10,843 research outputs found

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    A smart yoga mat system designed for visually impaired people

    Get PDF
    Globally, nearly 2.2 billion people are visually impaired, while 39 million are blind at present. Due to various factors, it is difficult for the blind to exercise. Though associations for blind people and disabled schools provide more possibilities for sports training for visually impaired people, these resources cannot reach everyone in need because of location and foundation limits. The project aims to make fitness more accessible for visually impaired people to help them keep healthy. Thus it could support their confidence and independence as they expected. Furthermore, society\u27s awareness of visually impaired people\u27s difficulties while exercising then, more studies could be built on the accessibility of fitness equipment for more feasible solutions in the near future. A smart yoga mat that used Somatosensory technology and the tactile response was designed to reach this aim. Qualitative interviews, Wizard of Oz, prototype testing, and other design methods were used to test the design\u27s usability

    Weaving Lighthouses and Stitching Stories: Blind and Visually Impaired People Designing E-textiles

    Get PDF
    We describe our experience of working with blind and visually impaired people to create interactive art objects that are personal to them, through a participatory making process using electronic textiles (e-textiles) and hands-on crafting techniques. The research addresses both the practical considerations about how to structure hands-on making workshops in a way which is accessible to participants of varying experience and abilities, and how effective the approach was in enabling participants to tell their own stories and feel in control of the design and making process. The results of our analysis is the offering of insights in how to run e-textile making sessions in such a way for them to be more accessible and inclusive to a wider community of participants

    Blind guide: anytime, anywhere

    Get PDF
    Sight dominates our mental life, more than any other sense. Even when we are just thinking about something the world, we end imagining what looks like. This rich visual experience is part of our lives. People need the vision for two complementary reasons. One of them is vision give us the knowledge to recognize objects in real time. The other reason is vision provides us the control one need to move around and interact with objects. Eyesight helps people to avoid dangers and navigate in our world. Blind people usually have enhanced accuracy and sensibility of their other natural senses to sense their surroundings. But sometimes this is not enough because the human senses can be affected by external sources of noise or disease. Without any foreign aid or device, sightless cannot navigate in the world. Many assistive tools have been developed to help blind people. White canes or guide dogs help blind in their navigation. Each device has their limitation. White canes cannot detect head level obstacles, drop-offs, and obstructions over a meter away. The training of a guide dog takes a long time, almost five years in some cases. The sightless also needs training and is not a solution for everybody. Taking care of a guide dog can be expensive and time consuming. Humans have developed technology for helping us in every aspect of our lives. The primary goal of technology is helping people to improve their quality of life. Technology can assist us with our limitations. Wireless sensor networks is a technology that has been used to help people with disabilities. In this dissertation, the author proposes a system based on this technology called Blind Guide. Blind Guide is an artifact that helps blind people to navigate in indoors or outdoors scenarios. The prototype is portable assuring that can be used anytime and anywhere. The system is composed of wireless sensors that can be used in different parts of the body. The sensors detect an obstacle and inform the user with an audible warning providing a safety walk to the users. A great feature about Blind Guide is its modularity. The system can adapt to the needs of the user and can be used in a combination with other solution. For example, Blind Guide can be used in conjunction with the white cane. The white cane detects obstacles below waist level and a Blind Guide wireless sensor in the forehead can detect obstacles at the head level. This feature is important because some sightless people feel uncomfortable without the white cane. The system is scalable giving us the opportunity to create a network of interconnected Blind Guide users. This network can store the exact location and description of the obstacles found by the users. This information is public for all users of this system. This feature reduces the time required for obstacle detection and consequent energy savings, thus increasing the autonomy of the solution. One of the main requirements for the development of this prototype was to design a low-cost solution that can be accessible for anyone around the world. All the components of the solution can provide a low-cost solution, easily obtainable and at a low cost. Technology makes our life easier and it must be available for anyone. Modularity, portability, scalability, the possibility to work in conjunction with other solutions, detecting objects that other solutions cannot, obstacle labeling, a network of identified obstacles and audible warnings are the main aspects of the Blind Guide system. All these aspects makes Blind Guide an anytime, anywhere solution for blind people. Blind Guide was tested with a group of volunteers. The volunteers were sightless and from different ages. The trials performed to the system show us positive results. The system successfully detected incoming obstacles and informed in real time to its users. The volunteers gave us a positive feedback telling that they felt comfortable using the prototype and they believe that the system can help them with their daily routine

    Smart Cane: Assistive Cane for Visually-impaired People

    Get PDF
    This paper reports on a study that helps visually-impaired people to walk more confidently. The study hypothesizes that a smart cane that alerts visually-impaired people over obstacles in front could help them in walking with less accident. The aim of the paper is to address the development work of a cane that could communicate with the users through voice alert and vibration, which is named Smart Cane. T he development work involves coding and physical installation. A series of tests have been carried out on the smart cane and the results are discussed. This study found that the Smart Cane functions well as intended, in alerting users about the obstacles in frontComment: 6 page

    The Graphical Access Challenge for People with Visual Impairments: Positions and Pathways Forward

    Get PDF
    Graphical access is one of the most pressing challenges for individuals who are blind or visually impaired. This chapter discusses some of the factors underlying the graphics access challenge, reviews prior approaches to addressing this long-standing information access barrier, and describes some promising new solutions. We specifically focus on touchscreen-based smart devices, a relatively new class of information access technologies, which our group believes represent an exemplary model of user-centered, needs-based design. We highlight both the challenges and the vast potential of these technologies for alleviating the graphics accessibility gap and share the latest results in this line of research. We close with recommendations on ideological shifts in mindset about how we approach solving this vexing access problem, which will complement both technological and perceptual advancements that are rapidly being uncovered through a growing research community in this domain

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Head-mounted displays and dynamic text presentation to aid reading in macular disease

    Get PDF
    The majority of individuals living with significant sight loss have residual vision which can be enhanced using low vision aids. Smart glasses and smartphone-based headsets, both increasing in prevalence, are proposed as a low vision aid platform. Three novel tests for measuring the visibility of displays to partially sighted users are described, along with a questionnaire for assessing subjective preference. Most individuals tested, save those with the weakest vision, were able to see and read from both a smart glasses screen and a smartphone screen mounted in a headset. The scheme for biomimetic scrolling, a text presentation strategy which translates natural eye movement into text movement, is described. It is found to enable the normally sighted to read at a rate five times that of continuous scrolling and is faster than rapid serial visual presentation for individuals with macular disease. With text presentation on the smart glasses optimised to the user, individuals with macular disease read on average 65% faster than when using their habitual optical aid. It is concluded that this aid demonstrates clear benefit over the commonly used devices and is thus recommended for further development towards widespread availability
    corecore