate in environments where

there is no access to network infrastructures, thus working in ad-hoc settings (although

that maybe offering only a subset of its features). On the other hand, it should operate

in environments with access to network infrastructures, leveraging judiciously on the

available resources.

As an example, we envision our solutions possibly being used in a plethora of scenar-

ios, such as: i) remote locations; ii) natural parks; iii) one-time events; iv) amusement

parks; v) protests; vi) university campuses; vii) sports fan zones; viii) disaster scenar-

ios (e.g., natural disasters, or search & rescue operations); ix) hacker attacks (e.g., denial

of service); x) crowded venues; or xi) censorship attempts (e.g., Hong Kong riots). In these

cases, some scenarios do not have network infrastructures at all (e.g., i and ii), others

might have them only in some parts of the venue (e.g., iii and iv), and some usually have

an ample network infrastructure setup (e.g., vi and vii). In some situations, although

network infrastructures may exist, these may not be usable (e.g., viii, ix, and x), or we

may not want to use them (e.g., xi).

1.4.1 Research Statement

In line with our goal, the thesis explores the following research question: How to sup-

port resilient and efficient data storage and dissemination solutions in pervasive edge

computing environments, operating with or without access to network infrastructure?

In our solution, we argue for a distributed hyper-local data storage and dissemination

system for this kind of environments. The hyper-local adjective connotes information

oriented around a community, with its primary focus directed towards the concerns of

its members. A key insight behind this hyper-local data storage solution is that users

who convene for all kinds of social gatherings are usually interested in similar types

of information [254] (e.g., statistics and videos at sports events, coupons at shopping

malls). Following this, data can be kept locally to reduce transmission bandwidth and

latency (also reducing the load in cloud core infrastructures).

This work can be further divided into two more specific questions, exploring both

aspects of our goal. The first one relates with the absence of network infrastructure

and the provision of transient data storage and dissemination for networks of co-located

mobile devices: How to support reliable and efficient data storage and dissemination

in wireless edge environments without access to any kind of network infrastructure?

In certain scenarios, network infrastructures may not exist or may be inoperable. For

instance, information dissemination and sharing can be of great use in remote locations

without network coverage or in disaster scenarios where network infrastructures were

destroyed [166]. In these settings, the storage service can be classified as transient or

ephemeral, in the sense that it will only exist while there are devices supporting it.

7

CHAPTER 1. INTRODUCTION

The second specific question relates with the existence of access to network infras-

tructures and their corresponding edge computing capabilities: How to leverage on edge

computing capabilities to improve the performance, scalability, and resource manage-

ment of the previous solution? With the existence of infrastructure access, and the rise

of the edge-centric paradigm, the data storage and dissemination system can be extended

to take advantage of such capabilities. It can leverage on this new level of the network

hierarchy and store data in its different levels, each with its own specific resources and

guarantees. Additionally, it can also share some (management) workload between the

hierarchy levels.

Following from the defined research questions, our main research statement is:

It is possible to provide resilient and efficient data storage and dissemination

solutions for pervasive edge computing environments, able to operate with or

without access to network infrastructure.

Since network infrastructures are not always available or accessible, and according to

the research statement, we adopt the following motto for the thesis:

“Surviving without infrastructure. Thriving with infrastructure.”

When they exist, in most cases we may leverage on the available resources, but we should

be able to survive without them, in infrastructure-less settings.

1.4.2 Proposed Approach

Figure 1.2 depicts an overview of our proposed architecture, where it includes scenar-

ios with (scenarios A, B and D) and without (scenario C) network infrastructure access.

For the scenarios without network infrastructure access, the storage solution works in a

purely wireless ad-hoc environment, where the devices themselves contribute with their

computing and storage resources to the system. Devices work in a P2P fashion, and com-

munication among them is achieved using multi-hop routing. In turn, for the scenarios

with access to network infrastructure, we take advantage of the existing edge comput-

ing capabilities. As such, we have at our disposal a three-tier hierarchy, each providing

different guarantees and resources. Nonetheless, in this work, we only address the two

lower levels of the network hierarchy depicted in Figure 1.1 (i.e., the end-user devices

and the edge). We have current work that is starting to explore the third and topmost

level of the hierarchy (i.e., the cloud), trying to vertically integrate all the levels and reap

the advantages of each one.

We target highly dynamic and asynchronous environments, where devices can move

freely, and network links often go down intermittently and have limited bandwidth (e.g.,

due to wireless channel errors). Additionally, mobile devices are battery-powered, thus

placing further constraints on communication and processing capabilities. Such resource-

constrained and highly dynamic environments are challenging for tightly coupled dis-

tributed applications, i.e., in these conditions, the use of traditional client-server solutions

8

1.4. DATA STORAGE AND DISSEMINATION AT THE NETWORK EDGE

CloudWi-Fi

Wi-Fi

A

B

C

D

Edge
Server

Edge
Server

Edge
Server

Cellular/5G

Figure 1.2: Overview of the thesis proposed architecture.

that rely on server accessibility should be avoided. In turn, symmetrical (distributed) ar-

chitectures making use of asynchronous communication are more robust and can better

tolerate these transient disconnections.

Accordingly, we favor a corresponding loosely coupled approach for achieving data

dissemination. Hence, we fuse the storage substrate with the publish/subscribe (P/S)

paradigm and propose time-aware reactive storage (TARS), a reactive data storage and

dissemination model. Following this model, users register their interests through sub-
scriptions within a specific time scope. Subsequently, they are notified as new relevant data

is stored in the system through persistent publications.

1.4.2.1 Surviving Without Infrastructure

Either because they were destroyed, there are too many users trying to connect, or simply

because they do not exist, network infrastructures may not be accessible in every situation.

Still, in many scenarios (e.g., disaster situations, crowded venues, remote locations), mak-

ing information available can be of paramount importance [70, 166]. Thus, this part of the

thesis relates with the development of a transient data storage and dissemination system

for networks of co-located mobile devices in the absence of network infrastructure.

Here, we propose Thyme, a data storage and dissemination system for wireless edge

environments, that implements TARS. Essentially, it is a system that makes opportunistic

use of mobile devices and ad-hoc networking to provide a transient storage service in a

localized geographical region. We pursue two different paths. One follows a lightweight

unstructured approach using local storage and query flooding, named Thyme-LS. The

other, named Thyme-DCS, embraces a more intricate structured approach, specifically a

geographical distributed hash table (DHT), lead by the fact that geographic positions have

a close relation with the topology in wireless networks. We implement both approaches

in a network simulator [216], and the DHT approach also as an Android library.

9

CHAPTER 1. INTRODUCTION

1.4.2.2 Thriving With Infrastructure

With access to the network infrastructure and the rise of the edge-centric paradigm, our

solution can be extended to take advantage of the guarantees and resources available at

various levels of the network hierarchy. Thus, this part of the thesis relates with the de-

velopment of data storage and dissemination solutions for networks of co-located mobile

devices with access to network infrastructures and their corresponding edge computing

capabilities. We harness the resources available at the network edge in order to provide

scalable and flexible data storage and dissemination, while still keeping data close to the

end-users. By exploiting different levels of the network hierarchy, we can push some of

the work out of the mobile devices and into the upper levels of the hierarchy, sharing

some management responsibilities.

Here, we propose two different solutions. The first one addresses some challenges

in managing highly dynamic device population and workload imbalances in the context

of structured overlays, namely DHTs. To tackle these issues, we propose Parsley, a

resilient group-based DHT with preemptive peer relocation and a dynamic data sharding
mechanism. We implement this proposal in the PeerSim simulator [180].

The second one, Thyme GardenBed (implemented and evaluated in the context of

the M.Sc. of Vieira [278]), concerns a data storage and dissemination system for multi-
region edge networks (where we leverage on our previous work, Thyme). We take ad-

vantage of edge servers to cache some (popular) data and perform some of the system’s

management, interacting among each other. Devices cooperate among each other and

with the edge servers, and share storage and management responsibilities. We implement

this approach as an Android library (and experiment with real devices and simulation).

1.4.3 Contributions

The thesis’ main contributions are distributed data storage and dissemination solutions

for pervasive edge computing environments, able to operate in settings with or without

network infrastructure access. Namely, it presents the following contributions:

1. Time-aware reactive storage (TARS), a reactive data storage and dissemination

model with intrinsic time-awareness, that fuses a P/S abstraction with the storage

substrate, and allows queries within a specific time scope;

2. Thyme, a data storage and dissemination system for wireless edge environments,

implementing TARS;

3. Parsley, a flexible and resilient group-based DHT with preemptive peer relocation

and a dynamic data sharding mechanism; and

4. Thyme GardenBed, a framework for data storage and dissemination across multi-

region edge networks, that makes use of both device-to-device (D2D) and edge

interactions (implemented in the context of the M.Sc. of Vieira [278]).

10

1.5. DOCUMENT OUTLINE

1.5 Document Outline

The remainder of the thesis is organized as follows:

• Chapter 2 introduces fundamental concepts and relevant state of the art required

for the better understanding of the contributions presented in the thesis;

• Chapter 3 presents the time-aware reactive storage (TARS) concept in detail and its

application programming interface (API);

• Chapter 4 details Thyme, a system implementing TARS for wireless edge envi-

ronments, its two different approaches (Thyme-LS and Thyme-DCS), and the

Android implementation of Thyme-DCS;

• Chapter 5 describes Parsley, a group-based DHT with preemptive peer relocation

and a dynamic data sharding mechanism;

• Chapter 6 explains Thyme GardenBed, a framework for content storage and

dissemination across multi-region edge networks;

• Chapter 7 presents a brief overview of works related with the thesis, some of which

are based on and derived from Thyme, exploring different research directions (in

what we called the Edge Garden ecosystem); and

• Chapter 8 concludes the thesis by summarizing the achieved results, and discussing

several pointers for future research directions.

Additionally, at the end of the thesis, Appendix A describes a characterization study

of the group size parameters of Parsley.

11

C
h
a
p
t
e
r

2
Research Context

“If I have seen further than others, it is by standing upon the
shoulders of giants.”
— Isaac Newton

The thesis addresses data storage and dissemination in pervasive edge computing

environments. In order to better understand its content, it is essential to be aware of its

relevant subjects. To this extent, in this chapter, we present the research context and some

related work which contextualize our work.

In §2.1, we characterize the wireless environments targeted by the thesis. Next, in §2.2,

we survey concepts around the publish/subscribe (P/S) paradigm and present some re-

lated work. Then, in §2.3, we review previous research regarding data storage and dissem-

ination in pervasive edge computing environments. In §2.4, we present some concepts

regarding overlay networks, and specifically distributed hash tables (DHTs). After, in §2.5,

we give a brief presentation about some other topics relevant to the thesis (namely, other

data dissemination models). Lastly, we wrap up with §2.6, where we present our final

considerations regarding the surveyed matters.

2.1 Off the Wire: A Primer on Wireless Networks

A wireless network uses a wireless transmission medium for the exchange of information,

enabling two or more devices to communicate among them without using network cables,

i.e., without a physical connection [97, 199]. These networks are usually implemented

using radio-based transmission, the dominant form of wireless transmission.

In wireless networking standards (e.g., IEEE 802.11), an extended service set (ESS), or

just service set, is a group of wireless devices which are identified by the same service

13

CHAPTER 2. RESEARCH CONTEXT

Table 2.1: Differences between infrastructure and infrastructure-less networks [227].

Infrastructure network Infrastructure-less network

Structure Fixed Non-existent
Topology Static backbone Highly dynamic
Connectivity Stable Irregular
Setup cost High Low
Setup time Large Small

set identifier (SSID), forming a logical network (i.e., the devices are on the same logi-

cal network segment) [97]. In turn, basic service sets (BSSs) are sub-groups of devices

within a service set which are operating with the same physical layer medium access pa-

rameters (e.g., radio frequency, modulation scheme, security settings) such that they are

wirelessly networked. Thus, the BSSs of an ESS appear as a single network to the logical

link control layer, meaning that devices within an ESS can communicate with each other,

and can even move freely and transparently between BSSs (of the same ESS, naturally).

There are two categories of BSSs. The ones formed by an infrastructure mode redistri-

bution point—e.g., an access point (AP)—, and those that are formed by independent

stations in a peer-to-peer (P2P) ad-hoc topology—an independent basic service set (IBSS).

Note that a BSS should not to be confused with the coverage area of an AP, known as the

basic service area.

An infrastructure network resorts to an AP where client devices wirelessly connect

to and communicate through. That is, clients communicate only with the AP they are

connected to, and all traffic within the BSS is routed by that redistribution point. APs

define the BSS operating parameters, and are usually connected to a wired backbone,

working as gateways to other networks. Examples of this kind of networks include cellular

and Wi-Fi local networks. In turn, an infrastructure-less network, also called wireless

ad-hoc network (WANET), has no infrastructure (redistribution point) and is entirely

wireless, i.e., (client) devices communicate directly with each other in a point-to-point

fashion. If a device wants to communicate with another one outside of its radio coverage,

that message will have to be routed by other devices in the network in a multi-hop way.

A wireless sensor network (WSN) is an example of such network.

Table 2.1 presents the main differences between these two types of networks. In

an infrastructure network there is a base station that administers the wireless devices

connected to it, giving it a fixed structure and stable connectivity. On the contrary, in

a WANET, devices dynamically form a network without the use of any existent infra-

structure or centralized administration, resulting in a more cumbersome structure and

irregular connectivity [227]. While setting up WANETs is very cost-effective and quick,

for infrastructure networks it entails high costs and is time-consuming.

Wireless networks are usually affected by some issues that arise from the characteris-

tics of their communication medium. They are frequently subject to interferences caused

14

2.1. OFF THE WIRE: A PRIMER ON WIRELESS NETWORKS

by radio waves generated by other networks, degrading the signal or even causing com-

munications to fail. They are also affected by some materials that absorb or reflect radio

waves, preventing them from reaching the intended receivers. Also, the hidden node

problem occurs when a node A is visible from another node B, but not from other nodes

communicating with node B, thus leading to difficulties in controlling the access to the

wireless medium. Since the wireless spectrum is a limited resource, bandwidth needs to

be shared among the multiple users, resulting in lower individual user rates.

2.1.1 Wireless Infrastructure Networks

For providing the communication channel, these networks use fixed wireless hubs—base

stations or APs—where devices connect to and communicate through. Two of the most

known infrastructure networks are cellular and wireless local area networks (WLANs).

As its name suggests, a cellular (or mobile) network is a communication network dis-

tributed over land areas called cells, each served by at least one fixed base station (e.g., a

cell tower) [174]. These base stations provide the cell with the network coverage which

can be used for data transmission. A cell typically uses a different set of frequencies from

neighboring cells, to avoid interferences and provide guaranteed quality of service within

each cell. Since cell towers are close to mobile devices, the devices use less power than

with a single transmitter or satellite. When joined together, cells provide radio coverage

over a wide geographic area (in the order of several kilometers), thus enabling a large

number of devices (e.g., mobile phones) to communicate with each other, even if some

are moving through different cells during transmission.

A WLAN is a wireless network used to connect devices in a limited area, such as a

home, school, or office building [97]. Most modern WLANs are based on IEEE 802.11

standards and are marketed under the Wi-Fi brand name. Through the AP, it can also

provide a connection to other networks (including the Internet and non-wireless devices).

2.1.2 Wireless Ad-Hoc Networks

A WANET is a wireless network that does not rely on a preexisting infrastructure. In-

stead, the nodes forming the network forward messages on behalf of others [51, 227],

where these forwarding decisions are made dynamically, following the routing proto-

col deployed in the network. Since these networks are decentralized, they are dynamic

self-configuring networks in which the majority of the nodes are free to move.

Such decentralized nature makes them suitable for scenarios where a central coordi-

nation point cannot be relied on, either because it is impossible to deploy, or it cannot

be trusted. They can be applied in different areas such as disaster relief, environmen-

tal monitoring, or military communications. For instance, in military scenarios, due to

its infrastructure-less nature and fast deployment, these networks are used by military

units (e.g., soldiers, drones, ships) to communicate in harsh terrains, coordinate in bat-

tlefield operations, and share crucial information (e.g., imaging, multimedia data) [70].

15

CHAPTER 2. RESEARCH CONTEXT

Also, during natural disasters, a quickly deployable communication channel is of extreme

necessity, even more when traditional communication infrastructures are destroyed [166].

Rescue teams can use these networks to communicate and exchange vital information.

It can also be used to extend the range of wireless infrastructure networks, where some

nodes can work as gateways into the infrastructure network.

The flexibility of these networks comes at a price. They are highly dynamic, network

topology can change very frequently (because of user mobility or failures), network links

often have intermittent connectivity, and their bandwidth is limited because of wireless

channel errors (usually an order of magnitude lower than wired links; for long multi-hop

connections bandwidth reduction is even more dramatic) [227]. Here, communication

failures are the norm rather than the exception.

A mobile ad-hoc network (MANET) consists of mobile devices that communicate among

each other in a wireless fashion, for instance, using the IEEE 802.11 standard [28]. Those

devices spontaneously and autonomously form a network amongst themselves without

any central infrastructure or fixed topology. Devices are free to move independently from

each other, thus topology is highly dynamic.

Wireless mesh networks (WMNs) are a particular type of WANET where nodes are

of two types: mesh routers and mesh clients [8]. Mesh routers are dedicated wireless

devices (usually without energy restrictions) and have minimal to zero mobility, thus

topology tends to be static. They form a multi-hop wireless backbone, and some might

act as gateways to the Internet (or other networks). In turn, mesh clients connect to

the routers. Consequently, clients mobility or energy issues do not affect the backbone

network topology. Mesh clients are often laptops, cellphones, and other wireless devices.

An example of such network is Guifi.net [104].

Vehicular ad-hoc networks (VANETs) apply the same principles of MANETs to vehi-

cles moving on roads. They are used for communication between vehicles and roadside

equipment [260]. Typically, power consumption is not an issue in this type of network.

Rather than moving freely at random, vehicles tend to move in a more organized fashion,

since they are constrained to follow roads. Since the domain of VANETs is very restricted,

usually its applications are targeted towards traffic information systems and intelligent

transportation systems. For instance, it can be used to provide real-time obstacle reports,

road safety warnings, and traffic status information.

Sensor nodes are small, low-power inexpensive devices, with limited computing re-

sources [288]. They can sense, measure, and gather information from the environment

they are in, e.g., sound, temperature, humidity, pressure. A wireless sensor network (WSN)
typically has little or no infrastructure. It consists of a number of spatially dispersed sen-

sor nodes, working together to monitor a region and obtain data about the environment.

Since they are typically deployed in difficult-to-access locations [129], wireless commu-

nication is used to transfer the sensed data outside of the sensor network, to a sink node

or gateway for further processing and analysis. Sensor nodes can communicate directly

among themselves, and typically pursue multi-hop paths to disseminate the collected

16

2.1. OFF THE WIRE: A PRIMER ON WIRELESS NETWORKS

data towards the network sink node(s). Some applications of WSNs are area monitoring,

fire detection, animal tracking [129], or pollution monitoring.

Also called disruption tolerant networks, delay tolerant or opportunistic networks are an

approach that seeks to address the issues in heterogeneous networks characterized by very

long delay paths and frequent network partitions [89]. These networks look at mobility,

disconnections, partitions, etc. as features of the networks rather than exceptions. In

fact, mobility is exploited as a way to bridge disconnected cluster of nodes. Examples of

such networks are those operating in extreme terrestrial environments or interplanetary

networks. Since instantaneous end-to-end paths many never exist, routing protocols

have to take a store-and-forward approach [124], where data is incrementally moved and

stored throughout the network in hopes that it will eventually reach its destination.

2.1.3 Routing Protocols

A routing protocol is a specification of how routers decide to forward packets among

each other. In wireless ad-hoc networks, every node is a potential router and topology is

dynamic. Thus, routing protocols need to define what information needs to be exchanged

to enable them to build (and keep up-to-date) some knowledge base of the network

topology. Some inherent constraints in wireless environments are low bandwidth, limited

energy, high error rates, asymmetric links, and other factors such as terrain conditions,

obstacles, etc.

There are two approaches for ad-hoc routing protocols: topology- and position-based

routing. Topology-based protocols can be further divided into proactive, reactive, and

hybrid strategies.

2.1.3.1 Proactive Protocols

Also called table-driven, proactive protocols employ classical routing strategies such as

distance-vector (e.g., DSDV [200]) or link-state routing (e.g., OLSR [123]). They con-

tinuously maintain up-to-date routing information about all the available routes in the

network (through periodic dissemination), even if these are not currently used. Routing

tables are periodically disseminated throughout the network in order to maintain them

up-to-date. The main drawback of this approach is that the maintenance of unused routes

may occupy a significant part of the available bandwidth and drain nodes’ battery even

when the network is idle, or if the network topology changes frequently.

2.1.3.2 Reactive Protocols

Reactive protocols, also known as on-demand protocols, only maintain the routes that

are currently in use, thus avoiding the burden of maintaining unused routes. Since only

used routes are maintained, prior to packet forwarding, nodes are required to perform

a route discovery phase, thus leading to a route setup delay before the actual packet

17

CHAPTER 2. RESEARCH CONTEXT

routing. Even though only used routes are maintained, this can still represent a signifi-

cant amount of network traffic when network topology changes frequently. Examples of

reactive protocols are AODV [198] and DSR [128].

2.1.3.3 Hybrid Protocols

As its name suggests, hybrid protocols combine the main ideas of reactive and proactive

approaches, trying to bring together the advantages of both. Typically, they try to exploit

the low communication overhead of reactive protocols and the reduced route setup delay

of proactive protocols. An example is zone routing protocol (ZRP) [111]. Briefly, it defines

a zone around each node, that contains the neighbors within a given number of hops.

Then proactive algorithms are used to route packets within the zone, whereas reactive

algorithms are used to route packets outside the zone. However, even a combination of

both strategies requires to maintain the currently used routes, limiting the amount of

topological changes that can be tolerated within a given period of time.

2.1.3.4 Geographic Protocols

Also named position- or location-based, geographic protocols use nodes’ location informa-

tion to find the best routes between source and destination [169]. The location informa-

tion can be obtained from various sources, such as GPS or other positioning service [50,

206]. Without knowledge of the network topology or a prior route discovery, at each hop,

the routing decision is based on the destination’s position and the position of the forward-

ing node’s neighbors. The position of a node’s neighbors is typically learned through

periodic beacons (containing the sending node’s position).

These protocols do not need to establish or maintain routes, thus nodes do not have

to store routing tables nor have to transmit messages to keep them up-to-date. Instead,

they congregate some ideas of both reactive—calculate routes on-demand—and proactive

routing protocols—very small periodic beacons. The simplest routing strategy is greedy
forwarding, whereby a message is forwarded to the node that minimizes (at each hop)

the distance to the message destination. Other strategies have to be used when greedy

forwarding is not possible, such as perimeter forwarding [135].

It has been verified that topology-based routing protocols are not scalable [257]. In

large networks, geographic protocols deliver more packets and consume less network

resources than topology-based approaches. Topology-based routing requires the mainte-

nance of (somewhat) accurate topology information of the network. The communication

overheads for such information maintenance quickly increase with the network size and

the amount of topology changes. In turn, geographic protocols avoid those overheads

by requiring only localized information, therefore being aligned to provide better over-

all performance for large networks. Also, regarding resource-constrained (mobile) de-

vices, position-based routing will probably deliver the best trade-off between expended

resources and routing performance, when in WANET scenarios.

18

2.2. THE HITCHHIKER’S GUIDE TO PUBLISH/SUBSCRIBE

Publisher

Publisher

Publisher

Publisher

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Storage and
management of

subscriptions

Notify()

Subscribe()

Unsubscribe()

Publish

Publish

Subscribe

Notify

Unsubscribe

Event Service

Figure 2.1: A basic publish/subscribe system model [85].

2.2 The Hitchhiker’s Guide to Publish/Subscribe

The publish/subscribe (P/S) interaction paradigm provides a simple, yet effective, com-

munication abstraction, allowing the asynchronous exchange of information from pro-

ducers to consumers. In this event-based paradigm, data sinks, usually called subscribers,
express their interest in an event or class of events. Subsequently, they are notified of

any event, generated by a data source (usually referred to as publisher), that matches their

registered interests [85, 187]. In other words, publishers publish information, catego-

rizing it into classes, and without knowing which subscribers there may be, if any. In

turn, subscribers subscribe to the information categories they are interested in, and get

notified only about those. This information is typically denoted by the term event and

the act of delivering it by notification. A subscriber registers its interest in events through

subscriptions and the act of generating an event is denoted as publication.

The basic P/S system model, illustrated in Figure 2.1, relies on an event notification
service that manages subscriptions and delivers events, acting as a mediator (or a proxy)

between publishers and subscribers. A subscriber calls a subscribe() operation to reg-

ister its interest in certain events. The symmetric unsubscribe() operation revokes a

subscription. In turn, a publisher calls a publish() operation to generate an event. Then,

the event service propagates the event to all relevant subscribers.

2.2.1 Loose Coupling

As the event service acts as a proxy between publishers and subscribers, it provides full

decoupling among all the communicating entities in space, time, and synchronization [85].

By removing all explicit dependencies between the interacting parties, the P/S par-

adigm is well adapted to the loosely coupled interactions required in many (large-scale

or highly dynamic) distributed environments—which are asynchronous and volatile by

nature. The P/S loosely coupled interaction model is depicted in Figure 2.2, through its

three decoupling dimensions.

19

CHAPTER 2. RESEARCH CONTEXT

Publisher

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Publish
Notify

Notify()

Event Service Notify

Notify

(a) Space decoupling.

Publisher Subscriber
Notify()

Publish

Event Service

Publisher Subscriber
Notify()

Event Service
NotifyNotify()

Tim
e

(b) Time decoupling.

Publisher Subscriber

Notify()

Notify()

Event Service
Notify

Publish

(c) Synchronization decoupling.

Figure 2.2: Publish/subscribe decoupling dimensions [85].

Space Decoupling. Publishers and subscribers interact without knowing the existence

of each other, i.e., the event notification service presents itself as an anonymous communi-

cation channel. A publisher publishes events through the event service, and subscribers

are notified about those events indirectly through the same event service (Figure 2.2a).

Time Decoupling. Publishers and subscribers do not need to be participating in the

interaction (with the event service) at the same time (Figure 2.2b). A publisher can

publish events while a subscriber is disconnected, and a subscriber can be notified about

events while the original publisher of the events is disconnected.

Synchronization Decoupling. The production and consumption of events happen in

an asynchronous manner (Figure 2.2c). Publishers do not block while publishing events,

and subscribers can be asynchronously notified about events (while performing some

concurrent action). This decoupling dimension is, sometimes, called flow decoupling.

20

2.2. THE HITCHHIKER’S GUIDE TO PUBLISH/SUBSCRIBE

2.2.2 Subscription Models

Usually, subscribers are interested in particular events or event classes, and not in all

events. To specify the events of interest, several subscription models have been proposed.

Next, we present the main P/S variants, namely topic-based, content-based, and type-based.

2.2.2.1 Topic-Based P/S

This subscription model, also known as subject-based P/S, uses topics or subjects to clas-

sify events [187]. Publishers publish events associated with a topic, while subscribers

subscribe their interest in receiving events of a certain topic. This notion is very similar

to groups in group communication systems [34, 53, 204]. The event space is divided

into topics, corresponding to groups or logical channels. Thus, subscribing to topic A

can be seen as joining group A, and publishing an event on topic A can be seen as broad-

casting that event to all the members of group A. Basically, it maps individual topics to

distinct (many-to-many) logical communication channels.

The topic names used in these P/S systems are usually quite static, i.e., they are

specified as initialization arguments to the event service [85, 155]. Thus, the topics that

exist in the system are either out-of-band information (and must be known a priori by

the clients), or are dynamically discovered using some additional support given by the

system (e.g., having control topic channels, where new topics are advertised).

A topic is simply a keyword (i.e., a string) that represents a name according to which

events are classified. Its namespace can be flat [45, 296] or hierarchical [187]. With

a flat namespace, topics only allow to represent disjoint event spaces. Whereas, with

a hierarchical namespace, topics can be structured according to containment relations.

A subscription made to some topic in the hierarchy implicitly entails subscriptions to

all its subtopics. Usually, these hierarchical topic names have a representation simi-

lar to URLs or file system paths. For instance, the topic /StockMarket/StockQuotes

allows to subscribe for all stock quote events in a stock market. Whereas, /StockMar-

ket/StockQuotes/Telco specifies the interest in being notified about stock quote events

concerning only telecommunication companies. Some P/S systems also allow topic names

to contain wildcards [187, 270].

In this subscription model, topics are the only information required to make events

get from publishers to subscribers and, at the same time, topics are an integral part of the

events. However, the event service only knows how to interpret topics and not the rest of

the events’ content, which remains opaque to the service.

Sometimes, the earlier term channel-based P/S is used to refer to a flat topic model

where the topic name is not explicitly a part of the event, but of the channel to which sub-

scribers register to [103, 113]. Publishers publish events to the channel, and subscribers

connect to the channel and listen to all the published content.

Due to its simplicity, this model can be efficiently implemented. However, despite

the hierarchical topic namespace and wildcards, this simplicity may imply a rather static

21

CHAPTER 2. RESEARCH CONTEXT

model and limited expressiveness.

2.2.2.2 Content-Based P/S

The content-based P/S variant presents a more flexible subscription model based on the

actual content of the events [5, 43]. Contrary to topic-based systems, in this subscription

model, the events’ content is interpreted by the event service for matching them against

subscriptions. In this subscription model, the events’ content is usually modeled as a set

of attribute-value pairs.

Events are classified by their properties: either internal attributes of the events’ con-

tent [19, 42, 64, 238], or metadata associated with the events [113]. Subscribers register

their interests by specifying constraints over the values of the events’ attributes using a

subscription language (e.g., SQL, XPath, or some proprietary language). A subscription

can be seen as a boolean function over predicates (e.g., Company == “Telco” AND 20 <

Price < 50). An event matches a subscription if the boolean function evaluates to true.

The event’s attributes (and every kind of content to which clients can subscribe to), i.e.,

the event schema, have to be predefined. This schema is either out-of-band information

known by all clients, or it must be dynamically discovered using some additional support

from the system.

When compared to the topic-based subscription model, this one allows a more fine-

grained filtering of events. Nonetheless, this increase in expressiveness comes at the

cost of increased system complexity. In this subscription model, the main challenge

is to efficiently match events against subscriptions without computing several repeated

subscription evaluations.

Some examples of P/S systems employing the content-based subscription model are

Elvin [238], Siena [42], JEDI [64], Hermes [203], and IBM’s Gryphon [19].

2.2.2.3 Type-Based P/S

In this subscription model, events are filtered according to their type [84, 87, 88], i.e.,

events are actually objects of application-defined types (which can encapsulate attributes

as well as methods). In turn, subscribers register their interest in receiving events of a

specified type (and its subtypes). Thus, matching between events and subscriptions is

transformed into type checking.

This subscription model presents an object-oriented approach, enabling a close inte-

gration of the programming language with the P/S system. By ensuring type safety at

compile-time, this model includes events and subscriptions as first class citizens into the

programming language.

Comparing with the topic-based subscription model, the event type is the topic. How-

ever, a type is more general than a topic and they may also support operations that can

model content-based filtering (e.g., through predicate verification using the public mem-

bers of the considered event types).

22

2.2. THE HITCHHIKER’S GUIDE TO PUBLISH/SUBSCRIBE

Table 2.2: Comparison of subscription models [155].

Model Filtering Publication Subscription

Channel-based No filtering Events Listening to channels
Topic-based Topic (hierarchy) Events tagged w/ topics Topics (w/ wildcards)
Content-based Event content Events Content-based filters
Type-based Type checking Objects Object types

2.2.2.4 Comparison

In sum, each P/S subscription model offers a different degree of expressiveness, as well

as distinct system complexity and performance overheads (naturally, depending on their

specific implementations).

Topic-based P/S presents a simple model whereby a single name alone can determine

all the relevant event recipients. It is due to this simplicity that exist many efficient

implementations of this model. However, despite the hierarchical topic namespace and

wildcards, this simplicity provides a rather static model and limited expressiveness.

On the other hand, content-based P/S provides a more flexible and general subscrip-

tion model with improved expressiveness. Still, the additional expressiveness of this

model comes at a price. Since event recipients can only be determined after each publica-

tion, it requires complex protocols possibly demanding higher runtime overheads, thus

being more difficult to implement efficiently.

In turn, type-based P/S sits somewhere in the middle of the previous models. It pro-

vides a coarse-grained structure to events, like in topic-based systems, but also allowing

fine-grained constraints to be expressed over the events’ attributes (like in content-based

systems) or over methods.

Table 2.2 sums everything up, comparing all the presented subscriptions models (in-

cluding also the channel-based model) regarding filtering, publication, and the subscrip-

tion capabilities each one supports.

2.2.3 System Architecture

The P/S system architecture concerns the way the interacting participants are organized,

and with whom and how they communicate. Basically, it determines who does the match-

ing and routing of events in the system. Matching determines who are the recipients of

an event, while routing delivers an event to all its relevant recipients.

On the one hand, these tasks can be performed by event brokers, i.e., dedicated servers

of the system where clients connect to. These servers are also responsible for executing

the complex protocols required for persistence, reliability, or high availability.

On the other hand, these tasks can also be done by the clients themselves, i.e., a

symmetric (P2P-like) system where participants share the same roles—they can either

be a publisher, a subscriber, an event broker, or any combination thereof. The main

23

CHAPTER 2. RESEARCH CONTEXT

EBP/S

P

S

P/S

P/S

S

(a) Centralized.

P/S

P

S

P/SP/S

S

EB EB

EBEB

EB

(b) Distributed.

P/S

P/S

S

S

P/S

P

(c) Decentralized.

Figure 2.3: Examples of publish/subscribe system architectures (EB - event broker, P -
publisher, S - subscriber, P/S - publisher and subscriber).

alternatives, which are depicted in Figure 2.3, can be classified as centralized, distributed,

or decentralized approaches.

2.2.3.1 Centralized

In a centralized P/S system, the event service consists of a single broker to which both

publishers and subscribers connect to. Figure 2.3a illustrates this star topology where

the (central) event broker stores and manages all subscriptions, matches incoming events

against the stored subscriptions, and then routes events to the matching subscribers.

The Java Message Service [113] provides a model that uses an event broker that is con-

ceptually centralized. Since there is a central authority coordinating all the interactions

in the system, the three P/S decoupling dimensions can be trivially ensured. However,

the event broker presents itself as a single point of failure and as a bottleneck, thus this

approach does not scale very well (and is not widely adopted in practice).

2.2.3.2 Distributed

In this type of P/S system, the event service is implemented as a distributed network of

brokers, i.e., there are multiple event brokers to which publishers and subscribers can

connect to. Usually, these broker networks follow some topology, such as a hierarchical

structure (as a tree) [19, 64] or a general graph (with some constraints) [42, 203].

The tree topology presents a hierarchical relation among event brokers. Usually,

clients can connect to any broker (similar to Figure 2.3b). This hierarchical structure

is designed for scalability. A parent broker will receive events and subscriptions from

all the clients connect to it, but will only forward down the events intended for its sub-

tree. However, topmost brokers tend to be overloaded, and the failure of a broker might

disconnect the entire sub-tree.

In the case of the general graph approach, systems usually tend to construct graphs

following some routing protocol, and constraining connections taking into account the

subscriptions registered in the system and their relations. Basically, they construct rout-

ing tables based on the registered subscriptions and route events accordingly [42].

24

2.2. THE HITCHHIKER’S GUIDE TO PUBLISH/SUBSCRIBE

2.2.3.3 Decentralized

In decentralized P/S systems, the event notification service follows a P2P approach where

clients are the event brokers, i.e., there are no dedicated servers. Thus, in this approach,

all participants play the role of brokers, matching and routing events. As the previous

architecture, brokers usually adopt some common topologies, like trees, rings [45], or

general graphs. For instance, Figure 2.3c presents an example of a set of brokers/clients

structured as a ring.

Additionally, there are other systems that use no brokers, and allow publishers and

subscribers to interact directly among each other [22, 270]. As such, these systems do not

ensure the adequate P/S decoupling, but they can be suited for fast and efficient delivery

of transient data.

2.2.4 Event Routing

As already mentioned, event routing is the act of delivering events to all their relevant

recipients. This can be done by dedicated event brokers or by the clients themselves,

depending on the system architecture (§2.2.3).

Common to all event routing approaches is the need to disseminate some piece of

information from publishers and/or subscribers to the event brokers. The trivial solution

for this task consists in disseminating each event or each subscription to all the brokers.

Thus, allowing them to make local decisions. The natural drawback of these solutions is

that they do not scale in large-scale or highly dynamic systems. In the middle sit several

routing approaches based on selective, or probabilistic event routing.

2.2.4.1 Event Flooding

This is an extreme solution, that sits in one end of the spectrum of event routing ap-

proaches. Following this approach, events are flooded to all the brokers, i.e., to the entire

system. Thus, after a publication, a publisher broadcasts the event, and filtering is done

on the receiving side by the interested parties. Each client stores its subscriptions lo-

cally and upon receiving a notification, it checks if the event matches any of its locally

registered subscriptions. If not, the event is simply filtered out.

This approach is very straightforward to implement, but very expensive. Its main in-

convenience is its high message overhead, because events are disseminated to all brokers,

whether or not they are serving any interested parties. However, it presents a minimal

memory overhead, because only local subscriptions have to be stored.

2.2.4.2 Subscription Flooding

On the other end of the spectrum of event routing approaches lies the subscription flood-

ing approach. This solution follows the opposite idea, whereby subscriptions are flooded

to all the system brokers (instead of events) [39, 238]. Thus, each broker gathers the

25

CHAPTER 2. RESEARCH CONTEXT

complete knowledge of all the system’s subscriptions, and can then build a completely

local subscription table. In the end, these tables are used to locally match events and

directly notify the interested subscribers (and non-interesting events can be immediately

filtered out at the publishers).

This approach is also very straightforward to implement, but it suffers from a large

memory overhead, because every broker needs to store all the subscriptions registered

in the entire system. However, event dissemination can be optimal, since events can be

routed only to the brokers of interested subscribers. This approach becomes impractical

for scenarios where subscriptions can change frequently.

2.2.4.3 Filtering-Based Routing

One approach that follows selective event routing is filtering-based routing. In this

approach, subscriptions are partially disseminated in the system (following some rules),

and are used to build routing tables. These routing tables are then exploited during event

routing to dynamically build paths (e.g., multicast trees) that connect the publisher to

the interested subscribers.

Due to this event filtering approach, events are forwarded only to nodes that lie on a

path leading to interested subscribers. Thus, message overhead is reduced by identifying,

as soon as possible, events that are not interesting for any subscriber ahead and stop

their forwarding. Additionally, here, subscription dissemination can be restricted by

exploiting containment relations among subscriptions [42].

2.2.4.4 Rendezvous-Based Routing

The other type of selective event routing is rendezvous-based routing. This solution is

based on two functions, SB and EB, used to associate respectively subscriptions and

events to specific brokers in the system. Given a subscription s, SB(s) returns the set

of brokers (named rendezvous nodes) responsible for storing s and forwarding received

events matching s to all the relevant subscribers. Given an event e, EB(e) returns the set

of brokers that must receive e to match it against the subscriptions they store.

In this approach, event routing is a two-phase process. First, an event e is forwarded to

all brokers returned by EB(e), then those brokers match it against the subscriptions they

store and notify the corresponding subscribers. For this approach to work, the mapping

intersection rule must hold: ∀s,∀e : e.matches(s) =⇒ EB(e)∩ SB(s) , ∅.
This approach tries to achieve better load balance for subscription storage and man-

agement. Since all subscriptions matching the same events are stored in the same (usually

small) set of brokers, it avoids a redundant matching to be performed in several different

brokers. Event delivery can also be simplified, for instance, by creating diffusion trees

starting in the target brokers and spanning all the relevant subscribers.

Nevertheless, defining functions SB and EB to satisfy the mapping intersection rule

may be far from a trivial task (for instance, when addressing the multi-dimensional nature

26

2.2. THE HITCHHIKER’S GUIDE TO PUBLISH/SUBSCRIBE

of content-based P/S systems).

Examples of systems from the literature that use this event routing approach are

Scribe [45], Hermes [203], Meghdoot [106], or Bayeux [296].

2.2.4.5 Probabilistic Routing

Probabilistic event routing follows the ideas of gossip-based protocols. This is a fully

distributed approach, where each node contacts some of its neighbors (chosen at random)

in each round, and exchanges information with them. The flow of information resembles

the spread of an epidemic and leads to high robustness and reliability in highly dynamic

networks. Being randomized, these protocols are simple and do not require nodes to

maintain routing data structures.

The random choice of the neighbors to contact can also be driven by local informa-

tion (e.g., the state of the subscriptions distribution in the network), and follow a sim-

ilar principle to filtering-based routing: avoid to gossip events to non-interested sub-

scribers [86]. This is sometimes called informed gossip.

Its main drawback is a moderate (and usually configurable) redundancy in message

overhead compared to deterministic solutions.

2.2.5 Mobile and Wireless Environments

The first P/S systems were developed for completely wired environments, thought for

supporting distributed applications built on top of static and managed environments.

Thus, both event broker(s) and clients were wired devices connected through some net-

work. Because of their design and underlying materialization, these systems are very

rigid and have a rather static but stable topology.

However, in the last decades, computing devices started to become more and more

mobile, and the environments where they operate are largely unmanaged. Accompany-

ing that trend, P/S systems had to adapt and started supporting mobile clients, although

event brokers continued to be materialized by (networks of) dedicated servers attached

to a network infrastructure. With this design, broker networks still present a static topol-

ogy, while clients are allowed to move (either logically or physically [93]). These systems

assume clients have access to the network infrastructure (in order to access the broker net-

work) and address clients roaming among different brokers through various techniques,

like client proxies [40], mobility prediction [93], location-dependent subscriptions [92], or

requiring clients to explicitly inform they are moving/connecting to another broker [65].

Although these systems address client mobility, event brokers are assumed to be

wired dedicated servers. Thus, they are static wired devices that reside inside a network.

However, because of the massive adoption of mobile wireless devices nowadays, there

are some scenarios where the P/S paradigm might be of use but where there may not

be access to a network infrastructure, such as locations without network access or with

low/intermittent connectivity. Here, the completely decoupled interaction model of P/S

27

CHAPTER 2. RESEARCH CONTEXT

perfectly suits the interoperability needs of such wireless and infrastructure-less scenar-

ios (e.g., aids mobility and disconnected operations, and multicast delivery can exploit

the intrinsic broadcast properties of the wireless medium). Therefore, several P/S sys-

tems were designed for WANETs, where there are no APs and system-wide services, such

as STEAM [172], Mires [253], Fadip [196], or GeoRendezvous [41]. STEAM is a middle-

ware service where subscribers only consume events produced by geographically close-by

publishers (relying on proximity-based group communication). Mires was developed

targeting WSNs. Fadip uses an unstructured approach based on gossip techniques. Geo-

Rendezvous is based on a geographic hash table (GHT) for wireless networks, and uses

its geographic properties to reduce notification latency.

In conclusion, regarding the environments event brokers and clients operate in, we

can divide P/S systems in three different categories: 1) purely wired (both event broker

and clients are wired, e.g., a P/S system for a local wired network); 2) partially wireless (a

wired event broker and wireless clients, e.g., a P/S system for a WLAN); and 3) purely

wireless (both event broker and clients are wireless, e.g., a P/S system for a WANET).

2.2.6 State Persistence

In most P/S systems, events are transient, i.e., once matched and disseminated they are

not further stored or processed. Thus, only subscribers online at the time of publication

will be notified about an event. Although many P/S systems addressing mobility allow

subscribers to get undelivered events (e.g., due to a disconnection) when they reconnect,

they do not allow new subscribers to explicitly request those past events.

In highly dynamic and volatile scenarios, or with frequent disconnections, the re-

trieval of past publications might be a necessary feature. In fact, this feature is the time

decoupling of the P/S paradigm [85]—one of its decoupling dimensions. However, many

systems require publishers and subscribers to participate in the interaction with the event

service at the same time, in order to be notified of current publications. Exceptions are

state-based P/S systems [155] and the subject space model [151, 152], whereby events

persist in the system (for some time) after their publication.

Much work has already been done in P/S systems, both for wired and wireless settings.

However, the notion of persistence (or time) has not been addressed in most. The subject

space model [151, 152] formalizes P/S-style interactions and generalizes the P/S concept.

It proposes a system that treats the relations between publications and subscriptions

as a kind of state machine, maintaining the state between each pair of publication and

subscription, and only sending notifications upon state transition (i.e., when the state of

subscriptions change from false to true).

In environments with wired broker networks (although clients can be wireless and/or

mobile), some systems explore the concept of a persistent data repository. This is achieved

through distributed buffers [55, 90, 120, 251, 261] or caches [252] in the broker network,

with a centralized component [33], or by integrating the P/S system with databases [153,

28

2.3. LIVIN’ ON THE EDGE: DATA MANAGEMENT AT THE NETWORK EDGE

205, 239, 248, 277]. For instance, some systems use proxy servers that maintain per-

manent connections to the broker network, and buffer any notifications received while

clients are disconnected. A drawback is that clients need to reconnect to the same proxies

to receive the buffered notifications.

Regarding purely wireless settings, to the best of our knowledge, Chapar [137] is the

only state-based P/S system. It targets MANET environments, and uses a broker network

based on an OLSR overlay (with its known overheads) to handle publications and sub-

scriptions. It buffers notifications in replicated data containers until they expire or they

are delivered to all their intended subscribers. Due to its design choices, it presents some

limitations. Since the system is not symmetric, broker nodes will have to do more work

and spend more of their resources (e.g., storage, computing, battery) when compared to

non-brokers. It employs both a subscription and event flooding approaches (the latter

only for events that should be persistent), known for not scaling in highly dynamic and

large-scale systems.

2.2.7 Complex Event Processing

Despite the plethora of features provided by P/S systems, they do not allow to express

queries spanning multiple events. In turn, complex event processing (CEP) systems

process incoming information as streams of events and work to detect certain patterns in

the flow of events [161]. Large numbers of events that in isolation are not useful, need to

be correlated to detect higher-level (composite) meaningful events [155].

The main goal of CEP systems is on detecting occurrences of particular patterns

of (low-level) events (that can be filtered, combined and transformed), indicating some

higher-level events. Contrasting to traditional P/S systems, CEP systems allow consumers

to express their interests not in individual events, but in composite events, i.e., combi-

nations of multiple events correlated over time. Additionally, some CEP systems also

address time relations between events [25, 66].

2.3 Livin’ on the Edge: Data Management at the Network Edge

Besides the obvious drawback of being a single point of failure and a bottleneck, central-

ized solutions for data management also demand significant monetary and operational

costs, and overheads in its development, deployment, and maintenance. In turn, a decen-

tralized solution spreads those concerns among several entities. If those entities can work

collaboratively, such costs and overheads can be greatly reduced, or even eliminated.

Data management in our target environments involves several aspects, from which

we highlight data storage—where and how data is stored—and data dissemination—how

data is searched and retrieved, or how data is propagated to all interested stakeholders.

Next, we present an overview of the state of the art research addressing these topics,

ranging from wired to edge/fog computing environments.

29

CHAPTER 2. RESEARCH CONTEXT

2.3.1 Data Storage

As already mentioned, here, the data storage aspects that we explore concern about how

and where data is stored in a specific system, and what kind of guarantees are provided

to the users.

Krowd [79] and Ephesus [243] both enable generic content storage and sharing among

nearby mobile devices. They provide a key-value store abstraction for networks of co-

located devices, without relying on any centralized component. While Krowd relies on

a one-hop DHT, requiring each device to know and connect to every other device in the

network, Ephesus is sustained by a classical DHT, requiring only partial knowledge of

the network. The authors of Krowd decided not to handle churn implicitly because it

can consume too much bandwidth (a solution given by the authors is to re-issue key-

value pairs periodically). Thus, it does not address device mobility or failure, nor data

availability. In turn, Ephesus leverages its DHT to tolerate churn, and uses a popularity-

aware replication mechanism to address data persistence and availability. Both require

some kind of network infrastructure in order for devices to communicate among each

other (e.g., an AP, or a device as a Wi-Fi hot-spot).

MobiTribe [268] is a system for content sharing on mobile devices, across the Internet.

It uses a central server for content discovery, peer registration, and metadata management.

Data is replicated in several peers according to their interests, and it uses intricate pre-

fetching techniques to improve retrieval latency.

PAN [162] and Phoenix [195] are two systems for reliable storage in MANETs, pro-

viding similar mechanisms for data replication in ad-hoc networks. For that, PAN uses

a protocol based on probabilistic quorum systems, and Phoenix uses a round-based sim-

ple quorum protocol (for one-hop networks). Both protocols allow the ingress/egress of

peers to/from the network, and provide some guarantees regarding data persistence and

availability. However, while PAN supports both concurrent access and update operations

on stored data, Phoenix only allows access to its stored data. Still, because PAN is an

asymmetric system, some peers will perform more work than others, causing imbalance

in spent resources. In turn, being Phoenix a symmetric system, will probably provide for

fairness concerning the resources spent by its participating peers.

Tuple spaces [7, 98] is another interaction paradigm that was adapted for mobile and

wireless environments (§2.5.2). It provides a shared repository of immutable structured

information, called tuples, that can be manipulated concurrently. It can be seen as an

approach identical to distributed shared memory. Similar to the P/S paradigm, it also

provides decoupling in time and space.

TierStore [73] is a distributed file system for challenged networks, such as delay tol-

erant networks (DTNs). It uses the DTN’s store-and-forward routing strategy and a P/S

multicast replication protocol to provide a standard file system interface. It implements

an easy-to-reason-with conflict management policy, providing automatic conflict resolu-

tion in some cases.

30

2.3. LIVIN’ ON THE EDGE: DATA MANAGEMENT AT THE NETWORK EDGE

Regarding storage solutions leveraging on edge computing capabilities, several ap-

proaches have been proposed. Some propose to build P2P overlays for storage, but using

edge devices as peers in the overlay, i.e., storage clouds using edge devices [29, 185]. Thus,

laptops, media centers, set-top-boxes, modems, or mobile devices (and even the users’

cloud storage accounts), all contribute with storage space to create a single unified stor-

age system, where data is cached, replicated, and placed to enable reliable access while

minimizing latency and storage costs. Combining all end-user devices may result in a

scalable and flexible storage cloud that keeps data close to the users (similar to content

distribution networks (CDNs)), increasing availability while reducing latency.

FogStore [107, 171] goes even further and provides mechanisms to enable typical

made-for-cloud distributed storage systems (such as Apache Cassandra) to operate trans-

parently in edge/fog computing environments. Its focus is on data consistency, offering

differential consistency guarantees for clients based on their context. Contrary to our

target scenarios, FogStore addresses highly geo-distributed scenarios.

Curiously, we found several systems named EdgeStore (from different authors) [112,

138]. They have in common the fact that they leverage on edge servers to deploy such

storage systems. Then, they use different techniques (such as pre-fetching, or client move-

ment prediction) to improve read performance and user experience, as mobile clients

move between edge replicas.

Similarly, PathStore [182], and its evolution SessionStore [181], provide a hierarchical

store supporting eventual and session consistency, respectively. It consists of a persistent

replica at its root (i.e., in the cloud), and an unlimited number of layers of partial replicas

below it (i.e., in edge nodes). Clients are free to connect to any replica.

Other approaches devise several techniques to cache data close to the end-users, lever-

aging on storage resources available at the network edge (like wireless APs or mobile

devices themselves). Some proposals use popularity-based caching and/or pre-fetching

techniques to capture both long- and short-term content access patterns [269, 292], ex-

ploiting the transient co-location of devices, the epidemic nature of content popular-

ity, and the capabilities of smart mobile devices. While some proposals store generic

data [207], others provide more specialized features (e.g., Cachier [77] for computer

vision applications).

In [274], the authors present a very insightful study of different edge applications,

their data sharing needs, and the designs of some state-of-the-art systems (ranging from

machine learning to gaming and autonomous driving). Nonetheless, all these storage

services work from the edge (and even the cloud) down, deploying daemons on edge

nodes/servers, and having mobile devices just as clients issuing requests to servers.

2.3.2 Data Dissemination

In turn, the data dissemination aspect can be seen as how data is searched and retrieved,

or how data is propagated to all the interested stakeholders in a specific system.

31

CHAPTER 2. RESEARCH CONTEXT

iTrust [157] and CoQUOS [209] both propose lightweight probabilistic approaches

to data search and retrieval. However, while iTrust has an implementation for WANETs

comprised by Wi-Fi Direct groups, CoQUOS’ target environment is typical unstructured

overlays in the wider Internet. The two systems use random walk techniques for propagat-

ing both content advertisements/metadata and queries through the network. In CoQUOS,

queries are installed only in certain peers following some probabilities that depend on

the number of hops, while in iTrust, metadata is stored in every node traversed by the

random walk. While CoQUOS follows a more reactive interaction model where queries

are installed in the network and new content notifications are sent to the interested peers,

iTrust follows the request/reply model, where peers have to proactively search for con-

tent. Their main drawback is data persistence and availability, i.e., when a peer leaves

the network, its published content becomes inaccessible.

Information-centric networking (ICN) [6] departs from the host-centric network ar-

chitecture, where there is constant end-to-end connectivity, to a data-centric architecture,

where content is directly addressable by its name. We introduce this concept in §2.5.1.

Peer data sharing (PDS) [249, 250] is another system that provides content search

and retrieval for networks of mobile devices. It follows an approach inspired by ICN,

adopting a content-centric design where (immutable) data is referenced and accessed by

name, independently from where it was produced or resides. Due to its ICN approach,

data can be widely cached throughout the network, and thus retrieved from any willing

and capable peer. It targets small scale networks with low to moderate mobility, and it

adopts a proactive request/reply interaction model to discover what data exist in nearby

peers. Because of its aggressive caching policy, it can lead to serious storage overheads,

and since data is only cached (and thus replicated) if peers request it, its data availability

and persistence characteristics are not that strong. As a result, only popular items have

some availability guarantees, while less popular data may even disappear.

Theia [226] and MediaScope [127] present systems for content search in mobile de-

vices. Both consider smartphones as “distributed databases” and allow users to compose

queries on a centralized server and push them onto the registered smartphones to find

out photos that match the specified queries.

Both Haggle [186] and PodNet [170] provide communication and content sharing in

the presence of intermittent connectivity, i.e., in opportunistic and delay-tolerant net-

works. They depart from the traditional end-to-end communication abstractions, elim-

inating many of the network layers above the link layer, and adopting a strategy more

oriented to the human way of communicating—through communities and their interac-

tions. They exploit opportunistic contacts between mobile users to deliver data to the

destination. Their main difference resides in the fact that while PodNet provides content

sharing using topic- and pull-based dissemination, Haggle follows a strategy more in

line with content-based P/S systems, also providing ranking of matching content. Con-

tentPlace [36] also provides content dissemination for opportunistic networks. It is very

similar to PodNet, but it exploits information about users’ social relationships to decide

32

2.4. PUT A RING ON IT: A REVIEW ON DISTRIBUTED HASH TABLES

where to cache data and how to propagate it.

Floating Content [191] and 7DS [176] are other two data dissemination approaches

for DTN environments. They take advantage of opportunistic contacts between peers

to allow the exchange of information, spreading it through the network, but with time

and space limitations. Of course, this means content dissemination is best-effort, i.e., the

information spreading depends of the availability and willingness of interested nodes to

carry such content. In [194], the authors explore the Floating Content approach using

WiFi Direct in Android mobile devices. Similarly, BitHoc [142] explores an identical idea

using a tracker-less BitTorrent-like application for wireless ad-hoc networks.

2.4 Put a Ring on It: A Review on Distributed Hash Tables

P2P computing appeared as an alternative to the typical client-server architecture where

clients request services and resources from centralized servers [234]. Instead, peers (or

nodes) have equal roles and form a network in order to share their resources among each

other without resorting to centralized entities. Thus, peers have the capability of acting

as servers and as clients at the same time. The music-sharing application Napster [229]

was probably the first to popularize the concept of P2P.

P2P networks implement some form of (virtual) overlay network on top of the physical

network topology. Thus, at the application level, peers communicate directly among each

other (via the logical overlay links). Taking into account how peers are connected to each

other, these overlay networks can be classified as unstructured or structured (or also as a

hybrid between the other two categories) [131].

2.4.1 Overlay Networks

An overlay network is defined as a network which is layered on top of another net-

work [160]. Nodes in the overlay network can be seen as being connected by virtual

or logical links, each of which corresponds to a path, perhaps through many physical

links in the underlying network. The links that compose an overlay network are named

logical as they are independent of the underlying network links and topology. This means

that two direct neighbors in the overlay, may be separated by several hops in the underlay,

and vice versa. Here, we are only going to refer to overlay networks that operate at the

application level.

Peers form an overlay network by connecting among each other (forming some kind

of graph). These connections, or neighboring relations, are then captured as neighbor

sets managed by each peer. Typically, these neighbor sets are maintained by some kind of

distributed membership protocol, which is in charge of dealing with filiation dynamics.

Managing these neighbor sets can be a complex task, in particular because these overlays’

filiation may be subject to churn—the (fast paced) independent arrival and departure of

several peers, as well as their failures [258].

33

CHAPTER 2. RESEARCH CONTEXT

As mentioned, overlay networks can be divided into two main categories by taking

into consideration the mechanisms used to maintain the neighbor sets.

Structured overlay network [256]: an overlay network which relies on a global coordi-

nation mechanism, based on unique peer identifiers (e.g., an overlay organized in

a ring, ordering peers according to their identifiers). Such schemes allow to deter-

ministically infer the location of a peer (i.e., its neighbors) in the overlay given the

identifiers of other peers in the system.

Unstructured overlay network [229]: an overlay network that has a random topology,

such that it is impossible to predict where a node will be positioned. These overlays

have a large degree of freedom when managing their topology in the presence of

changes in the system (e.g., churn).

In the thesis, we address structured overlays in more depth, as such, we delve further

into that topic in the next section.

2.4.2 Structured Overlay Networks & DHTs

The most common example of a structured overlay network is a DHT [211, 221, 256].

Other different examples are skip graphs (such as SkipNet [114]).

In DHTs, both peer ids and keys are mapped to the same key space/domain. In turn,

the system maps any given key to a peer which identifier is the same, or the closest to

the given key. Their popularity turned them into an important building block in many

distributed systems. They provide a scalable lookup service, used to build complex large-

scale systems, such as distributed storage [145], or web caching [94].

Peers self-organize into a specific network topology (or overlay) to provide key-based

routing (KBR), efficiently mapping a given key onto a peer in the overlay, called the key
owner. All this is done through a single operation: route(message, key)—route a given

message to the peer responsible for a given key. Additionally, DHTs provide this feature

while limiting the size of the neighbor sets each peer is required to maintain.

On top of KBR, DHTs usually implement data storage by associating a value (i.e., a

data item) with each key, and storing the key-value pair at the key owner [68]. With this,

like it sounds, a distributed hash table provides the same typical operations offered by its

non-distributed counterpart: put(K, V) and get(K): V.

Hashing [133] is used as the key space partitioning scheme, i.e., to assign ownership of

a key range to a specific peer, uniformly spreading keys among peers, and thus achieving

a balanced load across the overlay.

DHTs have been widely studied, leading to the proliferation of several designs [105].

Some present a ring structure (e.g., Chord [256]), while others present a tree-like struc-

ture (e.g., Pastry [221], Tapestry [295]), or even a hyper-cube structure (e.g., CAN [211]).

In the thesis, we address specifically ring DHTs, as such, we delve further into that

topic in the next section.

34

2.4. PUT A RING ON IT: A REVIEW ON DISTRIBUTED HASH TABLES

Table 2.3: Definition of variables for peer p, using m-bit identifiers [256].

Notation Definition

f inger[k].start (p+ 2k−1) mod 2m,1 ≤ k ≤m
f inger[k].interval [f inger[k].start, f inger[k + 1].start)
f inger[k].peer first peer ≥ p.f inger[k].start
successor the next peer on the identifier circle; f inger[1].peer
predecessor the previous peer on the identifier circle

2.4.2.1 Ring DHTs

Ring-based DHTs, such as Chord [256], organize peers in a ring-like topology, and keys

are placed in specific peers using consistent hashing. The ring is created by sorting peers

using their identifiers (modulus the size of the key space).

In this section, we explain several concepts using the definitions and remote procedure

call (RPC) notation of the Chord paper, as shown in Table 2.3. Thus, p.foo() denotes an

RPC of procedure foo on peer p, while p.bar (without parentheses) is an RPC to fetch

attribute bar from peer p.

The overlay’s maintenance is mostly proactive. Each peer keeps up-to-date pointers

to its predecessor and successor peers through a periodic maintenance procedure (also

called a stabilization procedure), depicted in Algorithm 2.1. More specifically, each peer r

periodically asks its successor s for the predecessor p of s. Naturally, in a stable scenario,

p = r. Should p , r be a peer with an identifier in the range (rid , sid), r will then update

its successor pointer to this new peer p. After this update, r notifies p that it is now p’s

predecessor (through the notify procedure). This simple procedure allows the ring to

converge and stay connected even in face of (concurrent) ingress and egress of peers.

Using only the ring pointers, a peer can reach any other in the overlay, albeit in a very

inefficient way (e.g., forwarding a message around the ring until its destination). Thus,

these overlays usually employ a more efficient routing mechanism, being able to route

messages in log(N) overlay hops, where N is the total number of peers. For this, each

peer maintains a finger table, from which it selects the closest peer on the ring to route

Algorithm 2.1 Ring DHT maintenance procedure [256].
1: procedure stabilize() . periodically verify my immediate successor, and tell the successor about me
2: x← successor.predecessor
3: if x ∈ (me,successor) then
4: successor← x
5: successor.notify(me)

6: procedure notify(n′) . n′ thinks it might be my predecessor
7: if predecessor =⊥∨n′ ∈ (predecessor,me) then
8: predecessor← n′

9: procedure fixFingers() . periodically refresh finger table entries
10: i← random index > 1 into f inger[]
11: f inger[i].peer← findSuccessor(f inger[i].start)

35

CHAPTER 2. RESEARCH CONTEXT

Algorithm 2.2 Ring DHT routing [256].
1: function findSuccessor(id)
2: n′ ← findPredecessor(id)
3: return n′ .successor

4: function findPredecessor(id)
5: n′ ←me
6: while id < (n′ ,n′ .successor]) do
7: n′ ← n′ .closestPrecedingFinger(id)
8: return n′

9: function closestPrecedingFinger(id)
10: for i =m down to 1 do
11: if f inger[i].peer ∈ (me, id) then
12: return f inger[i].peer
13: return me

14: procedure route(msg,k) . route message msg to owner of key k
15: dst← findSuccessor(k)
16: send(msg,dst)

messages towards their destination. This finger table contains pointers to peers which are

at exponentially increasing distances from the peer’s position in the ring, and also needs

to be periodically updated (by procedure fixFingers in Algorithm 2.1).

When a peer wants to route a message to a given key, it probably will not know the

corresponding key owner, as peers only have a partial knowledge of the overlay topology.

Thus, to do it in an efficient way, the peer leverages on its finger table and triggers a call to

the findSuccessor function, in Algorithm 2.2. Peer p searches its finger table for peer

j whose id most immediately precedes key k, and asks peer j for the peer it knows whose

id is closest to k. By repeating this process, p learns about peers with ids closer and closer

to k. When executing the findPredecessor function, a peer contacts a series of peers

moving forward around the ring towards the given key. Eventually, peer p will reach

the predecessor of key k, and then it only has to ask that peer for its successor—the key

owner of k. Finally, peer p can contact the key owner of k directly. Similarly to domain

name system (DNS) queries, this routing procedure can be executed in a recursive- or

iterative-like manner (e.g., Algorithm 2.2 uses the iterative way).

In these overlays, the correctness criterion is to maintain a correct successor (since, in

the worst case, we can route and make progress using only the successor pointers). Thus,

for failure recovery, each peers keeps a successor list of its nearest successors in the ring,

usually of size log(N). If a peer notices that its successor has failed, it replaces it with

the first live entry in its successor list. Throughout the overlay lifetime, the maintenance

procedure also updates this list.

2.4.2.2 Load Balancing in DHTs

One of DHTs’ fundamental issues is that peers or keys may not be uniformly distributed

in the key space [144, 215, 263]. Therefore, some peers may become overloaded, having

to store many keys or answer many queries, while others may be relatively idle.

36

2.4. PUT A RING ON IT: A REVIEW ON DISTRIBUTED HASH TABLES

There are several techniques to address query hot-spots. The use of virtual servers [68,

101] is one of them. With virtual servers, each peer joins the DHT using multiple identi-

ties, i.e., each physical peer maps to several virtual peers in the overlay. A large number

of such servers can lead to an improved load balancing. However, it also implies that

each peer manages more routing state and monitors more overlay neighbors, which may

impose an excessive overhead (both in terms of storage and communication). Thus, the

efficiency of this technique depends on how many virtual servers each peer can handle.

Note that this mechanism magnifies the effects of churn, as the egress of one peer leads

to the simultaneous departure of multiple virtual peers.

Other techniques tackle the same problem by making an informed decision about

peer identifiers when they join the overlay [136, 147]. Locations in the key space are

selected such that the load is evenly distributed among all peers, e.g., determining the

best identifiers to use through probing. This technique trades (storage) load balancing for

an increased cost when peers join the overlay, without requiring additional routing state.

However, since identifiers are statically defined at join time, it may create a non-uniform

distribution of peers in the key space, hampering both the storage load balancing and the

performance of some routing algorithms over time.

Dynamic redistribution of keys tries to rebalance keys stored by peers [134, 210]. This

is achieved either by moving more peers to overloaded parts of the key space, by moving

virtual servers from overloaded peers to less loaded ones, or even by adding more virtual

servers. However, this implies several bulky state transfers when moving keys, requiring

lots of bandwidth. Additionally, this technique does not tackle all storage hot-spots,

specifically the ones caused by popular keys having many associated values, since these

are caused by a single DHT key. Also, by using virtual server-based techniques, we reap

its benefits and issues (e.g., increase in the routing tables’ size).

Caching keeps copies of previous queries in different peers to achieve better query

performance and distribute the load of answering those queries [208, 255]. This can

greatly reduce the number of query hot-spots. However, with caching comes always the

problem of stale data and storage overhead.

2.4.2.3 Replication in DHTs

Several alternatives have been explored in the literature to support data replication in

DHTs. They can be divided in three main categories [143]: neighbor replication, multi-

publication, and path replication.

Neighbor replication keeps copies of each key in some neighbors of the key owner (e.g.,

its successors). It enables an easy and tight control on the replication degree, since when

neighbors change, the key owner triggers the creation of new replicas to ensure that

the replication degree does not fall below a target threshold. However, since peers join

the overlay in a location that depends on their identifiers, and not on previous failures,

they may not be able to quickly replace failed replicas. Furthermore, each node keeps a

37

CHAPTER 2. RESEARCH CONTEXT

different set of replicas, which makes this bookkeeping extremely costly. Even more, if

one attempts to use a flexible scheme where the number of replicas fluctuates (without

ever going below a safety threshold). During its operations, this replication scheme

creates replicas when peers fail, and moves them when peers join, which can become very

costly [35]. Additionally, depending on the routing scheme used by the overlay, neighbor

replication may not perform a fair load distribution, as some replicas are more likely to

be hit by queries than others.

In turn, the multi-publication replication scheme stores a predefined number of repli-

cas of each key in different locations of the DHT (e.g., using multiple hash functions, or

by salting the key). Here, some mutual monitoring scheme is used to detect the departure

or failure of replicas, and to subsequently restore them. On the one hand, it offers good

load balancing properties, as multiple queries may be diverted to different parts of the

DHT. However, monitoring can become extremely expensive, because it needs to use

DHT routing and a key owner may be forced to monitor a different set of replicas for

each key it owns. For instance, in the worst case, a peer that stores k keys, each replicated

in p peers, has to periodically monitor k × (p − 1) different peers. In practice, here, the

bookkeeping problems of neighbor replication are amplified by the need to perform DHT

routing during replica maintenance.

Lastly, the path replication scheme can be used for load balancing, and also to speed

up queries. Following this scheme, replicas are created when queries are executed, by

caching the corresponding results in the peers that forward the query back to the original

requester. Since it is unfeasible to keep track of all replica locations, it is practically

impossible to guarantee a minimum replication degree. Additionally, replicas can also be

discarded in an uncoordinated manner.

Another approach to replication is group-based DHTs [108, 139, 192], where several

physical peers are grouped together and work collaboratively as a virtual peer in the

overlay. The peers inside a group all work to keep the same set of keys (and remaining

state). In this approach, usually groups monitor their load, and react by splitting the

overloaded groups and merging idle ones, redistributing keys among them.

Other solutions join (strongly consistent) consensus-based replication with DHTs.

Etna [184] and Scatter [100] are key-value stores with support for data replication, that

rely on Paxos[146] for maintaining a DHT ring composed of strongly consistent replica-

tion groups. However, while Scatter forms a DHT ring composed of (disjoint) replication

groups, Etna allows different objects to be replicated on different sets of peers. They

both rely heavily on consensus to implement every operation, therefore presenting high

signaling costs and may block under heavy churn.

2.5 Potpourri: Other Relevant Topics

Here, we give a succinct presentation of some other topics that are also relevant to the

thesis, namely information-centric networking and tuples spaces. These represent two

38

2.5. POTPOURRI: OTHER RELEVANT TOPICS

substantially different ways of looking to data dissemination and search/query.

2.5.1 Information-Centric Networking

ICN is an evolution of the current Internet infrastructure [6]. It departs from the host-

centric network architecture, where there is constant end-to-end connectivity, to a data-

centric architecture, where content is directly addressable by its name, i.e., end-points

communicate based on named data instead of IP addresses. So, it decouples data from its

producer/source at the network layer.

Following this new paradigm, connectivity may be intermittent, data becomes inde-

pendent from its location (thus in-network caching can be capitalized), and mobility is

the norm. Figure 2.4 presents the mapping between how the Internet and ICN see the net-

work. ICN tries to generalize that thin waist, in order to allow packets to refer (i.e., name)

data objects instead of communication endpoints. By leveraging named data instead

of named hosts, they do not require the maintenance of routing paths, making them

well adapted to environments with intermittent connectivity and hostile propagation

conditions [11]. It leverages heavily on several techniques such as in-network caching,

multi-party communication through replication, and interaction models that decouple

senders and receivers.

The ICN concept has been developed and evolved through several future Internet

research projects. Even though their approaches to ICN differ in some details, they share

many assumptions and properties. Some of these projects are data-oriented network

architecture (DONA) [140], content-centric networking (CCN) [122], publish-subscribe

internet routing paradigm (PSIRP) [75], named data networking (NDN) [294], content-

based networking (CBN) [44], and network of information (NetInf) [69].

Although devised for wired environments, like the Internet, it was also adapted to mo-

bile and wireless settings [11, 12, 49, 130]. Basically, it poses as a content dissemination

Content chunks

Security

File Stream ...

Browser Chat …

Strategy

IP UDP P2P BCast ...

Copper Fiber Radio ...

IP packets

TCP UDP ...

SMTP HTTP RTP ...

Email WWW Phone …

Ethernet PPP ...

CSMA Async Sonet ...

Copper Fiber Radio ...

Every node

Individual links

Individual apps

Figure 2.4: Internet (left) and ICN (right) hourglass architectures [44].

39

CHAPTER 2. RESEARCH CONTEXT

approach at the network level.

2.5.2 Tuple Spaces

The generative coordination model, originally introduced in the Linda programming

language [7, 98], uses a shared memory abstraction called tuple space to provide coordi-

nation (and communication) between processes. This tuple space is basically a shared

repository of immutable structured information, called tuples, that can be accessed con-

currently. Tuples generated by processes are independent of the tuple space, thus any

process may remove a tuple, and a tuple is bound to no process in particular. Similar to

the P/S paradigm, it also provides decoupling in time and space.

A tuple is a sequence of fields, that can be left undefined. A tuple t with all fields

having a defined value is called an entry. In turn, a tuple with one or more undefined

fields is called a template (usually denoted by t̄). Templates are used to allow content-

addressable access to tuples in the tuple space. That is, an entry t matches a template t̄

if they have the same number of fields and all defined field values of t̄ are equal to the

corresponding field values of t. For instance, template 〈2,∗,′ d′ ,∗〉 matches tuples with

four fields, in which 2 and ′d′ are the values of the first and third fields, respectively.

Thus, a tuple space works as an associative memory, where tuples are accessed not by

their address, but rather by their content.

A tuple space provides three basic operations: in(t̄) reads and removes a tuple that

matches t̄ from the tuple space; rd(t̄) reads a tuple matching t̄ without removing it from

the tuple space; and out(t) writes a tuple into the tuple space. Operations in and rd are

blocking, i.e., they stay blocked until there is some matching tuple available. Most tuple

spaces also provide non-blocking versions of these operations, inp and rdp. They work

in the same way as their blocking counterparts, but if there is no matching tuple in the

tuple space, some error code is returned.

These operations combined with the content-addressable capabilities provide a simple

yet powerful programming model for distributed applications [98, 148]. Its main draw-

back is that the tuple space abstraction is based on an infrastructure, which is usually

implemented as a centralized server, being a single point of failure.

Nonetheless, some works have addressed that main disadvantage in wired settings [31,

126], by implementing the tuple spaces over a distributed network of brokers, and also by

using byzantine consensus. Even further, other works, like LIME [202], TinyLIME [67],

TeenyLIME [62], TuCSoN [188], or TOTA [165], adapted the tuple space model for mo-

bile and wireless environments. These are adaptations for environments ranging from

MANETs to WSNs. One of their main differences is that these systems allow actions

to be performed as reactions to certain events in the tuple space (e.g., inserting or re-

moving a specific tuple). In order to adapt to those asynchronous environments, the

Linda model was modified and extended. For instance, operations were transformed to

be non-blocking and results started being returned through callbacks. Also, additionally

40

2.6. CONCLUDING REMARKS

to Linda’s (proactive) operations to insert, read, and remove tuples, some allow for asyn-

chronous notifications when relevant data appears in the tuple space. One drawback is

that typically tuples are shared only among peers within radio range. In several mobile

and wireless environments, this approach may not be sufficient to support the necessary

distributed services or applications.

2.6 Concluding Remarks

In this chapter, we give the research context for the thesis by covering the most relevant

technical background and state of the art. With this overview, we describe some topics

related to our work that help to better understand this document. At the same time,

we motivate the need for data storage and dissemination solutions for pervasive edge

computing environments that, on the one hand, harness the capabilities provided by each

level of the network hierarchy and, on the other hand, are able to operate in wireless

ad-hoc settings.

Since we target wireless environments, we start by reviewing the existing types of

wireless networks, and wireless ad-hoc routing protocols. Considering the asynchronous

and highly dynamic environments we target, we also survey several important concepts

around the best known loosely coupled interaction paradigm—the publish/subscribe par-

adigm. Next, we give an overview of the state of the art regarding data storage and dissem-

ination in pervasive edge computing environments, reviewing approaches for different

settings, ranging from wired to wireless and edge/fog computing environments. After

that, we also discuss essential concepts regarding overlay networks and DHTs. Lastly, we

give a brief presentation about some other relevant topics, such as tuple spaces and ICN.

Taking into account that we address data storage and dissemination solutions operat-

ing both in settings with or without network infrastructure access, we leverage on both

infrastructure and infrastructure-less networks. When without access to some network

infrastructure, our proposed solution makes use of multi-hop ad-hoc communication to

allow devices to communicate among each other. From several studies [257], geographic

routing protocols seem to be aligned to deliver the best trade-off between performance

and expended resources, in larger networks.

These completely decentralized and highly dynamic environments we target require

efficient and resilient ways of storing and searching for data. From our surveyed ap-

proaches, some use typical DHTs (although that adapted to a wireless environment).

Others rely on some central entity for coordination, thus not suitable for this kind of

environment. Still, others are asymmetric, providing unfairness in workload distribution,

or designed for one-hop networks, thus limiting the applicable use cases. Others are

devised for scenarios that tolerate delays of hour and even days (e.g., DTNs), making

it impossible to allow for (near) real-time content sharing. Thus, the surveyed systems

serve as inspiration for our proposal, but they also call for some new techniques able to

provide the guarantees required in these environments.

41

CHAPTER 2. RESEARCH CONTEXT

Regarding data dissemination, without a central coordinator it is difficult for users

to be aware of what data is being published or shared, thus they do not know what data

can be retrieved. That is why we argue for a reactive interaction model, where users

register their interests and are notified as new data is generated (and then decide if it is

interesting enough to be retrieved). This approach also provides loose coupling between

the interacting parties, a feature required in such volatile and dynamic environment.

When having access to network infrastructure, the storage service can leverage on

existing edge computing capabilities and exploit the guarantees provided by each level

of the network hierarchy. Like some of the solutions presented in §2.3, we harness the

storage resources available at the network edge in order to provide a scalable and flexible

storage solution keeping data close to the end-users. We also integrate the same loosely

coupled reactive interaction model, i.e., the P/S paradigm, into the storage substrate,

taking advantage of the existing edge servers to share management responsibilities.

In conclusion, although a few approaches address some of the challenges identified

in §1.3, none focus on scenarios both with and without network infrastructure access,

and do not integrate a reactive and loosely coupled data dissemination mechanism into

the storage solution. Thus, from what we surveyed in this chapter, we conclude that our

research questions, defined in §1.4.1, are interesting and still open.

42

C
h
a
p
t
e
r

3
Time-Aware Reactive Storage

“Home is behind, the world ahead, and there are many paths to tread
through shadows to the edge of night, until the stars are all alight.”
— J. R. R. Tolkien

The thesis targets highly dynamic and asynchronous environments composed of co-

located mobile devices. In these scenarios, devices are free to enter or leave, to move, and

may also fail. Accordingly, we argue for a loosely coupled data dissemination mechanism.

Thus, here, we present an in-depth definition of our data storage and dissemination

model: time-aware reactive storage (TARS).

We introduce the addressed issue and give some context in §3.1. Next, in §3.2, we

survey some related work and compare our approach with it. Then, in §3.3, we detail our

TARS model. Lastly, we conclude the chapter in §3.4, by presenting a discussion of the

resulting abstraction, and the publications emanated from this work.

3.1 Introduction

In typical storage systems [79, 162, 249], users are required to actively and explicitly search

for the desired data, following a request/reply interaction model. However, as already men-

tioned in the previous chapters, the kind of distributed environments we target are highly

volatile and dynamic, rendering this proactive interaction model really impractical, and

possibly cumbersome to use due to disconnections. Accordingly, we adopt a reactive
and loosely coupled data dissemination mechanism—the publish/subscribe (P/S) para-

digm [85]. This simple communication abstraction provides decoupling in time, space,

and synchronization between publishers and subscribers (§2.2), which facilitates loosely

coupled, spontaneous interactions (required for this kind of dynamic and pervasive edge

43

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

environments). By integrating a P/S abstraction, users (or applications) can register their

interests, being subsequently notified of any data items matching those interests. This

allows users to quickly discover what data exist in the system in a reactive manner, and

only be notified about data they are interested in.

Additionally, in the kind of social gatherings we are addressing (e.g., sporting events,

celebrations, concerts), individual moments are intrinsically tied by time relations, such

as the band performing at time x in the music festival, or the second speech on a rally. Also,

people are often interested in information with these associated time references (e.g., find

photos of the opening band, or a video of the goal right before the match intermission).

Therefore, we consider time to be a first order dimension. Thus, subscriptions comprise a

time frame that defines their active time-span, which may include the future, the present,

or the past, effectively providing the full time decoupling of the P/S paradigm.

With all this, we build strong synergies between the storage substrate and the P/S

paradigm, and propose time-aware reactive storage (TARS), a reactive data storage and

dissemination model with intrinsic time-awareness, allowing queries (i.e., subscriptions)

within a specific time scope.

In summary, the main contribution of the work presented in this chapter is the defini-

tion of our time-aware reactive storage model, TARS.

3.2 Related Work

Concerning work related to this proposal, we address and compare against four main

categories: P/S systems, tuple spaces, active databases, and continuous queries.

3.2.1 Publish/Subscribe

Typical P/S systems are stateless, meaning that only subscribers online at the time of

publication are notified, i.e., consumers only receive data published by producers if online

at the same time. Hence, the notion of publication persistence has not been addressed

in most systems. Additionally, to the best of our knowledge, the notion of subscriptions

with a time dimension (i.e., time-aware) is also not explored in related work.

Kafka [141], a system originated at LinkedIn, has recently gained significant pop-

ularity, clearly demonstrating the feasibility and potential of the P/S communication

paradigm. However, such solutions do not consider time as a first order dimension of the

P/S abstraction. Furthermore, solutions for wired scenarios cannot be easily adapted for

wireless setting where connectivity is not stable and device population is volatile.

Table 3.1 highlights the main aspects of some P/S systems that address state per-

sistence. Some approaches for wired settings exploit the concept of a persistent data

repository, by means of distributed buffers [55], allowing only to specify how many data

items to request from the past when subscribing. In turn, others propose their integration

with traditional databases [277], but without any notion of time.

44

3.2. RELATED WORK

Table 3.1: Comparison of TARS with publish/subscribe systems.

Environment Time Assignment Access Past

[55] Wired — Num. Items
[277] Wired — N/D
Chapar [137] Wireless Publications Time-to-live (TTL) Pub.
TARS — Pub. & Sub. Time-aware Sub.

In the particular context of wireless settings, Chapar [137] is, as far as we know, the

only P/S system that addresses persistent publications. However, it only assigns time

to publications, which are buffered only until their lifetime expires, as a TTL. In TARS,

subscriptions have their time scope assigned. While publications are permanently stored,

they may be deleted from the system upon request. Thus, new subscribers can always

request previously published data. Moreover, Chapar is not functionally symmetric,

demanding more work from broker nodes, and thus achieving poor load balancing. On

the contrary, TARS’ high level definition allows for different implementations (see §4).

3.2.2 Tuple Spaces

As already mentioned in §2.5.2, tuple spaces are an interaction paradigm for parallel and

distributed computing, providing a shared data space abstraction. Also, some systems,

like TuCSoN [188], LIME [202], and TOTA [165], adapted the tuple spaces model for mo-

bile and wireless environments. Besides the model’s proactive operations (for inserting,

reading, and removing tuples), these systems allow actions to be performed as reactions
to certain events.

Although reactions are similar to subscriptions in TARS, they have significant differ-

ences. First, reactions always execute on the client side, i.e., on the host that installed it,

and always receive the tuple that triggered the reaction. This does not allow load balanc-

ing when executing the reactions and when matching reactions with tuples. Additionally,

it also has the potential to generate more traffic than actually required, because it is not

possible to filter data at the source. For instance, in our implementation of TARS (i.e.,

Thyme; see §4), subscription matching can be executed by randomly selected peers that

may change in each matching (see §4.5), thus improving load balancing and optimizing

the data to be delivered to each client.

Another major difference is that tuple spaces do not differentiate between data and

metadata management, i.e., everything is represented as a tuple. In TARS, when receiving

a notification, nodes only receive an object’s metadata (containing a small amount of

information), and only after that decide if the object is interesting enough and proceed

to retrieve it. Since metadata is usually much smaller than the actual data, this strategy

can considerably reduce network traffic. Additionally, when managing replication and

mobility, metadata may require updates. Since tuples are immutable, the only way of

modifying metadata is to remove and insert a new (changed) tuple, which may trigger

45

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

unwanted reactions. This can be bypassed by making an intricate decomposition of the

metadata into several (sub-)tuples. Although this may work in small scale scenarios, it

can quickly become cumbersome, and penalize performance in large-scale scenarios, as

targeted by our work.

Comparing with P/S, the latter is conceptually stateless, differentiating it from inter-

action paradigms like tuple spaces that are based on a shared data-space. However, the

P/S infrastructure needs to maintain some state to support special features like discon-

nected operations. Here, by combining the two concepts in a certain way, TARS provides

both data storage and dissemination through an asynchronous interaction model.

3.2.3 Active Databases

Traditional database systems are categorized as passive in the sense that operations are

executed by the database (e.g., query, update, delete) as and when requested by the users

or applications. On the other hand, active databases [197] move some of the reactive

behavior from the application into the database. That is, they are able to monitor and

react to specific events of relevance to an application. Typically they include an event-

driven architecture, often in the form of event-condition-action (ECA) rules. The event

part specifies the occurrence that triggers the rule. The condition part verifies the context

in which the event was triggered. The action part consists of the task to be executed if

the event was triggered and the condition is satisfied. Possible use cases include monitor-

ing, alerting, and statistics gathering. Most modern relational databases include active

database features in the form of database triggers.

This feature incorporates some reactivity into typical databases, making it very similar

to our TARS approach. However, their major difference concerns time-awareness. Active

databases, as do regular databases, allow the query of any attribute of a table (including

time-related ones, if they exist). In turn, TARS elevates time as a first order dimension,

and thus provides an intrinsic time-aware approach, where time does not have to be an

integral part of the stored data items.

Usually, active databases assume a centralized environment. Consequently, the major-

ity of its implementations do not consider distributed settings, dropping such feature in

favor of others (such as performance).

3.2.4 Continuous Queries

A continuous query [20] is a query that is issued once over a database, and then logi-

cally runs continuously over the database until it is terminated. Thus, it lets users get

new results from the database without having to issue the same query multiple times.

They work contrary to traditional SQL queries, that run once to completion over the

current data in the database and return the result to the user. In traditional databases,

materialized views coupled with triggers can be seen as a kind of continuous queries. A

materialized view is a query that needs to be reevaluated whenever specific data (over

46

3.3. BUILDING SYNERGIES BETWEEN STORAGE AND PUBLISH/SUBSCRIBE

which the view is defined) changes. In turn, triggers allow the definition of ECA rules,

enabling the database to take specific actions when certain events occur.

Whereas traditional databases manage data within some form of (persistent) data

sets, in many recent applications where data is changing constantly (usually through

the insertion of new elements), the concept of a continuous data stream is more appro-

priate [21, 266]. Here, continuous queries present themselves as a natural interface to

handle these data streams. Nonetheless, continuous queries are formalized for a wide

range of environments [24].

More recently, some new database systems have appeared, offering some continuous

queries features. For instance, InfluxDB1 is a time-series database with support for con-

tinuous queries that run automatically and periodically on real-time data and store query

results in a specified measurement (i.e., location). Contrasting with TARS, these contin-

uous queries run periodically (with a defined frequency, e.g., every hour), and not as a

response to changes in the data.

Another system, Apache Ignite2 is a distributed in-memory database. Additionally,

it is also a caching and processing platform designed to store and compute on large

volumes of data across clusters of nodes. Here, the featured continuous queries monitor

data modifications occurring in a cache, and notify users of all the data changes that fall

into the query filter. However, its continuous queries send the whole updated object to

the query issuer, which can lead to excessive network usage, especially if the object is very

large. To overcome this limitation, users have to deploy special transformer predicates

that are executed on the remote nodes for every updated object and send back only the

results of the transformation.

In conclusion, TARS proposes fusing the storage substrate together with the P/S com-

munication paradigm, thus providing persistent publications (i.e., data items) along with

persistent subscriptions and also time-awareness. Characteristics that no previous works

present simultaneously.

3.3 Building Synergies Between Storage and Publish/Subscribe

Typical storage systems provide a request/reply proactive interaction model for data re-

trieval, making it difficult to be aware of the available data, and requiring users to explic-

itly search for it. Also, in most P/S systems, publications are transient, i.e., once matched

and disseminated, they are not further stored or processed. Thus, only subscribers online

at the time of publication are notified.

To overcome such shortcomings, we build strong synergies between the storage sub-

strate and the P/S paradigm. On the one hand, the storage substrate leverages the P/S

abstraction to provide a reactive interaction model whereby users register their interests

through subscriptions and are notified as new relevant data is generated, not requiring

1https://www.influxdata.com/
2https://ignite.apache.org/

47

https://www.influxdata.com/
https://ignite.apache.org/

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

them to be constantly searching for new data. On the other hand, the P/S abstraction

takes advantage of the storage substrate to provide persistent publications, enabling the

time-awareness concept and providing full time decoupling [85].

In the end, we devise the TARS data storage and dissemination model. Its storage in-

terface provides the usual data store operations: insert, retrieve, and delete. Additionally,

due to its integration with the P/S abstraction, it also offers the regular P/S operations:

publish, subscribe, and unsubscribe. All operations are asynchronous, receiving results

through callbacks (implemented as specific handlers).

3.3.1 Inserting Data

The typical insert operation allows data to be stored in the system. However, due to the

integration with a P/S abstraction, here, the insert operation (of the storage substrate) is

fused with the publish operation (of the P/S system). As a result, the insertion of a data

object into storage may additionally trigger the sending of notifications to subscribers.

A data object is the basic unit of work and is seen as an opaque set of bytes. Every

object has some associated metadata that consists in a tuple

〈oid,T , s, tsins,nid〉

where:

• oid is the object identifier;

• T is a set of tags or keywords related with the object, e.g., hashtags used in social

networks;

• s is a summary or a small description of the object, e.g., a thumbnail of an image or

a video;

• tsins is the object insertion/publication timestamp; and

• nid is the owner’s node identifier.

This metadata concept is also very flexible (and extensible). It basically can be seen as

a small amount of data arranged as a set of key-value pairs. Thus, it can even be extended

with application-specific information (i.e., other key-value pairs).

To avoid name collisions (among different nodes), the system-wide unique object key
is the pair 〈oid,nid〉, composed of both the object and the owner’s node identifiers.

Tags are used as topics for subscriptions, thus enabling a topic-based P/S system.

Although topic-based addressing [187] is not as expressive as content-based systems [5], it

requires far less filtering and computations, which fits our target environments populated

by resource-constrained mobile devices. Nonetheless, this tagging feature provides a

flexible annotation scheme. For instance, by adding the owner’s node identifier to the

tags of its own objects, an application can easily enable the retrieval of all the objects

stored by a certain node/user.

48

3.3. BUILDING SYNERGIES BETWEEN STORAGE AND PUBLISH/SUBSCRIBE

3.3.2 Deleting Data

To support subscriptions within a time frame in the past, insertions (or publications)

must be persistently stored within the system. Accordingly, this model also supplies an

operation to enable data to be removed from storage.

Naturally, the delete operation removes an object from storage, thus making it inac-

cessible to future queries, i.e., subscriptions. However, note that likewise subscriptions

targeting the past will not see deleted objects, even if these were initially available in the

subscription’s time frame.

Regarding a simple access control mechanism, only the owner of a data object can

delete it (i.e., an object can only be deleted by the same node that inserted it in the system).

3.3.3 Querying Data

Since we make use of the P/S abstraction, in TARS querying data means subscribing to

the desired tags. As a response, notifications will be received for data objects matching

the issued subscriptions.

With time as a first order dimension, a subscription consists in a tuple

〈sid,q, tss, tse,nid〉

where:

• sid is the subscription identifier;

• q denotes the query that defines which tags are relevant;

• tss and tse are the timestamps defining when the subscription’s time frame starts

and expires, respectively; and

• nid is the subscriber’s node identifier.

Unlike typical topic-based P/S systems, that only allow one topic per subscription,

we support arbitrary propositional logic formulas where literals are tags associated with

objects (e.g., ‘A&(B |C)’ captures objects tagged with A and at least one of B or C).

The tss and tse timestamps specify the subscription’s time frame in which the sub-

scription is active, where the special value ⊥ represents, respectively, the times at which

the system started and stopped to exist. Assuming a subscription is issued at time instant

t, we have the following alternatives:

• tss =⊥∧ tse = t matches events that happened before the subscription (this allows

a typical search or find operation on the data store, depicted in Figure 3.1b);

• tss = t ∧ tse = ⊥ matches events after or concurrent with the subscription (like a

standard subscription, depicted in Figure 3.1a); and

49

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

4. Subscribe(t1)

1. Publish(w, t1) 2. Publish(x, t2) 3. Publish(y, t1) 5. Publish(z, t1)

(a) Standard subscription.

4. Subscribe(t1, -∞, t)

1. Publish(w, t1) 2. Publish(x, t2) 3. Publish(y, t1) 5. Publish(z, t1)

(b) Standard query.

4. Subscribe(t1, -∞, +∞)

1. Publish(w, t1) 2. Publish(x, t2) 3. Publish(y, t1) 5. Publish(z, t1)

(c) Subscription in the past.

Figure 3.1: Comparison among a standard subscription, a standard query, and time-aware
subscription in a generic topic-based publish/subscribe system. Publish(x, t) means
publishing item x with topic t, and Subscribe(t, a, b) means subscribing to topic t between
timestamps a and b. The red circles are publications that match the subscription.

• tss = tse = ⊥ matches all the past and future events in the system (as depicted in

Figure 3.1c, where we use −∞ and +∞ to represent ⊥).

Notice that these parameters can also take any concrete timestamp value specifying a par-

ticular point in time. Additionally, depending on the specific system implementing TARS,

these values can take various representations. For instance, they can be real clock times-

tamps (e.g., 2016-11-16 06:43:19.769), or just some (system-level) numeric representation

of time (e.g., time instant 21).

As already mentioned, in TARS, a subscription has a specific time scope, i.e., every

subscription has an assigned time frame defining when it should be active (and produc-

ing possible notifications resulting from matching publications during that time period).

Figure 3.1 depicts the difference among a standard query, a typical subscription, and

a time-aware subscription (as provided in TARS). A standard subscription, as in Fig-

ure 3.1a, only matches publications (the red circles) that are issued after the subscription

is installed. Consequently, the subscriber is oblivious to such past publications, and has

no way of accessing them. A standard query, as in Figure 3.1b, only matches publications

that are issued before the subscription is installed. That is, the query only takes into

account the data stored in the system before its execution. In turn, Figure 3.1c illustrates

an example of a time-aware subscription that subscribes to all the past and future publica-

tions, thus also matching against all previous publications (here, we use the timestamps

−∞ and +∞ to represent the beginning and the end of the system).

Due to the unreliable nature of our target (wireless) environments, subscribers are

notified of all relevant data in a best effort manner. After a subscription, notifications may

50

3.3. BUILDING SYNERGIES BETWEEN STORAGE AND PUBLISH/SUBSCRIBE

be triggered in two situations:

• upon an insertion, by detecting that the object being stored matches existing sub-

scriptions; and

• upon issuing a subscription that spans into the past, by detecting that this new

subscription matches previously stored objects.

Note that, to minimize the information passing through the network (and save band-

width), notifications are sent to the respective subscribers carrying only the metadata of

the matching objects (and not the entire data objects)—which is expected to be much

smaller in size than the actual data object it concerns.

The (reverse) unsubscribe operation revokes a subscription before it naturally expires

after its end timestamp, tse.

When issuing a subscription for a popular tag (i.e., with many indexed objects) that

spans into the past, a subscriber might get flooded by a large amount of notifications (i.e.,

an excess of past notifications), which implies a large amount of communication. To atten-

uate this problem, when subscribing for a time frame in the past, a subscriber can specify

a notification policy defining how many (and which) notifications it wants to receive. We

define three possible policies:

1. All - the subscriber is notified about all the matching objects;

2. Partial - at most, the subscriber is notified about n of the most recent matching

objects; and

3. Random - at most, the subscriber is notified about n matching objects chosen at

random.

Additionally, for the partial notification policy, if interested, a subscriber then can

request more of the matching objects’ metadata, receiving the notifications in explicitly
requested batches (similar to the concept of pagination). After, all subsequent matching

objects will be notified as usual.

3.3.4 Retrieving Data

Through subscriptions, users are notified only about data they are interested in, allowing

them to discover what data exist in the system in a reactive and asynchronous manner.

Even so, a typical search/find operation can still be issued by subscribing to the desired

query with timestamps tss =⊥ and tse = now (§3.3.3).

Due to our reactive model, objects can only be retrieved as a response to notifica-

tions (using the received object metadata), thus revealing a close relation between the

subscribe and retrieve operations. So, object metadata is the only information given to

subscribers for them to decide if objects are relevant enough and proceed to retrieval.

51

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

Algorithm 3.1 TARS basic API.
procedure insert(obj,T , s,opHandler)

obj - the object to be inserted
T - the set of tags related with the object
s - the object’s summary
opHandler - the handler for processing the operation’s outcome (i.e., the newly created data object)

procedure delete(oid,opHandler)
oid - the identifier of the object to be deleted
opHandler - the handler for processing the operation’s outcome (i.e., the specified data object)

procedure subscribe(q, tss, tse,policy,opHandler,notHandler)
q - the query (in propositional logic) defining the relevant tags
tss - the timestamp defining the start of this subscription’s time frame
tse - the timestamp defining the end of this subscription’s time frame
policy - the desired notification policy for this subscription
opHandler - the handler for processing the operation’s outcome (i.e., the newly created subscription)
notHandler - the handler for processing notifications concerning this subscription

procedure unsubscribe(sid,opHandler)
sid - the identifier of the subscription to be removed
opHandler - the handler for processing the operation’s outcome (i.e., the specified subscription)

procedure retrieve(oid,opHandler)
oid - the identifier of the object to be retrieved
opHandler - the handler for processing the operation’s outcome (i.e., the requested data object)

Received notifications must be acted upon, and may either be discarded, trigger an im-

mediate retrieve operation, or be stored by the application for later processing.

3.3.5 TARS API

As mentioned before, our time-aware reactive storage model provides five asynchronous

operations: insert, delete, subscribe, unsubscribe, and retrieve. Algorithm 3.1

presents the TARS basic application programming interface (API) and we detail each

operation signature and its parameters.

The insert operation allows data to be stored in the system. It receives four param-

eters: the data object to store, as an opaque byte sequence; a set of tags associated with

the object; the object’s summary, as an opaque byte sequence (usually much smaller than

the object itself); and the corresponding operation handler, responsible for processing the

operation’s outcome. For each operation, its (operation) handler is parameterized with

the type of the operation’s outcome T, and has two procedures:

• onSuccess(outcome: T); and

• onFailure(reason: String).

For instance, in the case of the insert operation, its handler is parametrized with a

DataObject type, that represents the stored object encapsulating both the given byte

sequence and its associated metadata. In turn, for a subscribe, its operation handler is

parametrized with a Subscription type, encapsulating all the information details of a

subscription (e.g., query, time intervals).

52

3.4. CONCLUDING REMARKS

Next, the delete operation allows the removal of a data object from the system. It

receives only two parameters: the identifier of the object to be removed; and the operation

handler (parametrized with the DataObject type).

As its name suggests, the subscribe operation allows the subscription for a set of tags.

It receives a total of six parameters: the query, as a propositional logic formula, determin-

ing the relevant tags; the timestamps defining the subscription’s time frame (start and

end); the notification policy (which defaults to All); the operation handler (parametrized

with the Subscription type); and the corresponding notification handler. The notifica-

tion handler has only one procedure:

• onNotification(subscription: Subscription, metadata: Metadata).

This is called when a new notification is received and has two parameters, the matching

subscription and object metadata.

The unsubscribe operation is the inverse of the subscribe operation, and allows the

removal of an ongoing subscription from the system. It receives two parameters: the

identifier of the subscription to be removed; and the operation handler (parametrized

with the Subscription type).

Lastly, the retrieve operation allows the retrieval of a data object given its identi-

fier. It also receives two parameters: the identifier of the object to be retrieved; and the

operation handler (parametrized with the DataObject type).

Note that, in this model, tags are out-of-band information, i.e., there is no way of

knowing which tags are being used in the system at each time. Thus, clients have to

gather that information from possibly another source. For instance, this can be an external

source to the system, such as some independent storage service just for keeping track of

tags. In turn, the system itself can also be used to store the tags being handled, e.g.,

through a reserved system tag—an approach followed by Ephesus and Basil (see §7.1

and §7.4, respectively).

3.4 Concluding Remarks

In this chapter, we present the concept of time-aware reactive storage, that fuses the

P/S paradigm with the storage substrate, providing persistent publications and allowing

queries (i.e., subscriptions) within a specific time scope.

Here, the insert operation of the storage substrate is merged with the publish opera-

tion of the P/S system, enabling applications to be notified as relevant data is generated

and stored. Additionally, subscriptions allow arbitrary propositional logic formulas as

queries, and have a time frame defining when they are active. The innovative character-

istics of TARS offer a novel way for sharing and accessing data that has been previously

stored, or is being generated in quasi-real-time.

53

CHAPTER 3. TIME-AWARE REACTIVE STORAGE

3.4.1 Discussion

Overall, this TARS concept represents a fundamental overhead shift. Instead of requiring

users to explicitly search for the available data, it allows users to register queries (with

defined time boundaries), which are then notified as new relevant data is stored in the

system—providing a reactive interaction model. As a consequence, the overhead from the

stakeholders that actually benefit more from this approach—users requesting data—is

reduced (compared with the explicit search approach), and is moved to the stakeholders

that do not benefit directly from it—users that have the data and can provide it. Thus,

as a peer-to-peer (P2P) solution, all the stakeholders share their resources among them.

This can work as an argument against this approach. However, we reckon that users

usually do not mind sharing their resources just for a greater good (e.g., P2P file sharing),

specially if they can also benefit from what the systems have to offer.

Other compelling reasons are also the volunteer computing [15, 228] and the crowd-
sourcing [76, 116] hypes. Volunteer computing uses computing resources (e.g., processing

power, storage, etc.) donated by the general public to do distributed scientific comput-

ing. Systems like BOINC [13] have been proved and tested throughout the years, being

used by numerous scientific projects, e.g., SETI@home [14]. Results have also shown the

general public massively adheres to this kind of initiatives and is willing to share their

computing resources for a “greater good” [14]. Crowdsourcing is a type of participative

online activity in which an entity proposes to a group of individuals the voluntary under-

taking of a task entailing mutual benefit [83]. This idea has been extensively used as a

cost-effective way of harnessing the collective power of multiple individuals. Inclusively,

it even changed the way of working of various sectors of the world’s economy [116].

With all these aspects in mind, it makes sense to crowdsource the computing and

storage power of a collection of nearby mobile devices to support a new generation of

applications. Furthermore, people have shown to be receptive to the idea of harnessing

the individual resources in order to make sense of the old motto “unity is strength”.

Additionally, as we will show in §7, this model and interface allows the easy develop-

ment and implementation of a plethora of use cases.

3.4.2 Publications

The work reported in this chapter was presented in the following publications:

• It’s About Thyme: On the Design and Implementation of a Time-Aware Reactive

Storage System for Pervasive Edge Computing Environments [241]. João A. Silva,

Filipe Cerqueira, Hervé Paulino, João M. Lourenço, João Leitão, Nuno Prequiça. In

Elsevier Future Generation Computer Systems (FGCS). 2021.

• Time-Aware Reactive Storage in Wireless Edge Environments [245]. João A. Silva,

Hervé Paulino, João M. Lourenço, João Leitão, and Nuno Preguiça. In Proceed-

ings of the 16th EAI International Conference on Mobile and Ubiquitous Systems:

54

3.4. CONCLUDING REMARKS

Computing, Networking and Services (MobiQuitous). Houston, Texas, USA, 2019.

• Time-Aware Publish/Subscribe for Networks of Mobile Devices [244]. João A.
Silva, Hervé Paulino, João M. Lourenço, João Leitão, Nuno Preguiça. arXiv:1801.00297.

2017.

55

C
h
a
p
t
e
r

4
It’s About Thyme: TARS in Wireless Edge

Environments

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail
better.”
— Samuel Beckett

This chapter reports about data storage and dissemination for co-located mobile de-

vices in settings without access to network infrastructures. More specifically, it reports

about Thyme, a system implementing time-aware reactive storage (TARS) in wireless

edge environments. In this work, we only address the lowest level of the network hierar-

chy, i.e., the end-user devices.

We start by giving some context and motivation in §4.1. Then, we review related work

and compare our approach to different proposals in §4.2. Next, we give an overview of our

system and its architecture in §4.3. After, we start detailing our two approaches, Thyme-

LS in §4.4, and Thyme-DCS in §4.5. Then, we describe our Android implementation of

Thyme-DCS, as a Java library, and the design of a photo sharing application developed

on top in §4.6. Afterwards, we report a characterization of the scenarios best suited

for the use of the proposed solutions, through a three-fold evaluation: via an analytical

study in §4.7, and both simulation and real world experimentations in §4.8 and §4.9,

respectively. We conclude this chapter with §4.10, by presenting our main findings, some

future work, and the publications resulting from this work.

The work in §4.6 and §4.9 was developed in the context of the M.Sc. of Cerqueira [46],

more specifically the implementation of the Thyme-DCS library for Android, the adap-

tation of the photo sharing application [243] to work on top of it, and the corresponding

evaluation of the prototype.

57

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

4.1 Introduction

We are witnessing a rapid growth of both the capabilities and amount of mobile devices

worldwide [56, 59]. As such, there is a wide adoption of smartphones and tablets for

performing the most diverse activities, from leisure to work-related tasks. Hence, the

volume of data generated by these devices, like user-generated content and sensor data,

is also growing rapidly [57, 59].

Much of the data generated by mobile devices in all sorts of social gatherings (like

sports events, protests, festivals, or ceremonies) has localized and ephemeral interest. Peo-

ple in such events are usually interested in similar types of information (e.g., statistics

and videos at sports events), and such interest typically diminishes over time. Thus, swift

and spontaneous data storage and dissemination among neighboring mobile devices can

be of great usefulness. For instance, smartphones carried by people in such gatherings

can collect lots of useful data that, when shared among co-located devices, may help

others discover new points of interest, enjoy videos of special moments (from multiple

viewpoints), or avoid waiting lines or crowded areas in a venue.

In many situations, making information available may be of paramount importance (e.g.,

disaster situations [166], military scenarios [70]), or just really helpful (e.g., crowded

events [82]). So, being dependent on network infrastructure access to support such use

cases may be unwise, or even unfeasible, due to their potential overload or destruction.

Even assuming the availability of infrastructure, transferring large amounts of data to

and from the cloud can lead to network congestion, various delays, and possible monetary

costs. Furthermore, in those scenarios, mobile devices often experience poor or intermit-

tent connectivity, leading to availability issues if application storage and logic are fully

delegated to a remote cloud infrastructure. Still, the non-negligible costs associated with

network infrastructure setup (e.g., adding access points) further motivates the need to

have devices interact in a device-to-device (D2D) manner, through an infrastructure-less

or ad-hoc network [286]. Thus, the main question we address in this chapter is: how to
support reliable and efficient data storage and dissemination among co-located mobile devices
without resorting to centralized services and subsisting with no network infrastructure?

The extensive proliferation of mobile devices at the edge of the network, along with

the increasing growth of their capabilities, offers a massive computing and storage in-

frastructure of (still mostly) untaped resources. Together, the ubiquitous smart mobile

devices, the opportunistic gathering of users, and the growing pervasiveness of edge com-

puting environments [96, 240], have enabled novel opportunities for data storage and

dissemination at the network edge. In fact, in this kind of localized environments, it is

more efficient to communicate and distribute information among nearby devices than to

use distant centralized intermediaries [110, 117]. By storing data near its source (e.g.,

where it is generated), applications can be more responsive while relieving some of the

load from cloud and network infrastructures, potentially also providing increased data

privacy and ownership.

58

4.1. INTRODUCTION

Allowing systems’ components to actively and directly collaborate at the edge re-

quires some form of distributed data repository as to share and disseminate information.

Thus, we propose Thyme, a novel TARS system (§3) for networks of mobile devices, that

exploits synergies between the storage substrate and the publish/subscribe (P/S) commu-

nication paradigm. As such, queries are in the form of subscriptions that have a specific

time scope defining when they are active (and can even include the past). Leveraging this

novel time-aware abstraction, Thyme is able to achieve robust, efficient and timely data

storage, dissemination, and querying. It also allows both the notification and retrieval of

desired data with low overhead and latency, using limited bandwidth and while being

resilient to possible message losses and node failures.

Implementing a system providing the TARS interface can be achieved through a mul-

titude of ways. In this work, we present two different approaches to Thyme:

1. Thyme-LS is the simplest lightweight implementation we could envision, serving

as a baseline. It follows a lightweight, yet effective, unstructured approach using

local storage and query flooding; and

2. Thyme-DCS is more intricate, inspired by specificities of wireless environments.

Namely, it is inspired by the fact that geographical positions have a close rela-

tion to topology in wireless networks, and follows a data-centric storage (DCS)

approach [212], whereby we build a storage substrate over a geographic hash table

(GHT) [17].

We implement both approaches in the ns-3 network simulator [216]. Moreover, we also

address the application of Thyme to networks of real mobile devices, implementing

Thyme-DCS as a library for Android devices, and developing a proof-of-concept photo

sharing application on top.

Although some previous systems present in the literature offer some features similar

to Thyme (e.g., tuple spaces [165, 202] or peer-to-peer (P2P) systems [79, 249]), none pro-

vides the same overall characteristics for this kind of environments (as we detail in §4.2,

comparing Thyme against other proposals). Thus, to the best of our knowledge, Thyme

is the first system to provide reliable reactive storage for pervasive edge computing envi-

ronments that may be effectively and efficiently used in either small, medium and large

scale scenarios.

In summary, the main contributions of the work presented in this chapter are the

following: 1) the design of Thyme, a novel time-aware reactive storage system, and our

two approaches to this proposal—the unreliable Thyme-LS, and the reliable Thyme-

DCS; 2) the implementation of the Thyme-DCS approach, as a Java library, for sharing

and storing data in networks of Android mobile devices (implemented in the context of

the M.Sc. of Cerqueira [46]); and 3) the characterization of the scenarios best suited for

the use of the proposed solutions, through a three-fold evaluation: via an analytical study,

and both simulation and real world experimentations.

59

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.1: Comparison of Thyme with publish/subscribe systems.

Environment Time Assignment Substrate

[55] Wired Subscriptions REBECA [183]
[277] Wired — DB
GeoRendezvous [41] Wireless — GHT [17]
Chapar [137] Wireless Publications OLSR [60]
Thyme Wireless Pub. & Sub. GHT [17]/Flooding

4.2 Related Work

Concerning work related to our proposal, we address and compare against three main

categories: P/S systems, data storage and dissemination systems in general, and the

particular case of tuple spaces.

4.2.1 Publish/Subscribe

As already mentioned, the notion of publication persistence has not been addressed in

most systems. However, some approaches for wired settings exploit the concept of a

persistent data repository, by means of distributed buffers [55] (allowing only to specify

how many data items to request from the past when subscribing) or by integration with

traditional databases [277] (without any notion of time).

Also, there have been many proposals of P/S systems for wired settings, such as

Kafka [141] from LinkedIn, clearly demonstrating the feasibility and potential of this

communication paradigm. Nonetheless, such solutions do not consider time as a first

order dimension of the P/S abstraction. Furthermore, solutions for wired scenarios cannot

be easily adapted for wireless setting where connectivity is not stable.

Table 4.1 highlights the main aspects when comparing our proposal with other P/S

systems. GeoRendezvous [41] is a P/S system for wireless networks that uses the same

GHT as Thyme as a substrate. However, it does not provide time-awareness nor publi-

cation persistence. Additionally, their use of the GHT is fundamentally different. This

approach combines the GHT with multiple hash functions to hash topics to different cells

and allow subscribers to choose the closest cells to themselves, thus possibly reducing

latency. This is very similar to the way Thyme uses the GHT to retrieve objects from the

closest replicas to the issuer. In turn, contrary to Thyme, it only allows one tag per sub-

scription. It also requires the periodic advertisement of subscriptions and publications

to react to changes in the topology.

In the case of wireless settings, to the best of our knowledge, Chapar [137] is the only

P/S system that addresses persistent publications. However, it only assigns time to pub-

lications, which are buffered only until their lifetime expires. In Thyme, subscriptions

have their time scope assigned. In turn, publications are permanently stored, and they

may be deleted from the system upon request. Thus, new subscribers can always request

60

4.2. RELATED WORK

Table 4.2: Comparison of Thyme with data storage and dissemination systems.

Infra. Data Avail. Symmetric Substrate

Krowd [79] Yes No Yes 1-hop DHT
Ephesus [243] Yes Yes Yes DHT
MobiTribe [268] Yes Yes No Central Server
PAN [162] No Yes No Prob. Quorums
Phoenix [195] No Yes Yes Simple Quorums
iTrust [157] No No Yes Random Walks
PDS [249] No ± Yes ICN [285]
Thyme No Yes Yes GHT [17]/Flooding

previously published data. Also, Chapar is not functionally symmetric, demanding more

work from broker nodes, and thus achieving poor load balancing, an aspect that has been

explicitly considered in the design of Thyme.

4.2.2 Data Storage and Dissemination

Table 4.2 highlights the main aspects when comparing our proposal with other general

data storage and dissemination systems targeting various environments. Krowd [79] and

Ephesus [243] enable content sharing and storage among nearby mobile devices. While

Krowd relies on a one-hop distributed hash table (DHT), requiring each device to know

every other device in the network, Ephesus is sustained by a classical DHT (requiring

only partial knowledge of the network). As an handicap, they both require some kind of

network infrastructure for inter-device communication (e.g., an access point). Of the two,

Ephesus is the only one to address device mobility or failure, and data availability, via

replication. In turn, Thyme supports several wireless technologies, and targets multi-

hop environments using a GHT, known for being more suitable in wireless networks. It

also employs several replication mechanisms to address mobility and data availability.

MobiTribe [268] is a system for content sharing on mobile devices, across the Internet.

It uses a central server for content discovery, peer registration and metadata management.

Data is replicated in several peers according to their interests, and it uses prefetching

techniques to improve retrieval latency.

PAN [162] and Phoenix [195] are two systems for reliable data storage in mobile ad-

hoc networks (MANETs). PAN is an asymmetric system based on probabilistic quorums,

where peers have specific roles (thus, some may perform more work than others). In turn,

Phoenix uses a round-based simple quorum protocol for one-hop networks only.

iTrust [157] and PDS [249] focus on data discovery and retrieval on co-located devices.

iTrust is based on random walk techniques for propagating both metadata and queries

through the network. As Krowd, it also does not address data availability. In turn, PDS is

inspired by information-centric networking (ICN), and targets small networks with low

to moderate mobility. Its aggressive caching policy can lead to serious storage overheads,

61

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.3: Comparison of Thyme with tuple spaces systems.

Purpose Data Sharing

TuCSoN [188] Internet Constant
LIME [202] Federated TS Transient
TOTA [165] Autonomous Propagation Rule-based
Thyme Wireless Constant

and since data is only cached if requested, less popular data may even disappear.

All these systems employ the request/reply interaction model, whereby peers have

to proactively search for content. In turn, Thyme implements TARS and explores syn-

ergies between the P/S paradigm and the storage substrate, to provide both persistent

publications and a reactive interaction model, thus allowing applications to react to new

data being generated and stored. At the same time, it presents the potential to decrease

network traffic, as users do not need to be constantly searching for the desired data.

Other approaches based on opportunistic and delay-tolerant networking [73, 194,

259] provide communication and content sharing in the presence of intermittent connec-

tivity and other harsh conditions. They take advantage of opportunistic contacts between

peers to allow the exchange and spread of information. This means content dissemination

is best effort, i.e., information spreading depends on the availability and willingness of

interested peers to carry such content. Some of these systems also provide a reactive in-

teraction model for data retrieval. They are, however, devised for extreme environments

that relax temporal restrictions to the order of hours or days, something not feasible for

the kind of use cases we target.

4.2.3 Tuple Spaces

Table 4.3 highlights the main aspects when comparing our proposal with other tuple

spaces systems. TuCSoN [188] was designed for mobility in Internet environments and

presents the notion of programmable tuple spaces (spread over Internet nodes). Tuple

spaces are enhanced in that their behavior in response to agent’s operations can be ex-

tended so as to embody application-specific computations. These tuples spaces are rather

complex and cumbersome to reason with. Furthermore, it is not easily adaptable to

dynamic wireless environments (e.g., it assumes reliable communication), and its main

focus in on the programmability of the (coordination) tuple space.

LIME [202] breaks up the notion of a global tuple space, and distributes its content

across multiple mobile components. When components are within range (i.e., mobile

agents are on the same host or communication is available between mobile hosts), the

contents of the tuple spaces held by the individual mobile components are transiently

shared, forming a federated tuple space. The contents of these virtual tuple spaces evolve

in time according to the current connectivity pattern. Although reactions enable tuple

spaces to react to the insertion of relevant tuples, they are sensitive to hosts’ connectivity,

62

4.3. THE MANY LEAVES OF THYME

since the federated tuple space only takes into account data spaces from components

within range. In several mobile and wireless environments, this approach is not sufficient

to generally support distributed services or applications. Therefore, LIME was devised

for small scale scenarios. In turn, Thyme leverages a lightweight flooding approach or

a GHT for ensuring the best possible connectivity in large-scale scenarios, and its rout-

ing schemes jointly with its replication mechanisms allow the matching of publications

against subscriptions of all peers in the network.

In TOTA [165], tuples are injected and can autonomously propagate into the network

according to specific rules (i.e., they are not assigned to specific tuple spaces). Each tuple

is formed by: its content data; a propagation rule, the policy by which the tuple is cloned

and diffused across the network and how its content should change during propagation;

and a maintenance rule, the policy whereby the tuple content should change due to events

or time elapsing. Propagation consists in a tuple cloning itself, being stored in the local

tuple space, and moving to neighbor nodes recursively. Tuples are not necessarily dis-

tributed replicas. According to their propagation and maintenance rules, they can assume

different values in different nodes (expressing some kind of contextual or spatial informa-

tion). In the end, unlike traditional event-based models, tuples propagation is not driven

by a P/S schema, but is encoded in the tuples’ propagation rule. By constantly monitor-

ing the network local topology and the insertion of new tuples, TOTA can automatically

re-propagate or modify the content of tuples as necessary conditions occur. Subscriptions

only react to changes in a node’s local tuple space (or from its one-hop neighbors). To

achieve something similar to Thyme, data should be propagated to every network node

in order for subscriptions to be matched against the data. Otherwise, some nodes would

not be notified about relevant data. TOTA also requires every node to execute the match-

ing of subscriptions against tuples, thus suffering from redundant work and poor load

balancing. In contrast, Thyme allows for better load balancing, distributing the load

when matching subscriptions and publications.

4.2.4 Others

Regarding app stores, there are several applications for sharing files between mobile de-

vices. For instance, SuperBeam [156] and Xender [16] allow synchronous one-to-many

data exchange. However, data is only available while its owner is online.

There are still other applications [38, 190] and specialized devices [102] that provide

ad-hoc (multi-hop) communication among mobile devices, allowing data dissemination

when network infrastructures are inaccessible.

4.3 The Many Leaves of Thyme

The design of a system implementing TARS for wireless edge environments presents a

set of interesting challenges. For example, where to place data and how to find it? What

63

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

are the proper trade-offs between communication and reliability? How and what data to

disseminate (and when)? In the end, Thyme’s design, that we present next, considers

these and other issues.

4.3.1 Use Cases

Thyme can be used to build generic data dissemination services for the kind of envi-

ronments we are targeting. We argue that Thyme fits perfectly in scenarios where big

crowds are gathered, using their mobile devices to collect data (e.g., photos, video, text)

and share that same data with people in their vicinity, akin to social networks [237].

Consider, for instance, a scenario where spectators in different parts of a football sta-

dium may share their views of the game through self-generated multimedia content. In

this case, spectators would be able to see key moments of the game from multiple view-

points, including those of the spectators in key locations or closer to the field. Offering

such possibility can significantly improve user experience—something football teams are

willing to invest in, if it means they will attract more fans to their stadiums [289].

In fact, this kind of augmented user experience is already being explored by some

companies [289], using the venues’ existing fixed communication infrastructures, which

are single points of failure that may be subjected to overload conditions and other fail-

ures (e.g., power outages [82]). In turn, the pervasiveness of mobile devices and the

advances in the edge computing paradigm offer the possibility to provide such enriched

user experience with negligible cost for infrastructure managers, while at the same time,

working to alleviate the load on those infrastructures.

4.3.2 System Model

We consider a classical asynchronous model comprised of Π = {n1, . . . ,nk} mobile de-

vices (hereafter called nodes) with no mobility restrictions, other than those imposed by

the venue they are in and the natural speed limits of humans1. Our algorithms do not

assume any radio technology or routing infrastructure, being practical in several wireless

settings. Nodes communicate by exchanging messages through a wireless medium (e.g.,

Bluetooth, Wi-Fi ad-hoc, Wi-Fi Direct, Wi-Fi Aware) [217, 242, 264, 265], and have no ac-

cess to any form of shared memory. Nonetheless, nodes should be able to establish (point-

to-point) communication channels with (all) their one-hop neighbors, and thus need to

have some kind of discovery mechanism in order to determine their neighbors. We also

consider the classical crash-stop failure model, whereby nodes can fail by crashing but

do not behave maliciously.

In this (first) approach, data objects are considered immutable (however, currently,

this is no longer the case; see §7.5). Also, we do not consider security or access control

concerns, thus only publicly shareable data is manipulated (e.g., as in social networks).

1The record for top speed achieved by a human is 12.4 m/s, by Usain Bolt, seen during the 100 meters
final of the 2009 World Championships in Athletics, in Berlin.

64

4.3. THE MANY LEAVES OF THYME

Application

DCSLS

GHTFloodingRouting

Storage

THYME
THYME-LS THYME-DCS

Figure 4.1: Thyme layered system overview.

Due to the unreliable nature of wireless communication mediums, Thyme notifies sub-

scribers of all relevant data as completely and faithfully as possible, i.e., missing some

notifications is permitted because applications are not expected to be mission-critical.

Each node has a globally unique identifier and can determine its geographical posi-

tion, through GPS or other means [206]. Thus, nodes can be aware if they are moving or

not. We also assume nodes’ clocks to be synchronized (with a negligible skew). Both these

assumptions are reasonable since we target mobile devices (e.g., smartphones) and nowa-

days even low-end devices come equipped with GPS and synchronize their clocks with

the network providers, while other solutions allow device location even indoors [206].

4.3.3 Architecture

Since we target decentralized networks based on battery-constrained devices, load bal-

ance is a top-level concern. As such, in Thyme, akin to (flat) P2P systems, nodes are

functionally symmetric and share the same responsibilities. This means that there are no

centralized or specialized components (like P2P super-peers or P/S brokers), and each

node can be a publisher, a subscriber, or both.

Thyme’s design comprises three main layers, depicted in Figure 4.1. The bottom

layer handles message routing. The middle layer is the storage substrate. The top layer is

Thyme itself, providing its interface for applications.

As illustrated in Figure 4.1, we propose two different approaches for the two bottom

layers (namely, routing and storage). Thyme-LS (§4.4) uses nodes’ local storage, and

query flooding, thus data objects are stored locally by their owners, while subscriptions

are fully replicated in every node of the system. Its routing layer provides flooding to the

entire network (using UDP broadcast), and (multi-hop) unicast using a typical ad-hoc

routing protocol (e.g., DSDV [200], OLSR [60]).

In turn, Thyme-DCS (§4.5) follows a DCS approach [212], using a simple key-value

storage substrate that we built over a cell-based GHT for wireless networks [17]. Its

routing layer is materialized by this GHT, called cell hash routing (CHR). In a GHT, nodes

self-organize according to their geographical positions and keys are hashed to physical

locations. The node responsible for a key is the one closest to the key’s geographical

position. As represented in Figure 4.2, the physical/geographical space where the system

is to be available is divided into a grid, i.e., into equally-sized square-shaped cells, and

65

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

6 7 8
3 4 5
0 1 2

Figure 4.2: A geographic hash table and its virtual nodes.

all physical nodes within a cell collaboratively act as a virtual node. Since nodes need

to map any point in space into its corresponding cell, cell size and some origin of space

must be agreed beforehand. However, it suffices that every physical node is able to reach

every other node in its cell and at least another node in adjacent populated cells to ensure

the correctness of this solution. Messages are addressed to geographic locations, thus

routed to the cell that contains the message destination. In turn, messages addressed to a

cell are delivered to all physical nodes within the cell (similar to [150]). For instance, in

Figure 4.2, a message addressed to a location inside the boundaries of cell 4 is received

by the red node (chosen randomly by the routing protocol of the GHT; see §4.5.6.1), and

then is forwarded (or broadcasted) to all the other neighbor nodes inside the cell. The use

of the GHT is two-fold: 1) cells are used to store or index all the system data (data objects,

its metadata, and subscriptions); and 2) cells are exploited to match subscriptions and

objects, i.e., cells act as virtual P/S brokers.

Wireless communication mediums are known to be subject to many forms of inter-

ference, hence messages may be lost and not reach their final destination. However, as a

design principle, this layer does not provide any mechanisms to recover from lost mes-

sages on the wireless medium, delegating this responsibility to the upper layers (abiding

by the end-to-end argument [222]).

In both approaches, we used a plain in-memory hash table as the native object store (ad-

apted to the implementation programming language). However, any other storage engine

could be used (e.g., (in-memory) databases).

4.4 An Unstructured Approach: Thyme-LS

Thyme-LS employs a lightweight unstructured approach and has no extra maintenance

overhead. It uses nodes’ local storage, and query (in our case, subscription) flooding.

Both insert and delete operations are entirely executed locally. Thus, objects are only

stored by their owners. On the other hand, Thyme-LS uses subscription flooding as its

event routing strategy (like Gryphon [5, 23] and SIENA [44]). Hence, subscribe and

66

4.5. A STRUCTURED APPROACH: THYME-DCS

unsubscribe operations are flooded and executed in every node, so subscriptions are fully

replicated across all the system. These operations are broadcasted to all its one-hop

neighbors who, then, forward the message to all their one-hop neighbors and so forth.

Nodes keep track of received messages so that the ones already forwarded will not be

sent again. Since every node has the complete set of all the system-wide subscriptions,

the matching between objects and subscriptions is completely local.

In this approach, notifications may be triggered in two occasions:

• upon an insert operation, if that new object matches any of the node’s locally stored

subscriptions; and

• upon issuing a subscription (when flooding the respective message), each node that

receives a subscription checks if it matches any of its locally stored objects.

Retrieve operations request the desired objects directly from their owners, using the

information received in the notifications, and the multi-hop unicast communication prim-

itive provided by the routing layer (§4.3.3).

Here, node mobility is handled in a completely transparent way by the underlying

protocol used by the routing layer. Thus, nodes can move freely and the routing protocol

takes care of all the necessary changes that come from that movement in order to continue

to provide (the best possible) connectivity. Also, since data objects are only stored locally

by their owners, Thyme-LS does not guarantee objects’ persistence once their owners

fail or leave the system.

When joining the system, nodes broadcast a join request. To avoid a flooding of replies,

only a few neighbors (randomly selected through a coin toss) respond back with their

locally stored subscriptions. Also, to minimize collisions, replies are delayed a (config-

urable) random amount of time. If no replies are received after a maximum number of

retries, the joining node assumes it is alone, and starts operating as normal.

4.5 A Structured Approach: Thyme-DCS

This approach leverages heavily on the notion of cell (or virtual node) conveyed by the

GHT used in its routing layer (§4.3.3). By using geographical information, Thyme-DCS

boasts two complementary aspects: 1) it provides topology-awareness by design; and

2) allows the inference of the location of relevant data to subscriptions, enabling access

to such data using a location-aware strategy.

4.5.1 Inserting Data

When executing an insert operation, this approach leverages on the cells conveyed by

the underlying GHT. Object data and metadata are managed differently. The latter is

indexed (and, thus, replicated) in all the cells resultant from hashing the object tags. In

turn, the actual object is replicated in all the nodes of the owner’s cell (see §4.5.2). This

67

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

hash(“tree”)

hash(“green”)

insert(, “tree.jpg”,

<“tree”, “green”>)
10 13

3
hash(“tree”)

subscribe((“nature” & “green”) | “tree”,

tsstart, tsend)

hash(“nature”)

Figure 4.3: Insert and subscribe operations in Thyme-DCS. The tags’ hashing deter-
mines the cells responsible for managing the object metadata (cells 3 and 10) and the
subscription (cells 3 and 13). If a subscription has matching tags with an object, it will
also have overlapping (responsible) cells, guaranteeing the matching and sending of noti-
fications to the subscriber.

ensures only a small amount of data (i.e., the metadata) is sent through the network,

whereas the bulk of the data is kept near its source.

Figure 4.3 illustrates an insert operation of a photo with identifier “tree.jpg”, and tags

“tree” and “green”. The cells resultant from hashing each tag are responsible for managing

the object’s metadata and checking if subscriptions match this object.

4.5.2 Replication

Since we target highly dynamic environments, to provide data availability and churn

tolerance, this approach employs replication mechanisms: active and passive replication.

4.5.2.1 Active Replication

Active replication takes advantage of the virtual nodes provided by the cell-based GHT.

Upon an insertion, an object is disseminated inside the owner’s cell. Onward, every node

inside the cell should be able to reply to retrieve operations for that object. This ensures

tolerance to churn and guarantees that stored content will remain in the system even if

their owners’ leave. Note that the objects’ metadata is also (actively) replicated in the

cells resultant from hashing the objects’ tags (§4.5.1).

4.5.2.2 Passive Replication

In turn, similarly to seeders in P2P file sharing, passive replication leverages on the

nodes that already retrieved an object to provide more replicas scattered in the network,

increasing data availability. Thus, the number of locations from where an object can be

retrieved grows in direct proportion to its popularity, and the very act of retrieving an

object makes it more widely available.

4.5.2.3 Replication List

To enable both mechanisms, the system needs to keep track of the whereabouts of each

object replica. This is achieved by listing an object’s replica locations in its metadata, in

68

4.5. A STRUCTURED APPROACH: THYME-DCS

what we call replication lists, Lrep (a list of pairs with node identifier and cell address—

〈nid,cid〉). Thus, in this case, the object metadata consists of a tuple

〈oid,T , s, tspub,nid,Lrep〉

These replication lists are bound to a (configurable) maximum number of locations,

maintaining only the most recent entries. Also, a list only contains one entry for an

object’s active replica, representing all the nodes inside that cell (and this is a permanent

entry on the list despite its recency).

Since nodes can move, their location may change over time. Hence, after a node

stabilizes in a (new) cell, it must update its location for the passive replicas of the objects

it holds (through some kind of location update messages). This update is only carried

out for the cells managing the object metadata, i.e., the metadata of individual passive

replicas is not actively updated.

4.5.3 Deleting Data

In the delete operation, the object metadata indexed by the object tags is removed from

the responsible cells. However, while active replicas are also explicitly removed, the same

does not happen to passive ones. Nonetheless, since the object metadata is removed (and

with it, so is the replication list), the passive replicas become inaccessible and thus stop

working as such.

4.5.4 Querying Data

Since the GHT used by Thyme-DCS only routes messages to geographical positions,

there is the need to know where to send notifications, i.e., the node’s address is not

enough. Thus, subscriptions are extended with the location (i.e., the cell address) of the

subscriber node, cid. Naturally, this information needs to be updated every time the

subscriber node changes its cell. In the end, a subscription in Thyme-DCS consists of a

tuple of the form

〈sid,q, tss, tse,nid,cid〉

4.5.4.1 Divide and Conquer

Leveraging on the fact that every propositional logic formula has an equivalent one in dis-

junctive normal form (DNF), we employ a simple divide and conquer strategy of breaking

the disjunction into its individual conjunctive clauses, and evaluate each one separately.

For a match to occur, it suffices that one evaluates to true. The use of DNF enables

load balancing when matching objects against subscriptions, since the work can be split

among different cells (and consequently nodes), each evaluating only one of the query’s

conjunctions. Additionally, it minimizes the amount of information transmitted to the

responsible cells (by sending only a subset of the query, i.e., the relevant conjunction, to

the responsible nodes).

69

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

For each conjunction, we randomly select as its key one of its positive literals (what

we call conjunction keys). Hashing that literal determines the cell where to send that part

of the query. That cell becomes a (virtual) broker for the subscription, and the nodes in

the cell are responsible for checking if objects match the subscription, and notifying the

subscribers, if need be. Thus, this approach employs the rendezvous-based event routing
approach (like Scribe [45] and Hermes [203]). Figure 4.3 depicts a subscription of a query

with two conjunctions. For each, one of its literals is chosen as its key, and determine

which cells will become the virtual brokers for the subscription (in this case the two

conjunction keys are “nature” and “tree”).

For instance, assume the following query, already in DNF:

(A&B&E) | (A&¬C) | (D)

The disjunction is divided into its three conjunctions: 1) A&B&E; 2) A&¬C; and 3)D. Due

to the restrictions already mentioned, conjunctions 2 and 3 have their keys automatically

determined (literals A and D, respectively). But, any literal in conjunction 1 may be

chosen to be its key (thus, we opt to choose one at random).

Even that, in some cases, the conversion to DNF can lead to an exponential explosion

of the formula [71], we argue that most ordinary users do not make use of complex queries

nor logic operators that regularly. Thus, we do not expect this to be an issue in practice

and the possible conversion to DNF should be efficient.

4.5.4.2 Notifications

After a subscription, there are two occasions that may trigger notifications:

• upon an insertion, cells indexing the object metadata by its tags are responsible for

checking if the new object matches any existing subscriptions stored locally; and

• upon a subscription, cells indexing the subscription by its conjunction keys are

responsible for checking if the locally stored metadata match that new subscription.

When we break the subscription query into its multiple conjunctions, it suffices that

one of the conjunctions evaluates to true, for a match to occur. However, since the conjunc-

tions are evaluated by (probably) different cells, when different conjunctions of a same

subscription both evaluate to true, the subscriber will receive duplicate notifications for

the same matched object.

Lets assume the query given before, (A&B&E) | (A&¬C) | (D). When a match with

object X, with tags A and D, is verified, both conjunctions 2 and 3 are evaluated to true.

Consequently, two notifications will be sent to the subscriber (one from each cell that

verified the match). We embrace this byproduct of our divide and conquer approach

in two ways. First, we treat these duplicates as a positive outcome, because this (small)

redundancy provides, to some degree, tolerance to lost messages. Second, we employ a

duplicate detection in the subscriber side (and drop duplicate notifications).

70

4.5. A STRUCTURED APPROACH: THYME-DCS

4.5.4.3 Moving Subscribers

When a subscriber moves to a different cell, it must update its location for every active

subscription it owns. During this situation, notifications sent to moving subscribers may

never reach their destination. In such cases, the underlying routing layer returns negative

acknowledgements (NACKs) for messages addressed to individual nodes that could not

be delivered (see §4.5.6.4). NACKs are used to convey that a node is no longer in its

supposed cell, which may be caused by movement or node failure.

Node movement will be detected through the subscriber’s location update2. In such

case, Thyme-DCS can re-send the notifications that were not previously delivered. Oth-

erwise, after a (configurable) maximum waiting time, Thyme-DCS assumes the node

has failed, and simply stops sending notifications. In case the node did not fail, and was

just a straggler, it will have to re-issue all its subscriptions.

4.5.4.4 Unsubscribing

When executing this operation, unsubscribe messages are sent to the cells determined

by hashing each conjunction key of this subscription, and the specified subscription is

removed from storage.

4.5.5 Retrieving Data

Retrieve operations leverage the replication mechanisms in order to optimize from where

to request an object. From all the locations in the replication list (§4.5.2.3) received in the

object metadata (with the notification), the requesting node chooses the geographically

closer replica, and sends a retrieve request for the desired object, as Figure 4.4 illustrates.

If a negative reply is received, the requester proceeds and tries to retrieve the object from

the next closest location in the replication list, until no more options are available, or a

maximum number of retries is reached. As a last attempt, the cell actively replicating

the desired object will be used (if not already tried), because it offers higher chances of

success compared to every other replica.

One interesting aspect of using geographical routing is that it becomes easier for nodes

to make hints on which replicas are better (i.e., closer), using the geographic distance

as a metric. Since geographical positions have a close relation to topology in wireless

networks, we expect this approach to minimize the distance data has to travel in the

network, allowing for this location-aware strategy when retrieving objects.

4.5.6 Storage Substrate & Routing Layer

The major drawbacks of a routing protocol based on a DHT for wireless networks are

the mismatch between the logical and physical topologies, and the high maintenance

2In fact, these location updates can be merged with the updates for the passive replicas (§4.5.2.3), reduc-
ing the amount of communication needed and the occupancy of the wireless medium.

71

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Passive replicas

Active replicas Subscription broker

Subscriber/Retriever

Figure 4.4: Notification and retrieve operation in Thyme-DCS. The dotted arrow is a
notification sent to the subscriber. The other arrows represent a retrieve operation (re-
quest and reply from the closest replica).

overheads [291]. Inspired from both wired [150, 192] and wireless [17, 236] settings, we

adopt a cell-based GHT as our routing protocol: CHR. By using geographic information,

there is no mismatch between the logical and physical topologies [291]. Also, by lever-

aging on the control traffic of the underlying geographic routing protocol, the GHT does

not add any other maintenance costs. At the same time, the cell-based approach relaxes

the requirements for location accuracy (i.e., nodes only need to know their cell and to

reach at least one neighbor in each of the populated adjacent cells), and is more robust to

topology changes (requiring no action as long as nodes move inside their current cells).

In their essence, DHTs only provide routing. Hence, we implement a DCS substrate

on top of this GHT, providing a simple key-value storage abstraction. Data items are

named, and both their insertion and retrieval are performed using those names. To make

this layer more suitable for the highly dynamic environments we target, we introduce

several mechanisms and optimizations.

4.5.6.1 Routing

Our routing scheme is very similar to the ones used in [17, 212]. Routing is done at cell-

level, using a variation of the greedy perimeter stateless routing (GPSR) protocol [135].

GPSR makes greedy decisions, forwarding messages to the next neighbor geographically

closer to the message destination (thus, called greedy forwarding). When such strategy

is not possible, the algorithm resorts to a recovery mode (called perimeter mode) that

forwards messages around the voids in the network.

Lets assume node S in cell x wants to send a message to location D in cell y. If S

wants to forward the message to a neighboring cell, it picks a random node from the cell

and sends the message to that node. When in greedy mode, a cell selects as the next hop,

72

4.5. A STRUCTURED APPROACH: THYME-DCS

another populated adjacent cell such that it minimizes the distance to the destination.

However, if a cell is a local minimum on the path between source and destination, the cell

must send the message in perimeter mode to go around the face in the direction where

the line between the cell and destination lies. As soon as the message reaches another cell

where the distance between it and the destination is less than that of the previous local

minimum, the message leaves perimeter mode and reenters greedy mode. If a message in

perimeter mode passes through the same cell h twice (without having switched to greedy

mode in between), this means that the destination cell is empty or unreachable, and is

inside the face contoured by the message (called the home perimeter). Therefore, cell h is

the proxy cell of the destination, also called the home cell.

Here, cell size must be chosen in a way that maximizes the chance nodes inside a

given cell can listen to all the nodes in any of the eight neighboring cells. Also, cell size

cannot be too small or no gain will result from clustering.

For forwarding messages from cell to cell, we use unicast in order to take advantage

of the (per hop) MAC-level retransmission mechanism. This layer provides: 1) a routing

mechanism between cells; 2) routing to an individual node (in a specific cell); and 3) to

broadcast messages within the context of a single cell3. In our implementation, the

one-hop broadcast primitive is used as the neighbor discovery mechanism—transmitting

periodic beacons with the node’s current cell—, and also as the intra-cell communication

primitive. Since broadcast is not acknowledged at MAC-level, this makes it a best effort

communication primitive.

4.5.6.2 Dynamic Cell Structure

It is impossible to ensure that every cell is populated. Thus, we address empty cells

forcing keys to take an entire loop around those cells [17, 212], stopping in the cell

closest to the supposed destination (which becomes a proxy of the key’s destination cell).

This raises another problem when nodes populate previously empty cells, or leave the

system and make some cell empty. So, a cell becoming empty has to deliver all its keys to

its proxy cell. In turn, a cell becoming populated needs to receive its keys from its proxy

cell, and also all the keys of the empty cells for which it now becomes the new proxy.

If two geographically independent clusters of cells connect at some point in time,

GPSR and this proxy logic will trigger a rearrangement of the cells structure and its data.

Eventually, the two clusters will merge and cell data will stabilize in its due location [212].

4.5.6.3 Mobility Awareness

We argue that moving nodes render routing information too volatile. Thus, in sharp

contrast with CHR and GPSR, our routing layer is mobility-aware, i.e., only stationary
nodes actively participate in message routing.

3Although the broadcast is received by other nodes in range, the message is filtered out at the routing
layer.

73

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

(a) Sparsely populated scenario. (b) Densely populated scenario.

Figure 4.5: Message destination aggregation working examples. The dark squares are
populated cells, and black dots are the multiple message destinations.

Since our target scenarios have mild mobility patterns (i.e., nodes do not move con-

stantly, and some might not even move during the entire event), only stationary nodes

form the GHT. When a node starts to move and leaves its current cell, it stops participat-

ing in the routing protocol (i.e., it stops forwarding messages). It resumes the protocol

when it detects itself as being stationary, by joining the local cell. Notice that in this

event, data stored by the node in the previous cell is replicated only at that cell. The data

owner however, will also update its new location in the metadata of previously inserted

objects (behaving as a passive replica for that content). While moving, nodes still process

received periodic beacons, allowing them to keep communicating with the GHT.

4.5.6.4 Negative Acknowledgments

According a typical GHT interface, nodes are not individually addressable, i.e., we only

send messages to specific geographic positions (that correspond to cells in our cell-based

approach). Nonetheless, we support the sending of messages to a node in a specific
cell (e.g., send a message to node a in cell 12).

To allow the upper layers to react to a node failure or migration from one cell to

another, the routing layer replies with a NACK to a message source, when a message

addressed to an individual node could not be delivered (because the node was not in the

supposed cell).

4.5.6.5 Message Destination Aggregation

For messages that are to be delivered to multiple destinations (e.g., notifications), we

optimized our routing scheme by only propagating a single message to those destinations,

in what we call message destination aggregation.

A message is only duplicated when strictly required, which happens when the mes-

sage’s next hop for different destinations is not the same, as depicted in Figure 4.5. Thus,

achieving a kind of tree-like routing, contributing to reduce the energy consumption and

the occupancy of the wireless medium.

74

4.6. AN ANDROID IMPLEMENTATION

Link Layer

Network Layer

Bluetooth Wi-Fi Wi-Fi Direct

Geographical Routing Namespace Manager

Publish/Subscribe
Storage

Localization
Replication Manager

Thyme Interface

Application

Thyme

Services

Network

Connectivity

Figure 4.6: Thyme-DCS Android library architecture [46].

Naturally, this mechanism is more effective in sparsely populated scenarios (Fig-

ure 4.5a), as there are less possible paths where messages can be duplicated. Contrary,

in densely populated scenarios, since there are more direct paths from any source to any

other destination, this observation cannot be exploited so efficiently (Figure 4.5b).

4.5.7 Joining the System

A node joining the system waits a configurable amount of time, listening for other nodes’

periodic beacons sent by its neighbors. If, during that time, it receives a beacon sent by

a neighbor in its own cell, the sender of that beacon is used as an entry point. A join

request is then exchanged, and the joining node receives all the cell state in a reply. If a

maximum number of retries is reached, the node assumes it is alone in the cell, and starts

operating normally, i.e., the cell was empty, and is now occupied as described before.

4.6 An Android Implementation

Both Thyme-LS and Thyme-DCS were implemented in the ns-3 network simula-

tor [216] to allow large-scale experiments (see §4.8). Yet, to be able to experiment in

real world scenarios, even though in a small scale, we address the application of Thyme

to networks of Android mobile devices, implemented in the context of the M.Sc. of

Cerqueira [46]. Here, we focus on the Thyme-DCS approach due to its range of applica-

bility, since it copes with mobility and churn concerns. We apply it to real world networks

of Android devices and use it in the development of a photo sharing application.

4.6.1 Architecture

Figure 4.6 depicts the multi-layer software stack that executes at each node. We pre-

sent this architecture from a top-down perspective focusing on the challenges raised by

75

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.4: Signature of the insert and subscribe operations in the Android library.

void insert (DataObject data, Collection<Tag> tags, byte[] description, OperationHandler opHandler)

void subscribe (TagExpression query, Time start, Time end, NotificationHandler notHandler, OperationHandler opHandler)

data – data object to store
tags – tags associated with the data object
description – description of the data object to store
opHandler – handler for handling the success or failure of the operation
query – tags relevant for the subscription
start/end – validity time interval for the subscription
notHandler – handler for the reception of notifications of data objects matching the given subscription

implementing Thyme in real world networks of mobile devices.

Thyme Interface. It offers the (asynchronous) operations presented in §3. The out-

come of these operations must be dealt with through the implementation of specific

handlers (i.e., callbacks). As an illustration, Table 4.4 presents the signatures of the insert

and subscribe operations for our Java prototype.

Publish/Subscribe. Separated in client and server counterparts, this module manages

the match between stored objects and subscriptions, and emits the necessary notifications.

The client side manages insert and subscribe operation requests, as well as the reception

of notifications. In turn, the server counterpart manages the matching (and storage) of

data objects and subscriptions, having into account that each data object/subscription

features a namespace identifier (see §4.6.2).

Storage. Also divided into client and server counterparts, this module manages the stor-

age of data objects and their metadata, as well as of subscriptions. The internal Replication

Manager sub-module manages the active and passive replication mechanisms (§4.5.2).

In this implementation, passive replication is built-in and cannot be disabled. How-

ever, active replication is optional: its default can be set to either active or inactive,

and can be overridden in a per operation basis. For instance, data stored by the Pub-

lish/Subscribe module (i.e., data objects and subscriptions) always use active replication

to ensure that such information is replicated inside the responsible cell. In turn, the dis-

semination of commercial advertisements may not require persistent storing. The actual

active replication model may be injected in the Replication Manager, in order to support

different strategies such as cell-wide replication, independently of the cell’s population,

or maintain a certain number of replicas, also independently of the cell’s population.

Localization. Geographic routing requires nodes to be able to determine their own geo-

graphical position. For that purpose, we are currently resorting to the globally available

GPS information. This option allowed the rapid prototyping of the Localization service.

However, there are other possible solutions [206].

Network Communication. One of the fundamental differences between the ns-3 Thyme

and our Android implementation is the ad-hoc communication, as this mechanism is not

76

4.6. AN ANDROID IMPLEMENTATION

readily available in the targeted off-the-shelf Android devices. To circumvent this lim-

itation, all network communication in our prototype makes use of a communication li-

brary [217] developed in the context of the Hyrax research project4. This library supports

one-hop and multi-hop networks by using one or more wireless networking technologies.

Currently, the following are supported: Wi-Fi, Wi-Fi Direct and Bluetooth. Regarding

the API, the library supports both synchronous and asynchronous unicast, and scoped

broadcast messaging.

We adapted this communication library to support the GPSR protocol [135], and

support cell-level routing. Messages may be addressed to either a node or a cell. In the

latter case, a random node of the target cell is chosen to either route the message to the

next cell or to process the message itself, if the destination has been reached. Cell-wide

communication is achieved via the scoped broadcast functionality.

4.6.2 Multiple Namespaces

The ns-3 version of Thyme was designed with a single grid in mind (§4.3.3), being the

grid defined before the system starts. This grid works as a namespace or like a directory in

a file system. However, this real world implementation allows for multiple (overlapping

or non-overlapping) grids/namespaces, and provides a namespace discovery mechanism.

This feature allows for a two-level naming hierarchy that was flat before. For instance, in

the context of the photo sharing application (see §4.6.4), this feature enables the existence

of multiple photo galleries shared by different users.

To cope with this demand, an application may manage multiple instances of Thyme,

each bound to its own namespace. These instances present the previously described

instance-agnostic Thyme interface, but embed an internal unique identifier that will be

used by all modules of the software stack, ensuring the clear separation between the data

of the multiple Thyme instances.

The creation of a new namespace requires the configuration of the geographical area

to be covered by the associated Thyme instance, and the name to use when advertising

the instance to the network. Currently, namespaces/grids have a rectangular shape, and

their configuration requires a reference point and its length in all four cardinal directions.

The dimension of each cell is computed automatically and depends on the networking

technology in use. In the case of Bluetooth and Wi-Fi Direct, the dimension is computed

from the technology’s usual communication range. In the case of Wi-Fi, the size of the

cell is set by a platform configuration parameter.

4.6.3 Handling Mobility

Device mobility impacts Thyme in several ways. First of all, it is necessary to know

the device location, in order to: i) deliver notifications; ii) send replies to previously

4http://hyrax.dcc.fc.up.pt

77

http://hyrax.dcc.fc.up.pt

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

issued requests; and iii) keep track of the whereabouts of passive replicas. Secondly, it is

necessary to know in which cell a device is parked so that device may contribute to the

cell’s responsibilities, namely storing data objects and subscriptions.

Mobility is detected by sensing the device’s accelerometer. Subsequently, the node

will switch to mobility mode as soon as it leaves its cell, and will persist in such mode

until it remains stationary for a configurable time period. While it is moving, a node

will not work on behalf of any cell, but will process messages addressed to itself, such

as notifications. To that end, as it moves across cells, the node will have to update its

subscriptions’ data with its new location (§4.5.4.3).

When the system locally detects that a node is no longer moving, if the final cell is

not the same as the origin, the node discards all the (meta)data kept about the origin cell,

updates its location in the system (namely with respect to the passive replicas it holds),

and begins working on behalf on its new cell, replicating data and answering requests.

4.6.4 Shared Photo Gallery

A practical Thyme use case is a photo sharing application to be used at social events.

Thus, as a case study, we developed the shared photo gallery application that allows users

to share photos without requiring Internet access. The app can run on any device with

Android 5.0 (Lollipop) or higher, without having root access, and works even in the

absence of a communication infrastructure (when using Bluetooth or Wi-Fi Direct).

Users publish (or insert) photos with at least one tag and subscribe to the tags they

are interested in, indicating a validity time frame for each subscription. This time frame

may be unbounded in both ends, allowing for subscriptions to cover the event (or system)

lifespan. Whenever a published photo matches one of the active subscriptions, a notifica-

tion is sent with the photo’s thumbnail (and a list of possible download locations). Upon

reception of such notification, the user may choose to immediately start the download,

postpone it, or discard the notification. Whatever the action, the user will be informed of

its success or failure.

Figure 4.7 depicts some of the application’s screens. In Figure 4.7a it is possible to

identify four tabs:

Private displays the private photos from the device’s gallery, that can be published;

Publications displays the photos already published by the user;

Downloads shows the photos that were previously downloaded;

Available displays the photos whose download has been postponed.

Also, in this figure one can see the subscription and unsubscription buttons, represented

by the bell symbols in the upper right corner. The other figures (Figs. 4.7b–4.7d) illustrate

the processes of, respectively, publishing a photo, issuing a subscription, and handling

the reception of a notification.

78

4.7. ANALYTICAL STUDY

(a) Main screen. (b) Publish a photo. (c) Subscribe a tag. (d) Download a photo.

Figure 4.7: Shared photo gallery Android application.

The application may interact with more than one gallery. Users may thus search

and connect to active galleries on neighboring devices5 or create their own galleries. To

navigate between galleries the user has simply to access the menu (i.e., the three vertical

dots) in the upper right corner and select the Switch gallery option, which will lead to

a (selectable) list with the available galleries.

4.7 Analytical Study

We now compare our approaches using a simple analytical model to derive approximate

formulas for communication costs and operations complexity. In the following, we use

the asymptotic costs of O(n) message transmissions for floods and O(
√
n) for point-to-

point routing, where n is the number of nodes in the system [212]. However, since in

Thyme-DCS we cluster nodes into cells, point-to-point routing still costs O(
√
n) but,

here, n becomes the number of cells in the system.

As a baseline for comparison, we devise an additional approach, Thyme-ES, using

the client/server model and based on external, centralized storage. Storage is external in

the sense that it does not belong to the nodes forming the network, i.e., it belongs to a

different (server) component, known a priori by every node in the system. Objects, their

metadata, and subscriptions are stored in external storage, and every operation is sent to

that server to be processed (and replied back). Naturally, this server component is a single

point of failure in the system, but can use any known techniques from the literature to

address this issue (e.g., fail-over, or state machine replication [32]).

4.7.1 Time Complexity

The operations (average) time complexity is as shown in Table 4.5. Delete and unsubscribe

are the inverse operations of insert and subscribe, respectively. Despite their respective

5Access control and security is mandatory in this environment but falls outside the scope of this work.

79

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.5: Thyme operations time complexity.

ES LS DCS

Insert/Delete O(
√
n) O(1) O(

√
n)

Retrieve O(
√
n) O(

√
n) O(

√
n)

Subscribe/Unsubscribe O(
√
n) O(n) O(

√
n)

messages carrying slightly different information, in terms of complexity, they exhibit the

same behavior.

Since ES and DCS use point-to-point communication for every operation, their com-

plexities are the same. However, while in ES, the majority of the work is executed by the

external component, in DCS, the work is spread among the cells, i.e., the system nodes.

Also, take into account that by clustering nodes into cells, the point-to-point routing has

the potential to be more efficient. In turn, LS trades linear (un)subscribe operations for

constant inserts and deletes. In all approaches, retrieve operations are executed using

point-to-point communication.

4.7.2 Space Complexity

Regarding space complexity, ES exhibits an extreme behavior, because the external com-

ponent has to store every piece of data of the system (i.e., objects, their metadata, and

subscriptions).

In turn, LS sits in the middle of the spectrum, by storing objects only in their owners’

storage, but fully replicating every subscription.

Lastly, DCS spreads both the storage of objects, metadata, and subscriptions among

its cells/nodes, through hashing. In terms of storage, the LS and DCS approaches are not

directly comparable. However, they both reside in the middle of the spectrum, spread-

ing (different) parts of the system data among the nodes.

4.7.3 Communication Costs

The communication cost structure for each approach is described by several parameters.

Let Di denote the total number of stored objects; Dr denote the number of retrieved

objects; S denote the total number of issued subscriptions; and Ds denote the number

of matching objects (i.e., the total number of notifications). For DCS, c is the (average)

number of nodes in a cell.

We compare costs using approximations for both the total number of sent messages

in the network (taking into account multi-hop routing), and the number of messages

sent by a hot-spot (i.e., the maximal number of messages sent by any particular node). In

this comparison, we only address the insert, retrieve, and subscribe operations, and the

respective notifications. The delete and unsubscribe operations are analogous to insert

80

4.7. ANALYTICAL STUDY

Table 4.6: Thyme operations communication costs.

ES LS DCS

Insert 2Di
√
n ∅ 2Di

√
n+ 2Di · c

+ + +
Retrieve 2Dr

√
n 2Dr

√
n 3Dr

√
n+Dr · c

+ + +
Subscribe 2S

√
n S ·n 2S

√
n+ S · c

+ + +
Notification Ds

√
n Ds

√
n Ds

√
n

Hot-spot Di +Dr + S +Ds Dr + S +Ds Di +Dr + S +Ds

and subscribe, respectively. With this setup, the approximate communication costs (total

and hot-spot) are as shown in Table 4.6.

The formulas for ES are derived from the observation that every operation is sent to

the central component to be processed, and a response is sent back to the requester. Thus,

for every operation, the communication cost (of a point-to-point message) is multiplied

by two. The exception are notifications that only require a message sent in one direc-

tion (from the central component to the subscriber). Naturally, the hot-spot is going to be

the central component, which has to process every received message and reply accordingly.

Hence, the hot-spot communication cost is the sum of all the received messages (that have

to be replied) and the sent notifications.

For LS, the formulas are deduced from the facts that insert operations are local and

do not require communication, while subscriptions are flooded through the entire sys-

tem (§4.4). Both the retrieve operation and notifications follow the same logic as the

previous approach.

Lastly, the formulas for DCS are inferred taking into account its cell-based GHT ap-

proach. The insert operation requires the same steps as ES—two point-to-point mes-

sages (to the broker cell and back to the requester). However, in each of these two steps

there is a scoped dissemination of the corresponding messages in the local cells (i.e.,

the dissemination of the metadata in the broker cell, and the dissemination of the data

object in the data owner’s cell; see §4.5.2.1). Next, the retrieve operation requires the

same steps as the other two approaches (two point-to-point messages), with an additional

point-to-point message for setting a new passive replica (§4.5.2.2) and the corresponding

scoped dissemination in the broker cell. The subscribe operation follows the same logic

as the insert. However, it only has one scoped dissemination of the subscription in the

broker cell. Notifications follow the same logic as the previous approaches (sending a

point-to-point message directly to the notification receiver).

Here, we assume a simple scenario where inserted data objects have only one tag, and

subscriptions also have only one conjunction key. In more elaborate scenarios, the (pos-

sibly variable) number of tags will have impact in the number of messages required for

some operations.

81

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Now, we can conclude that the total message count in LS grows faster (linearly with

n) than in ES and DCS. Another important conclusion is that, if Di � S, then LS has

significantly lower message count than the other two approaches. This comes from the

fact that LS insert (and delete) operations execute with no communication. Naturally, if

we invert that condition, ES and DCS will exhibit lower message counts than LS.

Once again, ES and DCS exhibit a similar behavior in terms of overall communica-

tion costs. However, DCS presents slightly higher costs in almost every operation, thus

they have intrinsically different performance behaviors. These higher costs come from

the replication mechanisms employed by DCS (§4.5.2). In an insert operation, besides

the normal request/reply messages, by applying active replication (§4.5.2.1), both the

object data and metadata are (actively) replicated in the owner’s and responsible cells,

respectively. In the retrieve operation, after obtaining the object data, the requester node

passively replicates that object, thus needs to update the replication list in the object meta-

data (§4.5.2.3). Regarding subscribe operations, subscriptions are also actively replicated

in their responsible cells.

With these extra mechanisms, naturally many operations in DCS have a slightly higher

communication cost. However, while ES has an external, central component acting as

a server (that is also a single point of failure of the system) and storing all the system’s

data, DCS spreads that load among its cells/nodes. Thus, in ES the hot-spot cost is the

actual cost paid by the external server. On the other hand, the hot-spot cost in DCS is not

actually paid by a single node, because that cost is shared among the different cells (and

among the nodes of each cell). Even if there is only one cell, this work will be (randomly)

balanced between the nodes inside it.

We can also look at these costs as the amount of work a device has to do on behalf

of the system. Specific to the DCS approach, the handling of messages related to the

five operations grows linearly with the number of such operations, and does not depend

on the number of nodes per cell. That is, n operations require each node on the cell

responsible for the target tag to process on average n messages: one node receives the

initial message and then broadcasts it to its cell neighbors. The same happens on each

retrieve operation: a message is sent to the target cell to indicate the existence of a new

passive replica, and this information is then broadcasted within the cell. Regarding active

replication, the use of such mechanism implies one broadcast on the owner’s cell for each

operation. So, with active replication each node in such cells processes on average one

message per operation.

The only type of message that depends on the number of nodes per cell is the one

concerning notifications. As depicted in Figure 4.8, the more populated a cell is, the

less work each node has to do. These only require the intervention of one node per

cell, the one checking the match between an object and a subscription, and sending the

notification to the corresponding subscriber. This work is also load balanced, because

the object-subscription matching is not performed by the same node inside a cell. It is

distributed randomly among the cell nodes (during message routing).

82

4.8. EVALUATION THROUGH SIMULATION

2 4 6 8 10 12 14 16
0

20

40

60

Nodes per cell

M
es

sa
ge

s
p

er
no

d
e

Figure 4.8: Average number of messages sent per node in Thyme-DCS, for 100 notifica-
tions processing.

4.7.4 Discussion

In the end, if the number of inserted data objects is larger than the system size and the

number of subscriptions, Thyme-LS may be preferable. However, this approach does

not address data persistence in case of node failure.

On the contrary, Thyme-DCS addresses data persistence through replication. It

should be preferable in cases when the network is large compared to the number of

stored objects, being more worthwhile in densely populated scenarios.

4.8 Evaluation Through Simulation

Our experimental evaluation is divided in two parts: simulation and real world exper-

iments. First, we use a network simulator (ns-3 [216]) to experiment our proposal in

large-scale scenarios, and implemented our two approaches: Thyme-LS and Thyme-

DCS. Secondly, we implemented the Thyme-DCS approach as an Android library, and

developed a proof-of-concept photo sharing application on top, allowing experiments in

a small scale scenario using real mobile devices.

This part of our evaluation focus on the simulation experiments and seeks to answer

the following questions:

1. Which are the trade-offs provided by each approach of Thyme?

2. How does each approach deals with churn?

3. How do they react to node mobility?

Each data point reports the average of five randomly generated network topologies, each

independently run three times, thus making a total of 15 runs per data point. As a

baseline for comparison, we used the centralized approach, Thyme-ES, described at the

beginning of §4.7.

The metrics used in this section to answer the previously defined questions are:

amount of generated traffic (in bytes and number of packets), and operations’ latency

and success ratio. All these metrics allow the comparative analysis of the behavior of

83

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

both Thyme approaches. Since we are addressing resource-constrained mobile devices,

the lower the generated traffic and the operations’ latency the better, because this has

direct implications in the devices’ battery usage. In the end, the best approach is the one

able to achieve the lowest latency and generated traffic while producing high operations’

success ratios.

4.8.1 Implementation

We use ns-3.27 and nodes communicate through 802.11 Wi-Fi ad-hoc (using UDP). Both

Thyme-ES and Thyme-LS use DSDV [200] as their routing protocol. From a practical

standpoint, it was the routing protocol that resulted in more timely simulation runs6.

In Thyme-DCS, when a cell becomes empty or populated, a state transfer needs to

happen between cells (§4.5.6.2). Currently, we do not implement such mechanism, thus,

in our experiments, cell structure is static (i.e., populated and empty cells will remain as

such throughout the experiments). This poses some limitations regarding node mobility

and churn in Thyme-DCS. As such, nodes may move freely inside a cell, but may

only leave a cell if it remains populated afterwards. Also, nodes may only migrate to

previously populated cells.

To recover from lost messages, all approaches employ a retransmission mechanism.

After a configurable amount of time has passed without receiving the expected replies,

the operation is retried. If a (configurable) maximum number of retries is reached, the

operation fails with a timeout error code.

Our implementation of Thyme is available at https://bitbucket.org/hyrax-nova/

thyme-ns3, jointly with the trace files used in the simulation experiments.

4.8.2 Setup and Methodology

Unless stated otherwise, all parameters were left with the simulator’s default values. We

used Wi-Fi 802.11g configured with a constant rate manager and a data rate of 6 Mbps.

The RTS/CTS threshold was configured to 1500 bytes.

In order to mimic a realistic scenario, we emulate an application similar to an on-

line social network on top of Thyme (akin to Twitter), e.g., that could be used by fans

watching matches in fan zones set up for the 2018 FIFA World Cup.

Trace files were generated with all the operations to be issued during a simulation

run. For that, we crawled tweets issued during the 2016 UEFA European Championship

final, between Portugal and France7. Tweets were used as data objects, where: the tweet

id was used as the object identifier; the text was used as the object data; the timestamp

was used as the object insertion time; and the hashtags were used as the object tags. The

6Other protocols, such as OLSR, AODV, or BATMAN, resulted in simulations with a large number of
nodes to take an impractically long amount of time to complete.

7Using the code in https://github.com/Jefferson-Henrique/GetOldTweets-python

84

https://bitbucket.org/hyrax-nova/thyme-ns3
https://bitbucket.org/hyrax-nova/thyme-ns3
https://github.com/Jefferson-Henrique/GetOldTweets-python

4.8. EVALUATION THROUGH SIMULATION

0 50 100 150 200 250 300 350 400 450 500 550 600
0

20
40
60
80

Time (s)

O
p

er
at

io
ns

Figure 4.9: Distribution of operations over time in a trace.

top-k most active users were chosen, and every other operation was generated from that,

using exponential distributions configured with different λ values (i.e., rates).

Subscriptions were generated taking into account the tags of the inserted objects,

and the top 60% of the most popular tags were used for the subscriptions’ queries (for

simplicity sake, each subscription subscribed to one tag chosen uniformly at random).

Subscriptions were generated in two forms: time independent (tss = tse =⊥); and in the

future (tss = now and tse = ⊥). Time independent subscriptions where generated with a

probability of 60%. During the first half of the game, subscriptions were generated with

a rate of three operations per user per hour, and reduced to one per user per hour for the

remainder of the event.

Delete and unsubscribe operations, which are expected to be rare, were generated

with a rate of 0.5 and 0.2 operations per user per hour, respectively, only during the

second half of the game.

We crawled a total of three hours, starting at 20:00 2016-07-10. To make the simula-

tion execution more lively (and to reduce the simulation total time), we compressed the

three hours into ten minutes of simulated time. Since we use real tweets for trace genera-

tion, the distribution of operations in a trace file is irregular, with occasional spikes and

void moments. Figure 4.9 depicts an example of the distribution of operations in a trace

file over time (for 100 users). The trace files used in this section are publicly available in

our code repository8.

The simulation area has a rectangular shape, where nodes were places uniformly at

random, to mimic many of the venues we are targeting, like concert halls. For Thyme-

DCS, cell size is 40× 40 meters, which entails a radio range of ±113 meters (roughly the

range in our simulated Wi-Fi setting). In all experiments, we had an average density of

two nodes per cell, and used the simulation areas as mentioned in Table 4.7 (naturally,

the last two rows only concern Thyme-DCS).

Proactive routing protocols, like DSDV, require time to converge. Thus, in our sim-

ulations, the application running on the nodes only started after 30 seconds. Nodes

randomly joined the system in the next 30 seconds, and operations started being issued

8https://bitbucket.org/hyrax-nova/thyme-ns3/src/master/scripts/traces/files/

85

https://bitbucket.org/hyrax-nova/thyme-ns3/src/master/scripts/traces/files/

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.7: Simulation area according to the number of nodes.

Num. nodes 16 36 64 100 144 196
Area (meters) 160× 80 240× 120 320× 160 400× 200 480× 240 560× 280
Cells 4× 2 6× 3 8× 4 10× 5 12× 6 14× 7
Total cells 8 18 32 50 72 98

only after that. At the end of the simulation, nodes only shutdown 60 seconds after opera-

tions stopped being issued. Thus, the total simulation time was 720 seconds. All Thyme

approaches executed the same traces and used the same methodology.

Since notifications are “operations” not directly triggered by the users, we use recall
as a measure of success. This tells us how many relevant items/objects are selected (or

how complete the results are), and is computed by T rue positives
Relevant items (following the concepts

defined in Figure 4.10). However, here, we use the number of matching objects for a

perfect execution of the trace, where operations always succeed and are executed instantly.

Thus, take into account that if some operation fails, most likely the number of actual

achieved notifications will not match the expected. For instance, if an insertion fails, all

the subscriptions matching that object will not be matched against it, and notifications

are reported as lost (i.e., false negatives). Thus, achieving 100% recall is practically

impossible for this comparison criterion.

In turn, we do not refer to precision, because it is always 100%. This metric tells

us how many selected items/objects are relevant (or how useful the results are), and

is computed by T rue positives
Selected items . Referring to Figure 4.10, in our case, Thyme’s matching

procedure may lead to false negatives, but will never return false positives. That is, some

objects may not be matched against a subscription, but all those that are and match the

query, are relevant results.

4.8.3 Results

We now present the achieved results for three distinct scenarios, ranging from totally

stable nodes to scenarios with faulty or mobile nodes.

False negatives True negatives

False positivesTrue positives

Relevant items

Selected items

Figure 4.10: Precision and recall.

86

4.8. EVALUATION THROUGH SIMULATION

16 50 100 150 200
0

200

400

Nodes

Tr
affi

c
(M

B
)

(a) Total transmitted traffic.

16 50 100 150 200
0

100

200

Nodes

Pa
ck

et
s
×

10
3

(b) Total retransmissions.

16 50 100 150 200
0

5

10

Nodes

Pa
ck

et
s
×

10
3

(c) Total failed transmissions.

16 50 100 150 200
0

20
40

60
80

Nodes

Tr
affi

c
(M

B
)

(d) Total forwarded traffic.

16 50 100 150 200

1

100

Nodes
Tr

affi
c

(M
B

) ES
LS

DCS

(e) Routing control traffic.

Figure 4.11: Thyme lower layers metrics (static scenario).

4.8.3.1 Static and Stable Nodes

In Figure 4.11, we can observe the impact that each approach of Thyme has on the lower

layers of the network stack (and helps answering question 1). Figure 4.11a reports the

total traffic transmitted by all nodes (at the physical layer—PHY), during the simulation.

ES and LS overlap and both exhibit quite an overhead. With 196 nodes, they report more

than 2× the transmitted traffic of DCS. Energy is a valuable resource when targeting

mobile devices. Thus, looking at these values in an energy perspective, ES and LS will

spend twice the energy to do roughly the same work as DCS.

In turn, Figures 4.11b and 4.11c depict values reported by the link layer—MAC. The

former shows the total number of retransmitted packets, and the latter shows the total

number of packets that exceeded the maximum number of retransmission attempts. The

standard IEEE 802.11 Wi-Fi MAC layer implements CSMA/CA and a per hop retransmis-

sion mechanism. Thus, in some way, these figures depict the interference level observed

in each approach while operating. Both ES and LS require many more retransmissions

than DCS to overcome the loss of messages that is inevitable in a wireless communica-

tion medium. This can be explained by the amount of traffic generated by those two

approaches. Usually, the more traffic is generated, the larger is the probability of colli-

sions in the wireless medium, and thus more transmissions have to be retried (creating a

snowball effect).

Next, Figure 4.11d depicts the total traffic forwarded by all the nodes in the system (at

the network layer—IP). In some sense, this reports the amount of work nodes have to do

on behalf of the system. In this case, DCS forwards more traffic because its messages are

87

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

16 50 100 150 200
70

80

90

100

Nodes

Su
cc

es
s

(%
)

(a) Success ratio ES.

16 50 100 150 200
70

80

90

100

Nodes

(b) Success ratio LS.

16 50 100 150 200
70

80

90

100

Nodes

(c) Success ratio DCS.

16 50 100 150 200
1

10

100

1,000

Nodes

L
at

en
cy

(m
s)

(d) Latency ES.

16 50 100 150 200
1

10

100

1,000

Nodes

(e) Latency LS.

16 50 100 150 200
1

10

100

1,000

Nodes

(f) Latency DCS.

Ins. Del. Retr. Sub. Unsub. Not.

Figure 4.12: Thyme application-level metrics (static scenario).

forwarded through longer routes than ES and LS (that use DSDV). This is even more exac-

erbated by some peculiarities of the routing protocol used by DCS (§4.5.6.1). For instance,

the fact that some messages may need to loop around voids in the network (§4.5.6.2),

while DSDV computes shortest paths to every node.

Figure 4.11e shows the total amount of control information the routing protocols

transmit. Both ES and LS use DSDV, a proactive routing protocol, whereas DCS uses a

geographic routing protocol (§4.5.6.1). While DSDV needs to exchange bulky routing

tables to compute the shortest paths to every other node in the network, the geographic

routing used by DCS routes messages using only local information (nodes only exchange

very small periodic control beacons). However, messages may be routed through longer

routes in geographic routing. With 196 nodes, a quarter of all the transmitted traffic

of ES and LS was control traffic (notice the logarithmic scale in the y axis). These two

last figures (Figure 4.11d and 4.11e) show a clear trade-off. As more control traffic is

exchanged, the routing protocols can achieve better routing paths and with that reduce

the amount of forwarded traffic. However, that control traffic can correspond to a large

percentage of the total network traffic (increasing the total amount of collisions).

Figure 4.12 depicts application-level metrics, such as operations success ratio and

latency. Regarding operations success, we verify that DCS is above 99%, except for

notifications that fluctuate a little bit and have a success ratio as low as 95% (Figure 4.12c).

LS also reports high success ratio (Figure 4.12b). Since insert and delete operations are

executed locally, they always succeed. Subscribe and unsubscribe operations have above

99% success. Only retrieve operations and notifications have a very small reduction

88

4.8. EVALUATION THROUGH SIMULATION

as the system grows, having 96% and 95% success, respectively, with 196 nodes. For

ES (Figure 4.12a), we see a slight decrease in the success ratio as the system grows, having

as low as 78% success with 196 nodes. In every approach, notifications are a type of

message that does not employ an application-level retransmission mechanism, thus they

are more susceptible to interferences.

Regarding operations latency (Figures 4.12d–4.12f), we can see that for a small num-

ber of nodes all approaches behave similarly, with ES having slightly higher latencies. As

the number of nodes increases, accompanied by increased interferences (Figure 4.11c),

we verify that latencies also increase. This is caused by the need for more retransmissions.

However, notifications have lower latency in LS, because the geographic routing of DCS

cannot compete with the shortest paths of DSDV. Thus, showing the advantage of calcu-

lating shortest paths. On the other hand, retrieve operations in DCS have a slightly lower

latency, because DCS causes overall less interferences and it employs a location-aware

strategy when retrieving data (§4.5.5). In ES, the decrease in success ratio is accompanied

by an increase in operation latency. This comes from the fact that the majority of oper-

ation failures happen due to timeout. Since operations have to be retried several times,

naturally latency increases. Overall, timeouts may indicate a congested network, where

operations consistently have to be retried several times. Also, note that ns-3 does not

account for processing time (i.e., time spent executing the protocols’ logic). Otherwise, it

would exacerbate ES latencies even more, since it has a central coordination point that

inevitably will become the system’s principal bottleneck.

In summary, Figure 4.11 shows that in DCS nodes transmit much less traffic that

in both LS and ES. This comes at the cost of latency, when compared to LS, as shown

in Figure 4.12. The centralized approach has the worst behavior when the size of the

system grows, with a decreasing success ratio and latency much higher that both DCS

and LS. These observations come from the fact that both ES and LS use DSDV as the

underlying routing protocol. This protocol computes shortest paths to every other node in

the network, and to maintain its routing tables up-to-date that information is distributed

between nodes by sending full dumps infrequently and smaller incremental updates more

frequently, which still represent a large overhead with respect to transmitted data. On

the other hand, DCS uses GPSR as its routing protocol, which uses only local information

for routing. Thus, they represent a design trade-off: the more control information is

transmitted, the better routing decisions can be made.

4.8.3.2 Static but Failing Nodes

In our target scenarios, mobile devices may experience poor connectivity and/or low

battery, thus these devices may fail and leave the network. As such, concerning churn, i.e.,

the ingress and egress of nodes in the system, we experiment with two different scenarios.

We show the impact of nodes leaving the system definitely, e.g., nodes crashing. Secondly,

we show the impact of nodes with intermittent failures, thus entering and leaving the

89

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

5 10 20 30 40 50
80

85

90

95

100

Failing nodes (%)

Su
cc

es
s

(%
) ES

LS
DCS

Figure 4.13: Thyme notification success ratio (permanent failures, 100 nodes).

system multiple times throughout the simulation. These scenarios allow to evaluate

aspects regarding data availability and persistence in the presence of failures (and help

us answer question 2).

Permanent Failures. In this scenario, from the same trace files as before, we generated

new ones where nodes are either publishers or subscribers, and publishers choose a ran-

dom instant (between 200 and 300 seconds of the simulation, i.e., around the middle of

the simulation) to leave the system abruptly.

In LS, insertions are executed locally, thus not requiring communication. However,

because only the object owner stores that data, if that node fails, all the data it stores will

disappear with it. Figure 4.13 shows exactly that. In LS, as more nodes with relevant

data fail and leave the system, more the success ratio decreases because the matching

between subscriptions and objects is not detected. Since DCS employs replication mech-

anisms (§4.5.2), even when object owners leave the system, matching still occurs. ES is

not affected simply because all the system data is stored in external storage. As long as

that server component does not fail, even if nodes do, data will always be available.

Transient Failures. In this scenario, using the same trace files as in §4.8.3.1, randomly

selected nodes alternate between the on and off states, during 120 and 60 seconds respec-

tively. Nodes have a 75% probability of changing to the opposite state, otherwise they

stay in the same state for an equal period.

With nodes entering and leaving the system frequently, retrieve operations and noti-

fications are the ones that can be more affected, specially in the LS approach. Figure 4.14

presents the success ratio and latency of these two operations for the LS approach. Re-

garding the other two approaches, since DCS employs replication mechanisms, it is little

affected by the intermittent churn, with operation success ratio well above 90%, and la-

tencies consistently between 150–300ms. In turn, due to its central server component, ES

is also little affected by the intermittent churn, with operation success ratio above 80%,

and slightly higher latencies than DCS, between 400–600ms. However, LS suffers from

low success ratio in the retrieve operation (Figure 4.14a). Although the matching among

some objects and subscriptions is detected, and some notifications are sent, when a node

90

4.8. EVALUATION THROUGH SIMULATION

5 20 40 50
60

70

80

90

100

Failing nodes (%)

Su
cc

es
s

(%
)

Retr. Not.

(a) Success ratio.

5 20 40 50
0

200

400

600

Failing nodes (%)

L
at

en
cy

(m
s)

(b) Latency.

Figure 4.14: Application metrics for Thyme-LS (transient failures, 100 nodes).

tries to retrieve an object, as the amount of failing nodes increases, the probability of

the data owner being off also increases. This is also accompanied by an increase in the

latency of notifications (Figure 4.14b). Note that, in LS, the matching between a node’s

stored objects and subscriptions that were issued when the node was off have to wait for

the node to switch state and join the system (§4.4).

When joining, a node receives the subscriptions issued by all the other nodes previous

to it entering the system (from its neighbor nodes). Then, from all the received sub-

scriptions, the joining node finds those (new subscriptions) of which it was unaware and

checks if it has matching objects. Figure 4.15a corroborates this. The maximum latency

for DCS and ES notifications stays stable as the percentage of failing nodes increases. But,

in LS, the maximum latency for a notification increases from approximately 25 to 100

seconds when the percentage of failing nodes increases from 5% to 40%.

Additionally, Figure 4.15b shows a byproduct of the retrieve operation low success

ratio. With no churn, DCS forwards more traffic because its insert and delete operations

require communication. However, with this kind of intermittent churn, we observe that

LS forwards much more traffic than DCS. This is due to the fact that retrieve operations

are retried (and fail) several times. Also, this entering and leaving of nodes from the

network causes routing tables to become out of date, and thus need to exchange control

information much more frequently.

5 20 40 50
0

50

100

150

200

Failing nodes (%)

L
at

en
cy

(s
) ES LS DCS

(a) Maximum notification latency.

0 20 40 50
0

50

100

150

200

Failing nodes (%)

Tr
affi

c
(M

B
)

(b) Total forwarded traffic.

Figure 4.15: Transient failures scenario in Thyme (100 nodes).

91

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

0 0.6 1.4 2.5

80

90

100

Max. speed (m/s)

Su
cc

es
s

(%
)

ES LS DCS

(a) Notifications success ratio.

0 0.6 1.4 2.5
100

200

300

400

500

Max. speed (m/s)

L
at

en
cy

(m
s)

(b) Retrieve latency.

Figure 4.16: Mobile scenario in Thyme (100 nodes, pause 120 seconds).

4.8.3.3 Mobile but Stable Nodes

In this scenario, we use the same trace files as in §4.8.3.1, however nodes are able to move,

thus helping us answer question 3. When moving, nodes use the random waypoint (RWP)

mobility model, which interleaves pauses with movement. However, we argue that the

plain RWP mobility model does not quite mimic the movement pattern people have in

the kind of events we target. For instance, in a music concert (or other cultural events),

people do not move constantly. In fact, they do not move much during most of the time,

except in intermissions. To make it better resemble our target scenarios, we made an

adaptation: every time a node is about to move, it tosses a coin do decide whether to

move or not. If not, the node continues in a pause moment. In this scenario, 60% of nodes

are mobile, and have a moving probability of 80%.

Figure 4.16a shows a small caveat of DCS: increasing node speed lowers the notifica-

tions success ratio. We argue this happens because every node inside a cell is supposed to

have the same state and work collaboratively as one. But, the intra-cell communication

primitive is the unreliable one-hop broadcast. Thus, nodes inside a cell may not receive

the same messages. The added mobility may create even more entropy in the cell state.

In turn, Figure 4.16b presents a byproduct of the location-aware retrieval strategy

used by DCS (§4.5.5). While, ES and LS are required to retrieve data from one specific

location, DCS allows having different replicas for retrieval at its disposal. Additionally, it

can choose the location closer to the requester (having the possibility of lowering latency).

4.9 Evaluation Through Real Devices

This second part of our evaluation (executed in the context of the M.Sc. of Cerqueira [46])

has the main goal of assessing the functionality of our Thyme Android library and of

the proof-of-concept application. For this, we seek to answer the following questions:

1. Does the implemented Android Thyme-DCS library behaves as expected?

2. What is the behavior of our Android application in terms of operations’ latency?

3. What about in terms of energy consumption?

92

4.9. EVALUATION THROUGH REAL DEVICES

Each data point reports the average of five independent runs.

The metrics used in this section to answer the previous questions are: operations’

latency and energy usage. These metrics allow the analysis of each operation’s behavior

in the context of the Thyme-DCS approach implemented in real Android devices. Once

again, since we are addressing resource-constrained mobile devices, the lower the opera-

tions’ latency and the energy usage the better (having into account that these two metrics

can have a direct correlation between them).

4.9.1 Implementation

Both the Thyme-DCS library and the Shared Photo Gallery application were developed

for devices with Android 5.0 (Lollipop) or higher, with no root access required.

In our Java prototype, we also do not implement the state transfer mechanism when

cells become empty or populated (§4.5.6.2). So, cells must remain populated or empty

throughout the experiment. Here, we also did not implement some optimizations like

NACKs (§4.5.6.4) and message destination aggregation (§4.5.6.5). Similarly to the ns-3

implementation, here operations also employ a retransmission mechanism (§4.8.1).

4.9.2 Setup and Methodology

We conducted a series of experiments with different scenarios trying to simulate some

possible realistic use cases. Here, we test all the features provided by the Thyme-DCS

library and used by the photo sharing application: devices insert and delete photos, sub-

scribe (and unsubscribe) to tags in the past and future, receive notifications, and retrieve

available photos. Each device has a randomly assigned role (publisher or subscriber), and

operations are executed in a closed loop. We used a custom profiler to collect various

metrics during these experiments aiming to analyze several performance indicators, such

as latency and energy consumption.

Unless stated otherwise, experiments were conducted using images with 35 bytes

in size. This allow us to measure the operations latency and overheads taking only into

account the data generated by the system. Naturally, as the size of the inserted data grows,

latency and overheads also grow proportionally with respect to the available bandwidth.

Experiments were conducted in a network of up to 32 Android mobile devices, con-

nected to a Wi-Fi access point. The tests up to 16 devices were performed exclusively

with Nexus 9 devices, while the 32 devices testbed used every type of device referred in

Table 4.8. In all experiments, we used two cells and devices were divided equally between

the two. We also used only one namespace for all devices.

4.9.3 Results

We now present the achieved results for the collected metrics. The error bar depicted in

the plots indicates the standard deviation.

93

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Table 4.8: Mobile devices specifications for Thyme-DCS Android experiments.

HTC Nexus 9 Motorola Nexus 6 LG Nexus 5X Motorola Moto G (2nd gen.)

CPU Dual-core 2.3 GHz Quad-core 2.7 GHz
Hexa-core

4x1.4 GHz 2x1.8 GHz
Quad-core 1.2 GHz

RAM 2 GB 3 GB 2 GB 1 GB
Storage 16 GB 32 GB 16 GB 8 GB
Battery Li-Po 6700 mAh Li-Po 3220 mAh Li-Po 2700 mAh Li-Ion 2070 mAh
OS Android 7.1.1 Android 7.1.1 Android 7.1.1 Android 7.1.1
Wi-Fi 802.11 a/b/g/n/ac 802.11 a/b/g/n/ac 802.11a/b/g/n/ac 802.11b/g/n

4.9.3.1 Functionality

With all the uses cases, we conducted experiments in order to test all the operations

and features of the Thyme Android library. After extensive testing, we verified that all

operations were performed successfully, including those involving the retrieval of data

inserted by devices that had left the system. The use cases with churn allowed us to test

the operations in scenarios with device or communication failures.

In the end, throughout all the experiments, operations were always completed suc-

cessfully, proving the data persistence in the system. It should be noted that the retrieve

operation’s success, in the cases with churn, is guaranteed at the expense of an increase

in the operation latency, i.e., if a device that left the system is selected or if the message is

lost, the operation will be retried after a timeout.

4.9.3.2 Latency

Operations latency is an important measurement for assessing an application’s usability.

For that purpose, we measured the latency of all five operations (during the execution of

the use cases) and present the average.

Figure 4.17 depicts the latency of those operations, varying the number of mobile

devices in the network. It represents the time elapsed from the moment the action was

triggered by the user in the application interface, until the reception of the operation’s

success reply. In general, we can consider that all the operations show acceptable response

times (around 0.2 seconds on average). Insert is the operation that may take longer,

depending on the size of the thumbnail sent in the metadata, which was kept particularly

Insert Delete Retrieve Subscribe Unsubscribe
0

0.1
0.2
0.3
0.4

Operations

L
at

en
cy

(s
) 8 nodes 12 nodes 16 nodes 32 nodes

Figure 4.17: Operations latency in Thyme-DCS Android [46].

94

4.9. EVALUATION THROUGH REAL DEVICES

35 B 1 MB 2.5 MB 5 MB
0

2

4

6

Image size

L
at

en
cy

(s
) 12 nodes 16 nodes 32 nodes

Figure 4.18: Retrieve operation latency varying image size in Thyme-DCS Android [46].

small (35 bytes) in our experiments. The experiment confirms that increasing the number

of nodes also increases the network traffic, which in turn increases interference, reduces

the available bandwidth for each device, and impacts the latency of the operations. Even

so, all results are kept under 0.3 seconds, which is perfectly acceptable, with all the

operations executed in quasi-real-time and ensuring a good user experience.

Regarding the retrieve operation, the latency depends on the size of the data item to

be obtained, as shown in Figure 4.18. An image with 5 MB in a network of 32 devices,

takes about 6 seconds, which is acceptable considering that the operation runs in the

background and the user may keep on using this or other application on the device.

In conclusion, the implementation of Thyme and the developed application meet

our expectations, presenting good response times, which guarantees a good interactive

experience to the user.

4.9.3.3 Energy Consumption

When it concerns mobile devices, energy consumption is a determining factor, since these

devices are battery-constrained. In order to fully evaluate the energy consumption of our

application, we used the aforementioned use cases and measured the energy consumption,

breaking it down into three parts: i) when issuing an operation; ii) when processing an

operation request; and iii) in the maintenance of the virtual node, i.e., update the state

after a new request is received for the cell.

Battery consumption was measured exclusively on the Nexus 9 devices, to avoid

variations in measurements that could occur if different devices were used. The battery

measurements were done automatically via a module that uses the BatteryManager class

provided by the Android OS9. After a first analysis of the results, we concluded that

the energy consumption values did not depend on the number of devices in the network,

since we verified a marginal variance. Thus, we present these results as an average,

independent of the number of devices in the network.

Issuing a Request. Figure 4.19 presents the energy consumption when issuing each

operation. From this plot, we can verify that every operation uses very little energy. For

9https://developer.android.com/reference/android/os/BatteryManager

95

https://developer.android.com/reference/android/os/BatteryManager

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Insert Delete Retrieve Subscribe Unsubscribe
0

1

2

3

Operations

E
ne

rg
y

(J
)

Figure 4.19: Energy usage when issuing an operation in Thyme-DCS Android [46].

instance, issuing an insert operation consumes around 2 Joule. However, it is not easy to

understand the energy consumption in real terms for the average user looking into such

small measurements.

To make it easier to fully grasp the energy consumption measurements, we made a

different experiment. Figure 4.20 displays a breakdown of the energy consumption of a

device while executing a specific operation in a closed loop for one minute. This would

represent a very intense scenario, however it will be useful to test the worst case in energy

consumption. Standby mobile phones, i.e., only connected to the Wi-Fi router (without

Internet access), consume around 61 Joule. When running the application, the battery

consumption increases by 6 Joule to about 67 Joule; an increase caused by the periodic

sending of cell management messages to neighboring nodes. The energy consumed by the

different operations is mostly equivalent. On average, delete and (un)subscribe are the

more energy friendly operations, consuming around 23 Joule, for a total of 90 Joule. On

the other end, with the insert operation the total energy consumption is about 103 Joule.

Putting things more into perspective, in the Nexus 9 devices, 1% of battery corre-

sponds to around 960 Joule. According to the presented data, scenarios with continuous
and intensive use of the application for 10 minutes (publishing photos, receiving notifica-

tions and downloading available photos) consume roughly 950 Joules, which represents

about 1% of the device’s complete battery charge. A value we claim is quite reasonable

for such intensive use.

Insert Delete Retrieve Subscribe Unsubscribe
0

50

100

150

Operations

E
ne

rg
y

(J
)

Standby App Operation

Figure 4.20: Energy usage when issuing an operation in a closed loop during one minute
in Thyme-DCS Android [46].

96

4.9. EVALUATION THROUGH REAL DEVICES

Insert Delete Retrieve Subscribe Unsubscribe
0

0.5

1

1.5

2

Operations

E
ne

rg
y

(J
)

Figure 4.21: Energy usage when processing a request in Thyme-DCS Android [46].

Processing a Request. Since we are talking about a collaborative and distributed system,

nodes also work on behalf of each other, i.e., on behalf of the system. Naturally, processing

an operation request requires a node to do some computations (and possibly send other

messages), and ultimately, spend some battery charge.

Figure 4.21 displays the energy costs involved in processing each type of operation.

Looking at this plot, we can observe that energy consumption is similar among all the

operations. On average, processing an operation request spends around 1.5 Joule. We

argue such a low value is acceptable, even more so since work inside a cell is balanced

among all the nodes in the cell. Even in a worst case scenario, by processing requests in

a closed loop during 10 minutes, a node will spend, on average, about 830 Joule, which

represents a consumption of less than 1% of a Nexus 9 total battery charge.

Cell Maintenance. The Thyme-DCS routing layer is based on a GHT (§4.5.6.1), which

is based on the notion of virtual nodes or cells (comprised by physical nodes). Thus,

physical nodes inside a cell work on behalf of their cell (e.g., through active replication;

§4.5.2.1). As such, the maintenance of a cell requires some computations and an increase

in energy consumption of the mobile devices. When a node processes an operation

request, all its cell neighbors will have to update their state accordingly.

Figure 4.22 shows the energy consumption of a node during the cell maintenance re-

quired for each operation. From this plot, we can verify that the energy consumption for

cell maintenance is comparable to the cost of processing the operation request itself (pre-

senting only a negligible decrease). This comes from the fact that when processing the

specific request, these nodes do not have to send further messages (i.e., they only process

the one they received). Similarly to the rationale followed previously, a node processing

the cell maintenance requests continuously during 10 minutes, on average would spend

less than 800 Joule, which would mean an expenditure of around 0.8% of the Nexus 9

total battery charge.

Total Energy Cost. Since mobile devices can be simultaneously issuing operations and

processing operation requests, and still have to participate in their cells’ maintenance,

we have to account for these three energy components. Following the same worst case

97

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

Insert Delete Subscribe Unsubscribe
0

0.5

1

1.5

2

Operations

E
ne

rg
y

(J
)

Figure 4.22: Energy usage in the cell maintenance in Thyme-DCS Android [46].

scenario (issuing and processing operations for 10 minutes in a closed loop), and summing

up these three components, we get

950 + 830 + 800 = 2580 Joule

corresponding to around 2.7% of the Nexus 9 total battery charge. A value we argue is

quite acceptable for such an intensive use of the application.

According to these numbers, to deplete 50% of the device’s battery charge, a client

would need to keep this intensive use continuously for more than three hours. In a moder-

ate usage scenario and for a device with a complete battery charge, we estimate a battery

life of well over six hours (i.e., a time interval well capable of accommodating a wide

range of social events).

4.10 Concluding Remarks

In this chapter, we describe the design of Thyme, a novel storage system implementing

TARS for wireless edge environments, enabling applications to be notified as relevant

data is generated and stored. We detail two different approaches to Thyme: Thyme-

LS follows a lightweight unstructured approach using local storage and query flooding,

while Thyme-DCS employs a DCS approach using a storage substrate built over a cell-

based GHT for wireless networks. In addition, we describe our implementation of the

Thyme-DCS approach as an Android library and its use to develop a proof-of-concept

photo sharing application. The innovative characteristics of Thyme offer a novel way

for sharing and accessing data that has been previously stored, or is being generated in

quasi-real-time, in a network of mobile devices.

The three parts of our evaluation are complementary to each other, showing different

facets of our approaches. Overall, the evaluation shows that Thyme allows the notifi-

cation and retrieval of relevant data with low overhead and latency, even under node

failures. However, all the presented approaches display different behaviors and each may

be best suited for scenarios with specific characteristics. In general, we show that the

developed approaches exhibit a good performance and low energy consumption in the

target environments (and under various conditions).

98

4.10. CONCLUDING REMARKS

4.10.1 Discussion

As a conclusion, Thyme-ES presents a baseline. It has an external, centralized compo-

nent where all the system’s data is stored. Being a centralized server, it presents itself

as a bottleneck and a single point of failure. Thus, this approach assumes it never fails,

otherwise the service will become completely unavailable. If that assumption is not an

issue, then Thyme-ES can be an option, but only for small scenarios. As our experiments

show, increasing the number of nodes in this approach leads to an increase in operation

latency and a decrease in operation success ratio resulting from the central component

being a bottleneck where all nodes compete for its resources (§4.8.3.1). Note that in our

experiments, the centralized component resided close to the client nodes. If that was not

the case and it was located in the cloud, we would see much higher latencies.

Due to its flooding approach, Thyme-LS causes far more interferences than Thyme-

DCS. This is exacerbated by the number of nodes in the system (§4.8.3.1). Churn is

also a problem for Thyme-LS, because insert operations are executed locally and there

are no replication mechanisms in place (§4.8.3.2). Thus, if a node fails, all the data it

stored will become unavailable, representing some kind of partial failure (because only

that node’s data becomes unavailable). Also, its flooding approach means that as the

number of nodes increases, so does the amount of traffic and interferences. In summary,

Thyme-LS is more suitable for smaller scenarios (i.e., with a small number of nodes)

with no strong data availability requirements.

In turn, Thyme-DCS leverages geographic routing to employ replication, and location-

aware data retrieval (§4.8.3.2). However, one-hop broadcast is unreliable by nature,

thus the assumption that every node inside a cell has the same state needs to be re-

laxed (§4.8.3.3). Nonetheless, its cluster-based GHT deals well with the increase number

of nodes in the system and its churn. So, Thyme-DCS is more suitable for larger sce-

narios with moderate mobility patterns, and data availability requirements (being able

to cope with reasonable levels of churn).

Regarding the real world experiments and our proof-of-concept Android application,

results show adequate response times for interactive usage and low battery consumption.

Yet, the work each node has to do on behalf of the system grows linearly with the amount

of work delegated on the cell where they reside. This load can be reduced by using

partial replication techniques, for instance, when the cell’s population surpasses a given

threshold. However, even with the use of full replication in cells, our experiments show

that the application can be used during short and medium duration events with no risk

of rapidly discharging the devices’ battery.

In sum, these three approaches have very different characteristics. Which one is

appropriate for a specific setting will depend on the conditions of the environment and

the nature of the workload. Thus, we stress that Thyme-DCS is not always the approach

of choice, but rather that under some conditions it is preferable. In fact, the perfect case

is a system that embodies all of these approaches, and application developers can choose

99

CHAPTER 4. IT’S ABOUT THYME: TARS IN WIRELESS EDGE ENVIRONMENTS

which to use according to the task at hand.

Recalling the logic layed in §3.4, the TARS concept makes a fundamental overhead
shift. That is, the overhead from the stakeholders that benefit more from this approach—

users requesting data—is reduced (compared with the explicit search approach), and is

moved to the stakeholders that do not benefit directly from it—users that have the data

and can provide it. Here, with the replication mechanisms of Thyme-DCS, note that

when a node obtains a data object, it becomes a new source for that same object (i.e., a

passive replica). Thus, it goes from one side of the stakeholders to the other. Namely,

it goes from the side of the users requesting data, to the side of the stakeholders that

contribute to the system (like a seeder in a P2P file sharing application).

4.10.2 Future Work

This work can be seen has a first step towards a data storage and dissemination system

for a wide-area setting, like a campus or a music festival. In this scenario, data will still

be stored in the devices, and communication will mostly be D2D to offload it from the

network infrastructure.

There are however several open issues, of which we highlight the following. Non-

contiguous spaces, such as the ones composed of multiple Wi-Fi access points: more

sophisticated hashing functions and/or maybe the use of cloudlets may allow to cope

with such environments. Rapidly state-changing cells: cells may be populated or not,

being this state managed by the GHT. However, with high mobility, this state may change

rapidly, leading to overheads due to the need of transferring data between devices, and

ultimately causing some of this data to be lost, if there is no time to make the neces-

sary backups. A hierarchical cell organization, or a partial replication approach may be

possible directions. We also highlight as future work the integration of this approach

with opportunistic infrastructure support [242], privacy and security concerns in this

type of environments (mainly access control and trust), and tackling the issues raised by

handling large data objects.

4.10.3 Publications

The work reported in this chapter resulted in the following publications:

• It’s About Thyme: On the Design and Implementation of a Time-Aware Reactive

Storage System for Pervasive Edge Computing Environments [241]. João A. Silva,

Filipe Cerqueira, Hervé Paulino, João M. Lourenço, João Leitão, Nuno Prequiça. In

Elsevier Future Generation Computer Systems (FGCS). 2021.

• Time-Aware Reactive Storage in Wireless Edge Environments [245]. João A. Silva,

Hervé Paulino, João M. Lourenço, João Leitão, and Nuno Preguiça. In Proceed-

ings of the 16th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services (MobiQuitous). Houston, Texas, USA, 2019.

100

4.10. CONCLUDING REMARKS

• Time-Aware Publish/Subscribe for Networks of Mobile Devices [244]. João A.
Silva, Hervé Paulino, João M. Lourenço, João Leitão, Nuno Preguiça. arXiv:1801.00297.

2017.

• Towards a Persistent Publish/Subscribe System for Networks of Mobile Devices [47].

Filipe Cerqueira, João A. Silva, João M. Lourenço, Hervé Paulino. In Proceedings of

the 2nd Workshop on Middleware for Edge Clouds & Cloudlets (MECC@Middleware).

Las Vegas, Nevada, USA, 2017.

• Um Sistema Publicador/Subscritor com Persistência de Dados para Redes de

Dispositivos Móveis [48]. Filipe Cerqueira, João A. Silva, João M. Lourenço, Hervé

Paulino. In Proceedings of the 9th Simpósio Nacional de Informática (INForum).

Short paper. Aveiro, Portugal, 2017.

101

C
h
a
p
t
e
r

5
Parsley: A Resilient DHT with Dynamic

Data Sharding

“There is no comparison between what’s lost by failing and what’s
lost for not trying.”
— Francis Bacon

This chapter tackles some issues that can be found in the Thyme-DCS approach (§4.5).

Namely, the dynamic population of cells (or groups of peers), i.e., the overlay being able

to handle the abrupt entry or exit of peers from any cell. Also, the case of data hot-spots,

i.e., when some tags are much more popular than others, overloading the cells/groups

responsible for managing them. Thus, it reports about managing highly dynamic device

population and storage workload imbalances in distributed hash tables (DHTs).

Specifically, in this chapter we describe Parsley, a resilient group-based DHT with

a preemptive peer relocation technique and a dynamic data sharding mechanism. This

work, also being a flexible DHT, it can be leveraged in any of the levels of the network

hierarchy. That is, end-user devices can be the peers of the overlay, or the edge servers, or

even machines in the cloud1.

The first section, §5.1, presents some context and motivation for the addressed issues.

Then, in §5.2, we review some related work and compare our approach with it. Next, we

detail our resilient group-based DHT solution and its preemptive peer relocation tech-

nique in §5.3. In §5.4, we describe our dynamic data sharding mechanism for dealing

with storage hot-spots. After, in §5.5, we report our experimental evaluation of the imple-

mented prototype in PeerSim. The chapter is concluded in §5.6, by presenting our main

findings and some future work.
1It can also be applied to a mix thereof, but this could give rise to other issues that are outside the scope

of the work presented in this chapter.

103

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

5.1 Introduction

Since their inception, DHTs [211, 221, 256] are an important building block in many

distributed systems [30, 45, 68, 72, 94, 144, 145, 272]. They provide a scalable lookup

service, used to build complex large-scale systems such as distributed storage [30, 68, 72,

145], instant messaging [272], application-level multicast [45], web caching [94], or file

sharing [144]. Peers self-organize into a specific network topology (or overlay) to provide

key-based routing (KBR), efficiently mapping a given key onto a peer in the overlay, called

the key owner. All this is done through a single operation: route(message, key). On top

of KBR, DHTs usually implement data storage by associating a value (i.e., a data item)

with each key, and storing the key-value pair at the key owner [68].

Hashing [133] is used as the key space partitioning scheme, i.e., to assign ownership of

a key range to a specific peer, uniformly spreading keys among peers, and thus achieving

a balanced load across the overlay. To work efficiently, DHTs assume: i) keys are uniformly
accessed, both for query and store operations (i.e., reads and writes); and ii) both the size

and amount of values mapping to a key have a small variance. However, these assumptions

do not occur in several scenarios, e.g., file sharing or content indexing [144, 215, 263].

Some files are more popular than others, and they can have disparate sizes. Also, when

indexing through keywords, some are going to be more popular than others, resulting

in some keys mapping to much more values than others. Hence, these scenarios present

many sources of load imbalance.

These query and storage asymmetries originate hot-spots that arise due to the usually

non-uniform distribution of data (often power laws) [297]. Query hot-spots, i.e., a few

keys being queried very often, can cause network bottlenecks on the peers storing those

popular keys. Other problems emerge when some ranges of the key space are more

popular than others, overloading just some parts of the overlay. In turn, storage hot-
spots appear when large or many different values (of possibly skewed size) are mapped

to a single DHT key, overloading the owners of those keys. Ultimately, these hot-spots

and consequent bottlenecks hamper the scalability of DHTs. Moreover, in line with the

soaring advance of edge computing [96, 240], these load imbalance issues are even more

exacerbated when referring to edge devices, like micro-computers, cloudlets or even

mobile devices, known for being resource-constrained, mostly regarding storage space or

communications (and even energy).

In this chapter, we address these problems of load imbalance in DHTs through the

combination of unstructured and structured overlay techniques. We present Parsley, a

novel DHT that provides robust and efficient data storage while enabling load balancing

both for query and storage hot-spots. The unstructured component comes from peers

being clustered into groups of flexible size, working collaboratively within them. In turn,

each group acts as a virtual peer in the structured layer.

Groups fulfill a two-fold goal: they are used to simplify data replication management,

and enable query load balancing. This is achieved through data replication inside each

104

5.2. RELATED WORK

group, allowing to spread the query load among the group peers, while at the same

time providing increased resilience to churn. Groups split and merge throughout the

overlay lifetime, according to criteria based on group size and amount of stored data, also

adapting to the (possibly non-uniform) data distribution in the key space. We diverge

from previous work in the way we proactively (and reactively) relocate individual peers

from larger into smaller groups. We use peer relocation between groups as a preemptive

measure to avoid merging them (since it requires costly state transfers). In sum, all our

decisions are carefully crafted in order to impose the minimum disruption possible on

the overlay topology.

To balance storage hot-spots, we developed a lightweight dynamic data sharding mech-

anism for popular keys. Here, we get inspiration from the multi-publication replication

technique (§2.4.2.3), and apply a variation of it to disjoint partitions of the (multiple)

values mapping to a single DHT key. When a group finds that a key is storing too many

values (according to some configurable criteria), it starts sharding the key, dynamically

partitioning the mapped values among other groups.

We implemented a prototype of Parsley in PeerSim [180] and use it to experimen-

tally validate its performance, detailing and characterizing its behavior in different sce-

narios. The experimental results reveal that our approach has the following benefits

with regard to previous work: i) the preemptive peer relocation mechanism reduces the

amount of required group merges throughout the overlay lifetime, consequently decreas-

ing the bandwidth needed for state transfer between groups; and ii) the dynamic data

sharding mechanism allows to more evenly spread the (storage) load imposed by popular

keys among several groups, helping reduce storage bottlenecks.

In summary, the main contributions of the work presented in this chapter are the

following: 1) a flexible and resilient group-based DHT with a preemptive peer reloca-

tion (push-pull) mechanism; 2) a lightweight dynamic data sharding mechanism; and

3) a comprehensive experimental evaluation of our prototype in PeerSim.

5.2 Related Work

As already mentioned, one of DHTs’ fundamental issues is that peers or keys may not

be uniformly distributed in the key space [144, 215, 263]. Thus, some peers may be

overloaded, having to store many keys or answer many queries, while others may be

relatively idle. Regarding techniques to address the issues with query hot-spots, we have

already described a comprehensive amount in §2.4.2.2.

The works more closely related with our proposed solution are Rollerchain [192],

MobiStore [139], and DEB Tree [158]. We present their main differences in Table 5.1,

where n is the total number of groups in the system.

Rollerchain is a group-based DHT, focused on efficient replication. Groups are split

or merged according to their size and load, and only merges require state transfer be-

tween groups. Nonetheless, peers that are group leaders have many responsibilities (e.g.,

105

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Table 5.1: Comparison of Parsley with other related proposals.

Routing Replication Peer Relocation Sharding

Rollerchain O(log n) Group-based No No
MobiStore O(1) Group-based Push No
DEB Tree — — — Tree
Parsley O(log n) Group-based Push-Pull Flat

an intricate virtual link management), possibly entailing more work than other group

peers. It does not employ any kind of peer relocation mechanism, thus requiring group

merges when a simple peer transfer could suffice to prevent a merge. Also, the authors

completely disregard the problem raised by peers joining the overlay concurrently with

groups splitting or merging, severely hampering the freedom of peers to enter the over-

lay. Its group-based approach with replication addresses the issues with query hot-spots.

However, it does not address the problems caused by storage hot-spots.

MobiStore is a one-hop group-based DHT, targeting mobile environments. Being

a one-hop DHT, implies storing more state (in this case, amounting to four different

routing tables storing various information), entailing overheads both in terms of storage

and communication. Possibly also incurring in other overheads to manage and keep that

state up-to-date. Contrary to Parsley, due to its group management mechanism, splits

and merges require communication with all other groups. Additionally, group merges

can only happen one at a time in the entire overlay, and, in some cases, splits may require

state transfer between groups. MobiStore also employs a peer relocation mechanism.

However, it only allows a few peers to move in each group (the called loose peers) through

a push strategy. Only a single peer can be transferred at a time system-wide (almost as

a “stop the world” policy), also requiring communication with all the other groups in the

overlay. Furthermore, this peer relocation mechanism is fundamentally different from

the one in Parsley—it is only used to address the load balancing problem of answering

requests. Thus, it is not used to try to prevent topology changes (and with that state

transfer between groups). It also does not address the problem of storage hot-spots.

DEB Tree provides a solution for storage hot-spots in DHT-based inverted indexes.

It uses a B+-tree structure over a generic DHT that adapts dynamically to the object

size, ensuring a uniform storage distribution despite the object size variation. When

inserting data in the DHT, it converts a very large object into multiple bounded size blocks.

A balanced tree-based approach is used to split the index associated with a popular

key across multiple peers. Thus, each tree instance stores the objects for a particular

key(word), meaning each index key(word) will have an unique DEB Tree, encompassing

some storage and management overheads. The tree structure is composed by a root node

and child nodes, where the last level of nodes are called leaf nodes. In the tree structure,

leaf nodes store objects, and are all at the same tree level. In turn, internal nodes serve

only for locating leaf nodes and only contain child node keys (i.e., they do not contain any

106

5.3. CHOPPING PARSLEY: A RESILIENT DHT

data). The number of elements in any node is bounded by the tree’s degree: for internal

nodes, the degree influences the number of child node keys it contains; and for leaf nodes,

it influences the number of objects the node stores. Despite tackling storage hot-spots,

this approach requires DHT routing for each step of the tree traversal, imposing high

latency, and requiring more bandwidth for each DHT operation. To alleviate this issue,

they employ caching of tree internal nodes, which works best in more stable scenarios.

Also, to be tolerant to concurrency issues regarding the structural integrity of the tree

and of the stored data, some operations may be delayed or retried. It provides no fault-

tolerance regarding peer failures and churn, meaning that tree internal nodes can be

recovered, but that is not the case with leaf nodes, which can lead to data loss. Further,

the authors completely disregard the intricacies and complexity of tree rebalancing in

this distributed setting, which can entail multiple changes in different parts of the tree,

requiring a considerable amount of communication.

In turn, Parsley’s flexibility allows the configuration of several of its procedures’

decision criteria. Splits never require state transfer between groups, and the DHT logic is

carefully crafted so that group leaders do not have to execute much more work than other

peers. Also, its preemptive peer relocation mechanism employs a push-pull strategy,

allowing any peer to move, and only requiring communication between the involved

groups. Lastly, to tackle storage hot-spots, Parsley employs a sharding mechanism on

a flat structure, inspired by the multi-publication replication technique, thus entailing a

small communication overhead.

5.3 Chopping Parsley: A Resilient DHT

Parsley is a group-based DHT that provides robust and efficient data storage while

enabling load balancing both for query and storage hot-spots. It dynamically manages

groups of peers by combining unstructured and structured overlay techniques. This

group-based approach mainly serves the dual purpose of enabling query load distribution

and fault tolerance.

Usually, DHTs associate a single value with a key. However, to be more flexible and

allow indexing, in Parsley, keys map to a set of values, distinguished through unique

object identifiers (oids). Also, it provides the three typical DHT operations: put(K,V),

get(K), and remove(K).

5.3.1 System Model

We consider a classical asynchronous model comprised of several processes running the

same protocol. We assume a message passing environment in which all processes com-

municate with each other by sending messages over a communication channel. We also

consider the classical crash-stop failure model: processes can fail, i.e., halt prematurely,

107

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Figure 5.1: Parsley’s architecture overview.

but do not behave maliciously. Each process has a globally unique identifier, and we use

the term peer to represent a process that is running on a particular machine.

All communication resorts to TCP connections. The use of TCP is relevant because

it allows the communication between peers to be network-friendly, as we leverage in

TCP flow control mechanisms, and also makes it possible to model the system without

considering message losses between peers. Additionally, TCP is used as an unreliable

failure detector [149, 192]. The failure detector is used, for instance, to expedite the

detection of failed peers, allowing the protocol to take the adequate actions to ensure the

correctness of the overlay.

5.3.2 Overview and Definitions

Parsley’s unstructured component clusters peers into groups. A group is a fully con-

nected cluster of peers (i.e., a clique), with a flexible size within a defined interval, where

peers work collaboratively to function as a single (logical) virtual peer in the structured

component. In turn, the structured component is based on a typical ring DHT, such

as Chord [256], and uses the same mechanisms (§2.4.2.1), i.e., pointers, stabilization,

finger tables, and successor lists. Thus, the structured component (i.e., the DHT) is a dou-

bly linked ring composed of groups provided by the unstructured component. Fig. 5.1

depicts a simple representation of Parsley.

To simplify coordination inside a group in some procedures, each group has a group
leader, i.e., a peer responsible for (minimally) coordinating some of the most delicate

moments of a group’s life. There are many ways of electing a leader. In our case, we use

an “eventual” election mechanism: the member with the lowest identifier in each group

acts as its leader. Occasionally, more than one peer may see themselves as the group

leader. However, this does not affect correctness, as the leader is only used to reduce the

protocol signaling costs. Also, if no peer sees itself as the leader, this only delays the

protocol’s progress until the group maintenance procedure corrects that, enabling one of

the members to see itself as the leader (see the group maintenance procedure in §5.3.3.3).

In Parsley, groups have a configurable minimum and maximum size, l and h, re-

spectively, where h ≥ (l × 2)− 1. The group size allows to fine tune the trade-off between

group maintenance (i.e., replica monitoring and storage load), and tolerance to churn and

108

5.3. CHOPPING PARSLEY: A RESILIENT DHT

Merge Too Small Big Enough SplitOk

12111 2 3 4 5 6 7 8 9 10 ...

Figure 5.2: Group size with hard limits set to 4 and 11, and soft limits set to 6 and 9.

query load balancing. These are hard limits, thus exceeding them means having to take

effective actions, i.e., a topology change. Accordingly, a group that exceeds the maximum

allowed size (i.e., |group| > h) needs to split into two (see the split procedure in §5.3.3.4).

On the contrary, a group that reaches below the minimum size (i.e., |group| < l) needs to

merge with another one (see the merge procedure in §5.3.3.5).

However, contrasting with previous work, we also employ soft limits, allowing us

to take some preemptive actions before reaching the hard limits (e.g., coercive merge

in §5.3.3.5, and preemptive peer relocation in §5.3.3.6). These soft limits also have a

configurable minimum and maximum, l′ and h′, respectively, creating a desired target

interval for group size, where l ≤ l′ < h′ ≤ h. Now, as represented in Figure 5.2, we have

additional intervals where groups with their size in the range]h′ ,h] are considered to be

big enough, and groups with their size in the range [l, l′[are considered to be too small.
Thus, a group tries to maintain a target size in the range [l′ ,h′]. With these soft limits,

preferably, the following condition should be met: h ≥ (l′×2)−1. As an example, Figure 5.2

defines the following limits: l = 4, l′ = 6, h′ = 9, and h = 11. The group size is checked

periodically by the group leader (if the group is not in a cool down period, and is not

splitting nor merging). By doing this periodically, we impose an implicit maximum rate at

which groups can split or merge, and consequently the overlay topology can change (like

a throttling mechanism).

Since we are mostly storage-oriented, we define a popular key as one having many

values mapped to it, i.e., the more values a key has the more popular it is. In our case, a key

having more values than a configurable popularity threshold is considered popular (see

the hot-spot detectors in §5.4.2). In the same line, we define the load of a group as the

number of keys it stores, normalized to the number of peers in the group, i.e., |keys|
|group| .

Thus, a group is overloaded if this ratio is over a configurable threshold. This notion of

load is only used to decide whether to split groups or not. Since group splits are only able

to divide whole keys, this notion suffices.

5.3.3 A Group-Based DHT

Peers inside a group work collaboratively, replicating among them the necessary infor-

mation to maintain the DHT topology and the data stored by the group. This replication

not only increases data resilience, but also allows peers to share the load of answering

queries for data they store. Here, the group-based approach together with its split/merge

logic allows Parsley to tackle both the issues of query hot-spots and specific key ranges

being overloaded.

109

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

In Parsley, the unstructured component manages the groups of peers, while the

structured component executes the DHT maintenance protocols.

In the pseudo-code presented in the next sections, we use an object-oriented notation,

where a.bar and a.foo() represent, respectively, accessing attribute bar and function foo

from object a.

5.3.3.1 Ring Maintenance

Parsley’s structured component is inspired in Chord, as such it uses the same ring

maintenance procedure (Algorithm 2.1 in §2.4.2.1). However, here, the maintenance

procedure is executed at group level. When triggered, a peer contacts another random

peer from the intended group.

In the maintenance of both successor pointers (i.e., stabilization) and finger table en-

tries (i.e., fix finger), we employ an adaptive periodic timer. Thus, as long as the result

from the maintenance procedure is as expected, the periodic interval is incremented (by

a predefined increment value), until reaching a configurable maximum. Whenever the

result is different from what was expected, the interval goes back to the configured min-

imum, and this logic repeats. In the end, this mechanism tries to save bandwidth, by

reducing communication in stable moments of the overlay. When something unexpected

or different is detected, to be conservative, we revert to a smaller maintenance interval.

5.3.3.2 Joining a Group

To enter the system, a peer sends a join request to another one already in the overlay (i.e.,

its gateway peer), starting a random walk that probes for suitable groups to join. The

natural exception is the first peer to enter (in this case, create) the overlay; it only has to

create the seed group with a random group identifier (gid). The random walk terminates

when a group accepts the joining peer following a programmable new peer acceptance
logic, or when the message time-to-live (TTL) expires (and the current group is forced

to accept the new peer). After being accepted, the peer receives a join reply, and uses

that information to update its internal state and to establish connections to its new group

members. This reply also carries the current state of the group’s key-value store.

Since one of our main goals is to balance load among the overlay groups, our current

implementation of the new peer acceptance logic (that we provide as a default implemen-

tation, shown in Algorithm 5.1) is divided in two parts. First, a new peer is accepted if

the current group is overloaded, in order to increase group-wide load balancing, even if

it means splitting the group afterwards (line 4). Next, if the current group is too small,

the new peer is also accepted in order to increase the group’s reliability (line 6). In case

the current group is big enough (and is also not overloaded), the new peer is rejected and

the random walk continues (line 8). Otherwise, if none of the previous conditions are

triggered, we move to the second part (lines 11–14). Here, the probability of rejecting

this new peer is inversely proportional to the number of hops already traveled, and it

110

5.3. CHOPPING PARSLEY: A RESILIENT DHT

Algorithm 5.1 New peer acceptance logic default implementation in Parsley.
1: group← [id :⊥,view : ∅] . my current group
2: store←∅ . key-value store [k 7→ ∅]

3: function shouldAcceptPeer(p,visited,hops)

4: if |keys(store)|
|group.view| > MAX_LOAD_THRESHOLD then . is my group overloaded?

5: return true
6: else if |group.view| < l′ then . is my group too small?
7: return true
8: else if |group.view| > h′ then . is my group big enough?
9: return f alse

10: else . external decision criteria
11: if rand() < 1.0− (hops/JOIN_TTL) then
12: s← getSmallestKnownGroup(visited) . excluding already visited groups
13: if s ,⊥∧ |s.view| < |group.view| then
14: return f alse
15: return true

is only rejected if the current group knows any other group smaller than itself (through

function getSmallestKnownGroup, which excludes groups already visited by the

message random walk). If that is the case, the random walk continues (and it most likely

will be forwarded to one of those smaller groups). In the end, this logic causes heavily

loaded (and smaller) groups to attract new peers in order to share their load.

The programmer-defined new peer acceptance logic has access to a plethora of system

information, namely: the joining peer id, the join message visited groups and number of

hops, the current peer’s pointers (predecessor, successor, successor list, and finger table)

and local store and shards, and the current peer’s group and load.

5.3.3.3 Group Maintenance

As peers can enter and leave the overlay freely, and can even crash, the group membership

maintained by different peers in the same group may diverge. In order to increase the

intra-group consistency, a simple gossip-based anti-entropy procedure is executed inside

each group (which is also very low cost).

Periodically, with a given probability γ (which can be very small [150]), every peer

selects another one in the group and sends it a maintenance message containing infor-

mation about the group: 1) its membership; 2) the ring pointers (i.e., predecessor and

successor); and 3) the hash of the key-value store. This allows to detect missing peers in

the membership, and missing or conflicting ring pointers. If the receiving peer detects

some missing peer or pointer in the received information, it replies back with a similar

message to the sender.

The key-value store hash enables a lazy data replication (and synchronization) scheme.

If a peer detects that its hash differs from that of a neighbor, it triggers a pair-wise ex-

change, where they swap their full list of keys, so that both can request their missing

key-value pairs from each other.

Also, to avoid possible inconsistencies, received group maintenance messages are not

processed by peers that: i) are in the cool down period; ii) are splitting or merging; iii) are

111

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

relocating between groups; or iv) are not from the same group (this can happen due to

peer relocations; and in this case, the receiving peer sends a disconnect message to try to

fix the wrong membership of the sending peer).

5.3.3.4 Splitting Groups

The split procedure divides a group into two new groups having roughly the same size

and load. This reduces the cost of replicating data among the group peers, and at the same

time the amount of data each peer has to store. A group split happens in two situations:

1. when the group size is above the configured maximum threshold; or

2. when, although the group size did not reach the maximum threshold, the group is

overloaded and is big enough2.

Because of situation 2, the group size limits should ideally follow: h′ ≥ (l′ ×2)−1. Making

that, by splitting a group in that situation it will not create any group smaller that l′ (mak-

ing it too small). For instance, the example in Figure 5.2 does not meet this criterion.

With h′ = 9, a group can be split when its size is ten, creating two groups that are too

small for the configured parameters.

The split procedure is initiated by the group leader when, after the periodic group

size check, detects that one of the split criteria is met. Then, the group leader creates

two new groups, divides the peers randomly between the two, and sends them a message

with that mapping.

To avoid inducing artificial churn, one of the newly generated groups keeps the identi-

fier of the original group and the other becomes its predecessor, by assuming an identifier

that allows it to become the owner of half of the original group’s key-value store. Thus, a

group split does not require any kind of state transfer among the peers, having only to lo-

cally discard keys. As a result of this strategy, if keys are not uniformly distributed in the

key space, group identifiers will dynamically adapt to follow a similar distribution and

consequently will also not be uniformly distributed (which can have impact on routing).

When choosing the identifier of the new group, Parsley also takes into account the

size of the values mapping to each key, i.e., we find the identifier that best divides the

total bytes of the local key-value store in half. In the special case when the number of

keys is less than two, it is impossible to divide keys even further, thus we divide the key

range in half (i.e., between my predecessor and myself). In Figure 5.3, a split can be seen

as going from Figure 5.3a to Figure 5.3b, where group 12 triggered a split, originating

group 9 (a predecessor of itself).

In Figure 5.4, with all keys having the same number of values and roughly the same

size (thus, being perfectly balanced), we can map to the previous example, where the

newly created group 9 keeps keys 6 and 9, while group 12 keeps keys 11 and 12. In turn,

2This is only allowed if the split does not cause the resulting groups’ sizes to fall below the minimum
group size limit l (which can happen for some configurations of the group size parameters).

112

5.3. CHOPPING PARSLEY: A RESILIENT DHT

5 12

5 129
(a)

5 12

5 129
(b)

Figure 5.3: Group split example scenario.

in a scenario where values’ distribution is imbalanced, the keys mapping resulting from a

group split can be quite different. For instance, with all values still having the same size,

imagine that key 6 has now 10 values, while the other keys have only one value. When

group 12 splits, having a total of 13 values, Parsley will try to divide these as evenly

as possible (in this case, the perfect balance is each resulting group storing 6.5 values).

Thus, since a split is only able to “break” whole keys, the new group will be assigned

identifier 7, causing it to only store key 6 (with 10 values), and group 12 continues to

store keys 9, 11, and 12 (amounting to 3 values).

The split procedure mechanism also handles the failure of participating peers during

a split. There is no problem if a regular peer fails. The others will notice that through the

unreliable failure detector, and will remove it from their local group membership. Since

the split is a totally distributed procedure, there is also no problem if the split leader

fails. It just happens that no update successor message is sent to the previous predecessor

group (to speed up pointer convergence).

Peers that join a group during a split procedure (since they do not known about the

split in course) will remain in the original group after the division. In order to speed up

the convergence of their pointers and group membership, the gateway peers will send a

split fix message to freshly joined peers. In case a gateway peer disappears meanwhile,

the state of its joined peers will take some time to become consistent again: i) they will

need to remove some peers from their local group membership (i.e., the ones that went

to the newly created predecessor group during the split); and ii) they will need to update

their predecessor pointers (by receiving a notify message).

5.3.3.5 Merging Groups

A group merges with another when its leader detects that its group size is below the

predefined minimum threshold. This procedure works to prevent data from being lost by

combining a group with its successor. By merging with its successor, we ensure that peers

belonging to the two merging groups retain their key-value pairs. Looking at Figure 5.3,

a merge can be seen as going in the opposite direction, from Figure 5.3b to Figure 5.3a,

5 129

5 126 9 11 12

5 126 7 9 118 10 12

Figure 5.4: Key range in a group. The squares are keys, all owned by group 12.

113

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

129
1

2 3

4

5 6
7 8
9

10

11

(a) Inform group members.

129
1

2 3

4

5 6
7 8
9

10

11

(b) Request merge to successor.

129
1

2 3

4

5 6
7 8
9

10

11

(c) Reply to merging peers.

129
1

2 3

4

5 6
7 8
9

10

11

(d) Update successor members.

Figure 5.5: Example scenario of the group merge communication workflow.

where group 9 triggered a merge, fusing with group 12 (its successor).

However, a state transfer will always be required, since peers need to exchange their

key-value pairs with peers of the neighbor group. Although this procedure increases the

amount of data at the successor group, the merging group’s peers also join in this effort,

mitigating the increase in load.

Figure 5.5 depicts an example scenario of the group merge phases. Similarly to the

split procedure, a group merge is started by the leader of the merging group (node 1 in

the figure), by informing its peers (Figure 5.5a), and then requesting a merge to its succes-

sor (Figure 5.5b). Then, the successor group replies to the entire merging group (through

the peer that received the merge request—the merge coordinator; node 11 in the figure),

with the information regarding their new pointers (Figure 5.5c). When receiving that

merge reply, peers apply the corresponding information to their state and open new

connections to their new neighbor peers. Concurrently with this phase, the merge coordi-

nator also informs its group members of this merge, so that they are also able to update

their state (Figure 5.5d).

Regarding keys exchange after a merge, we take a conservative approach. For instance,

Rollerchain does not exchange keys after a merge, and lets the group maintenance proce-

dure handle that. However, depending on the amount of churn taking place, a strategy

like Rollerchain’s might not be enough and lead to the loss of data (e.g., in high churn sce-

narios). Since the group maintenance procedure is periodic (and probabilistic), it might

be too slow. Additionally, since it is pair-wise (i.e., one maintenance message involves

only two peers), it might leave crucial peers/replicas out, which can disappear before

the appropriate backups are executed. Thus, contrary to related work, after a merge,

Parsley explicitly exchanges keys between the two merging groups. Here, peers use the

same mechanism as in the group maintenance, except that they do not swap their full

list of keys before, and exchange their keys right away. Note that the cost of this state

transfer between the two groups is always going to be paid, either eagerly (as Parsley)

or lazily (as Rollerchain).

114

5.3. CHOPPING PARSLEY: A RESILIENT DHT

When a group leader detects that a merge should happen, if its predecessor group also

needs to merge, it does not go forward with the merge and waits for its predecessor to

merge with its group. If this happens, probably this merge is no longer required. However,

during moments of churn, pointers might be inconsistent. Thus, if a group leader hits this

case a configurable maximum number of times, it suspects its predecessor (i.e., removes

the entire pointer) and carries on with the merge.

Peers that join a group during a merge procedure are not informed about the ongoing

merge. Then, when the merge ends, the gateway peers of the joining peers will forward

to them the result of the merge: if they were in the merging group, they receive a merge

reply message; if the were in the successor/merger group, they receive a merge update

message. Nonetheless, there is a special case: a joining peer that would become the new

group leader (i.e., has the lowest peer id of all the group peers) might try to execute a

merge procedure at the same time as the other (ongoing) merge. Thus, to avoid duplicate

merges in a group, if a peer joins during a group merge and it is the new group leader, it

is informed by the gateway peer about the ongoing merge. Then, the joining peer is only

able to trigger a new merge after receiving the previous merge result.

In order for DHTs to scale with the network size, peers only know a small subset of

other peers in the overlay. Thus, in Parsley, as in other DHTs, groups are only aware

of a (small) part of the overlay, i.e., no group knows all the others. In cases where the

overlay looses a large amount of peers (e.g., due to crashes), through our peer relocation

mechanism (see §5.3.3.6), big enough groups will push out some of their peers into too

small groups, and too small groups will try to ask for peers from big enough groups.

However, after some time, groups that were big enough, are no more, and too small

groups will no longer know big enough groups to ask for peers from. Nonetheless, there

will exist some too small groups in the overlay. Thus, in order to favor group reliability,

we devise a coercive merge mechanism, where too small groups are coerced to do a merge

even when the usual merge criteria is not met. According to this mechanism, a merge is

triggered when, during a configurable amount of time, a group: i) is considered to be too

small; ii) does not need to split or merge; and iii) is unable to pull peers.

5.3.3.6 Preemptive Peer Relocation

A group is required to merge when its size reaches below the predefined minimum limit,

and this calls for a bulky state transfer, as the two merging groups need to exchange

their key-value pairs. To avoid this procedure as much as possible and save bandwidth,

we devise a preemptive peer relocation (PPR) mechanism, where we proactively and

reactively relocate peers from larger into smaller groups. By relocating only a few peers,

we reduce both the amount of merge procedures required during the overlay lifetime,

and reduce the bandwidth needed to exchange the key-value pairs of the merging groups.

In this case, we trade the bulky state transfers required by the merge, for a small state

transfer to make the relocating peers up-to-date with their new group. In some sense, we

115

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

reduce the granularity of the merge, i.e., instead of moving entire groups, alternatively

we only move individual peers.

This mechanism uses a push-pull strategy, triggered periodically by the group leader.

Groups that are big enough volunteer to offer some of their members to groups that are too

small. In turn, groups that are too small ask for help from groups that are big enough, to

see if they can forgo any of their peers. For this mechanism to have some effect, naturally

the following condition must hold: l < l′ < h′ < h.

To help amortize the state transfer costs and stabilize the system, peers can only

relocate from time to time. After being relocated to a new group, a peer needs to wait a

configurable amount of (cool down) time to be able to relocate again—what we call the

peer relocation cool down period.

Note that, in order for this mechanism to be lightweight, peers make relocation de-

cisions based on their local (partial, and possibly outdated) information regarding the

known groups. Hence, it may be the case that a peer thinks another one is in group A,

but it has relocated in the meantime to group Z. Nonetheless, the impact of this issue

is kept small through the relocation requests that are sent before the actual relocation.

Relocation requests are only accepted by groups that consider themselves to be too small,
in an attempt to make this mechanism more fruitful.

This mechanism is fully configurable. That is, it can be completely turned off or on.

Also, we can toggle individually each of the requests, push or pull.

Pushing Peers. If a group is big enough, i.e., its size is in the range]h′ ,h], it tries to ask

some of its group members to go to other (too small) groups in need of peers. For this,

the group leader sends a push request to some of its neighbor peers, requesting them to

relocate to the detected groups in need. Here, the number of desired peers (i.e., to push

out) is up to |group| − h′.

Pulling Peers. On the other hand, if a group is too small, i.e., its size is in the range

[l, l′[, it tries to ask peers from other groups to come to its own group. For this, the group

leader checks all its known groups (e.g., predecessor, successors, fingers) for big enough

ones, and sends a pull request to some peers of those groups. Here, the number of desired

peers (i.e., to pull in) is up to h′ − |group|.

Relocation Request. Instead of blindly accepting a relocation request, first, peers send

a relocation request to the group where they are supposed to relocate. A peer receiving

a relocation request, only accepts it if: i) it is not relocating between groups; and ii) its

group is too small. If these criteria are met, the peer replies back with a join reply message.

Otherwise, it replies with a relocation denied message, and the relocation has no effect.

We employ this verification mechanism to avoid allowing unnecessary relocations (that

have a direct implication in communication costs). When a relocating peer receives a join

reply, it first leaves its old group, and then accepts the received new group.

116

5.3. CHOPPING PARSLEY: A RESILIENT DHT

Avoiding Merge-Caused Splits. To avoid as much as possible that groups have to merge,

we leverage on the peer relocation mechanism and employ a simple optimization during

the merge procedure. When the successor group receives a merge request, if it detects

that the current merge would result in a split afterwards, i.e., |group|+ |successor | > h, it

cancels the current merge and uses the relocation mechanism to force some of its group

members to go to the merging group.

5.3.3.7 Increasing Fault Tolerance

To increase the robustness of Parsley, we employ some additional mechanisms, namely

a passive (partial) view of the overlay, and a recover successor mechanism.

Passive View. Contrasting with related work, we use a mechanism similar to the one

described in [149], where each peer keeps a random, unbiased, partial view of the overlay.

We call it passive view, and is maintained using a low cost background protocol (similar to

the group maintenance in §5.3.3.3), based on the exchange of shuffle messages. Whenever

a peer removes a correct peer from any of its pointers, or when it receives a request sent

by a peer which is not in those pointers, that peer can be added to the passive view.

Ultimately, this view is used as a backup during the join random walk, and also when

finding or recovering a successor.

Recover Successor. In ring DHTs, a correctness criterion is to maintain a correct suc-

cessor, thus they keep a list of its nearest successors in the ring that is used to replace

failed successors. However, in high churn scenarios, this list might not be enough. Thus,

Parsley makes use of another mechanism to help in these cases. When a peer’s suc-

cessor list becomes empty, a recover successor procedure is triggered. This mechanism

is similar to the find successor procedure (§2.4.2.1), but on the contrary, it follows the

closest succeeding fingers known in each hop. This message has a TTL, and a reply is sent

to the requester if the correct interval was found, or if the TTL ends. This means that the

received pointer might not be the correct one, but is on the path to such one. Then, the

peer will update its successor pointer through the stabilization procedure, until reaching

the correct one. Depending on how good was the answer, this might take some time to

correct the pointer. Note that this is a probabilistic or best-effort mechanism.

5.3.3.8 Replication & DHT Routing

The replication of key-value pairs among group members is performed using a combina-

tion of eager and lazy data replication schemes. First, eager replication is used when a

key-value pair is inserted in the DHT, where the peer receiving the request multicasts that

same request to all its group members, replicating the key-value pair. Afterwards, the

group maintenance procedure executed among group peers works using a lazy replication

scheme to maintain replicas (§5.3.3.3).

117

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Note that, since there is no primary copy of the data (as in [99, 192]), we do not provide

strong consistency among replicas. However, the maintenance procedure running in each

group guarantees that eventually all peers will locally store the group’s key-value pairs.

Regarding DHT routing, as Rollerchain [192], we follow Chord’s routing approach (de-

scribed in §2.4.2.1) with some tweaks. The lookups done during DHT routing follow the

virtual peers (i.e., groups) maintained in the finger tables. Thus, when a lookup reaches

a peer, it uses its finger table to choose a group to be the next hop for the lookup. When

forwarding the lookup, it chooses a random peer from the next hop group, thus achieving

load balancing by design. As in Chord, the lookup ends when it reaches the predecessor

of the target key, which returns its successor as the key owner.

As already described, group identifiers are selected as to promote load balancing of

the amount of data stored by each group. As such, group identifiers may not be uniformly

distributed in the key space. Since that is not the case with typical DHTs (i.e., they assume

peer identifiers are uniformly distributed), their routing mechanisms may not work as

expected if applied directly. Thus, the finger table update procedure of Parsley is

based in the technique presented by Chord# [235]. Peers periodically update their finger

tables. Also, as in Chord, each row of a peer’s finger table represents a (virtual) peer

at an exponentially increasing distance in the ring. However, this scheme does not rely

on the group identifiers. Instead, row i represents a group which is bi hops away in the

ring (where b is a parameter)3.

The group for each row in the finger table is found by recursion in other group’s finger

tables. Each row i is assigned using information from the finger table of the group in

row i − 1. For the recursion base, as in Chord, row 0 is populated with the (immediate)

successor group. The intuition behind this technique is that row i of group A represents

group B, which is located n hops away, then row i + 1 represents a group n× b hops away,

which corresponds to the group at row i of group B’s finger table. Thus, the entry for row

i + 1 of group A is assigned with the group in row i of group B’s finger table.

This requires a constant amount of messages to update an entry of a group’s finger

table, whereas Chord’s update procedure requires log(n) messages for each entry.

A small handicap of this mechanism is that, since it requires the previous entry in the

finger table for an update, if that (previous) entry does not exist, we cannot update the

current entry. Additionally, the following entries in the finger table will also not be able

to be properly updated. Nevertheless, in practice, the successor lookup works well, even

if the finger table is not precisely updated [256].

5.4 Dynamic Data Sharding

Storage hot-spots appear when large or many different values (of possibly skewed size)

are mapped to a single DHT key, overloading the owners of those keys. This issue can

3In our case, we used b = 2, and finger tables of size log(n), being n the number of groups in the overlay.

118

5.4. DYNAMIC DATA SHARDING

be easily understood through an example usage of the Thyme-DCS approach. For

instance, imagine the shared photo gallery application (§4.6.4) being used in a football

stadium. When a player scores a goal, several application users all use the app to share

photos of this memorable moment with tag “goal”. Suddenly, the nodes of the key owner

group/cell are flooded with all those insert operations, and now have to store and manage

all the resulting metadata. To tackle this problem, we devise a lightweight dynamic data

sharding mechanism for popular keys, that leverages on Parsley’s characteristics to

effectively distribute the storage load among several groups.

In its essence, this mechanism has some resemblance to the multi-publication repli-

cation technique (§2.4.2.3), but here is applied to disjoint partitions of the (multiple)

values mapping to a single (popular) key. Thus, allowing to more evenly distribute the

storage load of those keys among several groups. When a group finds that a key has too

many values (according to a configurable criteria; see §5.4.2), it starts sharding the key,

dynamically partitioning the mapped values among other groups.

Promptly, we envision two main directions to achieve this:

1. use a primary hash function hp applied to the object identifier, hp(oid) = i, to decide

which secondary hash function his to use; or

2. decide randomly which secondary hash function his to use (i.e., i = rand()).

And then, apply the secondary hash function his(k), being k the key to which the value

maps. Option 1 enables a direct get operation to a specific value, because every oid

determines the value’s shard. However, this option requires rehashing every time a key is

(re)sharded (which is a very costly operation), because there is a change in the number of

shards. In turn, option 2 does not require any kind of rehashing, but a get operation to a

specific value requires a lookup in every shard.

Since we aim for Parsley to be flexible, and allow scenarios like (content) indexing,

where usually all the values mapping to a key are retrieved, we choose the trade-off given

by option 2. Nonetheless, to attenuate this choice, we also provide a get and remove

operations with a filter predicate, allowing attribute-based filtering, and reducing the

amount of transferred data (by filtering data where it is stored, before replying back).

In order for this mechanism to be decentralized and lightweight (in communication

and state), we deliberately trade-off some structure(d) organization for a small amount

of coordination. Thus, this mechanism is somewhat disorganized, and relies heavily on

randomness properties.

5.4.1 Algorithm

Since each high-level (i.e., application) key can be partitioned, we need to have a way of

identifying and locating these different partitions. Thus, each high-level key can have

multiple low-level (i.e., internal) keys. To model this and identify these different keys, we

resort to what we called operation keys (opkeys). In Parsley, instead of using multiple

119

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

hash functions, we salt the keys [132, 220]. We designate an indefinite amount of salts

and number them from 0 to i. Then, each opkey contains the original (high-level) key

provided by the application (e.g., a string), and its salt index or shard identifier (sid). By

applying the hash function to the combination 〈key,salt〉, we get the corresponding key

hash (used for DHT routing). Thus, an opkey is a tuple of the form4

〈key,sid,hash〉

We also create the concept of a shard index. For each high-level key, a shard index

holds the mapping between (known) sids and their corresponding key hashes. By storing

the sids, we track which shards exist for a specific (high-level) key. Thus, a shard index is

a tuple of the form

〈key, [sid 7→ hash]〉

In the next algorithms, we make use of the typical DHT procedure route(m,k),

presented in Algorithm 2.2. It routes a message m to the owner of the specified key k.

Algorithm 5.2 gives an overview of our sharding mechanism. Periodically, during

the group size check, the group leader runs the checkStorageHotSpots proce-

dure (only if there was no split or merge). It starts by calling the getHotSpotKeys

function (line 4), that returns a collection of all the locally stored opkeys considered to

be hot-spots (see §5.4.2).

Afterwards, for each of those opkeys, the following is executed. First, we obtain the

corresponding shard index for that key, and add a new shard (lines 6 and 7). This new

shard will have the next available sid (for which the current group is not the shard’s key

owner). Next, the values mapping to this opkey are split in half, and the part destined

for the new shard is removed from the local storage (lines 8 and 9). The divideValues

function can take any approach, from simply random to solving something similar to the

knapsack problem [168]. Currently, our implementation shuffles the values and divides

them into two collections with roughly the same size (in bytes).

Then, three communication steps are performed. First, a new opkey is created for this

new shard, and a NewShard message is sent to the key owner group with the partition

values for it to store (lines 10–12). Next, the group leader that triggered this sharding

sends a ShardUpdate message to all its group members, informing them about this new

shard and the oids of the values to be removed locally (lines 13–15). Lastly, since we keep

a proactive synchronization among the various shards of a key, a ShardUpdate message

is also sent to all the other shards, but only with the newly added sid (lines 16–19).

When a peer receives a NewShard message (line 20), it first checks if the received

opkey is already known (and has an associated shard index). If not (line 22), a new shard

index is created with the received information. Otherwise, the existing shard index is

updated with the received one (line 26). Then, the new values received in the message

are stored locally (line 27).
4The last element, hash, is used just to save on computations, since it can be computed (lazily) from the

other two elements.

120

5.4. DYNAMIC DATA SHARDING

Algorithm 5.2 Parsley’s dynamic data sharding mechanism.
1: store←∅ . key-value store [OpKey 7→ [Value]]
2: shards←∅ . known shards [Key 7→ Shard Index]

3: procedure checkStorageHotSpots()
4: hotspots← getHotSpotKeys(store)
5: for all opKey ∈ hotspots do
6: index← shards[opKey.key]
7: sid← index.addNewShard()

. divide values between the two shards and remove one of them
8: vals← divideValues(store[opKey])
9: store[opKey]← store[opKey] \ vals

. send values to new shard group
10: newOpKey← newOperationKey(opKey.key, sid)
11: msg← 〈NewShard,newOpKey, index,vals〉
12: route(msg,newOpKey.hash)

. update my group peers about this new shard
13: oids← [v.oid for v ∈ vals]
14: for all p ∈ group.view do
15: send(〈ShardUpdate, opKey,sid,oids〉,p)

. update other shards about this new one
16: for all i ∈ index.getShardIds() do
17: if i , sid ∧ i , opKey.sid then
18: msg← 〈ShardUpdate, opKey,sid,⊥〉
19: route(msg, index.hash[i])

20: upon receive 〈NewShard, opKey,sindex,vals〉 from src do
21: index← shards[opKey.key]
22: if index =⊥ then
23: index← newShardIndex(sindex)
24: shards[opKey.key]← index
25: else
26: index.update(sindex)
27: store[opKey]← store[opKey]∪ vals

28: upon receive 〈ShardUpdate, opKey,sid,oids〉 from src do
29: index← shards[opKey.key]
30: index.addShard(sid)
31: store[opKey]← [v for v ∈ store[opKey] : v.oid < oids]

In turn, when receiving a ShardUpdate message (line 28), a peer simply adds the new

sid to its shard index, and removes the values corresponding to the received oids.

On the opposite case, when an opkey is considered a cold-spot, the removal of a shard

is analogous. When checking for hot-spot opkeys, the algorithm also checks for cold-spot

ones. If so, it informs the other shards of such situation (and its group peers), removes its

local shard, and transfers it to one of the other known shards chosen at random.

Note that the primary shard (i.e., shard 0) is treated as a special case. This is because,

when a peer issues a get operation on some key, and it does not know if that key is

sharded, it will always send the operation to the primary shard. So, even if the primary

shard removes its content (for being a cold-spot), it will still keep the shard index to be

able to redirect received operations.

As already mentioned, this sharding mechanism is somewhat disorganized and thus

entails a small amount of coordination among shards. This presents a caveat. There

may happen the case when two different shards partition the same key for the same

next available sid at the same time (line 7). This does not affect the correctness of the

mechanism. However, it entails more communication because both shards will send a

121

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

NewShard message to the owner of the new opkey, and in the next periodic check for

hot-spots, that opkey will almost surely be partitioned again. This is a trade-off and the

price to pay for the small coordination among shards.

If space is of concern, the shards map (line 2) can work as a cache of known sharded

keys. Regarding the keys a group owns, the shards map will keep that information as

long as the group owns them. However, information about other shards, that has been

collected over time, can be kept using a known caching policy, e.g., LFU, LRU.

Naturally, we make this storage load balancing at the expense of data transfers (when

sharding keys). However, if the popularity trend continues, and if the shards are already

in place, the put operations will be automatically scattered among the shards. Thus,

potentially reducing and amortizing the overall costs.

5.4.2 Defining Hot-Spots

One of the critical parts of this data sharding mechanism is to identify popular, or hot-

spot keys. Thus, it is necessary to define the meaning of popular key. What is a popular

key? To answer this question, Parsley allows the configuration of the definition of pop-

ular (or hot-spot) key, through what we call hot-spot detectors. The getHotSpotKeys

function (line 4 in Algorithm 5.2) encapsulates that logic. It receives the current local

store as a parameter, and returns a collection of opkeys considered to be hot-spots accord-

ing to the implemented logic.

Currently, we offer four different hot-spot detectors out-of-the-box. Since we are

storage-oriented, we take into account not only the amount of values per key, but also

their size in bytes. We call global size to the sum of the size of all the values of the entire

local store, i.e., bytes(store). In turn, the local size refers to the sum of the values’ size of

a specific opkey k, i.e., bytes(store[k]).

Here, it is only possible (and it only makes sense) to partition an opkey if it has at

least two values associated with it. Thus, all the different implemented alternatives have

the following implicit restriction when checking an opkey k: |store[k]| > 1.

Absolute Amount (AA). An opkey k is considered an hot-spot if the number of values

associated with it is greater than a configurable absolute value ρ, with ρ ∈N1:

|store[k]| > ρ

Absolute Size (AS). An opkey k is considered an hot-spot if its local size is greater than

a configurable absolute value ρ (in bytes), with ρ ∈N1:

bytes(store[k]) > ρ

Relative Size (RS). An opkey k is considered an hot-spot if its local size is greater than

a configurable percentage ρ of the global size, with ρ ∈]0,1[, and the number of values

122

5.4. DYNAMIC DATA SHARDING

associated with it is greater than a configurable absolute value φ, with φ ∈N1:

bytes(store[k]) > bytes(store)× ρ ∧ |store[k]| > φ

The second condition is necessary when there is only a small number of opkeys in the

local store. In these cases, a small opkey can represent a large portion of the local store (or,

in the extreme case, even its entirety). For instance, if the local store has only one opkey

with two (small) values, this opkey will represent 100% of the store, thus making the first

condition always true. Even though this opkey is small and not worth to be partitioned,

it would be considered an hot-spot if not for the second condition.

Higher Than Average (HTA). An opkey k is considered an hot-spot if its local size is

greater than a configurable percentage ρ over the average size per opkey of the local store

or if this key is the only one in the local store, and the number of values associated with

it is greater than a configurable absolute value φ, with φ ∈N1:(
bytes(store[k]) >

bytes(store)
|keys(store)|

× (1 + ρ) ∨ |keys(store)| = 1
)
∧ |store[k]| > φ

Note that, in this case, ρ can also take the value zero or even negative values. Thus, it is

possible to refer to values equal to or less than the average.

If this key is the only one in the local store, it will be the average and the first condition

would not be triggered (when ρ > 0), justifying the need for the disjunction. The outer

condition is here for the same reason as the previous hot-spot detector—to ensure that

this key’s partitioning is worthwhile.

5.4.3 DHT Operations

Because of this sharding mechanism, DHT operations have to be slightly modified. Algo-

rithm 5.3 depicts an overview of the modifications.

When issuing a put operation, it is sent to one of the locally known shards, chosen at

random (procedure put in lines 1–8). In case no shard is known, it is sent to the primary

shard. If more than one shard is known, preferably, it should be sent to any shard but

the primary (to alleviate the load on that shard and promote overall load balancing). As

a reply, the issuer receives the shard index known locally by the peer that processed the

operation, that is stored for future use (lines 9–15).

Both get and remove operations work the same way, and it is the same for both their

versions (i.e., with or without the filter predicate), requiring it to be sent to all the existing

shards (procedure get in lines 16–24). On the receiving end, the operation receiver

replies back with the requested values and the locally known sids. Then, the issuer

gathers those received sids, and triggers the sending of the same ongoing operation to

those previously unknown shards, if any (lines 30–33). In the case of get operations, the

upper layer is notified of the operation result when there are no more ongoing requests

and replies have been received from all known shards (line 34–35).

123

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Algorithm 5.3 Parsley’s modified DHT operations.
1: procedure put(k,v)
2: index← shards[k]
3: if index =⊥ then
4: index← newShardIndex(k)
5: shards[k]← index

6: sid← index.getRandomShardId() . preferably, not the primary shard
7: opKey← newOperationKey(k,sid)
8: route(〈Put, opKey,v〉, opKey.hash)

9: upon receive 〈PutReply, sindex〉 from src do
10: index← shards[sindex.key]
11: if index =⊥ then
12: index← newShardIndex(sindex)
13: shards[sindex.key]← index
14: else
15: index.update(sindex)

16: procedure get(k)
17: index← shards[k]
18: if index =⊥ then
19: index← newShardIndex(k)
20: shards[k]← index

21: keep track of ongoing requests
22: for all sid ∈ index.getShardIds() do
23: opKey← newOperationKey(k,sid)
24: route(〈Get, opKey〉, opKey.hash)

25: upon receive 〈GetReply, opKey,vals, sids〉 from src do
26: keep track of ongoing/finished requests
27: save received (partial) results (i.e., vals)
28: index← shards[opKey.key]
29: index.update(sids)
30: newSids← filterNewSids(sids) . get sids that were unknown before this reply
31: for all sid ∈ newSids do
32: newOpKey← newOperationKey(opKey.key, sid)
33: route(〈Get,newOpKey〉,newOpKey.hash)
34: if no more ongoing requests then . get operation finished
35: notifyUpperLayer(opKey.key, results)

5.5 Evaluation

In this section, we present the experimental results that showcase and validate our pro-

posed mechanisms. We implemented a prototype of Parsley in PeerSim [180] and use it

to experimentally validate its design, detailing and characterizing its behavior in different

large scale scenarios.

Comparisons of group-based overlays against other DHTs and different replication

mechanisms have already been done in previous work in the literature [139, 150, 192,

193]. Thus, here the focus of this evaluation section is on the differentiating factors of our

solution, namely its PPR and data sharding mechanisms.

In this experimental work, we assess: 1) Parsley’s resilience to churn, and the

benefits of PPR and its corresponding overheads (§5.5.2); 2) the benefits and overheads

of storage load balancing through our dynamic data sharding mechanism (§5.5.3); and

3) the overlay’s management overhead (§5.5.4). Additionally, we present an overlay

characterization regarding the group size parameters, in Appendix A (justifying some of

the values used to configure our system).

124

5.5. EVALUATION

5.5.1 Experimental Setup

We conducted an extensive experimental evaluation of Parsley in the PeerSim simulator

using its event-driven engine. All results presented in this section are an average of results

extracted from 20 independent executions for each data point.

PeerSim has a virtual clock that coordinates the delivery of events to peers. In the

simulator, one cycle represents 1 000 time units (TUs), thus each TU can be seen as one

millisecond (and a cycle as one second). To experiment in large-scale scenarios, unless

stated otherwise, the experiments were conducted in a system comprised by 10 000 peers,

and was populated with 50 000 values distributed among 10 000 keys (resulting in an

average of five values per key). Values are assigned to keys following specific distributions,

ensuring that every key has at least one value assigned. Keys are chosen uniformly at

random from the key space, and values’ size follows a normal distribution with a mean

value of 5MB and a standard deviation of 1MB (representing reasonable sized files, such

as photos taken by a smartphone) [95, 218]. In the end, yielding a total of around 250GB.

To configure Parsley, we first did an overlay characterization study regarding the

group size parameters, reported in Appendix A. There, we analyze several metrics and

lay our rationale for the chosen group size parameters. Thus, throughout this section,

group size thresholds are set to l = 4, l′ = 5, h′ = 10, and h = 11. The maximum load

threshold was set to 1.75, in order to represent a good balance between group size and

amount of stored data. The group maintenance frequency was set to one second, with

a probability of 10% (i.e., γ = 0.1) [150], thus resulting in one maintenance procedure

being triggered each 10 seconds on average (by each peer). The periodic group size check

was executed with a frequency uniformly distributed between two and four seconds.

5.5.2 Churn & Peer Relocation

Any peer-to-peer (P2P) overlay targeting large-scale and dynamic environments should

be able to handle churn efficiently. To stress Parsley’s capability of handling churn, and

assess the benefits of our PPR mechanism, in this section, experiments were conducted

as follows. The overlay was initialized by having peers join the system one at a time.

After a stabilization period, churn was induced during a period of 60 simulation cycles.

Every other cycle during the churn period, c peers are removed simultaneously. When the

churn period is over, another stabilization period is executed, and the simulation halts.

The first peer in the overlay generates and stores all the key-value pairs at the beginning

of the simulation. In these experiments, c takes the values described in Table 5.2. We also

mention the percentage of peers that are removed from the overlay at each churn moment,
and at the end of the churn period (both regarding the overlay’s initial number of peers).

For instance, with c = 200, at the end of the churn period, this amounts to 60% of the

initial number of peers. We refer to the end percentage in the plots. By using increasing

amounts of churn, we can assess how the overlay behaves with increasing dynamics in

system filiation. Values have been assigned to keys following a uniform distribution.

125

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Table 5.2: Configuration of parameter c (i.e., churn) in Parsley.

c (peers) 17 33 67 100 133 167 200 233 267 300 317
% (moment) 0.17 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 3.17
% (end) 5 10 20 30 40 50 60 70 80 90 95

Here, we use two different scenarios. First, one where peers leave the system and

no new peers enter—which we refer to as exit-only. This scenario allows us to observe

the behavior of the overlay in extreme scenarios, where peers leave the system and there

are no new peers that can replace the ones that left, resulting in an abrupt decrease in

network size. Secondly, we use another scenario where peers leave the system and the

same amount of new peers join the overlay—which we refer to as enter-exit. This scenario

allows us to verify the behavior of the overlay in churn-intensive situations, but having

new peers entering the system to offset the ones leaving, maintaining a stable network

size throughout the simulation.

The periodic relocation of peers is checked every 20 seconds, and the relocation cool

down period is also 20 seconds. So as not to interfere with the results, we also disabled

the coercive merge feature (§5.3.3.5).

Additionally, groups are divided into two sets (hot and cold), defined by a distribution

ratio. In these experiments, we set the distribution ratio to be 50%, thus both sets have

the same number of groups. Then, peers in the hot set have a configurable probability

ε of being chosen to leave the system (i.e., churn), while peers in the cold set have the

complementary probability (i.e., 1 − ε). Unless stated otherwise, in these experiments,

we set probability ε = 0.8. Every step, before removing peers from the system, the sets

are updated (e.g., update groups’ membership, remove merged groups or that no longer

exist), and are also rebalanced to maintain the distribution ratio (e.g., add new groups

created through splits). These sets are maintained throughout the simulation.

In this section, we compare Parsley using the following configurations:

No PPR (NPPR in the plots) - with the peer relocation mechanism disabled (which can

be seen as similar to Rollerchain [192]);

Push - with the peer relocation mechanism using only push requests, i.e., only larger

groups try to give some of their peers to smaller groups;

Pull - with the peer relocation mechanism using only pull requests, i.e., only smaller

groups try to request peers from larger groups; and

Full PPR (FPPR in the plots) - with the peer relocation mechanism fully enabled (i.e.,

using both push and pull requests).

All the plots hereafter depict data collected from the start of the churn period until

the end of the simulation.

126

5.5. EVALUATION

Remember that MobiStore (described in §5.2) is a one-hop DHT. This means that, over

time, each group will tend to know every other group in the overlay. Thus, in this type of

DHTs, peers will have much more information at their disposal, naturally influencing the

decisions they make. Here, comparing MobiStore and Parsley will never be an apples to

apples comparison, being merely a hint. The most important argument we want to make

is to verify that the PPR mechanism makes sense and is beneficial in a typical DHT (i.e.,

without being one-hop), like Parsley.

5.5.2.1 Exit-Only

In this scenario, there are no peers entering the overlay. That is, in every churn period,

c peers leave the system and are not replaced. This results in an abrupt decrease in the

overlay size. Since peers in the hot set have a higher probability of leaving, those groups

will loose peers much quicker. Thus, this can also cause entire groups to be removed at

once from the overlay. Note that, with c = 317 peers, at the end of the churn period, 95%

of the peers in the overlay were removed from the network (in a period of 60 seconds)—an

extreme churn scenario.

Figure 5.6 depicts the amount of merge, split, and relocation operations executed

during the simulation. Naturally, the number of executed operations follows the increase

in the amount of churn. As more peers leave the system, groups have to accommodate

those changes and merge (and sometimes also split afterwards). Nonetheless, there are

some occasions when peers are relocated from larger into smaller groups.

Regarding the number of merge operations, in Figure 5.6a, at a glance, it may not

5 20 40 60 80 95
0

200

400

600

800

Churn (%)

N
u

m
.o

p
s.

(a) Merge.

5 20 40 60 80 95
0

50

100

150

Churn (%)

(b) Split.

5 20 40 60 80 95
0

100

200

300

Churn (%)

N
u

m
.o

p
s.

NPPR Push
Pull FPPR

(c) Relocation.

Figure 5.6: Exit-only topology operations in Parsley.

127

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)
C

ha
ng

e
(%

)

Figure 5.7: Relative change in the number of merge operations between No PPR and Full
PPR, for the exit-only scenario in Parsley.

seem like it, but the difference between the plots for NPPR and FPPR decreases as the

amount of churn increases. Figure 5.7 denotes the relative change [271] between NPPR

and FPPR as a percentage, i.e., (v
NP PR−vFP P R
vFP P R)× 100. For instance, in this case, with c = 100

or 30% churn, NPPR executes 40% more merge operations than FPPR. However, NPPR

always requires more merge operations, since each time a group reaches its minimum size

threshold, there is no other option besides merging. Here, all the alternatives with some

kind of peer relocation take advantage of this feature to reduce the number of required

merge operations. Nonetheless, as there are only peers leaving the overlay, groups will

keep shrinking until reaching a point where they do not know any other too big groups

from where to request peers. In the end, they also have no other option but to merge.

In a similar note, in Figure 5.6c, we see that the number of peer relocation operations

reaches a plateau with large amounts of churn. This is because in this scenario there are

no peers entering the overlay. They are only leaving. Thus, as the amount of churn grows,

the system starts to decrease in size, and there are less and less opportunities for peer

relocations (i.e., there are less too big groups).

Regarding Figure 5.6b, we can see that the number of split operations in NPPR grows

very quickly with the amount of churn. In turn, all the other plots with some kind of peer

relocation grow slowly as the amount of churn increases. This proves the effectiveness

of our simple optimization to avoid merge-caused splits (§5.3.3.6). In the alternatives

with peer relocation, when a group receives a merge request, if it detects that the merge

would result in a split afterwards, it cancels the merge and relocates some of its peers

into the previously merging group. Thus, working to reduce the number of required split

operations by a great amount.

In turn, Figure 5.8 depicts the amount of data items transferred (in GB) as a result

of merges, relocations, group maintenance, and the accumulated total. Directly, we can

see that the total is dominated by the amount of data transferred due to merge opera-

tions (Figure 5.8a), revealing the importance of trying to reduce the number of required

merges. Also, Figure 5.8c shows that the amount of data items transferred due to group

maintenance is not very relevant, and is very similar across all alternatives.

Figure 5.8d shows us that the alternative with NPPR requires the transfer of more

128

5.5. EVALUATION

5 20 40 60 80 95
0

1,000

2,000

3,000

Churn (%)

D
at

a
(G

B
)

(a) Merge.

5 20 40 60 80 95
0

20

40

60

80

Churn (%)

(b) Relocation.

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)

D
at

a
(G

B
) NPPR Push

Pull FPPR

(c) Maintenance.

5 20 40 60 80 95
0

1,000

2,000

3,000

Churn (%)

(d) Total.

Figure 5.8: Exit-only data transfers in Parsley.

data across all the churn values. Since all the other alternatives employ some kind of peer

relocation, they reduce the number of merge operations (as shown in Figure 5.6), and

consequently the amount of data transfers. Regarding FPPR, for small amounts of churn,

it achieves a reduction of as much as 55% in data transfer, when comparing with NPPR (as

illustrated in Figure 5.9). For large amounts of churn, since there are less opportunities

for peer relocations, the difference reaches as much as 15%. In the end, since merge

operations dominate the total data transfers, the savings in data transfers of FPPR also

decreases and the amount of churn grows.

Figure 5.8b follows the rationale in Figure 5.6c, where Push has less opportunities

for peer relocations, but achieves around the same savings in data transfers. This is

something to take into account when configuring our system. The Push alternative is able

to achieve around the same data transfers savings with less peer relocations.

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)

C
ha

ng
e

(%
)

Figure 5.9: Relative change in the amount of total data transfers between No PPR and
Full PPR, for the exit-only scenario in Parsley.

129

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)

N
u

m
.o

p
s. NPPR Push

Pull FPPR

(a) Merge.

5 20 40 60 80 95
0

100

200

300

Churn (%)

(b) Split.

5 20 40 60 80 95
0

50

100

150

Churn (%)

N
u

m
.o

p
s.

(c) Relocation.

Figure 5.10: Enter-exit topology operations in Parsley.

5.5.2.2 Enter-Exit

In this scenario, there are peers entering the overlay as others leave, by the same amount.

Thus, these represent churn-intensive situations, but with a stable network size.

Figure 5.10 depicts the amount of merge, split, and relocation operations executed

during the simulation. Similarly to the exit-only scenario, the number of executed oper-

ations follows the increase in the amount of churn. However, here, the absolute values

are much smaller for both merge and relocation operations (Figures 5.10a and 5.10c). For

splits, it grows in a (sub)linear proportion to the amount of churn, with NPPR executing

more splits (Figure 5.10b). Since peers enter the overlay as other fail, they end up filling

the voids. Thus, these operations are needed to accommodate the rapid changes in the

network, but by a small amount when compared to the exit-only scenario.

Regarding merge operations, in Figure 5.10a, we can see that NPPR requires always

more operations across all churn values. Despite having the same amount of peers enter-

ing and leaving the overlay, these somewhat rapid changes to the groups’ memberships

triggers those merge operations. Nevertheless, after the system quiesces, those mem-

berships stabilize, requiring almost eight times less merge operations as in the exit-only
scenario. Also, the difference between NPPR and FPPR does not vary as much as in

the previous exit-only scenario. Figure 5.11 shows the relative change as a percentage.

Here, the average difference reports around 47% less merge operations for FPPR, when

compared with the NPPR configuration.

The number of peer relocations, in Figure 5.10c, grows slowly with the amount of

churn. Since peers enter the overlay, groups are able to keep their sizes relatively the

130

5.5. EVALUATION

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)
C

ha
ng

e
(%

)

Figure 5.11: Relative change in the number of merge operations between No PPR and
Full PPR, for the enter-exit scenario in Parsley.

same (see §5.5.2.3). Thus, not requiring a great amount of relocation operations. Never-

theless, since peer relocations are validated by a peer of the group where the relocation

is to happen (before it actually happens), this decreases the amount of unnecessary re-

locations in this scenario. Once again, the Push alternative is able to achieve almost the

same savings in the number of merge operations, requiring less peer relocations, when

compared with FPPR.

Figure 5.12 depicts the amount of data transferred as a result of merges, relocations,

group maintenance, and the accumulated total. First, similarly to the exit-only churn

scenario, the total is dominated by the data transfers caused by merge operations (Fig-

ure 5.12a). Additionally, Figure 5.12c illustrates that the data transferred due to group

maintenance is not very relevant (accounting for around 2% of the total transfers), being

similar across all alternatives.

5 20 40 60 80 95
0

50

100

150

200

Churn (%)

D
at

a
(G

B
)

(a) Merge.

5 20 40 60 80 95
0

10

20

30

Churn (%)

(b) Relocation.

5 20 40 60 80 95
0

2

4

6

Churn (%)

D
at

a
(G

B
) NPPR Push

Pull FPPR

(c) Maintenance.

5 20 40 60 80 95
0

50

100

150

200

Churn (%)

(d) Total.

Figure 5.12: Enter-exit data transfers in Parsley.

131

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

5 20 40 60 80 95
−40
−20

0
20
40
60

Churn (%)
C

ha
ng

e
(%

)

Figure 5.13: Relative change in the amount of total data transfers between No PPR and
Full PPR, for the enter-exit scenario in Parsley.

Also in this scenario, Figure 5.12d shows us that NPPR requires much more data

transfers than all the other alternatives, across the majority of the churn values. In

turn, the peer relocation mechanism shows its operation, effectively reducing the overall

amount of data transfers in the system.

For low churn, and taking into account that peers are also entering the overlay, not

many peer relocations are actually required. Thus, FPPR may trigger some peer reloca-

tions that, in the end, would not be necessary. This is shown in Figure 5.13. With 5%

churn, FPPR transfers 28% more data than NPPR. For such small values of churn, the

amount of data transferred is very small, and as such, the relative difference between the

two is more pronounced. Here, the case is that some peer relocations may be unnecessary,

and they are triggered because of momentary inconsistencies in groups’ memberships.

On the other hand, for all the other churn values, FPPR achieves a more stable savings in

data transfers, with an average around 39% (i.e., less data transferred than NPPR).

Lastly, Figure 5.12b reiterates the fact that the Push alternative is able to achieve a

similar data transfer savings to the FPPR configuration, while at the same time requiring

less peer relocation operations.

5.5.2.3 Group Size & Data Loss

The values for both the amount of lost keys and group size across all alternatives present

a negligible difference. Thus, we report them as an average of all the alternatives.

Regarding group size, Figure 5.14 shows the average group size at the end of the

simulation. For the enter-exit scenario, there is almost no difference in group size. From

the first churn value to the last, there is a decrease of around one. This can be explained by

the entering of new peers in the overlay, filling the gaps left by the failing peers. However,

in the exit-only scenario, we can see a more significant decrease in group size as the

amount of churn increases. Once again, since there are no new peers entering the overlay,

groups can only merge to try to sustain those failures (or sometimes relocate peers).

Nonetheless, as the amount of churn increases, groups start to get smaller. From 5%

to 95% churn, we see a decrease of more than three.

Figure 5.15 depicts the percentage of lost keys at the end of the simulation, for the

132

5.5. EVALUATION

5 20 40 60 80 95
4

6

8

10

Churn (%)
G

ro
u

p
si

ze

Exit-Only Enter-Exit

Figure 5.14: Average group size for both churn scenarios in Parsley.

various churn values. Here, we can see that in the enter-exit scenario, there is practically

no data loss across all churn values (reaching a loss of less than 0.4% with 95% churn).

This is explained by the entry of new peers in the system, offsetting the exit of the failing

peers. Moreover, the new peer acceptance logic (§5.3.3.2) favors peers to be accepted in

smaller or overloaded groups, increasing the overlay reliability. In turn, in the exit-only
scenario, data loss accompanies the increase in churn. Since peers only leave, and no new

peers enter the overlay, groups start to become smaller as time passes. In fact, because of

the hot set logic, some peers have a higher probability of leaving, and some groups will

loose peers very quickly. Thus, this can also possibly cause entire groups to be removed at

once from the overlay. If this happens, since there was no time to do the proper backups,

the data stored by those groups will be lost. With 95% churn, there is a loss of around 73%

of all the keys. However, note that, this represents losing 95% of the overlay total peers.

Even losing such a large number of peers, the system is able to retain 27% of the stored

keys. In this scenario, data loss starts to become an issue at around 60% churn (i.e., a loss

of 60% of the overlay peers), with a data loss of almost 3% of all the keys.

5.5.2.4 Balanced Hot & Cold Sets

In the previous experiments, groups were divided into two sets—hot and cold. Both sets

had the same size, but peers from groups in the hot set had 80% probability of being

chosen to leave the system (the parameter ε described at the begging of this section).

At the same time, peers from groups in the cold set had only 20% probability of being

5 20 40 60 80 95
0

20

40

60

80

Churn (%)

L
os

t
ke

ys
(%

)

Exit-Only
Enter-Exit

Figure 5.15: Average percentage of lost keys for both churn scenarios in Parsley.

133

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)

C
ha

ng
e

(%
) ε = 80%

ε = 50%

(a) Merge operations.

5 20 40 60 80 95
0

20

40

60

Churn (%)

(b) Total data transfers.

Figure 5.16: Relative change between No PPR and Full PPR, for the exit-only scenario in
Parsley.

chosen. This is an asymmetric scenario that helps to showcase the churn resilience of

Parsley and the advantages of PPR. Nonetheless, this can also be verified in a balanced

scenario where all peers have the same probability of leaving the system, although in a

less conspicuous way. Next, we show some of the most important differences between

these two scenarios: ε = 80%, and ε = 50%.

Figure 5.16 depicts the relative change in the amount of merge operations and total

data transfers between NPPR and FPPR, for the exit-only scenario. Here, we can see

that the difference between these two alternatives follows the same trend, but is less

pronounced when ε = 50%. This is due to the balanced hot and cold sets. With ε = 50%,

all peers have the same probability of leaving the overlay, and thus this probability is

scattered among many more peers than before.

Regarding the enter-exit scenario, Figure 5.17 shows the relative change in the amount

of merge operations and total data transfers between NPPR and FPPR. As in the previous

figure, for large churn values, these plots show us that the difference between the two

alternatives is less pronounced when ε = 50%. However, for smaller churn values (until

around 40% churn), the difference is quite erratic when ε = 50%. This is due to the fact

that, in this scenario, much less peer relocations are actually required. Thus, some of the

executed relocations were in fact not necessary. Adding to that, the absolute values in

these cases are very small, hence the relative difference between the two is more sensitive

to small variations, and thus is more pronounced in the plots.

Figure 5.18 shows the total data transfers for the enter-exit scenario, when ε = 50%.

When comparing with Figure 5.12d, we can see that in this scenario much less data

transfers are required—around less than half of when ε = 80%. And, once again, here,

the difference between the NPPR and FPPR alternatives is less pronounced. This is due

to the fact that, in this scenario, all peers have the same probability of leaving the overlay.

Thus, requiring less effort from all the overlay resilience mechanisms, and presenting

more opportunities for peer relocations.

Figure 5.19 illustrates the percentage of lost keys at the end of the simulation, for the

exit-only scenario. Here, the data loss metric follows the increase in the amount of churn,

134

5.5. EVALUATION

5 20 40 60 80 95
0

20
40
60
80

100

Churn (%)

C
ha

ng
e

(%
) ε = 80%

ε = 50%

(a) Merge operations.

5 20 40 60 80 95
−40
−20

0
20
40
60

Churn (%)

(b) Total data transfers.

Figure 5.17: Relative change between No PPR and Full PPR, for the enter-exit scenario in
Parsley.

5 20 40 60 80 95
0

20

40

60

80

Churn (%)

D
at

a
(G

B
) NPPR Push

Pull FPPR

Figure 5.18: Total data transfers, for the enter-exit scenario with ε = 50% in Parsley.

because there are no new peers entering the overlay, and thus entire groups can disappear

at once. However, with ε = 50%, since all peers have the same probability of leaving

the overlay, the probability of losing keys ends up being diluted evenly among all the

peers/groups, thus being less pronounced. With 95% churn and ε = 50%, there is a loss

of around 43% of all the keys, representing a decrease of 30% when compared to ε = 80%.

Remember that 95% churn represents a loss of 95% of the overlay total peers, and even

so the overlay manages to retain 57% of the stored keys. In this situation, data loss starts

to become an issue at around 70% churn (i.e., a loss of 70% of the overlay peers), with a

loss of almost 2% of the keys.

5 20 40 60 80 95
0

20

40

60

80

Churn (%)

L
os

t
ke

ys
(%

)

ε = 80%
ε = 50%

Figure 5.19: Average percentage of lost keys, for the exit-only scenario in Parsley.

135

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

Table 5.3: Impact of the zipfian distribution parameter in the probability of the most
popular item (from a total of 10 000 items drawn 50 000 times).

Skew 0 0.5 0.75 0.99 1.25

Probability ≈ 0.03% ≈ 0.5% ≈ 2.5% ≈ 8% ≈ 19%
Num. values ≈ 15 ≈ 250 ≈ 1 250 ≈ 4 000 ≈ 9 500

5.5.3 Load Balancing Storage Hot-Spots

In some scenarios Parsley targets, like indexing, a few DHT keys may become very

popular, thus overloading the owners of those keys. As such, in these situations, overlays

should be able to adapt to that skewed popularity. To stress Parsley’s capability of

handling these cases, and assess the benefits of our dynamic sharding mechanism, in

this section, experiments were conducted similarly to the previous one. The overlay was

initialized by having peers join the system one at a time. After a stabilization period, peers

start to issue put operations, storing the key-value pairs in the DHT. Put operations are

issued by every peer, starting randomly in the first second after the stabilization period,

and then with a frequency of 20 seconds, until there are no more key-value pairs to

insert (i.e., each peer issues an average of 5 put operations). After the key-value pairs are

all inserted, another stabilization period is executed, and the simulation halts.

We have assigned values to keys following two different distributions5: 1) uniform;

and 2) zipfian. The uniform distribution provides a baseline for comparison. In turn, the

zipfian distribution portrays the overlay operation in scenarios where some keys are much

more popular than the rest, thus becoming overloaded. Hereafter, when mentioning a

skew of 0, we are referring to the uniform distribution.

For the zipfian distribution, its parameter has implications in the skewness of the

items’ popularity. Table 5.3 shows the approximate observed impact of the distribution

parameter specifically on the popularity of the most popular item (i.e., the DHT key

with the most values assigned to it). In an exactly uniform assignment of 50 000 values

among 10 000 keys, all keys would have the same probability of 0.01%, i.e., each key

would have five values assigned.

To detach the load balancing properties of Parsley from other aspects of the overlay

operation, we evaluate the behavior of our dynamic data sharding mechanism using

stable topologies (i.e., without churn).

In this section, we present results for all the provided hot-spot detectors (§5.4.2),

namely Absolute Amount (AA), Absolute Size (AS), Relative Size (RS), and Higher Than

Average (HTA). Table 5.4 shows the values used to configure the parameters of each

of the hot-spot detectors. We configure their parameters according to the defined skew,

guided by the impact in the most popular key. For instance, with a skew of 1.25, the most

popular key will have roughly 9 500 values (Table 5.3), thus for AA, using ρ = 5 would

5These distributions’ implementation was taken from the Yahoo! cloud serving benchmark (YCSB) [61]
repository: https://github.com/brianfrankcooper/YCSB.

136

https://github.com/brianfrankcooper/YCSB

5.5. EVALUATION

Table 5.4: Configuration parameters for the hot-spot detectors in Parsley.

(a) AA.

Skew ρ

0 3, 5, 8, 10, 13
0.5

5, 10, 20, 40, 80
0.75
0.99 20, 40, 80, 160, 320
1.25 40, 80, 160, 320, 640

(b) AS (in megabytes).

Skew ρ

0 15, 25, 40, 50, 65
0.5

25, 50, 100, 200, 400
0.75
0.99 100, 200, 400, 800, 1 600
1.25 200, 400, 800, 1 600, 3 200

(c) RS.

Skew ρ φ

0

0.1, 0.2, 0.4, 0.6, 0.8
50.5

0.75
0.99 20
1.25 40

(d) HTA.

Skew ρ φ

0

0.1, 0.3, 0.5, 0.7, 0.9
50.5

0.75
0.99 20
1.25 40

entail almost 2 000 shards for this key. To avoid such an excessive partitioning of keys,

we adapt the configuration parameters to the skew value. Hence, for increasing values

of skew, we use correspondingly increasing values for the parameters (namely for the ρ

parameter of AA and AS, and the φ parameter of RS and HTA).

Additionally, we experiment with five different parameter values for each skew value,

from less restrictive (parameter 0 in the plots) to more restrictive values (parameter 4 in

the plots). Here, less restrictive parameter values will entail more popular keys, while

in turn more restrictive values entail less popular keys (i.e., only the keys with many

assigned values will be considered hot-spots).

Figure 5.20 shows some metrics regarding the keys (and corresponding values) stored

by each group at the end of the simulation—that we refer to as per group state—, for

each skew value. The left column shows the maximum per group state, while the middle

column shows the average per group state, and the right column shows the corresponding

standard deviation. In the plots hereafter, OFF refers to Parsley with the sharding

mechanism disabled. For all skew values, the minimum per group state observed in the

experiments was always zero, due to the fact that there were always some groups that did

not store any keys. We observed an average of less than 8% of the groups in this situation,

across all experiments.

From the middle column in Figure 5.20, we can see that the average state per group is

roughly the same for all configurations and across all the skew values—around 220 MB.

This is expected, as the total amount of data stored in the overlay does not change, and

neither the amount of peers/groups. As such, in this scenario, the average per group

state should remain relatively unchanged across all experiments. In turn, Parsley’s

sharding mechanism largely influences both the maximum and standard deviation of

137

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

0 1 2 3 4
0

1

2

3

G
B

Maximum

0 1 2 3 4
0.1

0.15

0.2

0.25

Average

0 1 2 3 4
0.1

0.15

0.2

0.25

0.3
Standard deviation

(a) Skew 0.

0 1 2 3 4
0

1

2

3

G
B

0 1 2 3 4
0.1

0.15

0.2

0.25

0 1 2 3 4
0.1

0.15

0.2

0.25

0.3

(b) Skew 0.5.

0 1 2 3 4
0

2

4

6

8

G
B

0 1 2 3 4
0.1

0.15

0.2

0.25

0 1 2 3 4
0.1

0.2

0.3

0.4

(c) Skew 0.75.

0 1 2 3 4
1
2

5
10
20
40

G
B

0 1 2 3 4
0.1

0.15

0.2

0.25

0 1 2 3 4
0

0.2
0.4
0.6
0.8

1

(d) Skew 0.99.

0 1 2 3 4
1
2
5

10

50
100

Parameter

G
B

0 1 2 3 4
0.1

0.15

0.2

0.25

Parameter
0 1 2 3 4

0

0.5

1

1.5

2

Parameter

(e) Skew 1.25.

OFF AA AS RS HTA

Figure 5.20: Per group state in Parsley (left to right: maximum, average, standard
deviation).

138

5.5. EVALUATION

the per group state, as shown in the left and right columns of Figure 5.20, respectively.

Parsley is able to reach a reduction of up to 95% for the maximum per group state, and

up to 85% for the standard deviation, when comparing with the system without sharding

mechanism. This is achieved by partitioning keys with many assigned values into smaller

portions (i.e., shards), and scattering them among several other groups in the overlay,

effectively balancing the storage load.

With a small skew in the stored data, all configurations present roughly the same

results in each of the three metrics. We can verify that small variation in Figures 5.20a

and 5.20b, showing plots for skew values of 0 and 0.5, respectively. This is somewhat

expected, since an uniform distribution (or with a very small skew) already does a kind

of natural load balancing by itself. Consequently, all the sharding done to keys does not

achieve any extra (meaningful) load balancing.

With a skew of 0, AA and AS are able to achieve the lowest average (and also the

lowest standard deviation) from all the scenarios, for the less restrictive parameter (i.e.,

parameter 0)—at around 195 MB. This is due to the fact that with this parameter, keys are

partitioned at a very fine-grain level. In this case, these hot-spot detectors identify keys

as being hot-spots when one has more than three values or more than 15 MB assigned,

respectively (Tables 5.4a and 5.4b). However, note that we are using 50 000 values as-

signed to 10 000 keys, resulting in an average of five values per key (the value used as

parameter 1 for skew 0 in AA). Thus, with this configuration, we are partitioning keys

below the average number of values per key, i.e., we are over-partitioning keys. By parti-

tioning keys in such small shards, we are able to scatter them a little bit more among the

overlay groups, and consequently reach a lower average per group state. As the parameter

becomes more restrictive, less keys are considered hot-spots, and thus less keys are parti-

tioned. As a consequence, the results get closer to the system without sharding—OFF in

the plots.

Still in the same figures, regarding the maximum and standard deviation of the per

group state, we can see that all alternatives behave more or less the same for all param-

eters. The exception is RS. For the less restrictive parameters, it achieves larger values

than any other alternative, although with a small difference—less than 500 MB for the

maximum per group state, and less than 50 MB for the standard deviation. In this case,

since the assignment of values to keys is already somewhat balanced (due to the small

skew values), the partitioning of the majority of the keys identified as hot-spots is not

very meaningful to the overall storage load balancing. Despite that with parameter 0,

RS detects more keys as hot-spots than with parameter 4 (since this is more restrictive),

the resulting shards are small and do not make a relevant difference. In the end, with

parameter 4, only the most popular (or bigger) keys—i.e., the ones that make the most

difference—are partitioned.

As the skew value increases, we start to see an apparent difference in the maximum

and standard deviation of the per group state for the configurations with sharding en-

abled. Additionally, the average per group state of all configurations starts to stabilize

139

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

around the same values. With a skew of 0.75, Figure 5.20c starts to depict a big differ-

ence in storage load balancing. When sharding is disabled (i.e., OFF), the maximum per

group state is 6 GB, and the standard deviation is around 350 MB. In turn, when shard-

ing is enabled, the maximum per group state and the standard deviation remain almost

unchanged from the previous skew values, at around 2 GB and 230 MB, respectively.

Naturally, when moving to more restrictive parameters, both metrics increase because

less keys are considered hot-spots and partitioned. From all the hot-spot detectors, HTA

is the one achieving the lowest values from all the others for these metrics, and it does

so consistently across all skew values. This is because of a rationale similar to the one

as RS in the previous paragraph. Despite parameter 0 identifying more keys as being

hot-spots than parameter 4, since it looks at the average size per key in the local store, the

difference in the number of partitioned keys is very small. Additionally, the keys that are

partitioned are the ones that make the most difference. In turn, RS achieves the highest

values from the four detectors for these two metrics. Here, the values start to make a turn,

and grow as the parameter becomes more restrictive. With this skew, some keys start to

become much more popular than others, and partitioning them even with less restrictive

parameters makes a relevant difference in the overall result.

For skew values of 0.99 and 1.25, in Figures 5.20d and 5.20e, respectively, the plots

are very similar, but with increasing values for both the maximum per group state and

the standard deviation. From a skew value of 0.99 to 1.25, the popularity of the most

popular key more than doubles (from 8% to 19%, or from 4 000 to 9 500 values assigned).

For instance, with a skew of 1.25, the most popular key has almost 20% of all the val-

ues in the overlay, thus creating a big imbalance in storage load. This can be verified

when the sharding mechanism is disabled (OFF in the plots), where both these two met-

rics also more than double from one skew value to the next. In this case, with a skew

of 0.99, the maximum per group state is almost 20 GB and the standard deviation is

around 800 MB. With a skew of 1.25, the maximum per group state is more than 48 GB,

and the standard deviation is around 1.7 GB. However, with sharding enabled, all hot-

spot detectors are able to greatly reduce this imbalance. Note that for these two skew

values, the plots showing the maximum per group state (the left column) present the

y axis with a logarithmic scale. With a skew of 0.99 and sharding enabled, the maxi-

mum per group state is greatly reduced to around 2–5 GB, and the standard deviation to

around 220–360 MB (depending on the configurations). In turn, with a skew of 1.25 (and

sharding enabled), the maximum is drastically reduced to around 2–6 GB, and the stan-

dard deviation to around 250–550 MB (depending on the configurations). With the less

restrictive parameter (i.e., parameter 0), this results is an average decrease of 92% for the

maximum per group state, and of 80% for the standard deviation. Whereas, for the most

restrictive parameter (i.e., parameter 4), this still results is an average decrease of 82%

for the maximum per group state, and of 62% for the standard deviation.

All hot-spot detectors, from medium to high skew values, start to have larger values

140

5.5. EVALUATION

for maximum per group state and standard deviation as parameters become more restric-

tive, because less keys are identified as hot-spots and thus partitioned. The exception

is HTA, that is able to maintain its values independent from the parameters. Since this

hot-spot detector bases its decision in the average size per key of the local store, keys

are partitioned trying to reach a stabilization (average) value. Here, note that the vast

majority of the keys that were considered hot-spot are due to the first part of the crite-

ria (above 95%), i.e., due to the local size being above the average size per key, and not

because there is only one key in the local store. Also, albeit marginally, HTA manages

to consistently achieve a lower average than any other alternative across the majority of

the skew values. In turn, RS presents the largest maximum per group state from all the

detectors. This is due to the fact that, it bases its decision in a ratio from the local key

store. For instance, parameter 4 considers keys to be hot-spots only if their local size

represents more than 80% of the global size. As a consequence, only very large keys are

going to be partitioned.

In the end, Figure 5.20 perfectly depicts the effects of skewed (or non-uniform) data

on the storage load of an overlay. The storage load imbalance caused by this skewed data

can greatly hamper the overall performance of an overlay. Some groups/peers will store

much more data than other. Besides this representing unfair resource usage, which can be

important when referring to less resourceful devices (e.g., mobile or other edge devices),

it can also entail that these peers will receive and process much more read requests, while

other are relatively idle. Hence, working against the fairness of both storage and query

loads in the system. Thus, revealing the importance of such a sharding mechanism.

In a different aspect, Figure 5.21 illustrates the amount of transmitted messages (in

GB) related with the sharding mechanism, namely NewShard and ShardUpdate messages.

By looking at the figure, we can see that the plots for both messages follow the same trend,

but with a major difference in the values’ magnitude. This is because of the content of

each message type. The NewShard messages carry the new opkey, the shard index, and

the set of values assigned to the newly created shard (which represents the bulk of the

message). In turn, ShardUpdate messages only carry the opkey, the new sid, and, in some

cases, the oids of the values to be removed. Thus, NewShard messages are clearly the ones

that have the bigger impact in the overall transferred data.

Overall, Figure 5.21 reveals the other side of the coin regarding Figure 5.20. Here,

this sharding mechanism presents a natural trade-off between the achieved storage load

balancing and the amount of transferred data. Partitioning a popular key into smaller

portions means that some values assigned to that key have to be transferred to another

group(s). Thus, the system configuration should be done in such a way that it does not

entail an excessive amount of data transfers, balancing this trade-off.

Figure 5.21a showcases clearly the problem of over-partitioning keys. With skew 0,

parameter 0 for both AA and AS was deliberately set below the average number of five

values per key. In this case, these hot-spot detectors identify keys as being hot-spots when

one has more than three values or more than 15 MB assigned. Since we are practically

141

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

0 1 2 3 4
0

50

100

150

200

G
B

NewShard Message

0 1 2 3 4
0

2

4

6

M
B

ShardUpdate Message

(a) Skew 0.

0 1 2 3 4
0

50

100

150

200

G
B

0 1 2 3 4
0

2

4

6

M
B

(b) Skew 0.5.

0 1 2 3 4
0

100

200

300

G
B

0 1 2 3 4
0

5

10

15

M
B

(c) Skew 0.75.

0 1 2 3 4
0

100

200

300

G
B

0 1 2 3 4
0

5

10

15

M
B

(d) Skew 0.99.

0 1 2 3 4
0

200

400

600

Parameter

G
B

0 1 2 3 4
0

5

10

15

20

Parameter

M
B

(e) Skew 1.25.

AA AS RS HTA

Figure 5.21: Transmitted messages related with the sharding mechanism in Parsley.

142

5.5. EVALUATION

partitioning every key, the amount of exchanged data resulting from sharding-related

messages is too high—requiring the transfer of around 150 GB of NewShard messages

system-wide. As the parameter becomes more restrictive, the amount of transferred

values drops quickly, since less keys are considered popular and partitioned, and thus

less data needs to be transferred.

From Figure 5.20, we can see that for small skew values (namely 0 and 0.5), there is

no meaningful difference between using sharding or no sharding at all. Thus, the amount

of transferred data depicted in Figures 5.21a and 5.21b cannot be justifiable, considering

the return they bring in terms of effective storage load balancing. In turn, for increasing

skew values, specially the more restrictive parameters start to present reasonable trade-

offs when comparing the achieved storage load balancing and the required amount of

transferred data. For instance, in Figure 5.21e, with a skew of 1.25, we can see that

with AA and AS for the more restrictive parameter are transferred around 86 GB in

NewShard messages and roughly 2 MB in ShardUpdate messages. Looking at Figure 5.20e,

this translates in a reduction of 90% for the maximum per group state and 70% for the

standard deviation, which we claim is an acceptable trade-off. Moreover, more restrictive

parameters (or other kinds of hot-spot detectors) can be studied in order to require even

less data transfers.

The AA and AS hot-spot detectors react almost in the same way in every scenario.

Data transfers drop quickly as the parameter increases for every skew value. Also, they

provide the lowest data transfers from all the detectors. In the first three skew values, AA

and AS require the most data transfers for the first parameters, and then, quickly drops

to very small values. For the next skew values, these hot-spot detectors continue with this

trend, but decreasing the amount of required data transfers in a more soft way. This is

directly related with the configuration parameters used and the skewness of the data.

Similar to Figure 5.20, HTA requires a stable amount of data transfers when varying

the parameter. It achieves the best results in terms of storage load balancing, at the ex-

pense of large data transfers. For instance, with a skew of 0.75, in Figure 5.21c, it requires

the transfer of around 200 GB of NewShard messages and roughly 10 MB of ShardUpdate

messages. In return it provides a reduction of almost 70% in the maximum per group

state and of 43% in the standard deviation. HTA is always the hot-spot detector that

requires the most data transfers in all scenarios (except when AA and AS over-partition

keys, and have small parameters until a skew of 0.75).

Still, for small skew values, RS requires the least data transfers. As the skew value

increases, AA and AS start to get closer to RS. With a skew value of 0.99, this scenario

inverts, and RS begins to require more data transfers than AA and AS. However, in this

case, AA and AS provide a better trade-off, because they offer better storage load balancing

than RS, and at the same time require less data transfers. For example, in Figure 5.21d,

with a skew of 0.99 and for parameter 4, AA and AS reduce the maximum per group

state by 10% more than RS, and achieve this by requiring 50% less data transfers for both

sharding-related messages.

143

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

0 20 40 60 80 100
0

20
40
60
80

100

Number of peers ×102
B

/s

Parsley

MobiStore

Figure 5.22: Per peer overlay management overhead.

5.5.4 Overlay Management Overhead

Lastly, we also decided to do a small experiment to gauge the overlay management over-

head. This overhead concerns all the overlay maintenance procedures, namely, finger

table updates, stabilization, group maintenance, and passive view gossip. For this, Fig-

ure 5.22 shows how the per peer overlay management overhead behaves as the network

size grows. These results were measured with the overlay in a steady-state, after all peers

entered the overlay and a stabilization period as passed.

As we can see, the management overhead grows very slowly with the network size.

For small network sizes, the overhead grows slightly. In turn, for large network sizes,

the overhead starts to grow really slowly, almost stabilizing. In fact, from a network size

of 100 to 500 peers, the overhead grows around 22%. However, the average growth rate

of the management overhead for all the measured network sizes is of roughly 4%, a value

we claim to be completely acceptable.

Additionally, we also try to make a small comparison with MobiStore regarding this

metric. According to the results presented in the MobiStore paper [139], in a network

with 6 500 peers, it reports an average of around 83.3 B/s of per peer management over-

head (the blue data point in Figure 5.22). In turn, Parsley in a network with the same

size reports an average of around 90.7 B/s. Also, in the paper, the MobiStore authors im-

ply that this specific experiment was done differently from the rest, using a combination

of full and “diff” updates of the aggregated routing tables. Still, note that in the Mobi-

Store paper, the authors are not clear as to what is included in this per peer management

overhead metric (i.e., what types of messages are counted in). Hence, here we risk not

making an apples to apples comparison.

In the majority of MobiStore experiments, peers leave the network at exponentially

distributed intervals with a session time ranging from two minutes to one hour. The au-

thors explain this is to mimic the short session times of mobile devices. After completing

an “active” session, peers leave the network for periods ranging from zero to 20 minutes,

thus, some peers end up to not actually leaving the network. In turn, in Parsley’s churn

evaluation, the amount of churn applied to the overlay is the actual number of peers re-

moved from the network. Thus, in the end, the availability benefits and robust operation

144

5.6. CONCLUDING REMARKS

of Parsley, showcased by this evaluation section, are achieved at the expense of (possi-

bly) some extra overhead—an estimated marginal increase of around 8% in management

overhead when comparing with MobiStore. Also, to the best of our knowledge, no other

related work system was experimented with such high churn scenarios.

5.6 Concluding Remarks

In this chapter, we tackle the dynamic population of cells/groups and the case of data

hot-spots in structured overlays—two issues found in our previous Thyme-DCS ap-

proach (§4.5). Namely, we present Parsley, a flexible group-based DHT that provides

robust and efficient data storage while enabling load balancing for both query and storage

hot-spots. To achieve this, Parsley combines techniques from both unstructured and

structured overlays. The unstructured component comes from peers being clustered into

groups of flexible size, and work collaboratively within them to act as virtual peers in the

structured layer. Groups are used to simplify data replication and enable query load bal-

ancing, while at the same time providing increased resilience to churn. We diverge from

previous related work by employing a preemptive peer relocation technique, where indi-

vidual peers are proactively relocated from larger into smaller groups, as a way to avoid

merging (which requires costly state transfers). In turn, to tackle storage hot-spots, Pars-

ley employs a dynamic data sharding mechanism, inspired by the multi-publication

replication technique. When a group finds a popular key storing many values, it starts

sharding the key, dynamically partitioning the mapped values among other group, in

order to scatter the key’s storage load.

Parsley is flexible because it allows the configuration of several of its decision cri-

teria, providing a useful tool to study the impact of such strategies. For instance, it is

parametric on the new peer acceptance logic or the hot-spot detector. Thus, contrary to

DEB Tree, our solution for storage hot-spots allows a more dynamic (pluggable) configu-

ration of the popularity criteria.

To evaluate Parsley, we implemented a prototype in PeerSim and used it to experi-

mentally validate its mechanisms, through simulations of a large-scale system. Namely,

we focused on assessing Parsley’s resilience to churn and the benefits of the PPR tech-

nique, and the trade-offs of our dynamic data sharding mechanism. Our evaluation shows

the big resilience of the overlay to churn and the effectiveness of the PPR technique in

reducing the amount of required merge operations, and consequently the required band-

width for data transfers. Additionally, it presents the trade-off imposed by the dynamic

data sharding mechanism, between storage load balancing and the amount of transferred

data (due to key sharding). The adequate configuration of some hot-spot detectors shows

that they can provide a good balance between both metrics, yielding a positive storage

load balancing for very popular keys at an acceptable cost. Overall, results show that

Parsley does indeed incur in less merge operations, requiring smaller bandwidth costs;

145

CHAPTER 5. PARSLEY: A RESILIENT DHT WITH DYNAMIC DATA SHARDING

achieves high availability in face of (intensive) churn; and promotes good storage load

balancing in the presence of skewed data.

Just to illustrate the big benefit of the group-based approach, imagine the following

scenario. In the perfect case (with some probability), it is even possible for Parsley to

tolerate the simultaneous loss of 60% of the peers in an overlay with 10 000 peers (scat-

tered among roughly 1200 groups), without requiring any topology change (i.e., without

any data loss and without requiring any state transfer among groups).

5.6.1 Discussion

Regarding the PPR mechanism, the evaluation shows its effectiveness in reducing the

amount of merge operations, and consequently the required bandwidth for data transfers.

In situations without peers entering the overlay, Parsley yields a savings of around 15%

in data transfers due to merge operations. In turn, with peers also entering the overlay,

PPR yields a savings of up to 40% in data transfers. Despite the studied alternatives (Push,

Pull, and FPPR) having slightly different results, the overall savings are very similar. The

only difference worth mentioning is that the Push alternative ended up requiring less peer

relocations to achieve almost the same savings in merge operations, when comparing with

FPPR. However, regarding data transfers, the difference between the two is negligible.

Regarding the dynamic data sharding mechanism, there are several considerations

to make. All alternatives with sharding enabled have showed very generous results con-

cerning the reduction of the per group state. With a high skew value of 1.25, the hot-spot

detectors achieved a reduction of 82–92% for the maximum per group state, and a re-

duction of 62–80% for the standard deviation (depending on the configurations) when

comparing with the system without sharding. On the other hand, the results for trans-

mitted messages related with the sharding mechanism show the trade-off brought by this

mechanism. The reduction of the per group state has a direct relation with the amount

of data transferred by this mechanism. Thus, this calls for a careful configuration of the

sharding mechanism, and most importantly, of the chosen hot-spot detector. Despite

the hot-spot detector logic could be injected into Parsley, we provide four different

implementations out-of-the-box: AA, AS, RS, and HTA. Since they use absolute values,

AA and AS seem to be better for scenarios where the object/value size does not vary much

and is know a priori. In turn, HTA achieves the best storage load balancing but at a high

cost, requiring massive data transfers. Lastly, RS shows to be a good choice for high skew

values. Namely, with more restrictive parameters, it offers a good trade-off between load

balancing and required data transfers.

In the end, this sharding mechanism presents an evident overhead of having to trans-

fer data as keys are partitioned. However, if the shards of the most popular/relevant

keys are already in place, and peers know about them, when put operations are issued,

they will be scattered among the existing shards. Thus, effectively balancing the storage

load in the overlay, and working to reduce the required data transfers (i.e., the NewShard

146

5.6. CONCLUDING REMARKS

messages). Therefore, this insight may show evidence that some kind of (background)

shard dissemination mechanism among the overlay peers could be beneficial.

5.6.2 Future Work

Currently, we are implementing Parsley’s approach in a fully-fledged system, in order

to be able to evaluate its behavior in real-world scenarios. More specifically, we are

integrating Parsley as the node clustering process in Thyme GardenBed (see §6).

Additionally, as future work, we highlight the following directions: an integrated

approach to load balancing, taking into account the amount of incoming requests (per

time window) to groups and the specific resources available in each group’s peers; partial

replication inside groups, as another way to tackle storage hot-spots; make the split logic

to consider peers’ resources when dividing a group; implement a resource-aware leader

election mechanism, favoring more resourceful peers; and study more dynamic scenarios

with workloads where the data skewness varies over time.

Another possible direction is the study of other (more intricate) hot-spot detectors.

For instance, trying to use other data indicators, or even machine learning, to understand

which keys are critical. Thus, focusing in the sharding of those keys, as a way of reducing

the data transfers to the strictly necessary.

147

C
h
a
p
t
e
r

6
Data Storage and Dissemination in

Multi-region Edge Networks

“Let everything happen to you. Beauty and terror. Just keep going.
No feeling is final.”
— Rainer Maria Rilke

This chapter reports about data storage and dissemination for co-located mobile de-

vices with access to network infrastructures. More specifically, it reports about Thyme

GardenBed, a framework for data storage and dissemination across multi-region edge

networks, that makes use of both device-to-device (D2D) and edge interactions. In this

work, we address the two lower levels of the network hierarchy and their symbiotic inte-

gration, i.e., the end-user devices and the edge (servers).

We start by introducing some context and motivation in §6.1. Next, we present a

review of some related work and a comparison with our approach in §6.2. In §6.3, we dis-

cuss the design decisions behind GardenBed, the framework connecting edge regions.

After, in §6.4, we detail the whole system, Thyme GardenBed. Then, in §6.5, we pre-

sent the architecture of GardenBed’s caches. Afterwards, we report the experimental

evaluation of Thyme GardenBed in §6.6. We conclude the chapter in §6.7, presenting

our conclusions, some future work, and the publications resulting from this work.

6.1 Introduction

Mobile devices have become pervasive in today’s society, being an essential tool for people

to communicate and perform daily activities or even work-related tasks. Along with the

149

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

soaring introduction of mobile-tailored applications and services, as well as the para-

digm shift of working on-the-go, a recent study predicts global traffic generated by non-

stationary devices will grow 600%, from the seven monthly exabytes recorded in 2016

to 49 exabytes per month in 2021 [56]. This study also confirms that mobile clients will

increasingly offload their interactions and data requests to nearby infrastructure stations,

such as public Wi-Fi hot-spots, instead of cellular networks. Accordingly, the prediction

is that Wi-Fi hot-spot deployment will grow six-fold to 541.6 million in 2021. However,

although the hardware capabilities of these hot-spots have greatly increased, mobile com-

munications still remain a bottleneck for most applications. This is partially caused by

the use of cloud infrastructures, which effectively represent a large-scale communication
hub where many platforms compete for processing power and channel throughput [110].

The edge computing paradigm takes advantage of the resources available at the net-

work edge to bring cloud services closer to end-users. The key insight is that it is more

efficient to communicate and distribute information among nearby devices than to use

distant centralized intermediaries [117]. By processing and storing data near its source,

applications can be more responsive while relieving some of the load from cloud and net-

work infrastructures, potentially also providing increased data privacy and ownership.

Several proposals leverage edge servers to bring (or cache) remote content closer to

the mobile devices [77, 282, 292]. Others, promote D2D communication among nearby

devices to reduce (or eliminate) traffic to cloud services [79, 243, 249]. Our work relates

more closely to the latter. We tackle the challenge of sharing persistent data generated by
mobile devices (e.g., social media, or automatically collected sensory data) among users

in other networks, such as work colleagues in another building or people with similar

interests in a large venue (e.g., a football stadium). The novelty comes from the fact of

doing so without requiring data to persist on edge or centralized services, i.e., data can

reside at its source—in the mobile devices—and be shared through D2D interactions. We

also make a novel use of the edge servers, which do not serve as caches for data stored in

cloud infrastructures, but rather as caches for data generated and available in the mobile

devices. Hence, we cooperatively integrate and leverage both edge servers and mobile

devices to take advantage of a wider range of resources available at the network edge, and

sharing the load between both.

In this chapter, we propose Thyme GardenBed, a framework that leverages both

D2D interactions and edge servers for efficiently storing and sharing content in a network

of networks of mobile devices that spans across several edge network regions, such as

Wi-Fi basic service sets. D2D communication is used for intra-region interactions, such

as obtaining locally available content, whilst edge server communication is used both

to: a) cache data generated by the mobile devices, so that this data may also be obtained

from the infrastructure, and with that move load from the battery-constrained mobile

devices to the servers; and b) make mobile devices aware of content generated in other

regions, and provide the means for such content to be retrieved. Figure 6.1 depicts a

scenario where spectators of a sporting event may share photos or videos of the game.

150

6.2. RELATED WORK

regionregionregion

edge
server

AP

Figure 6.1: Thyme GardenBed example usage scenario in a football stadium [278].

Data sharing within a region may be performed via D2D or by communicating with the

local edge server. In turn, data sharing across regions requires disseminating such data to

the edge servers, announcing its availability to the interested users, and then transferring

it from the edge to the mobile devices.

In summary, the main contributions of the work presented in this chapter are the

following: 1) the Thyme GardenBed framework, which is, to the best of our knowl-

edge, the first content storage and sharing system that makes use of both D2D and edge

interactions across multi-region edge networks; and 2) the framework’s extensive experi-

mental evaluation, both in real world and simulation scenarios—the evaluation includes

the comparison of our approach to one using a cloud infrastructure, and to another using

only mobile devices.

6.2 Related Work

Works such as [175, 191, 245, 290] have dealt with content dissemination in ad-hoc and

delay tolerant networks. Although these works share similarities with Thyme Gar-

denBed, our focus is more on data storage and dissemination between nearby devices

when these are connected to an infrastructure (possibly via multiple access points (APs)).

In this field, we may divide the existing approaches in two categories: systems that use

mobile devices to store/cache data [249, 279, 282–284]; and systems that use edge infra-

structure nodes to store/cache data [9, 273, 292].

Regarding the first category, in [283], the authors define a D2D replication strategy

using information obtained via social graphs, and leverage device mobility to propagate

data among different regions. The proposed solution allows mobile devices, in multiple

regions/APs, to cache data items (from cloud services) based on content popularity and

user mobility patterns. Then, devices can obtain data directly from the content servers,

or through D2D communication, by contacting other devices in range.

151

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

In [279], authors exploit user mobility and propose a mobility-aware caching place-

ment strategy to maximize traffic offloading from the cellular network into D2D links. By

caching popular content at devices, mobile users may acquire required files from close

by user devices via D2D communication, rather than through the cellular network.

PDS [249] focus on data discovery and retrieval on networks of co-located devices. It

is inspired in information-centric networking and mobile devices employ an aggressive

caching policy. Since data is only cached if requested, less popular data may disappear.

In MECCAS [284], the edge network is composed of request and/or storage nodes,

where the former are devices that ask the system to store data and the latter being de-

vices that lend storage resources to the system. It leverages the hardware information of

neighboring devices to dynamically decide which of the storage nodes will be assigned

to store content.

PopPub [282] is a distributed collaborative caching strategy, also inspired in information-

centric networking, where nodes leverage the popularity aspects of each data item to

make caching decisions.

In turn, Thyme GardenBed is able to make caching (and pre-fetching) decisions

using only local information gathered by (and from) the mobile devices in a region. It

makes cautious decisions on what to cache based on a user-defined ranking algorithm

taking into account limited storage. It also employs a functionally symmetric architecture,

where all mobile devices contribute fairly with resources to the system. Furthermore, it

leverages the resources of edge servers to offload some of the storage and management

responsibilities from the more resource-constrained mobile devices.

Contrary to the previous approaches, EdgeBuffer [292] takes advantage of the storage

available at APs to bring content closer to mobile devices, and derives a prediction model

based on network-level statistics. It employs a caching scheme that captures both long-

term aggregated content access patterns and short-term individual user access patterns.

Content prefetching for individual devices is achieved by predicting the next AP a device

is moving to, and at what time. However, this approach leverages on the MobilityFirst

architecture [213], where mobile clients’ network association is logged by the network

itself, thus facilitating mobility prediction.

SDMEC [9] proposes a cooperative mobile edge computing (MEC) storage architecture.

It allows any user device inside the radio coverage of a given MEC node to store data. If

the local MEC node has not enough resources, it stores all possible data blocks locally, and

the remaining are transmitted to other neighboring MEC nodes, searching from closest

to farthest, until all data is stored. Thus, different blocks of the same file can be scattered

across a considerable geographical area.

CoPro-CoCache [273] is a framework that allows edge infrastructure nodes to collabo-

rate on video caching and processing. Multiple edge servers work collaboratively to cache

popular videos in different qualities, thus allowing clients to adapt their requests, e.g., to

network conditions or devices’ characteristics.

Contrasting with all these proposals, Thyme GardenBed capitalizes on the storage

152

6.3. THE GARDENBED CONCEPT

and computing resources from both mobile devices and edge servers, using the latter

to connect multiple network regions, thus allowing the flow of (configurable) relevant

content among regions. By supporting a user-defined ranking algorithm, which is fed

with local application-level information, it provides flexibility, and lightweight statistics

gathering. Also, we specifically address the caching of content generated by mobile

devices. However, Thyme GardenBed is general enough and allows the caching of

content generated from any entity from the upper network layers.

Additionally, there are some works following an identical approach to Thyme Gar-

denBed. In [218], the authors present a case study application for video dissemination

using a hybrid edge cloud architecture, featuring Android devices (possibly connected

through WiFi-Direct) and cloudlets (connected in a WiFi mesh). This system is for sce-

narios with no network infrastructure access. Data is generated by the mobile devices

and introduced into the system. Then, cloudlets work as simple caches, continuously

synchronizing their cached video contents among them. In the end, all nodes (user

devices and cloudlets) work to cache data and allow its sharing. Contrary to Thyme

GardenBed, here, cloudlets have little intelligence, blindlessly caching videos. Simi-

larly to the previous work, Ramble [95], is a system for opportunistic dissemination of

content in environments with limited network infrastructure access. Mobile devices can

share data among them through WiFi-Direct groups, and can connect to cloudlets when

in range. In turn, both devices and cloudlets can connect to the cloud (when available) to

increase the chances of data sharing. Another system [247], uses a centralized server for

video dissemination, allowing mobile devices to interact directly (through Wi-Fi Direct)

to share their data and offload some of the server’s data sharing job.

There exist still other works that address the broad field of mobile edge caching [281],

e.g., for connected cars [164, 293], incentive mechanisms [163], etc. However, Thyme

GardenBed is not just a caching mechanism. It also brings some intelligence to the

edge, by interconnecting edge servers and allowing data to flow among different edge

network regions. Furthermore, to the best of our knowledge, few systems use coopera-

tively the resources of both the mobile devices and the edge servers like we do. We also

highlight that, as far as we know, the majority of these works only provide analytical

studies and/or simulations, whereas we analyze our proposal in both simulation and

real world experiments, providing better insights on how our system should behave in

realistic scenarios.

6.3 The GardenBed Concept

Such like Yggdrasil1, the idea for GardenBed emerged from the desire to interconnect

several individual edge network regions (e.g., APs), in order to aggregate data from dif-

ferent clusters of devices (possibly in the same venue) into one cohesive and consistent

1In Norse mythology, it is the tree at the center of the cosmos, connecting all nine worlds.

153

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

end-to-end storage network. In such scenarios, data generated by devices in the same

venue, although that connected to different APs, might be of interest to many other de-

vices scattered throughout the venue. Thus, when connecting those regions together, we

also call for a way that data would be able to flow between them. Additionally, in order

for this interconnection to be beneficial to all involved parties, it needs to favor reduced

energy costs and communication latency (mostly from the mobile devices’ perspective).

In line with the requirements described above, GardenBed was born, and inte-

grated with Thyme, forming an ensemble of several plantations of Thyme. In order to

make GardenBed more general, we devised a corresponding client middleware compo-

nent, GardenBed Client, abstracting from the data storage system it attaches to. Thus,

GardenBed aggregates and connects networks of any kind of edge storage system that

attaches itself to a GardenBed Client.

Since Thyme works exclusively in the lower level of the network hierarchy (i.e., the

end-user devices), the only way forward was to go up the hierarchy, searching for new

and different resources. Thus, in this case, it meant going to the second level of the

network hierarchy—the edge—, and exploit the resources available there. Accordingly,

as presented in Figure 6.2, GardenBed is the component running on the edge servers,

aggregating the several instances of Thyme running in the network.

With all this in mind, the major requirements already identified are: wide-area data

sharing, reduced communication latency, reduced energy costs, and flexible configura-

tion (of some components).

Regarding wide-area data sharing, edge servers work in multiple ways. First, by being

connected among each other and exchanging periodic requests and replies for data, it

allows for the flow of data between regions. By being a periodic mechanism, it allows

communication batching which enables better bandwidth usage. Next, by using them as

a cache for data from different regions, it allows them to also work as another replica in

the system (with possibly added guarantees), increasing data availability and bringing

data closer to the devices. Also, data exchanged between regions and stored in cache is

filtered by a programmer-defined ranking algorithm. This ranking algorithm allows the

definition of what data is relevant in the system, enabling data to flow among regions,

while at the same time reducing the communication overhead to what is deemed necessary.

All this enables the sharing of data management among the mobile devices and the edge

servers, and places some intelligence at the edge, spending resources judiciously.

Regarding reduced latency and energy costs, on the one hand, since edge servers are

close to the mobile devices (preferably attached to APs), they are able to serve data with

reduced latency when compared to typical cloud solutions. In fact, even sharing data

among edge network regions can provide lower latencies than accessing the cloud. On

the other hand, since mobile devices offload some of the system management to the edge

servers, it works as an energy shift, by moving some of the energy expenditure from the

mobile devices to the edge servers. In the end, this works both to provide access to data

with low latency, and at the same time share the system workload among the entities in

154

6.4. THE THYME GARDENBED ENSEMBLE

the two lower levels of the network hierarchy.

Regarding flexible configuration, edge servers do not have any specific requirements.

They just need to have some computing and storage resources. In turn, GardenBed (i.e.,

the software component) has several configurable components (see §6.4.2), allowing the

proper fine-grained adjustment of the system configuration to the resources available at

each edge server. Nonetheless, edge servers should preferably be connected directly to

the AP of the region they are managing (through a wired connection).

In the end, GardenBed promotes a symbiotic collaboration in three levels: among

devices through D2D interactions, among edge servers, and between devices and their

corresponding edge (region) server. From this, resulting an outcome beneficial to all

actors: the Thyme GardenBed ensemble.

The work in this chapter was developed in the context of the M.Sc. of Vieira [278],

more specifically the GardenBed concept was instantiated in Thyme (with its corre-

sponding implementation and evaluation). My direct contributions in this work were

mostly on the design of the solution and its architecture (and less in its implementation

and evaluation). Following the more precise contributor role taxonomy (CRediT) [10], I

contributed in the following ways to the work reported in this chapter: conceptualization,

software, writing - original draft, writing - review & editing, and supervision.

6.4 The Thyme GardenBed Ensemble

Thyme GardenBed is a distributed system comprising a set of stationary nodes that

execute at the edge of the wired network, and a set of physically distributed mobile nodes.

Stationary edge nodes (that we will refer to as servers) have a 1-to-N relationship with

the wireless APs responsible for managing the regions, as depicted in Fig. 6.1. The servers

can run on the APs (if they have the necessary resources) or on simple micro-computers at-

tached to the APs (like cloudlets). Furthermore, servers may also communicate with cloud

services or external databases if desired, for instance for archival or analytics purposes.

In turn, each mobile node (or client) belongs to a single region (although it may be in

range of multiple APs), or is able to communicate via multi-hop communication to a node

in a region. We do not impose any mobility restrictions, other than those imposed by the

venue they are in, and the natural speed limits of humans. For communication optimiza-

tion purposes, mobile nodes may be clustered in groups (e.g., Wi-Fi Direct groups [265]),

as long as some can communicate directly with the region’s server.

The servers run the GardenBed server component to collectively form a distributed

system at the edge that offers a cross-region time-aware reactive storage (TARS) abstrac-

tion (§3). In turn, mobile devices run a system that enables content storage and sharing

among devices within a region. In this work, we build on top of Thyme (§4), a data

storage and dissemination system implementing TARS in wireless edge environments.

The resulting ensemble, Thyme GardenBed, enables mobile devices to make data they

generate available to peers in multiple regions.

155

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

The published data remains (initially) on the devices themselves (with an option of

replication among region peers, for data persistence), but becomes automatically acces-

sible to others in the same region. The role of the servers is to collect and cache data

published in their region to: 1) make it available to other servers and, subsequently, to

other regions; and 2) to share the burden of data dissemination in a region with the mo-

biles nodes. As a result, mobile nodes are able to retrieve data generated in any of the

connected regions.

On the content-generation side, crossing region boundary is not granted. To limit

the inter-region traffic to what is relevant (and to enable the definition of the meaning of

“relevant data”), region boundary crossing can be subjected to some filtering, coded in a

programmer-defined ranking algorithm.

The system presents a TARS interface, providing the following operations to users:

insert, delete and retrieve data, and subscribe and unsubscribe to queries (through tags

associated with the data objects). Data persistence allows for publications to be visible

to subscriptions issued for the past, as well as for the future (i.e., subscriptions have a

time scope). As a result, nodes joining the system later, or simply facing momentary

disconnection, may still retrieve data published when they were absent. The inclusion of

the delete operation permits the deletion of a previously published data item, so that it

is no longer visible to subscribers. Notifications do not carry data, but only metadata that

includes the data’s location(s). The effective data item retrieval is triggered through the

retrieve operation.

Even more, the data objects’ tags are bound to namespaces, which allow for the coexis-

tence of multiple applications, or different namespaces within an application.

6.4.1 The Mobile Clients

Thyme (§4), in its Thyme-DCS approach, follows a data-centric storage concept, using

a key-value substrate built on top of a cluster-based distributed hash table (DHT). Nodes

are clustered into cells, being that messages addressed to a cell are delivered to all nodes

within. The use of the cluster-based DHT is two-fold: 1) cells are used to store all the

system data; and 2) cells are exploited to match subscriptions against published content,

i.e., acting as virtual publish/subscribe (P/S) brokers. In §4.5, the cluster-based DHT

takes the form of a geographic hash table, enabling Thyme to be used in ad-hoc mode,

where nodes communicate via D2D. In this work, we are more interested in using Thyme

on an infrastructure-based setup, where nodes are connected to APs. Thus, the node
clustering process does not depend on proximity relations but rather on the number of

nodes and the amount of data stored in a region. This clustering process is a research

topic on its own and falls outside the scope of this chapter.

In Thyme, content has associated metadata comprised by, among others, a small

description and a set of tags related with the content. Metadata is indexed by all its tags,

i.e., the cells resultant from hashing each tag replicate the metadata. If desired, the actual

156

6.4. THE THYME GARDENBED ENSEMBLE

GardenBed Server
Cluster-Head Lookup Matching Logic

Notification Priority Policy Ranking

App

GardenBed
Client

Notifications
Retrieve

Delete

P/S operations and
cluster management

Retrieve requests
and cluster data

GardenBed ServerSubscription catalog

Data provisioning

Thyme

Figure 6.2: Architecture of Thyme GardenBed.

content may also be replicated in all the nodes of the publisher’s cell (at the moment of

the publication). A subscription comprises, among others, the query defining which tags

are relevant, and the timestamps defining when the subscription’s time frame starts and

expires. Hashing each of the query’s tags determines the cells where to send the subscrip-

tion. These cells become (virtual) brokers for the subscription, and are responsible for

checking if stored content matches the subscription, notifying the subscribers, if need be.

By inspecting the item’s description (such as a photo thumbnail), a notified subscriber

may then decide to retrieve the item, from the list of received locations, or not.

6.4.2 The Edge Servers

GardenBed is a generic and flexible framework that requires the concrete implemen-

tation of several modules on the server side, as depicted in Figure 6.2. The Cluster-Head
Lookup algorithm determines which is the cluster node to contact when performing oper-

ations over a given data item. The Matching Logic algorithm matches publications with

subscriptions. The Ranking algorithm determines which data items must be uploaded

to the edge. The Notification Priority Policy algorithm determines whether a notification

should be sent by the server, by the mobile nodes, or by both.

As already mentioned in §6.3, edge servers do not have any special hardware require-

ments (or regarding any other resources). Nonetheless, the software component running

on them should be configured taking into account the available resources (and any other

software potentially running there).

Communication between mobile nodes (i.e., clients) and their server is bidirectional,

being that most of it may be directed to the cluster-heads. Client→ server communication

informs the latter of the operations performed within the region, and enables the retrieval

157

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

of data only available in other regions. The local information, named cluster data, is

sent at cluster-level by the cluster-head, and includes the cluster nodes’ subscriptions,

delete operations issued since the last communication round, and statistical data on the

downloads done for each data item—a metric that may be used to rank items according

to their popularity.

In turn, server→ client communication serves four purposes: 1) notify clients about

fresh data, published in other regions; 2) notify clients of changes in the server, so that

clients may update the metadata of a given data item to comply with those changes (e.g.,

the item has been evicted from the server’s caches); 3) retrieve a data item, to be cached in

the server, or to serve a retrieve operation from a client in a remote region; and 4) delete

a data item, so that the client triggers its removal from the system.

As in Thyme, both in the clients and in the servers, we use a plain in-memory hash

table as the native object store (in our case, a concurrent hash map in Java). However, any

other storage engine could be used (e.g., (in-memory) databases).

6.4.3 Intra-Region Publish/Subscribe

The insert operation is purely local to a region, and remains unchanged. Data is kept

on the device that issued the operation, being only replicated among the device’s cluster

members, if active replication is selected (possibly on a per-operation basis). On the other

hand, the associated metadata is stored in the cells resulting from hashing each of the

tags associated with the item (§4.5.1).

Asynchronously to this process, the edge server collects and caches the most popular

items within the region, according to the injected ranking algorithm. The items are stored

in the local popularity cache (LPC) (see §6.5), allowing local clients to obtain the cached

content directly from the edge, as an alternative to inquiring their neighbors; and serving

the subscription needs of clients from other regions. Here, the motivation is to divide the

processing of retrieve operations among clients and servers, so that mobile nodes may

have their battery lifetime extended as much as possible.

In order to make an informed decision about which data items to cache, servers use

the statistics stored in the cluster data. After collecting a significant amount of such data,

the server periodically applies the ranking algorithm to choose the most popular items.

Then, it sends a retrieve request for the associated content (data and metadata) to the

mobile clients, and stores this content in the LPC. From this moment onward, those data

items will be registered as being on the edge by the server, and this information is also

communicated to the head of the cluster responsible for managing the items’ metadata.

It is then up to the cluster-head to disseminate this information within the cluster. The

periodic nature of this workflow will continuously update the LPC to follow the needs

and trends of the mobile clients in the region.

The server also matches every incoming subscribe operation against all the data avail-

able within its caches. To that end, it applies the installed matching logic. Each successful

158

6.4. THE THYME GARDENBED ENSEMBLE

match is followed by a notification to the subscribing clients, if any.

Considering the fact that subscribe operations are transmitted to both the mobile

clients (§4.5.4) and the server, there is a high probability of receiving notifications from

both ends. Therefore, in order to avoid the transmission of duplicate data, Thyme

GardenBed prioritizes the emission of notifications according to the pre-determined

programmer-defined notification priority policy algorithm. To be effective, this decision

must naturally be met by the clients, which must adapt their behavior to the policy de-

fined for the server.

The incoming subscribe operations are also used to compute the region’s subscription
catalog, fundamental for the inter-region global P/S process (see §6.4.4). This catalog

is periodically computed from scratch, so that the server does not have to keep state

information about individual clients.

6.4.4 Inter-Region Publish/Subscribe

To connect multiple groups of clients and their data into one cohesive and consistent end-

to-end storage network, Thyme GardenBed implements the notion of a global (i.e.,

cross-region) P/S process. This has the goal of allowing mobile clients within each region

to access content published locally, but also relevant data published by other users in

distinct venue locations, i.e., other edge network regions.

This process is composed of three main phases depicted in Figure 6.3, and uses two

other caches (see §6.5). The prefetch cache (PreC) stores data and metadata entries for

content originated from remote clients. It is periodically fed with data received from

the rest of the system. In turn, the other regions cache (ORC) stores entries that were

initially in the PreC and were later considered relevant (i.e., effectively retrieved) by at

least one of the region’s mobile clients. The content of the PreC is expected to have a

considerable turnover rate. Hence, moving content deemed relevant to the ORC provides

more persistence guarantees for later access and discovery from other clients.

3

3

PreC

ORC

4

6

7

S - Subscription Catalog
C - Consumption Notification

2 S

2 S1
S

5

C8

Figure 6.3: Global publish/subscribe execution process in Thyme GardenBed [278].

159

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

6.4.4.1 Dissemination of Subscription Catalog

Each server periodically disseminates its clients’ subscription catalog to all the other

servers (step 2). The message contains the server’s PreC size, the number of subscrip-

tions done by the region’s clients up until the moment of transmission, and their actual

subscription catalog by namespace, containing the subscriptions for each tag. This infor-

mation is computed from the continuous flow of incoming subscribe operations (step 1).

6.4.4.2 Provisioning the Subscription Catalog

As already mentioned, inter-server data dissemination and provisioning is a periodic pro-

cess. As a response to the subscription catalog previously disseminated by its peers (i.e.,

the other servers), a server looks up its LPC for content relevant to the needs of each

server (according to the tags specified in the catalog) and sends, in batch, all of the match-

ing data and metadata entries found (step 3).

By making use of the LPC to provision content based on the servers’ subscriptions,

we achieve a much better network utilization and performance, since we guarantee that

only the most relevant (i.e. popular) data is transmitted. Also, the node’s lookup process

is directly executed in-memory instead of having to request the items on-demand from

the mobile clients, and having a direct impact on the latency of the entire process.

The maximum size of each of the server’s caches is configurable, and thus possibly

distinct. This can potentially lead to cases where server A sends much more data than

destination server B can hold in its PreC, resulting in an over-utilization of the network.

Therefore, we capitalize on the received size of the server’s PreC and trim the data to be

sent, by removing exceeding entries, in order to meet the destination’s cache size demands.

Another optimization we employ during the provisioning is to use the subscription count

for each tag, which effectively represents the subscription popularity (or relevance) for

each tag, and calculate the appropriate size within the response to hold the relevant

entries found. Thus, popular subscription tags will have more space in the message,

while the opposite end will have less entries or even none.

Data Filtering. Not all content stored in the LPC may be of interest for a given subscrip-

tion catalog. For instance, Thyme subscriptions are bound to time intervals, and thus

only the publications abiding to the required intervals are useful. Here, the matching
logic is once again applied to filter only the relevant items. The same happens in the

Provisioning the Subscription Catalog phase, when looking up the LPC for data to supply

to another region: the matching logic is applied to filter out obsolete entries (e.g., have

publish timestamps outside of the intended time intervals).

6.4.4.3 Notification of Remote Publications

Upon the reception of a periodic data provisioning message, a server notifies the correspond-

ing subscribers of the data’s arrival, and stores the received items in its PreC (step 4).

160

6.4. THE THYME GARDENBED ENSEMBLE

These will remain there until they are retrieved and moved to the ORC (steps 5 and 6),

or evicted by the arrival of new data.

The turnover rate of the contents of the PreC is expected to be quite high, due to the

intrinsic nature of the global P/S process, which will be more accentuated as the number

of edge servers grows. Thus, moving the consumed items to the ORC allows them to

be stored in a more persistent manner and be easily accessed by other clients. Further

requests to the same items from other clients will result in obtaining the data items

directly from the ORC (step 7). Additionally, since only the items considered relevant

by the local users are moved from one cache to the other, there is a high probability for the

items to also be considered relevant by other clients, since it is expected for geographically-

adjacent users to share similar interests to some degree.

6.4.5 Retrieving Data

Figure 6.4 depicts a simplified workflow executed for this operation. When a mobile

client decides to retrieve a data item, it sends a retrieve operation to its server. It issues a

local retrieval or remote retrieval for, respectively, content replicated in the current region

or not. This information is present in the metadata.

For local retrievals, if the local server finds the desired data in any of its caches, it

promptly serves the request, otherwise forwards it to the mobile replicas within the

region. Regarding remote retrievals, the server performs a lookup for the specified item in

the PreC and the ORC. If the item is not present, the request is rerouted to be processed

in the source region, which first inspects its own caches and, if the lookup fails, retrieves

the data from the mobile replicas. Recall that, if the data item was found in the PreC,

it is moved to the ORC. Additionally, the server notifies the source peer of the fact that

the item was effectively consumed by the current region’s clients, in what we call the

Consumption Notification Optimization (step 8 in Figure 6.3). By doing this, the source

Mobile
Client

Local Mobile
Replica

Remote Mobile
Replica

has
item?

Local Edge
Server

is item from
remote
region?

has
item?

has
item?

No

Yes

No Yes

Yes

No

Yes

No

Data item

D
ata item

Fail

has
item?No

Yes

Data item

Fail

D
ata item

Remote Edge
ServerFail

Figure 6.4: Workflow of the retrieve operation triggered by a mobile client (red circle) in
Thyme GardenBed. The colors of the decision flows determine who executes them.

161

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

metadata(item)

hash(item) =

Figure 6.5: Local indexing of a remote data item in Thyme GardenBed.

server records this information and does not send the specified item again in the next

n Provisioning the Subscription Catalog phases, saving network bandwidth (since the item

is already in that server’s cache).

When a server receives the reply to a remote retrieval with data from another region,

before routing the requested item to the client, it proactively caches the incoming data in

its ORC (since it is considered relevant). Thus, consequent requests to the same item, by

users in the same region, will be served directly by the nearest server’s cache.

Also, when a mobile client or a server tries to retrieve an item from a mobile replica,

instead of asking just to one of the replicas, the actual implementation of this workflow

takes into account all the possible mobile replicas for that item. Thus, it iteratively asks a

subset of those replicas (during a retry procedure), until the data is successfully retrieved.

6.4.6 Local Indexing of Remote Data

The first client to retrieve a data item inserted in another region will cause the item to

move from the server’s PreC to the ORC, so that it may be available to other clients in the

region (steps 5 and 6 in Figure 6.3).

Furthermore, we also allow the indexing of the given item by the mobile clients, as

portrayed in Figure 6.5, so that it may be served via D2D. The time-to-live (TTL) of

these items may be set in the system’s configuration file. If the item is later evicted from

the server’s cache, the correspondent cluster(-head) will be notified to update the item’s

metadata. From that moment onward, the item will only be available via D2D, until

its TTL expires. However, a new increase in popularity may cause it to be, once again,

available from the edge and re-indexed in the region.

6.4.7 Deleting Data

The delete operation has a global scope, since the item to remove may have crossed the

boundaries of the current region (§6.4.4), and thus may be cached in several servers, and

even be indexed in multiple regions. Hence, as illustrated in Figure 6.6, whenever a server

162

6.4. THE THYME GARDENBED ENSEMBLE

delete(item)

hash(item) = hash(item) =delete(item)

delete item from all caches

delete(item)

Figure 6.6: Delete operation in Thyme GardenBed [278].

receives a delete operation, it removes the entries associated with the referenced item in

all of its caches (if present).

Moreover, except for the server of the region emitting the operation, they also propa-

gate the operation to the cluster-head responsible for handling the item’s metadata, for

it to execute the operation locally. This workflow effectively guarantees that an item is

indeed persistently removed from the system.

6.4.8 Election and Role of the Cluster-Head

Every cluster (or cell) has a cluster-head responsible for interacting with the server, to

transmit the cluster data and receive communication directed to the cluster, i.e., to all clus-

ter members. This approach trades-off the over-utilization of a single node’s resources

within each cluster for the resources needed to proactively keep cluster membership in

the server, which would otherwise be necessary to reduce the overhead of failed commu-

nication attempts with clients that are offline or already left the system.

To avoid strict and computationally-heavy coordination between all nodes of a given

cluster, the cluster-head election makes use of a stability index. This index is computed

from local hardware information (e.g., battery percentage, or the device’s resources) which

tries to indicate the probability of a node leaving the network voluntarily (e.g., through

movement) or involuntarily (e.g., through shutdown due to low battery). This information

is then piggybacked in Thyme’s maintenance messages (i.e., periodic beacons), so that a

node may compare its index to that of its neighbors.

At each cluster data dissemination cycle, each node compares its stability index

against that of its neighbors: the node with the highest value starts the dissemination

process. In the event that two or more nodes have the exact same stability index, we break

the tie using their identifiers. A node that joins the network will wait for a predetermined

amount of time to track the stability index of all other cluster nodes, before being able

to join the pool of stable-ready nodes. Cluster data dissemination is confirmed by broad-

casting the indexes’ timestamp to all cluster members. The absence of this information,

triggers a new cluster-head election and the resend of the cluster data.

163

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

Since the described process has weak and eventual coordination properties, it is pos-

sible for more than one node to establish itself as the cluster-head. To avoid duplicating

and skewing cluster data information, we use back-offs to desynchronize the cluster data

emission, and the edge server keeps track of the latest received timestamp for each cluster.

6.4.9 Dealing with Mobility and Churn

Mobility within a region is not disruptive, as long as the device remains connected to the

AP, since the clustering process is not bound to location information. However, mobility

may cause a client to leave a region. When so happens, the client’s absence is eventually

detected, when another mobile node or the server attempts to contact the absent client

for data notification or retrieval purposes. In such case, the node’s persistent publications

will still be managed by the system, as long as there are resources to do so. However,

subscriptions will eventually be discarded, and this information later propagated to the

server as part of the cluster data. From that point onward, the node’s subscriptions will

no longer be processed in the abandoned region.

If the absence is temporary, it may not have been detected and everything continues as

before. Otherwise, it is as if the node is entering a new region. In such situation, the node’s

subscriptions must be (re)installed in the entering region. This is done automatically

as soon as a server is found. To avoid receiving duplicate notifications of previously

published data, the lower end of the time interval is internally updated to the one of the

latest publication received.

6.5 The Anatomy of GardenBed’s Caches

From Thyme GardenBed’s perspective, namespaces are distinct execution contexts.

Thus, in order to provide their service to all the connected clients, independently of their

namespace, servers adapt to the size and needs of each namespace’s population.

For that purpose, we developed a namespace-sensitive caching model that we called

adaptive multipart caching (AMC). Contrary to a single cache, AMC is an array of caches,

one for each namespace within the region, as depicted in Figure 6.7. The goal is to relax

the management and size of the caching space assigned to each namespace. If the overall

needs of a namespace changes (e.g., due to an increase of its population) and requires an

increase in cache size, AMC will adaptively fulfill such request without ever exceeding the

configured maximum global cache size, decreasing the size of the other caches, if needed.

The repartitioning mechanism calculates the fraction among the namespaces’ expected

cache size and the whole expected cache size, if no limits were imposed to the number

of entries being inserted in both cases, and then scales this value to the effective (and

configurable) AMC total cache size.

One of the main advantages of this model is that it dampens the negative impact of

scenarios where there is a short burst of a large amount of retrieve operations coming

164

6.5. THE ANATOMY OF GARDENBED’S CACHES

Cachens1 Cachens2 Cachens3 Cachens4

AMC Total Cache Size

Figure 6.7: Adaptive multipart caching structure used in Thyme GardenBed.

from a single namespace. Although this could simply be a non-recurring and one-time

event, the rising popularity of the target items frequently leads to a considerable amount

of new cache entries, which could result in an overshadowing and ultimately a complete

eviction of the previously cached data. The AMC approach smooths this process, prevent-

ing short popularity bursts to strip away a big amount of cache space in one sitting. If,

indeed, this popularity trend continues, AMC will gradually increase the namespace’s

cache size, and with that fit the needs of the clients. For the specific cache implementation

we used Caffeine [80].

The LPC is composed of a single AMC. Although the items to be cached are retrieved

from the mobile devices one at a time, their insertion in the cache is periodic and per-

formed in batches. This approach is a trade-off between the number of times the AMC

repartitioning is executed (which is an expensive operation) and the time it takes for

an item to be available from the edge. Figure 6.8 depicts how the batch-insertion timer

integrates with the timer that triggers the ranking algorithm.

In turn, the PreC is the only one that does not make use of the AMC model. This

is because Provisioning the Subscription Catalog (§6.4.4.2) is already namespace-sensitive,

and thus the use of AMC would be redundant. Instead, the PreC comprises two one-

dimensional disjoint caches: one for the metadata and another for the data. Having

distinct caches with configurable sizes increases and encourages the discoverability of

new items created throughout the entire system. The insight is that, since metadata are

expected to be considerably smaller (when compared to data entries), the metadata cache

can store a lot more entries before reaching the same memory footprint of the data cache.

Consequently, if a data entry is evicted but the associated metadata entry is still cached,

it is still possible for a client to obtain that data item: the server verifies the requested

Batch-Insert
received items

(B-I RI)

B-I RI B-I RI

𝛾

B-I RI B-I RI B-I RI

𝛾

Increment execution counter
Choose most popular items

Send retrieve request to chosen items’ replicas

…
…
...

…
…
...

Ranking Decision Timer

Processing slack
Batch-Insert Timer

𝛾

Figure 6.8: AMC timer scheme for inserting items in the cache used in Thyme Gar-

denBed [278].

165

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

Table 6.1: Mobile devices specifications for Thyme GardenBed Android experiments.

Motorola Nexus 6 Motorola Moto G (2nd gen.)

CPU Quad-core 2.7 GHz Quad-core 1.2 GHz
RAM 3 GB 1 GB
Storage 32 GB 8 GB
Battery Li-Po 3220 mAh Li-Ion 2070 mAh
Wi-Fi 802.11 a/b/g/n/ac 802.11 b/g/n

data is not stored locally, checks the associated metadata and, based on that, routes the

retrieve request to the source region.

Lastly, the ORC’s structure is similar to the one of the PreC, however each of the

disjoint caches—one for metadata and another for data items—uses the AMC model.

Unlike the LPC, items are inserted individually as they arrive, rather than in batches.

Thus, the repartitioning workflow is only triggered after a configurable number of inserts

have been performed in one of the caches.

6.6 Evaluation

To fully evaluate the behavior and workflows of Thyme GardenBed, we segmented the

testing scenarios into two distinct environments: real world and simulation experiments.

6.6.1 Real World Experiments

Thyme GardenBed can be used to implement a plethora of use cases and applications

that run at the edge (see §7). One specific use case is a photo gallery application (§4.6.4)

that allows users to share photos without resorting to centralized services [47]. This

app supports the subscription of tags, and the publishing and download of photos in

different galleries. In this real world assessment, we utilized several Android smartphones

described in Table 6.1: three Motorola Nexus 6, and three Motorola Moto G (2nd gen.),

all with Android 7.1.1.

Moreover, in order to grasp how the system would perform if executed in a real world

equipment, we used a computer laptop running an instance of the GardenBed server,

directly connected to a consumer-grade wireless router. We also limited the number of

cores used by each GardenBed server instance to 16 [1].

6.6.1.1 Latency versus the Cloud

One of the goals of Thyme GardenBed, as well as other edge-related systems, is to

provide a better user experience to the nearby clients by having higher performance and

lower latencies, when compared to systems deployed solely in the cloud. Therefore, since

we are expecting retrieve operations to dominate the mobile clients’ traffic, we compare

our system’s latency against a cloud infrastructure, when answering to retrieve requests

166

6.6. EVALUATION

5 KB 500 KB 1 MB 5 MB 10 MB 50 MB
0.01

0.1

1

10

100

File size

L
at

en
cy

(s
)

LMR LS RS RMR Cloud

Figure 6.9: Retrieve operation latency in Thyme GardenBed [278].

from the mobile clients. To set up this evaluation scenario, we stored files of different

sizes in the Amazon web services (AWS) [2] S3 cloud storage service (using the closest

data center to our setup, mounted in our department building).

To evaluate the cloud counterpart, we downloaded each file multiples times, at various

times of the day, and computed the average measured latency. Regarding our system, we

measured the retrieve latency for all the possible scenarios:

Local mobile replica (LMR) - the retrieve request is sent to a mobile node that is cur-

rently replicating the item within the same region;

Local server (LS) - the operation is served directly by the local edge server;

Remote server (RS) - the item is not replicated by a neighboring mobile node nor by

the local edge server, but is in the LPC of the server where the item was originally

published, i.e., the retrieve request is routed from one edge server to another; and

Remote mobile replica (RMR) - the same as before, but the item is not in the server’s

LPC and hence must be obtained from a mobile node in another region.

The results across all scenarios are depicted in Figure 6.9. We may observe that, in

Thyme GardenBed, retrieving a data item from the local or remote servers present

the best results, and these are relatively close across all file sizes. This is expected since

inter-server communication is usually much faster than Wi-Fi communication. We may

also see that our approach provides lower latencies than the cloud infrastructure, when

downloading the same file, and this gap widens as file size grows.

167

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

Insert Subscribe Delete Unsubscribe Retrieve
0

100

200

300

400

Operations

L
at

en
cy

(m
s) D2D

Edge + D2D

Figure 6.10: Operations latency in Thyme GardenBed [278].

6.6.1.2 Latency versus Only D2D

Given that latency is a critical metric in user-centric services, we delve further into this ele-

ment and quantify the speedups awarded by the edge servers wrt. each Thyme operation,

when compared with the system using only D2D. Here, we use small data items—with 64

bytes for both the photo and its description—to determine the latency baseline without

getting much affected by the transfer time. Furthermore, we only utilized the Motorola

Nexus 6 smartphones to estimate the operations’ latency in order to minimize disparities

among hardware readings.

Figure 6.10 showcases the average measured latency of all operations. For D2D, the

base values represent the latency when the sender is two hops away from the operation

receiver, while the negative error bar shows the value for one-hop communication. In

turn, the error bar in the Edge + D2D retrieve operation depicts the latency when the

request is sent to the local server instead of a mobile node.

From this chart stems the fact that multi-hop routing has a considerable impact on

the overall latency of an operation, resulting in a 170% increase, on average. Although

the routing procedure is logically non-demanding, its workflow is almost entirely I/O

bound, which contributes, on a higher degree, to the delay. When eradicated the routing

middleman, D2D falls back to a mode similar to our approach, where peer-to-peer com-

munication channels are established directly. In such context, the introduction of edge

resources and additional edge logic produces latencies equivalent to the ones obtained in

the D2D best case scenario (i.e., one-hop).

In the particular case of the retrieve operation, Thyme GardenBed brings consid-

erable speedups when the request is served directly by the local server, leading to a ∼33%

latency reduction. From all operations, insert and retrieve are the ones more susceptible

to file size, as the file and its description are transferred, resulting in increased traffic,

and therefore larger latency. The remainder present overall similar results, as they are

independent from the file size.

We now further test the retrieve operation with different file sizes, in Figure 6.11. As

estimated, the retrieval latencies for the 500 KB, 1 and 5 MB files follow approximately

the 170% additional delay when comparing the two-hop routed workflow against the

D2D approach. Similarly, we verify that the latency difference by getting the item from

168

6.6. EVALUATION

500 KB 1 MB 5 MB
0

0.5

1

1.5

2

Object Size

L
at

en
cy

(s
) D2D Edge + D2D

Figure 6.11: Retrieve latency varying object size in Thyme GardenBed [278].

the edge server is consistent with the initially recorded 33% decrease. Thus, to retrieve

a 5 MB file, a client using Thyme GardenBed will take around 0.7 seconds (and

approximately 0.3 seconds if the item is available from the edge), which we argue to be

completely reasonable for real-time, interactive applications.

6.6.1.3 Battery Consumption

Device battery consumption is also a critical metric that needs to be taken into account,

particularly in mobile edge systems that crowd-source resources from the mobile clients.

To acquire a perception on the impact of using the edge infrastructure, we measured

the battery footprint—in Joule—needed for a mobile device to execute each operation

in both system configurations: Edge + D2D and only D2D. However, since the system

is comprised by a set of nodes working cooperatively, we tracked not only the sender’s

battery overhead but also that of every node essential to the transmission and processing

of an operation. As in the previous section, we utilized 64 byte photos and descriptions2,

and a single edge server. Moreover, these tests were limited to the Motorola Nexus 6

smartphones to reduce the hardware variance.

Figure 6.12a shows the average battery utilization using only D2D, from the stand-

point of the sender, a single router, and the recipient that processes the request (and

sends the response back to the sender). We verify that all operations carry a very similar

cumulative battery footprint, close to 2 Joule (about 0.0045% of battery for the Motorola

Nexus 6). Individually, the sender uses an average of 0.55 Joule while the recipient con-

sumes 0.51 Joule. On the other hand, the router utilizes approximately 0.89 Joule, which

makes up the bulk of the entire operation’s cumulative battery consumption, at 46%.

Also, the router battery usage component is foreseen to grow somewhat linearly with the

amount of intermediate hops.

Next, Figure 6.12b presents the results for Edge + D2D (RS and RM are retrieve op-

erations replied by the server or by a mobile node, respectively). Due to the absence of

multi-hop routing, the cumulative metric only comprises the sender and recipient. Con-

sequently, when multi-hop routing comes into play, the edge-backed solution presents a

2Naturally, as Figure 6.11 shows, larger image sizes mean higher latency and proportionally higher
battery consumption.

169

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

Ins Sub Del Uns Retr
0

1

2

3

Operations

E
ne

rg
y

(J
)

(a) D2D.

Ins Sub Del Uns RM RS
0

1

2

3

Operations

Sender Recipient Router

(b) Edge + D2D.

Figure 6.12: Operations’ energy usage in Thyme GardenBed [278].

much lower battery utilization for every operation (with a 37% improvement on average).

The lower-end is improved even further when a retrieve is successfully processed by the

edge server, thus eliminating the recipient from the equation, and becoming the least

resource-intensive operation, using a total of 0.5 Joule. On the other hand, the downside

of including the edge resources is most noticeable on the subscribe and delete opera-

tions, as they were modified to also send the message to the server, leading to a battery

consumption increase of approximately 61% on the sender.

The presented measurements are incredibly small to paint the full picture and give a

sense of a real-world scenario and utilization. Thus, we calculated how many times each

operation would have to be executed, by each of the system actors, in order to drain 1%

of the Motorola Nexus 6’s battery (equivalent to around 440 Joules) and showcase the

results in Table 6.2 (the higher the values, the better). As we can verify, there is a direct

impact which is bound to happen when the system is altered to also take into account

the infrastructure layer as part of the operations workflow. However, we believe that the

gathered results exhibit an acceptable view of the system’s performance, proving that

Thyme GardenBed can be used throughout small to medium duration events without

presenting an excessive energy consumption to the users’ devices.

On the other side of the spectrum, Figure 6.13 illustrates the battery consumption of

operations that are specific to Thyme GardenBed: finding the nearest server through

Table 6.2: Number of executed operations to reach a 1% battery consumption in Thyme

GardenBed (∗left - sent to a mobile node; right - sent to the edge server) [278].

Insert Delete Subscribe Unsubscribe Retrieve

Sender
D2D

Edge + D2D
761
761

832
528

815
493

819
819

782
782/873∗

Router
D2D

Edge + D2D
481
—

506
—

497
—

499
—

493
—

Recipient
D2D

Edge + D2D
833
833

878
878

875
812

875
829

851
851/—∗

170

6.6. EVALUATION

Infra probe Elec Cluster data
0

0.5

1

1.5

Operations

E
ne

rg
y

(J
)

Figure 6.13: Energy usage for edge-specific operations in Thyme GardenBed [278].

multicast probing, cluster-head election, and emission of cluster data (only cluster-heads).

From this plot, we can identify that the “Infrastructure Probe” workflow is the operation

that requires the largest amount of battery. This is due to the Android-related mecha-

nisms for handling multicast, which can cause a noticeable battery drain3. Yet, since this

operation is only executed once when a mobile node joins the network, we consider its

impact to be negligible.

Concerning cluster data dissemination, the vast majority of nodes within the system

will simply execute the election process during each dissemination round, while only

one per cell will go further and disseminate the actual data to the server (i.e., the cluster-

head). To consume 1% of the device’s battery: 1) a non-cluster-head node has to process

approximately 6500 rounds; and 2) a cluster-head node has to disseminate cluster data

around 853 times to a server. In the end, we argue that the overheads caused by these

edge-only additions are completely acceptable due to the minimal battery consumption

and the benefits they bring.

6.6.1.4 Overloaded Clusters

A disadvantage of Thyme’s P/S (cluster-based) approach lies when only a few topics/tags

are popular. For instance, during a football match in a stadium, users are expected to

subscribe and publish most of the data on tags related to the name of the playing teams or

tag “goal”. Consequently, the majority of the operations will be disseminated to the cells

that are indexing those topics, resulting in an overload of the nodes residing within those

cells, while leaving others with a much lower workload. This situation can escalate even

further if we consider a worst-case scenario where the small set of all the popular tags are

indexed by a single cell. Therefore, we assess the benefits of using the edge infrastructure

in these skewed cases. To achieve this, we implement a scenario that mimics a real-life

event at a football stadium: after a team scores a goal, 100 new items with the topic “goal”

are inserted, and users issue subscriptions for that topic, one in every second, during a

total of 300 seconds.

The results in Figure 6.14 confirm one of the benefits of having edge servers. As a

region’s server continuously caches the generated (popular) items, the subscribers start to

3https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock

171

https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

0 50 100 150 200 250 300
0

50

100

Subscriptions over time

#M
et

ad
at

a
it

em
s

re
tr

ie
ve

d D2D
Edge + D2D

Figure 6.14: Notifications sent from mobile nodes in Thyme GardenBed [278].

receive less and less notifications through mobile means, as these are increasingly coming

from the local server.

Figure 6.15 transposes the gradual mobile traffic reduction with the addition of the

infrastructure resources, into battery utilization, showing a 44% reduction for Thyme

GardenBed.

In conclusion, we are able to drastically reduce the mobile nodes battery consumption

with our subscription workflow. Even though we are trading off a bit of the operation

sender’s battery life to achieve this, we expect the recipient’s battery savings to grow

linearly with the total amount of published items that are stored in the infrastructure. On

the other hand, the impact on the sender is predicted to essentially stay the same, since

the messages transmitted by it are completely independent of these variables.

6.6.2 Simulating Mobile Devices

In order to assess the scalability of Thyme GardenBed without hardware limitations,

we resort to the simulation of the mobile nodes. To that end, we developed a custom

trace-based simulation framework that offers a total rework of the system’s networking

layer, to support logical dissemination of messages among any number of virtual nodes.

We simply deployed the required number of edge server instances and connected all the

virtual nodes to them, in order to define the regions.

Here, we use a university scenario: half of the students attend a course lecture, fol-

lowed by an intermission and, after that, the rest of the students attend the course’s

D2D Edge + D2D
0

200
400
600
800

1,000

System

E
ne

rg
y

(J
)

Figure 6.15: Total energy usage on over-utilized nodes in Thyme GardenBed [278].

172

6.6. EVALUATION

0 10 20 30
0

200

400

600

800

Ranking round
#I

te
m

s
re

qu
es

te
d

W/o rank.
W/ rank.

Figure 6.16: Number of data items requested by the server to mobile clients per popularity
decision round in Thyme GardenBed [278].

second daily lecture of the same class. During each lecture, 15% of the attending stu-

dents subscribe to all the lectured topics right at the beginning and are more predisposed

to inserting items throughout the entire lecture (e.g., the “good” students). The rest of

the students have a lower interaction rate and will only start to contribute after a prede-

termined amount of time into the lecture (e.g., the “regular” students). Throughout the

entire duration of the trace, all users will be subscribing and inserting items with other

topics that are relevant and global to the entire university. Each lecture is 45 minute long

with a 10 minute intermission, totaling 100 minutes. For most of the students, subscrip-

tions were issued randomly throughout the lecture until all of the topics were met. Insert

operations were generated with a rate of 30 and 5 per user per hour for good and regular

students, respectively. Regarding university related topics, subscriptions were generated

with a rate of 10 per hour, for all students, while insert operations were delivered with a

rate ranging from 10, for students outside the lecture, and 2 per hour, for students cur-

rently attending the lecture. To further simulate realistic interactions and reaction times,

retrievals are issued with a 70% probability and within 30 seconds of the notification

arrival. All tests were executed with 100 virtual nodes per region.

6.6.2.1 Ranking Algorithm

Here, we evaluate the advantages of filtering data requested by the server, i.e., popularity

ranking. For that, we track the number of retrievals initiated by the server to populate

its LPC, as well as the latter’s hit ratio. To that end, we deployed a single GardenBed

instance and analyze the first 30 ranking rounds.

Figure 6.16 presents the number of item requests made by the server during each

ranking round, in both scenarios. While the first few rounds are similar (i.e., both are

warming up the LPC), subsequent rounds for the scenario without the ranking algorithm

show a constantly increasing amount of item requests that follows the rate of which new

items are inserted. The use of a ranking mechanism stabilizes the number of requests after

the LPC is full. Onward, only small adjustments to the LPC’s contents are made (never

requesting more than 70 items at any given round).

Moreover, Figure 6.17 shows that the LPC hit ratio when using the ranking algorithm

173

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

W/o rank W/ rank
0

10
20
30
40
50

Scenario
L

P
C

hi
t

ra
ti

o
(%

)

Figure 6.17: Popularity ranking and the LPC hit ratio in Thyme GardenBed [278].

presents far better results, namely a 10% increase. Thus, we conclude that even with

our coarser approach for calculating popularity ranking, we are able to provide a better

storage utilization through an acceptable amount of requests per ranking round. We can

further correlate these findings with a lower battery and processing utilization from the

mobile nodes, as we are able to reduce the amount of items that are mindlessly offloaded

into the edge, while still successfully serving 44% of the received retrieve requests, which

would have to be processed by mobile replicas otherwise.

6.6.2.2 Consumption Notification Optimization

Here, we evaluate the potential benefits of using the proposed Consumption Notification
Optimization mechanism (§6.4.5).

Figure 6.18 shows the comparison between using the consumption notification ap-

proach versus no notification, in terms of the number of items that are sent from a server

to another during each data provisioning round. As we demonstrate, the number of items

sent between edge servers during every Provisioning the Subscription Catalog phase, after

the first execution, is always lower when using the proposed mechanism. On average,

this translates in a reduction of approximately 40% of items sent per round.

6.6.2.3 LPC Batch-Insert

Here, we analyze the behavior of the LPC batch-insert mechanism described in §6.5, in

order to evaluate its trade-offs. We compare the batch-insert approach (described in

0 2 4 6 8
0

20

40

60

Data provisioning round

#I
te

m
s

se
nt W/o not. W/ not.

Figure 6.18: Impact of consumption notification in Thyme GardenBed [278].

174

6.6. EVALUATION

2 3 4 5 6 BIBR
0

5

10

15

Inserts per cycle

#I
te

m
s

se
nt
×1

03

Figure 6.19: Number of items served by the edge server in Thyme GardenBed [278].

Figure 6.8) against another approach that batch-inserts all received items right before

the next execution of the ranking algorithm (BIBR in the plots). Another alternative is

to insert the items in the cache individually, as they arrive at the server. In fact, up until

the moment the cache is full, this approach serves more retrievals from the edge than

the alternatives, since items are available to the users sooner. However, with a full cache,

inserting items one by one renders the AMC mechanism futile, and hence precludes the

cache’s dynamic space management.

The setup for this experiment used one server running in a Intel® Xeon® E5-2620 v2

@ 2.10 GHz and 64 GB of RAM. We kept track of the time the server spent processing

the LPC’s AMC, as well as the number of retrieve operations it served (triggered by the

mobile nodes). The period of the ranking algorithm timer (i.e. the cache update period)

was set to 30 seconds. The number of batch-inserts per ranking round ranged from 2 to 6.

Bigger values would degenerate in the “insert on arrival” scenario.

Figure 6.19 exhibits the number of download requests served by the server, for both

approaches. Being bound to a 30 second cache update period, BIBR performs naturally

worse, with the server only serving ∼9 000 items to the clients. The batch-insert approach,

even with only two inserts, increases the number of items sent in ∼2 500, which is roughly

a 25% improvement. Onward, performance increases at a slower rate, going from ∼11 500

items in the 2-batch approach to ∼14 000 with 6 batches.

On the other hand, in Figure 6.20, we observe the CPU time needed to process the

AMC algorithm. Here, the increased visibility provided by our solution correlates with

a higher processing overhead, that grows sub-linearly with the amount of batches. In

the BIBR approach, the AMC processing overhead was ∼500 ms, while when batch-

inserting 2 and 6 times per round, this accounted for 515 and 729 ms, respectively.

In the end, this presents a trade-off that the application developer will have to analyze

in order to fine tune the system for its needs and achieve a better performance. For

instance, if a considerable amount of items are published every ranking round, leading to

a higher content turnover in the caches, the developer will be able to adjust the properties

for this workflow and increase the number of batches per round in order to consequently

increase the visibility of newly created items.

175

CHAPTER 6. DATA STORAGE AND DISSEMINATION IN MULTI-REGION EDGE

NETWORKS

2 3 4 5 6 BIBR
0

200

400

600

800

Inserts per cycle

C
P

U
ti

m
e

(m
s)

Figure 6.20: CPU time spent on the AMC used in Thyme GardenBed [278].

6.7 Concluding Remarks

In this chapter, we present Thyme GardenBed, a framework for content storage and

sharing for mobile devices in multi-region edge networks. It cooperatively and symbi-

otically leverages both D2D interaction and edge servers to allow the flow of content

in networks of mobile devices spanning across edge network regions. We further detail

Thyme GardenBed’s mechanisms and its intricate caching model. At a high level, this

work can be seen as a data storage and dissemination system for a wide-area setting, like

a campus, a music festival, or an amusement park.

To fully evaluate the behavior and workflows of Thyme GardenBed, we segmented

the testing scenarios into two distinct environments: real world and simulation experi-

ments. Overall, our evaluation shows low response times, allowing interactive usage, and

low energy consumption, thus supporting its usage in a variety of events without exces-

sive battery drainage. Furthermore, compared to a cloud solution, Thyme GardenBed

yields considerable latency speedups.

6.7.1 Discussion

In general, Thyme GardenBed makes a fundamental energy shift. With GardenBed,

we introduced edge resources into the system, which can be inherently more powerful

and capable than client devices (mainly regarding energy). This way, it allows us to

optimize and offload a portion of the requests’ processing and data from the clients into

the stationary devices. Ultimately, saving energy in the mobile devices and lowering their

processing overhead. In the end, some of the energy that before was expended by the

mobile devices for processing requests and managing the system is now shared between

the devices and the edge servers, creating a symbiotic relation among them. Since edge

servers usually can have unlimited energy, this overhead shift can be very desirable, i.e.,

the added system complexity is offset by the shift in energy expenditure (from the mobile

devices to the edge servers).

Furthermore, because edge servers can be connected through wired means to other

servers, we essentially overcome the mobile devices’ wireless range limitations, enabling

the possibility of distant clusters of users to interact with one another indirectly. On the

176

6.7. CONCLUDING REMARKS

other hand, by having users take an active role in the system, we are able to minimize the

chances of the infrastructure being overloaded or a single point of failure.

6.7.2 Future Work

Thyme GardenBed is already a fully-fledged system, however there is always room

for improvements. As future work, we highlight the following directions: the quanti-

tative comparison with other edge-caching works from the literature; an adaptive (and

lightweight) ranking algorithm with a decaying function; allow a dynamic membership

of edge servers; and inter-region node mobility-awareness, leveraging devices’ mobility

to opportunistically propagate content to other regions.

6.7.3 Publications

The work reported in this chapter resulted in the following publications:

• Data Storage and Sharing for Mobile Devices in Multi-region Edge Networks [246].

João A. Silva, Pedro Vieira, and Hervé Paulino. In Proceedings of the 21st IEEE In-

ternational Symposium on a World of Wireless, Mobile and Multimedia Networks

(WoWMoM). Online, 2020.

177

C
h
a
p
t
e
r

7
Beyond Thyme: The Edge Garden Ecosystem

“The true sign of intelligence is not knowledge but imagination.”
— Albert Einstein

During the thesis, the developed work evolved and forked into multiple research direc-

tions pursued by different Master students (and myself), in what we called the Edge Gar-
den ecosystem. The majority of these works are based on and derived from Thyme (§4),

and also Thyme GardenBed (§6). Some of them are Master’s theses (some concluded

and others ongoing) in which I have been (and are) involved, i.e., in which I collaborated

and supervised.

In the first two sections, §7.1 and §7.2, we present Ephesus and Jumper, respec-

tively, works that I pursued before Thyme. Then, in the next five sections, §7.3, §7.4, §7.5,

§7.6, and §7.7, we present Oregano, Basil, PS-CRDTs, Peppermint, and Wasabi,

respectively. These are all concluded M.Sc. theses. In the remainder sections, §7.8, and

§7.9, we describe Chives, and Basilicum, respectively, both M.Sc. theses that are still

ongoing. We conclude the chapter with §7.10, by presenting our final considerations

regarding the featured works.

7.1 Ephesus: Ephemeral Storage for Mobile Devices

This work resulted from the Master’s thesis of Ricardo Monteiro [177], entitled “Dis-

tributed Storage in a Cloud of Mobile Devices”, which was later extended and reworked

by myself.

As already mentioned, mobile devices are a big source of user-generated content, and

users want to share that content among them. Thus, Ephesus appears as an alternative

to typical data sharing solutions among mobile devices, such as centralized systems (e.g.,

179

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

Dropbox) or pair-wise device-to-device (D2D) file exchange applications. It is an ephem-

eral distributed data storage system for networks of mobile devices, where users can

asynchronously publish their own files and obtain files that have been shared by others.

The ephemeral attribute emphasizes the fact that an instance of the system will only exist

as long as there are devices supporting it. It is entirely supported by a set of intercon-

nected mobile devices, thus not requiring any kind of Internet access. Hence, as soon as

the last device disconnects, the system will cease to exist and the data it stored will no

longer be accessible.

The system provides a key-value store interface with operations put, get and remove,

and is extended with a list operation. The latter inquiries the storage’s global state,

which in the mobile wireless environment may incur in considerable latency and energy

consumption. To reduce both latency and energy consumption, it employs a lightweight

best effort and eventually consistent listing mechanism. In turn, to meet the volatil-

ity of the target environment, the solution is designed to be resilient to churn, i.e., the

ingress/egress of devices into/from the system, to some extent, and also to leverage data

replication in order to guarantee data persistence and availability in a best effort way. Ad-

ditionally, energy limitations of the individual devices are taken into consideration and

the system is designed to be energy-aware and fair in the amount of consumed resources

from each participating device.

A prototype of the solution was developed in Java, based on a preexisting distributed

hash table (DHT)1, and used to build a photo sharing Android application, as a case

study. The application runs in out-of-the-box Android devices without the need to root

the operating system. Overall, the experimental results show that Ephesus may be used

continuously during an event, such as a party, a concert or a sporting event, without

exhausting the device’s battery. It effectively allows users to share contents in an easy way,

and also provides reasonable response times perceived from the users’ perspective.

In summary, the contributions of this work are as follows: i) the proposal of an ephem-

eral distributed data storage system for mobile devices in close geographical proximity

that does not require Internet access; ii) the proposal of a lightweight mechanism for

listing the data files available in the system; iii) the experience report of an Android

prototype with a case study that makes use of the proposed system; and iv) the character-

ization of the scenarios better suited for the use of the proposed solution.

This work resulted in the following publications:

• Ephemeral Data Storage for Networks of Hand-held Devices [243]. João A. Silva,

Ricardo Monteiro, Hervé Paulino, João M. Lourenço. In Proceedings of the 14th

IEEE International Symposium on Parallel and Distributed Processing with Appli-

cations (ISPA). Tianjin, China, 2016.

• Armazenamento Distribuído para Redes de Dispositivos Móveis [179]. Ricardo

1https://tomp2p.net/

180

https://tomp2p.net/

7.2. JUMPER: OPPORTUNISTIC COMBINATION OF MANETS AND

INFRASTRUCTURE

Monteiro, João A. Silva, João M. Lourenço, Hervé Paulino. In Proceedings of the 7th

Simpósio Nacional de Informática (INForum). Covilhã, Portugal, 2015.

• Decentralized Storage for Networks of Hand-held Devices [178]. Ricardo Mon-

teiro, João A. Silva, João M. Lourenço, Hervé Paulino. In Proceedings of the 12th

EAI International Conference on Mobile and Ubiquitous Systems: Computing, Net-

working and Services (MobiQuitous). Poster paper. Coimbra, Portugal, 2015.

7.2 Jumper: Opportunistic Combination of MANETs and

Infrastructure

This work was done by me, in parallel with the development of Thyme.

Mobile ad-hoc networks (MANETs) are formed dynamically by mobile nodes that are

connected wirelessly without resorting to a pre-existing network infrastructure. Thus,

interaction among nodes is achieved through the wireless broadcast medium without any

central coordination entity (like in a peer-to-peer (P2P) fashion). Nodes can move freely,

thus the network topology may change rapidly and unpredictably. Furthermore, the

lack of a central coordination entity makes routing messages in MANETs a challenging

task. Nodes lack a global, consistent, and up-to-date knowledge of the network topology,

being required to make routing decisions based only on local (and potentially partially

incorrect) knowledge.

However, given the increasingly ubiquitous Internet access through other networking

technologies that co-exist alongside ad-hoc networks (e.g., Wi-Fi and 3G/4G networks),

some of these nodes might also have simultaneous access to a network supported by

infrastructure. This uncovers several opportunities when devising routing strategies, al-

lowing the opportunistic combination of ad-hoc networking with infrastructure access.

Therefore, when routing messages, two approaches can be employed: one entirely in the

ad-hoc network, and a second one that also makes use of the access to the infrastructure.

So, although the ad-hoc network must be entirely self-supporting (e.g., for emergency or

disaster situations), it can leverage the infrastructure (when present and even if intermit-

tently) during normal operation.

Mobile devices, such as smartphones or tablets, are natural examples of nodes that

may have simultaneous access to both the Internet and to an ad-hoc network. In the

last years, the proliferation of this kind of devices, along with the increasing growth of

their capabilities, has spawned research on the adaptation of MANET techniques for the

mobile devices world (e.g., [70]). In this exploratory work, we argue for the opportunistic

combination of ad-hoc networking with infrastructure access, exploring a way of capi-

talizing on this double access and enabling possible optimizations, such as improving

communication and energy efficiency in mobile networking.

During the process of forwarding messages, the routing protocol has to decide which

alternative to use: only through the ad-hoc network; or using the infrastructure access,

181

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

making messages “jump” through the (ad-hoc) network. Thus, we propose Jumper, a

decision algorithm that determines the best path for each message, entailing a possible

decrease in latency, by avoiding the long ad-hoc hop-by-hop routing. Even otherwise,

benefits may arise from the reduction of the overall aggregate energy costs of routing the

message through all the intermediate nodes in the ad-hoc network multi-hop path. In the

end, Jumper addresses the interaction between the ad-hoc routing and the infrastructure

access by determining: i) when it is better for a message to be routed through the network

using ad-hoc techniques; and ii) when it is better to route the message through a tunnel

where the endpoints are nodes with access to the infrastructure, enabling long “jumps”

over the network.

In summary, the contributions of this work are as follows: i) the proposal of a routing

scheme opportunistically combining ad-hoc routing with infrastructure access; and ii) the

algorithmic framework of Jumper, a decision algorithm determining the best path for

each message, taking into account several parameters.

This work resulted in the following publications:

• Towards the Opportunistic Combination of Mobile Ad-hoc Networks with Infra-

structure Access [242]. João A. Silva, João Leitão, Nuno Preguiça, João M. Lourenço,

Hervé Paulino. In Proceedings of the 1st Workshop on Middleware for Edge Clouds

& Cloudlets (MECC@Middleware). Trento, Italy, 2016.

7.3 Oregano: Distributed Computing on Mobile Devices

This work resulted from the Master’s thesis of Pedro Sanches [223], entitled “Data-Centric

Distributed Computing on Networks of Mobile Devices”, and was built on top of Thyme.

Together, the exponential growth in the amount and capabilities of mobile devices,

the increase in the amount of user-generated data, and the ubiquity associated with these

devices, makes it interesting to start thinking in a different use for them. Accordingly,

they can begin to act as an important part in the computations required by more resource-

demanding applications, rather than relying exclusively on external services (such as

in infrastructure clouds). Considering all the above, it is pertinent to use the resources

available at the network edge, i.e., in the mobile devices, and (partially or fully) process

data closer to where it is generated and consumed. By processing data near its source,

applications can be more responsive, while relieving some of the load from both cloud

and network infrastructures.

This work proposes Oregano, a framework for data-centric distributed computing

for networks formed exclusively by co-located mobile devices, without needing cloud ser-

vices, and even being able to work without access to network infrastructures. Differently

from current state-of-the-art, where both computations and data are offloaded to (worker)

mobile devices, Oregano moves computations to where data resides, reducing signifi-

cantly the amount of data exchanged. It is capable of processing batches and streams of

182

7.4. BASIL: A KEY-VALUE STORE ON MOBILE DEVICES

data generated, and stored, by a cloud composed of mobile devices. Oregano presents

a programming and execution model based on the manipulation of sets of data called

mobile dynamic data sets (MDDs) [214]. MDDs are logical entities that comprise data

items of a given type, characterized by a Thyme tag. They are stored in Thyme, and

processed by a data-centric batch/stream computing model.

A possible use case for this proposal is a birthday party, where participants take

photos and share them, so that others may collect the ones they have interest in. Initially

all photos may be shared with a single tag, #PartyEmily, hence defining one MDD. As the

party evolves, participants may ask for the photos of a specific person, by supplying a

photo of the person as a query. The resulting set of photos will define a new MDD that

may be retrievable and made accessible to all through a new tag, e.g., #EmilyResult.

Based on the experimental results, both on a real and simulated environment, Oreg-

ano is proven to support scalability, by benefiting significantly from the usage of several

devices to handle computations, and by supporting multiple devices submitting compu-

tation requests while not having a significant increase in the latency of a request. It is

also able to deal with reasonable amounts of churn without being highly penalized.

In summary, the contributions of this work are as follows: i) Oregano, a framework

for data-centric distributed computing on networks of mobile devices, capable of pro-

cessing batches and streams of data generated by the devices, without requiring access to

network or cloud infrastructures; and ii) the evaluation of our prototype (for Android) in

both real world and simulation scenarios.

This work resulted in the following publications:

• Data-Centric Distributed Computing on Networks of Mobile Devices [224]. Pe-

dro Sanches, João A. Silva, António Teófilo, Hervé Paulino. In Proceedings of the

26th International European Conference on Parallel and Distributed Computing

(Euro-Par). Online, 2020.

• Computação Distribuída em Redes Formadas por Dispositivos Móveis [225]. Pe-

dro Sanches, António Teófilo, Filipe Cerqueira, João A. Silva, Hervé Paulino. In

Proceedings of the 9th Simpósio Nacional de Informática (INForum). Aveiro, Por-

tugal, 2017.

7.4 Basil: A Key-Value Store on Mobile Devices

This work resulted from the Master’s thesis of José Afonso [4], entitled “Key-Value Storage

for Handling Data in Mobile Devices”, and was built on top of Thyme GardenBed.

Mobile devices are ubiquitous and are used in all sorts of different activities, con-

stantly generating information that needs to be stored or processed somewhere. To cope

with the huge amounts of data generated by these devices, traditionally applications re-

sort to cloud services to provide them with the much needed computational and storage

resources. However, these remote infrastructures still represent a large communication

183

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

and processing hub. In turn, with edge computing, instead of processing and storing all

data in distant cloud services, data (and processing) is spread among mobile devices and

edge servers scattered in the network.

In order to fully take advantage of the low latency experienced in the edge, appli-

cations still need an edge-oriented distributed storage solution, capable of handling the

contents generated by all of these mobile devices. The current state-of-the-art storage

systems are able to provide these applications with a storing platform that uses mobile

devices or edge servers as data storing points, but neither uses both.

This work proposes Basil, a key-value edge storage system, that uses both mobile

devices and edge infrastructures as nodes of the system, capable of providing users from

different locations with a cohesive and consistent distributed storage system. It basically

provides a key-value store interface on top of Thyme GardenBed. As such, data resides

on the actual devices, and its persistence is guaranteed by Thyme through passive and

active replication mechanisms. Basil takes advantage of Thyme’s tags to provide the

mapping between keys and their respective values.

Differently from common key-value store, Basil provides a list operation, inquiring

the system for a list of all stored keys. For this, it deploys an index in a specially reserved

tag, where all used keys are inserted. Then, through Thyme’s time-aware reactive storage

(TARS) abstraction, nodes are notified as new keys are inserted in the system. As another

feature, Basil also adds hierarchical keys, providing a namespace similar to a file system.

It also provides a link and unlink operations (similar to the ones in file systems), where a

new key is associated/removed with/from an already existing data item.

In the evaluation, Basil was compared with Cassandra [145], using the implemented

use case—Class Quiz. Naturally, Basil reaps the benefits of its substrate, Thyme Gar-

denBed, in terms of overall performance and data persistence. But as expected, the

more powerful Cassandra infrastructure is able to outperform a cluster of weaker mobile

devices for a single quiz instance. Nevertheless, as we increase the number of quiz in-

stances, Basil’s performance remains constant, while Cassandra increases its overheads

in proportion to the number of instances. In the end, Basil can offer a flexible, stable and

horizontally scalable framework for edge computing environments, independent from

remote and/or local infrastructures.

In summary, the contributions of this work are as follows: i) Basil, a key-value edge

storage system on top of Thyme GardenBed; ii) the design and implementation of a

use case application for Android allowing students to participate in live class quizzes cre-

ated by (authenticated) professors; and iii) the evaluation of our prototype in simulation

scenarios, and its comparison against a fully-fledge key-value store.

7.5 P/S-CRDTs: CRDTs for Dynamic Environments

This work resulted from the Master’s thesis of António Barreto [26], entitled “Conflict-

Free Replicated Data Types in Dynamic Environments”, and was built on top of Thyme

184

7.6. PEPPERMINT: A FRAMEWORK FOR LOCAL MULTIPLAYER GAMES

allowing mutable data.

The implementation of collaborative applications in highly volatile environments,

such as the ones composed by mobile devices, require low coordination mechanisms. The

replication without coordination semantics of conflict-free replicated data types (CRDTs)

makes these a natural solution, guaranteeing eventual consistency of the shared data.

However, a limitation found on current CRDT models is the need for the knowledge

of all the replicas whom the state changes must be disseminated to. This constitutes a

problem since it is inconceivable to maintain said knowledge in a volatile environment

where clients may leave and join at any given time and consequently get disconnected

due to mobile network communication unreliability.

To allow for CRDTs to be effectively used in these environments, this work proposes

the P/S-CRDT model that combines CRDTs with the publish/subscribe (P/S) interaction

model, enabling the spatial and temporal decoupling of update propagation. Basically,

the P/S system is used as the medium for propagating and sharing updates, and defines

the update propagation pattern for shared CRDT objects. With this, CRDT update dissem-

ination is completely decoupled from update reception, enabling its use in highly volatile

scenarios where there is no total knowledge of all replicas. In a nutshell, updates are

published to a CRDT object, stored by the P/S broker, and subsequently all subscribers

are notified of new updates, retrieving updates and merging them with their replica of

the CRDT object. We also present our versions of several CRDT synchronization models,

namely state-based, operation-based, and ∆-based, describing the necessary adaptations

and the specific requirements for each model.

We implemented the three proposed P/S-CRDT synchronization models on top of

Thyme, and developed several CRDTs (e.g., counters, sets, maps). From the experimental

evaluation, results show that P/S-CRDTs perform better than other CRDT models in

volatile environments, requiring less bandwidth.

In summary, the contributions of this work are as follows: i) P/S-CRDTs, the proposal

of an extension to the CRDT concept for dynamic environments, through the combination

of CRDTs with the P/S interaction paradigm; ii) the specification of three P/S-CRDTs

synchronization models; iii) the implementation of P/S-CRDTs on top of Thyme; and

iv) the evaluation of the implemented prototype in simulation scenarios.

This work resulted in the following publications:

• CRDTs em Ambientes Dinâmicos [27]. António Barreto, João A. Silva, Hervé Pau-

lino, Nuno Preguiça. In Proceedings of the 11th Simpósio Nacional de Informática

(INForum). Short paper. Guimarães, Portugal, 2019.

7.6 Peppermint: A Framework for Local Multiplayer Games

This work resulted from the Master’s thesis of Salúquia Marreiros [167], entitled “A

Framework for Turn-Based Local Multiplayer Games”, and was built on top of Basil (also

185

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

using features of PS-CRDTs).

Nowadays, mobile devices are a big part of people’s lives, and are used from commu-

nication to a means of entertainment. In fact, mobile games (specially multiplayer games)

are consistently on the top of app stores leaderboards, showing a clear growing trend.

Typically, multiplayer mobile games are played using centralized servers to store data

and coordinate devices, which can be costly due to latency and battery usage, degrading

the playing experience and diminishing engagement. This can be the most appropriate

solution when players are distant from each other, but it is unnecessary when players are

co-located. When in a purely local setting, as a way to diminish traffic to the Internet and

have a better playing experience, we can take advantage of resources close to where games

are being played. This rationale meets a recent trend of placing data and its processing

closer to the users, in what is called the network edge.

This work proposes Peppermint, an event-based framework for turn-based local

multiplayer games at the network edge, without requiring any centralized service. It

allows programmers to easily develop turn-based games for multiple players in close

physical proximity. Peppermint provides abstractions for matches and players. Thus,

game developers only have to implement (and extend) certain parts of the framework with

their game’s logic, handling certain types of events triggered by the system. It supports

the coordination of a match and its players (which may enter or leave at any time), the

match state (e.g., scores and the board’s current characteristics), modifications to the

match’s board (which may happen during a turn and need to be disseminated to the other

players), turn movements, players’ matchmaking, among others. Additionally, it allows

for the co-existence of several matches (of possibly different games) concurrently in the

system, and facilitates the retrieval of the set of existing matches when a player wishes to

join one. To achieve all this, Peppermint leverages on Basil to associate players with

matches, disseminate player’s turn information to others, decide how to proceed when

players enter and leave matches, and manage the game state accurately.

In summary, the contributions of this work are as follows: i) Peppermint, an event-

based framework for the easy implementation of turn-based multiplayer games at the

network edge; ii) the implementation of a case study, a distributed version of the Snake

game; and iii) the evaluation through simulation of the implemented prototype.

7.7 Wasabi: Adaptive Replica Selection in Mobile Edge

Networks

This work resulted from the Master’s thesis of João Dias [74], entitled “Adaptive Replica

Selection in Mobile Edge Networks”, and was integrated into Thyme GardenBed.

With the ongoing increase of mobile devices, and application’s growing reliance on

the cloud, these infrastructures have become centralized hubs of computational process-

ing and storage. With so much traffic being generated to and from these centralized

186

7.7. WASABI: ADAPTIVE REPLICA SELECTION IN MOBILE EDGE NETWORKS

infrastructures, network congestion and delays start to become more evident, specially

for some types of applications. In turn, mobile edge computing (MEC) is a paradigm

that aims to solve these limitations by bringing cloud services closer to mobile clients,

effectively reducing end-to-end delays and saving backbone bandwidth.

Currently, many applications and services use replication to enhance their quality of

service. Because content generated by mobile devices has a localized interest at first, data

starts by getting replicated between these devices, and only when it starts to get popular

is it eventually replicated (or cached) in edge servers. However, a problem arises when

there is no replica selection mechanism for data retrieval. The resulting herd behavior

can cause the network load to be poorly distributed, which combined with the unreliable

wireless communication channels cause these systems to under-perform.

This work proposes Wasabi, a flexible replica ranking middleware for mobile edge

networks. It works as a middleware service for client-server communication in edge net-

work environments, that empowers clients with the necessary metrics to independently

decide which should be the best replica to contact. Albeit it refers to clients and servers,

these can be any node of the system, and a node can have both roles at the same time.

The middleware attaches to a data storage system, collecting and disseminating (con-

figurable) network and computational-load metrics piggybacked in the system messages.

Then, when a client requests a data item, Wasabi uses the gathered metrics, applies a

ranking algorithm, and returns the best possible replica to request the data item from.

It forms a continuous feedback loop between clients and servers in order to grant the

former with a fresh (albeit usually partial) view of the system, using server-emitted, as

well as client-observed metrics.

The middleware consists of the following high-level components: 1) a server-side

aggregator component that collects system metrics on demand; 2) a metrics collector

component configured to collect a metric value on demand and hooked into the aggre-

gator; 3) a client-side replica classifier component that consumes metrics and is able to

sort a set of replica nodes from most to least reliable according to the configured scoring

logic; and 4) a client-side metrics observer component that can reactively compute metric

values from system events.

We also propose MECERRA, a replica ranking algorithm specifically tailored for

MEC, that addresses the challenges raised in these environments, such as churn, dynamic

replicas, energy constraints, and metric freshness. It uses predefined network, resource-

usage, and device-specific metrics to predict which should be the best replica to contact.

In the end, Wasabi aims to decrease latency and boost both throughput and energy effi-

ciency in the system, by avoiding over-saturated replicas. In this specific implementation,

the middleware was integrated into Thyme GardenBed. Experimental results through

simulation show that MECERRA finds the best replica much often than the alternatives,

and Wasabi provides low overhead.

In summary, the contributions of this work are as follows: i) Wasabi, a flexible and

system-agnostic replica ranking middleware for mobile edge networks; ii) the integration

187

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

of this middleware within Thyme GardenBed; iii) MECERRA, our replica ranking

algorithm tailored for MEC environments; and iv) the evaluation through simulation of

the implemented prototype and the comparison of different replica ranking algorithms.

7.8 Chives: Dynamic Content-Based Indexing at the Edge

This work results from the still going Master’s thesis of Cláudio Pereira, entitled “Dy-

namic Content-Based Indexing in Mobile Edge Networks”, and is being built on top of

the Oregano framework.

In the last years, there has been a huge increase in the usage of mobile devices, and

also in the amount of user-generated content, e.g., photos, video, or messages. Usually,

this data requires a permanent storage and its respective indexing in order for users to

efficiently access it. However, due to the unpredictability of this data, a concern regarding

its indexing starts to raise, as it can be hard to predict labels and indexes capable of

representing every possible set of data.

For instance, during a birthday party, users may want to share photos and videos,

which can be seen as uploading streams of data to a content sharing system. This stream

will probably not have an index capable of representing its data, making difficult its

retrieval as there is no semantic representation of such. However, as time passes, and

the stream data continues to grow, we may be capable of predicting descriptive labels,

thus allowing the indexing of this event. In order to successfully implement this strategy

it would be required a framework capable of dynamically generating indexes, which is

currently not available.

This work proposes Chives, a content-based indexing system for mobile edge net-

works, built on top of Oregano. It uses unsupervised learning clustering techniques

to offer a novel data retrieval framework. The system receives data items and, using

unsupervised learning, groups them (into clusters) based on a similarity metric. After a

data set (i.e., a cluster) reaches certain requirements, it generates a human-readable label

representing the data and indexes it for future retrievals, allowing the dynamic indexing

of the uploaded content. For labels, the system evaluates the cluster’s content and, using

a popularity heuristic, generates a label capable of representing its content. Chives also

offers two distinct methods for content retrieval: 1) content-based retrieval, which re-

ceives an image and in return provides similar images to the user; and 2) semantic-based

retrieval, which receives a label and in return provides the indexed content mapping to

that label to the user.

The system evaluation will use image data sets with human faces, and measure the

system’s response time, labeling accuracy, and other relevant metrics.

This is ongoing work, however, its current contributions are as follows: i) Chives,

a content-based indexing system, built on top of Oregano, which uses unsupervised

learning clustering to provide a novel data retrieval framework; and ii) the ongoing

evaluation of the implemented prototype in simulation scenarios.

188

7.9. BASILICUM: BASIL IN THE EDGE-CLOUD CONTINUUM

7.9 Basilicum: Basil in the Edge-Cloud Continuum

This work will result from the just started (and ongoing) Master’s thesis of Francisco

Nunes, entitled “Reactive and Persistent Storage for Mobile Edge Computing Environ-

ments”, and is being integrated into Basil (and Thyme GardenBed).

The edge computing paradigm gave rise to a three-layered hierarchy, as depicted

in Figure 1.1. At its base, we have the end-user devices which have somewhat limited

resources but generate increasing amounts of data. In the second layer, we have the edge,

a set of geo-distributed fixed servers located close to users, which allow data processing

and storage with low latencies. Lastly, in the top layer, we have the cloud with its vast and

powerful resources. Although systems do not always make use of the entire hierarchy,

the advantages of an architecture that leverages all layers can be notorious.

In this work, we focus on use cases where users intend to use their mobile devices for

sharing and viewing content generated in the context of their location. Thus, this work’s

main goal is to devise a system embodying the entire architecture depicted in Figure 1.2,

integrating the three layers of the network hierarchy. We envision it to allow time-bound

content with local interest to be shared and managed locally, using mobile devices and

edge nodes, while data with global interest is persistently stored and managed in the

cloud. This way, users can take advantage of the low latency in the local dissemination

of content present in the devices, as well as resort to the edge nodes to establish contact

with the persistent and global resources in the cloud.

Currently, Basil (§7.4) guarantees the storage and sharing of data in a local context

using mobile devices, and uses edge nodes for caching popular content among regions.

This work proposes to add a new level to this hierarchy, complementing it with a cloud

infrastructure capable of offering persistence to data with global relevance. The goal is

to bring the already existing P/S key-value data and interaction model to the cloud. This

way, storage is not restricted to the limited resources of mobile devices, and their constant

movement and possible exit from the system.

The lower layer—end-user devices—remains almost unchanged. Mobile devices are

responsible for storing and disseminating data of local interest within a region. However,

it will be necessary to enable users to define where data should be kept—either locally in

the mobile devices, or globally in the cloud (or even in both). The same happens when

the user queries data or subscribes to content under a key. It will have to make explicit

where the operation should take effect. In the middle layer, edge nodes will maintain the

previously developed caching service, but now they are also responsible for establishing

the bridge between mobile devices and the cloud. At the top, the cloud, in addition to

acting as a persistent data repository, it will also have to manage some information related

to the P/S component (e.g., users’ subscriptions).

This is ongoing work, however, its expected contributions are as follows: i) Basilicum,

a data storage and dissemination system for mobile devices, leveraging in the entire edge-

cloud continuum; ii) the development of the cloud component, and the integration of

189

CHAPTER 7. BEYOND THYME: THE EDGE GARDEN ECOSYSTEM

the three levels of the hierarchy into Basil; and iii) the evaluation of the implemented

prototype in simulation and real-world scenarios.

7.10 Concluding Remarks

As written in the acknowledgements, no man is an island. In this chapter, we present

several works exploring different research directions, that evolved from the solutions

described in the thesis. These were works, some pursued by me (in collaboration with

other researchers from the department), others pursued by different Master students in

their theses. In all of them, I had the pleasure to collaborate and help in the students’

supervision. These research works work in both ways. On the one hand, students help

in pursuing several research ideas (with implementations, experimental evaluations, and

reports) by executing their theses, also enriching this thesis in the way. On the other hand,

these collaborations allow the development of other soft skills important in life (such as

people management or task prioritization).

In the end, the works presented here show the flexibility and versatility of the TARS

interface and of the works implementing it (i.e., Thyme and Thyme GardenBed).

190

C
h
a
p
t
e
r

8
Conclusion

“True merit is like a river, the deeper it is, the less noise it makes.”
— Edward Wood

This is the end, beautiful friend. This is the end, my only friend. This chapter closes the

thesis. In §8.1, we summarize the main results presented in the thesis, and provide an

answer to the questions introduced in §1. Lastly, §8.2 concludes the thesis by discussing

some future research directions.

8.1 Conclusions

The thesis has proposed, developed, and evaluated solutions for data storage and dis-

semination in pervasive edge computing environments, either with or without access to

network infrastructures. We illustrated the benefits of the proposed solutions through dif-

ferent types of evaluation, ranging from an analytical study to experimental evaluations

using different kinds of simulation and also real-world devices.

The considered approaches can be divided into two parts: i) surviving without infra-

structure; and ii) thriving with infrastructure.

First, since we address resource-constrained and highly dynamic heterogeneous en-

vironments, we favor a loosely coupled approach for data dissemination. Thus, we fuse

the storage substrate with the publish/subscribe (P/S) paradigm and propose time-aware

reactive storage (TARS), a reactive data storage and dissemination model. It provides per-

sistent publications and allows queries (i.e., subscriptions) within a specific time scope.

The insert operation of the storage substrate is merged with the publish operation of the

P/S system, enabling applications to be notified as relevant data is generated and stored.

Additionally, queries (i.e., subscriptions) are in the form of propositional logic formulas,

191

CHAPTER 8. CONCLUSION

and have a time frame defining when they are active. The innovative characteristics of

TARS offer a novel way for sharing and accessing data that has been previously stored,

or is being generated in quasi-real-time. In the end, this concept makes a fundamental

overhead shift. It offers a reactive interaction model, instead of the typical proactive re-

quest/reply model. Thus, some of the overhead from the users requesting data is reduced

and transferred to the users that store the data and can provide it.

Then, for the solution addressing scenarios surviving without infrastructure, the thesis

discusses Thyme, a data storage and dissemination system for wireless edge environ-

ments that implements TARS. Thyme makes opportunistic use of mobile devices and ad-

hoc networking to provide a transient storage service in a localized geographical region.

For this, we propose two different approaches: Thyme-LS, following a lightweight un-

structured approach using local storage and query flooding; and Thyme-DCS, embrac-

ing a more intricate structured approach using a storage substrate built over a cell-based

geographic hash table (GHT) for wireless networks. Additionally, we implemented the

Thyme-DCS approach as an Android library. The innovative characteristics of Thyme

offer a novel way for sharing and accessing data that has been previously stored, or is

being generated in quasi-real-time, in a network of co-located mobile devices without

infrastructure access.

Regarding the solutions addressing scenarios thriving with infrastructure, the thesis

discusses two approaches. Parsley addresses challenges in managing highly dynamic

device population and workload imbalances in the context of distributed hash tables

(DHTs). To tackle these issues, it relies on a resilient group-based DHT embodying

two techniques. First, a preemptive peer relocation technique, enabling the transfer of

individual peers between large and small groups of peers. Then, a dynamic data sharding

mechanism, addressing the issue with storage hot-spots.

In turn, Thyme GardenBed is a data storage and dissemination system for multi-

region edge networks. It cooperatively and symbiotically leverages both device-to-device

(D2D) interactions and edge servers to allow the flow of content in networks of mobile

devices spanning across multiple edge network regions. Mobile devices associated with

an access point (AP) run an (adapted) instance of Thyme. In turn, edge servers run the

GardenBed component and are leveraged to cache some (popular) data, and perform

some of the system’s management. Thus, Thyme GardenBed makes a fundamental

energy shift. By introducing edge servers into the equation, it allows the optimization

and offloading of a portion of the system’s management and data from the clients to the

stationary nodes. Ultimately, saving energy in the mobile devices and lowering their

processing overheads.

Finally, considering the work presented in the thesis and its core contributions, a

positive answer can be provided to the fundamental question addressed by the thesis:

How to support resilient and efficient data storage and dissemination solutions in pervasive
edge computing environments, operating with or without access to network infrastructure?

First, by developing Thyme, a data storage and dissemination system for wireless

192

8.2. FUTURE RESEARCH DIRECTIONS

edge environments, the work presented in §4 answers our first sub-question: How to
support reliable and efficient data storage and dissemination in wireless edge environments
without access to any kind of network infrastructure? As discussed in 4.10, Thyme is reliable

since it proved to be able to handle a considerable amount of churn while performing

without data loss. It is also efficient since it proved to have a good performance in its

target environment, while providing low energy consumption.

Next, by developing Parsley, a structured overlay with a special focus on load bal-

ancing, and by Thyme GardenBed symbiotically integrating edge resources with our

previous system, the works reported in §5 and §6, respectively, answer the second sub-

question: How to leverage on edge computing capabilities to improve the performance, scalabil-
ity, and resource management of the previous solution? As discussed in 5.6, Parsley and its

techniques demonstrated to improve the fault tolerance, scalability, and load balancing

of group-based DHTs. The first, by achieving high availability in face of (intensive) churn,

through its group-based techniques. The second, by requiring smaller bandwidth costs

when executing topology changes, through its preemptive peer relocation (PPR) tech-

nique. And the last, by promoting good storage load balancing in the presence of skewed

data, through its dynamic data sharding mechanism. In turn, as discussed in 6.7, Thyme

GardenBed allows the flow of content in networks of mobile devices spanning across

edge network regions, and showed to improve over Thyme regarding the three defined

vectors: performance, scalability, and resource management. Here, all the three vectors

are accomplished through the shift of some of the system management from the mobile

clients to the edge servers, and their balanced integration. Thus, working to achieve low

response times allowing interactive usage, low energy consumption, and considerable

latency speedups over cloud solutions.

Additionally, the works described in §7 complement the contributions of the thesis by

further exploiting some related research directions, from distributed computing to data

synchronization techniques, and even multiplayer games. In the end, they showcase a

plethora of use cases demonstrating the flexibility and usefulness of the thesis’ proposals.

In the end, the results presented and discussed throughout the thesis have studied

different solutions addressing data storage and dissemination in pervasive edge comput-

ing environments, either with or without access to network infrastructures. As discussed

throughout the previous chapters, all approaches were also able to address the defined

set of broad challenges described in §1.3. In sum, we claim that the achieved contribu-

tions are indisputable and demonstrate the validity of out thesis: It is possible to provide
resilient and efficient data storage and dissemination solutions for pervasive edge computing
environments, able to operate with or without access to network infrastructure.

8.2 Future Research Directions

Naturally, a final note resulting from the thesis is that there are still multiple open re-

search directions that can be pursued in the field of edge computing, and more specifically

193

CHAPTER 8. CONCLUSION

for data storage and dissemination in these environments. Next, we discuss potential di-

rections for the outcomes of this work and the research area in general.

Integration with the Cloud. An interesting research direction is to explore the next

level of the network hierarchy—the cloud. With Thyme, we provide data storage and

dissemination in ad-hoc settings. Then, Parsley and Thyme GardenBed bridge the

gap to edge resources. A possible next step can be to yet again bridge the other gap to

cloud resources/services—the actual edge-cloud continuum.

In this context, edge servers (and possibly client devices) can connect to the cloud,

exploring the more robust guarantees available there. For instance, cloud services can be

used for storage/archival, analytics purposes, or some kind of heavy data processing. In

this solution, data (and its replicas) could be scattered throughout the network (perhaps

hierarchically structured), thus greatly increasing data availability and reliability.

In the end, this would allow the deployment of something like a “planetary” data

storage and dissemination system, fully exploiting the resources and guarantees available

at each level of the network hierarchy. Additionally, inside this solution, several other

challenges could be addressed, such as scalability and load balancing, heterogeneity, or

partitions and limited connectivity.

Currently, we have a Master student that is exploring this topic in the context of the

Edge Garden ecosystem (§7.9).

Client Mobility. Another possible research direction is leveraging user mobility in these

scenarios. The provision of uninterrupted edge services to a frequently “on the move”

client is a big challenge in edge computing environments, requiring transparent process-

ing and/or data migration.

In fact, in this kind of dynamic environments, client mobility can be explored to

propagate data among different edge regions, as in opportunistic and delay tolerant

networks. Usually, mobility can be tracked either by monitoring the client’s wireless

connection signal strength, or by trying to build a prediction model for the client mobility

pattern. Also, in this case, special attention needs to be taken regarding data consistency.

Data Abstractions and Consistency. Other relevant research direction concerns data

storage abstractions and consistency semantics. Applications deployed on edge envi-

ronments usually deal with different data types (e.g., images, video, text), and require

different consistency semantics. In fact, sometimes the same application may require

several consistency semantics for different types of data it manages.

Many proposed edge storage solutions use the well-known key-value interface for its

simplicity. Nonetheless, having an expressive storage application programming interface

(API) can be beneficial to run common operations (in some specific areas). Thus, domain-

specific data abstractions have the potential to make edge applications more efficient, and

are likely to reduce network traffic.

194

8.2. FUTURE RESEARCH DIRECTIONS

In turn, the majority of the proposed edge storage systems support only a single consis-

tency semantics. However, applications typically have different consistency requirements,

either contextual, location-based, or state-dependent. Thus, a multi-consistency seman-

tics (with an easy-to-use policy interface) would enable edge applications to dynamically

trade-off performance with consistency, to match the dynamic nature of their correspond-

ing data sets and use cases. For instance, Pileus [267] is a cloud storage system that allows

consistency-based service level agreements to be defined over each issued operation to

the data store.

Infrastructure and Infrastructure-less Transition. Another different possibility is to

explore the seamless transition between infrastructure and infrastructure-less scenarios.

Currently, Thyme works in both settings (with the help of Thyme GardenBed in the

case of infrastructure settings). However, it must be configured for each setting before

the system bootstraps. Thus, it is unable to start working in ad-hoc mode and transition

to infrastructure mode. Something like a somewhat seamless transition between modes is

not trivial at all, but would increase even more the ubiquity and versatility of the system.

It would probably require some mapping between the two overlay approaches, and some

mechanism to handle both types of metadata.

Wireless Technologies. In a more practical aspect, the study of recent wireless tech-

nologies is also pertinent [219, 265]. Wireless communication technologies and APIs, like

Wi-Fi Direct, Wi-Fi Aware, or Google Nearby, can likely reduce the amount of network

traffic required to go through the APs, and allow devices to communicate in a truly D2D

way. In an extreme case, these technologies can reduce, or even eliminate, the need for

network infrastructures.

195

Bibliography

[1] ZTE Corporation. url: https://www.zte.com.cn/global/ (cit. on p. 166).

[2] Amazon Web Services. url: http://aws.amazon.com (cit. on p. 167).

[3] M. Afanasyev, T. Chen, G. M. Voelker, and A. C. Snoeren. “Usage Patterns in an

Urban WiFi Network”. In: IEEE/ACM Trans. Netw. 18.5 (2010), pp. 1359–1372.

doi: 10.1109/TNET.2010.2040087. url: https://doi.org/10.1109/TNET.201

0.2040087 (cit. on p. 2).

[4] J. Afonso. “Key-Value Storage for Handling Data in Mobile Devices”. http://

hdl.handle.net/10362/92282. MA thesis. NOVA University Lisbon, Dec. 2019

(cit. on p. 183).

[5] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. “Match-

ing Events in a Content-based Subscription System”. In: Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Distributed Computing. PODC

’99. Atlanta, Georgia, USA: ACM, 1999, pp. 53–61. isbn: 1-58113-099-6. doi:

10.1145/301308.301326. url: http://doi.acm.org/10.1145/301308.301326

(cit. on pp. 22, 48, 66).

[6] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. “A survey

of information-centric networking”. In: IEEE Communications Magazine 50.7 (July

2012), pp. 26–36. issn: 0163-6804. doi: 10.1109/MCOM.2012.6231276. url:

https://doi.org/10.1109/MCOM.2012.6231276 (cit. on pp. 32, 39).

[7] S. Ahuja, N. Carriero, and D. Gelernter. “Linda and Friends”. In: Computer 19.8

(Aug. 1986), pp. 26–34. issn: 0018-9162. doi: 10.1109/MC.1986.1663305. url:

http://dx.doi.org/10.1109/MC.1986.1663305 (cit. on pp. 30, 40).

[8] I. F. Akyildiz, X. Wang, and W. Wang. “Wireless mesh networks: a survey”. In:

Computer Networks 47.4 (2005), pp. 445–487. issn: 1389-1286. doi: 10.1016

/j.comnet.2004.12.001. url: https://doi.org/10.1016/j.comnet.2004.12

.001 (cit. on p. 16).

[9] J. Albadarneh, Y. Jararweh, M. Al-Ayyoub, M. Al-Smadi, and R. Fontes. “Software

Defined Storage for cooperative Mobile Edge Computing systems”. In: Fourth
International Conference on Software Defined Systems. SDS ’17. Valencia, Spain:

IEEE, 2017, pp. 174–179 (cit. on pp. 151, 152).

197

https://www.zte.com.cn/global/
http://aws.amazon.com
https://doi.org/10.1109/TNET.2010.2040087
https://doi.org/10.1109/TNET.2010.2040087
https://doi.org/10.1109/TNET.2010.2040087
http://hdl.handle.net/10362/92282
http://hdl.handle.net/10362/92282
https://doi.org/10.1145/301308.301326
http://doi.acm.org/10.1145/301308.301326
https://doi.org/10.1109/MCOM.2012.6231276
https://doi.org/10.1109/MCOM.2012.6231276
https://doi.org/10.1109/MC.1986.1663305
http://dx.doi.org/10.1109/MC.1986.1663305
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001

BIBLIOGRAPHY

[10] L. Allen, A. O’Connell, and V. Kiermer. “How can we ensure visibility and diver-

sity in research contributions? How the Contributor Role Taxonomy (CRediT) is

helping the shift from authorship to contributorship”. In: Learn. Publ. 32.1 (2019),

pp. 71–74. doi: 10.1002/leap.1210. url: https://doi.org/10.1002/leap.12

10 (cit. on p. 155).

[11] M. Amadeo, A. Molinaro, and G. Ruggeri. “E-CHANET: Routing, Forwarding

and Transport in Information-Centric Multihop Wireless Networks”. In: Comput.
Commun. 36.7 (Apr. 2013), pp. 792–803. issn: 0140-3664. doi: 10.1016/j.

comcom.2013.01.006. url: http://dx.doi.org/10.1016/j.comcom.2013.01

.006 (cit. on p. 39).

[12] C. Anastasiades, A. Sittampalam, and T. Braun. “Content Discovery in Wireless

Information-centric Networks”. In: Proceedings of the 2015 IEEE 40th Conference
on Local Computer Networks. LCN ’15. Washington, DC, USA: IEEE Computer

Society, 2015, pp. 28–36. isbn: 978-1-4673-6770-7. doi: 10.1109/LCN.2015.73

66280. url: http://dx.doi.org/10.1109/LCN.2015.7366280 (cit. on p. 39).

[13] D. P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”.

In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.

GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–10. isbn:

0-7695-2256-4. doi: 10.1109/GRID.2004.14. url: http://dx.doi.org/10.110

9/GRID.2004.14 (cit. on p. 54).

[14] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. “SETI@Home:

An Experiment in Public-resource Computing”. In: Commun. ACM 45.11 (Nov.

2002), pp. 56–61. issn: 0001-0782. doi: 10.1145/581571.581573. url: http:

//doi.acm.org/10.1145/581571.581573 (cit. on p. 54).

[15] D. P. Anderson and G. Fedak. “The Computational and Storage Potential of Vol-

unteer Computing”. In: Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid. CCGRID ’06. Washington, DC, USA: IEEE Com-

puter Society, 2006, pp. 73–80. isbn: 0-7695-2585-7. doi: 10.1109/CCGRID.200

6.101. url: http://dx.doi.org/10.1109/CCGRID.2006.101 (cit. on p. 54).

[16] Anmobi, Inc. Xender. http://www.xender.com/. Accessed: 2018-05-07. 2014

(cit. on p. 63).

[17] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. “CHR: A Distributed

Hash Table for Wireless Ad Hoc Networks”. In: Proceedings of the Fourth In-
ternational Workshop on Distributed Event-Based Systems (DEBS). ICDCSW ’05.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 407–413. isbn: 0-7695-

2328-5-04. doi: 10.1109/ICDCSW.2005.48. url: http://dx.doi.org/10.1109

/ICDCSW.2005.48 (cit. on pp. 59–61, 65, 72, 73).

198

https://doi.org/10.1002/leap.1210
https://doi.org/10.1002/leap.1210
https://doi.org/10.1002/leap.1210
https://doi.org/10.1016/j.comcom.2013.01.006
https://doi.org/10.1016/j.comcom.2013.01.006
http://dx.doi.org/10.1016/j.comcom.2013.01.006
http://dx.doi.org/10.1016/j.comcom.2013.01.006
https://doi.org/10.1109/LCN.2015.7366280
https://doi.org/10.1109/LCN.2015.7366280
http://dx.doi.org/10.1109/LCN.2015.7366280
https://doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
https://doi.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
https://doi.org/10.1109/CCGRID.2006.101
https://doi.org/10.1109/CCGRID.2006.101
http://dx.doi.org/10.1109/CCGRID.2006.101
http://www.xender.com/
https://doi.org/10.1109/ICDCSW.2005.48
http://dx.doi.org/10.1109/ICDCSW.2005.48
http://dx.doi.org/10.1109/ICDCSW.2005.48

BIBLIOGRAPHY

[18] 5. I. Association. 5G Vision - The 5G Infrastructure Public Private Partnership: The
next generation of communication networks and services. Tech. rep. 5G Infrastruc-

ture Association, Feb. 2015 (cit. on p. 4).

[19] M. Astley, J. Auerbach, S. Bhola, G. Buttner, M. Kaplan, K. Miller, R. Saccone Jr,

R. Strom, D. C. Sturman, M. J. Ward, et al. Achieving scalability and throughput in
a publish/subscribe system. Tech. rep. IBM Research, 2004 (cit. on pp. 22, 24).

[20] S. Babu. “Continuous Query”. In: Encyclopedia of Database Systems. Ed. by L. LIU

and M. T. ÖZSU. Boston, MA: Springer US, 2009, pp. 492–493. isbn: 978-0-387-

39940-9. doi: 10.1007/978-0-387-39940-9_85. url: https://doi.org/10.10

07/978-0-387-39940-9_85 (cit. on p. 46).

[21] S. Babu and J. Widom. “Continuous Queries over Data Streams”. In: SIGMOD
Rec. 30.3 (2001), pp. 109–120. doi: 10.1145/603867.603884. url: https:

//doi.org/10.1145/603867.603884 (cit. on p. 47).

[22] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri.

“Generic Support for Distributed Applications”. In: Computer 33.3 (Mar. 2000),

pp. 68–76. issn: 0018-9162. doi: 10.1109/2.825698. url: http://dx.doi.

org/10.1109/2.825698 (cit. on p. 25).

[23] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.

Sturman. “An Efficient Multicast Protocol for Content-Based Publish-Subscribe

Systems”. In: Proceedings of the 19th International Conference on Distributed Com-
puting Systems. ICDCS ’99. Austin, Texas, USA: IEEE Computer Society, 1999,

pp. 262–272. doi: 10.1109/ICDCS.1999.776528. url: https://doi.org/10.11

09/ICDCS.1999.776528 (cit. on p. 66).

[24] D. Barbará. “The Characterization of Continuous Queries”. In: Int. J. Cooperative
Inf. Syst. 8.4 (1999), p. 295. doi: 10.1142/S0218843099000150. url: https:

//doi.org/10.1142/S0218843099000150 (cit. on p. 47).

[25] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. “Consistent Streaming Through

Time: A Vision for Event Stream Processing”. In: Third Biennial Conference on In-
novative Data Systems Research. CIDR ’07. Asilomar, California, USA: www.cidrdb.org,

2007, pp. 363–374. url: http://cidrdb.org/cidr2007/papers/cidr07p42

.pdf (cit. on p. 29).

[26] A. Barreto. “Conflict-Free Replicated Data Types in Dynamic Environments”.

http://hdl.handle.net/10362/93770. MA thesis. NOVA University Lisbon,

Dec. 2019 (cit. on p. 184).

[27] A. Barreto, J. A. Silva, H. Paulino, and N. Preguiça. “CRDTs em Ambientes

Dinâmicos”. In: Proceedings of the 11th Simpósio Nacional de Informática. INForum

’19. Guimarães, Portugal, 2019 (cit. on p. 185).

199

https://doi.org/10.1007/978-0-387-39940-9_85
https://doi.org/10.1007/978-0-387-39940-9_85
https://doi.org/10.1007/978-0-387-39940-9_85
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/603867.603884
https://doi.org/10.1109/2.825698
http://dx.doi.org/10.1109/2.825698
http://dx.doi.org/10.1109/2.825698
https://doi.org/10.1109/ICDCS.1999.776528
https://doi.org/10.1109/ICDCS.1999.776528
https://doi.org/10.1109/ICDCS.1999.776528
https://doi.org/10.1142/S0218843099000150
https://doi.org/10.1142/S0218843099000150
https://doi.org/10.1142/S0218843099000150
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
http://hdl.handle.net/10362/93770

BIBLIOGRAPHY

[28] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic. Mobile ad hoc networking.

John Wiley & Sons, 2004. doi: 10.1002/0471656895 (cit. on p. 16).

[29] S. Bazarbayev, M. Hiltunen, K. Joshi, W. H. Sanders, and R. Schlichting. “PSCloud:

A Durable Context-aware Personal Storage Cloud”. In: Proceedings of the 9th Work-
shop on Hot Topics in Dependable Systems. HotDep ’13. Farmington, Pennsylvania:

ACM, 2013, 9:1–9:6. isbn: 978-1-4503-2457-1. doi: 10.1145/2524224.2524235.

url: http://doi.acm.org/10.1145/2524224.2524235 (cit. on p. 31).

[30] J. Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In: CoRR
abs/1407.3561 (2014). arXiv: 1407.3561. url: http://arxiv.org/abs/1407.3

561 (cit. on p. 104).

[31] A. N. Bessani, M. Correia, J. da Silva Fraga, and L. C. Lung. “An Efficient Byzantine-

Resilient Tuple Space”. In: IEEE Trans. Computers 58.8 (2009), pp. 1080–1094.

doi: 10.1109/TC.2009.71. url: https://doi.org/10.1109/TC.2009.71

(cit. on p. 40).

[32] A. N. Bessani, J. Sousa, and E. A. P. Alchieri. “State Machine Replication for the

Masses with BFT-SMART”. In: 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. DSN ’14. Atlanta, GA, USA: IEEE Computer

Society, 2014, pp. 355–362. doi: 10.1109/DSN.2014.43. url: https://doi.

org/10.1109/DSN.2014.43 (cit. on p. 79).

[33] S. Bhola, Y. Zhao, and J. Auerbach. “Scalably supporting durable subscriptions

in a publish/subscribe system”. In: Proceedings of the International Conference on
Dependable Systems and Networks. DSN ’03. IEEE Computer Society, June 2003,

pp. 57–66. doi: 10.1109/DSN.2003.1209916. url: https://doi.org/10.1109

/DSN.2003.1209916 (cit. on p. 28).

[34] K. P. Birman. “The Process Group Approach to Reliable Distributed Computing”.

In: Commun. ACM 36.12 (Dec. 1993), pp. 37–53. issn: 0001-0782. doi: 10.1145

/163298.163303. url: http://doi.acm.org/10.1145/163298.163303 (cit. on

p. 21).

[35] C. Blake and R. Rodrigues. “High Availability, Scalable Storage, Dynamic Peer

Networks: Pick Two”. In: Proceedings of the 9th Workshop on Hot Topics in Operating
Systems. HotOS ’03. Lihue (Kauai), Hawaii, USA, 2003, pp. 1–6. url: https:

//www.usenix.org/conference/hotos-ix/high-availability-scalable-

storage-dynamic-peer-networks-pick-two (cit. on p. 38).

[36] C. Boldrini, M. Conti, and A. Passarella. “ContentPlace: Social-aware Data Dis-

semination in Opportunistic Networks”. In: Proceedings of the 11th International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
MSWiM ’08. Vancouver, British Columbia, Canada: ACM, 2008, pp. 203–210.

isbn: 978-1-60558-235-1. doi: 10.1145/1454503.1454541. url: http://doi.

acm.org/10.1145/1454503.1454541 (cit. on p. 32).

200

https://doi.org/10.1002/0471656895
https://doi.org/10.1145/2524224.2524235
http://doi.acm.org/10.1145/2524224.2524235
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://doi.org/10.1109/TC.2009.71
https://doi.org/10.1109/TC.2009.71
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2003.1209916
https://doi.org/10.1109/DSN.2003.1209916
https://doi.org/10.1109/DSN.2003.1209916
https://doi.org/10.1145/163298.163303
https://doi.org/10.1145/163298.163303
http://doi.acm.org/10.1145/163298.163303
https://www.usenix.org/conference/hotos-ix/high-availability-scalable-storage-dynamic-peer-networks-pick-two
https://www.usenix.org/conference/hotos-ix/high-availability-scalable-storage-dynamic-peer-networks-pick-two
https://www.usenix.org/conference/hotos-ix/high-availability-scalable-storage-dynamic-peer-networks-pick-two
https://doi.org/10.1145/1454503.1454541
http://doi.acm.org/10.1145/1454503.1454541
http://doi.acm.org/10.1145/1454503.1454541

BIBLIOGRAPHY

[37] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and Its Role in the

Internet of Things”. In: Proceedings of the First Edition of the Workshop on Mobile
Cloud Computing. MCC ’12. Helsinki, Finland: ACM, 2012, pp. 13–16. isbn: 978-

1-4503-1519-7. doi: 10.1145/2342509.2342513. url: http://doi.acm.org/10

.1145/2342509.2342513 (cit. on p. 3).

[38] Briar Project. Briar. https://briarproject.org/. Accessed: 2018-04-27. 2017

(cit. on p. 63).

[39] F. Cao and J. P. Singh. “MEDYM: Match-early with Dynamic Multicast for Content-

based Publish-subscribe Networks”. In: Proceedings of the ACM/IFIP/USENIX
2005 International Conference on Middleware. Middleware ’05. Grenoble, France:

Springer-Verlag New York, Inc., 2005, pp. 292–313. url: http://dl.acm.org/

citation.cfm?id=1515890.1515905 (cit. on p. 25).

[40] M. Caporuscio, A. Carzaniga, and A. L. Wolf. “Design and Evaluation of a Support

Service for Mobile, Wireless Publish/Subscribe Applications”. In: IEEE Trans.
Softw. Eng. 29.12 (Dec. 2003), pp. 1059–1071. issn: 0098-5589. doi: 10.1109

/TSE.2003.1265521. url: http://dx.doi.org/10.1109/TSE.2003.1265521

(cit. on p. 27).

[41] N. Carvalho, F. Araujo, and L. Rodrigues. “Reducing Latency in Rendezvous-

Based Publish-Subscribe Systems for Wireless Ad Hoc Networks”. In: Proceedings
of the 26th IEEE International Conference on Distributed Computing Systems Work-
shops. ICDCSW ’06. Washington, DC, USA: IEEE Computer Society, 2006. isbn:

0-7695-2541-5. doi: 10.1109/ICDCSW.2006.89. url: http://dx.doi.org/10.1

109/ICDCSW.2006.89 (cit. on pp. 28, 60).

[42] A. Carzaniga. “Architectures for an Event Notification Service Scalable to Wide-

area Networks”. PhD thesis. Milano, Italy: Politecnico di Milano, Dec. 1998. url:

http://www.inf.usi.ch/carzaniga/papers/ (cit. on pp. 22, 24, 26).

[43] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “Achieving Scalability and Ex-

pressiveness in an Internet-scale Event Notification Service”. In: Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing. PODC

’00. Portland, Oregon, USA: ACM, 2000, pp. 219–227. isbn: 1-58113-183-6. doi:

10.1145/343477.343622. url: http://doi.acm.org/10.1145/343477.343622

(cit. on p. 22).

[44] A. Carzaniga and A. L. Wolf. “Content-Based Networking: A New Communi-

cation Infrastructure”. In: Developing an Infrastructure for Mobile and Wireless
Systems. Ed. by B. König-Ries, K. Makki, S. A. M. Makki, N. Pissinou, and P.

Scheuermann. Vol. 2538. Lecture Notes in Computer Science. Scottsdale, AZ,

USA: Springer, 2001, pp. 59–68. doi: 10.1007/3- 540- 36257- 6_6. url:

https://doi.org/10.1007/3-540-36257-6%5C_6 (cit. on pp. 39, 66).

201

https://doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
https://briarproject.org/
http://dl.acm.org/citation.cfm?id=1515890.1515905
http://dl.acm.org/citation.cfm?id=1515890.1515905
https://doi.org/10.1109/TSE.2003.1265521
https://doi.org/10.1109/TSE.2003.1265521
http://dx.doi.org/10.1109/TSE.2003.1265521
https://doi.org/10.1109/ICDCSW.2006.89
http://dx.doi.org/10.1109/ICDCSW.2006.89
http://dx.doi.org/10.1109/ICDCSW.2006.89
http://www.inf.usi.ch/carzaniga/papers/
https://doi.org/10.1145/343477.343622
http://doi.acm.org/10.1145/343477.343622
https://doi.org/10.1007/3-540-36257-6_6
https://doi.org/10.1007/3-540-36257-6%5C_6

BIBLIOGRAPHY

[45] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron. “Scribe: a large-

scale and decentralized application-level multicast infrastructure”. In: IEEE Jour-
nal on Selected Areas in Communications 20.8 (Oct. 2002), pp. 1489–1499. issn:

0733-8716. doi: 10.1109/JSAC.2002.803069. url: https://doi.org/10.1109

/JSAC.2002.803069 (cit. on pp. 21, 25, 27, 70, 104).

[46] F. Cerqueira. “Um Sistema Publicador/Subscritor com Persistência de Dados para

Redes de Dispositivos Móveis”. http://hdl.handle.net/10362/28553. MA

thesis. NOVA University Lisbon, Nov. 2017 (cit. on pp. 57, 59, 75, 92, 94–98).

[47] F. Cerqueira, J. A. Silva, J. M. Lourenço, and H. Paulino. “Towards a Persistent

Publish/Subscribe System for Networks of Mobile Devices”. In: Proceedings of the
2Nd Workshop on Middleware for Edge Clouds & Cloudlets. MECC ’17. Las Vegas,

Nevada, USA: ACM, 2017, pp. 1–6. isbn: 978-1-4503-5171-3. doi: 10.1145/315

2360.3152362. url: http://doi.acm.org/10.1145/3152360.3152362 (cit. on

pp. 101, 166).

[48] F. Cerqueira, J. A. Silva, J. M. Lourenço, and H. Paulino. “Um Sistema Publi-

cador/Subscritor com Persistência de Dados para Redes de Dispositivos Móveis”.

In: Proceedings of the 9th Simpósio Nacional de Informática. INForum ’17. Aveiro,

Portugal, 2017 (cit. on p. 101).

[49] G. Chandrasekaran, N. Wang, and R. Tafazolli. “Caching on the Move: Towards

D2D-based Information Centric Networking for Mobile Content Distribution”. In:

Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks. LCN ’15.

Washington, DC, USA: IEEE Computer Society, 2015, pp. 312–320. isbn: 978-1-

4673-6770-7. doi: 10.1109/LCN.2015.7366325. url: http://dx.doi.org/10

.1109/LCN.2015.7366325 (cit. on p. 39).

[50] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. “Indoor Local-

ization Without the Pain”. In: Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking. Chicago, Illinois, USA: ACM,

2010, pp. 173–184. isbn: 978-1-4503-0181-7. doi: 10.1145/1859995.1860016.

url: http://doi.acm.org/10.1145/1859995.1860016 (cit. on p. 18).

[51] I. Chlamtac, M. Conti, and J. J.-N. Liu. “Mobile ad hoc networking: imperatives

and challenges”. In: Ad Hoc Networks 1.1 (2003), pp. 13–64. issn: 1570-8705.

doi: 10.1016/S1570-8705(03)00013-1. url: https://doi.org/10.1016/S157

0-8705(03)00013-1 (cit. on p. 15).

[52] H.-D. Cho, K. Chung, and T. Kim. Benefits of the big.LITTLE Architecture. Tech. rep.

Samsung, Feb. 2012 (cit. on p. 2).

[53] G. V. Chockler, I. Keidar, and R. Vitenberg. “Group Communication Specifi-

cations: A Comprehensive Study”. In: ACM Comput. Surv. 33.4 (Dec. 2001),

pp. 427–469. issn: 0360-0300. doi: 10 . 1145 / 503112 . 503113. url: http :

//doi.acm.org/10.1145/503112.503113 (cit. on p. 21).

202

https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069
http://hdl.handle.net/10362/28553
https://doi.org/10.1145/3152360.3152362
https://doi.org/10.1145/3152360.3152362
http://doi.acm.org/10.1145/3152360.3152362
https://doi.org/10.1109/LCN.2015.7366325
http://dx.doi.org/10.1109/LCN.2015.7366325
http://dx.doi.org/10.1109/LCN.2015.7366325
https://doi.org/10.1145/1859995.1860016
http://doi.acm.org/10.1145/1859995.1860016
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113

BIBLIOGRAPHY

[54] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. “CloneCloud: Elastic

Execution Between Mobile Device and Cloud”. In: Proceedings of the Sixth Confer-
ence on Computer Systems. EuroSys ’11. Salzburg, Austria: ACM, 2011, pp. 301–

314. isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.1966473. url: http:

//doi.acm.org/10.1145/1966445.1966473 (cit. on p. 1).

[55] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann. “Looking into the

Past: Enhancing Mobile Publish/Subscribe Middleware”. In: Proceedings of the
2Nd International Workshop on Distributed Event-based Systems. DEBS ’03. San

Diego, California, USA: ACM, 2003, pp. 1–8. isbn: 1-58113-843-1. doi: 10.1145

/966618.966631. url: http://doi.acm.org/10.1145/966618.966631 (cit. on

pp. 28, 44, 45, 60).

[56] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2016–2021. Tech. rep. Cisco, Feb. 2017 (cit. on pp. 2, 5, 58, 150).

[57] Cisco. The Zettabyte Era: Trends and Analysis. Tech. rep. Cisco, June 2017 (cit. on

pp. 5, 58).

[58] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2017–2022. Tech. rep. Cisco, Feb. 2019 (cit. on p. 2).

[59] Cisco. Cisco Annual Internet Report (2018–2023). Tech. rep. Cisco, Mar. 2020

(cit. on pp. 2, 5, 58).

[60] T. H. Clausen and P. Jacquet. “Optimized Link State Routing Protocol (OLSR)”. In:

RFC 3626 (2003), pp. 1–75. doi: 10.17487/RFC3626. url: https://doi.org/10

.17487/RFC3626 (cit. on pp. 60, 65).

[61] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Benchmark-

ing cloud serving systems with YCSB”. In: Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010. Ed.

by J. M. Hellerstein, S. Chaudhuri, and M. Rosenblum. ACM, 2010, pp. 143–154.

doi: 10.1145/1807128.1807152. url: https://doi.org/10.1145/1807128.18

07152 (cit. on p. 136).

[62] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. “TeenyLIME: Transiently

Shared Tuple Space Middleware for Wireless Sensor Networks”. In: Proceedings
of the International Workshop on Middleware for Sensor Networks. MidSens ’06.

Melbourne, Australia: ACM, 2006, pp. 43–48. isbn: 1-59593-424-3. doi: 10.11

45/1176866.1176874. url: http://doi.acm.org/10.1145/1176866.1176874

(cit. on p. 40).

[63] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,

and P. Bahl. “MAUI: Making Smartphones Last Longer with Code Offload”. In:

Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services. MobiSys ’10. San Francisco, California, USA: ACM, 2010, pp. 49–62.

203

https://doi.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1966445.1966473
https://doi.org/10.1145/966618.966631
https://doi.org/10.1145/966618.966631
http://doi.acm.org/10.1145/966618.966631
https://doi.org/10.17487/RFC3626
https://doi.org/10.17487/RFC3626
https://doi.org/10.17487/RFC3626
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1176866.1176874
https://doi.org/10.1145/1176866.1176874
http://doi.acm.org/10.1145/1176866.1176874

BIBLIOGRAPHY

isbn: 978-1-60558-985-5. doi: 10.1145/1814433.1814441. url: http://doi.

acm.org/10.1145/1814433.1814441 (cit. on p. 1).

[64] G. Cugola, E. Di Nitto, and A. Fuggetta. “The JEDI Event-Based Infrastructure and

Its Application to the Development of the OPSS WFMS”. In: IEEE Trans. Softw.
Eng. 27.9 (Sept. 2001), pp. 827–850. issn: 0098-5589. doi: 10.1109/32.950318.

url: http://dx.doi.org/10.1109/32.950318 (cit. on pp. 22, 24).

[65] G. Cugola and H.-A. Jacobsen. “Using Publish/Subscribe Middleware for Mobile

Systems”. In: SIGMOBILE Mob. Comput. Commun. Rev. 6.4 (Oct. 2002), pp. 25–33.

issn: 1559-1662. doi: 10.1145/643550.643552. url: http://doi.acm.org/10

.1145/643550.643552 (cit. on p. 27).

[66] G. Cugola and A. Margara. “Processing Flows of Information: From Data Stream

to Complex Event Processing”. In: ACM Comput. Surv. 44.3 (June 2012), pp. 1–62.

issn: 0360-0300. doi: 10.1145/2187671.2187677. url: http://doi.acm.org/

10.1145/2187671.2187677 (cit. on p. 29).

[67] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco.

“TinyLIME: Bridging Mobile and Sensor Networks Through Middleware”. In:

Proceedings of the Third IEEE International Conference on Pervasive Computing and
Communications. PerCom ’05. Washington, DC, USA: IEEE Computer Society,

2005, pp. 61–72. isbn: 0-7695-2299-8. doi: 10.1109/PERCOM.2005.48. url:

http://dx.doi.org/10.1109/PERCOM.2005.48 (cit. on p. 40).

[68] F. Dabek, M. F. Kaashoek, D. R. Karger, R. T. Morris, and I. Stoica. “Wide-Area

Cooperative Storage with CFS”. In: Proceedings of the 18th ACM Symposium on
Operating System Principles. Ed. by K. Marzullo and M. Satyanarayanan. SOSP

’01. Chateau Lake Louise, Banff, Alberta, Canada: ACM, 2001, pp. 202–215. doi:

10.1145/502034.502054. url: https://doi.org/10.1145/502034.502054

(cit. on pp. 34, 37, 104).

[69] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl. “Net-

work of Information (NetInf) - An information-centric networking architecture”.

In: Comput. Commun. 36.7 (2013), pp. 721–735. doi: 10.1016/j.comcom.2013.0

1.009. url: https://doi.org/10.1016/j.comcom.2013.01.009 (cit. on p. 39).

[70] DARPA. Creating a Secure, Private Internet and Cloud at the Tactical Edge. https:

//www.darpa.mil/news-events/2013-08-21. Accessed: 2020-07-10. 2013

(cit. on pp. 9, 15, 58, 181).

[71] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second Edition.

Cambridge University Press, 2002. isbn: 978-0-521-78451-1. doi: 10.1017/CBO9

780511809088. url: https://doi.org/10.1017/CBO9780511809088 (cit. on

p. 70).

204

https://doi.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
https://doi.org/10.1109/32.950318
http://dx.doi.org/10.1109/32.950318
https://doi.org/10.1145/643550.643552
http://doi.acm.org/10.1145/643550.643552
http://doi.acm.org/10.1145/643550.643552
https://doi.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677
https://doi.org/10.1109/PERCOM.2005.48
http://dx.doi.org/10.1109/PERCOM.2005.48
https://doi.org/10.1145/502034.502054
https://doi.org/10.1145/502034.502054
https://doi.org/10.1016/j.comcom.2013.01.009
https://doi.org/10.1016/j.comcom.2013.01.009
https://doi.org/10.1016/j.comcom.2013.01.009
https://www.darpa.mil/news-events/2013-08-21
https://www.darpa.mil/news-events/2013-08-21
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088

BIBLIOGRAPHY

[72] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: amazon’s highly available

key-value store”. In: Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007.

2007, pp. 205–220. doi: 10.1145/1294261.1294281. url: https://doi.org/10

.1145/1294261.1294281 (cit. on p. 104).

[73] M. Demmer, B. Du, and E. Brewer. “TierStore: A Distributed Filesystem for

Challenged Networks in Developing Regions”. In: Proceedings of the 6th USENIX
Conference on File and Storage Technologies. FAST’08. San Jose, California: USENIX

Association, 2008, 3:1–3:14. url: http://dl.acm.org/citation.cfm?id=13648

13.1364816 (cit. on pp. 30, 62).

[74] J. Dias. “Adaptive Replica Selection in Mobile Edge Networks”. MA thesis. NOVA

University Lisbon, Feb. 2021 (cit. on p. 186).

[75] V. Dimitrov and V. Koptchev. “PSIRP project – publish-subscribe internet routing

paradigm: new ideas for future internet”. In: Proceedings of the 11th International
Conference on Computer Systems and Technologies and Workshop for PhD Students in
Computing. Ed. by B. Rachev and A. Smrikarov. CompSysTech ’10. Sofia, Bulgaria:

ACM, 2010, pp. 167–171. doi: 10.1145/1839379.1839409. url: https://doi.

org/10.1145/1839379.1839409 (cit. on p. 39).

[76] A. Doan, R. Ramakrishnan, and A. Y. Halevy. “Crowdsourcing Systems on the

World-Wide Web”. In: Commun. ACM 54.4 (Apr. 2011), pp. 86–96. issn: 0001-

0782. doi: 10.1145/1924421.1924442. url: http://doi.acm.org/10.1145/19

24421.1924442 (cit. on p. 54).

[77] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. “Cachier: Edge-Caching

for Recognition Applications”. In: 37th IEEE International Conference on Dis-
tributed Computing Systems. ICDCS ’17. Atlanta, GA, USA: IEEE Computer Soci-

ety, 2017, pp. 276–286. doi: 10.1109/ICDCS.2017.94. url: https://doi.org/1

0.1109/ICDCS.2017.94 (cit. on pp. 31, 150).

[78] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi, and P. Narasimhan.

“The Case for Mobile Edge-Clouds”. In: Proceedings of the 2013 IEEE 10th Inter-
national Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th
International Conference on Autonomic & Trusted Computing. UIC-ATC ’13. Vietri

sul Mare, Sorrento, Italy: IEEE Computer Society, 2013, pp. 209–215. isbn: 978-

1-4799-2482-0. doi: 10.1109/UIC-ATC.2013.94. url: http://dx.doi.org/10

.1109/UIC-ATC.2013.94 (cit. on pp. 2, 4, 6).

[79] U. Drolia, N. Mickulicz, R. Gandhi, and P. Narasimhan. “Krowd: A Key-Value

Store for Crowded Venues”. In: Proceedings of the 10th International Workshop on
Mobility in the Evolving Internet Architecture. MobiArch ’15. Paris, France: ACM,

2015, pp. 20–25. isbn: 978-1-4503-3695-6. doi: 10.1145/2795381.2795388.

205

https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://dl.acm.org/citation.cfm?id=1364813.1364816
http://dl.acm.org/citation.cfm?id=1364813.1364816
https://doi.org/10.1145/1839379.1839409
https://doi.org/10.1145/1839379.1839409
https://doi.org/10.1145/1839379.1839409
https://doi.org/10.1145/1924421.1924442
http://doi.acm.org/10.1145/1924421.1924442
http://doi.acm.org/10.1145/1924421.1924442
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1109/UIC-ATC.2013.94
http://dx.doi.org/10.1109/UIC-ATC.2013.94
http://dx.doi.org/10.1109/UIC-ATC.2013.94
https://doi.org/10.1145/2795381.2795388

BIBLIOGRAPHY

url: http://doi.acm.org/10.1145/2795381.2795388 (cit. on pp. 30, 43, 59,

61, 150).

[80] G. Einziger, R. Friedman, and B. Manes. “TinyLFU: A Highly Efficient Cache

Admission Policy”. In: ACM Trans. Storage 13.4 (2017), 35:1–35:31. doi: 10.1145

/3149371. url: https://doi.org/10.1145/3149371 (cit. on p. 165).

[81] Ericsson. Ericsson Mobility Report. Tech. rep. Ericsson, Nov. 2020 (cit. on pp. 2, 5).

[82] J. Erman and K. Ramakrishnan. “Understanding the Super-sized Traffic of the

Super Bowl”. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference. IMC ’13. Barcelona, Spain: ACM, 2013, pp. 353–360. isbn: 978-1-4503-

1953-9. doi: 10.1145/2504730.2504770. url: http://doi.acm.org/10.1145

/2504730.2504770 (cit. on pp. 5, 58, 64).

[83] E. Estellés-Arolas and F. G. Ladrón-De-Guevara. “Towards an Integrated Crowd-

sourcing Definition”. In: J. Inf. Sci. 38.2 (Apr. 2012), pp. 189–200. issn: 0165-

5515. doi: 10.1177/0165551512437638. url: http://dx.doi.org/10.1177/01

65551512437638 (cit. on p. 54).

[84] P. Eugster. “Type-based Publish/Subscribe: Concepts and Experiences”. In: ACM
Trans. Program. Lang. Syst. 29.1 (Jan. 2007). issn: 0164-0925. doi: 10.1145/118

0475.1180481. url: http://doi.acm.org/10.1145/1180475.1180481 (cit. on

p. 22).

[85] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. “The Many Faces of

Publish/Subscribe”. In: ACM Comput. Surv. 35.2 (June 2003), pp. 114–131. issn:

0360-0300. doi: 10.1145/857076.857078. url: http://doi.acm.org/10.1145

/857076.857078 (cit. on pp. 19–21, 28, 43, 48).

[86] P. T. Eugster and R. Guerraoui. “Probabilistic Multicast”. In: Proceedings of the
2002 International Conference on Dependable Systems and Networks. DSN ’02. Wash-

ington, DC, USA: IEEE Computer Society, 2002, pp. 313–324. isbn: 0-7695-1597-

5. url: http://dl.acm.org/citation.cfm?id=647883.738400 (cit. on p. 27).

[87] P. T. Eugster, R. Guerraoui, and C. H. Damm. “On Objects and Events”. In:

Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications. OOPSLA ’01. Tampa Bay, FL, USA: ACM,

2001, pp. 254–269. isbn: 1-58113-335-9. doi: 10.1145/504282.504301. url:

http://doi.acm.org/10.1145/504282.504301 (cit. on p. 22).

[88] P. T. Eugster, R. Guerraoui, and J. Sventek. “Distributed Asynchronous Collec-

tions: Abstractions for Publish/Subscribe Interaction”. In: Proceedings of the 14th
European Conference on Object-Oriented Programming. ECOOP ’00. Sophia Antipo-

lis and Cannes, France: Springer-Verlag, 2000, pp. 252–276. isbn: 3-540-67660-0.

url: http://dl.acm.org/citation.cfm?id=646157.758679 (cit. on p. 22).

206

http://doi.acm.org/10.1145/2795381.2795388
https://doi.org/10.1145/3149371
https://doi.org/10.1145/3149371
https://doi.org/10.1145/3149371
https://doi.org/10.1145/2504730.2504770
http://doi.acm.org/10.1145/2504730.2504770
http://doi.acm.org/10.1145/2504730.2504770
https://doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
https://doi.org/10.1145/1180475.1180481
https://doi.org/10.1145/1180475.1180481
http://doi.acm.org/10.1145/1180475.1180481
https://doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://dl.acm.org/citation.cfm?id=647883.738400
https://doi.org/10.1145/504282.504301
http://doi.acm.org/10.1145/504282.504301
http://dl.acm.org/citation.cfm?id=646157.758679

BIBLIOGRAPHY

[89] K. Fall. “A Delay-tolerant Network Architecture for Challenged Internets”. In:

Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. SIGCOMM ’03. Karlsruhe, Germany:

ACM, 2003, pp. 27–34. isbn: 1-58113-735-4. doi: 10.1145/863955.863960.

url: http://doi.acm.org/10.1145/863955.863960 (cit. on p. 17).

[90] U. Farooq, S. Majumdar, and E. W. Parsons. Semi-Durable Subscriptions: A Tech-
nique to Achieve High Performance in Mobile Wireless Publish/Subscribe Systems.
Tech. rep. Carleton University, July 2003 (cit. on p. 28).

[91] N. Fernando, S. W. Loke, and W. Rahayu. “Mobile Cloud Computing: A Survey”.

In: Future Generation Computer Systems 29.1 (Jan. 2013), pp. 84–106. issn: 0167-

739X. doi: 10.1016/j.future.2012.05.023. url: http://dx.doi.org/10.101

6/j.future.2012.05.023 (cit. on p. 1).

[92] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. “Supporting Mobility in Content-

based Publish/Subscribe Middleware”. In: Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware. Middleware ’03. Rio de Janeiro,

Brazil: Springer-Verlag, 2003, pp. 103–122. isbn: 3-540-40317-5. url: http:

//dl.acm.org/citation.cfm?id=1515915.1515923 (cit. on p. 27).

[93] L. Fiege, A. Zeidler, F. C. Gärtner, and S. B. Handurukande. “Dealing with Uncer-

tainty in Mobile Publish/Subscribe Middleware”. In: International Workshop on
Middleware for Pervasive and Ad-Hoc Computing. Rio de Janeiro, Brazil: PUC-Rio,

2003, pp. 60–67 (cit. on p. 27).

[94] M. J. Freedman, E. Freudenthal, and D. Mazières. “Democratizing Content Publi-

cation with Coral”. In: 1st Symposium on Networked Systems Design and Implemen-
tation. Ed. by R. T. Morris and S. Savage. NSDI ’04. San Francisco, California, USA:

USENIX, 2004, pp. 239–252. url: http://www.usenix.org/events/nsdi04

/tech/freedman.html (cit. on pp. 34, 104).

[95] M. Garcia, J. Rodrigues, J. Silva, E. R. B. Marques, and L. M. B. Lopes. “Ramble:

Opportunistic Crowdsourcing of User-Generated Data using Mobile Edge Clouds”.

In: Fifth International Conference on Fog and Mobile Edge Computing. FMEC ’20.

Paris, France: IEEE, 2020, pp. 172–179. doi: 10.1109/FMEC49853.2020.9144881.

url: https://doi.org/10.1109/FMEC49853.2020.9144881 (cit. on pp. 125,

153).

[96] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere. “Edge-centric Computing: Vision and

Challenges”. In: SIGCOMM Comput. Commun. Rev. 45.5 (Sept. 2015), pp. 37–42.

issn: 0146-4833. doi: 10.1145/2831347.2831354. url: http://doi.acm.org/

10.1145/2831347.2831354 (cit. on pp. 3–5, 58, 104).

[97] M. Gast. 802.11 wireless networks: the definitive guide. O’Reilly, 2005 (cit. on

pp. 13–15).

207

https://doi.org/10.1145/863955.863960
http://doi.acm.org/10.1145/863955.863960
https://doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dl.acm.org/citation.cfm?id=1515915.1515923
http://dl.acm.org/citation.cfm?id=1515915.1515923
http://www.usenix.org/events/nsdi04/tech/freedman.html
http://www.usenix.org/events/nsdi04/tech/freedman.html
https://doi.org/10.1109/FMEC49853.2020.9144881
https://doi.org/10.1109/FMEC49853.2020.9144881
https://doi.org/10.1145/2831347.2831354
http://doi.acm.org/10.1145/2831347.2831354
http://doi.acm.org/10.1145/2831347.2831354

BIBLIOGRAPHY

[98] D. Gelernter. “Generative Communication in Linda”. In: ACM Trans. Program.
Lang. Syst. 7.1 (Jan. 1985), pp. 80–112. issn: 0164-0925. doi: 10.1145/2363.24

33. url: http://doi.acm.org/10.1145/2363.2433 (cit. on pp. 30, 40).

[99] A. Ghodsi, L. O. Alima, and S. Haridi. “Symmetric Replication for Structured Peer-

to-Peer Systems”. In: Databases, Information Systems, and Peer-to-Peer Computing,
International Workshops. Ed. by G. Moro, S. Bergamaschi, S. Joseph, J.-H. Morin,

and A. M. Ouksel. Vol. 4125. DBISP2P ’05. Trondheim, Norway: Springer, 2005,

pp. 74–85. doi: 10.1007/978-3-540-71661-7_7. url: https://doi.org/10

.1007/978-3-540-71661-7%5C_7 (cit. on p. 118).

[100] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. E. Anderson. “Scalable

consistency in Scatter”. In: Proceedings of the 23rd ACM Symposium on Operating
Systems Principles. SOSP ’11. Cascais, Portugal, 2011, pp. 15–28. doi: 10.1145

/2043556.2043559. url: https://doi.org/10.1145/2043556.2043559 (cit. on

p. 38).

[101] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica. “Load Bal-

ancing in Dynamic Structured P2P Systems”. In: Proceedings of The 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies. INFOCOM ’04.

Hong Kong, China, 2004, pp. 2253–2262. doi: 10.1109/INFCOM.2004.1354648.

url: https://doi.org/10.1109/INFCOM.2004.1354648 (cit. on p. 37).

[102] goTenna, Inc. goTenna Mesh. https://www.gotenna.com/. Accessed: 2020-10-05.

2017 (cit. on p. 63).

[103] O. M. Group. Data Distribution Service for Real-time Systems Version 1.2. Tech. rep.

Object Management Group, Jan. 2007 (cit. on p. 21).

[104] Guifi.net. Guifi.net. https://guifi.net/. Accessed: 2020-07-20. 2017 (cit. on

p. 16).

[105] P. K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I.

Stoica. “The impact of DHT routing geometry on resilience and proximity”. In:

Proceedings of the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. Ed. by A. Feldmann, M.

Zitterbart, J. Crowcroft, and D. Wetherall. SIGCOMM ’03. Karlsruhe, Germany:

ACM, 2003, pp. 381–394. doi: 10.1145/863955.863998. url: https://doi.

org/10.1145/863955.863998 (cit. on p. 34).

[106] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. “Meghdoot: Content-based

Publish/Subscribe over P2P Networks”. In: Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware. Middleware ’04. Toronto, Canada: Springer-

Verlag New York, Inc., 2004, pp. 254–273. isbn: 3-540-23428-4. url: http:

//dl.acm.org/citation.cfm?id=1045658.1045677 (cit. on p. 27).

208

https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
http://doi.acm.org/10.1145/2363.2433
https://doi.org/10.1007/978-3-540-71661-7_7
https://doi.org/10.1007/978-3-540-71661-7%5C_7
https://doi.org/10.1007/978-3-540-71661-7%5C_7
https://doi.org/10.1145/2043556.2043559
https://doi.org/10.1145/2043556.2043559
https://doi.org/10.1145/2043556.2043559
https://doi.org/10.1109/INFCOM.2004.1354648
https://doi.org/10.1109/INFCOM.2004.1354648
https://www.gotenna.com/
https://guifi.net/
https://doi.org/10.1145/863955.863998
https://doi.org/10.1145/863955.863998
https://doi.org/10.1145/863955.863998
http://dl.acm.org/citation.cfm?id=1045658.1045677
http://dl.acm.org/citation.cfm?id=1045658.1045677

BIBLIOGRAPHY

[107] H. Gupta and U. Ramachandran. “FogStore: A Geo-Distributed Key-Value Store

Guaranteeing Low Latency for Strongly Consistent Access”. In: Proceedings of
the 12th ACM International Conference on Distributed and Event-Based Systems.
DEBS ’18. Hamilton, New Zealand: Association for Computing Machinery, 2018,

pp. 148–159. isbn: 9781450357821. doi: 10.1145/3210284.3210297. url:

https://doi.org/10.1145/3210284.3210297 (cit. on p. 31).

[108] I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse. “Kelips: Build-

ing an Efficient and Stable P2P DHT through Increased Memory and Background

Overhead”. In: Peer-to-Peer Systems II, Second International Workshop. IPTPS ’03.

Berkeley, California, USA, 2003, pp. 160–169. doi: 10.1007/978-3-540-45172

-3_15. url: https://doi.org/10.1007/978-3-540-45172-3%5C_15 (cit. on

p. 38).

[109] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. “Towards

Wearable Cognitive Assistance”. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services. MobiSys ’14. Bretton

Woods, New Hampshire, USA: ACM, 2014, pp. 68–81. isbn: 978-1-4503-2793-0.

doi: 10.1145/2594368.2594383. url: http://doi.acm.org/10.1145/2594368

.2594383 (cit. on p. 2).

[110] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan.

“The Impact of Mobile Multimedia Applications on Data Center Consolidation”.

In: Proceedings of the 2013 IEEE International Conference on Cloud Engineering.

IC2E ’13. San Francisco, California, USA: IEEE Computer Society, 2013, pp. 166–

176. isbn: 978-0-7695-4945-3. doi: 10.1109/IC2E.2013.17. url: http://dx.

doi.org/10.1109/IC2E.2013.17 (cit. on pp. 2, 6, 58, 150).

[111] Z. J. Haas. “A new routing protocol for the reconfigurable wireless networks”. In:

Proceedings of the 6th International Conference on Universal Personal Communica-
tions. Vol. 2. ICUPC ’97. Nov. 1997, 562–566 vol.2. doi: 10.1109/ICUPC.1997.6

27227 (cit. on p. 18).

[112] Z. Hao and Q. Li. “Poster Abstract: EdgeStore: Integrating Edge Computing into

Cloud-Based Storage Systems”. In: IEEE/ACM Symposium on Edge Computing.

SEC ’16. Washington, DC,USA: IEEE Computer Society, 2016, pp. 115–116. doi:

10.1109/SEC.2016.34. url: https://doi.org/10.1109/SEC.2016.34 (cit. on

p. 31).

[113] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message Service.

Tech. rep. Sun Microsystems Inc., 2013 (cit. on pp. 21, 22, 24).

[114] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. “SkipNet:

A Scalable Overlay Network with Practical Locality Properties”. In: 4th USENIX
Symposium on Internet Technologies and Systems. Ed. by S. D. Gribble. USITS

209

https://doi.org/10.1145/3210284.3210297
https://doi.org/10.1145/3210284.3210297
https://doi.org/10.1007/978-3-540-45172-3_15
https://doi.org/10.1007/978-3-540-45172-3_15
https://doi.org/10.1007/978-3-540-45172-3%5C_15
https://doi.org/10.1145/2594368.2594383
http://doi.acm.org/10.1145/2594368.2594383
http://doi.acm.org/10.1145/2594368.2594383
https://doi.org/10.1109/IC2E.2013.17
http://dx.doi.org/10.1109/IC2E.2013.17
http://dx.doi.org/10.1109/IC2E.2013.17
https://doi.org/10.1109/ICUPC.1997.627227
https://doi.org/10.1109/ICUPC.1997.627227
https://doi.org/10.1109/SEC.2016.34
https://doi.org/10.1109/SEC.2016.34

BIBLIOGRAPHY

’03. Seattle, Washington, USA: USENIX, 2003. url: http://www.usenix.org/

events/usits03/tech/harvey.html (cit. on p. 34).

[115] S. Hosio, D. Ferreira, J. Gonçalves, N. van Berkel, C. Luo, M. Ahmed, H. Flores,

and V. Kostakos. “Monetary Assessment of Battery Life on Smartphones”. In:

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
Ed. by J. Kaye, A. Druin, C. Lampe, D. Morris, and J. P. Hourcade. CHI ’16. San

Jose, CA, USA: ACM, 2016, pp. 1869–1880. doi: 10.1145/2858036.2858285.

url: https://doi.org/10.1145/2858036.2858285 (cit. on p. 2).

[116] J. Howe. “The rise of crowdsourcing”. In: Wired magazine 14.6 (2006), pp. 1–4

(cit. on p. 54).

[117] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and M. Satyanarayanan.

“Quantifying the Impact of Edge Computing on Mobile Applications”. In: Pro-
ceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems. APSys ’16. Hong

Kong, Hong Kong: ACM, 2016, 5:1–5:8. isbn: 978-1-4503-4265-0. doi: 10.114

5/2967360.2967369. url: http://doi.acm.org/10.1145/2967360.2967369

(cit. on pp. 2, 6, 58, 150).

[118] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young. Mobile Edge Computing -
A key technology towards 5G. Tech. rep. European Telecommunications Standards

Institute, Sept. 2015 (cit. on p. 4).

[119] Huawei. Huawei P30. https://consumer.huawei.com/en/phones/p30/. Ac-

cessed: 220-09-23. 2020 (cit. on p. 2).

[120] M. Ionescu and I. Marsic. “Stateful Publish-subscribe for Mobile Environments”.

In: Proceedings of the 2Nd ACM International Workshop on Wireless Mobile Applica-
tions and Services on WLAN Hotspots. WMASH ’04. Philadelphia, PA, USA: ACM,

2004, pp. 21–28. isbn: 1-58113-877-6. doi: 10.1145/1024733.1024737. url:

http://doi.acm.org/10.1145/1024733.1024737 (cit. on p. 28).

[121] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mahmoudi. The
NIST Definition of Fog Computing. Tech. rep. National Institute of Standards and

Technology, Aug. 2017 (cit. on p. 3).

[122] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. Bray-

nard. “Networking named content”. In: Proceedings of the 2009 ACM Conference
on Emerging Networking Experiments and Technology. Ed. by J. Liebeherr, G. Ventre,

E. W. Biersack, and S. Keshav. CoNEXT ’09. Rome, Italy: ACM, 2009, pp. 1–12.

doi: 10.1145/1658939.1658941. url: https://doi.org/10.1145/1658939.16

58941 (cit. on p. 39).

[123] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.

“Optimized link state routing protocol for ad hoc networks”. In: Proceedings of
the IEEE International Multi Topic Conference. IEEE INMIC 2001. 2001, pp. 62–68.

doi: 10.1109/INMIC.2001.995315 (cit. on p. 17).

210

http://www.usenix.org/events/usits03/tech/harvey.html
http://www.usenix.org/events/usits03/tech/harvey.html
https://doi.org/10.1145/2858036.2858285
https://doi.org/10.1145/2858036.2858285
https://doi.org/10.1145/2967360.2967369
https://doi.org/10.1145/2967360.2967369
http://doi.acm.org/10.1145/2967360.2967369
https://consumer.huawei.com/en/phones/p30/
https://doi.org/10.1145/1024733.1024737
http://doi.acm.org/10.1145/1024733.1024737
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1109/INMIC.2001.995315

BIBLIOGRAPHY

[124] S. Jain, K. Fall, and R. Patra. “Routing in a Delay Tolerant Network”. In: SIG-
COMM Comput. Commun. Rev. 34.4 (Aug. 2004), pp. 145–158. issn: 0146-4833.

doi: 10.1145/1030194.1015484. url: http://doi.acm.org/10.1145/1030194

.1015484 (cit. on p. 17).

[125] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-Royer.

“Understanding Congestion in IEEE 802.11b Wireless Networks”. In: Proceedings
of the 5th Internet Measurement Conference. IMC ’05. Berkeley, California, USA:

USENIX Association, 2005, pp. 279–292. url: http://www.usenix.org/events/

imc05/tech/jardosh.html (cit. on p. 2).

[126] Y. Jiang, G. Xue, Z. Jia, and J. You. “DTuples: A Distributed Hash Table based

Tuple Space Service for Distributed Coordination”. In: Grid and Cooperative Com-
puting - GCC 2006, 5th International Conference, Changsha, Hunan, China, 21-23
October 2006, Proceedings. IEEE Computer Society, 2006, pp. 101–106. doi: 10

.1109/GCC.2006.41. url: https://doi.org/10.1109/GCC.2006.41 (cit. on

p. 40).

[127] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govindan. “MediaS-

cope: Selective On-demand Media Retrieval from Mobile Devices”. In: Proceedings
of the 12th International Conference on Information Processing in Sensor Networks.
IPSN ’13. Philadelphia, Pennsylvania, USA: ACM, 2013, pp. 289–300. isbn: 978-

1-4503-1959-1. doi: 10.1145/2461381.2461416. url: http://doi.acm.org/10

.1145/2461381.2461416 (cit. on p. 32).

[128] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR) for
Mobile Ad Hoc Networks for IPv4. RFC 4728. http://www.rfc-editor.org/rfc/

rfc4728.txt. RFC Editor, Feb. 2007. url: http://www.rfc-editor.org/rfc/

rfc4728.txt (cit. on p. 18).

[129] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. “Energy-

efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences

with ZebraNet”. In: Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS X. San Jose,

California, USA: ACM, 2002, pp. 96–107. isbn: 1-58113-574-2. doi: 10.1145

/605397.605408. url: http://doi.acm.org/10.1145/605397.605408 (cit. on

pp. 16, 17).

[130] W. S. Jung, H. Ahn, and Y. B. Ko. “Designing content-centric multi-hop network-

ing over Wi-Fi Direct on smartphones”. In: IEEE Wireless Communications and
Networking Conference. WCNC ’14. Istanbul, Turkey: IEEE, Apr. 2014, pp. 2934–

2939. doi: 10.1109/WCNC.2014.6952920. url: https://doi.org/10.1109

/WCNC.2014.6952920 (cit. on p. 39).

211

https://doi.org/10.1145/1030194.1015484
http://doi.acm.org/10.1145/1030194.1015484
http://doi.acm.org/10.1145/1030194.1015484
http://www.usenix.org/events/imc05/tech/jardosh.html
http://www.usenix.org/events/imc05/tech/jardosh.html
https://doi.org/10.1109/GCC.2006.41
https://doi.org/10.1109/GCC.2006.41
https://doi.org/10.1109/GCC.2006.41
https://doi.org/10.1145/2461381.2461416
http://doi.acm.org/10.1145/2461381.2461416
http://doi.acm.org/10.1145/2461381.2461416
http://www.rfc-editor.org/rfc/rfc4728.txt
http://www.rfc-editor.org/rfc/rfc4728.txt
http://www.rfc-editor.org/rfc/rfc4728.txt
http://www.rfc-editor.org/rfc/rfc4728.txt
https://doi.org/10.1145/605397.605408
https://doi.org/10.1145/605397.605408
http://doi.acm.org/10.1145/605397.605408
https://doi.org/10.1109/WCNC.2014.6952920
https://doi.org/10.1109/WCNC.2014.6952920
https://doi.org/10.1109/WCNC.2014.6952920

BIBLIOGRAPHY

[131] M. Kamel, C. M. Scoglio, and T. Easton. “Optimal Topology Design for Overlay

Networks”. In: 6th International IFIP Networking Conference. Ed. by I. F. Akyildiz,

R. Sivakumar, E. Ekici, J. C. de Oliveira, and J. McNair. Vol. 4479. Lecture Notes

in Computer Science. Atlanta, GA, USA: Springer, 2007, pp. 714–725. doi: 10.1

007/978-3-540-72606-7_61. url: https://doi.org/10.1007/978-3-540-7

2606-7%5C_61 (cit. on p. 33).

[132] P.-H. Kamp. “LinkedIn Password Leak: Salt Their Hide”. In: ACM Queue 10.6

(2012), p. 20. doi: 10.1145/2246036.2254400. url: https://doi.org/10.114

5/2246036.2254400 (cit. on p. 120).

[133] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and D. Lewin.

“Consistent Hashing and Random Trees: Distributed Caching Protocols for Re-

lieving Hot Spots on the World Wide Web”. In: Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, , May 4-6, 1997. STOC ’97.

El Paso, Texas, USA, 1997, pp. 654–663. doi: 10.1145/258533.258660. url:

https://doi.org/10.1145/258533.258660 (cit. on pp. 34, 104).

[134] D. R. Karger and M. Ruhl. “Simple Efficient Load Balancing Algorithms for Peer-

to-Peer Systems”. In: Peer-to-Peer Systems III, Third International Workshop. IPTPS

’04. La Jolla, California, USA, 2004, pp. 131–140. doi: 10.1007/978-3-540-301

83-7_13. url: https://doi.org/10.1007/978-3-540-30183-7%5C_13 (cit. on

p. 37).

[135] B. Karp and H. T. Kung. “GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks”. In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking. MobiCom ’00. Boston, Massachusetts, USA: ACM,

2000, pp. 243–254. isbn: 1-58113-197-6. doi: 10.1145/345910.345953. url:

http://doi.acm.org/10.1145/345910.345953 (cit. on pp. 18, 72, 77).

[136] K. Kenthapadi and G. S. Manku. “Decentralized algorithms using both local

and random probes for P2P load balancing”. In: Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’05. Las

Vegas, Nevada, USA, 2005, pp. 135–144. doi: 10.1145/1073970.1073990. url:

https://doi.org/10.1145/1073970.1073990 (cit. on p. 37).

[137] A. R. Khakpour and I. Demeure. “Chapar: A Persistent Overlay Event System for

MANETs”. In: Mob. Netw. Appl. 15.6 (Dec. 2010), pp. 866–875. issn: 1383-469X.

doi: 10.1007/s11036-010-0238-6. url: http://dx.doi.org/10.1007/s11036

-010-0238-6 (cit. on pp. 29, 45, 60).

[138] A. Khan, M. Attique, Y. Kim, S. Park, and B.-C. Tak. “EDGESTORE: A Single

Namespace and Resource-Aware Federation File System for Edge Servers”. In:

2018 IEEE International Conference on Edge Computing. EDGE ’18. San Francisco,

California, USA: IEEE Computer Society, 2018, pp. 101–108. doi: 10.1109/EDGE.

2018.00021. url: https://doi.org/10.1109/EDGE.2018.00021 (cit. on p. 31).

212

https://doi.org/10.1007/978-3-540-72606-7_61
https://doi.org/10.1007/978-3-540-72606-7_61
https://doi.org/10.1007/978-3-540-72606-7%5C_61
https://doi.org/10.1007/978-3-540-72606-7%5C_61
https://doi.org/10.1145/2246036.2254400
https://doi.org/10.1145/2246036.2254400
https://doi.org/10.1145/2246036.2254400
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://doi.org/10.1007/978-3-540-30183-7_13
https://doi.org/10.1007/978-3-540-30183-7_13
https://doi.org/10.1007/978-3-540-30183-7%5C_13
https://doi.org/10.1145/345910.345953
http://doi.acm.org/10.1145/345910.345953
https://doi.org/10.1145/1073970.1073990
https://doi.org/10.1145/1073970.1073990
https://doi.org/10.1007/s11036-010-0238-6
http://dx.doi.org/10.1007/s11036-010-0238-6
http://dx.doi.org/10.1007/s11036-010-0238-6
https://doi.org/10.1109/EDGE.2018.00021
https://doi.org/10.1109/EDGE.2018.00021
https://doi.org/10.1109/EDGE.2018.00021

BIBLIOGRAPHY

[139] M. A. Khan, L. Yeh, K. Zeitouni, and C. Borcea. “MobiStore: A system for efficient

mobile P2P data sharing”. In: Peer-to-Peer Networking and Applications 10.4 (2017),

pp. 910–924. doi: 10.1007/s12083-016-0450-7. url: https://doi.org/10.1

007/s12083-016-0450-7 (cit. on pp. 38, 105, 124, 144).

[140] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I.

Stoica. “A data-oriented (and beyond) network architecture”. In: Proceedings of the
ACM SIGCOMM 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. Ed. by J. Murai and K. Cho. SIGCOMM

’07. Kyoto, Japan: ACM, 2007, pp. 181–192. doi: 10.1145/1282380.1282402.

url: https://doi.org/10.1145/1282380.1282402 (cit. on p. 39).

[141] J. Kreps, N. Narkhede, J. Rao, et al. “Kafka: A distributed messaging system for

log processing”. In: NetDB. 2011, pp. 1–7 (cit. on pp. 44, 60).

[142] A. Krifa, M. K. Sbai, C. Barakat, and T. Turletti. “BitHoc: A Content Sharing

Application for Wireless Ad Hoc Networks”. In: Proceedings of the 2009 IEEE
International Conference on Pervasive Computing and Communications. PERCOM

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–3. isbn: temp-

isbn. doi: 10.1109/PERCOM.2009.4912792. url: https://doi.org/10.1109

/PERCOM.2009.4912792 (cit. on p. 33).

[143] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod. “Performance evaluation of

replication strategies in DHTs under churn”. In: Proceedings of the 6th International
Conference on Mobile and Ubiquitous Multimedia. MUM ’07. Oulu, Finland, 2007,

pp. 90–97. doi: 10.1145/1329469.1329481. url: https://doi.org/10.1145/1

329469.1329481 (cit. on p. 37).

[144] K. Kutzner and T. Fuhrmann. “Measuring Large Overlay Networks - The Over-

net Example”. In: Kommunikation in Verteilten Systemen (KiVS), 14. ITG/GI-
Fachtagung Kommunikation in Verteilten Systemen. KiVS ’05. Kaiserslautern, Ger-

many, 2005, pp. 193–204. doi: 10.1007/3-540-27301-8_16. url: https:

//doi.org/10.1007/3-540-27301-8%5C_16 (cit. on pp. 36, 104, 105).

[145] A. Lakshman and P. Malik. “Cassandra: a decentralized structured storage sys-

tem”. In: ACM SIGOPS Oper. Syst. Rev. 44.2 (2010), pp. 35–40. doi: 10.1145/1

773912.1773922. url: https://doi.org/10.1145/1773912.1773922 (cit. on

pp. 34, 104, 184).

[146] L. Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst. 16.2

(1998), pp. 133–169. doi: 10.1145/279227.279229. url: https://doi.org/10

.1145/279227.279229 (cit. on p. 38).

[147] J. Ledlie and M. I. Seltzer. “Distributed, secure load balancing with skew, hetero-

geneity and churn”. In: 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. INFOCOM ’05. Miami, Florida, USA, 2005, pp. 1419–

213

https://doi.org/10.1007/s12083-016-0450-7
https://doi.org/10.1007/s12083-016-0450-7
https://doi.org/10.1007/s12083-016-0450-7
https://doi.org/10.1145/1282380.1282402
https://doi.org/10.1145/1282380.1282402
https://doi.org/10.1109/PERCOM.2009.4912792
https://doi.org/10.1109/PERCOM.2009.4912792
https://doi.org/10.1109/PERCOM.2009.4912792
https://doi.org/10.1145/1329469.1329481
https://doi.org/10.1145/1329469.1329481
https://doi.org/10.1145/1329469.1329481
https://doi.org/10.1007/3-540-27301-8_16
https://doi.org/10.1007/3-540-27301-8%5C_16
https://doi.org/10.1007/3-540-27301-8%5C_16
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229

BIBLIOGRAPHY

1430. doi: 10.1109/INFCOM.2005.1498366. url: https://doi.org/10.1109

/INFCOM.2005.1498366 (cit. on p. 37).

[148] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan, S. Landis, P. Davis,

B. Khavar, and P. Bowman. “Hitting the distributed computing sweet spot with

TSpaces”. In: Comput. Networks 35.4 (2001), pp. 457–472. doi: 10.1016/S1389-

1286(00)00178-X. url: https://doi.org/10.1016/S1389-1286(00)00178-X

(cit. on p. 40).

[149] J. Leitão, J. Pereira, and L. E. T. Rodrigues. “HyParView: A Membership Protocol

for Reliable Gossip-Based Broadcast”. In: The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Ed-
inburgh, UK, Proceedings. 2007, pp. 419–429. doi: 10.1109/DSN.2007.56. url:

https://doi.org/10.1109/DSN.2007.56 (cit. on pp. 108, 117).

[150] J. Leitão and L. Rodrigues. “Overnesia: A Resilient Overlay Network for Virtual

Super-Peers”. In: Proceedings of the 2014 IEEE 33rd International Symposium on
Reliable Distributed Systems. SRDS ’14. Nara, Japan: IEEE Computer Society,

2014, pp. 281–290. isbn: 978-1-4799-5584-8. doi: 10.1109/SRDS.2014.40.

url: http://dx.doi.org/10.1109/SRDS.2014.40 (cit. on pp. 66, 72, 111, 124,

125).

[151] H. K. Y. Leung. “Subject Space: A State-persistent Model for Publish/Subscribe

Systems”. In: Proceedings of the 2002 Conference of the Centre for Advanced Studies
on Collaborative Research. CASCON ’02. Toronto, Ontario, Canada: IBM Press,

2002. url: http://dl.acm.org/citation.cfm?id=782115.782122 (cit. on

p. 28).

[152] H. K. Y. Leung and H.-A. Jacobsen. “Efficient Matching for State-persistent Pub-

lish/Subscribe Systems”. In: Proceedings of the 2003 Conference of the Centre for Ad-
vanced Studies on Collaborative Research. CASCON ’03. Toronto, Ontario, Canada:

IBM Press, 2003, pp. 182–196. url: http://dl.acm.org/citation.cfm?id=961

322.961352 (cit. on p. 28).

[153] G. Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy, R. Sherafat, A. Wun, H.-A. Ja-

cobsen, and S. Manovski. “Historic Data Access in Publish/Subscribe”. In: Pro-
ceedings of the 2007 Inaugural International Conference on Distributed Event-based
Systems. DEBS ’07. Toronto, Ontario, Canada: ACM, 2007, pp. 80–84. isbn: 978-

1-59593-665-3. doi: 10.1145/1266894.1266908. url: http://doi.acm.org/10

.1145/1266894.1266908 (cit. on p. 28).

[154] Light Reading. Edge Computing: AT&T’s Next Big Play? https://goo.gl/yLP8j5.

Accessed: 2020-05-05. 2017 (cit. on p. 4).

[155] L. Liu and M. T. Zsu. Encyclopedia of Database Systems. 1st. Springer Publishing

Company, Incorporated, 2009. isbn: 0387355448, 9780387355443 (cit. on pp. 21,

23, 28, 29).

214

https://doi.org/10.1109/INFCOM.2005.1498366
https://doi.org/10.1109/INFCOM.2005.1498366
https://doi.org/10.1109/INFCOM.2005.1498366
https://doi.org/10.1016/S1389-1286(00)00178-X
https://doi.org/10.1016/S1389-1286(00)00178-X
https://doi.org/10.1016/S1389-1286(00)00178-X
https://doi.org/10.1109/DSN.2007.56
https://doi.org/10.1109/DSN.2007.56
https://doi.org/10.1109/SRDS.2014.40
http://dx.doi.org/10.1109/SRDS.2014.40
http://dl.acm.org/citation.cfm?id=782115.782122
http://dl.acm.org/citation.cfm?id=961322.961352
http://dl.acm.org/citation.cfm?id=961322.961352
https://doi.org/10.1145/1266894.1266908
http://doi.acm.org/10.1145/1266894.1266908
http://doi.acm.org/10.1145/1266894.1266908
https://goo.gl/yLP8j5

BIBLIOGRAPHY

[156] LiveQoS. SuperBeam. https://superbe.am/. Accessed: 2018-05-07. 2017 (cit.

on p. 63).

[157] I. M. Lombera, L. E. Moser, P. M. Melliar-Smith, and Y.-T. Chuang. “Mobile ad-hoc

search and retrieval in the iTrust over Wi-Fi Direct network”. In: Proc. 9th Intl.
Conference on Wireless and Mobile Communications. 2013, pp. 251–258 (cit. on

pp. 32, 61).

[158] N. Lopes and C. Baquero. “Taming Hot-Spots in DHT Inverted Indexes”. In: ACM
SIGIR Workshop on Large Scale Distributed Systems for Information Retrieval. 2007

(cit. on p. 105).

[159] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. viii).

[160] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. “A survey and comparison

of peer-to-peer overlay network schemes”. In: IEEE Commun. Surv. Tutorials
7.1-4 (2005), pp. 72–93. doi: 10.1109/COMST.2005.1610546. url: https:

//doi.org/10.1109/COMST.2005.1610546 (cit. on p. 33).

[161] D. Luckham. The power of events. Vol. 204. Addison-Wesley Reading, 2002 (cit. on

p. 29).

[162] J. Luo, J.-P. Hubaux, and P. T. Eugster. “PAN: Providing Reliable Storage in Mobile

Ad Hoc Networks with Probabilistic Quorum Systems”. In: Proceedings of the 4th
ACM International Symposium on Mobile Ad Hoc Networking &Amp; Computing.

MobiHoc ’03. Annapolis, Maryland, USA: ACM, 2003, pp. 1–12. isbn: 1-58113-

684-6. doi: 10.1145/778415.778417. url: http://doi.acm.org/10.1145/778

415.778417 (cit. on pp. 30, 43, 61).

[163] S. Luo, Z. Wen, X. Zhang, W. Xu, A. Y. Zomaya, and R. Ranjan. “GoSharing:

An intelligent incentive framework based on users’ association for cooperative

content sharing in mobile edge networks”. In: Future Generation Comp. Syst.
95 (2019), pp. 601–614. doi: 10.1016/j.future.2019.01.013. url: https:

//doi.org/10.1016/j.future.2019.01.013 (cit. on p. 153).

[164] A. Mahmood, C. E. Casetti, C.-F. Chiasserini, P. Giaccone, and J. Härri. “The RICH

Prefetching in Edge Caches for In-Order Delivery to Connected Cars”. In: IEEE
Trans. Vehicular Technology 68.1 (2019), pp. 4–18. doi: 10.1109/TVT.2018.2879

850. url: https://doi.org/10.1109/TVT.2018.2879850 (cit. on p. 153).

[165] M. Mamei and F. Zambonelli. “Programming Pervasive and Mobile Computing

Applications: The TOTA Approach”. In: ACM Trans. Softw. Eng. Methodol. 18.4

(July 2009), 15:1–15:56. issn: 1049-331X. doi: 10.1145/1538942.1538945. url:

http://doi.acm.org/10.1145/1538942.1538945 (cit. on pp. 40, 45, 59, 62, 63).

215

https://superbe.am/
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1109/COMST.2005.1610546
https://doi.org/10.1109/COMST.2005.1610546
https://doi.org/10.1109/COMST.2005.1610546
https://doi.org/10.1145/778415.778417
http://doi.acm.org/10.1145/778415.778417
http://doi.acm.org/10.1145/778415.778417
https://doi.org/10.1016/j.future.2019.01.013
https://doi.org/10.1016/j.future.2019.01.013
https://doi.org/10.1016/j.future.2019.01.013
https://doi.org/10.1109/TVT.2018.2879850
https://doi.org/10.1109/TVT.2018.2879850
https://doi.org/10.1109/TVT.2018.2879850
https://doi.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945

BIBLIOGRAPHY

[166] B. Manoj and A. H. Baker. “Communication Challenges in Emergency Response”.

In: Commun. ACM 50.3 (Mar. 2007), pp. 51–53. issn: 0001-0782. doi: 10.114

5/1226736.1226765. url: http://doi.acm.org/10.1145/1226736.1226765

(cit. on pp. 5, 7, 9, 16, 58).

[167] S. Marreiros. “A Framework for Turn-Based Local Multiplayer Games”. MA thesis.

NOVA University Lisbon, Feb. 2021 (cit. on p. 185).

[168] G. B. Mathews. “On the partition of numbers”. In: Proceedings of the London
Mathematical Society 1.1 (1896), pp. 486–490 (cit. on p. 120).

[169] M. Mauve, A. Widmer, and H. Hartenstein. “A Survey on Position-based Routing

in Mobile Ad Hoc Networks”. In: IEEE Network 15.6 (Nov. 2001), pp. 30–39. issn:

0890-8044. doi: 10.1109/65.967595. url: http://dx.doi.org/10.1109/65.9

67595 (cit. on p. 18).

[170] M. May, G. Karlsson, O. Helgason, and V. Lenders. “A system architecture for

delay-tolerant content distribution”. In: IEEE Conference on Wireless Rural and
Emergency Communications. WreCom ’07. 2007 (cit. on p. 32).

[171] R. Mayer, H. Gupta, E. Saurez, and U. Ramachandran. “FogStore: Toward a

Distributed Data Store for Fog Computing”. In: CoRR abs/1709.07558 (2017).

arXiv: 1709.07558. url: http://arxiv.org/abs/1709.07558 (cit. on p. 31).

[172] R. Meier and V. Cahill. “STEAM: Event-Based Middleware for Wireless Ad Hoc

Network”. In: Proceedings of the 22nd International Conference on Distributed Com-
puting Systems Workshops. ICDCSW ’02. Vienna, Austria: IEEE Computer Society,

2002, pp. 639–644. isbn: 0-7695-1588-6. url: http://dl.acm.org/citation.

cfm?id=646854.708242 (cit. on p. 28).

[173] G. Metri, A. Agrawal, R. Peri, and W. Shi. “What is eating up battery life on

my SmartPhone: A case study”. In: Proceedings of the International Conference on
Energy Aware Computing. ICEAC ’12. Guzelyurt, Cyprus: IEEE, 2012, pp. 1–6.

doi: 10.1109/ICEAC.2012.6471003. url: https://doi.org/10.1109/ICEAC.2

012.6471003 (cit. on p. 2).

[174] G. Miao, J. Zander, K. W. Sung, and S. B. Slimane. Fundamentals of Mobile Data
Networks. Cambridge University Press, 2016 (cit. on p. 15).

[175] J. Michel, C. Julien, and J. Payton. “Gander: Mobile, Pervasive Search of the Here

and Now in the Here and Now”. In: IEEE Internet of Things Journal 1.5 (2014),

pp. 483–496. doi: 10.1109/JIOT.2014.2347132. url: https://doi.org/10.11

09/JIOT.2014.2347132 (cit. on p. 151).

216

https://doi.org/10.1145/1226736.1226765
https://doi.org/10.1145/1226736.1226765
http://doi.acm.org/10.1145/1226736.1226765
https://doi.org/10.1109/65.967595
http://dx.doi.org/10.1109/65.967595
http://dx.doi.org/10.1109/65.967595
https://arxiv.org/abs/1709.07558
http://arxiv.org/abs/1709.07558
http://dl.acm.org/citation.cfm?id=646854.708242
http://dl.acm.org/citation.cfm?id=646854.708242
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/ICEAC.2012.6471003
https://doi.org/10.1109/JIOT.2014.2347132
https://doi.org/10.1109/JIOT.2014.2347132
https://doi.org/10.1109/JIOT.2014.2347132

BIBLIOGRAPHY

[176] A. Moghadam, S. Srinivasan, and H. Schulzrinne. “7DS - A Modular Platform to

Develop Mobile Disruption-Tolerant Applications”. In: Proceedings of the 2008
The Second International Conference on Next Generation Mobile Applications, Services,
and Technologies. NGMAST ’08. Washington, DC, USA: IEEE Computer Society,

2008, pp. 177–183. isbn: 978-0-7695-3333-9. doi: 10.1109/NGMAST.2008.75.

url: https://doi.org/10.1109/NGMAST.2008.75 (cit. on p. 33).

[177] R. Monteiro. “Distributed Storage in a Cloud of Mobile Devices”. MA thesis.

NOVA University Lisbon, Nov. 2015 (cit. on p. 179).

[178] R. Monteiro, J. A. Silva, J. Lourenço, and H. Paulino. “Decentralized Storage for

Networks of Hand-held Devices”. In: Proceedings of the 12th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
Ed. by P. Zhang, J. S. Silva, N. Lane, F. Boavida, and A. Rodrigues. MobiQuitous

’15. Coimbra, Portugal: ICST, 2015, pp. 299–300. doi: 10.4108/eai.22-7-201

5.2260263. url: https://doi.org/10.4108/eai.22-7-2015.2260263 (cit. on

p. 181).

[179] R. Monteiro, J. A. Silva, J. M. Lourenço, and H. Paulino. “Armazenamento Dis-

tribuído para Redes de Dispositivos Móveis”. In: Proceedings of the 7th Simpósio
Nacional de Informática. INForum ’15. Covilhã, Portugal, 2015 (cit. on p. 180).

[180] A. Montresor and M. Jelasity. “PeerSim: A Scalable P2P Simulator”. In: Proc. of
the 9th Int. Conference on Peer-to-Peer (P2P’09). Seattle, WA, Sept. 2009, pp. 99–

100 (cit. on pp. 10, 105, 124, 234).

[181] S. H. Mortazavi, M. Salehe, B. Balasubramanian, E. de Lara, and S. P. Narayanan.

“SessionStore: A Session-Aware Datastore for the Edge”. In: 4th IEEE International
Conference on Fog and Edge Computing. ICFEC ’20. Melbourne, Australia: IEEE,

2020, pp. 59–68. doi: 10.1109/ICFEC50348.2020.00014. url: https://doi.

org/10.1109/ICFEC50348.2020.00014 (cit. on p. 31).

[182] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. de Lara. “Cloudpath:

a multi-tier cloud computing framework”. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. Ed. by J. Zhang, M. Chiang, and B. M. Maggs.

SEC ’17. ACM, 2017, 20:1–20:13. doi: 10.1145/3132211.3134464. url: https:

//doi.org/10.1145/3132211.3134464 (cit. on p. 31).

[183] G. Mühl. “Large-scale content based publish-subscribe systems”. PhD thesis.

Darmstadt University of Technology, Germany, 2002. url: http://elib.tu-

darmstadt.de/diss/000274 (cit. on p. 60).

[184] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: a Fault-tolerant Algorithm for
Atomic Mutable DHT Data. Tech. rep. MIT CSAIL, 2005 (cit. on p. 38).

217

https://doi.org/10.1109/NGMAST.2008.75
https://doi.org/10.1109/NGMAST.2008.75
https://doi.org/10.4108/eai.22-7-2015.2260263
https://doi.org/10.4108/eai.22-7-2015.2260263
https://doi.org/10.4108/eai.22-7-2015.2260263
https://doi.org/10.1109/ICFEC50348.2020.00014
https://doi.org/10.1109/ICFEC50348.2020.00014
https://doi.org/10.1109/ICFEC50348.2020.00014
https://doi.org/10.1145/3132211.3134464
https://doi.org/10.1145/3132211.3134464
https://doi.org/10.1145/3132211.3134464
http://elib.tu-darmstadt.de/diss/000274
http://elib.tu-darmstadt.de/diss/000274

BIBLIOGRAPHY

[185] D. Neumann, C. Bodenstein, O. F. Rana, and R. Krishnaswamy. “STACEE: En-

hancing Storage Clouds Using Edge Devices”. In: Proceedings of the 1st ACM/IEEE
Workshop on Autonomic Computing in Economics. ACE ’11. Karlsruhe, Germany:

ACM, 2011, pp. 19–26. isbn: 978-1-4503-0734-5. doi: 10.1145/1998561.19985

67. url: http://doi.acm.org/10.1145/1998561.1998567 (cit. on p. 31).

[186] E. Nordström, P. Gunningberg, and C. Rohner. “Haggle: A Data-centric Network

Architecture for Mobile Devices”. In: Proceedings of the 2009 MobiHoc S3 Workshop
on MobiHoc S3. MobiHoc S3 ’09. New Orleans, Louisiana, USA: ACM, 2009,

pp. 37–40. isbn: 978-1-60558-521-5. doi: 10.1145/1540358.1540370. url:

http://doi.acm.org/10.1145/1540358.1540370 (cit. on p. 32).

[187] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. “The Information Bus: An Architecture

for Extensible Distributed Systems”. In: SIGOPS Oper. Syst. Rev. 27.5 (Dec.

1993), pp. 58–68. issn: 0163-5980. doi: 10.1145/173668.168624. url: http:

//doi.acm.org/10.1145/173668.168624 (cit. on pp. 19, 21, 48).

[188] A. Omicini and F. Zambonelli. “Tuple Centres for the Coordination of Internet

Agents”. In: Proceedings of the 1999 ACM Symposium on Applied Computing. SAC

’99. San Antonio, Texas, USA: ACM, 1999, pp. 183–190. isbn: 1-58113-086-4.

doi: 10.1145/298151.298231. url: http://doi.acm.org/10.1145/298151.29

8231 (cit. on pp. 40, 45, 62).

[189] OnePlus. OnePlus 8 Pro. https://www.oneplus.com/8-pro. Accessed: 2020-09-

23. 2020 (cit. on p. 2).

[190] Open Garden, Inc. FireChat. https://www.opengarden.com/firechat.html.

Accessed: 2018-04-27. 2017 (cit. on p. 63).

[191] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, and J. Kangasharju. “Floating Content: In-

formation Sharing in Urban Areas”. In: Proceedings of the 2011 IEEE International
Conference on Pervasive Computing and Communications. PerCom ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 136–146. isbn: 978-1-4244-9530-6.

doi: 10.1109/PERCOM.2011.5767578. url: http://dx.doi.org/10.1109

/PERCOM.2011.5767578 (cit. on pp. 33, 151).

[192] J. Paiva, J. Leitão, and L. E. T. Rodrigues. “Rollerchain: A DHT for Efficient

Replication”. In: IEEE 12th International Symposium on Network Computing and
Applications. NCA ’13. Cambridge, MA, USA: IEEE Computer Society, 2013,

pp. 17–24. doi: 10.1109/NCA.2013.29. url: https://doi.org/10.1109/NCA.2

013.29 (cit. on pp. 38, 72, 105, 108, 118, 124, 126).

[193] J. Paiva and L. E. T. Rodrigues. “Policies for Efficient Data Replication in P2P

Systems”. In: 19th IEEE International Conference on Parallel and Distributed Systems,
ICPADS 2013, Seoul, Korea, December 15-18, 2013. IEEE Computer Society, 2013,

pp. 404–411. doi: 10.1109/ICPADS.2013.63. url: https://doi.org/10.1109

/ICPADS.2013.63 (cit. on p. 124).

218

https://doi.org/10.1145/1998561.1998567
https://doi.org/10.1145/1998561.1998567
http://doi.acm.org/10.1145/1998561.1998567
https://doi.org/10.1145/1540358.1540370
http://doi.acm.org/10.1145/1540358.1540370
https://doi.org/10.1145/173668.168624
http://doi.acm.org/10.1145/173668.168624
http://doi.acm.org/10.1145/173668.168624
https://doi.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
https://www.oneplus.com/8-pro
https://www.opengarden.com/firechat.html
https://doi.org/10.1109/PERCOM.2011.5767578
http://dx.doi.org/10.1109/PERCOM.2011.5767578
http://dx.doi.org/10.1109/PERCOM.2011.5767578
https://doi.org/10.1109/NCA.2013.29
https://doi.org/10.1109/NCA.2013.29
https://doi.org/10.1109/NCA.2013.29
https://doi.org/10.1109/ICPADS.2013.63
https://doi.org/10.1109/ICPADS.2013.63
https://doi.org/10.1109/ICPADS.2013.63

BIBLIOGRAPHY

[194] N. P. Palma, V. Mancuso, and M. A. Marsan. “Infrastructureless Pervasive Infor-

mation Sharing with COTS Devices and Software”. In: 19th IEEE International
Symposium on A World of Wireless, Mobile and Multimedia Networks. WoWMoM ’18.

Chania, Greece: IEEE Computer Society, 2018, pp. 1–9. doi: 10.1109/WoWMoM.2

018.8449733. url: https://doi.org/10.1109/WoWMoM.2018.8449733 (cit. on

pp. 33, 62).

[195] R. K. Panta, R. Jana, F. Cheng, Y. .-. R. Chen, and V. A. Vaishampayan. “Phoenix:

Storage Using an Autonomous Mobile Infrastructure”. In: IEEE Trans. Parallel
Distrib. Syst. 24.9 (Sept. 2013), pp. 1863–1873. issn: 1045-9219. doi: 10.110

9/TPDS.2013.84. url: http://dx.doi.org/10.1109/TPDS.2013.84 (cit. on

pp. 30, 61).

[196] K. Paridel, Y. Vanrompay, and Y. Berbers. “Fadip: Lightweight Publish/Subscribe

for Mobile Ad Hoc Networks”. In: Proceedings of the 2010 International Conference
on On the Move to Meaningful Internet Systems: Part II. OTM’10. Hersonissos,

Crete, Greece: Springer-Verlag, 2010, pp. 798–810. isbn: 3-642-16948-1, 978-3-

642-16948-9. url: http://dl.acm.org/citation.cfm?id=1926129.1926142

(cit. on p. 28).

[197] N. W. Paton and O. Díaz. “Active Database Systems”. In: ACM Comput. Surv. 31.1

(1999), pp. 63–103. doi: 10.1145/311531.311623. url: https://doi.org/10

.1145/311531.311623 (cit. on p. 46).

[198] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561. http://www.rfc-editor.org/rfc/rfc3561.txt.

RFC Editor, July 2003. url: http://www.rfc-editor.org/rfc/rfc3561.txt

(cit. on p. 18).

[199] C. E. Perkins. Ad Hoc Networking. 1st ed. Addison-Wesley Professional, 2008.

isbn: 0321579070, 9780321579072 (cit. on p. 13).

[200] C. E. Perkins and P. Bhagwat. “Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers”. In: Proceedings of the Conference on
Communications Architectures, Protocols and Applications. SIGCOMM ’94. London,

United Kingdom: ACM, 1994, pp. 234–244. isbn: 0-89791-682-4. doi: 10.1145

/190314.190336. url: http://doi.acm.org/10.1145/190314.190336 (cit. on

pp. 17, 65, 84).

[201] Pew Research Center. Social Media Update 2016. https://goo.gl/eeFs0c.

Accessed: 2020-03-28. 2016 (cit. on p. 2).

[202] G. P. Picco, A. L. Murphy, and G.-C. Roman. “LIME: Linda Meets Mobility”. In:

Proceedings of the 21st International Conference on Software Engineering. ICSE ’99.

Los Angeles, California, USA: ACM, 1999, pp. 368–377. isbn: 1-58113-074-0.

doi: 10.1145/302405.302659. url: http://doi.acm.org/10.1145/302405.30

2659 (cit. on pp. 40, 45, 59, 62).

219

https://doi.org/10.1109/WoWMoM.2018.8449733
https://doi.org/10.1109/WoWMoM.2018.8449733
https://doi.org/10.1109/WoWMoM.2018.8449733
https://doi.org/10.1109/TPDS.2013.84
https://doi.org/10.1109/TPDS.2013.84
http://dx.doi.org/10.1109/TPDS.2013.84
http://dl.acm.org/citation.cfm?id=1926129.1926142
https://doi.org/10.1145/311531.311623
https://doi.org/10.1145/311531.311623
https://doi.org/10.1145/311531.311623
http://www.rfc-editor.org/rfc/rfc3561.txt
http://www.rfc-editor.org/rfc/rfc3561.txt
https://doi.org/10.1145/190314.190336
https://doi.org/10.1145/190314.190336
http://doi.acm.org/10.1145/190314.190336
https://goo.gl/eeFs0c
https://doi.org/10.1145/302405.302659
http://doi.acm.org/10.1145/302405.302659
http://doi.acm.org/10.1145/302405.302659

BIBLIOGRAPHY

[203] P. R. Pietzuch and J. Bacon. “Hermes: A Distributed Event-Based Middleware

Architecture”. In: Proceedings of the 22nd International Conference on Distributed
Computing Systems Workshops. ICDCSW ’02. Vienna, Austria: IEEE Computer

Society, 2002, pp. 611–618. isbn: 0-7695-1588-6. doi: 10.1109/ICDCSW.2002.1

030837. url: http://dl.acm.org/citation.cfm?id=646854.708058 (cit. on

pp. 22, 24, 27, 70).

[204] D. Powell. “Group Communication”. In: Commun. ACM 39.4 (Apr. 1996), pp. 50–

53. issn: 0001-0782. doi: 10.1145/227210.227225. url: http://doi.acm.

org/10.1145/227210.227225 (cit. on p. 21).

[205] M. A. Qader and V. Hristidis. “DualDB: An Efficient LSM-based Publish/Subscribe

Storage System”. In: Proceedings of the 29th International Conference on Scientific
and Statistical Database Management. SSDBM ’17. Chicago, IL, USA: ACM, 2017,

pp. 1–6. isbn: 978-1-4503-5282-6. doi: 10.1145/3085504.3085528. url: http:

//doi.acm.org/10.1145/3085504.3085528 (cit. on p. 28).

[206] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. “Zee: Zero-effort

Crowdsourcing for Indoor Localization”. In: Proceedings of the 18th Annual Inter-
national Conference on Mobile Computing and Networking. Mobicom ’12. Istanbul,

Turkey: ACM, 2012, pp. 293–304. isbn: 978-1-4503-1159-5. doi: 10.1145/234

8543.2348580. url: http://doi.acm.org/10.1145/2348543.2348580 (cit. on

pp. 18, 65, 76).

[207] A. Raman, N. Sastry, A. Sathiaseelan, J. Chandaria, and A. Secker. “Wi-Stitch:

Content Delivery in Converged Edge Networks”. In: Proceedings of the Workshop
on Mobile Edge Communications. MECOMM ’17. Los Angeles, CA, USA: ACM,

2017, pp. 13–18. isbn: 978-1-4503-5052-5. doi: 10.1145/3098208.3098211.

url: http://doi.acm.org/10.1145/3098208.3098211 (cit. on p. 31).

[208] V. Ramasubramanian and E. G. Sirer. “Beehive: O(1) Lookup Performance for

Power-Law Query Distributions in Peer-to-Peer Overlays”. In: 1st Symposium on
Networked Systems Design and Implementation. NSDI ’04. San Francisco, California,

USA, 2004, pp. 99–112. url: http://www.usenix.org/events/nsdi04/tech/

ramasubramanian.html (cit. on p. 37).

[209] L. Ramaswamy and J. Chen. “The CoQUOS Approach to Continuous Queries

in Unstructured Overlays”. In: IEEE Trans. on Knowl. and Data Eng. 23.3 (Mar.

2011), pp. 463–478. issn: 1041-4347. doi: 10.1109/TKDE.2010.133. url:

http://dx.doi.org/10.1109/TKDE.2010.133 (cit. on p. 32).

[210] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica. “Load Balanc-

ing in Structured P2P Systems”. In: Peer-to-Peer Systems II, Second International
Workshop. IPTPS ’03. Berkeley, California, USA, 2003, pp. 68–79. doi: 10.1007

/978-3-540-45172-3_6. url: https://doi.org/10.1007/978-3-540-45172-

3%5C_6 (cit. on p. 37).

220

https://doi.org/10.1109/ICDCSW.2002.1030837
https://doi.org/10.1109/ICDCSW.2002.1030837
http://dl.acm.org/citation.cfm?id=646854.708058
https://doi.org/10.1145/227210.227225
http://doi.acm.org/10.1145/227210.227225
http://doi.acm.org/10.1145/227210.227225
https://doi.org/10.1145/3085504.3085528
http://doi.acm.org/10.1145/3085504.3085528
http://doi.acm.org/10.1145/3085504.3085528
https://doi.org/10.1145/2348543.2348580
https://doi.org/10.1145/2348543.2348580
http://doi.acm.org/10.1145/2348543.2348580
https://doi.org/10.1145/3098208.3098211
http://doi.acm.org/10.1145/3098208.3098211
http://www.usenix.org/events/nsdi04/tech/ramasubramanian.html
http://www.usenix.org/events/nsdi04/tech/ramasubramanian.html
https://doi.org/10.1109/TKDE.2010.133
http://dx.doi.org/10.1109/TKDE.2010.133
https://doi.org/10.1007/978-3-540-45172-3_6
https://doi.org/10.1007/978-3-540-45172-3_6
https://doi.org/10.1007/978-3-540-45172-3%5C_6
https://doi.org/10.1007/978-3-540-45172-3%5C_6

BIBLIOGRAPHY

[211] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. “A scalable

content-addressable network”. In: Proceedings of the ACM SIGCOMM 2001 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication. Ed. by R. L. Cruz and G. Varghese. SIGCOMM ’01. San Diego,

California, USA: ACM, 2001, pp. 161–172. doi: 10.1145/383059.383072. url:

https://doi.org/10.1145/383059.383072 (cit. on pp. 34, 104).

[212] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. “GHT:

A Geographic Hash Table for Data-centric Storage”. In: Proceedings of the 1st ACM
International Workshop on Wireless Sensor Networks and Applications. WSNA ’02.

Atlanta, Georgia, USA: ACM, 2002, pp. 78–87. isbn: 1-58113-589-0. doi: 10.114

5/570738.570750. url: http://doi.acm.org/10.1145/570738.570750 (cit. on

pp. 59, 65, 72, 73, 79).

[213] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani. “MobilityFirst: A Robust

and Trustworthy Mobility-centric Architecture for the Future Internet”. In: SIG-
MOBILE Mob. Comput. Commun. Rev. 16.3 (Dec. 2012), pp. 2–13. issn: 1559-

1662. doi: 10.1145/2412096.2412098. url: http://doi.acm.org/10.1145/24

12096.2412098 (cit. on p. 152).

[214] D. Remédios, A. Teófilo, H. Paulino, and J. Lourenço. “Mobile Device-to-Device

Distributed Computing Using Data Sets”. In: Proceedings of the 12th EAI Inter-
national Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services. Ed. by P. Zhang, J. S. Silva, N. Lane, F. Boavida, and A. Rodrigues. Mo-

biQuitous ’15. Coimbra, Portugal: ICST, 2015, pp. 297–298. doi: 10.4108/eai.2

2-7-2015.2260273. url: https://doi.org/10.4108/eai.22-7-2015.2260273

(cit. on p. 183).

[215] P. Reynolds and A. Vahdat. “Efficient Peer-to-Peer Keyword Searching”. In: Pro-
ceedings of the ACM/IFIP/USENIX International Middleware Conference. Ed. by M.

Endler and D. C. Schmidt. Vol. 2672. Lecture Notes in Computer Science. Rio

de Janeiro, Brazil: Springer, 2003, pp. 21–40. doi: 10.1007/3-540-44892-6_2.

url: https://doi.org/10.1007/3-540-44892-6%5C_2 (cit. on pp. 36, 104,

105).

[216] G. F. Riley and T. R. Henderson. “The ns-3 Network Simulator”. In: Modeling and
Tools for Network Simulation. Ed. by K. Wehrle, M. Güneş, and J. Gross. Springer

Berlin Heidelberg, 2010, pp. 15–34. isbn: 978-3-642-12331-3. doi: 10.1007/978

-3-642-12331-3_2. url: http://dx.doi.org/10.1007/978-3-642-12331-3_2

(cit. on pp. 9, 59, 75, 83).

[217] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva. “Towards a Middleware

for Mobile Edge-cloud Applications”. In: Proceedings of the 2nd Workshop on
Middleware for Edge Clouds & Cloudlets. MECC ’17. Las Vegas, Nevada, USA:

221

https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/570738.570750
https://doi.org/10.1145/570738.570750
http://doi.acm.org/10.1145/570738.570750
https://doi.org/10.1145/2412096.2412098
http://doi.acm.org/10.1145/2412096.2412098
http://doi.acm.org/10.1145/2412096.2412098
https://doi.org/10.4108/eai.22-7-2015.2260273
https://doi.org/10.4108/eai.22-7-2015.2260273
https://doi.org/10.4108/eai.22-7-2015.2260273
https://doi.org/10.1007/3-540-44892-6_2
https://doi.org/10.1007/3-540-44892-6%5C_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2

BIBLIOGRAPHY

ACM, 2017, 1:1–1:6. isbn: 978-1-4503-5171-3. doi: 10.1145/3152360.3152361.

url: http://doi.acm.org/10.1145/3152360.3152361 (cit. on pp. 64, 77).

[218] J. Rodrigues, E. R. B. Marques, J. Silva, L. M. B. Lopes, and F. M. A. Silva. “Video

Dissemination in Untethered Edge-Clouds: A Case Study”. In: International Con-
ference on Distributed Applications and Interoperable Systems. Ed. by S. Bonomi and

E. Rivière. Vol. 10853. DAIS ’18. Madrid, Spain: Springer, 2018, pp. 137–152.

doi: 10.1007/978-3-319-93767-0_10. url: https://doi.org/10.1007/978-

3-319-93767-0%5C_10 (cit. on pp. 125, 153).

[219] J. Rodrigues, J. Silva, R. Martins, L. M. B. Lopes, U. Drolia, P. Narasimhan, and

F. M. A. Silva. “Benchmarking Wireless Protocols for Feasibility in Supporting

Crowdsourced Mobile Computing”. In: International Conference on Distributed
Applications and Interoperable Systems. Ed. by M. Jelasity and E. Kalyvianaki.

Vol. 9687. DAIS ’16. Heraklion, Crete, Greece: Springer, 2016, pp. 96–108. isbn:

978-3-319-39576-0. doi: 10.1007/978- 3- 319- 39577- 7_8. url: https:

//doi.org/10.1007/978-3-319-39577-7%5C_8 (cit. on p. 195).

[220] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. “Stronger Pass-

word Authentication Using Browser Extensions”. In: Proceedings of the 14th
USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005. Ed.

by P. D. McDaniel. USENIX Association, 2005. url: https://www.usenix.

org/conference/14th- usenix- security- symposium/stronger- password-

authentication-using-browser-extensions (cit. on p. 120).

[221] A. I. T. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Lo-

cation, and Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware 2001,
IFIP/ACM International Conference on Distributed Systems Platforms. Ed. by R.

Guerraoui. Vol. 2218. Lecture Notes in Computer Science. Heidelberg, Ger-

many: Springer, 2001, pp. 329–350. doi: 10.1007/3-540-45518-3_18. url:

https://doi.org/10.1007/3-540-45518-3%5C_18 (cit. on pp. 34, 104).

[222] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end Arguments in System

Design”. In: ACM Trans. Comput. Syst. 2.4 (Nov. 1984), pp. 277–288. issn: 0734-

2071. doi: 10.1145/357401.357402. url: http://doi.acm.org/10.1145/3574

01.357402 (cit. on p. 66).

[223] P. Sanches. “Distributed Computing in a Cloud of Mobile Phones”. http://hdl.

handle.net/10362/30063. MA thesis. NOVA University Lisbon, Sept. 2017

(cit. on p. 182).

[224] P. Sanches, J. A. Silva, A. Teófilo, and H. Paulino. “Data-Centric Distributed

Computing on Networks of Mobile Devices”. In: 26th International Conference on
Parallel and Distributed Computing. Ed. by M. Malawski and K. Rzadca. Vol. 12247.

Euro-Par ’20. Warsaw, Poland (Online): Springer, 2020, pp. 296–311. doi: 10.10

222

https://doi.org/10.1145/3152360.3152361
http://doi.acm.org/10.1145/3152360.3152361
https://doi.org/10.1007/978-3-319-93767-0_10
https://doi.org/10.1007/978-3-319-93767-0%5C_10
https://doi.org/10.1007/978-3-319-93767-0%5C_10
https://doi.org/10.1007/978-3-319-39577-7_8
https://doi.org/10.1007/978-3-319-39577-7%5C_8
https://doi.org/10.1007/978-3-319-39577-7%5C_8
https://www.usenix.org/conference/14th-usenix-security-symposium/stronger-password-authentication-using-browser-extensions
https://www.usenix.org/conference/14th-usenix-security-symposium/stronger-password-authentication-using-browser-extensions
https://www.usenix.org/conference/14th-usenix-security-symposium/stronger-password-authentication-using-browser-extensions
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3%5C_18
https://doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
http://hdl.handle.net/10362/30063
http://hdl.handle.net/10362/30063
https://doi.org/10.1007/978-3-030-57675-2_19
https://doi.org/10.1007/978-3-030-57675-2_19

BIBLIOGRAPHY

07/978-3-030-57675-2_19. url: https://doi.org/10.1007/978-3-030-57

675-2%5C_19 (cit. on p. 183).

[225] P. Sanches, A. Teófilo, F. Cerqueira, J. A. Silva, and H. Paulino. “Computação

Distribuída em Redes Formadas por Dispositivos Móveis”. In: Proceedings of the
9th Simpósio Nacional de Informática. INForum ’17. Aveiro, Portugal, 2017 (cit. on

p. 183).

[226] A. A. Sani, W. Richter, X. Bao, T. Narayan, M. Satyanarayanan, L. Zhong, and R. R.

Choudhury. “Opportunistic Content Search of Smartphone Photos”. In: CoRR
abs/1106.5568 (2011). arXiv: 1106.5568. url: http://arxiv.org/abs/1106.5

568 (cit. on p. 32).

[227] S. K. Sarkar, T. G. Basavaraju, and C. Puttamadappa. Ad hoc mobile wireless net-
works: principles, protocols and applications. CRC Press, 2007. isbn: 1420062220,

9781420062229 (cit. on pp. 14–16).

[228] L. F. G. Sarmenta. “Bayanihan: Web-Based Volunteer Computing Using Java”. In:

Proceedings of the Second International Conference on Worldwide Computing and Its
Applications. Ed. by Y. Masunaga, T. Katayama, and M. Tsukamoto. Vol. 1368.

WWCA ’98. Tsukuba, Japan: Springer-Verlag, 1998, pp. 444–461. isbn: 3-540-

64216-1. doi: 10.1007/3-540-64216-1_67. url: https://doi.org/10.1007

/3-540-64216-1%5C_67 (cit. on p. 54).

[229] S. Saroiu, P. K. Gummadi, and S. D. Gribble. “Measuring and analyzing the charac-

teristics of Napster and Gnutella hosts”. In: Multim. Syst. 9.2 (2003), pp. 170–184.

doi: 10.1007/s00530-003-0088-1. url: https://doi.org/10.1007/s00530-0

03-0088-1 (cit. on pp. 33, 34).

[230] M. Satyanarayanan. “Fundamental Challenges in Mobile Computing”. In: Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Com-
puting. PODC ’96. Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 1–7. isbn:

0-89791-800-2. doi: 10.1145/248052.248053. url: http://doi.acm.org/10.1

145/248052.248053 (cit. on p. 1).

[231] M. Satyanarayanan. “Cloudlets: At the Leading Edge of Cloud-Mobile Conver-

gence”. In: Proceedings of the 9th International ACM Sigsoft Conference on Quality
of Software Architectures. QoSA ’13. Vancouver, British Columbia, Canada: Asso-

ciation for Computing Machinery, 2013, pp. 1–2. isbn: 9781450321266. doi: 1

0.1145/2465478.2465494. url: https://doi.org/10.1145/2465478.2465494

(cit. on p. 3).

[232] M. Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1

(Jan. 2017), pp. 30–39. issn: 0018-9162. doi: 10.1109/MC.2017.9. url: https:

//doi.org/10.1109/MC.2017.9 (cit. on p. 3).

223

https://doi.org/10.1007/978-3-030-57675-2_19
https://doi.org/10.1007/978-3-030-57675-2_19
https://doi.org/10.1007/978-3-030-57675-2_19
https://doi.org/10.1007/978-3-030-57675-2_19
https://doi.org/10.1007/978-3-030-57675-2%5C_19
https://doi.org/10.1007/978-3-030-57675-2%5C_19
https://arxiv.org/abs/1106.5568
http://arxiv.org/abs/1106.5568
http://arxiv.org/abs/1106.5568
https://doi.org/10.1007/3-540-64216-1_67
https://doi.org/10.1007/3-540-64216-1%5C_67
https://doi.org/10.1007/3-540-64216-1%5C_67
https://doi.org/10.1007/s00530-003-0088-1
https://doi.org/10.1007/s00530-003-0088-1
https://doi.org/10.1007/s00530-003-0088-1
https://doi.org/10.1145/248052.248053
http://doi.acm.org/10.1145/248052.248053
http://doi.acm.org/10.1145/248052.248053
https://doi.org/10.1145/2465478.2465494
https://doi.org/10.1145/2465478.2465494
https://doi.org/10.1145/2465478.2465494
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9

BIBLIOGRAPHY

[233] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. “The Case for VM-Based

Cloudlets in Mobile Computing”. In: IEEE Pervasive Computing 8.4 (Oct. 2009),

pp. 14–23. issn: 1536-1268. doi: 10.1109/MPRV.2009.82. url: http://dx.doi.

org/10.1109/MPRV.2009.82 (cit. on p. 3).

[234] R. Schollmeier. “A Definition of Peer-to-Peer Networking for the Classification

of Peer-to-Peer Architectures and Applications”. In: 1st International Conference
on Peer-to-Peer Computing. Ed. by R. L. Graham and N. Shahmehri. P2P ’01.

Linköping, Sweden: IEEE Computer Society, 2001, pp. 101–102. doi: 10.1109

/P2P.2001.990434. url: https://doi.org/10.1109/P2P.2001.990434 (cit. on

p. 33).

[235] T. Schütt, F. Schintke, and A. Reinefeld. “Structured Overlay without Consis-

tent Hashing: Empirical Results”. In: Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2006), 16-19 May 2006, Singapore. IEEE

Computer Society, 2006, p. 8. doi: 10.1109/CCGRID.2006.175. url: http:

//doi.ieeecomputersociety.org/10.1109/CCGRID.2006.175 (cit. on p. 118).

[236] K. Seada and A. Helmy. “Rendezvous regions: a scalable architecture for service

location and data-centric storage in large-scale wireless networks”. In: 18th In-
ternational Parallel and Distributed Processing Symposium. IPDPS ’04. Santa Fe,

New Mexico, USA: IEEE Computer Society, Apr. 2004, pp. 218–. doi: 10.1109

/IPDPS.2004.1303252. url: https://doi.org/10.1109/IPDPS.2004.1303252

(cit. on p. 72).

[237] K. Seada and C. Perkins. Social networks: the killer app for wireless ad hoc networks?
Tech. rep. Nokia Research Centre, 2006 (cit. on p. 64).

[238] B. Segall and D. Arnold. “Elvin has left the building: A publish/subscribe notifi-

cation service with quenching”. In: AUUG ’97 (1997), pp. 243–255 (cit. on pp. 22,

25).

[239] V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta, and S. Gimåker. “The

Hidden Pub/Sub of Spotify: (Industry Article)”. In: Proceedings of the 7th ACM
International Conference on Distributed Event-based Systems. DEBS ’13. Arlington,

Texas, USA: ACM, 2013, pp. 231–240. isbn: 978-1-4503-1758-0. doi: 10.114

5/2488222.2488273. url: http://doi.acm.org/10.1145/2488222.2488273

(cit. on p. 29).

[240] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. “Edge Computing: Vision and Chal-

lenges”. In: IEEE Internet Things J. 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2

016.2579198. url: https://doi.org/10.1109/JIOT.2016.2579198 (cit. on

pp. 3, 58, 104).

224

https://doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/CCGRID.2006.175
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2006.175
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2006.175
https://doi.org/10.1109/IPDPS.2004.1303252
https://doi.org/10.1109/IPDPS.2004.1303252
https://doi.org/10.1109/IPDPS.2004.1303252
https://doi.org/10.1145/2488222.2488273
https://doi.org/10.1145/2488222.2488273
http://doi.acm.org/10.1145/2488222.2488273
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198

BIBLIOGRAPHY

[241] J. A. Silva, F. Cerqueira, H. Paulino, J. M. Lourenço, J. Leitão, and N. Preguiça.

“It’s about Thyme: On the design and implementation of a time-aware reactive

storage system for pervasive edge computing environments”. In: Future Genera-
tion Computer Systems 118 (May 2021), pp. 14–36. issn: 0167-739X. doi: 10.10

16/j.future.2020.12.008. url: http://www.sciencedirect.com/science/

article/pii/S0167739X20330703 (cit. on pp. 54, 100).

[242] J. A. Silva, J. Leitão, N. Preguiça, J. M. Lourenço, and H. Paulino. “Towards

the Opportunistic Combination of Mobile Ad-hoc Networks with Infrastructure

Access”. In: Proceedings of the 1st Workshop on Middleware for Edge Clouds &
Cloudlets. MECC ’16. Trento, Italy: ACM, 2016, pp. 1–3. isbn: 978-1-4503-4668-

9. doi: 10.1145/3017116.3022873. url: http://doi.acm.org/10.1145/30171

16.3022873 (cit. on pp. 64, 100, 182).

[243] J. A. Silva, R. Monteiro, H. Paulino, and J. M. Lourenço. “Ephemeral Data Storage

for Networks of Hand-Held Devices”. In: IEEE Trustcom/BigDataSE/ISPA. Tianjin,

China: IEEE, 2016, pp. 1106–1113. doi: 10.1109/TrustCom.2016.0182. url:

https://doi.org/10.1109/TrustCom.2016.0182 (cit. on pp. 30, 57, 61, 150,

180).

[244] J. A. Silva, H. Paulino, J. M. Lourenço, J. Leitão, and N. M. Preguiça. “Time-Aware

Publish/Subscribe for Networks of Mobile Devices”. In: CoRR abs/1801.00297

(Dec. 2017). arXiv: 1801.00297. url: http://arxiv.org/abs/1801.00297

(cit. on pp. 55, 101).

[245] J. A. Silva, H. Paulino, J. M. Lourenço, J. Leitão, and N. M. Preguiça. “Time-

aware reactive storage in wireless edge environments”. In: Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services. Ed. by H. V. Poor, Z. Han, D. Pompili, Z. Sun, and M. Pan.

MobiQuitous ’19. Houston, Texas, USA: ACM, 2019, pp. 238–247. doi: 10.1145

/3360774.3360828. url: https://doi.org/10.1145/3360774.3360828 (cit. on

pp. 54, 100, 151).

[246] J. A. Silva, P. Vieira, and H. Paulino. “Data Storage and Sharing for Mobile Devices

in Multi-region Edge Networks”. In: 21st IEEE International Symposium on "A
World of Wireless, Mobile and Multimedia Networks". WoWMoM ’20. Cork, Ireland

(Online): IEEE, 2020, pp. 40–49. doi: 10.1109/WoWMoM49955.2020.00021. url:

https://doi.org/10.1109/WoWMoM49955.2020.00021 (cit. on p. 177).

[247] P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. M. B. Lopes, and F. M. A.

Silva. “Using Edge-Clouds to Reduce Load on Traditional WiFi Infrastructures

and Improve Quality of Experience”. In: 1st IEEE International Conference on Fog
and Edge Computing. ICFEC ’17. Madrid, Spain: IEEE Computer Society, 2017,

pp. 61–67. doi: 10.1109/ICFEC.2017.14. url: https://doi.org/10.1109

/ICFEC.2017.14 (cit. on p. 153).

225

https://doi.org/10.1016/j.future.2020.12.008
https://doi.org/10.1016/j.future.2020.12.008
http://www.sciencedirect.com/science/article/pii/S0167739X20330703
http://www.sciencedirect.com/science/article/pii/S0167739X20330703
https://doi.org/10.1145/3017116.3022873
http://doi.acm.org/10.1145/3017116.3022873
http://doi.acm.org/10.1145/3017116.3022873
https://doi.org/10.1109/TrustCom.2016.0182
https://doi.org/10.1109/TrustCom.2016.0182
https://arxiv.org/abs/1801.00297
http://arxiv.org/abs/1801.00297
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/WoWMoM49955.2020.00021
https://doi.org/10.1109/ICFEC.2017.14
https://doi.org/10.1109/ICFEC.2017.14
https://doi.org/10.1109/ICFEC.2017.14

BIBLIOGRAPHY

[248] J. Singh, D. M. Eyers, and J. Bacon. “Controlling Historical Information Dissemi-

nation in Publish/Subscribe”. In: Proceedings of the 2008 Workshop on Middleware
Security. MidSec ’08. Leuven, Belgium: ACM, 2008, pp. 34–39. isbn: 978-1-

60558-363-1. doi: 10.1145/1463342.1463349. url: http://doi.acm.org/10

.1145/1463342.1463349 (cit. on p. 29).

[249] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li. “Content Centric Peer

Data Sharing in Pervasive Edge Computing Environments”. In: 2017 IEEE 37th
International Conference on Distributed Computing Systems. ICDCS ’17. Atlanta,

GA, USA: IEEE Computer Society, June 2017, pp. 287–297. doi: 10.1109/ICDCS.

2017.26. url: https://doi.org/10.1109/ICDCS.2017.26 (cit. on pp. 32, 43,

59, 61, 150–152).

[250] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li. “Pervasive edge data sharing

in MANET”. In: 2017 IEEE Conference on Computer Communications Workshops.
Atlanta, GA, USA: IEEE, May 2017, pp. 133–138. doi: 10.1109/INFCOMW.201

7.8116365. url: https://doi.org/10.1109/INFCOMW.2017.8116365 (cit. on

p. 32).

[251] V. Sourlas, P. Flegkas, G. S. Paschos, D. Katsaros, and L. Tassiulas. “Storing

and Replication in Topic-Based Publish/Subscribe Networks”. In: Proceedings
of the 29th IEEE Conference on Global Telecommunications. GLOBECOM’10. Miami,

Florida, USA: IEEE, Dec. 2010, pp. 1–5. doi: 10.1109/GLOCOM.2010.5683977.

url: https://doi.org/10.1109/GLOCOM.2010.5683977 (cit. on p. 28).

[252] V. Sourlas, G. S. Paschos, P. Flegkas, and L. Tassiulas. “Caching in Content-based

Publish/Subscribe Systems”. In: Proceedings of the 28th IEEE Conference on Global
Telecommunications. GLOBECOM’09. Honolulu, Hawaii, USA: IEEE Press, 2009,

pp. 1401–1406. isbn: 978-1-4244-4147-1. url: http://dl.acm.org/citation.

cfm?id=1811380.1811612 (cit. on p. 28).

[253] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and J. Kelner.

“Mires: A Publish/Subscribe Middleware for Sensor Networks”. In: Personal
Ubiquitous Comput. 10.1 (Dec. 2005), pp. 37–44. issn: 1617-4909. doi: 10.1007

/s00779-005-0038-3. url: http://dx.doi.org/10.1007/s00779-005-0038-3

(cit. on p. 28).

[254] K. Sripanidkulchai, B. M. Maggs, and H. Zhang. “Efficient Content Location

Using Interest-Based Locality in Peer-to-Peer Systems”. In: Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and Communications Societies.
INFOCOM ’03. San Franciso, California, USA: IEEE Computer Society, 2003,

pp. 2166–2176. doi: 10.1109/INFCOM.2003.1209237. url: https://doi.org/1

0.1109/INFCOM.2003.1209237 (cit. on p. 7).

226

https://doi.org/10.1145/1463342.1463349
http://doi.acm.org/10.1145/1463342.1463349
http://doi.acm.org/10.1145/1463342.1463349
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/ICDCS.2017.26
https://doi.org/10.1109/INFCOMW.2017.8116365
https://doi.org/10.1109/INFCOMW.2017.8116365
https://doi.org/10.1109/INFCOMW.2017.8116365
https://doi.org/10.1109/GLOCOM.2010.5683977
https://doi.org/10.1109/GLOCOM.2010.5683977
http://dl.acm.org/citation.cfm?id=1811380.1811612
http://dl.acm.org/citation.cfm?id=1811380.1811612
https://doi.org/10.1007/s00779-005-0038-3
https://doi.org/10.1007/s00779-005-0038-3
http://dx.doi.org/10.1007/s00779-005-0038-3
https://doi.org/10.1109/INFCOM.2003.1209237
https://doi.org/10.1109/INFCOM.2003.1209237
https://doi.org/10.1109/INFCOM.2003.1209237

BIBLIOGRAPHY

[255] T. Stading, P. Maniatis, and M. Baker. “Peer-to-Peer Caching Schemes to Address

Flash Crowds”. In: Peer-to-Peer Systems, First International Workshop. IPTPS ’02.

Cambridge, MA, USA, 2002, pp. 203–213. doi: 10.1007/3-540-45748-8_19.

url: https://doi.org/10.1007/3-540-45748-8%5C_19 (cit. on p. 37).

[256] I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord:

A scalable peer-to-peer lookup service for internet applications”. In: Proceedings
of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. Ed. by R. L. Cruz and G. Varghese.

SIGCOMM ’01. San Diego, California, USA: ACM, 2001, pp. 149–160. doi: 10.1

145/383059.383071. url: https://doi.org/10.1145/383059.383071 (cit. on

pp. xxvii, 34–36, 104, 108, 118).

[257] I. Stojmenovic. “Position-based Routing in Ad Hoc Networks”. In: Comm. Mag.
40.7 (July 2002), pp. 128–134. issn: 0163-6804. doi: 10.1109/MCOM.2002.101

8018. url: http://dx.doi.org/10.1109/MCOM.2002.1018018 (cit. on pp. 18,

41).

[258] D. Stutzbach and R. Rejaie. “Understanding churn in peer-to-peer networks”. In:

Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference. Ed. by J. M.

Almeida, V. A. F. Almeida, and P. Barford. IMC ’06. Rio de Janeriro, Brazil: ACM,

2006, pp. 189–202. doi: 10.1145/1177080.1177105. url: https://doi.org/10

.1145/1177080.1177105 (cit. on p. 33).

[259] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel, M. H. Lim, and E.

Upton. “Haggle: Seamless Networking for Mobile Applications”. In: Proceedings
of the 9th International Conference on Ubiquitous Computing. UbiComp ’07. Inns-

bruck, Austria: Springer-Verlag, 2007, pp. 391–408. isbn: 978-3-540-74852-6.

url: http://dl.acm.org/citation.cfm?id=1771592.1771615 (cit. on p. 62).

[260] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan. “A comprehensive

survey on vehicular Ad Hoc network”. In: Journal of Network and Computer Appli-
cations 37 (2014), pp. 380–392. issn: 1084-8045. doi: 10.1016/j.jnca.2013.02

.036. url: https://doi.org/10.1016/j.jnca.2013.02.036 (cit. on p. 16).

[261] P. Sutton, R. Arkins, and B. Segall. “Supporting Disconnectedness-Transparent

Information Delivery for Mobile and Invisible Computing”. In: Proceedings of
the 1st International Symposium on Cluster Computing and the Grid. CCGRID ’01.

Brisbane, Australia: IEEE, 2001, pp. 277–287. isbn: 0-7695-1010-8. doi: 10.11

09/CCGRID.2001.923204. url: http://dl.acm.org/citation.cfm?id=560889

.792416 (cit. on p. 28).

[262] T. Taleb and A. Ksentini. “Follow me cloud: interworking federated clouds and

distributed mobile networks”. In: IEEE Network 27.5 (Sept. 2013), pp. 12–19.

issn: 0890-8044. doi: 10.1109/MNET.2013.6616110. url: https://doi.org/1

0.1109/MNET.2013.6616110 (cit. on p. 3).

227

https://doi.org/10.1007/3-540-45748-8_19
https://doi.org/10.1007/3-540-45748-8%5C_19
https://doi.org/10.1145/383059.383071
https://doi.org/10.1145/383059.383071
https://doi.org/10.1145/383059.383071
https://doi.org/10.1109/MCOM.2002.1018018
https://doi.org/10.1109/MCOM.2002.1018018
http://dx.doi.org/10.1109/MCOM.2002.1018018
https://doi.org/10.1145/1177080.1177105
https://doi.org/10.1145/1177080.1177105
https://doi.org/10.1145/1177080.1177105
http://dl.acm.org/citation.cfm?id=1771592.1771615
https://doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1109/CCGRID.2001.923204
https://doi.org/10.1109/CCGRID.2001.923204
http://dl.acm.org/citation.cfm?id=560889.792416
http://dl.acm.org/citation.cfm?id=560889.792416
https://doi.org/10.1109/MNET.2013.6616110
https://doi.org/10.1109/MNET.2013.6616110
https://doi.org/10.1109/MNET.2013.6616110

BIBLIOGRAPHY

[263] C. Tang and S. Dwarkadas. “Hybrid Global-Local Indexing for Efficient Peer-to-

Peer Information Retrieval”. In: 1st Symposium on Networked Systems Design and
Implementation. Ed. by R. T. Morris and S. Savage. NSDI ’04. San Francisco,

California, USA: USENIX, 2004, pp. 211–224. url: http://www.usenix.org/

events/nsdi04/tech/tang.html (cit. on pp. 36, 104, 105).

[264] A. Teófilo, H. Paulino, and J. M. Lourenço. “RedMesh: A WiFi-Direct Network

Formation Algorithm for Large-Scale Scenarios”. In: Proceedings of the 17th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services. MobiQuitous ’20. ACM, 2020 (cit. on p. 64).

[265] A. Teófilo, D. Remédios, J. M. Lourenço, and H. Paulino. “GOCRGO and GOGO:

Two Minimal Communication Topologies for WiFi-Direct Multi-group Network-

ing”. In: Proceedings of the 14th EAI International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking and Services. Ed. by T. Gu, R. Kotagiri, and

H. Liu. MobiQuitous ’17. Melbourne, Australia: ACM, 2017, pp. 232–241. doi: 1

0.1145/3144457.3144481. url: https://doi.org/10.1145/3144457.3144481

(cit. on pp. 64, 155, 195).

[266] D. B. Terry, D. Goldberg, D. A. Nichols, and B. M. Oki. “Continuous Queries over

Append-Only Databases”. In: Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data. Ed. by M. Stonebraker. SIGMOD ’92. San

Diego, California, USA: ACM Press, 1992, pp. 321–330. doi: 10.1145/130283.1

30333. url: https://doi.org/10.1145/130283.130333 (cit. on p. 47).

[267] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H.

Abu-Libdeh. “Consistency-based service level agreements for cloud storage”. In:

ACM SIGOPS 24th Symposium on Operating Systems Principles. Ed. by M. Kamin-

sky and M. Dahlin. SOSP ’13. Farmington, PA, USA: ACM, 2013, pp. 309–324.

doi: 10.1145/2517349.2522731. url: https://doi.org/10.1145/2517349.25

22731 (cit. on p. 195).

[268] K. Thilakarathna, H. Petander, J. Mestre, and A. Seneviratne. “MobiTribe: Cost

Efficient Distributed User Generated Content Sharing on Smartphones”. In: IEEE
Transactions on Mobile Computing 13.9 (Sept. 2014), pp. 2058–2070. issn: 1536-

1233. doi: 10.1109/TMC.2013.89. url: https://doi.org/10.1109/TMC.2013

.89 (cit. on pp. 30, 61).

[269] K. Thilakarathna, F.-Z. Jiang, S. Mrabet, M. Ali Kaafar, A. Seneviratne, and G. Xie.

“Crowd-Cache: Leveraging on spatio-temporal correlation in content popularity

for mobile networking in proximity”. In: Computer Communications 100.C (Mar.

2017), pp. 104–117. issn: 0140-3664. doi: 10.1016/j.comcom.2017.01.006.

url: https://doi.org/10.1016/j.comcom.2017.01.006 (cit. on p. 31).

[270] Tibco Software Inc. Tibco Rendezvous. https://www.tibco.com/products/

tibco-rendezvous. Accessed: 2020-01-30. 2018 (cit. on pp. 21, 25).

228

http://www.usenix.org/events/nsdi04/tech/tang.html
http://www.usenix.org/events/nsdi04/tech/tang.html
https://doi.org/10.1145/3144457.3144481
https://doi.org/10.1145/3144457.3144481
https://doi.org/10.1145/3144457.3144481
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1109/TMC.2013.89
https://doi.org/10.1016/j.comcom.2017.01.006
https://doi.org/10.1016/j.comcom.2017.01.006
https://www.tibco.com/products/tibco-rendezvous
https://www.tibco.com/products/tibco-rendezvous

BIBLIOGRAPHY

[271] L. Tornqvist, P. Vartia, and Y. O. Vartia. “How Should Relative Changes Be Mea-

sured?” In: The American Statistician 39.1 (1985), pp. 43–46. issn: 00031305.

url: http://www.jstor.org/stable/2683905 (cit. on p. 128).

[272] Tox. Tox instant messaging. https://tox.chat/. Accessed: 2019-06-23. 2019

(cit. on p. 104).

[273] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili. “Collaborative Mobile Edge

Computing in 5G Networks: New Paradigms, Scenarios, and Challenges”. In:

IEEE Communications Magazine 55.4 (2017), pp. 54–61. doi: 10.1109/MCOM.2

017.1600863. url: https://doi.org/10.1109/MCOM.2017.1600863 (cit. on

pp. 151, 152).

[274] A. Trivedi, L. Wang, H. E. Bal, and A. Iosup. “Sharing and Caring of Data at

the Edge”. In: 3rd USENIX Workshop on Hot Topics in Edge Computing. Ed. by

I. Ahmad and M. Zhao. HotEdge ’20. USENIX Association, 2020. url: https:

//www.usenix.org/conference/hotedge20/presentation/trivedi (cit. on

p. 31).

[275] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. C. Rice. “Exhausting battery

statistics: understanding the energy demands on mobile handsets”. In: Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Networking, Systems, and Applications
for Mobile Handhelds. Ed. by L. P. Cox and A. Wolman. MobiHeld ’10. New Delhi,

India: ACM, 2010, pp. 9–14. doi: 10.1145/1851322.1851327. url: https:

//doi.org/10.1145/1851322.1851327 (cit. on p. 2).

[276] L. M. Vaquero and L. Rodero-Merino. “Finding Your Way in the Fog: Towards a

Comprehensive Definition of Fog Computing”. In: SIGCOMM Comput. Commun.
Rev. 44.5 (Oct. 2014), pp. 27–32. issn: 0146-4833. doi: 10.1145/2677046.2677

052. url: http://doi.acm.org/10.1145/2677046.2677052 (cit. on p. 3).

[277] L. Vargas, J. Bacon, and K. Moody. “Integrating Databases with Publish/Subscribe”.

In: Proceedings of the Fourth International Workshop on Distributed Event-Based
Systems. ICDCSW ’05. Columbus, Ohio, USA: IEEE Computer Society, 2005,

pp. 392–397. isbn: 0-7695-2328-5-04. doi: 10.1109/ICDCSW.2005.79. url:

https://doi.org/10.1109/ICDCSW.2005.79 (cit. on pp. 29, 44, 45, 60).

[278] P. Vieira. “A Persistent Publish/Subscribe System for Mobile Edge Computing”.

http://hdl.handle.net/10362/71124. MA thesis. NOVA University Lisbon,

Dec. 2018 (cit. on pp. 10, 151, 155, 159, 163, 165, 167–176).

[279] R. Wang, J. Zhang, S. Song, and K. B. Letaief. “Mobility-Aware Caching in D2D

Networks”. In: IEEE Trans. Wireless Communications 16.8 (2017), pp. 5001–5015.

doi: 10.1109/TWC.2017.2705038. url: https://doi.org/10.1109/TWC.2017

.2705038 (cit. on pp. 151, 152).

229

http://www.jstor.org/stable/2683905
https://tox.chat/
https://doi.org/10.1109/MCOM.2017.1600863
https://doi.org/10.1109/MCOM.2017.1600863
https://doi.org/10.1109/MCOM.2017.1600863
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://doi.org/10.1145/1851322.1851327
https://doi.org/10.1145/1851322.1851327
https://doi.org/10.1145/1851322.1851327
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052
https://doi.org/10.1109/ICDCSW.2005.79
https://doi.org/10.1109/ICDCSW.2005.79
http://hdl.handle.net/10362/71124
https://doi.org/10.1109/TWC.2017.2705038
https://doi.org/10.1109/TWC.2017.2705038
https://doi.org/10.1109/TWC.2017.2705038

BIBLIOGRAPHY

[280] S. Wang, K. S. Chan, R. Urgaonkar, T. He, and K. K. Leung. “Emulation-based

study of dynamic service placement in mobile micro-clouds”. In: 34th IEEE Mili-
tary Communications Conference. Ed. by Q. Zhang, J. Brand, T. G. MacDonald, B. T.

Doshi, and B. L. Gorsic. MILCOM ’15. Tampa, Florida, USA: IEEE, Oct. 2015,

pp. 1046–1051. doi: 10.1109/MILCOM.2015.7357583. url: https://doi.org/1

0.1109/MILCOM.2015.7357583 (cit. on p. 3).

[281] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. “A Survey on Mobile

Edge Networks: Convergence of Computing, Caching and Communications”. In:

IEEE Access 5 (2017), pp. 6757–6779. doi: 10.1109/ACCESS.2017.2685434. url:

https://doi.org/10.1109/ACCESS.2017.2685434 (cit. on p. 153).

[282] X. Wang, J. Ren, T. Tong, R. Dai, S. Xu, and S. Wang. “Towards Efficient and

Lightweight Collaborative In-Network Caching for Content Centric Networks”.

In: 59th IEEE Global Communications Conference. GLOBECOM ’16. 2016, pp. 1–

7. doi: 10.1109/GLOCOM.2016.7842342. url: https://doi.org/10.1109

/GLOCOM.2016.7842342 (cit. on pp. 150–152).

[283] Z. Wang, L. Sun, M. Zhang, H. Pang, E. Tian, and W. Zhu. “Propagation- and

Mobility-Aware D2D Social Content Replication”. In: IEEE Trans. Mob. Comput.
16.4 (2017), pp. 1107–1120. doi: 10.1109/TMC.2016.2582159. url: https:

//doi.org/10.1109/TMC.2016.2582159 (cit. on p. 151).

[284] G. Wu, J. Chen, W. Bao, X. Zhu, W. Xiao, J. Wang, and L. Liu. “MECCAS: Collab-

orative Storage Algorithm Based on Alternating Direction Method of Multipliers

on Mobile Edge Cloud”. In: 1st IEEE International Conference on Edge Computing.

EDGE ’17. IEEE, 2017, pp. 40–46. doi: 10.1109/IEEE.EDGE.2017.14. url:

https://doi.org/10.1109/IEEE.EDGE.2017.14 (cit. on pp. 151, 152).

[285] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,

K. V. Katsaros, and G. C. Polyzos. “A Survey of Information-Centric Networking

Research”. In: IEEE Commun. Surv. Tutorials 16.2 (2014), pp. 1024–1049. doi:

10.1109/SURV.2013.070813.00063. url: https://doi.org/10.1109/SURV.20

13.070813.00063 (cit. on p. 61).

[286] Y. Yan, N. H. Tran, and F. S. Bao. “Gossiping along the Path: A Direction-Biased

Routing Scheme for Wireless Ad Hoc Networks”. In: 2015 IEEE Global Commu-
nications Conference. GLOBECOM ’15. San Diego, California, USA: IEEE, 2015,

pp. 1–6. doi: 10.1109/GLOCOM.2014.7417867. url: https://doi.org/10.1109

/GLOCOM.2014.7417867 (cit. on p. 58).

[287] S. Yi, C. Li, and Q. Li. “A Survey of Fog Computing: Concepts, Applications and

Issues”. In: Proceedings of the 2015 Workshop on Mobile Big Data. Mobidata ’15.

Hangzhou, China: ACM, 2015, pp. 37–42. isbn: 978-1-4503-3524-9. doi: 10.1

145/2757384.2757397. url: http://doi.acm.org/10.1145/2757384.2757397

(cit. on p. 3).

230

https://doi.org/10.1109/MILCOM.2015.7357583
https://doi.org/10.1109/MILCOM.2015.7357583
https://doi.org/10.1109/MILCOM.2015.7357583
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1109/GLOCOM.2016.7842342
https://doi.org/10.1109/GLOCOM.2016.7842342
https://doi.org/10.1109/GLOCOM.2016.7842342
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/TMC.2016.2582159
https://doi.org/10.1109/IEEE.EDGE.2017.14
https://doi.org/10.1109/IEEE.EDGE.2017.14
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1109/GLOCOM.2014.7417867
https://doi.org/10.1109/GLOCOM.2014.7417867
https://doi.org/10.1109/GLOCOM.2014.7417867
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
http://doi.acm.org/10.1145/2757384.2757397

BIBLIOGRAPHY

[288] J. Yick, B. Mukherjee, and D. Ghosal. “Wireless sensor network survey”. In:

Comput. Networks 52.12 (2008), pp. 2292–2330. issn: 1389-1286. doi: 10.1016

/j.comnet.2008.04.002. url: https://doi.org/10.1016/j.comnet.2008.04

.002 (cit. on p. 16).

[289] Yinzcam, Inc. Yinzcam. http://www.yinzcam.com/. Accessed: 2020-08-13. Nov.

2019 (cit. on p. 64).

[290] E. Yoneki, P. Hui, S. Y. Chan, and J. Crowcroft. “A socio-aware overlay for pub-

lish/subscribe communication in delay tolerant networks”. In: 10th International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
MSWiM ’07. 2007, pp. 225–234. doi: 10.1145/1298126.1298166. url: https:

//doi.org/10.1145/1298126.1298166 (cit. on p. 151).

[291] T. Zahn and J. Schiller. “MADPastry: A DHT Substrate for Practicably Sized

MANETs”. In: Proceedings of the 5th Workshop on Applications and Services in
Wireless Networks. ASWN ’05. 2005 (cit. on p. 72).

[292] F. Zhang, C. Xu, Y. Zhang, K. K. Ramakrishnan, S. Mukherjee, R. D. Yates, and

T. D. Nguyen. “EdgeBuffer: Caching and prefetching content at the edge in the

MobilityFirst future Internet architecture”. In: 16th IEEE International Symposium
on A World of Wireless, Mobile and Multimedia Networks. WoWMoM ’15. Boston,

MA, USA: IEEE Computer Society, 2015, pp. 1–9. doi: 10.1109/WoWMoM.2015.7

158137. url: https://doi.org/10.1109/WoWMoM.2015.7158137 (cit. on pp. 31,

150–152).

[293] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang. “Cooperative Content

Caching in 5G Networks with Mobile Edge Computing”. In: IEEE Wireless Com-
mun. 25.3 (2018), pp. 80–87. doi: 10.1109/MWC.2018.1700303. url: https:

//doi.org/10.1109/MWC.2018.1700303 (cit. on p. 153).

[294] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley, C. Pa-

padopoulos, L. Wang, and B. Zhang. “Named data networking”. In: Comput.
Commun. Rev. 44.3 (2014), pp. 66–73. doi: 10.1145/2656877.2656887. url:

https://doi.org/10.1145/2656877.2656887 (cit. on p. 39).

[295] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz.

“Tapestry: a resilient global-scale overlay for service deployment”. In: IEEE Jour-
nal on Selected Areas in Communications 22.1 (2004), pp. 41–53. doi: 10.1109

/JSAC.2003.818784. url: https://doi.org/10.1109/JSAC.2003.818784

(cit. on p. 34).

[296] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. “Bayeux:

An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination”.

In: Proceedings of the 11th International Workshop on Network and Operating Systems
Support for Digital Audio and Video. NOSSDAV ’01. Port Jefferson, New York, USA:

231

https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
http://www.yinzcam.com/
https://doi.org/10.1145/1298126.1298166
https://doi.org/10.1145/1298126.1298166
https://doi.org/10.1145/1298126.1298166
https://doi.org/10.1109/WoWMoM.2015.7158137
https://doi.org/10.1109/WoWMoM.2015.7158137
https://doi.org/10.1109/WoWMoM.2015.7158137
https://doi.org/10.1109/MWC.2018.1700303
https://doi.org/10.1109/MWC.2018.1700303
https://doi.org/10.1109/MWC.2018.1700303
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1109/JSAC.2003.818784
https://doi.org/10.1109/JSAC.2003.818784
https://doi.org/10.1109/JSAC.2003.818784

BIBLIOGRAPHY

ACM, 2001, pp. 11–20. isbn: 1-58113-370-7. doi: 10.1145/378344.378347.

url: http://doi.acm.org/10.1145/378344.378347 (cit. on pp. 21, 27).

[297] G. K. Zipf. Human Behaviour and the Principle of Least Effort: an Introduction to
Human Ecology. Addison-Wesley, 1949 (cit. on p. 104).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 232).

232

https://doi.org/10.1145/378344.378347
http://doi.acm.org/10.1145/378344.378347
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A
p
p
e
n
d
i
x

A
Parsley’s Group Size Study

“Man’s real home is not a house, but the road.”
— Bruce Chatwin

Presented in §5, Parsley is our proposal on a resilient group-based distributed hash

table (DHT) with a preemptive peer relocation (PPR) technique and a dynamic data

sharding mechanism. Besides the minimum and maximum group size hard limits (l and

h, respectively) entailed by the group-based approach, the PPR feature encompasses other

two soft limits (l′ and h′). These soft limits define a desired target interval for group size,

allowing the overlay to take some preemptive measures before reaching the hard limits.

Thus, we end up with four parameters that need to be defined. Since it is unfeasible to

evaluate all the possible values for each parameter, in this appendix, we shed some light

on the reasons behind the values used in Parsley’s evaluation reported in §5.5.

In their respective evaluations, related works (discussed in §5.2) define the group size

limits they used (e.g., Rollerchain uses 3–8, and MobiStore uses 2–25). However, they

never justify the chosen values. On the contrary, here, we do an overlay characterization

study regarding the group size parameters and lay our rationale.

We present the setup used for these experiments in §A.1. Next, §A.2 reports the

results regarding topology operations, and §A.3 addresses the highs and lows concerning

big groups. After, in §A.4, we do a broad discussion about our major findings. Lastly, we

present some of the complete plots that did not fit in the previous sections in §A.5.

A.1 Experimental Setup

For this study, we use the same experimental setup described in §5.5.1, and the same

experiment scenarios as detailed in §5.5.2. We use a system comprised by 10 000 peers,

233

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

populated with 50 000 values distributed among 10 000 keys, and values are assigned

to keys following a uniform distribution. Keys are chosen uniformly at random from

the key space, and values’ size follows a normal distribution with a mean value of 5MB

and a standard deviation of 1MB (yielding a total of around 250GB). The maximum

load threshold was set to 1.75. The group maintenance frequency was set to one second,

with a probability of 10%. The periodic group size check was executed with a frequency

uniformly distributed between two and four seconds. In turn, the periodic relocation of

peers is checked every 20 seconds, and the relocation cool down period is also 20 seconds.

The overlay was initialized by having peers join the system one at a time. After a

stabilization period, churn was induced during a period of 60 simulation cycles. Every

other cycle during the churn period, c peers are removed simultaneously. When the churn

period is over, another stabilization period is executed, and the simulation halts. As to

reduce the number of experiments to a practical amount, we only used three churn rates

from Table 5.2, namely 30% (low churn), 60% (medium churn), and 90% (high churn).

We also use two different scenarios: one where peers leave the system and no new peers

enter (that we called exit-only); and another scenario where peers leave the system and

the same amount of new peers join the overlay (that we called enter-exit).
Groups are divided into two sets—hot and cold—, defined by a distribution ratio

set to 50% (i.e., both sets have the same number of groups). Peers in the hot set have a

probability ε of being chosen to leave the system (i.e., churn), while peers in the cold set

have the complementary probability (i.e., 1− ε). In these experiments, we set ε = 0.8.

Here, we refer to the same configurations used in §5.5.2: No PPR (NPPR in the plots)

- peer relocation disabled; Push - peer relocation using only push requests; Pull - peer

relocation using only pull requests; and Full PPR (FPPR in the plots) - peer relocation

fully enabled (i.e., using both push and pull requests). This study was conducted using

the PeerSim simulator [180] and its event-driven engine. All results are averages extracted

from 20 independent executions for each data point, and all the plots depict data collected

from the start of the churn period until the end of the simulation.

Table A.1 shows the group size parameters used in this study. First, we select four
peers as the minimum group size for all experiments (i.e., l = 4), which we argue is a

reasonable and safe minimum value for many churn scenarios. Next, we select several

maximum group size thresholds (i.e., h), in order to assess how the overlay behaves with

increasing group sizes. For this, we select four main sizes, namely 8, 16, 32, and 64

peers. Additionally, we select an extra maximum size: 11. This is an intermediate size

between the two previous smaller ones. It is an odd number because Parsley includes

the limits in the allowed sizes, i.e., topology changes are only carried out if the current

group size is strictly greater or lower than the limits. Thus, by having an odd number as

the maximum limit, it means that the resulting groups after a split will have exactly the

same size (because the number of peers will be even). Then, we experiment with various

soft limit thresholds (i.e., l′ and h′). We call delta to the difference between the soft and

hard limits (i.e., l′−l and h′−h). The tables’ top row shows the delta value for each column.

234

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

Table A.1: Group size parameters in Parsley, varying soft limits amplitude.

(a) Size extra small.

∆ 0 1 2

l 4 4 4
l′ 4 5 6
h′ 8 7 6
h 8 8 8

(b) Size small.

∆ 0 1 2 3

l 4 4 4 4
l′ 4 5 6 7
h′ 11 10 9 8
h 11 11 11 11

(c) Size medium.

∆ 0 1 2 4 6

l 4 4 4 4 4
l′ 4 5 6 8 10
h′ 16 15 14 12 10
h 16 16 16 16 16

(d) Size large.

∆ 0 1 2 4 6 8 10 12 14

l 4 4 4 4 4 4 4 4 4
l′ 4 5 6 8 10 12 14 16 18
h′ 32 31 30 28 26 24 22 20 18
h 32 32 32 32 32 32 32 32 32

(e) Size extra large.

∆ 0 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

l 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
l′ 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
h′ 64 63 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34
h 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

Since the maximum group sizes are even numbers, it allows us to experiment with deltas

ranging from zero (disabling peer relocation completely) to the maximum being equal

for both limits (i.e., l′ = h′)—turning the desired group size interval into a single value.

A.2 Topology Operations and Data Transfers

In this section, we analyze the impact of the different group sizes and deltas in the amount

of topology operations executed (i.e., merges, splits, and peer relocations), and also in the

amount of data objects transferred (in GB) due to these operations.

Size Extra Small: 4–8. This is the smallest size we experiment with, and with such a

small size it is only possible to analyze three different deltas: 0, 1, and 2.

Figure A.1 depicts the amount of topology operations executed during the simulation,

for the exit-only scenario. Since peers that leave the overlay are not replaced by new ones,

increasing the amount of churn leads to a decrease in the overlay size. In the end, this

results in the number of executed operations following the increase in churn (mainly

merges), because groups have to accommodate those changes as more peers leave the

system. Nonetheless, from delta 0 to 1, we see the largest decrease in both merge and split

operations for the configurations with peer relocation. Here, even the NPPR configuration

235

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 1 2
0

200

400

600

N
u

m
.o

p
s.

Merge

0 1 2
0

100

200

300
Split

0 1 2
0

200
400
600
800

1,000
Relocation

(a) 30% churn.

0 1 2
0

500

1,000

1,500

N
u

m
.o

p
s.

0 1 2
0

200

400

600

0 1 2
0

500

1,000

1,500

(b) 60% churn.

0 1 2
0

500

1,000

1,500

Delta

N
u

m
.o

p
s.

0 1 2
0

100

200

300

400

Delta
0 1 2

0
200
400
600
800

1,000

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.1: Exit-only topology operations with group size XS (4–8) in Parsley.

decreases the amount of merges, but (slightly) increases splits. The merges decrease

because with delta greater than zero (specially with delta 1), the average size of the

groups generated in the overlay bootstrap tends to be larger, thus giving rise to larger

groups that are more robust to churn (see the new peer acceptance logic in §5.3.3.2). In

turn, splits increase because, as explained in §5.3.3.4, additionally some of them start

to happen due to groups being overloaded. Except for NPPR, peer relocations are an

additional help to further lower the amount of these operations. Next, from delta 1 to 2,

the difference is negligible (in fact, merges and splits increase slightly). With 30% churn,

we can see a minor difference among the configurations with peer relocation (with FPPR

achieving slightly less merges and splits, and more relocations), but that fades as churn

increases. Since there are only peers leaving the overlay, for large values of churn, the

only way to deal with this is to execute topology changes. Also, naturally, as the delta size

increases, peers have more freedom to relocate, thus the number of relocation operations

increases with the delta size. Since FPPR employs both push and pull requests, it presents

more opportunities for peer relocations, thus it is the one that executes more relocations

236

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2
0

200

400

600

800 73
2.

84

27
6.

42

34
9.

79

73
0.

32

28
7.

39

38
2.

51

73
1.

37

32
3.

66

36
9.

18

73
2.

18

60
8.

03

62
5.

45

D
at

a
(G

B
)

(a) 30% churn.

0 1 2
0

500

1,000

1,500

2,000 1,
89

4.
04

1,
18

8.
72

1,
31

9.
281,

87
6.

38

1,
18

5.
33

1,
30

9.
881,

88
0.

93

1,
21

1.
70

1,
32

9.
311,

89
2.

12

1,
83

1.
41

1,
82

6.
04

D
at

a
(G

B
)

(b) 60% churn.

0 1 2
0

1,000

2,000

3,000 2,
62

1.
48

1,
93

6.
57

2,
08

3.
34

2,
64

4.
86

1,
91

8.
17

2,
03

7.
34

2,
65

6.
17

1,
91

6.
07

2,
04

5.
62

2,
64

4.
91

2,
50

6.
17

2,
51

3.
96

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.2: Exit-only data transfers with group size XS (4–8) in Parsley.

from the three. Yet, a relevant observation is that from delta 1 to 2, relocations double

while merges and splits stay practically the same. This means that the bigger freedom

peers enjoy with a larger delta may also cause many unnecessary relocations.

In Figure A.2, we can see the amount of data transfers resulting from merge, reloca-

tion, and group maintenance operations, for the exit-only scenario. First, we can see that

with delta 0, all configurations behave similarly, since there are no relocations (which can

also be seen in the previous figure). Also, it is clear that data transfers caused by group

maintenance are a very tiny part of the overall transfers, being the total dominated by

the other two parts (i.e., merges and relocations). However, with delta 1 or 2, all the con-

figurations with peer relocation manage to require much less data transfers than NPPR,

by greatly reducing the amount of transfers due to merges. With increasing amounts of

churn, more peers leave the overlay, thus, in the end, there is no other possibility than

to merge (with some relocations along the way). That is why increasing the delta size is

237

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 1 2
0

100

200

300

N
u

m
.o

p
s.

Merge

0 1 2
0

100

200

300

400
Split

0 1 2
0

200

400

600
Relocation

(a) 30% churn.

0 1 2
0

200

400

600

N
u

m
.o

p
s.

0 1 2
0

200

400

600

800

0 1 2
0

200
400
600
800

1,000

(b) 60% churn.

0 1 2
0

200
400
600
800

Delta

N
u

m
.o

p
s.

0 1 2
0

500

1,000

Delta
0 1 2

0

500

1,000

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.3: Enter-exit topology operations with group size XS (4–8) in Parsley.

unable to further reduce the amount of data transfers, only enabling more relocations.

In fact, from delta 1 to 2, the total data transfers increase slightly. Additionally, with

increasing churn, the difference between NPPR and the other configurations becomes less

evident, because groups get smaller and relocation opportunities diminish.

Figure A.3 depicts the amount of topology operations executed during the simulation,

for the enter-exit scenario. Similarly to the exit-only scenario, the number of executed op-

erations follows the increase in churn, i.e., the more churn is imposed on the overlay, the

more topology operations are required in order to accommodate those transient changes.

However, here, the absolute values are much smaller for merge operations. Since peers

enter the overlay as others leave, they end up filling the voids. Thus, these operations are

needed to accommodate the rapid changes in the network, but by a small amount when

compared to the exit-only scenario. NPPR executes considerably more merge and split

operations than any configuration with peer relocation, across all churn values. Once

again, from delta 0 to 1, we see the largest decrease in merge (and split) operations for all

configurations (even with NPPR). This decrease can be explained in part due to the same

238

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2
0

100

200

300 26
1.

58

35
.2

3 92
.2

2

26
3.

42

31
.7

3

65
.2

6

25
6.

77

36
.5

7 80
.1

3

27
0.

57

88
.7

6

54
.0

5

D
at

a
(G

B
)

(a) 30% churn.

0 1 2
0

200

400

600

800
59

1.
52

11
3.

06

15
5.

85

60
0.

21

10
4.

08

13
1.

44

59
9.

14

11
2.

53

13
0.

43

60
7.

77

22
7.

93

17
3.

87

D
at

a
(G

B
)

(b) 60% churn.

0 1 2
0

200
400
600
800

1,000 88
9.

63

19
3.

24

23
9.

43

87
2.

24

19
7.

74

20
5.

75

89
2.

33

20
1.

77

19
1.

71

89
2.

06

41
4.

46

29
1.

88

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.4: Enter-exit data transfers with group size XS (4–8) in Parsley.

reason described in the previous scenario (i.e., larger average group size with delta 1), and

also adding to the fact that peers enter the overlay. In turn, from delta 1 to 2, the number

of merges and splits decreases by a very small amount, led by the added freedom for

relocations. However, the number of relocations increases linearly with the delta value.

Here also, FPPR executes more relocations than any of the other configurations, since it

employs both push and pull techniques.

In Figure A.4, we can see the amount of data transfers resulting from merge, reloca-

tion, and group maintenance operations, for the enter-exit scenario. Since there are no

relocations with delta 0, all configurations behave identically. However, data transfers

decrease sharply with delta 1, and all configurations with peer relocation are able to re-

duce the amount of transfers to half that of NPPR (with FPPR achieving the lowest of the

three). By increasing the delta value to 2, it allows more peer relocations than required,

and thus the relocation data transfers completely dominate the total amount (which can

be seen clearly in Figure A.4a, for instance). This is the reason that with delta 2, FPPR

239

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 1 2 3
0

100

200

300

N
u

m
.o

p
s.

Merge

0 1 2 3
0

50

100

150
Split

0 1 2 3
0

200

400

600
Relocation

(a) 30% churn.

0 1 2 3
0

200

400

600

800

N
u

m
.o

p
s.

0 1 2 3
0

100

200

300

0 1 2 3
0

200

400

600

(b) 60% churn.

0 1 2 3
0

200
400
600
800

1,000

Delta

N
u

m
.o

p
s.

0 1 2 3
0

100

200

300

Delta
0 1 2 3

0

200

400

600

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.5: Exit-only topology operations with group size S (4–11) in Parsley.

requires more data transfers than the other two configurations with peer relocation—it

enables more unnecessary (and unfruitful) freedom.

Size Small: 4–11. This is the only group size range with an odd maximum limit, thus

allowing the two groups resulting from a split to be exactly the same size.

Figure A.5 depicts the amount of topology operations executed during the simulation,

for the exit-only scenario. Once more, from delta 0 to 1, we see the largest decrease in both

merge and split operations, mainly for the configurations with peer relocation. Then, this

is followed by an increase in both metrics as the delta value increases, also accompanied

by a sub-linear increase in the number of peer relocations (very similar for all the churn

values). The decrease in merges with delta 1 can be explained by the same reason as in

the previous group size range. With delta 1, the average size of the groups generated

in the overlay bootstrap is significantly larger than with delta 0, thus groups go into the

churn period better equipped in case they lose peers. However, with delta 2 onward,

groups’ size starts to approach the middle of the interval defined by the parameters (in

240

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 3
0

200

400

600

43
5.

50

21
1.

33

26
1.

81

28
9.

93

46
8.

68

22
0.

90

26
4.

62

32
3.

8143
5.

33

24
2.

52

31
3.

41

35
9.

72

43
0.

98

33
8.

05

40
0.

99

44
3.

52

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 3
0

500

1,000

1,500

2,000
1,

53
6.

89

1,
18

3.
30

1,
28

8.
86

1,
38

7.
97

1,
53

1.
49

1,
18

5.
07

1,
30

9.
60

1,
41

3.
60

1,
53

4.
95

1,
20

2.
73

1,
34

7.
84

1,
44

9.
99

1,
52

1.
52

1,
46

5.
80

1,
55

1.
26

1,
62

4.
93

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 3
0

1,000

2,000

3,000

2,
32

2.
82

1,
91

2.
62

2,
06

1.
17

2,
18

8.
78

2,
30

4.
35

1,
88

3.
60

2,
05

2.
83

2,
19

3.
36

2,
31

3.
56

1,
90

2.
50

2,
05

4.
52

2,
21

7.
34

2,
35

3.
49

2,
22

6.
03

2,
26

1.
45

2,
30

8.
24

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.6: Exit-only data transfers with group size S (4–11) in Parsley.

this case, 8), i.e., the average size starts to decrease slowly (and the standard deviation

also). That is why the number of merges reverses and starts to (slowly) grow. In the case of

the configurations with peer relocation, they require less merges because peer relocations

are able to balance that. Regarding splits, they increase with NPPR, and also with delta 2

onward for the other configurations. This happens because, as peers leave the overlay,

groups keep their data and start to become overloaded. In the end, the majority of the

splits are due to overload and not group size. From the previous group size range, there is

also a decrease in the amount of relocations. This can be explained by the fact that larger

groups are more robust to churn, thus requiring less relocations.

In Figure A.6, we can see the amount of data transfers resulting from merge, relocation,

and group maintenance operations, for the exit-only scenario. Here, we can see that as

churn increases, the difference between NPPR and the configurations with peer relocation

decreases. This happens because no peers entering the overlay means that groups shrink

and there is no other alternative but to merge. This difference among configurations

241

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 1 2 3
0

10

20

30

N
u

m
.o

p
s.

Merge

0 1 2 3
50

100

150

200
Split

0 1 2 3
0

100

200

300
Relocation

(a) 30% churn.

0 1 2 3
0

20
40
60
80

100

N
u

m
.o

p
s.

0 1 2 3
0

100

200

300

0 1 2 3
0

200

400

600

(b) 60% churn.

0 1 2 3
0

50

100

150

200

Delta

N
u

m
.o

p
s.

0 1 2 3
0

200

400

600

Delta
0 1 2 3

0

200

400

600

800

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.7: Enter-exit topology operations with group size S (4–11) in Parsley.

also decreases as delta size grows. Since no peers enter the overlay, in the scenario with

less churn, the configurations with peer relocation require much more data transfers

due to relocations. Then, as churn increases and relocation opportunities decrease, the

amount of relocation data transfers also decreases. The figure also shows that all the

configurations with peer relocation behave similarly, with FPPR achieving slightly lower

overall data transfers.

Figure A.7 depicts the amount of topology operations executed during the simulation,

for the enter-exit scenario. Here, since new peers replace the leaving ones, with low

churn, all the configurations behave similarly (overlapping for the most part in the plots).

However, as churn increases, the configurations with peer relocation start to reduce the

number of merge (and also slightly split) operations when compared with NPPR, offset

by the performed relocations. Also, the largest decrease in merge (and split) operations

is noticed when delta goes from 0 to 1. As the delta increases, the variation among the

configurations starts to become less visible. Naturally, the number of relocations grows

with the delta value, as peers have more freedom to relocate between groups.

242

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 3
0

20

40

60

80

51
.3

0

5.
24

19
.6

0

63
.8

8

59
.4

8

6.
48 16

.1
1

56
.1

2

47
.3

2

9.
26

26
.6

5

57
.8

9

51
.9

3

11
.1

2

13
.2

6 28
.3

6

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 3
0

100

200

300
17

6.
29

39
.7

1

57
.6

4

13
7.

6320
2.

04

37
.4

4

44
.8

2 11
1.

34

19
1.

52

39
.1

1

57
.9

4 10
0.

85

18
2.

18

59
.7

4

61
.1

3

74
.3

1

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 3
0

100

200

300

400 36
0.

21

10
9.

73

10
9.

54

21
6.

44

36
3.

27

10
0.

29

10
3.

25 19
9.

17

35
8.

24

10
0.

09

10
2.

31 15
8.

71

37
4.

61

16
4.

96

12
7.

63

13
1.

03

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.8: Enter-exit data transfers with group size S (4–11) in Parsley.

In Figure A.8, we can see the amount of data transfers for the enter-exit scenario.

With delta 1 and for all churn values, all configurations manage to sharply reduce the

overall data transfers, and specially the ones with peer relocation achieve the lowest

values. Naturally, as churn grows, more data transfers are required. Still, as the delta

grows, peers have more unnecessary freedom, and start to relocate more, reaching a point

where the transfers due to relocation surpass that of merges by a great margin. Here, the

configurations with peer relocation achieve a reduced amount of data transfers due to

merge. However, for instance, with delta 3, peer relocations completely dominate the

data transfers, and causes the total to exceed that of NPPR by a considerable amount.

Size Medium: 4–16. From this range onward, groups start to have a considerable size.

Here, the maximum limit used in this group size range doubles that of the first one,

allowing us to experiment with five different deltas. With delta 0, group size can vary

between four and 16 (i.e., the hard limits). In turn, with delta 6, groups will try to stay

close to the middle of the range, i.e., with 10 peers.

243

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 2 4 6
0

20
40
60
80

100

N
u

m
.o

p
s.

Merge

0 2 4 6
0

20

40

60

80
Split

0 2 4 6
0

200

400

600

800
Relocation

(a) 30% churn.

0 2 4 6
0

200

400

N
u

m
.o

p
s.

0 2 4 6
0

50

100

150

0 2 4 6
0

200

400

600

800

(b) 60% churn.

0 2 4 6
0

200

400

600

Delta

N
u

m
.o

p
s.

0 2 4 6
0

50

100

150

200

Delta
0 2 4 6

0

200

400

600

800

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.9: Exit-only topology operations with group size M (4–16) in Parsley.

Figure A.9 depicts the amount of topology operations executed during the simulation,

for the exit-only scenario. First, both the amount of merge and split operations is cut in

half from the previous group size range, continuing to showcase the natural trend that

bigger groups are more robust to churn. Also, as churn increases, NPPR gets closer to

the configurations with peer relocation (mainly regarding merges), because there are only

peers exiting the overlay, and there is not much to do than merge. Nonetheless, with 30%

churn, the number of merges for the configurations with peer relocation manages to

decrease with increasing delta values, led by the freedom of peer relocations. At the

same time, for NPPR, merges grow with the delta size (from delta 1 onward). Here, the

amount of merges grows for the same reason as explained before. The average group

size grows with delta 1, but then it starts to decrease, approaching the middle of the

parameterized range (also with a smaller standard deviation). This also happens for

the configurations with peer relocation and high churn values. In this case, the high

amount of peer relocations ceases to have a beneficial effect, since the number of peers

leaving the overlay makes that the only viable option is to merge. Regarding splits, they

244

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 4 6
0

100

200

300

400

24
9.

05

13
7.

74

12
4.

27

15
6.

28

28
2.

51

26
0.

79

14
8.

00

14
0.

56

18
0.

20

30
1.

46

26
0.

33

14
8.

68

14
8.

96

18
9.

40

31
6.

66

26
3.

35

17
7.

58

17
7.

74

20
0.

40

30
5.

03

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 4 6
0

500

1,000

1,500 1,
34

7.
60

1,
21

7.
66

1,
24

3.
97

1,
21

8.
78

1,
29

3.
14

1,
34

9.
38

1,
20

9.
27

1,
21

7.
55

1,
23

4.
79

1,
29

7.
79

1,
34

2.
00

1,
23

0.
20

1,
23

3.
66

1,
25

1.
44

1,
33

5.
66

1,
34

2.
89

1,
31

7.
61

1,
30

6.
27

1,
32

6.
84

1,
45

9.
33

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 4 6
0

1,000

2,000

2,
03

2.
19

1,
75

8.
79

1,
78

3.
66

1,
93

1.
45

2,
03

8.
60

1,
98

3.
24

1,
80

5.
51

1,
84

0.
25

1,
91

5.
77

2,
04

1.
49

1,
97

0.
87

1,
72

8.
41

1,
81

8.
58

1,
91

3.
04

2,
09

4.
68

1,
99

2.
88

1,
89

2.
66

1,
88

0.
10

2,
00

3.
19

2,
09

7.
58

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.10: Exit-only data transfers with group size M (4–16) in Parsley.

increase for all configurations, as the delta size grows. However, NPPR always requires

considerably more split operations. Splits grow due to the same reason as mentioned in

the previous group size ranges. As peers leave the overlay, groups become overloaded

and split according to the defined logic (§5.3.3.4).

In Figure A.10, we can see the amount of data transfers resulting from merge, relo-

cation, and group maintenance operations, for the exit-only scenario. Overall, in these

plots, there is little variation. As mentioned before, except with 30% churn, NPPR is very

similar to the configurations with peer relocation. This is mainly regarding merges, but

also somewhat with splits. Thus, it is natural that all configurations have similar results

for data transfers. That is exactly what we can see in the plots with high churn values,

where the configurations with peer relocation manage to require a little less data transfers

across all delta sizes. However, with 30% churn, we can see some movement in the plots,

as the delta size increases. As in the previous figure, here, the largest decrease in data

245

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 2 4 6
0

2

4

6

N
u

m
.o

p
s.

Merge

0 2 4 6
20

40

60

80

100
Split

0 2 4 6
0

200

400

600
Relocation

(a) 30% churn.

0 2 4 6
0

5

10

15

N
u

m
.o

p
s.

0 2 4 6
60
80

100
120
140

0 2 4 6
0

200

400

600

800

(b) 60% churn.

0 2 4 6
0

10

20

30

Delta

N
u

m
.o

p
s.

0 2 4 6
50

100

150

200

Delta
0 2 4 6

0

200

400

600

800

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.11: Enter-exit topology operations with group size M (4–16) in Parsley.

transfers happens when going from delta 0 to 1. From that point onward, data transfers

start to increase, due to the increased freedom peers enjoy with high delta sizes. With

delta 6, we have twice as many data transfers due to relocations than due to merges.

Figure A.11 depicts the amount of topology operations executed during the simula-

tion, for the enter-exit scenario. With peers entering the overlay to substitute the ones

leaving and with a considerable maximum group size, we start to see the number of

merges becomes substantially smaller, even for large values of churn. Here, even NPPR

behaves similarly to the configurations with peer relocation, varying very little among

them. It only diverges notably with delta 6, and even so, the variation is not that signifi-

cant because we are talking about really small absolute values. Again, the largest decrease

is noticed when delta goes from 0 to 1. Now, there is a sharp drop in splits until delta 2,

and only then starts to increase, with NPPR requiring a larger amount of splits. Here,

until delta 2, the vast majority of the splits are due to group size. Yet, with delta 4, some

splits start to happen due to overload, and with delta 6 there is a sharp increase, with

more than a third of the splits being due to overload. This can be explained by the same

246

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 4 6
0

50

100

150

1.
42

0.
01

0.
67 5.
84

11
9.

84

1.
68

0.
14

0.
05 4.
32

89
.9

1

1.
24

0 0.
07 6.
53

98
.4

8

4.
29

0 0 0

13
.6

7

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 4 6
0

50

100

150

200

24
.4

2

2.
70

2.
06 15
.8

7

17
5.

69

19
.3

6

1.
91

3.
19 13
.6

8

13
4.

09

35
.4

3

4.
67

2.
05 12
.4

7

14
0.

47

27
.5

0

3.
29

3.
43

3.
99

36
.8

7

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 4 6
0

100

200

300

73
.6

6

19
.5

3

16
.2

2

34
.5

1

22
2.

42

86
.1

1

27
.6

6

16
.5

8

34
.5

1

17
2.

64

73
.3

9

22
.4

2

14
.9

4

29
.2

0

16
9.

54

83
.3

4

28
.5

1

17
.1

1

15
.4

9 69
.7

4
Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.12: Enter-exit data transfers with group size M (4–16) in Parsley.

reason as in previous group size ranges, since it can influence both merges and splits. In

this scenario, with delta 1 and 2, the average size of the groups generated in the overlay

bootstrap is significantly larger than with delta 0, thus there are more larger groups going

into the churn period. In turn, with higher deltas, groups’ size starts to decrease and

approach the middle of the interval defined by the parameters (in this case, 10 peers).

Regarding peer relocation, this operation is practically non-existent until delta 4. Only

with delta 6, relocations sharply increase, given the enhanced freedom this delta allows.

However, from the number of merges required in this scenario, this amount of relocations

is completely unnecessary.

In Figure A.12, we can see the amount of data transfers resulting from merge, relo-

cation, and group maintenance operations, for the enter-exit scenario. The churn impact

can be seen perfectly in this figure, with data transfers being small compared to the pre-

vious group size ranges. We can also see that, in this scenario, peer relocations may not

be advantageous in some cases. In fact, for large delta values, it becomes detrimental,

247

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 4 10 14
0

10

20

30

N
u

m
.o

p
s.

Merge

0 4 10 14
0

20

40

60
Split

0 4 10 14
0

200

400

600
Relocation

(a) 30% churn.

0 4 10 14
0

50

100

150

200

N
u

m
.o

p
s.

0 4 10 14
0

20

40

60

80

0 4 10 14
0

200

400

600

(b) 60% churn.

0 4 10 14
0

100

200

300

Delta

N
u

m
.o

p
s.

0 4 10 14
0

20

40

60

80

Delta
0 4 10 14

0

100

200

300

400

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.13: Exit-only topology operations with group size L (4–32) in Parsley.

with peer relocations completely dominating the total data transfers. For instance, with

delta 6, it effectively reduces the amount of data transferred due to merges, but at the

cost of an excessive amount of (unnecessary) peer relocations.

Size Large: 4–32. This range allows groups to be quite large (thus we call this size large).

It allows us to experiment with nine different deltas.

Figure A.13 depicts the amount of topology operations executed during the simula-

tion, for the exit-only scenario. These plots are similar to the same scenario in the previous

group size range, reducing their values by around half. With low churn (i.e., 30% churn),

merges decrease until delta 10 for the configurations with peer relocation, and then stabi-

lize. For NPPR, merges stay stable until delta 10, and then start to increase. Relocations

end up compensating for the groups’ smaller size with the delta increase—something

that NPPR cannot. With high churn, all configurations behave similarly. They start with

the largest decrease when delta goes from 0 to 1, stabilize until delta 10, and then start

to increase. Since there are no peers entering the overlay, peer relocations cannot offset

248

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 6 10 12 14
0

100

200

300

93
.1

9

90
.4

2

85
.1

4

76
.1

3

23
8.

47

13
9.

10 18
4.

30

90
.1

5

94
.0

9

86
.9

6

79
.1

2

23
9.

09

15
7.

33

15
9.

02

94
.9

9

10
4.

08

90
.0

0

95
.1

7

21
7.

79

22
2.

45

19
4.

08

79
.1

8

87
.7

6

78
.2

7

81
.0

8

96
.7

7

17
5.

59

17
4.

90

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 6 10 12 14
0

500

1,000

1,500 1,
29

7.
90

1,
25

6.
80

1,
27

4.
86

1,
27

2.
30

1,
20

3.
14

1,
28

9.
30

1,
30

9.
78

1,
30

0.
72

1,
19

9.
92

1,
30

3.
40

1,
22

9.
11

1,
17

4.
39

1,
33

5.
12

1,
27

1.
21

1,
33

7.
18

1,
21

0.
22

1,
28

1.
69

1,
26

0.
08

1,
19

4.
76

1,
31

2.
75

1,
32

2.
72

1,
30

6.
85

1,
24

1.
52

1,
21

9.
38

1,
28

4.
17

1,
29

4.
18

1,
37

2.
75

1,
42

1.
93

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 6 10 12 14
0

500

1,000

1,500

2,000

1,
54

0.
21

1,
47

5.
76

1,
48

5.
42

1,
42

8.
24

1,
57

1.
93

1,
64

4.
99

1,
72

8.
84

1,
52

8.
00

1,
43

1.
22

1,
39

6.
21

1,
45

2.
74

1,
52

5.
89

1,
66

7.
47

1,
72

1.
80

1,
47

7.
89

1,
41

3.
19

1,
52

6.
53

1,
42

6.
97

1,
53

0.
49

1,
70

9.
34

1,
74

0.
80

1,
55

2.
59

1,
42

9.
25

1,
48

5.
38

1,
43

5.
74

1,
53

9.
38

1,
61

1.
83

1,
73

9.
62

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.14: Exit-only data transfers with group size L (4–32) in Parsley.

that with these levels of churn. Splits are almost non-existent until delta 8, but nearly all

are due to overload. However, then they start to increase with the delta size, with NPPR

growing more than the other configurations. Peer relocations grow until delta 10, where

there is an inflection point, dropping almost half, to then increase again with delta 14.

For all deltas, with FPPR, around two thirds of the relocations are due to pull requests.

In Figure A.14, we can see the amount of data transfers resulting from merge, relo-

cation, and group maintenance operations, for the exit-only scenario. These plots reflect

clearly the numbers in the previous figure. With low churn, there are few operations,

thus the amount of data transfers is also reduced. Specially, we can see that for small

deltas, all configurations require a small amount of data transfers. In turn, with large

deltas, peer relocations completely dominate the transfers, as peers have a large degree of

freedom to relocate (effectively too much). On the other hand, with high levels of churn,

all configurations behave identically, with the ones with peer relocation requiring slightly

249

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 4 10 14
0

0.2
0.4
0.6
0.8

1

N
u

m
.o

p
s.

Merge

0 4 10 14
0

20

40

60
Split

0 4 10 14
0

100

200

300
Relocation

(a) 30% churn.

0 4 10 14
0

1

2

3

N
u

m
.o

p
s.

0 4 10 14
0

20

40

60

80

0 4 10 14
0

200

400

600

(b) 60% churn.

0 4 10 14
0

1

2

3

4

Delta

N
u

m
.o

p
s.

0 4 10 14
0

20
40
60
80

100

Delta
0 4 10 14

0

200

400

600

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.15: Enter-exit topology operations with group size L (4–32) in Parsley.

less transfers. With high churn and peers only leaving the overlay, the system reaches

a point where it has no other option than to merge groups. Notice that due to space

and presentation concerns, these plots do not present the values for all the deltas. For

completeness sake, we present a different plot with all the values (including the omitted

ones) at the end of the appendix (see Figure A.25).

Figure A.15 depicts the amount of topology operations executed during the simula-

tion, for the enter-exit scenario. Here, we see clearly the effects of large groups together

with the fact that peers enter the overlay as others leave. First, for all levels of churn,

the number of merge operations is negligible. Only NPPR requires a minute number of

merges with very large deltas. Then, regarding splits, all the configurations overlap for

the most part in the plots. The number of splits decreases until delta 4, then starts to

increase. From delta 10, it sharply decreases (almost to zero) but only for the configura-

tions with peer relocation. Still, for the configurations with peer relocation, with delta 10

and 12, around a third of the splits are due to group overload. In turn, for NPPR, with

delta 10, around a third of the splits are due to group overload. Onward, these grow

250

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

0 1 2 6 10 12 14
0

50

100

150

0.
00

0.
00

0.
00

0.
00 8.

45 27
.0

0

13
9.

78

0.
00

0.
00

0.
00

0.
00 8.

80 19
.8

7

96
.5

8

0.
00

0.
00

0.
00

0.
00 8.

96

35
.4

0

10
5.

83

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00 5.
10D

at
a

(G
B

)

(a) 30% churn.

0 1 2 6 10 12 14
0

100

200

300

0.
89

0.
00

0.
00

0.
00 10
.1

3 55
.0

5

21
5.

02

0.
00

0.
00

0.
00

0.
11 8.
40 39
.2

3

14
1.

52

0.
98

0.
00

0.
00

0.
00 12
.7

0

49
.2

5

13
6.

14

0.
00

0.
00

0.
00

0.
00

0.
00 10
.7

0

18
.7

2

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 6 10 12 14
0

100

200

300

8.
77

3.
02

2.
41

0.
78 17
.7

0 77
.5

6

27
1.

50

6.
39

2.
38

1.
55

0.
20 12
.3

3 62
.6

6

18
9.

73

9.
33

1.
35

0.
05

1.
32 20
.1

1

56
.0

9

16
7.

04

5.
90

1.
46

0.
00

0.
00

4.
74 20
.1

6

29
.1

3
Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.16: Enter-exit data transfers with group size L (4–32) in Parsley.

to roughly two thirds. Because groups are large, peer relocations only start to happen

with delta 10, and then increase rapidly with the delta size. However, with these large

groups, since merges are not necessary, in the end, whatever the overlay does regarding

peer relocations will always be somewhat counter-productive and wasteful.

In Figure A.16, we can see the amount of data transfers resulting from merge, relo-

cation, and group maintenance operations, for the enter-exit scenario. Since there are

only a minute amount of merges, the vast majority of the data transfers is due to peer

relocations. In the plots, we can see that with small deltas, there are practically no need to

transfer data around. However, with large deltas (i.e., delta 10 onward), since peers enjoy

a large degree of freedom to relocate, we can see another proof that confirms what was

previously mentioned—the peer relocations executed in this scenario are not beneficial

to the overall system. In fact, data transfers due to peer relocations increase greatly with

large deltas, but in a detrimental way. As in Figure A.14, these plots also do not present

the values for all the deltas. Similarly, we show a complete plot with all the values at the

251

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 10 20 30
0

2

4

6

N
u

m
.o

p
s.

Merge

0 10 20 30
0

5

10

15

20
Split

0 10 20 30
0

200

400

600
Relocation

(a) 30% churn.

0 10 20 30
0

20

40

60

N
u

m
.o

p
s.

0 10 20 30
0

10

20

30

0 10 20 30
0

200

400

600

(b) 60% churn.

0 10 20 30
0

20

40

60

Delta

N
u

m
.o

p
s.

0 10 20 30
0

10

20

30

Delta
0 10 20 30

0

100

200

300

400

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.17: Exit-only topology operations with group size XL (4–64) in Parsley.

end of the appendix (see Figure A.26).

Size Extra Large: 4–64. This is the biggest maximum limit we use for group size, gen-

erating huge and robust groups—that is why we call it size extra large. It allows us to

experiment with 17 different deltas.

Figure A.17 depicts the amount of topology operations executed during the simula-

tion, for the exit-only scenario. Even in this scenario, where there are only peers leaving

the overlay, merge operations start to become rare, as such big groups tolerate high churn

more easily. Only with high levels of churn and large deltas, merges peak at around 60

operations. Once again, the largest decrease in the amount of merge operations happens

when the delta goes from 0 to 1. Here, this decrease is mostly due to the increased groups’

size, since there are almost no peer relocations taking place with this delta. Regarding

split operations, they also happen sparingly, with a peak around delta 22, and practically

all are due to group overload. Peer relocations start to occur at around delta 10, and

gradually increase until delta 20. Its amount drops sharply, almost to zero, until delta 24,

252

A.2. TOPOLOGY OPERATIONS AND DATA TRANSFERS

to then increase again to values around the previous maximum (thus, more rapidly). The

majority of relocations are due to pull requests. Only with delta 30 this inverts, and two

thirds of the relocations are due to push requests.

In Figure A.18, we can see the amount of data transfers resulting from merge, reloca-

tion, and group maintenance operations, for the exit-only scenario. Since the number of

operations among all configurations does not differ much, they all present similar values

regarding data transfers. This is most evident for high churn levels. In turn, with 30%

churn, we can see that the configurations with peer relocation require much more data

transfers, specially as the delta increases. This happens due to the increased freedom peer

have as the delta size grows. However, as the number of merge operations reflects, these

relocations are actually detrimental to the overall data transfers (and consequently to the

system performance). Thus, for large deltas, the configurations with peer relocation end

up requiring much more transfers than NPPR. Notice that due to space and presentation

concerns, these plots do not present the values for all the deltas. For completeness sake,

we present a different plot with all the values (including the omitted ones) at the end of

the appendix (see Figure A.27).

Figure A.19 depicts the amount of topology operations executed during the simu-

lation, for the enter-exit scenario. In this case, with such big groups and having peers

entering the overlay to replace the leaving ones, merge operations are barely necessary.

Since group are so big, they work as a dampener and can handle these levels of churn

easily. Moreover, since peers enter the overlay by the same amount as those that leave,

the overlay keeps its size stable. Nonetheless, splits still happen, although that in small

amounts. For all churn levels, the amount of splits decreases until delta 10, to then start

to spike around delta 20. From this spike, nearly all splits are due to group overload (in-

stead of group size), and then start to decrease almost to zero. In turn, with these large

groups, peer relocations only start to happen at around delta 20, growing slowly, to then

spike in the last delta value (i.e., delta 30). Considering that groups are big and peers

enter the overlay as others leave, since there are practically no merges, relocations are no

longer needed. Thus, peer relocations only start to happen in the last deltas values (that

provide added freedom to peers).

In Figure A.20, we can see the amount of data transfers resulting from merge, re-

location, and group maintenance operations, for the enter-exit scenario. Until delta 16,

the values are either zero or practically zero, thus we omitted them in the figure. This

can be confirmed by the number of operations in the previous figure. Another relevant

observation is that, since there is no need for merge operations, the vast majority of data

transfers is due to peer relocations. On the one hand, this means that NPPR requires

almost no data transfers in this scenario. On the other hand, this means that the peer

relocations performed in this scenario are not actually necessary. They just happen due

to the (excessive) freedom peers enjoy, given by the large deltas. As mentioned, like in

Figure A.18, these plots also do not present the values for all the deltas. Similarly, we

show a complete plot with all the values at the end of the appendix (see Figure A.28).

253

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 1 2 6 10 12 14
0

50
100
150

36
.2

7

51
.6

2

52
.1

3

56
.2

8

56
.9

4

83
.4

6

98
.1

7

21
.1

4 66
.1

4

49
.0

3

53
.7

7

68
.6

9

86
.4

2

10
2.

22

30
.3

3 77
.7

6

84
.1

4

54
.4

1

65
.6

7

68
.0

3

82
.8

7

39
.6

5

38
.4

3

56
.4

0

72
.4

4

46
.9

2

64
.6

5

39
.5

3

D
at

a
(G

B
)

18 20 22 24 26 28 30
0

200
400
600

22
0.

48 41
3.

66

26
0.

29

58
.4

1

71
.8

4

19
6.

40

45
8.

01

19
8.

51 34
4.

36

27
9.

85

59
.9

3

67
.2

4

19
5.

46 39
2.

36

21
2.

04 35
8.

52

36
2.

32

12
9.

63

65
.3

1

14
6.

54 37
6.

63

28
.2

4

56
.1

9

10
5.

24

91
.5

6

71
.5

4

43
.0

5

36
.2

4

D
at

a
(G

B
)

(a) 30% churn.

0 1 2 6 10 12 14
0

500
1,000
1,500 1,

15
5.

04

1,
00

0.
78

1,
04

9.
84

1,
11

7.
84

1,
23

0.
84

1,
06

5.
60

1,
08

1.
24

1,
17

1.
23

1,
00

8.
41

99
4.

01

1,
11

5.
75

1,
08

8.
62

1,
13

2.
02

1,
12

6.
08

1,
19

4.
12

94
5.

13

1,
01

9.
36

1,
07

6.
10

1,
13

0.
99

1,
17

5.
46

1,
20

0.
04

1,
21

7.
85

1,
06

9.
13

1,
16

9.
01

1,
11

6.
52

1,
10

1.
77

1,
28

7.
32

1,
14

5.
75

D
at

a
(G

B
)

18 20 22 24 26 28 30
0

500
1,000
1,500 1,

18
8.

14

1,
25

1.
39

1,
31

3.
40

1,
33

9.
56

1,
38

3.
10

1,
34

9.
89

1,
43

2.
53

1,
25

0.
87

1,
21

1.
08

1,
38

9.
17

1,
39

5.
72

1,
40

9.
24

1,
36

9.
71

1,
38

4.
71

1,
22

8.
02

1,
22

4.
00

1,
22

9.
20

1,
37

8.
92

1,
34

2.
66

1,
36

0.
32

1,
44

4.
31

1,
13

6.
43

1,
19

0.
45

1,
28

4.
79

1,
25

7.
97

1,
35

4.
38

1,
43

2.
72

1,
41

0.
21

D
at

a
(G

B
)

(b) 60% churn.

0 1 2 6 10 12 14
0

500
1,000
1,500

1,
00

3.
67

1,
05

2.
57

98
7.

35

1,
02

8.
12

1,
01

5.
71

1,
01

4.
23

1,
20

4.
60

1,
03

8.
32

1,
06

0.
08

97
5.

38

1,
00

2.
28

1,
07

4.
57

1,
04

9.
53

1,
05

6.
09

1,
01

9.
58

1,
07

0.
32

1,
04

0.
43

99
3.

48

95
1.

23

91
7.

46

1,
18

7.
62

1,
05

0.
92

1,
02

2.
08

1,
00

1.
71

1,
03

5.
71

1,
09

5.
20

1,
03

9.
43

1,
05

3.
75

D
at

a
(G

B
)

18 20 22 24 26 28 30
0

500
1,000
1,500 1,

28
3.

94

1,
32

9.
71

1,
22

5.
23

1,
18

4.
32

1,
12

2.
84

1,
28

1.
32

1,
46

3.
05

1,
20

5.
47

1,
30

7.
49

1,
28

9.
75

1,
24

5.
96

1,
22

5.
91

1,
34

0.
85

1,
39

3.
06

1,
17

6.
24

1,
21

7.
42

1,
22

4.
35

1,
24

9.
69

1,
20

5.
80

1,
24

2.
33

1,
43

6.
30

1,
02

7.
04

1,
06

9.
53

1,
04

5.
69

1,
18

8.
41

1,
22

9.
96

1,
28

6.
50

1,
20

1.
92

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.18: Exit-only data transfers with group size XL (4–64) in Parsley.

254

A.3. CONCERNING BIG GROUPS

0 10 20 30
0

0.2
0.4
0.6
0.8

1

N
u

m
.o

p
s.

Merge

0 10 20 30
0

10

20

30
Split

0 10 20 30
0

50

100

150
Relocation

(a) 30% churn.

0 10 20 30
0

0.2
0.4
0.6
0.8

1

N
u

m
.o

p
s.

0 10 20 30
0

20

40

60

0 10 20 30
0

100

200

300

(b) 60% churn.

0 10 20 30
0

0.2
0.4
0.6
0.8

1

Delta

N
u

m
.o

p
s.

0 10 20 30
0

20

40

60

Delta
0 10 20 30

0

100

200

300

400

Delta

(c) 90% churn.

NPPR Push Pull FPPR

Figure A.19: Enter-exit topology operations with group size XL (4–64) in Parsley.

A.3 Concerning Big Groups

The bigger the group, the better it tolerates churn. That is, as seen in the many previous

plots, bigger groups are more robust to churn, because its effects are less felt. The bigger

the group, the more churn it can endure without requiring any type of action, such as

topology changes. However, on the other hand, bigger groups do not come without issues.

Naturally, since big groups mean a larger number of peers, they entail an increase in all

group-related communication and data transfers. Also, bigger groups mean less overall

groups in the overlay, since we keep the same number of peers. Specifically, big groups

can encompass an increase in the following metrics:

• split-related traffic;

• maintenance traffic;

• per group state; and

• join state transfers.

255

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

18 20 22 24 26 28 30
0

50

100

150

0.
20 6.
42 10
.6

3

12
.1

1

13
.2

2

24
.8

9

11
8.

03

0.
15

2.
77 7.
40

9.
31

11
.4

3

20
.1

1

57
.7

1

0.
14 11
.8

8

26
.5

1

19
.0

3

10
.0

2

17
.4

2

91
.6

6

0.
00

0.
00

0.
05

1.
63

0.
00

0.
00

0.
00D

at
a

(G
B

)

(a) 30% churn.

18 20 22 24 26 28 30
0

100

200

300

0.
22 7.
80 14
.7

3

19
.9

0

27
.5

3

47
.1

6

22
6.

21

0.
54 7.
39

9.
92

13
.8

6

23
.8

2

44
.7

5 10
5.

61

0.
05 9.
47 26
.7

0

17
.7

7

15
.8

1

41
.1

6

17
0.

07

0.
00

2.
56

3.
57

0.
00

0.
00

0.
00

0.
00D

at
a

(G
B

)

(b) 60% churn.

18 20 22 24 26 28 30
0

100

200

300

0.
84 10
.2

0

14
.3

8

37
.5

0

56
.0

4 94
.4

8

29
9.

36

0.
73

5.
33 12
.9

0

32
.0

5

42
.2

0

75
.7

9

16
4.

55

0.
00 9.
15 41
.3

3

21
.5

6

26
.9

5

53
.0

2

24
6.

54

1.
16 12
.3

6

5.
04

0.
00

0.
09

4.
90

4.
34

Delta

D
at

a
(G

B
)

(c) 90% churn.

NPPR Push Pull FPPR Merge Relocation Maintenance

Figure A.20: Enter-exit data transfers with group size XL (4–64) in Parsley.

To substantiate this claim, we present some plots next regarding these metrics. First,

Figure A.21 shows the behavior of the split-related traffic as the maximum group size

grows, for an example scenario (enter-exit, 90% churn, delta = 1). Comparing these values

to the previously presented plots, it might seem negligible. Still, we can see the traffic

related with split operations grows with the group size in a (supra-)linear way. To perform

a split operation, it is necessary to notify all the peers in the group about the operation

taking place, and they synchronize among them to speed up convergence (but without

requiring data transfers). Thus, since groups are bigger, having a large number of peers,

it ends up naturally requiring more communication.

Next, the values for the following plots across all configurations present a negligible

difference. Thus, we report them as an average of all the configurations.

Figure A.22 depicts how the amount of maintenance traffic reacts as the maximum

group size grows. Here, this traffic refers to intra-group maintenance, ring stabilization,

fix fingers, and passive view maintenance (§2.4 and §5.3). However, mainly intra-group

256

A.3. CONCERNING BIG GROUPS

8 16 32 64
0

2

4

6

8

Group max size
D

at
a

(M
B

) NPPR
Push
Pull

FPPR

Figure A.21: Split-related traffic in Parsley (enter-exit, 90% churn, delta = 1).

and stabilization messages are influenced by the group size. In Figure A.22a, we can see

the maintenance traffic for the exit-only scenario. Since there are only peers leaving the

overlay, as time passes by, there are less peers and groups become smaller. Thus, it is

natural that with high levels of churn, there is less maintenance traffic (since there are

less peers). Nonetheless, this metric grows almost linearly with the group size. In turn,

Figure A.22b shows the same metric for the enter-exit scenario. Since the overlay size

is kept stable, with peers entering and leaving by the same amount, the behavior is the

same for all the churn values (overlapping in the plot). In this scenario, the maintenance

traffic also grows linearly wit the group size, reaching considerable values.

Figure A.23 presents the average amount of per group state, i.e., the average amount of

data objects stored by group (in GB). Naturally, as already mentioned, larger groups result

in less groups, since the number of peers is kept unchanged. Figure A.23a depicts this

metric for the exit-only scenario. Here, we can see that the per group state grows almost

linearly with the group size. Also, since no new peers enter the overlay, as the amount of

churn increases, the number of peers per group decreases and so does the overall number

of groups in the overlay. In the end, with high levels of churn, groups have to store more

state. On the other hand, Figure A.23b shows this metric for the enter-exit scenario. Since

the overlay size is kept stable, all the churn values behave identically (overlapping in the

plot), with the per group state growing linearly with the group size. In both scenarios,

the amount of per group state grows to considerable values accompanying the group size.

8 16 32 64
0

200

400

600

800

Group max size

D
at

a
(M

B
)

(a) Exit-only.

8 16 32 64
200

400

600

800

1,000

Group max size

(b) Enter-exit.

30% churn 60% churn 90% churn

Figure A.22: Maintenance traffic in Parsley.

257

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

8 16 32 64
0

0.5

1

1.5

2

Group max size

D
at

a
(G

B
)

(a) Exit-only.

8 16 32 64
0

0.5

1

1.5

Group max size

(b) Enter-exit.

30% churn 60% churn 90% churn

Figure A.23: Per group state in Parsley.

Lastly, in Figure A.24, we can see how the amount of data transfers due to the entry

of peers in the overlay (what we call join state transfers) varies as group size increases.

Naturally, this metric only applies in enter-exit scenarios. Looking into the figure, we

can verify that the overall amount of data that needs to be transferred to peers joining

the overlay grows linearly with the group size. For the same amount of peers, as groups

become larger, there are less groups in the overlay and each group stores more data (as

already seen in Figure A.23). In the end, when a new peer enters a group, it will need

to synchronize with the peers already in the group to get itself up-to-date regarding all

the state in the group (naturally including the stored data objects). Notice that the values

presented in this plot represent massive amounts of data transfers due to joined peers—

the scale in the y-axis is in gigabytes and is multiplied by 10 000. Thus, this metric should

definitely be taken into account when choosing the group size ranges.

A.4 Discussion

First, regarding the delta size, we point out that a key aspect is to balance the amount of

peer relocations with the decrease in merge operations. Otherwise, too many relocations

can strip all the benefits from the peer relocation mechanism, and even start to become

8 16 32 64
0

0.5

1

1.5 ·104

Group max size

D
at

a
(G

B
) 30% churn

60% churn
90% churn

Figure A.24: Join state transfers in Parsley (enter-exit).

258

A.5. COMPLETE PLOTS

detrimental. Also, take into account that in some cases peer relocations grow linearly with

the delta size. Here, we argue delta 1 shows the best trade-off between freedom to relocate

and the decrease in the amount of merge operations. As mentioned throughout §A.2, this

delta value exhibits the largest decrease in merge operations for the vast majority of

the experimented scenarios, without awarding too much relocation freedom (so, without

overwhelming the system with peer relocations, and being these useful relocations). Thus,

showcasing that just a small degree of freedom is enough to significantly influence the

number of required merge operations. Additionally, it also allows the largest average

group size, making groups more churn-tolerant.

Then, concerning the group size, we argue for a range on the smaller side. Regarding

the number of merges, size extra large and large are completely exaggerated, requiring

almost no merges and demanding high costs in terms of group-related communication

and data transfers (as shown in §A.3). In turn, the used scenarios are already churn-

heavy, and the large sizes end up not needing much merges (sometimes not at all). Thus,

to better showcase the benefits of our mechanisms for the used churn rates, we argue that

size small (i.e., 4–11) is ideal. It presents a big enough average group size, requiring a

decent amount of merges, without being too much. Also, we chose this range in order

to give some balance between the two scenarios (exit-only and enter-exit), and across the

various levels of churn.

In the end, with all these metrics in mind, the configuration parameters regarding

the group size thresholds used in Parsley’s evaluation reported in §5.5 are set to l = 4,

l′ = 5, h′ = 10, and h = 11.

Other configuration parameters that can be experimented with are the periodic peer

relocation check timer, and the relocation cool down period. Naturally, the smaller these

are, the more freedom peers will have to relocate between groups.

A.5 Complete Plots

Here, we present the complete plots of some of the previously mentioned scenarios. Due

to space and presentation concerns, the values regarding some deltas were omitted in

those plots. Thus, for completeness sake, here we present them in its entirety (albeit in a

different but more readable form).

259

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 4 10 14
0

50

100

150

200

Delta

D
at

a
(G

B
)

Merge

0 4 10 14
0

100

200

300

Delta

Relocation

0 4 10 14
0

1

2

3

4

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 4 10 14
0

100

200

300

Delta

Total

(a) 30% churn.

0 4 10 14
800

1,000

1,200

1,400

1,600

Delta

D
at

a
(G

B
)

Merge

0 4 10 14
0

100

200

300

Delta

Relocation

0 4 10 14
0

20

40

60

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 4 10 14
1,000

1,200

1,400

1,600

Delta

Total

(b) 60% churn.

Figure A.25: Complete exit-only data transfers with group size L (4–32) in Parsley.

260

A.5. COMPLETE PLOTS

0 4 10 14
1,200

1,400

1,600

1,800

2,000

Delta

D
at

a
(G

B
)

Merge

NPPR Push
Pull FPPR

0 4 10 14
0

50

100

150

200

Delta

Relocation

0 4 10 14
0

20

40

60

Delta

D
at

a
(G

B
)

Maintenance

0 4 10 14
1,200

1,400

1,600

1,800

Delta

Total

(c) 90% churn.

Figure A.25: Complete exit-only data transfers with group size L (4–32) in Pars-

ley (cont.).

0 4 10 14
0

2

4

6

8

Delta

D
at

a
(G

B
)

Merge

0 4 10 14
0

50

100

150

Delta

Relocation

0 4 10 14
0

0.5

1

1.5

2

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 4 10 14
0

50

100

150

Delta

Total

(a) 30% churn.

Figure A.26: Complete enter-exit data transfers with group size L (4–32) in Parsley.

261

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 4 10 14
0

5

10

15

20

Delta

D
at

a
(G

B
)

Merge

0 4 10 14
0

100

200

300

Delta

Relocation

0 4 10 14
0

0.5

1

1.5

2

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 4 10 14
0

100

200

300

Delta

Total

(b) 60% churn.

0 4 10 14
0

10

20

30

Delta

D
at

a
(G

B
)

Merge

NPPR Push
Pull FPPR

0 4 10 14
0

100

200

300

Delta

Relocation

0 4 10 14
0

1

2

3

Delta

D
at

a
(G

B
)

Maintenance

0 4 10 14
0

100

200

300

Delta

Total

(c) 90% churn.

Figure A.26: Complete enter-exit data transfers with group size L (4–32) in Pars-

ley (cont.).

262

A.5. COMPLETE PLOTS

0 10 20 30
0

50

100

150

200

Delta

D
at

a
(G

B
)

Merge

NPPR Push
Pull FPPR

0 10 20 30
0

200

400

600

Delta

Relocation

0 10 20 30
0

1

2

3

Delta

D
at

a
(G

B
)

Maintenance

0 10 20 30
0

200

400

600

Delta

Total

(a) 30% churn.

0 10 20 30
800

1,000

1,200

1,400

1,600

Delta

D
at

a
(G

B
)

Merge

0 10 20 30
0

100

200

300

400

Delta

Relocation

0 10 20 30
0

20
40
60
80

100

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 10 20 30
800

1,000

1,200

1,400

1,600

Delta

Total

(b) 60% churn.

Figure A.27: Complete exit-only data transfers with group size XL (4–64) in Parsley.

263

APPENDIX A. PARSLEY’S GROUP SIZE STUDY

0 10 20 30
800

1,000

1,200

1,400

Delta

D
at

a
(G

B
)

Merge

0 10 20 30
0

100

200

300

400

Delta

Relocation

0 10 20 30
0

50

100

150

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 10 20 30
800

1,000

1,200

1,400

1,600

Delta

Total

(c) 90% churn.

Figure A.27: Complete exit-only data transfers with group size XL (4–64) in Pars-

ley (cont.).

0 10 20 30
−1

−0.5

0

0.5

1

Delta

D
at

a
(G

B
)

Merge

0 10 20 30
0

50

100

150

Delta

Relocation

0 10 20 30
0

1

2

3

4

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 10 20 30
0

50

100

150

Delta

Total

(a) 30% churn.

Figure A.28: Complete enter-exit data transfers with group size XL (4–64) in Parsley.

264

A.5. COMPLETE PLOTS

0 10 20 30
0

1

2

3

Delta

D
at

a
(G

B
)

Merge

0 10 20 30
0

100

200

300

Delta

Relocation

0 10 20 30
0

2

4

6

8

Delta

D
at

a
(G

B
)

Maintenance

NPPR Push
Pull FPPR

0 10 20 30
0

100

200

300

Delta

Total

(b) 60% churn.

0 10 20 30
0

2

4

6

Delta

D
at

a
(G

B
)

Merge

NPPR Push
Pull FPPR

0 10 20 30
0

100

200

300

Delta

Relocation

0 10 20 30
0

5

10

15

Delta

D
at

a
(G

B
)

Maintenance

0 10 20 30
0

100

200

300

Delta

Total

(c) 90% churn.

Figure A.28: Complete enter-exit data transfers with group size XL (4–64) in Pars-

ley (cont.).

265

	The Front Matter
	Cover
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	From Dumbphones to Smartphones
	One Step Closer to the Edge
	The Zettabyte Era
	Data Storage and Dissemination at the Network Edge
	Research Statement
	Proposed Approach
	Contributions

	Document Outline

	Research Context
	Off the Wire: A Primer on Wireless Networks
	Wireless Infrastructure Networks
	Wireless Ad-Hoc Networks
	Routing Protocols

	The Hitchhiker's Guide to Publish/Subscribe
	Loose Coupling
	Subscription Models
	System Architecture
	Event Routing
	Mobile and Wireless Environments
	State Persistence
	Complex Event Processing

	Livin' on the Edge: Data Management at the Network Edge
	Data Storage
	Data Dissemination

	Put a Ring on It: A Review on Distributed Hash Tables
	Overlay Networks
	Structured Overlay Networks & DHTs

	Potpourri: Other Relevant Topics
	Information-Centric Networking
	Tuple Spaces

	Concluding Remarks

	Time-Aware Reactive Storage
	Introduction
	Related Work
	Publish/Subscribe
	Tuple Spaces
	Active Databases
	Continuous Queries

	Building Synergies Between Storage and Publish/Subscribe
	Inserting Data
	Deleting Data
	Querying Data
	Retrieving Data
	TARS API

	Concluding Remarks
	Discussion
	Publications

	It's About Thyme: TARS in Wireless Edge Environments
	Introduction
	Related Work
	Publish/Subscribe
	Data Storage and Dissemination
	Tuple Spaces
	Others

	The Many Leaves of Thyme
	Use Cases
	System Model
	Architecture

	An Unstructured Approach: Thyme-LS
	A Structured Approach: Thyme-DCS
	Inserting Data
	Replication
	Deleting Data
	Querying Data
	Retrieving Data
	Storage Substrate & Routing Layer
	Joining the System

	An Android Implementation
	Architecture
	Multiple Namespaces
	Handling Mobility
	Shared Photo Gallery

	Analytical Study
	Time Complexity
	Space Complexity
	Communication Costs
	Discussion

	Evaluation Through Simulation
	Implementation
	Setup and Methodology
	Results

	Evaluation Through Real Devices
	Implementation
	Setup and Methodology
	Results

	Concluding Remarks
	Discussion
	Future Work
	Publications

	Parsley: A Resilient DHT with Dynamic Data Sharding
	Introduction
	Related Work
	Chopping Parsley: A Resilient DHT
	System Model
	Overview and Definitions
	A Group-Based DHT

	Dynamic Data Sharding
	Algorithm
	Defining Hot-Spots
	DHT Operations

	Evaluation
	Experimental Setup
	Churn & Peer Relocation
	Load Balancing Storage Hot-Spots
	Overlay Management Overhead

	Concluding Remarks
	Discussion
	Future Work

	Data Storage and Dissemination in Multi-region Edge Networks
	Introduction
	Related Work
	The GardenBed Concept
	The Thyme GardenBed Ensemble
	The Mobile Clients
	The Edge Servers
	Intra-Region Publish/Subscribe
	Inter-Region Publish/Subscribe
	Retrieving Data
	Local Indexing of Remote Data
	Deleting Data
	Election and Role of the Cluster-Head
	Dealing with Mobility and Churn

	The Anatomy of GardenBed's Caches
	Evaluation
	Real World Experiments
	Simulating Mobile Devices

	Concluding Remarks
	Discussion
	Future Work
	Publications

	Beyond Thyme: The Edge Garden Ecosystem
	Ephesus: Ephemeral Storage for Mobile Devices
	Jumper: Opportunistic Combination of MANETs and Infrastructure
	Oregano: Distributed Computing on Mobile Devices
	Basil: A Key-Value Store on Mobile Devices
	P/S-CRDTs: CRDTs for Dynamic Environments
	Peppermint: A Framework for Local Multiplayer Games
	Wasabi: Adaptive Replica Selection in Mobile Edge Networks
	Chives: Dynamic Content-Based Indexing at the Edge
	Basilicum: Basil in the Edge-Cloud Continuum
	Concluding Remarks

	Conclusion
	Conclusions
	Future Research Directions

	Bibliography
	Parsley's Group Size Study
	Experimental Setup
	Topology Operations and Data Transfers
	Concerning Big Groups
	Discussion
	Complete Plots

