49 research outputs found

    Small Vertex Cover makes Petri Net Coverability and Boundedness Easier

    Full text link
    The coverability and boundedness problems for Petri nets are known to be Expspace-complete. Given a Petri net, we associate a graph with it. With the vertex cover number k of this graph and the maximum arc weight W as parameters, we show that coverability and boundedness are in ParaPspace. This means that these problems can be solved in space O(ef(k,W)poly(n)), where ef(k,W) is some exponential function and poly(n) is some polynomial in the size of the input. We then extend the ParaPspace result to model checking a logic that can express some generalizations of coverability and boundedness.Comment: Full version of the paper appearing in IPEC 201

    IST Austria Thesis

    Get PDF
    Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency. First, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point

    Vérification efficace de systèmes à compteurs à l'aide de relaxations

    Get PDF
    Abstract : Counter systems are popular models used to reason about systems in various fields such as the analysis of concurrent or distributed programs and the discovery and verification of business processes. We study well-established problems on various classes of counter systems. This thesis focusses on three particular systems, namely Petri nets, which are a type of model for discrete systems with concurrent and sequential events, workflow nets, which form a subclass of Petri nets that is suited for modelling and reasoning about business processes, and continuous one-counter automata, a novel model that combines continuous semantics with one-counter automata. For Petri nets, we focus on reachability and coverability properties. We utilize directed search algorithms, using relaxations of Petri nets as heuristics, to obtain novel semi-decision algorithms for reachability and coverability, and positively evaluate a prototype implementation. For workflow nets, we focus on the problem of soundness, a well-established correctness notion for such nets. We precisely characterize the previously widely-open complexity of three variants of soundness. Based on our insights, we develop techniques to verify soundness in practice, based on reachability relaxation of Petri nets. Lastly, we introduce the novel model of continuous one-counter automata. This model is a natural variant of one-counter automata, which allows reasoning in a hybrid manner combining continuous and discrete elements. We characterize the exact complexity of the reachability problem in several variants of the model.Les systèmes à compteurs sont des modèles utilisés afin de raisonner sur les systèmes de divers domaines tels l’analyse de programmes concurrents ou distribués, et la découverte et la vérification de systèmes d’affaires. Nous étudions des problèmes bien établis de différentes classes de systèmes à compteurs. Cette thèse se penche sur trois systèmes particuliers : les réseaux de Petri, qui sont un type de modèle pour les systèmes discrets à événements concurrents et séquentiels ; les « réseaux de processus », qui forment une sous-classe des réseaux de Petri adaptée à la modélisation et au raisonnement des processus d’affaires ; les automates continus à un compteur, un nouveau modèle qui combine une sémantique continue à celles des automates à un compteur. Pour les réseaux de Petri, nous nous concentrons sur les propriétés d’accessibilité et de couverture. Nous utilisons des algorithmes de parcours de graphes, avec des relaxations de réseaux de Petri comme heuristiques, afin d’obtenir de nouveaux algorithmes de semi-décision pour l’accessibilité et la couverture, et nous évaluons positivement un prototype. Pour les «réseaux de processus», nous nous concentrons sur le problème de validité, une notion de correction bien établie pour ces réseaux. Nous caractérisions précisément la complexité calculatoire jusqu’ici largement ouverte de trois variantes du problème de validité. En nous basant sur nos résultats, nous développons des techniques pour vérifier la validité en pratique, à l’aide de relaxations d’accessibilité dans les réseaux de Petri. Enfin, nous introduisons le nouveau modèle d’automates continus à un compteur. Ce modèle est une variante naturelle des automates à un compteur, qui permet de raisonner de manière hybride en combinant des éléments continus et discrets. Nous caractérisons la complexité exacte du problème d’accessibilité dans plusieurs variantes du modèle

    Vector addition systems and their applications in the verification of computer programs

    Get PDF
    Vector Addition Systems (and, equivalently, Petri nets) are a widespread formalism for modelling across a spectrum of problem domains, from logistics to hardware simulation. In this thesis, we firstly explore two classic decidability problems for these models: reachability, whether one can get to a given configuration, and coverability, whether one can exceed it. These problems are sufficent to express a wide class of verification properties for models derived from real-world use cases, including safety and deadlock-freeness. We present and implement a number of approaches for solving both the coverability and reachability problems, including KReach, the first known implementation of a complete decider for the general Petri net reachability problem. Petri nets offer a natural model of concurrent processes and one of the most common modern use cases for the model is in the verification of safety properties for software, especially sofware with concurrency. In the later half of this work we address some approaches to deciding properties of programs written in Finitary Idealized Concurrent Algol (FICA), a prototypical language combining functional, imperative, and higher-order concurrent programming. We introduce a new family of “leafy” automata models, all based on a novel representation of internal configurations as a tree structure whose semantics is inspired by game-semantic interpretations of FICA terms. We give translations from such terms to our automata and across the work derive decidability of some useful properties for successively more expressive subsets of terms, using a variety of methods including via reachability on Petri nets. We believe these models will help to unify the game- and automata-theoretic views of programming languages and provide a useful basis on which to further study the theory of concurrency

    Verification problems for timed and probabilistic extensions of Petri Nets

    Get PDF
    In the first part of the thesis, we prove the decidability (and PSPACE-completeness) of the universal safety property on a timed extension of Petri Nets, called Timed Petri Nets. Every token has a real-valued clock (a.k.a. age), and transition firing is constrained by the clock values that have integer bounds (using strict and non-strict inequalities). The newly created tokens can either inherit the age from an input token of the transition or it can be reset to zero. In the second part of the thesis, we refer to systems with controlled behaviour that are probabilistic extensions of VASS and One-Counter Automata. Firstly, we consider infinite state Markov Decision Processes (MDPs) that are induced by probabilistic extensions of VASS, called VASS-MDPs. We show that most of the qualitative problems for general VASS-MDPs are undecidable, and consider a monotone subclass in which only the controller can change the counter values, called 1-VASS-MDPs. In particular, we show that limit-sure control state reachability for 1-VASS-MDPs is decidable, i.e., checking whether one can reach a set of control states with probability arbitrarily close to 1. Unlike for finite state MDPs, the control state reachability property may hold limit surely (i.e. using an infinite family of strategies, each of which achieving the objective with probability ≥ 1-e, for every e > 0), but not almost surely (i.e. with probability 1). Secondly, we consider infinite state MDPs that are induced by probabilistic extensions of One-Counter Automata, called One-Counter Markov Decision Processes (OC-MDPs). We show that the almost-sure {1;2;3}-Parity problem for OC-MDPs is at least as hard as the limit-sure selective termination problem for OC-MDPs, in which one would like to reach a particular set of control states and counter value zero with probability arbitrarily close to 1

    Basis marking representation of Petri net reachability spaces and its application to the reachability problem

    Get PDF
    In this paper a compact representation of the reachability graph of a Petri net is proposed. The transition set of a Petri net is partitioned into the subsets of explicit and implicit transitions, in such a way that the subnet induced by implicit transitions does not contain directed cycles. The firing of implicit transitions can be abstracted so that the reachability set of the net can be completely characterized by a subset of reachable markings called basis makings. We show that to determine a max-cardinality-T_I basis partition is an NPhard problem, but a max-set-T_I basis partition can be determined in polynomial time. The generalized version of the marking reachability problem in a Petri net can be solved by a practically efficient algorithm based on the basis reachability graph. Finally this approach is further extended to unbounded nets

    Specification and Automatic Generation of Simulation Models with Applications in Semiconductor Manufacturing

    Get PDF
    The creation of large-scale simulation models is a difficult and time-consuming task. Yet simulation is one of the techniques most frequently used by practitioners in Operations Research and Industrial Engineering, as it is less limited by modeling assumptions than many analytical methods. The effective generation of simulation models is an important challenge. Due to the rapid increase in computing power, it is possible to simulate significantly larger systems than in the past. However, the verification and validation of these large-scale simulations is typically a very challenging task. This thesis introduces a simulation framework that can generate a large variety of manufacturing simulation models. These models have to be described with a simulation data specification. This specification is then used to generate a simulation model which is described as a Petri net. This approach reduces the effort of model verification. The proposed Petri net data structure has extensions for time and token priorities. Since it builds on existing theory for classical Petri nets, it is possible to make certain assertions about the behavior of the generated simulation model. The elements of the proposed framework and the simulation execution mechanism are described in detail. Measures of complexity for simulation models that are built with the framework are also developed. The applicability of the framework to real-world systems is demonstrated by means of a semiconductor manufacturing system simulation model.Ph.D.Committee Chair: Alexopoulos, Christos; Committee Co-Chair: McGinnis, Leon; Committee Member: Egerstedt, Magnus; Committee Member: Fujimoto, Richard; Committee Member: Goldsman, Davi

    Verification of priced and timed extensions of Petri Nets with multile instances

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Sistemas Informáticos y Computación, leída el 25-01-2016Las redes de Petri son un lenguaje formal muy adecuado para la modelizacíon, ańalisis y verificacíon de sistemas concurrentes con infinitos estados. En particular, son muy apropiadas para estudiar las propiedades de seguridad de dichos sistemas, dadas sus buenas propiedades de decidibilidad. Sin embargo, en muchas ocasiones las redes de Petri carecen de la expresividad necesaria para representar algunas caracteŕısticas fundamentales de los sistemas que se manejan hoy en d́ıa, como el manejo de tiempo real, costes reales, o la presencia de varios procesos con un ńumero no acotado de estados ejecut́andose en paralelo. En la literatura se han definido y estudiado algunas extensiones de las redes de Petri para la representaci ́on de las caracteŕısticas anteriores. Por ejemplo, las “Redes de Petri Temporizadas” [83, 10](TPN) incluyen el manejo de tiempo real y las ν-redes de Petri [78](ν-PN) son capaces de representar un ńumero no acotado de procesos con infinitos estados ejecut́andose concurrentemente. En esta tesis definimos varias extensiones que réunen estas dos caracteŕısticas y estudiamos sus propiedades de decidibilidad. En primer lugar definimos las “ν-Redes de Petri Temporizadas”, que réunen las caracteŕısticas expresivas de las TPN y las ν-PN. Este nuevo modelo es capaz de representar sistemas con un ńumero no acotado de procesos o instancias, donde cada proceso es representado por un nombre diferente, y tiene un ńumero no acotado de relojes reales. En este modelo un reloj de una instancia debe satisfacer ciertas condiciones (pertenecer a un intervalo dado) para formar parte en el disparo de una transicíon. Desafortunadamente, demostramos que la verificacíon de propiedades de seguridad es indecidible para este modelo...The model of Petri nets is a formal modeling language which is very suitable for the analysis and verification of infinite-state concurrent systems. In particular, due to its good decidability properties, it is very appropriate to study safety properties over such systems. However, Petri nets frequently lack the expressiveness to represent several essential characteristics of nowadays systems such as real time, real costs, or the managing of several parallel processes, each with an unbounded number of states. Several extensions of Petri nets have been defined and studied in the literature to fix these shortcomings. For example, Timed Petri nets [83, 10] deal with real time and ν-Petri nets [78] are able to represent an unbounded number of different infinite-state processes running concurrently. In this thesis we define new extensions which encompass these two characteristics, and study their decidability properties. First, we define Timed ν-Petri nets by joining together Timed Petri nets and ν-Petri nets. The new model represents systems in which each process (also called instance) is represented by a different pure name, and it is endowed with an unbounded number of clocks. Then, a clock of an instance must satisfy certain given conditions (belonging to a given interval) in order to take part in the firing of a transition. Unfortunately, we prove that the verification of safety properties is undecidable for this model. In fact, it is undecidable even if we only consider two clocks per process. We restrict this model and define Locally-Synchronous ν-Petri nets by considering only one clock per instance, and successfully prove the decidability of safety properties for this model. Moreover, we study the expressiveness of Locally-Synchronous ν-Petri nets and prove that it is the most expressive non Turing-complete extension of Petri nets with respect to the languages they accept...Depto. de Sistemas Informáticos y ComputaciónFac. de InformáticaTRUEunpu
    corecore