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SUMMARY

The creation of large-scale simulation models is a difficult and time-consuming task.

Yet simulation is one of the techniques most frequently used by practitioners in Operations

Research and Industrial Engineering, as it is less limited by modeling assumptions than

many analytical methods. The effective generation of simulation models is an important

challenge. Due to the rapid increase in computing power, it is possible to simulate signif-

icantly larger systems than in the past. However, the verification and validation of these

large-scale simulations is typically a very challenging task.

This thesis introduces a simulation framework that can generate a large variety of man-

ufacturing simulation models. These models have to be described with a simulation data

specification. This specification is then used to generate a simulation model which is de-

scribed as a Petri net. This approach reduces the effort of model verification.

The proposed Petri net data structure has extensions for time and token priorities. Since

it builds on existing theory for classical Petri nets, it is possible to make certain assertions

about the behavior of the generated simulation model.

The elements of the proposed framework and the simulation execution mechanism are

described in detail. Measures of complexity for simulation models that are built with the

framework are also developed.

The applicability of the framework to real-world systems is demonstrated by means of

a semiconductor manufacturing system simulation model.
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CHAPTER I

INTRODUCTION

This research is concerned with the challenges of creating large-scale discrete-event (com-

puter) simulation (DES) models for manufacturing systems. Simulation involves the imi-

tation of the operation of a real-world process over time [11]. It can be used to analyze

the behavior of a system and evaluate different scenarios, without having to change the

actual system. It is also possible to analyze systems that do not yet exist. Discrete-event

simulation is and has been a reliable technique that can be used for a wide range of prob-

lems. There are virtually no limits for the use of simulation. It is one of the methods most

frequently used by industrial engineers and operations research analysts [24].

The steady decline in computing cost makes the use of simulation very cost efficient in

terms of hardware requirements. However, commercial simulation software has not kept

up with the hardware improvements. It can take very long to build and verify large mod-

els with standard commercial-of-the-shelf (COTS) software. Although it is fairly easy for

non-experts to create small-scale simulations using drag-and-drop features of standard simu-

lation software, this convenience can become a problem for large models. There is no simple

way to verify that a simulation model is executing correctly, except for going through the

model step-by-step. This involves checking each graphical module for most applications,

i.e., clicking on it and studying the parameters, and then checking the parameters of other

modules that are referenced to the first one. This quickly becomes overwhelming for large

models.

Despite these challenges, discrete-event simulation will remain an important tool as

analytical models reach their limitations due to their underlying assumptions. There are

simply no other tools available for analysis of large production systems, except for rough-

cut calculations. In order for simulation to be useful, the modeler and user of a model

have to be confident that it correctly reflects the behavior of the real system and executes
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accordingly. Simulation modeling is largely considered an “art” and the development and

implementation of an error-free simulation model is a difficult task [55]. Simulation still

carries the label of an expensive and uncertain problem solving technique. The lack of a

comprehensive modeling framework that can facilitate specification and implementation of

discrete-event simulation models gives simulation a reputation of being overly complex.

1.1 Problem Description and Research Objective

The main goal of this research is to develop a comprehensive framework that can be used

to generate simulation models for manufacturing systems and the associated supply chains

in an effective and efficient way. The term framework implies a basic conceptual structure

that can be used to create simulation models. This is similar to the use of this term in

software engineering, where frameworks are used to build larger software modules from

basic elements, and differs from the term reference model, which indicates a rather static,

parameterized model.

Efficient simulation model generation will allow the user to simplify and accelerate the

process of producing verifiable and credible simulation models. Two fundamental steps in

the development of simulation models are verification and validation.

Verification is concerned with the “examination of the simulation program to ensure

that the operational model accurately reflects the conceptual model” [11]. Even though an

array of model verification techniques exist, there are currently no tools available that can

perform the verification process automatically for a given simulation model. Verification

usually involves an iterative process called “debugging,” which is simply a trial-and-error

approach.

Validation is the “determination that the conceptual model is an accurate representation

of the real system” [11]. Since simulation modeling always involves an abstraction of the

real-world system, the validation of a model is usually based on expert opinion. Since it is

unlikely to have an automated procedure for validation, model validation is not part of the

scope of this research.

Model credibility is attained when the end user accepts the simulation model as a correct
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one. This does not necessarily mean that the model is valid. Improving the verification

process can improve the model credibility, especially when the end user can retrace the

verification process. The focus of this research is on verification. Questions that arise from

this perspective are: “Do events execute in the right order (causality, time)? Will the

simulation not end up in a deadlock?”

The proposed framework promotes a “bottom up” approach to simulation modeling.

Small verifiable modules are synthesized in a particular way to create a large model, which

will maintain certain properties, in particular, absence of deadlock in the resulting simu-

lation model. This framework is not intended to model manufacturing systems where a

deadlock situation can occur, as it would not make sense to build a large-scale simulation

model of deadlocking subsystems.

The domain of the framework is discrete-event simulation of discrete-part manufacturing

systems. The main purpose our development is to support the process of converting a given

specification for a manufacturing system to an executable simulation model.

Figure 1 illustrates a common problem when building simulation models with the

ArenaTM simulation package [5]:

 

Figure 1: Arena Example

Two parallel process routes share two resources (R1, R2). The sequence for using

resources for an entity following the first process route is:

1. Process 1: Seize R1, Delay Entity

2. Process 2: Seize R2, Delay Entity
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3. Process 3: Release R1, Release R2

The sequence for entities going through the second process route is:

1. Process 4: Seize R2, Delay Entity

2. Process 5: Seize R1, Delay Entity

3. Process 6: Release R1, Release R2

For both process routes, entities are created with interarrival times following a statistical

distribution with positive realizations. The capacity for each resource is one unit. The

model is currently in a deadlock state. The digit below each Process module indicates

the number of entities waiting for or receiving service, so technically the model can be

executed, i.e., entities are released constantly into the system, but no more entities can

reach the Dispose block. Eventually this will lead to a memory overflow. Arena’s compiler

will not indicate any errors in the model since there is no error in the model syntax. An

experienced modeler knows the source of the problem: each process is waiting for the other

to release a needed resource. The graphical Arena simulation model cannot represent this

problem. The user has to go through each module/block and examine the parameters in

order to identify the problem. Although the problem is obvious in this case, for larger

models with hundreds of processing steps it is very difficult to identify similar problems.

Another approach for simulation is to use a generic high-level programming language

or a specialized simulation language. For a custom programmed simulation model in such

a language, a high level of trust in the programmer’s ability is required. This is the most

flexible approach and is preferable in many cases. However, a graphical representation of

the simulation model is not usually available. The end user will only see the results of the

simulation, but has no way to actually investigate the simulation model directly, making

the establishment of credibility very difficult.

The aforementioned issues motivate the following research objective: “Given a manufac-

turing system specification, generate an appropriate simulation model of that manufacturing

system without direct human interference.” The term manufacturing system specification

4



means a description of a manufacturing system that contains all necessary resources and

processes to produce all the products that are manufactured by this system. In Chapter 4

the requirements of such a specification will be described in more detail.

The simulation model is built in a the bottom up fashion with an automated proce-

dure. The model is composed of elements that are put together in a way that important

behavioral properties are maintained. The system specification completely determines the

characteristics of the simulation model. This also connotes that verification of the final

simulation model is reduced drastically or is no longer necessary. Of course, this requires

a correct implementation of the procedure generating the simulation model. However, this

needs to be done only once for each type of manufacturing system, and then this procedure

can be used to generate a wide variety of simulation models. The advantage is that this

avoids programming errors in the simulation model. Figure 2 explains the concept:

 

Figure 2: Use of the Simulation Framework

The use of the simulation framework is as follows: Based on a given manufacturing

system specification, the simulation model is created. The specification is stored in a specific

file format, in this case XML. The generation of the simulation is an automated process and

occurs without interference by the user. Then the generated simulation model is used to run

experiments. In order to create different scenarios, the user can change the manufacturing

system specification and automatically create a new simulation model. The experimental

frame is not part of the simulation model and will not be further addressed here. The

manufacturing system specification has to be done properly, i.e., it has to follow a certain
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format that will be introduced in Chapter 4.

The simulation framework has to be capable of representing the state and flow of all

relevant informational and physical entities through a manufacturing system on a detailed

operational level. The system refers in this context to the inventory status as well as the

status of jobs.

The simulation model is based on an object-oriented Petri net data structure. With this

structure certain properties can be enforced, e.g., absence of deadlock and reachability of

the final state. As discussed above, this is especially important for large-scale simulation

models, where a manual verification is either impossible or is extremely time-consuming.

1.2 Overview of the Thesis

Chapter 2 elaborates on the grand challenges of simulation in manufacturing and supply

chain systems. Hence it serves as a motivation for the development of a simulation frame-

work. Further, the principles of simulation modeling are discussed in detail and existing

simulation modeling frameworks are discussed. Chapter 3 introduces the elements of the

proposed framework and the execution of a simulation model. It also discusses the funda-

mentals of Petri nets upon which the framework is built. Chapter 4 describes the object

model, which is used for the manufacturing data description. Chapter 5 presents procedures

that can generate simulation models based on a given specification and illustrates them with

a real-world example. Chapter 6 analyzes the properties of the generated PN simulation

model. Chapter 7 discusses measures of complexity for the proposed framework. This al-

lows the modeler to estimate beforehand the amount of computational effort for running a

simulation. Chapter 8 presents conclusions and directions for future research.
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CHAPTER II

BACKGROUND, MOTIVATION AND LITERATURE REVIEW

2.1 Motivation: Grand Challenges in Manufacturing Simulation

In [18] Fowler discusses the grand challenges in modeling and simulation of complex man-

ufacturing systems. A grand challenge is a problem that is difficult, with the solution

requiring one or more orders-of-magnitude improvement in capability along one or more

dimensions; further, the problem should not be provably insolvable. A solution to a grand

challenge will have a significant economical and/or social impact; among others, the two

following grand challenges in manufacturing simulation are stated:

• An order of magnitude reduction in problem solving cycles

• Development of real-time simulation-based problem solving capability

2.1.1 Reduction in Problem Solving Cycle Times

The biggest challenge in simulation modeling today is to reduce the time it takes to design,

collect data, build, execute, and analyze simulation models to support decision making. A

reduction of this time would lead to more analysis cycles than currently is possible. Areas

for improvement for the simulation process for manufacturing systems analysis are:

• Model design

• Model development

• Model deployment

The primary goal in model design is to determine how much detail should be added

to the model. Discrete-event simulation models can be arbitrarily accurate, but they can

take a long time to build. In addition, the execution of discrete-event simulation models

can be slow. High-level continuous simulation models for a supply chain can be built more
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quickly, since they use less detail and execution is usually faster than discrete-event models.

However, since these models are less detailed, the level of accuracy will be lower.

The first step in model development is choosing a modeling approach. This could be one

of the three main simulation world views, such as the event-scheduling approach, process-

interaction, or activity scanning. The next step involves building the actual simulation

model. The earliest simulation models were built using assembly code or programming

languages such as FORTRAN. These approaches allowed for efficient execution but little

reusability of the simulation model. In later years, simulation languages such as GPSS,

Simscript, GASP, SLAM, or SIMAN were introduced; those included many elements that

support the simulation process, such as statistical routines and random number generation

[18].

Another way to build a simulation model is to use a simulator, where the simulation

model is already coded; the user only supplies the data for the model. AutoSched APTM

and Factory ExplorerTM are examples that use this approach [6, 7].

These languages and packages described above have reduced significantly the time and

effort to build simulation models, yet there is still considerable room for improvement.

Another way to reduce the time to build and verify a simulation model is to generate the

model automatically. This would significantly reduce the time to debug the code and can

even make debugging unnecessary.

The execution of a simulation model is another area requiring improvement. Complex

simulation models can run for a prohibitively long time, especially when detailed material

handling is modeled; hence decreasing the run time of a simulation model helps to increase

the number of problem solving cycles.

2.1.2 Development of Real-Time Simulation-Based Problem Solving Capabil-
ities

Currently most simulation models are used in single projects to support decisions with

long-term horizons, e.g., equipment purchases. Less is known about how to use simulation

for real-time decisions in manufacturing or material handling. Real-time simulation-based

problem solving offers new opportunities to evaluate abrupt changes in the status of a
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manufacturing system. If the state of a manufacturing system changes abruptly (e.g., due

to equipment failure), a simulation run could be used to support decisions. In order to use

simulation for real-time problem solving, it is necessary that the time to built simulation

models and the time to collect the relevant data are very short. In addition, the runtime of

the model has to be sufficiently short.

There are two different ways discussed in the literature for implementing such sys-

tems [18]:

• Use of a simulation model that is permanently running synchronized to the factory

• Automated building of a model from the factory databases

Permanent, always-on, synchronized factory models would be continuously updated and

synchronized with factory data. This requires that the factory state is clearly defined and

the data exist. Currently, in most cases the relevant data are not available or the quality of

the data is not good enough. This persistent, constantly synchronized simulation model is

then the master copy for a clone. A clone of a simulation model is simply an exact copy of

the original simulation model. This clone can then be used to start a new simulation run.

Another approach is to automatically build factory models on demand. The experi-

menter generates the model directly from the factory databases. The required data are

retrieved from the databases and transformed into a simulation model. This approach is

probably slower than cloning but offers more flexibility.

Technological advances are also supporting the trend of real-time simulation based

decision-making: IP networks are now found everywhere, which makes real-time infor-

mation available at very low cost. Manufacturing Execution System (MES), Enterprise

Resource Planning Systems (ERP), and Supply Chain Management Systems (SCM) are in

use at many companies nowadays. This means that a basic information structure is usually

already in place that can be used to access data. Since computing power is constantly

increasing (e.g., due to Moore’s Law), the execution of large simulation models will become

more economical and faster over time.
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The proposed framework has capabilities that support both of theses approaches, that

is, generation of simulation models on demand as well as synchronization with the factory

floor.

2.2 Definitions: System, State, Model, and Simulation

A system is a collection of entities that act and interact to accomplish some logical goal

[24]. This term can mean many different things depending on the goal of a study. The state

of a system is a collection of variables necessary to describe it at a particular time. Discrete

systems have state variables that change instantaneously at certain points in time, while

continuous systems have state variables that change continuously with respect to time. A

model is a representation of the system under scrutiny. It is a surrogate for the actual

system. A model can be a physical model (i.e., a scaled down model of a real system)

or a mathematical model (i.e., a model that is described with logical and quantitative

relationships). Here the focus is on mathematical models, as this is the typical domain of

operations research. A modeler has to decide which elements are to be included into the

model. This decision is mainly determined by the purpose of the model. Also, the system

boundaries have to be defined clearly. Ideally, once a mathematical model is formulated,

one would like to be able to use analytical methods to answer questions of interest. Since,

usually, there are no analytical solutions available for many real-world problems, simulation

remains the only viable option. Simulation can be described as “the imitation of a system

over time” [11]. An artificial history of the system is generated; from this history conclusions

concerning the operational characteristics are drawn. Simulation can be used to analyze the

behavior and address “what if” questions about real systems as well as conceptual systems.

The following types of simulation can be distinguished:

• Discrete simulation models

– Discrete-time models

– Discrete-event models

• Continuous simulation models
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Continuous simulation models describe continuous systems with state variables that

change continuously over time. These changes are usually expressed via differential equa-

tions. Discrete simulations involve discrete-time models or discrete-event models. Discrete-

time models have state changes in fixed time intervals, whereas discrete-event models can

have state changes at any time. The focus here will be on discrete-event models.

2.2.1 Domain Definition and Description

The proposed simulation framework is intended for use in the domain of discrete part

manufacturing. This is a very broad domain containing most manufacturing systems. The

domain of discrete manufacturing systems consists of systems in which materials flowing

through the system are countable objects, as opposed to process manufacturing where a

continuous stream such as a fluid is going through a number of processing steps. The

following classes of manufacturing systems can be distinguished based on their process

structure [20]:

• Job shops

• Disconnected flow lines

• Connected flow lines

• Continuous flow processes

These classes are ordered according to product variety and production volume that they

are capable of handling. Job shops generally have the highest possible range of product

variety, whereas continuous-flow processes systems are the least flexible and usually will

be capable of producing only one type of product. Job shops have flexible routings and

use manufacturing equipment that performs many different tasks. Production is in small

lot sizes or even lot sizes of one. Disconnected flow lines have a limited number of product

routings and production in small to medium lot sizes. Connected flow lines, such as assembly

lines, have rigid routings and are used for high-volume production. Continuous flow lines

are usually specialized production systems such as refineries, where product moves along a

fixed routing and is processed automatically.
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It has been estimated that more than 75% of manufacturing occurs in batches of 50 units

or less [9]. This means that most of manufacturing occurs in job shops or disconnected flow

lines, as these systems are able to handle low volumes with great product variety. The

proposed framework also targets these types of manufacturing systems.

2.3 Existing Approaches for Improving Modeling Productivity

Different approaches for improving the modeling productivity exist, among them are simu-

lation model reuse and composable simulation models.

2.3.1 Simulation Model Reuse

In order to avoid the costly development cycle of simulation models, researchers proposed

the idea of simulation model reuse [35]. The idea of model reuse is to avoid the cost of

model specification, simulation model coding, verification, and validation. With a dras-

tically reduced development time, it is possible to construct, nearly instantaneously, new

simulations. The improved quality of (reused) simulation models is based on trusted and

efficient components that were previously developed. Simulation model reuse can be ac-

complished by:

• Reuse of basic modeling components (approach used by COTS)

• Reuse of subsystem models

• Reuse of a similar model (adaptation of previously developed model)

Despite the promising advantages of reusing simulation models, this approach is difficult

in practice and it has been the focus of much research in the simulation community. It is also

one of the grand challenges in simulation. An area in simulation where reuse of components

is very common is the infrastructure to support model execution and development. These

include (among others) statistical routines, graphical generation tools, and random number

generators. Some of the key issues of simulation model reuse are given in [35]:

• Determining how to locate potentially reusable components
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• Recognizing objective incompatibilities among model components

• Recognizing assumption incompatibilities among model components

• Building components that enhance reuse

• Determining the level of granularity of each reusable component

• Capturing the objectives and constraints of each component

• Representing the objectives, assumptions, and constraints

• Specifying the level of fidelity of each component, i.e., the level of accuracy of the

component

• Determining the modifiability of a reusable component

• Determining the interoperability of the reused components

• Determining if constraints (such as execution speed) will be satisfied with the selected

objects

• When a new simulation is constructed entirely from verified and validated components,

what can be said about the newly composed simulation?

If the components are specified at a very low level, their reuse requires much the same

effort as coding from scratch. If the components are high-level aggregates, then their reuse

may be limited by their predefined behavior. Although model reuse has been a goal in

simulation modeling for a long time, it has not been used effectively, except for infrastructure

components, e.g., random number and random variate generators. Simulation model reuse

must consider original and new objectives; valid reuse requires consistency between the two

sets of objectives. All these issues make a general automated solution to the reuse problem

unlikely. Thus, model reuse for many problems will probably stay an unreachable goal for

the future.
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2.3.2 Composable Simulation Models

A closely related approach for building simulating models is to use (standard) components

and create a simulation model based on these predefined components. Page and Opper [39]

showed that deciding whether a set of objectives O = {o1, o2, . . . , on} can be satisfied by a

(sub)set of components C = {c1, c2, . . . , cm} is most likely a NP-complete problem. They

showed this for a specific (sub-)problem, but it is not clear if it is applicable to the general

problem of composition, since the mechanism of composition is not precisely defined. The

notion of satisfying a set of objectives is difficult to interpret, as it is possible that two

components could individually satisfy a certain subset of the objectives but not when used

in a composition. Although Page and Opper use an abstract point of view for the modeling

objective, they indicate that it is may be unlikely to find a satisfactory general solution for

composable simulation modeling.

2.4 Challenges in Software Engineering Relating to Simulation Model-
ing

Since every simulation study can also be seen as a software engineering project, many of

the challenges in software engineering are also applicable to simulation modeling. For ex-

ample, some of the goals in software engineering, such as reliability and maintainability, are

certainly important for simulation as well. However there are certain aspects of simulation

that are unique.

2.4.1 Time

The notion of time is one of the central characteristics of simulation. Time clearly establishes

an order in the processing of events and is also the limiting factor for parallel or distributed

execution of a simulation model. This characteristic is responsible for a large body of

research in the area of parallel and distributed simulation.

2.4.2 Correctness

Another characteristic, as already noted, is the very constrained interpretation of correctness

as a project objective. Correctness assumes a high priority in simulation projects and refers
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to the verification and validation issues. A simulation model is not very useful if there are

doubts about its validity or its verifiability.

Verification tries to establish that the relationship between the simulator and the un-

derlying model holds [57]. In other words, verification tries to determine if the computer

implementation of the conceptual model is correct, i.e., if the computer code represents the

model that has been formulated. Therefore, the verification process is often described as

the “debugging” of the simulation code. There are two general approaches to verification:

• Formal proofs of correctness

• Testing

Validation is the process of determining if the conceptual model is a reasonable repre-

sentation of the real-world system. Therefore, it often relies on the opinion of experts, who

can use statistical tests and other methods to establish validity.

2.4.3 Complexity of Simulation Models

Another important issue is the computational complexity of the simulation model. While

model development time and cost are considerable in simulation, the necessity for repetitive

sample generation for statistical analysis and the testing of numerous alternatives requires

that the simulation model is executable in an efficient way. A more detailed discussion is

presented in Chapter 7.

2.5 Principles of Simulation Modeling

There are no established principles of modeling. Simulation modeling is considered an “art

and a creative activity” [11]. This is a very unsatisfactory position as it perpetuates the

notion that simulation is very hard and always requires highly skilled personal. According

to Webster’s dictionary [3] a model is “a schematic description of a system, theory, or

phenomenon that accounts for its known or inferred properties and may be used for further

study of its characteristics.” A model is an abstraction of a system. A modeler has to

decide which elements are to be included in the model. This decision is mainly determined

by the purpose for modeling.
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The common paradigm in simulation modeling is to use a minimalist approach. This

means that only the necessary details for the planned simulation study will be considered.

In other words, the simplest, minimal model that can fulfill the requirements is preferred.

Thus, models should be just barely good enough to meet objectives. This general scientific

principle dates back to the 14th-century English logician and Franciscan friar, William

of Ockham (Ockham’s razor) who stated that “entities should not be multiplied without

necessity” or “it is vain to do by more what can be done by fewer” [12]. Advantages of this

approach include ease of understanding, quick implementation, run-time efficiency, and a

preference for simple and elegant models. However, this is a myopic view of the modeling

problem. Often it is not clear what the model will be used for in the future, and it can be

difficult to implement capabilities that were not anticipated at the onset of the modeling

effort. This view of modeling comes from a time when computing power was expensive, as

it allows for simulation models with less coding effort and better execution performance. A

focus on model minimalism also makes the reuse of simulation models more difficult.

2.5.1 Conceptual Modeling

A conceptual model is a description of the target system in natural language and/or a

pictorial description of the system; often the term “model assumptions” is used [24]. Since

there are no formal methods for creating a conceptual model, the main problem associated

with using such a model is that many ambiguities will be present in the model. Two

different programmers will most likely create two different simulation models based on

the same conceptual model. Nevertheless, this approach is usually taught in a simulation

curriculum, as it can be used for any system.

2.5.2 Declarative Modeling

The two primary components of declarative models are states and events [17]. The dynamic

behavior of the system under investigation is represented as a sequence of changes in states,

or state transitions.
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2.5.2.1 State-Based Models

A Deterministic Automaton is a six-tuple G = {X,E, f,Γ, x0, Xm}, where X is the set of

states, E is a finite set of events associated with the transition of states in X, f is the

transition function, Γ is the active event function, x0 is the initial state, and Xm ∈ X is the

set of marked states [14]. By designating certain states as marked, the modeler can indicate

that these are desired states, for example, they represent the completion of certain tasks.

This object is also known as state machine or generator. If X is a finite set, the object is

called a finite-state automaton or finite-state machine.

 

0 1 

2 

b a 

c 

d 

Figure 3: A Deterministic Automaton

Figure 3 depicts a simple finite-state machine with three states {0, 1, 2} and four events

{a, b, c, d}. Each arc is associated with a certain event and indicates the next state the

system will assume after the occurrence of the event.

A Nondeterministic Automaton is defined in a similar way as the deterministic version.

However, the transition function is replaced with fnd : X × E ∪ {ε} → 2X and the initial

state may be a set of states, i.e., the transition function has a different domain X ×E ∪{ε}

and co-domain 2X , where 2X is the set of all subsets of X (power set) and ε is the empty

string, which denotes that no event occurred. This means that an event can trigger the

transition to a set of possible new states as opposed to one specific state. It can be shown

that a nondeterministic automaton can always be transformed to a deterministic automaton

[14].
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There is a broad theory on automata, especially in combination with the theory of

formal languages, yet the use of automata for large-scale simulation is very limited, as all

states have to be expressed explicitly. For large simulation models, the number of distinct

states can be extremely large, making the representation and manipulation of such models

overwhelming. Another drawback of these models is that they do not have a concept for

time, although extensions for time do exit (timed automata [14]).

2.5.2.2 Event-Based Models

Finite-event automata or event graphs can be interpreted as dual to deterministic automata

[48]. Nodes in the graph represent events and transitions or arcs describe the change in the

state variables. A formal method of transforming a finite-state automaton to a finite-event

automaton is presented by Fishwick [17]. Relationships between events are represented as

arcs in the event graph. Each arc is associated with a set of logical expressions that express

state changes and time.
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Figure 4: A Simple Event Graph

Figure 4 shows a simple event graph. The interpretation is as follows: after the occur-

rence of event j, event k will be scheduled after t time units if condition i is true. The

advantage of event graphs is that there is a close relationship with the event-scheduling

simulation world view. Each node corresponds to a routine in the simulation program. It

is also not necessary to explicitly model all states, only the changes in states, e.g., increase

of counters, etc. A disadvantage of this approach is that it is difficult to use with large

simulation models involving many different events, as the graphs will become very large.

In addition, entities cannot be modeled explicitly. They can only be modeled indirectly via

variables. This creates another layer of abstraction that can be hard to understand, as it is

not possible to directly follow an entity through a system but only a sequence of events in

the event graph.
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2.5.2.3 Hybrid Models

Petri nets can be seen as hybrids of state-based and event-based models, as they represent

events in the form of transitions and state in the form of markings of places. A more detailed

discussion about Petri nets will follow in Chapter 3. The aforementioned declarative models

are usually not applied to manufacturing simulations, as they are too cumbersome to handle

real-world models.

2.5.3 World Views in Discrete-Event Simulation

An important concept in simulation modeling is the notion of world views (conceptual

framework, simulation scheme) [16, 37]. Over the last three decades, a set of conceptual

frameworks for implementing discrete-event simulations have been established. The idea

of a world view is traced back to the early days of discrete-event simulation and emerged

from the development of simulation programming languages and simulators. The three

most common simulation paradigms or world views employed in discrete-event simulation

languages and packages are frequently categorized as [11, 34, 57]:

• Event-scheduling world view

• Activity scanning world view

• Process-interaction / process-oriented world view

Event-Scheduling (Figure 5) is the most basic approach for discrete-event simulation.

Events with timestamps are put in an event list and are processed in the order of the

timestamps. After an event is processed, it can generate new events, which are also inserted

in the future event list (FEL). New events will have timestamps equal or larger than the

current simulation clock. When the event list becomes empty or a certain event occurs, the

simulation will end.

The event-scheduling world view can be implemented in any programming language and

is therefore useable for many purposes. Events are executed at discrete points in time, which

causes the change of state variables. No time elapses when an event executes. Therefore,
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if two or more events can occur at the exact same time, precedence has to be preassigned

to ensure a well-defined transition function. Under this approach, the modeler first has to

identify all events and their effect on system state [13]. The execution of an event can also

trigger the generation of a new event based on the current system state. This event can be

scheduled to occur at the same instance in time as a direct consequence of the triggering

event or a future point in time. After all events that are scheduled for one specific execution

time are processed, the simulation time can be advanced to the next scheduled event. With

this simulation world view fast executing simulations can be realized.

Activity Scanning (Figure 6) is also known as the two-phase, state-based approach [10].

The modeler describes an activity in two parts. First, the condition that causes an action is

specified as a logical expression, and then the action that will be performed if this condition

is true is described. Simulations that follow this approach often use a timing mechanism

with fixed time increments. Testing the conditions and performing the corresponding actions

represent a single iteration of the execution algorithm. It may not be sufficient to perform

only one scan, as some actions may lead to additional conditions. Hence, all conditions

must be scanned repeatedly, until no condition is satisfied at the current simulation time.

At this point in time, the simulation clock can be advanced. Activities need to be prioritized

for the order of condition testing. With the activity scanning approach modular simulation

programs can be easily implemented that consist of independent modules waiting to be

executed.

Due to the repeated scanning and fixed time increments, the execution of simulation

programs of this type is usually quite slow [10]. Another problem is that the fixed time

increments can be a source of error, since the time resolution is limited to the size of the

increments.

The Process-Interaction world view (Figure 7) emulates the flow of an entity through a

system. An entity moves as far as possible until it is delayed, starts an activity, or leaves

the system. Hence, the simulation model describes the sequence of all states that an entity

can attain in the system. An object or entity can be classified into two types: dynamic or

static [10]. A dynamic entity enters the model, logically moves through some processes, and
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Figure 6: Activity Scanning World View [10]
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leaves the model. A process is a time-ordered sequence of events, activities, and delays that

describe the flow of a dynamic entity through a system. A static entity, such as a resource,

does not move on its own. Under this approach simulation is conducted by going back and

fourth between a clock update phase and scan phase. During the clock update phase, time

is advanced to the first object in the future object list (FOL). All objects with move-times

equal to the current simulation time are transferred to the current object list (COL). During

the scan phase, all objects on the COL are moved one-by-one through as many processes

as possible. The movement of an object can be interrupted by an unsatisfied condition, a

deliberate delay, departure from the system, or stopping for some reason, such as waiting

in a queue. Since the movement of objects can cause changes in state variables, the COL

has to be repeatedly scanned until no more objects can be moved. Then the simulation can

continue with the clock update phase.
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Figure 7: Process-Interaction World View [10]
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2.5.3.1 Critique of World Views

The three simulation world views mentioned above are the most cited in the literature.

There is not a single rigorous description of the world views; they somewhat differ from

author to author. There are usually inconsistencies when world views are described. For

example, Law and Kelton [24] point out that the process-interaction approach is actually

executed as an event-scheduling approach. On the contrary, Zeigler et al. [57] describe the

process-interaction approach as a combination of the event-scheduling and activity scanning

approaches. Further, they state that the event-scheduling approach does not allow for

conditional events that can be activated based on the global state. This distinction is

usually not made by other authors. The process-interaction world view is implemented

in various different ways, which leads to different behavior how resources are claimed and

released by competing entities [47].

There are also other simulation world views discussed in the literature, e.g., the three-

phase approach [11]. Since the descriptions of the different simulation world views are

rather informal in the literature, there is a need for a more formal approach to simulation

modeling.

Many researchers suggest that there is a choice between these world views. However,

these world views are not directly comparable as they describe system behavior at different

levels. They merely describe the approach for implementing a simulation program. In addi-

tion, they do not have a strict formal description, with event-scheduling being an exception,

since it can be directly mapped to event graphs.

The world view that is fundamental to all world views is event-scheduling, which de-

scribes each type of event with regard to subsequent events and state changes. The process-

interaction world view on the other hand is describing how entities travel through the system

and the resources they require, but the underlying execution mechanism is still based on

the event-scheduling approach.

The activity scanning method is somewhat related to the event-scheduling method, but

it uses fixed time increments, which can introduce errors. Further this method is not suitable

for manufacturing simulations. However, it could be convenient for inventory systems with
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periodic review.

2.5.4 Traditional Simulation Languages

Traditional simulation programming languages are tied to the above mentioned simulation

world view. Most simulation languages, such as GPSS, SIMULA, SIMAN or SLX [8], adopt

the process-interaction world view [24]. Most of these languages have similar characteristics,

and their main components or objects are [16]:

• Entities: Objects requiring services (e.g., parts, jobs, or customers)

• Attributes: Information characterizing a particular entity

• Process Functions: Instantaneous or time delays experienced by entities

• Resources: Objects providing services (i.e., performing process functions)

• Queues: Sets of entities (e.g., entities waiting for service)

Almost all COTS packages with a graphical user interface employ the process-interaction

world view. The graphical modules and connectors between them show the logical flow of

entities through the system. Underneath the graphical user interface, a simulation language

is used, such as SIMAN for Arena.

SIMULA was the first simulation language to employ object-oriented concepts for pro-

gramming. Several languages followed (e.g., SIMULA 67) that served as drivers in the

development of modern object-oriented programming languages.

Simulation languages usually have special list processing capabilities that are needed for

managing the FEL. The most common task during a simulation is inserting events in to the

FEL, removing events with the smallest timestamps while keeping the FEL in proper order

at all times. Overall, simulation languages must provide [34]:

• Generation of random variates

• List processing capability, so that entities and events can be manipulated, created and

deleted
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• Statistical analysis routines

• Report generation

• Mechanisms to provide an explicit representation of time

Before the widespread use of object-oriented programming languages, the use of these

traditional simulation languages was justified. However these languages are becoming ob-

solete, as there are more and more frameworks or toolkits that build upon existing object-

oriented languages such as JAVA (e.g., DSOL [21] and SSJ [25]), which provide efficient data

structures to manage the FEL. These toolkits allow a more flexible approach to building

simulation models as they allow the user to implement customized components with the

convenience of existing components such as random number generators

2.5.5 Simulation Development Paradigms

A simulation study consists of a series of different steps, such as data collection, verification,

validation, experimental design, and output data analysis. The temporal relations of these

steps can be described in the flow diagram in Figure 8 taken from Law and Kelton [24].

Many authors point out that the steps in a simulation study are not just simple sequen-

tial process steps, but often require revisiting of previous steps. A similar diagram can be

found in [11]. These descriptions have the introduction of a conceptual model in common.

There is no precise definition in the literature of what a conceptual model is. According to

[11], the conceptual model is created in the mind of the modeler as a series of mathemati-

cal and logical relationships concerning the components and structure of the system under

study. A conceptual model is a non-formal description of the simulation model; the term

“assumptions document” is also used [24].
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2.5.5.1 Sargent’s Circle

Another paradigm for simulation development is Sargent’s circle (Figure 9). It is not a

sequential diagram, but it shows the relationships between the system, conceptual model,

and computerized model.

 

Figure 9: Sargents Circle [45]

These simulation paradigms are all lacking a formal foundation. They are rough de-

scriptions of steps that one would perform when conducting a simulation study. The lack of

formal description of the conceptual model introduces uncertainty into the modeling pro-

cess. Many authors describe the simulation modeling process as inherently iterative, but

one can argue that this is a direct consequence of the lack of formal models.

2.6 Simulation Model Specifications and Modeling Frameworks

The fundamental problem of simulation modeling is the necessity to describe the dynamics

of a system in static terms. As mentioned before, the use of a conceptual model leaves

many details of the implementation open or ambiguous.

A specification is usually defined as a set of requirements. Here it will be used to mean

a detailed description of the system to be modeled. A simulation model specification is
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the detailed description of system states, state transitions, and the conditions that cause

these transitions. The related term conceptual model will not be used as it can have many

different meanings.

In a sense, each simulation model can be seen as a specification of the modeled system.

This is because a valid simulation model has to be able to emulate all the relevant events

and data of interest. Since a simulation model is a computer program, there is no room

for ambiguities when the model is executed: each event of interest has to be specified in

detail in the code. This can make it difficult for the user to understand how the simulation

code relates to the real-world model, and is especially true for simulation models that

are written in a general programming language. In order to simplify the implementation

of simulation models, different simulation models, specifications, or modeling frameworks

have been defined. These specifications provide a more domain-specific problem view.

2.6.1 Discrete-Event System Specification (DEVS)

Zeigler [57] developed the Discrete-Event System Specification, which is a formal basis for

the low-level representation of discrete-event models and their simulators. This specifica-

tion defines a language that expresses the inputs, outputs, states, and transition functions.

DEVS is part of a larger framework that tries to unify discrete-event and continuous dy-

namic systems. It is also the most comprehensive simulation modeling framework currently

available in the literature, and is based on a rigorous formal mathematical description of

the states and transition functions of the system. Hierarchical components are the main

building block in the DEVS. Low-level components can be combined to form aggregate

components. Coupling relations describe how these subcomponents are combined and how

they interact.

The DEVS allows specifying a simulation model without any ambiguities. One clear

advantage is that the simulation model and simulator are clearly separated. Hence, a single

simulator can be used for all models that follow DEVS specifications.

An atomic model in the DEVS specification is given by

M = (X,S, Y, δext, δint, λ, ta) (1)
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where X is the set of input values; S is the set of states; Y is the set of output values;

δint : S → S is the internal transition function; ta : S → R+ is the time advance function;

δext : Q×X → S is the external transition function, where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}

is the total state set and e is the time elapsed since the last transition; and λ : S → Y is

the output function.

The interpretation of this atomic model is as follows: Let s be the current system state.

If there are no external events, the system will stay in state s for ta(s) time units. If the

value for ta(s) is zero, the system will immediately move into another state, i.e., this state

is transitory. If the value is ∞, the system will stay in the same state forever unless an

external event will occur. If an external event occurs and the system is in the total state

(s, e) with e ≤ ta(s), the system will move to state δext(s, e, x). In other words, the internal

transition function determines the state of the system if no external event occurs since the

last transition. The external transition function determines the new state if an external

event occurs.

Zeigler defines a DEVS to be legitimate if for each s ∈ S,

lim
n→∞

∑
(s, n)→∞ (2)

where
∑

(s, n) is defined recursively by
∑

(s, 0) = 0 and
∑

(s, n) =
n−1∑
i=0

ta(δ+int(s, i)), and

δ+int(s, n) is the state reached after n iterations starting at state s ∈ S if no external events

intervene. In other words, the function
∑

(s, n) accumulates the time needed to make these

n transitions. A legitimate DEVS model will always be able to advance the simulation clock

and will not loop through a cycle of non-transitory states. Zeigler introduces the following

conditions for a legitimate DEVS:

(a) If M is finite (S is a finite set): Every cycle in the state diagram of δint contains a

non-transitory state (necessary and sufficient condition)

(b) If M is infinite: There is a positive lower bound on the time advances, that is, ∃b > 0

such that ∀s ∈ S, ta(s) > b (sufficient condition)

Condition (a) means that the simulation model cannot go through an infinite cycle of
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transitory states, which would prevent the simulation model from advancing the simula-

tion clock. Condition (b) means that if all time advances have a lower bound, then there

are no transitory states in the simulation model and therefore time will always be able to

advance. The DEVS formalism includes the means to build coupled models from compo-

nents. All components have to be DEVS models themselves, and can consist of other DEVS

components.

2.6.1.1 Limitations of DEVS

There are several limitations in the DEVS framework. The main emphasis of the framework

is on states. If there are simultaneous internal and external events, then mechanisms have

to be provided to prioritize these events. Further, there are problems inherent in coupled

DEVS systems [54]: it is difficult to identify components that violate required interaction

constraints, and the evolution and substitution of new components in coupled models can

lead to unanticipated behavioral conflicts. DEVS does not provide direct support for verifi-

cation and validation, because it provides no means to analyze the dynamic behavior of the

system. Although it is fairly easy to verify and validate small components, it is typically

difficult to verify the coupled model.

2.6.2 Activity Cycle Diagrams

Activity cycle diagrams [41] (also called entity cycle diagrams) conceptualize the problem

in terms of the logical flow of objects in the system. They can model interactions of

system objects and are particularly useful for systems with natural queuing structure. These

diagrams use only two symbols, which describe the life cycle of the system’s objects or

entities.

 

Figure 10: Activity Cycle Diagram Elements

An entity is any object of the model that can keep its identity through time. An entity
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is either idle, in queue or active. When active, an entity can be engaged with other entities

in time-consuming activities. The cycles of different entities are joined by their common

activities. Figure 11 gives a simple example.

 

Figure 11: Activity Cycle Diagram for a Pub

There are three entities in this diagram: a patron, a glass, and a barkeeper. Each entity

goes through certain cycles, e.g., wait and drink. The cycles are joined where the entities

share an activity; for example, the activity POUR requires the glass and the barkeeper who

fills the glass. A big disadvantage of activity cycle diagrams is that they cannot model

complex routing decisions. They are also not capable of representing any kind of decision

logic. Large graphs also become quickly confusing for the user. Because of these reasons,

they are rarely used in practice.

2.6.3 Condition Specification

Condition specification is a specification language for discrete-event simulation models [36].

It is independent of traditional simulation world views; a model is defined in terms that

do not prescribe any particular implementation techniques. Condition specification is not

intended to be used as a language with which the modeler works directly when creating

a simulation. It has many similarities with DEVS. A model is specified via a quintuple

(Φ,Ω,Γ, τ,Θ). Here Φ is the input specification (i.e., the information that the model re-

ceives,) and Ω is the output specification (i.e., the information that the environment receives

from the model) [38]. Γ is the object definition set consisting of ordered pairs (O,A(O)),
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where O is an object and A(O) is the attribute set of the object. The state of an object

at time t is defined by the values of its attributes at that time. τ is the system time and

provides a partial ordering of actions during a simulation run. Finally, Θ is the transition

specification that contains an initial state for the model, a termination condition, and the

definition of the dynamic behavior of the model. The transition specification is a set of

ordered pairs called condition-action pairs. A condition is a Boolean expression consisting

of model attributes. When the condition is true, an action is performed; this could be a

value change of an attribute, a time sequencing action, object generation or destruction,

environment communication, or simulation termination.

Condition Specification also uses inputs, outputs and transition functions similar to

the DEVS. The DEVS, though, focuses on components that are assembled, whereas the

Condition Specification describes the simulation model in its entirety.

2.6.4 Simulation Graphs and Simulation Graph Models

Yücesan and Schruben [56] define simulation graphs and simulation graph models, which are

a mathematical formalization of the event graphs introduced by Schruben [48] and described

in Section 2.5.2.2. Events are represented on the graph as vertices and each vertex is

associated with a set of state variable changes. The focus is on system events while entities

are represented implicitly by variables. Relationships between events are represented as

arcs between pairs of vertices. Each edge is associated with a set of logical conditions,

which determine if the event that the arc is pointing to will be scheduled for execution. A

simulation graph is defined as an ordered quadruple G = (V (G), ES(G), EC(G),ΨG), where

V (G) is the set of event vertices, ES(G) is the set of scheduling edges, EC(G) is the set of

canceling edges, and ΨG is the incidence function. The incidence function associates with

each edge in ES(G) ∪ EC(G) an ordered pair of event vertices in G.

A simulation graph model is defined as S = (F,C, T,Γ, G), where F is the set of state

transition functions, C is the set of edge conditions, T is the set of edge delay times, and Γ

is the set of event execution priorities.

Figure 12 shows a simulation graph for a single-server queue. The state variables are as
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Figure 12: Simulation Event Graph for a Single-Server Queue [56]
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follows: Q represents the number of customers waiting for service; S denotes the status of the

server, with 0 ≡ busy and 1 ≡ idle; id denotes the customer identification number; in is the

identification number of the customer currently in service; nx represents the identification

number of the customer next in line; W [i] is the total time customer i spends in the system;

and CLK represents the value of the simulation clock.

The transition function for this example is defined as

F = {finit; farv; fbgn; fend} =

{Q← 0, S ← 1, nx← 1;Q← Q+ 1, id← id+ 1,W [id]← CLK;

Q← Q+ 1, id← id+ 1,W [id]← CLK;S ← 1,W [in]← CLK −W [in]}

(3)

The set of edge conditions is defined as

C = {Carv,bgn;Cend,bgn} = {S = 1;Q > 0} (4)

The set of edge delay times is

T = {tarv,bgn; tbgn,end} = {ta; ts} (5)

Finally, the set of event execution priorities is

Γ = {γinit,arv; γarv,arv; γarv,bgn; γbgn,end; γend,bgn} = {2; 2; 1; 2; 1} (6)

These expressions together with Figure 12 represent the respective simulation graph

model. Yücesan and Schruben [56] use simulation graph models to define structural and

behavioral equivalence of simulation models.

Two simulation graphs models are structurally equivalent if they have elementary sim-

ulation graph that are isomorphic, that is, a bijection between the vertices of the graphs

exists.

An elementary simulation graph model contains only simple event vertices (only one

state variable changes at any time) and simple edge conditions, i.e., conditions that have

only two arithmetic expressions connected by a relational operator (<,≤,=, 6=,≥, >). An

elementary simulation graph can always be created by a process called expansion of the

general simulation graph model. Hence, the problem of determining structural equivalence
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of simulation graph models can be reduced to the problem of checking if the equivalent

elementary simulation graphs are isomorphic.

Two simulation models A and B are behaviorally equivalent with respect to a subset

of state variables if T (E,A) = T (E,B) and S(E,A) = S(E,B), where T (E,A) is the

partially ordered set of event times for the execution of model A within the experimental

frame E. An experimental frame specifies a limited set of circumstances under which

a system (real system or model) is to be observed or subjected to experimentation [56].

S(E,A) = {S1, S2, . . .} is the ordered set of state variables for the execution of model

A within the experimental frame E. Behavioral equivalence relates the state variables and

event occurrences of the simulation run; hence it is directly related to performance measures

one usually tries to estimate via simulation. Yücesan and Schruben show that structural

equivalence is a sufficient but not necessary condition for behavioral equivalence.

Simulation graph models are one of the most complex and comprehensive frameworks.

In comparison to DEVS, simulation graphs have the ability to graphically display the prece-

dence relationships of events in a single graph. There is no direct support of the process-

interaction world view, because entities have to be modeled implicitly by means of state

variables. This increases the number of variables for large models. Further, there is no

object orientation, i.e., no encapsulation of variables through entities.

2.6.5 Critique of Exiting Simulation Model Specifications and Frameworks

All frameworks reviewed in this chapter have a commonality in that their use in practice is

not widespread. One reason might be that users have difficulties understanding and using

them. Some of these frameworks have a solid theoretical foundation and are potential candi-

dates to build a framework for large-scale simulations, but none can address the verification

problem directly.

2.7 Automatic Model Generation

A very different approach to building simulation models is automatic generation. A “semi-

automatic” approach is based on graphical user interfaces that allow the user to parameter-

ize modules; the simulation package then will generate code based on that input. Another
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approach is to use a simulator that reads input from files, which specify the details of the

system.

According to Mathewson [30], a simulation generator is a software tool that translates

the logic of a model into the code of a simulation language, enabling a computer to mimic a

model’s behavior. One of the earliest examples for simulation model generator is presented

in [30], which is based on entity cycle diagrams and in [31], an early PC implementation of

the former. In [19] a simulation code generator software for an automated guided vehicle

system is presented. In [26] a WITNESSTM simulation model for shop floor control systems

is generated automatically from graph-based process plans.

2.8 Conclusions

This chapter gave an overview of the current challenges in manufacturing simulation. Specif-

ically, it discussed the principles of simulation modeling and approaches for improving mod-

eling productivity. It also reviewed several simulation model specifications and modeling

frameworks. The most potent frameworks, such as DEVS and Simulation Graph Models,

have great modeling power, but are not very easy to understand and implement. These

facts motivate the development of the proposed framework in the remaining chapters.
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CHAPTER III

FRAMEWORK FOR SEMICONDUCTOR MANUFACTURING

MODELING, CONTROL AND SIMULATION

3.1 Introduction

Modern simulation software often allows the user to drag and drop simulation modules and

modify them for his/her needs. This often saves time during model development. Relying

on this feature alone limits the diversity of models that can be formulated since the behavior

of these modules is predefined. This is of particular interest when formulating large-scale

models. The verification of large models also can be very difficult.

COTS software typically only allows for checking the syntax and some basic structure

of the generated code. For example, the software can check if a modeling block is missing

required input parameters. Another way of creating a simulation is to code it manually

with a general purpose programming language or a special simulation language. This is

the most flexible option. However, this option requires an even more rigid approach to

verification. Without graphical support, it is the programmer’s job to verify if the simulation

model actually corresponds to the conceptual model. According to the American Heritage

Dictionary [4], a framework is defined as:

1. A structure for supporting or enclosing something else, especially a skeletal support

used as the basis for something being constructed

2. An external work platform; a scaffold

3. A fundamental structure, as for a written work

4. A set of assumptions, concepts, values, and practices that constitutes a way of viewing

reality

A unique feature of the proposed simulation framework is that all relevant state infor-

mation is contained within the model. The FEL can be reconstructed from the current state
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of the model. This means that changes to the model can be made during a simulation run

and the FEL can be updated accordingly. This simplifies greatly the usage of simulation

for real-time decision-making. For example, it is possible to let the simulation model run in

parallel with the real system. Then it can be used to immediately instantiate a simulation

run for due date quoting or evaluation of different control strategies.

Figure 13 clarifies the intended use of the simulation framework in comparison with the

traditional steps of simulation modeling. The framework replaces the traditional steps of

programming, making pilot runs, and validation with a single step. The simulation model is

formulated with a simulation data specification, which will be introduced in Chapter 4. In

other words, the simulation framework can be described as “specification-based simulation

modeling.”

3.2 Overview of Petri Nets

The proposed framework is based on a Petri net (PN) data structure. The following subsec-

tion gives an overview of Petri nets. These nets can combine a number of different important

characteristics. They can serve as a graphical tool to display the state and behavior of a

system, yet they are based on a rigorous mathematical foundation and they possess simu-

lation capabilities. PNs incorporate the concept of distributed system state with rules that

define how state changes occur. They are currently being successfully employed to support

many stages of the development of complex systems: rapid prototyping, formal specifica-

tion, verification of correctness, performance evaluation, and documentation [59]. Overall,

PNs represent a well-known, powerful, and widely used analytical formalism. Various ap-

plications in the areas of system modeling and control use PNs as a simulation and analysis

tool for different engineering systems, such as robots, processing plants and batch systems.

3.2.1 Classical Petri Nets

Carl Adam Petri developed the original Petri net in 1962 [43]. A PN is a general-purpose

mathematical tool for describing relations between conditions and events. Specifically, a

PN is a bipartite graph with places and transitions (a bipartite graph has a set of vertices,

which can be divided into two disjoint sets so that no two vertices of the same set share an
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edge).

Places are connected to transitions and transitions to places. Clearly, there will never

be a connecting arc between any two places or any two transitions. Events are associated

with transitions. Places and transitions are represented by circles and bars respectively. A

transition can “fire” or is live when every input place to the transition has at least one token.

Every finite-state machine can be represented by a PN [14], but the opposite is not true in

general. Since every computer simulation model can be interpreted as a finite-state machine

or automaton, it is in principle possible to describe any computer simulation as a PN. A

Petri net graph is a weighted bipartite graph (P, T,A,w), where P is the finite set of places

and T is the finite set of transitions. Weights are associated with each arc in the graph. If

an arc is not labeled with a weight, its weight is assumed to be 1. A ⊆ (P × T ) ∪ (T × P )

is the set of arcs from places to transitions and transitions to places. w : A→ {1, 2, 3, . . .}

is the weight function on the arcs, i.e., a positive integer is assigned to each arc as a

weight. Similarly, •t = {p|(p, t) ∈ A} is the set of input places of t and t• = {p|(t, p) ∈ A}

is the set of output places of t. •p = {t|(t, p) ∈ A} is the set of input transitions of p and

p• = {t|(p, t) ∈ A} is the set of output transitions of p.

These definitions describe only the structure of the graph. Another important aspect is

the state and dynamic behavior of a discrete-event system represented by the marking of

the PN and the state transition function. A marked Petri net a five-tuple (P, T,A,w,m)

where (P, T,A,w) is a PN graph and m is a row vector representing the marking of the

set of places P = P1, . . . , Pn; m = [m(p1),m(p2),m(px), . . . ,m(pn)] ∈ Nn. The number of

tokens in place pi is indicated by the ith entry m(pi) of this vector. The marking of a PN

represents its state.

The state transition function, f : Nn×T → Nn of a marked PN (P, T,A,w,m) is defined

for transition tj ∈ T if and only if m(pi) ≥ w(pi, tj) for all pi ∈ •tj . If f(m, tj) is defined,

then the new marking of the PN ism′ = f(m, tj), wherem′(pi) = m(pi)−w(pi, tj)+w(tj , pi).

A PN is called ordinary if all arcs have weight 1. A pair of transitions is said to be

in conflict if the firing of one transition will disable the other transition [51]. A pair of

transitions is said to be concurrent if the firing of one transition will not disable the other
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transition. The following subclasses of PNs have been defined in the literature [33]:

A state machine is an ordinary PN such that each transition has exactly one input place

and one output place: |•t| = |t•| = 1, for all t ∈ T . This means there can be no concurrency,

but there can be conflicts between transitions.

A marked graph is an ordinary PN such that each place has exactly one input transition

and one output transition: |•p| = |p•| = 1 for all p ∈ P . This means there can be no

conflict, but there can be concurrency between transitions.

A free-choice net is an ordinary PN, where every arc from every place is either a unique

outgoing arc or a unique incoming arc to a transition: |p•| ≤ 1 or •(p•) = {p}, for all p ∈ P .

This means there can be concurrency or conflict between a pair of transitions, but not both.

An extended free-choice net is an ordinary PN, such that p•1 ∩ p•2 6= ∅ ⇒ p•1 = p•2 for all

p1, p2 ∈ P . An asymmetric choice net is an ordinary PN, such that p•1 ∩ p•2 6= ∅ ⇒ p•1 ⊆ p•2

or p•1 ⊇ p•2, for all p1, p2 ∈ P .

Many theorems exit for these subclasses of PNs that describe behavior and structural

properties. However, these classes are very restrictive and not very useful for manufacturing

system modeling. The following example illustrates this.

Example 1: Figure 14 shows three processes that share two resources. P1, P2, P3 represent

the start places for the three different processes. Process 1 requires resources R1 and R2,

process 2 requires resource R1, and process 3 requires resource R2. Clearly this PN is

not a state machine as |•T1| > 1. The net does not belong to the class of marked graphs

because |R•1| > 1. Further, it is not a free-choice net as |R•1| > 1 and •(R•1) 6= {R1}. Since

R•1 ∩ R•2 6= ∅ and R•1 6= R•2, it is not an extended free-choice net; and since R•1 ∩ R•2 6= ∅,

R•1 6⊂ R•2, and R•2 6⊂ R•1, it is not an asymmetric choice net. However, it is an ordinary PN,

because all arc weights are equal to one. This is a fairly simple net representing a common

situation in manufacturing. Unfortunately, many existing theoretical results in PN theory

are not applicable, as they often are restricted to the above classes. ♦
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Figure 14: Parallel Processes

3.2.2 Inhibitor Arcs

Inhibitor arcs were introduced to give PNs the computational power of a Turing machine [33]

. Turing machines are the most basic model of computation in computer science, and can

model all computational capabilities of modern computer software. Hence, inhibitor arcs

enhance the modeling power of PNs to the highest degree that is known.

Inhibitor arcs are similar to normal arcs, except that instead of checking for the presence

of a token in a place, they check for the absence of tokens. In general, a PN with inhibitor

arcs cannot be transformed to an ordinary PN. Nonetheless, a bounded inhibitor arc net

can always be transformed into an ordinary PN.

3.2.3 State Equations

It is also possible to describe the dynamic behavior of classical PNs using linear algebra.

The m×n matrix A of a PN with elements aij = w(tj , pi)−w(pi, tj) is called the incidence

matrix [14]. The m-dimensional unit firing row vector uj = [0, . . . , 0, 1, 0, . . . , 0] with a 1

appearing at the jth position indicates that the jth transition is firing. The vector state
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equation can then be written as m′ = m + ujA where m′ is the new state after firing of

the jth transition. In other words, the state transition function is f(m, tj) = m + ujA.

A similar approach in encoding a PN is to use two matrices, one for the input functions

and one for the output functions of the transitions. Every possible firing sequence has to

fulfill the state equation of the PN, but the existence of a solution does not guarantee the

existence of a valid firing sequence [14].

3.2.4 Relation of Petri Nets to Other Formal Models for Discrete-Event Sys-
tems

As mentioned earlier, it can be shown that any automaton (finite-state machine) can be

transformed into a PN but not vice versa [14]. Hence PNs have larger modeling power

than automata. Event graph models also have been shown to have the modeling power of

Turing machines [46]. This gives them the same expressiveness as PNs with inhibitor arcs.

Schruben [49] also shows that a stochastic PN can be mapped to an event graph model.

However, when using event graphs one cannot take advantage of the rich literature that

exists on PNs. In summary, PNs can be seen as one of the most versatile modeling tools

for discrete-event systems.

PNs have been applied to many industrial applications. For example, they have been

used to model real-time fault tolerant and safety critical systems, flexible manufacturing

systems and controllers for such systems, communication protocols, computer systems with

parallel processors, and resource allocation systems [59].

3.2.5 Behavioral Properties of Petri Nets

When modeling a system with a PN, one is interested in determining if the system is able

to exhibit certain behavior. Two types of properties can be distinguished: properties that

depend on the initial marking and properties that are independent of the initial marking

[33]. Below we discuss the most common cited properties of PNs.

Boundedness: A PN is bounded if the number of tokens in each place for any marking

does not exceed a finite number. It is called k-bounded if the number in all places does

not exceed k. An 1-bounded PN is called safe. A PN is called structurally bounded if it is
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bounded for any initial marking.

Reachability : A marking m in a PN is reachable if there exists a firing sequence that

transforms the initial marking m0 to m. The set of reachable states of a PN N with initial

marking m0 is denoted by R(N,m0).

Coverability : A marking m is said to be coverable if there exists a marking m′ in

R(N,m0) such that m′(p) ≥ m(p).

Liveness: The concept of liveness is closely related to the concept of deadlock. A

deadlock in a PN is a set of transitions that cannot fire permanently. A main source of

deadlocks is the existence of shared resources. A transition is live if it is not deadlocked.

This does not mean that it is enabled but rather that there must exist a firing sequence

that will eventually enable the transition to fire.

A PN N with initial marking m0 is live if there is always some sample path (i.e., a

sequence of transition firings) such that any transition can eventually fire from any state

reachable from m0. A PN contains a deadlock if there is a marking R(N,m0) such that no

transition is enabled. Hence a live PN does not contain a deadlock. This is a very strong

property. In [14] and [42] the following levels of liveness for a transition are defined:

• L0-live or dead: A transition is L0-live or dead, if it can never be fired

• L1-live: A transition is L1-live, if there is a firing sequence from the initial marking

such that the transition can fire at least once

• L2-live: A transition is L2-live, if there is a positive integer k such that the transition

can fire at least k times

• L3-live: A transition is L3-live, if there is some (infinite) firing sequence in which the

transition appears infinitely often

• L4-live: A transition is L4-live if it is L1-live for every state reached from m0

Reversibility : A PN is said to be reversible if for each marking m in R(N,m0) the initial

state m0 is reachable. In other words, the PN can always go back to the initial state after

firing some sequence of transitions. The properties boundedness, liveness, and reversibility
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are independent of each other; this means the existence of one of these properties does not

imply the existence of an other.

Persistence: A PN is persistent if for any two enabled transitions the firing of one will

not disable the other, i.e., no transitions are in conflict. Therefore, an enabled transition in

a persistent net will stay enabled until it fires. All marked graphs are persistent.

3.2.6 Structural Properties of Petri Nets

Structural properties are determined based on the structural properties of the PN graph.

Therefore, these properties do not depend on the initial markings of the PN.

Conservation: A PN is called strictly conservative if the total number of tokens remains

constant for all reachable states R(N,m0). A PN is called conservative with respect to a

weight vector w = (w1, w2, . . . , wn), n = |P |, wi > 0, if for all m ∈ R(N,m0),
∑
i
wim(pi) is

constant.

Structural boundedness: A PN is structurally bounded, if it is bounded for any initial

marking.

Structural liveness: A PN is structurally live if there is an initial marking that makes

the net live.

3.2.7 Classical Analytical Methods for Petri nets

We start with a few additional definitions: The reachablility tree (also occurrence graph)

of a PN is the graph that contains a node for each reachable marking and an arc for each

possible transition occurrence [14]. The root node is the initial marking of the net. If the

net is unbounded, the reachability tree will grow infinitely.

The coverability tree is closely related to the reachability tree. The symbol ω is used

at the jth position of a marking m′, if m′(pj) ≥ m′′(pj), where m′′(pj) is the marking of a

node at a higher level in the tree. In other words, the state is “covered” for all following

markings, i.e., the token count of pj will not decrease.

The coverability tree can be used to check for safeness, boundedness, conservation, and

coverability. For a bounded PN, the coverability tree is the same as the reachability tree.

A general problem arising from the use of these methods is state space explosion since the
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coverability or reachability tree can get very large for relatively small PNs. Hence these

methods are impractical for large manufacturing systems that can contain thousands of

places and transitions.

Invariant analysis is another approach to study PNs. A place invariant (also S-invariant)

is a solution y to the equation Ay = 0, where A is the incidence matrix. The non-zero entries

in y represent weights associated with the corresponding places, so that the weighted sum

of tokens over these places is constant for all markings reachable from the initial marking

[51]. These places are said to be covered by a place invariant. If each place is covered by a

place invariant, then the PN is bounded.

A transition invariant (T-invariant) is a solution m of the equation ATm = 0, where

“T” indicates the transpose. A T-invariant specifies a firing count vector that leads back to

the initial marking. However, it does not identify the exact order of the firings. Recall that

a firing vector only represents the number of firings for each transition. In many cases, this

means that it is possible for a firing vector to represent different firing sequences. Hence the

existence of a transition invariant is only a necessary condition for a PN to be reversible.

The PN representations of real-world models are very large. Hence, the classic prop-

erty checking methods, such as coverability tree analysis, invariant analysis, and algebraic

analysis hardly apply to such models [52].

3.2.8 High-Level Petri Nets

The classic PN formalism only encodes the state of the system in terms of a vector, which

indicates the number of tokens in each place. Therefore, it is difficult to model complex

systems where entities carry additional information. Also, the notion of time does not exist

in the classical formulation of PNs. Many extensions of the basic PN formalism exist that

try to incorporate time and other additional information into the net. These are called

high-level PNs, and have additional information attached to the tokens in the net.

Colored Petri nets are the most commonly cited high-level PNs. They were introduced

by Jensen [23]. These PNs use colored tokens; as a result, it is no longer possible to represent

the state only by the count of tokens for each place. The enabling of a transition depends
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not only on the presence of tokens in the input pace of the transition, but also on the color

of those tokens. The transition function can be very complex, as it can generate tokens of

different colors in the output places. Colored PNs can have a very compact representation

as they hold much more information, such as token colors and transition functions, than

classical PNs. Although the classical analytical techniques are not applicable directly, it is

possible to use net unfolding techniques that convert a colored PN to a standard PN.

Other types of high-level PNs include nets with abstract data types, well-formed (col-

ored) nets, and regular nets. Many different types and extensions exist, each having specific

firing rules and data types. Extensions of PNs with times are discussed in the next section.

3.2.9 Representation of Time in Petri Nets

As discussed in Section 3.2.8, the classic PN formulation does not have any notion of time.

Over time, a great number of extensions of PNs to capture time have evolved. The two

main categories are deterministic timed Petri Nets and stochastic timed Petri nets.

Deterministic timed transition nets associate deterministic firing delays to individual

transitions. A transition can only fire after it has been enabled for the respective determin-

istic time interval.

Deterministic timed places nets are the “dual” version of deterministic timed transition

nets; they associate firing delays with places. Deterministic timed arc nets have delays

associated with the arcs; in other words, there is a “travel” time along an arc for tokens.

Time Petri nets associate two time values with each transition; the earliest firing time

and the latest firing time.

Stochastic Petri nets associate exponential firing times with transitions. It can be shown

that a stochastic PN is essentially a compact representation of a continuous-time Markov

chain [51].

Generalized stochastic Petri nets are extensions of stochastic PNs that allow immediate

transitions in addition to timed transitions. This makes their analysis more complex than

the analysis of standard stochastic PNs.
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High-level stochastic Petri nets are extensions of high-level PNs that associate exponen-

tial firing times with transitions, similar to stochastic PNs.

Semi-Markovian stochastic Petri nets are extensions of stochastic PNs that allow a non-

exponential distributions for delay times. Figure 15 gives a hierarchical overview of timed

PNs.

Timed Petri Nets

Deterministic Timed Petri Nets

Stochastic Timed Petri Nets

Deterministic Timed Transition Nets

Deterministic Timed Places Net

Deterministic Timed Arc Nets

Time Petri Nets

Stochastic Petri Nets

Generalized Stochastic Petri Nets

High-level Stochastic Petri Nets

Colored Stochastic Petri Nets

Stochastic High-Level Petri Nets

Semi-Markovian Stochastic Petri Nets

Extended Stochastic Petri Nets

Deterministic Stochastic Petri Nets

Arbitrary Stochastic Petri Nets

Figure 15: Overview of Timed Petri Nets [51]

Deterministic timed Petri nets use fixed times that are usually associated with transi-

tions, places, or arcs. The firing rules can be quite variable. For example, in one version

of deterministic timed transition nets the enabling tokens have to be present during the
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delay time before the transition can fire. If the transition becomes disabled during this

time interval, the timer is reset. The transition can only fire when it becomes enabled again

and the enabling tokens are present during the entire delay time. In another version of

deterministic timed transition nets, there is no reset of the timer, so the transition can fire

if it is enabled at the scheduled firing time.

Another problem with the approaches above is the interpretation of firing delays because

it is often unclear when the firing of a transition actually starts. The firing of a transition of-

ten represents time durations, but in classical PNs it represents the instantaneous transition

of a discrete-event system to a new state.

A different approach, which is not mentioned above is interval timed colored Petri nets

[50]. They are based on colored PNs, but use timestamps on tokens to capture time. A

similar but simplified approach is used in the proposed simulation framework.

3.3 Object-Oriented Petri Net Simulation Framework

Fidelity refers to the accuracy of a simulation model in representing the behavior of the

real-world system [57]. It is closely related to validity, but also describes the level of detail

of the simulation model. Thus, a high-fidelity model is a valid and very detailed simulation

model. Unfortunately, there are not any established measures of fidelity in practice.

The focus for the application of the proposed simulation framework is on the produc-

tion scheduling level within a manufacturing system. Hence, this framework does not intend

to create high-fidelity simulations for complex material handling systems. The implicit as-

sumption is that a material handling system is already appropriately designed and therefore

does not present a bottleneck. The framework is capable of modeling capacitated trans-

portation systems, but is not intended to be used for modeling complex transportation

routing systems such as automated guided vehicle systems.

3.3.1 Relationship to Time Colored Petri Nets

The PN simulation framework has similarities with time colored Petri nets. For example, it

also uses tokens that have additional data assigned. These data are mainly times, priorities,

and attributes. However, the enabling rule for transitions is exactly the same as for classical
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PNs, i.e., only the required amount of tokens have to be available in each input place.

Attributes can be added to tokens, but they do not influence the enabling conditions for

transitions. Colored Petri nets can use complex enabling rules that involve tokens with

different colors. Here no colored tokens (in a traditional sense) are used, as the attributes

are not involved in enabling of transitions.

In classical and colored Petri nets the firing of enabled transitions is undetermined. This

means that all enabled transitions can fire in any order. For simulation of manufacturing

systems, this is not suitable, because all events need to have a defined ordering. This is

especially true for transitions that are in conflict, as different firing sequences will lead to

different simulation results. In classical or colored PNs, specific ordering of simultaneously

enabled transitions can only be implemented with inhibitor arcs, which assign a fixed order

between transitions through the capability of zero testing, i.e., a inhibitor arc can test if

there are zero tokens in a given place. However, this is “hard-coded” within the Petri

net and the only way to change the ordering is by changing the PN. Further, in order

to implement this, all transitions pairs that are in conflict have to be considered and an

ordering between them has to be provided.

The proposed simulation mechanism on the other hand provides a convenient way to

model the ordering of transition firings. It is possible to implement different dispatch rules

that require different firing sequences. The structure of the PN does not have to be changed

for this, only the dispatch rule that is assigned to a transition has to be altered. Further,

the mechanism also ensures that the appropriate job tokens are moved through the PN.

This means that if multiple job tokens are available in a place, the simulation mechanism

will remove the appropriate token with the highest priority. On the contrary, colored PNs

consider all tokens of the same type to be equivalent and no specific order is established

between them.

3.3.2 Advantages of Petri-Net-Based Formulation

The graphical nature and firm mathematical foundation of PNs offer a unique advantage.

Numerous analytical methods are available, which can prove, for example, certain structural
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properties. This is important during the model building process, so that there will be no

deadlock situations. A PN-based model is very adaptable; the model can be augmented

with additional places and transitions to address, for example, the addition of new machines.

Further, a PN combines the information of state and flow in one model. The flow of

goods, information, and resources can be modeled in a unified way. Distributed and parallel

processes can be modeled as well as synchronization of two or more processes. This allows

modeling of an operation in a very elegant and transparent way. It is also possible to model

finite capacities or shared resources.

The generation of the simulation model is very flexible yet rigorous. It can be decoupled

from execution, e.g., different parts of the model can be built independently and then put

together for execution. The underlying PN can also define the control structure of the

system. It is ideally suited to model pull systems. Transitions that remove tokens from a

storage place can also serve as “ordering” transitions, i.e., they can trigger the production

of new parts to replace the removed material.

The physical layout of a manufacturing system does not correspond directly to the

graphical structure of the respective PN. Manufacturing jobs may share the same physical

route through the manufacturing system. However, they are represented as different routes

in the PN.

This is in contrast to commercial simulation tools. The graph represented by the PN

will also become very large. Hence, it may not be possible to display the complete PN

graph for a large-scale model. This is, however, not a problem as the complete simulation

model is generated from verifiable sub-PNs; therefore, it is not really required to be able to

inspect the entire PN at once.

3.3.3 Overview of Object-Oriented Programming

Object-Oriented Programming (OOP) has revolutionized the way computer programming

is done. It is very different from the traditional functional programming. OOP is based

on the idea of objects. An object represents an abstraction of some physical object or just

some idea or concept that may be represented by an internal state [53]. Objects have fields
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or attributes that define their state and can be modified by invoking methods of the object.

The behavior of an object is specified in a class description. The object is said to be an

instance of the class that describes its behavior. The class description specifies the internal

state space of the object and defines the types of messages that may be sent to all its

instances. Hence, a class can be seen as a “blueprint” for an object.

OOP is based on the notion of sending messages to objects. Messages can either modify

or return information about the internal state of an object. A message that is sent to

an object will invoke the corresponding method of that object. Encapsulation is another

important concept in OOP because it allows hiding details of an object, so that other objects

can only use the public methods on the target object. This can significantly simplify the

software development process. Inheritance is another key concept in OOP. Existing classes

can be reused and extended in a way that they inherit characteristics from the ancestor

(super) class, while more specialized characteristics can be introduced. Polymorphism is

closely related to the concept of inheritance: it allows the use of objects in expressions

without knowing the specific type of the objects. During runtime, polymorphism ensures

that the right methods on the target object are invoked. An interface is a contract that

specifies which methods a class has to specify.

3.3.4 Core Elements of the Proposed Framework

As with the classical definition of a PN, the core elements of the proposed simulation

framework are transitions, places, and tokens. All of these elements are implemented as

objects. Arcs between places and transitions are not modeled explicitly, as places have

references to transitions and vice versa (each of these references is representing an arc).

With these simple elements, it is possible to model complex systems. Transitions represent

events, whereas places and their marking represent states. The class diagram in Figure 16

shows how these elements relate to each other.

A Place is an object that represents a place in the PN. Each Place has an id field,

which uniquely identifies it in the complete simulation model. The field inTransitions is

a List of Transition objects that represent the input transitions to the Place. The Place
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object can receive tokens from these transitions. This corresponds to the set •p of a place

p in a PN. The field outTransitions is a List of Transition objects, which represent the

output transitions of the Place. This is corresponds to the set p• of a place p in a PN.

There are subclasses of Place, which can represent resources or operators; these will be

introduced in Section 3.3.4.1.

The field tokens is a SortedSet of Token objects that represent the marking of the

place. A SortedSet is a set of objects, which is ordered according to a specific criterion, in

this case the timestamp of the tokens in the set.

The method addToken() is used during a simulation to add a token object to the tokens

set of the place. It uses a Token object as a parameter, which refers to the token to add.

The method removeToken() is used to remove a token from the place. The token to be

removed is a parameter of the method.

The methods addInTransition() and addOutTransition() are used when building

the PN. They add a Transition object to the inTransition list or the outTransition list

respectively. There are more fields and methods in the Place class, which are of auxiliary

+addToken()

+removeToken()

+addInTransition()

+addOutTransition()

+...()

-id : String

-inTransitions : List

-outTransitions : List

-tokens : SortedSet

-...

Place

-id : int

-priority : long

-timeStamp : long

Token

+fire()

+removeToken()

+sendToken()

+setPriority()

+updateTime()

+updateTimeAll()

+...()

-id : String

-inJob : Place

-outJob : Place

-batchIn : List

-batchOut : List

-inResources : List

-outResources : List

-inPlaces : List

-outPlaces : List

-toUpdate : SortedSet

-priority : long

-time : long

-enabled : bool

-dispatchRule : int

-delayTime

-rvType

-...

Transition

1
*

1

*

*

*

 

Figure 16: Class Diagram of Core Elements
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nature and are not shown in Figure 16.

A Token is an object that represents a token in a classical PN. However, it has extension

for time and priority, which are represented by the fields timeStamp and priority.

A Transition is an object that corresponds to a transition in a classical PN. Each

Transition object has a unique identifier stored in the field id. The fields inJob, batchIn,

inResources, and inPlaces are used to hold places that represent the set of input places

of the Transition object, i.e., the set •t of a transition t in a PN. Different names are used to

organize the simulation model better. The field inJob represent a place that holds Token

objects representing jobs in the manufacturing system. The field batchIn represents a set

of Place objects representing places with an arc weight w > 1. The field inResources

corresponds to places that represent resources. The field inPlaces is used for all other

places that do not belong to any of the previous types.

The fields outJob, batchOut, outResources, outPlaces are used to hold places that

represent the set of output places of the Transition object, i.e., the set t• of the transition

t. Their usage is analogous to the input places.

The field time is used to indicate the firing time of the respective transition. The

field priority is needed to resolve conflicts of transitions with the same firing time. The

field enabled indicates if the transition is enabled, i.e., it is eligible to fire. The field

dispatchRule is used to store the kind of queuing discipline used; the default is FIFO. The

field delayTime stores the time an activity will take. The field rvType represent the name

of the distribution that is used to model the delay time, the default value is DETERMINISTIC.

Any distribution can be implemented, as long the appropriate generator is available to the

framework.

The field toUpdate is a list of Transition objects that have to be checked when the

transition fires. A detailed algorithm to determine this set will be presented in Section 3.3.5.

The method fire() will remove the appropriate Token objects from the input places

and will place the appropriate tokens in the output places. The methods removeToken()

and sendToken() are used for that. The fire() method can be called only when the

transition is enabled. The method setPriority() is used to calculate the priority value
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of the Transition object based on the tokens in the input places. An algorithm will be

presented in Section 3.3.5.5. The method updateTime() will calculate the firing time of the

transition. The method updateTimeAll() will calculate the firing times and check enabling

conditions of the transitions in the toUpdate List.

The core elements above have a direct mapping to a classical PN N = (P, T,A,w). For

each place p ∈ P there is a corresponding Place object. Also for each transition t ∈ T ,

there is a Transition object. A simulation model is created by instantiating Place and

Transition objects and adding appropriate references to each other.
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Figure 17: Example

Example 2: Figure 17 shows a PN N = (P, T,A,w) with P = {P1, P2, P3, R1}, T =

{T1, T2}, A = {(P1, T1), (P2, T2), (R1, T1), (T1, P2), (T2, R1), (T2, P3)}, and unit weights. The

current marking of the net is m = {1, 0, 0, 1}. Each place is represented by an object. Place

P1 has the following field values: inTransitions = null, outTransitions = {T1}. Place

P2 has inTransitions = {T1}, outTransitions = {T2}. P3 has inTransitions = {T2},

and outTransitions = null. The resource place R1 has the field values inTransitions

= {T2} and outTransitions = {T1}. The field values for transition T1 are inJob = {P1},

outJob = {P2} , and inResources = {R1}. The field values for T2 are inJob = {P2},

outJob = {P3}, and outResources = {R1}. All other field values for the input and output

places are null. In this fashion the entire structure of the PN graph is stored as references

from places to transitions and vice versa. These references are also important for the

execution of the simulation model. ♦
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The simulation model is not coded in a traditional way. The model is generated “online,”

meaning that the simulator will create the PN structure from an input file, which is used

for the detailed specification of the system under study.

3.3.4.1 Subclasses of the Core Elements

For better organization of the model the aforementioned classes are extended with sub-

classes. For example, the class Place has subclasses Resource, Operator, ProcessPlace,

ControlPlace, and BatchPlace as shown in Figure 18. These objects are primarily used

to simplify the model generation.

+addToken()

+removeToken()

+addInTransition()

+addOutTransition()

+...()

-id : String

-inTransitions : List

-outTransitions : List

-tokens : SortedSet

-...

Place

Resource

Operator

ProcessPlace ControlPlace

+addToken()

+removeToken()

-weightIn

-weightOut

BatchPlace

Tool

Figure 18: Subclasses of Place

The Transition class has the subclasses FixedMaxPriority, FixedMinPriority, and

SwitchTransition. The class FixedMaxPriority has the subclass TriggerTransition

(see Figure 19). In most cases only the normal Transition class is used.

The class FixedMaxPriority will assume the maximum possible priority. Hence, when
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a transition of this type is enabled, it will be always ordered before other types of transition

in the FEL and will fire before them. The class TriggerTransition is used for transitions

with no input place, and therefore it is always enabled. The purpose of this type of object

is to create tokens in (potentially random) time intervals, for example, to release jobs at a

certain rate to the system or to trigger machine failures.

The class FixedMinPriority will assume the minimum possible priority. This will

assure that, when enabled, any other transition types with the same time stamp will fire

first.

The class SwitchTransition is used to route tokens to another place with a certain

probability. Usually the job token will be sent to the place that is specified in the field

outJob. For this class the JobToken will be sent to an alternative place with probability P ;

otherwise,it will be sent to the usual place. This type of transition is used to model rework

and scrapping of lots.

+fire()

+setPriority()

+updateTime()

+...()

-id : String

-...

Transition

+setPriority()

FixedMaxPriority

+fire()

+updateTime()

TriggerTransition

+sendTokens()

SwitchTransition

+setPriority()

FixedMinPriority

Figure 19: Subclasses of Transition
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The Token class is extended with the subclass JobToken. This type of object represents

manufacturing jobs that go through the system. Objects of the normal Token class are used

for all other purposes.

 

Figure 20: Subclass of Token

3.3.5 Execution Mechanism

After the PN is generated, the simulation model can be executed. Events correspond to

firing of transitions. In Figure 17, the event “start processing” corresponds to the firing of

transition T1. The event “end processing” corresponds to the firing of transition T2. To

simulate PNs, the simulator has to scan transitions and their input places to determine if

they can fire. One can scan all transitions in the net after each transition firing, but this

would be wasteful since only some transitions are affected by the firing of a transition. For

example, if transition t fires, only the transitions that have input places whose markings

were changed by t are affected.

3.3.5.1 Enabling Rule

A transition is enabled if there are enough tokens in each of the input places. The pseudo-

code for checking whether a transition t is enabled is as follows (comments are marked

with .):
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Check If Enabled (Transition t)

1 t.enabled← true

2 for each place p ∈ •t

3 do if |p.tokens| < w(p, t)

4 then t.enabled← false

5 break � transition is not enabled

If there is a place that has fewer tokens than the required amount w(p, t), the loop

will be abandoned. In most cases the arc weights are equal to 1 except for objects of type

BatchPlace, which is used for batch operations.

3.3.5.2 Timing Mechanism

It is not sufficient to check if a transition is enabled; its firing time also needs to be deter-

mined. Tokens carry timestamps, which determine when they will be eligible to be used

by a transition. In order to save computing steps, the algorithm for updating time is com-

bined with the algorithm Check If Enabled for enabling transitions. The firing time of a

transition is determined by the maximum timestamp of the enabling token. If there is more

than one token in a place and the respective arc weight is one, the token with the smallest

timestamp is the enabling token for that place.

Example 3: Consider the PN in Figure 21. T1 and T2 are the transitions that rep-

resent the beginning of processing involving resource R1. The input places for T1 and

T2 are {R1, P1} and {R1, P2}, respectively. R1 has one token with timestamp {〈5〉}, P1

has two tokens with timestamps {〈11〉, 〈25〉}, and P2 has three tokens with timestamps

{〈15〉, 〈35〉, 〈40〉}. Note that these tokens are all sorted according to their values. Both

transitions T1 and T2 are currently enabled. The enabling time for T1 is 11 because this is

the value of the smallest timestamp in P1 and since the value of the timestamp in R1 is 5.

The enabling time for T2 is 15 since that is the value of the smallest timestamp in P2. ♦

Algorithm Update Time is used to determine if a transition t is enabled and when it

is eligible to fire.
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Figure 21: Timing Example

First the variable t.enabled is set to true. Then the algorithm iterates over the set of

input places of the transition. For each place p in that set there are two cases that the

algorithm has to check: w(p, t) = 1 (the arc weight from the input place p to transition t is

1) and w(p, t) > 1. The tokens in p.tokens are ordered according to their timestamps. The

first element will have the smallest timestamp. If w(p, t) = 1, the value of this timestamp is

read and stored temporarily in the local variable timeStamp. If w(p, t) > 1, the algorithm

will iterate over the first w(p, t) tokens in p.tokens. If |p.tokens| < w(p, t), the transition

cannot be enabled; hence, the loop will be aborted with t.enabled being set to false. Clearly,

this algorithm is sufficient if there are no (conflicting) transitions, i.e., transitions that share

an input place, or if the firing times are all at distinct points in time. Since this cannot be

guaranteed for most systems, a conflict resolution mechanism needs to be implemented, as

is discussed in Section 3.3.5.5.
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Update Time (Transition t)

1 t.enabled← true

2 maxTimeStamp← 0

3 timeStamp← 0

4 for each place p ∈ •t

5 do

6 if w(p, t) = 1

7 then if |p.tokens| > 0

8 then timeStamp = timestamp of first token in p.tokens

9 else t.enabled← false

10 break � transition not enabled

11 else if |p.tokens| ≥ w(p, t)

12 then count← 0

13 for each token T ∈ p.tokens

14 do

15 timestamp = T.timestamp

16 count← count+ 1

17 if count = w(p, t)

18 then break � leave inner loop

19 else t.enabled = false

20 break � leave outer loop, transition not enabled

21 if timeStamp ≥ maxTimeStamp � find maximum timestamp

22 then maxTimeStamp← timeStamp

23 if t.enabled = true

24 then t.time← maxTimeStamp

25 add t to FEL
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3.3.5.3 Transition Firing

The previous algorithms determine the eligibility and time of a transition to fire. When a

transition t actually fires the following steps are undertaken:

• Remove tokens from all input places p ∈ •t

• Add tokens to all output places p ∈ t•

• Update time of all affected transitions

When a transition t fires, it removes the enabling tokens from each input place p. The

removal of a token of type JobToken is different. As this type of token is representing jobs

or lots that move through the system, they should not be discarded because their attributes

contain additional information. Instead, they are removed from the inJob place and are

added to the place outJob.

The last phase of the transition firing is to add the appropriate amount of tokens to the

output places. First the timestamp of the JobToken object is set to t.time+ t.delayT ime,

which is the firing time of the transition plus the delay time for the transition. Recall that

the delay time can be either deterministic or it can be a random variate generated according

to the distribution specified in the field rvType of transition t. The JobToken object is then

added to the place that is specified in the field t.outJob. Further, new Token objects are

created with a timestamp of value t.time+ t.delayT ime for each output place of transition

t. If the arc weight to the output place is greater than one, the appropriate number will be

generated and added to the place.

After a transition fires, all affected transitions have to be updated since the firing tran-

sition removes tokens from its input places and deposits new tokens in its output places.

As the state of the system is represented by the marking of all places, the change of state is

represented by the change of tokens in these places. This also means that only transitions

that have at least one of these places as an input place are affected. Note that transitions

that only have one of these places as an output place cannot be affected, in accordance

with the enabling rule. Places that received tokens can enable their output transitions, and
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Figure 22: Example for Updating Time

places that have tokens removed might disable their output transitions.

Example 4: The PN in Figure 22 depicts a situation where transition T1 has just fired.

The current simulation time is 11, since this is the timestamp value of the tokens in the

output places P3 and P4. Transitions T2 and T3 each have an input place that is also an

output place of transition T1. Therefore, they need to be updated. T4 also needs to be

checked, as it is in conflict with transition T1 (i.e., it shares the input place P1). Note

that it is not necessary to check transition T5 since it cannot possibly become enabled or

disabled when T1 fires. Finally, the firing transition itself obviously needs to be updated as

it removes a token from its input place. ♦

The set of transitions that need to be updated each time a transition fires is stored in the

field toUpdate. For transition T1 in Example 4, this field has the transitions {T2, T3, T4}.

The algorithm to determine this set is as follows:
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Determine Set toUpdate (Transition t)

1 for each place p ∈ •t

2 do for each transition t′ ∈ p•

3 add t′ to t.toUpdate

4 for each place p ∈ t•

5 do for each transition t′ ∈ p•

6 add t′ to t.toUpdate

When updating the time after a transition t fires, all transitions in the set t.toUpdate will

be updated according to Algorithm Update Time. Prior to that instance, the transition is

removed from the FEL if it is enabled. Once the time is updated and the transition enabled,

it will be added to the FEL again in order to ensure proper ordering of the list.

Under this timing scheme, new events (i.e., newly enabled transitions) will always have

enabling times that are greater than or equal to the last firing time. This will ensure the

proper temporal firing sequence of transitions. The above mechanism will not enable tran-

sitions with timestamps in the past. This can be expressed with the following proposition:

Proposition 1. The algorithms for updating time and firing transitions ensure that no

transitions will become enabled with enabling time less than the current simulation time.

Proof. The current simulation time tnow is equal to the firing time of the last transition t that

fired. As the FEL is ordered according to enabling time of the transitions, all other enabled

transitions have a timestamp greater than or equal to tnow. Transition t might enable other

transitions. All tokens that are generated by the firing of t will have a timestamp with value

at least tnow. When one of the tokens that were sent by t is received by a place p, the place

can be either empty or it can already contain other tokens. If it is empty and a token is

added, this might lead to enabling of a transition in its output transition set. The firing time

of this transition can never be smaller than the timestamp tnow of that token because the

update time algorithm checks every place for the timestamp of the tokens and determines

the maximum timestamp. On the other hand, if the place already contained a token, then

some or all of the transitions in its output set might already have been enabled. Transitions
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that already were enabled will stay enabled, whereas transitions that have not been enabled

might become enabled, i.e., if the place was of the type BatchPlace (as this type is used to

model arc weights that are greater than one). If a transition becomes enabled, the algorithm

update time determines the maximum timestamp value of the enabling token. This value

will be the enabling time. Therefore, it is always ensured that transitions will always fire

in a non-decreasing order of their enabling times.

3.3.5.4 Execution of Petri Net Model

The execution of the PN model proceeds as follows. After an initial scan of all transitions,

the FEL will contain all currently enabled transitions. Then the simulation will enter a

loop that will remove the first transition from the FEL at every iteration until the FEL is

empty or the termination time has been reached. The main loop looks as follows:

Run Simulation

1 while FEL = ∅

2 do t = first element of FEL

3 if t.time > simulationEndTime

4 then break � simulation end

5 else t.fire()

This algorithm is very similar to the standard timing routine for any discrete-event

simulation. Note that it is not necessary to have a global timing variable and time advance

mechanism for this variable, as the current time can always be read from the firing time of

the last transition.

3.3.5.5 Conflict Resolution

If the firing times of all transitions are unique, there will not be conflicts amongst transitions.

Depending on the network structure, the processing sequence of transitions with exactly

the same enabling time might not be important. However, the processing sequence will

be important for transitions that are in conflict with each other. In that case, the order

can have an important effect on subsequent events, as a transition that fires will usually
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enable or disable other transitions. The classical approach to ensure a certain order of firing

transitions that are in conflict is to use inhibitor arcs. This can be done for each pair of

transitions that are in conflict. This is a static solution that is permanently encoded in the

PN.

In order to have unique ordering in or setting, transitions have a field priority, which

takes on integer values. Transitions in the FEL are then ordered first according to their

firing time and secondly according to their priority. If the priorities are also equal, then

they will be sorted according to their identifier in the field id, to ensure an unambiguous

ordering.

Timing Mechanism The timing mechanism is essentially the same as before. If a transi-

tion is enabled and the firing time has been determined, then the priority of that transition

also has to be determined. For this purpose the method setPriority is called.

Set Priority The priority is set based on the token field priority of the JobToken

object. This allows specifying higher priorities to certain jobs in order to allow them to

seize resources before lower priority jobs. Priorities are only determined by the places that

hold objects of type JobToken. These places are stored in the field inJob of the Transition

object. The algorithm for calculating the priority of a transition t is as follows:

Set Priority (Transition)

1 priority ← Long.MIN VALUE � set priority to the lowest possible value first

2 for each token T ∈ inJob.tokens

3 do if (T.timeStamp ≤ t.time) ∧ (T.priority > priority)

4 then priority ← T.priority

The object inJob refers to the input place of transition t that holds the tokens represent-

ing jobs. The algorithm iterates over all tokens in that place and finds the token with the

maximum priority and a timestamp less than or equal to the firing time of the transition.
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Remove Token When a transition fires, it removes tokens from the respective input

places. For a classical PN, tokens are just represented as an integer count, and hence,

removing a token means simply decreasing a counter by one. This is not applicable to the

proposed framework as every token is represented as an object. This also means that tokens

that are removed from a place need to be uniquely determined. The algorithm for removing

a single token from a place p works as follows:

Remove Single Token from Place p

1 S = ∅

2 for each token T ∈ p.tokens

3 do if T.timestamp ≤ firing time of transition

4 then add T to S

5 find token T ′ with highest priority in S

6 remove T ′ from p.tokens

There are two parts to the algorithm. First all tokens with timestamps that are less or

equal to the firing time of the transition are added to a set S. Then the token with the

highest priority in that set is chosen. This token is removed from the original set of tokens

of place p. For places that are connected to transition with arc weight n, the algorithm for

removing these tokens is:
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Remove n Tokens from place p

1 S = ∅

2 for each token T ∈ p.tokens

3 do if T.timestamp ≤ firing time of transition

4 then add T to S

5 sort S according to priority of token

6 count← 0

7 for each Token T ∈ S

8 do count← count+ 1

9 remove T ′ from p.tokens

10 remove T ′ from S

11 if count = n

12 then break

The first part is identical to algorithm Remove Single Token from Place p. The

set S is ordered according to the priorities of the tokens. The second part iterates n times

over the set S, each time removing a token from p.tokens. This in effect will remove n

tokens with the highest priorities from the place.

3.3.5.6 Implementation of Dispatch Rules

A classical PN cannot model directly any dispatch rules since tokens are only represented

as integer values. (Even the simplest FIFO dispatch rule cannot be modeled.) The use of

the concept of priority allows the implementations of different dispatch rules. The FIFO

rule is implemented by assigning a priority equal to the negative of the execution time to

the JobToken object when it is removed from the input place. When a transition t fires the

FIFO dispatch rule is applied as follows:

FIFO Dispatch Rule

1 remove token T from t.inJob

2 T.priority = – firing time of transition t

3 add T to t.outjob
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Figure 23: First FIFO Example

<50,-50> <150,-150>

P
1

P
3

T
1

T
2
<250,-250>

P
2

<100,-100>

P
4

P
6

T
3

T
4

P
5

<250>

 

Figure 24: Second FIFO Example

Example 5: Figure 23 illustrates a simple processing step that seizes a single resource.

The processing time is a 100 time units; hence, the delay time at transition T1 is 100. The

values for timestamp and priority are given as 〈timestamp, priority〉. Place P1 represents

the queue that is waiting for resource R1. Place P2 represents the processing state, and

place P3 represents the buffer after processing is finished. The current simulation time is

100. The token in P1 has timestamp = 50 and priority = −50, indicating that this job

arrived to P1 at time 50. Place P2 holds a token with timestamp = 250 and priority

= −150. This corresponds to a job whose processing was started at time 150 and will finish

at time 250. The priority is set to −150 since that was the firing time of transition T1. ♦

Example 6: Figure 24 shows two parallel process steps that compete for the same re-

source, R1. P1 and P2 both hold one token, which means that there are two jobs waiting for

R1. The transitions T1 and T3 are currently enabled at time 250. Since they are in conflict

which each other, their ordering in the event list is such that T1 will fire before T3, because

the token priority in P1 is −50 versus −100 for the token in P4. This enforces the FIFO
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rule as the token in P1 arrived before the token in P4. ♦

Another possibility is to assign fixed priorities to job tokens. With fixed priorities, it

is possible to implement a dispatch rule such as earliest due date (EDD). Priorities are

assigned according to the following rule when a transition t fires:

EDD Dispatch Rule

1 remove token T from t.inJob

2 T.priority = −due date

3 add T to t.outjob

 

Figure 25: Example with Fixed Assigned Priorities

Example 7: Figure 25 shows the same PN as Figure 24, but now the job in place P1 has

a due date of 3000 and the job in P2 has a due date of 2000. Both transitions T1 and T2 are

currently enabled. As the due date of the job in P4 is earlier, transition T3 will fire first.

Priorities do not have to be manipulated when a token is removed from a place as they will

stay constant in this case. ♦

Other dispatch rules that require updating the priorities each time a transition fires are

also possible to model. The shortest processing time remaining (SPTR) dispatch rule can

be applied as follows when transition t fires:
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SPTR Dispatch Rule

1 remove token T from t.inJob

2 T.priority = −processing time remaining

3 add T to t.outjob

Further, combined rules can be implemented. For example, jobs that follow a FIFO rule

will always have a negative priority assigned. This can be combined with high priority jobs,

by assigning them a positive priority value. This way these jobs will always be preferred,

yet the FIFO order of the other jobs will not be altered.

3.3.6 World View of the Proposed Framework

The proposed framework does not follow any specific simulation world view. As with every

discrete-event simulation, it also follows the event-scheduling approach at a low level. Firing

transitions correspond to event executions. After a transition fires, other transitions can

become enabled, i.e., new events will be scheduled. The framework also has aspects of

existing major world views. For instance, it can describe the movement of an entity through

a manufacturing system similar to the process-interaction world view. The fields inJob and

outJob of the transition class are used for this purpose. Also, elements of activity scanning

are present as the execution or firing of a transition will cause a state change of the system;

this state change causes a scanning of all the affected transitions.

3.3.7 Advantages of the Proposed Framework

One of the main advantages of the framework is that it is not necessary to code a simulation

model directly in a simulation language. The simulation is modeled in terms of a PN

that resides as a data structure in main memory. Coding is only necessary to specify the

scripts that will generate the PN. This PN is also the conceptual model of the simulated

system; therefore, the translation step from the conceptual model to the computer model

is eliminated reducing potential implementation errors. Only a few core elements are used

in the framework, which also reduces potential programming errors. Another significant

advantage is that the behavior of the simulation model can be changed during a simulation

run between the executions of events. For instance, it is possible to augment the PN with
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additional transitions and places in order to model new process routes. In other simulation

languages the simulation model is coded and compiled or interpreted. This means that any

changes in the simulation model have to be coded first and then compiled. Hence it is not

possible to alter a simulation model once it is loaded into memory.

3.3.8 Limitations of the Proposed Framework

The limitations of this framework are essentially the same as for all discrete-event systems.

Only certain points in time can be captured, usually when the system state changes, i.e.,

event occurrences. Hence the framework does not provide any mechanism to model any

continuous-time systems. This is usually not a problem as most systems in the IE domain

are discrete-event systems. This might be different for the simulation of the actual physical

manufacturing process, such as milling. However, the continuous nature of time can be

captured, as the base time unit can be chosen arbitrarily small. As we stated earlier, the

framework has limited support for complex material handling systems such as AGVs or

conveyors.
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CHAPTER IV

SEMICONDUCTOR MANUFACTURING SIMULATION DATA

SPECIFICATION

This chapter introduces a specification for the data that is used to generate the PN-based

simulation model. According to the Webster’s Dictionary [3] a specification is “a detailed

precise presentation of something or of a plan or proposal for something.” In this case it

refers to the detailed description of a manufacturing system for the purpose of simulation.

Here the term Simulation Data Specification will refer to the precise description of

the data that will be used to generate the simulation model. There exist very few data

specifications for discrete-event simulations in the literature. One of the few examples can

be found in [28, 27], where the NIST XML simulation interface specification is used. This

specification was first introduced first by [32], and is still under development.

The actual Sematech data set represents already a limited form of specification. How-

ever, it is in table format and cannot express explicitly the relationship between all the

entities in the simulation model. Therefore, an object-oriented model was developed.

4.1 Semiconductor Wafer Fabrication

Semiconductor wafer fabrication is considered to be one of the most complex and capital

intensive manufacturing processes [44]. It involves several hundred processing steps. The

number of operations that have to be carried out exceeds the number of available machines.

This forces wafers to visit the same machines more than one time (re-entrant lines). In ad-

dition, some wafers have to go through rework processes, which adds even more complexity.

Wafer fabs can be described as complex job shops [29]. They contain job-specific re-

entrant flows across a number of unique tool groups with multiple, identical machines op-

erating in parallel. A re-entrant flow is characterized by jobs that require often repeated

processing by the same tool along their process route. Some tools process jobs in batches,

while others require sequence-dependent setups. Wafers are grouped in lots, which follow
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specific process routes. Each wafer in a lot will follow the same sequence. However, there

can be different lots in the wafer fab, which follow different routes through the system.

Some tools in the wafer fab can be loaded with a single lot, whereas others will accept

batches of several lots. For example, several wafer lots will be batched in a furnace that

can hold 200 wafers [44].

4.2 Sematech Data Set

The Sematech data set describes several semiconductor fabrication facilities and is available

from the Modeling and Analysis for Semiconductor Manufacturing Laboratory website [1].

It is available to the public in order to assist the evaluation and comparison of simulation

tools, analytical tools, and control strategies. The Sematech data set provides researchers

and practitioners with actual data that can be used to benchmark control strategies and

software.

The data set consist of seven sets, each describing a different semiconductor facility.

Every set consists of several files describing the process routes, rework sequence, tool sets,

operator sets, and release rates. The process route and rework sequence files describe each

processing step and all required tools and operators for each step. Further, all relevant time

information is given: loading times, unloading times, setup times, and processing times.

Batch sizes, scrap probabilities, and rework probabilities are also provided. The tool set file

describes each tool set and available quantity as well as down times for each tool set. The

operator set file specifies the operators, available quantities, and their break times. The

release file specifies the release rate and the lot size for each product of the facility.

4.3 Simulation Data Specification

This simulation data specification describes how the elements of the semiconductor manu-

facturing systems are represented. This approach differs from what commercial simulation

software uses. Simulation models that are created in commercial software can only be saved

in a format specific to the simulation software package. This format or data specification

is merely a way to store the elements and modules that are used in the simulation model.

The data specification that is presented here refers to the actual physical simulation system.
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The simulation model is automatically generated from this specification.

This approach has several advantages because the data is represented in the manufac-

turing domain. Any changes in the simulation model are made in this domain. This avoids

programming errors, as there is no simulation code to change.

The following classes or object types are the main elements used to represent the fab-

model: Fabmodel, Process Route, Process Step, Tool Set, and Operator Set.

4.3.1 Fabmodel

This class represents the root for all the other elements, i.e., it contains all the other objects

for the simulation model. There is exactly one instance of this type of object for each data

set.

4.3.2 Product

This class is used to represent product data, such as id, product name, and release rate.

4.3.3 Process Route

This class holds all the information of one specific process route. It contains all the process

steps that the route consists of. There is exactly one process route for each product produced

by the wafer fab.

4.3.4 Process Step

This class holds all data that refer to a single process step. These data are processing times,

required resources, operation description, loading and unloading times, scrap and rework

probabilities, and travel times. This basic class is used to model process steps that process

wafer lots one-at-a-time. It models the most common type of process step. It serves as a

basis for two subclasses:

• Batch Process Step

• Process Step with Setup

The Batch Process Step represents process steps that can batch lots together and process

them at the same time. Lots from different process routes can be batched together if the
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batchId field is identical. After processing is finished, each lot will continue its own process

route. Each batch process step has a minimum and a maximum capacity for the number of

wafers that can be processed at simultaneously.

The Process Step with Setup is used to model steps that require a setup of a tool. There

is a specific setup time and a group setup time. The specific setup time is needed for every

lot that has to be processed, whereas the group setup time is only needed when the previous

processed lot belongs to a different setup group.

4.3.5 Tool Set

The tool set class describes the machines that are used to process the wafers. It has fields

for id, description, and quantity. It there is more than one tool, all tools is treated

as equivalent. Further, there are fields that indicate if the tool has to be loaded and/or

unloaded by an operator. If the tool is used in a setup process step, the setup states

are listed in the field setup states. Downtimes are also listed in the field downtimes with

description, duration, and times between failures.

4.3.6 Operator Set

The operator set class describes the operators that are needed to operate the tool sets in

the waferfab. It has fields for id, description, and quantity. If quantity is greater than

one, all of the operators in the set are considered identical.

4.3.7 Rework Sequence

Rework sequences have the same data format as process routes. A rework sequence also

consists of process steps. If the rework probability is greater than zero at a particular

process step, then there is a chance that a wafer lot will have to follow the specified rework

sequence after that step is completed. After the lot goes through the rework sequence, it

returns to the original process route and enters it at a step that can be located after or

before the process step where the lot left the original route.
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4.3.8 Representation of Control Policies

The Sematech data set does not contain any data for control policies. It merely provides

release rates for each product, i.e., a pure push policy is assumed.

The data is stored as an XML file. Appendix A.3 lists the complete XML schema. The

advantage of XML is that it has become an industry standard and parsers are available

that can automatically read such files. The following class diagram shows the relationships

between all the elements. Some objects implement the Comparable interface. This is

required to provide a unique order for the objects that are stored in sets and lists, and is

mentioned here only to describe the object model completely.
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Figure 26: Object Model of Manufacturing System Specification
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CHAPTER V

SIMULATION MODEL GENERATION

The typical way to create a simulation model nowadays is to use a Commercial-of-the-Shelf

simulation package. These packages usually have graphical user interfaces and reduce the

programming effort to dragging and dropping of modules into a screen, connecting, and

parameterizing these modules. However, this process can become cumbersome for large

models. Debugging can be difficult, as data is often entered in many different dialogs that

would have to be checked. The graphical representation is also limited since not all details

of the model can be presented. A basic problem involves proprietary issues, as software

vendors are reluctant to make the source code available. Therefore, it is often not clear how

specific modules behave on a detailed level.

This chapter deals with the fundamental problem of generating a simulation model based

on a given specification for a semiconductor manufacturing system. The resulting simulation

model should have certain properties, e.g., absence of deadlocks and boundedness. The

dynamic behavior of the simulation model is based on a PN, as described in Section 3.3.

5.1 Considerations for the Generation of Simulation Models Based on
Petri Nets

Traditionally, a PN is first built for a specific system, and then traditional analytical meth-

ods are used to analyze its properties such as boundedness and liveness. This approach can

work well for small manufacturing systems. For larger systems the state space explosion

problem complicates substantially the analysis of the respective PNs via traditional meth-

ods. For certain special classes of PNs, polynomial time algorithms for deadlock avoidance

exist. The analysis of certain classes of resource allocation problems are examples of this

approach [40].

The previous discussion motivates the following fundamental problem for this research:

Given the specifications of a manufacturing system, model the system as a PN such that its
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structure and initial markings make it live, bounded, and reversible.

Liveness is important for the modeling of shared resources, since they are a potential

source of deadlocks. A simple example can illustrate this: A resource that is seized by one

process cannot be released until another resource is released by another process and vice

versa. Hence, the proper modeling of mutual exclusion becomes essential. For liveness,

it will be required that every transition in the PN will be L4-live. Recall that an L4-live

transition can potentially fire infinitely often (Section 3.2.5). A lower level of liveness means

that the transition might fire but can become eventually dead. Hereafter, the term “live”

will be used in place of “L4-live”.

Boundedness is desirable because every finite system can only have a finite number

of entities. It may not be required in a strict sense as a standard queuing systems are

unbounded. Reversibility is required because the system should be able to return to the

initial state.

5.2 Mapping of Fabmodel Elements to Petri Net Simulation Model

This section discusses how each of the elements of the fabmodel described in Chapter 4

are represented within the PN. This representation forms the basis for the algorithms that

generate the PN simulation model.

5.2.1 Tool Sets

Each tool set is represented by a place in the PN. The corresponding object type is the

Resource type of the framework. Each place that represent a tool set will have tokens,

representing the number of tools available. Some tool sets have different setup states.

These tool sets are represented by a set of places in the PN. For each setup state of the

tool, there is a corresponding place. The number of tokens in one place will correspond to

the number of tools available that are in the corresponding setup state.

5.2.2 Operator Sets

Operator sets are modeled in the same fashion as tool sets. Each operator set is represented

by the Operator type of the framework. Each set represents a set of operators, who are
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considered identical, i.e., they are all able to perform the same tasks with identical distribu-

tions for task duration. The number of tokens in a place indicates the number of operators

available.

5.2.3 Process Routes

A process route consists of a series of process steps. Each route describes how a wafer lot is

routed through the wafer fab. The PN simulation model generation for the process routes

works as follows: For each process route, each of its process steps is generated sequentially,

beginning with the first. For the detailed description of how the process steps are generated,

see Section 5.2.4.1.

5.2.4 Process Steps

There are three main types of process steps (see Section 4.3.4): the Basic Process Step, the

Batch Process Step, and the Process Step with Setup.

The Basic Process Step corresponds to the object type processStep of the data specifi-

cation. Each of these three main types has a mapping to the PN. The following subsections

will describe these mappings in detail.

5.2.4.1 Basic Process Step

Figure 27 shows the Basic Process Step in its simplest form. P1 is the input place. A

jobToken will first arrive here. P2 represents processing and P3 represents the completion

of the process step. P3 will also be the input place of the next process step. Transition TSP

represents the beginning of processing. It consumes a token from the tool set place R1 and

the operator set place O1. Transition TSP will also add the processing time to the token.

After processing is finished, TEP will fire and add a token to each of the tool set and the

operator set places, i.e., these resources are released. Note that the operator and tool set

places can have arcs to other process steps, which are not shown here.

Figure 28 shows the Basic Process Step with an extension to model transportation

within the tool. The first part is identical to Figure 27. After processing, the wafer lot has

to be transported within the tool. Since the transportation process does not require any
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Basic Process Step
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Figure 27: Basic Process Step

resources, it can be simplified as a simple time delay. Transition TM will add this delay to

the token in P3 and deposit it in P4.

Basic Process Step with in Tool

Travel Time
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Figure 28: Basic Process Step with In-Tool Travel Time

Figure 29 shows the Basic Process Step with partial operator processing. The Sematech

data set specifies an operator process fraction, which is the fraction of time the operator is

needed for lot processing. A fraction of one means that the operator is needed for the entire

time. If the fraction is greater then zero and less then one, processing is split into two parts:

first, the lot is processed with the operator for the proper fraction of time and then the lot

is processed without him/her. Transition TSP represents the start of lot processing with

the operator. One operator and one tool are required in order to start. Transition TEPO

represents the end of processing with the operator. At that time the operator is released

by putting a token back into the operator set place.

Figure 30 shows the Basic Process Step with operator loading. Transition TSL represents

the start of the loading process. Transition TSP marks the end of the loading and the

beginning of the processing of the lot. In this example, the operator is used throughout

until processing has finished.
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Figure 29: Basic Process Step with Partial Operator Processing
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Figure 30: Basic Process Step with Operator Loading

Figure 31 shows the Basic Process Step with operator loading and unloading. This is

similar to Figure 30 with the addition of Transition TEL. Transition TEP marks the end of

processing and the beginning of the unloading step, and TEL marks the end of unloading.

The operator is used for entire time for loading, processing, and unloading.

Basic Process Step with Operator

Loading and Unloading
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Figure 31: Basic Process Step with Operator Loading and Unloading

Figure 32 shows the Basic Process Step with travel time to next tool. For some process

steps, transportation to the next tool is explicitly modeled. After the processing phase is

finished, the job token will be in place P3. Transition TST then seizes the required operator

token for transportation and Transition TET releases this operator token at the end of the
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transport.

Basic Process Step with Travel Time

to Next Tool
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Figure 32: Basic Process Step with Travel Time to Next Tool

5.2.4.2 Set Priority

Figure 33 shows the Basic Process Step with a set priory transition. For each process step,

there is a transition at the beginning of the step that will set the priority for the token to

the appropriate value. Different dispatch rules (see Section 5.2.8) can be implemented by

assigning the appropriate value to the job token at TP . This transition is present at the

start of each process step, but is omitted in most illustrations. The other transitions of the

process step will keep the assigned priority value constant.

Basic Process Step, Set Priority
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Figure 33: Basic Process Step, Set Priority

Figure 34 shows the Basic Process Step with all options discussed above. Place P0

represents the input place for the process step. Transition TP will set the priority of the job

token. Transition TSL marks the start of the loading process, and Transition TSP represents

the end of the loading and the beginning of the processing with operator. Transition TEPO

corresponds to the end of the processing with operator, and releases the operator seized

by Transition TSL. Transition TEP denotes the end of processing and the beginning of the
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unloading process — it seizes the operator again. Transition TEU represents the end of

the unloading process and releases all resources. Transition TM represents the travel time

within the tool. Transition TST seizes the operator for the transport to the next tool, and

TET releases the operator again. Note that the tool is seized during the entire time, starting

with the loading process at TSL until the unloading has finished at TEU . The transitions

TSL, TSP , TEP , TEPO, TM , and TST all add the appropriate times to the token timestamp,

to represent the respective time delays.

Basic Process Step with all Options
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Figure 34: Basic Process Step with all Options

5.2.4.3 Batch Process Step

This section will introduce the Batch Process Step, which has the ability to batch several

lots together and process them at once (e.g., wafer lots that are processed together in an

oven). The wafer lots that are batched together can also come from different process steps,

as long as the batchId fields are identical (see also Appendix A.1). For a given resource,

all lots from process steps that use this resource and have identical batchId fields, can be

batched together.

A naive version of modeling a Batch Process Step could look like Figure 35, which shows

a Batch Process Step with a batch size of four wafer lots. Whenever four job tokens are

present in P1, they are consumed at once by TSP when processing starts. At the end of

processing, TEP puts four job tokens back into P3.

The problem with this approach is that it only allows for modeling Batch Process Steps

with a fixed size. However, the data sets specify minimum and maximum batch sizes.

This makes it very hard to model it in a straightforward manner. This reason for this is as
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follows: when the minimum number of wafer lots is present, processing can begin. However,

since the capacity of the process step is greater than the minimum lot size, the number of

lots that have to be processed can vary between the minimum and maximum batch sizes.

Further, the number of events that start the processing of the lots can be different.

Naïve Batch Process Step

P1 P2 P3

O1

R1

T
SP

T
EP

4 4

Figure 35: Naive Batch Process Step

Figure 36 shows a rather simple Batch Process Step that addresses the most basic

version of this problem. It has a minimum batch size of two wafer lots and a maximum

batch size of five lots. The process route that wafer lots will follow is represented by the path

{P1, TS1 , P2, TS2 , P3, TEP , P4}, where P1 is the arrival place and P4 is the end of processing

place. P3 represents the processing stage and P2 is an intermediate place needed to model

the batch mechanism. Initially, the control place C holds two tokens. This represents the

minimum batch size. Lots that arrive in P1 will trigger the firing of TS1 . After two firings,

TS1 will be disabled, as the two tokens in C will be consumed. These firings of TS1 will

place two tokens in B1. B1 then triggers TB1 , which will seize the resource R1. When

TB1 fires, it will consume the two tokens in B1 and will place two tokens back into C and

B10. Further, it will place three tokens in L and one in B2. This represents the “leftover”

capacity, i.e., the difference between maximum and minimum capacity. These tokens enable

TP1 and allow additional lots to enter the processing stage P3. If there are no lots waiting

in P1, the tokens in place L are consumed by TD2 . The tokens in B10 enable TS2 , so that

the tokens in P2 can enter P3. At this stage all lots that are processed are in P3.

The token in B2 enables transition TB2 , which is responsible to add the proper delay

time representing the processing time and then move the token to B3. This in turn enables

TB3 , which will add a token back to R1 (thereby releasing the tool), and then it will add
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a number of tokens equal to the maximum batch size to B20. These tokens will have

timestamps equal to the release time of the resource, and will enable TEP . Transition TEP

will then move the token to P4, which marks the end of processing. If the number of lots

processed was less than the maximum batch size, there would be tokens leftover in B20,

which will be removed by TD1 .

In order for this mechanism to work, it is important to follow a specific firing order of the

enabled transitions. Figures 75 and 76 in Chapter 6 show a detailed analysis. The transitions

TB1 , TS1 , and TP1 are of the normal type Transition. Their priority is determined by the

JobTokens that are waiting to be processed. Transition TP1 will always fire before TS1 in

order to avoid “taking over” of lots: lots are prevented by entering P2 as long as there

are tokens available in place L. Both transitions will always have the same priority when

enabled, as they share the same inJob place, which holds the JobToken that determines

the priority. The ordering is archived by assigning an identifier to TP1 in such a way that it

will occur before TS1 , as time and priority of both transitions will be identical and the id

field will determine the order.

The transitions TB2 , TB3 , TS2 , and TEP are of the type FixedMaxPriorityTransition.

This means that when enabled, they take precedence over all other types of transitions with

the same timestamp. As these transitions are not in conflict with each other, their firing

order is not important.

The transitions TD1 and TD2 are of the type FixedMinPriorityTransition, which

means that they will only fire after all other enabled transitions with the same timestamp

have fired. These transitions “clean up” leftover tokens in L and B20 after the processing

has started. Otherwise, these tokens would let more lots into the system than the available

capacity.

Figure 37 (an augmented version of Figure 36) shows two parallel Batch Process Steps

that share the same resource and batchId. This means that lots are batched together from

different process steps, as they need exactly the same treatment. The additional places are

P ′1, P
′
2, P

′
3, P

′
4, and the extra transitions are T ′S1

, T ′S2
, T ′EP , and T ′P1

. These places and

transitions have the same meaning as before, they only refer to the parallel process step.
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Figure 36: Batch Process Step

The mechanism works in the same way as before. The difference is that lots arriving in

P1 and P ′1 will trigger this mechanism. TS1 and T ′S1
each puts a token in B1 when firing.

When the number of tokens in B1 reaches the minimum batch size, TB1 will be able to fire.

At this point in time, the total number of tokens or lots in P2 and P ′2 will be equal to the

minimum batch size. After TB1 fires, a number of tokens equal to the minimum batch size

will be placed into B10 and a number of tokens equal to the difference between the minimum

and maximum batch size is placed into L. This enables transitions TS2 and T ′S2
, which will

move the tokens in P2 and P ′2 to the processing stage P3. The tokens in L then also enable

TP1 and T ′P1
to move jobs that are waiting in P1 and P ′1 to P3 and P ′3, respectively. If there

are more jobs waiting then tokens available in L, the ones with the highest priorities are

chosen according to the mechanism described previously in Section 3.3.5.5.

This basic structure is used in the same way for n parallel process steps, which share

the same batchId. Each parallel process step will connect to the places B1, C, L, B10, and

B20. Further, the whole structure is duplicated for process steps with a different batchId,

but are using the same tool sets and operator sets.

90



P1 P2 P3 P4

T
S2

T
EP

T
S1

2

2

3

5

T
D1

T
D2

T
B1

T
P1

T
B2 T

B3

B1 B2 B3

R1

P1' P2' P3' P4'

T’
S2

T’
EP

T’
S1

T’
P1

Min batch size 2 Max batch size 5 No loading

C

L

B10
B20

2

Figure 37: Batch Process Step with Two Process Routes

Figure 38 shows the extension of the basic Batch Process Step for a loading operation

before processing. It uses the same basic structure as Figure 36, but is augmented with the

places B4, B5, B30, P5, and O1 and transitions TEL, TB4 , TB5 , and TD3 . The triggering

mechanism works exactly the same way as before. The difference is that TB1 represents the

onset of the loading operation by operator O1. Transition TB1 removes a token from O1 and

R1. The end of loading is represented by transition TB3 , which will release the operator by

putting a token back into O1 and a number of tokens equal to the maximum batch size into

B20. This enables transition TEL, which moves the lots to the processing stage, represented

by place P4. Transition TB4 now adds the proper delay that represents the processing time

to the token in B4 and moves it to B5. Transition TB5 represents the end of processing. It
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will put back a token to R1 and a number of tokens equal to the maximum batch size into

B30. This enables TEP , which will move the token from P4 to P5.

The transitions on the path {B2, TB2 , B3, TB3 , B4, TB4 , B5, TB5} have no other input

places but the ones on the path. This means that a token in B2 will trigger all the subsequent

transitions that represent the end of loading, start of processing, and end of processing.

Parallel process steps that include loading are modeled in the same way as in Figure 37.

The set of places P1, P2, P3, P4, and P5 and the set of transitions TS1 , TS2 , TP1 , TEL, and

TEP are duplicated and are connected to B1, C, L, B1, and B20 for each parallel process

step.
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Figure 38: Batch Process Step with Loading

Figure 39 shows the extension of the Basic Process Step for loading before processing

and unloading after processing. It is based on Figure 38 with the extension of the places

B6, B7, B40, and P6 and transitions TB6 , TB7 , TD4 , and TEU . The meaning of the places is

the same as in Figure 38, except for the unloading step, represented by P5.

92



P1 P2 P3 P4

T
S2

T
EL

T
S1

2

2

3

5

T
D2

T
D1

T
B1

T
P1

T
B2

T
B3

B1 B2 B3

R1

P5

T
EP

T
B4

B4

T
B5

B5

T
D3

5 T
B6

B6

T
B7

B7

T
D4

P6

T
EU

5

Min batch size 2 Max batch size 5 Loading and unloading

B10
B20 B30 B40

C

L

O1

2

Figure 39: Batch Process Step with Loading and Unloading

5.2.4.4 Modeling of Individual Wafers

Some Batch Process Steps require that each wafer in a lot is modeled individually. This is

because the minimum and maximum batch sizes are given as the number of wafers that can

be processed. If the number of wafers is not a multiple of the lot size, lots have to be split

in order to be processed. In some data sets the difference between maximum and minimum

batch size is equal to the (lotsize)k − 1, k integer. If this condition is true, individual

wafers do not have to be modeled. For example, when the minimum batch size is one, the

maximum batch size is 50 and the lot size is always 25, the minimum number of lots that

will be processed is one lot consisting of 25 wafers and the maximum lot size is two lots,

with 25 wafers each. When the maximum batch size in wafers is less than the lot size, the

lot has to be split and therefore the individual wafers have to be modeled. Figure 40 shows

an example where lots with 25 wafers are “disassembled” by transition TSB
when entering

the Batch Process Step. At the end of the Batch Process Step, the lot is put together again.
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Figure 40: Batch Process Step with Individual Wafers Modeled
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5.2.4.5 Process Step with Setup

The last type of process step involves resources that require a setup. These resources have

to be modeled in such a way that it is possible to determine the setup state of the resource

when processing starts. Figure 41 shows an example for this type of process step. For each

setup state there is a resource place, as described in Section 5.2.1, here R1S1, R1S2, and

R1S3. The Sematech data sets specify times for specific setups as well as times for group

setups. Each setup group represents a setup state. The setup starts with either of TS1 ,

TS2 , or TS3 . Transition TSi is used for setup state i, i = 1, 2, 3. The setup times can differ

for each setup state. If the resource is in the same setup state as required, the setup time

is given as timePerSpecSetup in the ProcessStepWithSetup object. This means that no

group setup is required. If the resource is in a different setup state than needed, the setup

time is given as timePerGroupSetup + timePerSpecSetup.

In Figure 41 the resource is currently in setup state 1. This means that the process can

only start with TS1 . The delay time for TS1 is timePerSpecSetup, and the delay time for

each of TS2 and TS3 is timePerGroupSetup + timePerSpecSetup. P2S1, P2S2, and P2S3

represent the setup operation. The dots under P2S3 indicate that there can be more than

three setup states. Transition TE1 , TE2 , and TE3 represent the end of the setup operation.

These transitions will move the tokens to P3. From place P3 on, the PN is equivalent to

the Basic Process Step. The only difference is that the resource and operator are already

seized for the setup process. Actual processing will start with transition TSP
and end with

TEP , which will put back a token into R1S1 because the resource is in setup state 1. Note

that there are arcs from other process steps to R1S2 and R1S3, which are not shown in this

example.

Figure 42 shows a complete example with two process steps that require different setup

states. The upper process step requires setup state 1 and the lower process step requires

setup state 2. To start the setup process, transition TS1 or TS2 is used for the upper process

step and transition T ′S1
or T ′S2

is used for the lower process step. For the lower process

step, T ′S2
represents the shorter setup time, as it uses the token from R1S2. At the end of

processing, TEP puts back a token into R1S1 and T ′EP puts back a token into R1S2. If there
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Figure 41: Process Step with Setup

are multiple resources available, it is possible that they are in different setup states. If there

is a token available in more than one resource place (e.g., R1S1 and R1S2), it is possible

to start the setup with either one of them. However, it is better to start with a token that

corresponds to the required setup state in order to minimize setup time. To implement the

rule Shortest Setup First, the transitions have to be ordered accordingly. If two or more

transitions that start the setup process are enabled, their priority and timestamps will have

the same value. Therefore, they have to be ordered in such a way that the transition that

uses the shortest setup time will always come first. This is achieved by assigning an identifier

to that transition which guarantees the proper ordering.

Figure 43 shows a Process Step with Setup, loading, unloading, processing, and travel

time in a tool. It is essentially identical with the Basic Process Step after the setup is

completed in place P3. For data sets that do not model operators, these process steps are

identical except that the operator places are omitted along with all arcs into them.
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Basic Process Step with Setup
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Figure 42: Process Step with Setup, Complete Example
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Figure 43: Process Step with Setup and All Options except Travel
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5.2.5 Rework Sequence

A rework sequence has the same basic structure as a process route. The difference is that

it consists only of a few process steps. The Sematech data set specifies for some process

steps the probability that a lot has to go through a rework sequence. In Figure 44, TSW

represents a “switch” that can route the lot through the rework sequence. The dashed arc

from TSW to P9 is used to indicate this behavior. When the transition fires, it sends the

token that represents the lot through the rework sequence, which starts with P9. In this

example, the rework sequence consists of only one step. At the end of processing, the lot is

sent back to the original sequence, here place P6. Depending on what the data set specifies,

the point where the lot enters the original process route could be either before or after the

process step, where the lot left the original process route.
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T
SP4

T
EP4

T
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Figure 44: Single Step Rework Sequence

5.2.6 Scrap Modeling

The Sematech data set also contains scrap probabilities for some process steps. This means

that it is possible that the processed lot has to be scrapped at the end of a process step.

Figure 45 models the mechanism. In this case transition TSW sends a token to P5 with the

scrap probability. P5 represents a place where all the scrapped lots are accumulated. At the

end of a simulation run, all places that hold the scrapped lots can be examined to analyze
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the scrap rate. The implementation assumes that a lot has a chance to be scrapped only if

it was not routed to a rework sequence. That means that the switch transition has to be

at the very end of the process step.

P1 P2 P3

O1

R1

T
SP1

T
EP1

P4

P5

T
SW

Figure 45: Scrapping of Lot

5.2.7 Modeling of Breakdowns

Breakdowns of tools are modeled as shown in Figure 46. Transition TB is a transition

that will generate tokens according to a Poisson process. Each generated token represents a

breakdown of the tool. The token will have a timestamp equal to the onset of the breakdown.

The token in B enables transition TD, which will remove a token from place R. Transition

TD is adding the time duration of the breakdown to the timespamp of the token. This

effectively makes the token unavailable until the simulation clock has advanced to the end

of the breakdown period.

5.2.7.1 Breakdown Modeling for Resources with Setup States

The modeling of breakdowns for resources that have different setup states is slightly differ-

ent. Figure 47 illustrates this concept. Note that only the setup states and the breakdown

mechanism are displayed. All arcs to process steps that use the resource are not displayed.

R1S1 and R1S2 are the two setup states of resource 1. If there are tokens in place B, which

represents the start of a breakdown, they can be consumed by either TD1 or TD2 , which
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Figure 46: Breakdown Modeling

will generate a breakdown for the resource in the corresponding setup state. This works

the same way as the standard breakdown mechanism.
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Figure 47: Breakdown Modeling

5.2.8 Dispatch Rules and Representation of Queues

Dispatch rules are used to establish an order for jobs that are waiting to be processed by

a resource. Typical dispatch rules are FIFO or SPT (Shortest Processing Time), but the

range of possible dispatch rules is very large. For this simulation framework two cases

can be distinguished: only one job type is waiting or several job types are waiting to be

processed. Jobs of the same type will wait at the same place in the PN as they follow the

same process route. Hence, for these jobs only one transition that tries to seize the needed

resource will be enabled. This means that only the job token with the highest priority will
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be removed from that place and sent to the processing place. The algorithm that selects the

correct token was described in Section 3.3.5.3. If more than one type of job is waiting to be

processed, more than one transition is enabled. For each job type there is a process route,

and hence a transition that will be in conflict with the other transitions. If the resource is

available, all these transitions will be enabled at the same moment in time, necessitating

the establishment of an order. This uses the mechanism described in Section 3.3.5.5. The

following dispatch rules are implemented within the framework.

• First-In-First-Out (FIFO): the longest waiting job will be processed first

• Shortest Remaining Processing Time: the sum of the processing times of the process

steps along the process route that still have to be performed

• Shortest Remaining Processing Time as a Percentage of Total Processing Time: short-

est remaining processing time divided by total processing time

• Largest Number of Operations: the job with the largest number of total process steps

will be processed first

• Largest Number of Operations Remaining: the job with the largest number of process

steps to finish will be processed first

• Shortest Processing Time: the job that has the shortest processing time for the next

step will be processed first

Dispatch rules are assigned to specific transitions in the PN simulation model. These

transitions are the first of each process step, and will set the job token priority to the

appropriate value. The other transitions will not change the value of the priority of the job

token. The dispatch rules above should not be mixed, as it does not make sense to assign

one dispatch rule to a transition and a different one to another transition. Below we discuss

the implementation of these dispatch rules.

FIFO Dispatch Rule The assignment for the job token priority is jobtoken.priority =

−currentTime. As time progresses, older jobs will automatically have higher priorities as
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new jobs. Therefore the FIFO order is guaranteed.

Shortest Remaining Processing Time The assignment for the job token priority

is jobtoken.priority = −jobToken.PROCESSING TIME REMAINING. The job with the

shortest remaining processing time will be selected first, as the priority will have the highest

value.

Shortest Remaining Processing Time in Percent of Total Processing Time The

assignment for the job token priority is jobtoken.priority = −PROCESSING TIME REMAINING
TOTAL PROCESSING TIME .

The priority is assigned using the same principle as before, except it is normalized by the

total processing time.

Number Of Operations The assignment for the job token priority is jobtoken.priority =

NO OF OPERATIONS. The job with the greatest number of process steps will be processed

first.

Number Of Operations Remaining The assignment for the job token priority is

jobtoken.priority = NO OF OPERATIONS REMAINING. The job with the greatest num-

ber of operations remaining will be processed first.

Shortest Processing Time The assignment for the job token priority is:

jobtoken.priority = −PROCESSING TIME. The job with the shortest processing time will

be processed first.

In general, any dispatch rule that is a function of the attributes or timestamp of the job

tokens can be implemented.

5.2.8.1 Attributes of Job Tokens

These dispatch rules require that the job token have the following attributes:

• Release Time

• Number of Operations
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• Total Processing Time

• Number of Operations Remaining

• Processing Time Remaining

• Processing Time

The first three attributes are fixed values that are assigned to a job token when it is

generated. The remaining attributes need to be updated at each process step. This is

usually done when the processing at the process step is finished; for example, the attribute

“Processing Time Remaining” is reduced by the process time after the processing has fin-

ished.

It is possible to extend the dispatch rules as long as the priority that will be assigned to

the job tokens is a function of these attribute values. Further, it is possible to extend the

set of attributes of a job token and create dispatch rules based on these.

5.2.8.2 Representation of Queues

There is no explicit representation of queues in the framework. A queue is represented either

by a single place or by a set of places. If there is only one type of job waiting for a resource,

the queue is simply the place that holds the job tokens that are waiting to be processed.

If there is more than one job type, the queue is represented by the set of places that hold

the respective job tokens. Figure 48 shows an example where the queue is represented by

places P1 and P2.

A standard queue follows the FIFO dispatch rule. This means that transitions T1 and

T2 in Figure 48 use the FIFO dispatch rule for assigning token priorities. This will ensure

that the token with the oldest timestamp, i.e., the highest priority will be processed first.

Under a FIFO dispatch rule, it can be guaranteed that no job token will be left un-

processed because the priorities of new job tokens will always be less than the priorities of

existing job tokens. As time progresses, there can never be a job token with a higher job

priority that will be added to the queue.
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Figure 48: Queue

However, it is not possible to guarantee this for every dispatch rule: there are some

dispatch rules that can assign token priorities that are higher than the priorities of the

tokens that are present in the queue, which could cause older jobs to be in queue indefinitely.

Obviously, this is not a problem if there is a finite number of jobs and no new jobs are

entering the system.

5.3 Generation of the PN Simulation Model

This section gives an overview of the simulation model generation procedure. The basic

generation procedure consists of two steps. First the model is loaded from an XML file.

This will instantiate a FabModel object, which was described in Section 4.3. This object

is the root object for the wafer fab, i.e., it contains all the other objects that have the

necessary information to generate the entire simulation model.

FabModel
PN

SimulationModel
XML File

Figure 49: Overview of Simulation Model Generation

The preceding sections described the mapping from the data specification to the PN.
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The overall procedure is as follows:

1. Create Tool Sets

2. Create Operator Sets

3. Create Process Routes

4. Create Rework Routes

5. Create Input Transitions

5.3.1 Generation of the Petri Net

5.3.1.1 Create Tool Sets

There are two cases to distinguish when generating the places in the PN that represent

the tool sets. For each tool set that does not involve a setup state, a place of type Tool

is created. For tool sets that model setup states, a place of type Tool is created for each

setup state of the tool.

If the tool set is subject to breakdowns, a TriggerTransition is created with a firing

interval corresponding to the breakdown rate. The detailed algorithm is in Appendix B.1.

5.3.1.2 Create Operator Sets

For each operator set, a place is created and the appropriate number of tokens are added.

The detailed algorithm can be found in Appendix B.2.

5.3.1.3 Create Process Routes

The process steps for each process route are created sequentially. The detailed algorithm

can be is described in Appendix B.3.

5.3.1.4 Create Rework Sequence

Rework sequences are created when they are encountered during the creating of a process

route. If the return step of the rework sequence has not been created yet, the rework

sequence will be generated after all process steps are created.
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5.3.1.5 Create Input Transitions

The input transitions are transitions of type TriggerTransition, which release jobs (see

Appendix B.4).

5.3.2 Polymorphism of Process Steps

Polymorphism is a fundamental element of Object Oriented Programming. It refers to the

concept that a data type can refer to multiple actual implementations. Here polymorphism

means that a process step can have many different actual implementations, as long as it

satisfies a basic structure.

Control

... ...

Tools Operators

...

... ...

P
IN

P
OUT

Figure 50: Polymorphism of a Process Step

Figure 50 shows the basic structure that represents an abstraction of a process step.

Each process step has one place for receiving and one place for sending job tokens to the

next process step. These places serve as coupling points to generate a large simulation

model. The box contains all transitions that model the different process stages of the

process step (not shown in detail). PIN is the place that receives job tokens that have to

be processed. POUT is the place that holds the processed job tokens. These places serve as

interfaces between the process steps. POUT is also the receiving place for the next process

step. The PIN place coincides with the POUT place of the previous process step.

Arcs are connected to the tool and operator places in a specific way. For some process

steps, such as Batch Process Steps, there are also arcs to and from control places. Figure 50

does not show exactly how they are connected to the transitions, as it is specific for each

process step type. Figure 51 shows an example of two process steps joined at places POUT
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and P ′IN.

Control
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Figure 51: Two Process Steps Joined

5.3.3 Example

Table 1 gives an overview of the aforementions Sematech data set. A graphical user interface

was developed that allows loading and generating the model. The first step to generate the

simulation model is to load the model data from an XML file.

Table 1: Sematech Data Set Overview

Data Set # Process Avg.# Process # Rework # Tools # Operators
Routes Routes Routes

Set 1 2 228 1 83 32
Set 2 7 229 106 97 97
Set 3 11 376 105 73 0
Set 4 2 56 0 35 0
Set 5 24 174 0 85 4
Set 6 8 318 0 104 7

Figure 52 shows a small portion of the information in the XML file. The horizontal rows

represent the process routes for each product. The rework sequences are displayed at the

bottom. The simulation model generation described in Section 5.3 can be triggered with a

command in a pull-down menu. A small portion of the generated PN is shown in Figure 53.

Some arcs are not displayed for better readability (the arcs to the tool places and operator

places have been omitted).
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Figure 52: Simulation Model Data for Data Set 1 (abridged)
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The PN simulation model in Figure 53 has 6,363 places and 3,751 transitions. Most of

the places are of type ProcessPlace (the number of Resource places is 127). An overview

of the size of the other simulation models generated from the Sematech data sets is given

in Table 2.

Table 2: Size of PN Simulation Models

Data Set # of Places # of Transitions
1 6,363 3,751
2 26,803 19,751
3 46,199 31,845
4 1,269 1,013
5 52,135 36,075
6 38,241 25,463
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CHAPTER VI

ANALYSIS OF GENERATED PETRI NET

This chapter analyzes the properties of the generated PN simulation model (PNSM). First

the scope and validity of the classical analysis techniques are explored. Then reduction rules

are introduced, which are the basis of the analysis. Applying these reduction rules to the

process steps in Section 5.2.4.1, leads to a set of distinct PN constructs. These constructs

are analyzed in lieu of the original process steps, and it is shown that they are live, bounded,

and that the final processing stage is reachable. Based on these results, it is shown that the

generated PN will also maintain the same properties. Finally, conditions are introduced for

the legitimacy of the simulation model, which are important for the timing mechanism of

the simulation model.

6.1 Validity of Classical Analysis Techniques

In order to show that the generated PNSM will have certain properties, the model can

be analyzed just like a classical PN. The question remains if the analytical techniques for

classical PNs are applicable for the generated PNSM. We start with two propositions.

Proposition 2. If the underlying PN is live, then the timing mechanism and the priorities

introduced in Section 3.3.5 preserve liveness of the PNSM.

Proof. The reachability set of a live PN with initial marking m0 is R(PN,m0). This set will

not contain any dead states by the definition of liveness, i.e., there are no states where no

transition is enabled. The enabling rule of the execution mechanism in Section 3.3.5 for a

transition is identical to the enabling rule of classical PNs. However, the introducing of the

execution mechanism from Section 3.3.5 will order the enabled transitions in the FEL. The

enabled transitions are ordered first according to their enabling times (i.e., the time when

they are eligible to be fired) and second based on their priorities. This means that if there

is a set of transitions TE which is enabled in some state, only one of the transitions will fire
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first. This effectively cuts off the paths in the reachability graph that are formed by the

other enabled transitions. Therefore, the reachability graph of the simulation PN will be a

subgraph of R(PN,m0). Different dispatch rules will lead to different subgraphs. As there

are no dead states in the underlying PN, there are also no dead states in any subset of the

original reachability set. Therefore liveness is preserved.

Proposition 3. If the underlying PN is bounded, then the timing mechanism and the

priorities introduced in Section 3.3.5 preserve boundedness of the PNSM.

Proof. The proof is analogous to the proof of Proposition 2. Since a bounded PN will have

a finite reachability set, the reachability graph will also be finite. The introduction of the

execution mechanism from Section 3.3.5 will reduce the state space (i.e., the reachability

graph will be a subgraph of the underlying reachability graph). Since the reduced state

space is a subset of the original state space, boundedness is preserved.

In general, reversibility and reachability cannot be maintained when introducing timing

and priorities. This is because certain paths in the reachability graph are removed, which

obviously reduces the state space and therefore certain states remain unreachable. This

is not a problem, as only some states are of interest and not the entire reachability set.

Here we are mostly interested in showing that the state that indicates the completion of

a process step can be reached. Reversibility means that the system can assume its initial

state. Hence, reversibility can simply be proved by a sequence of transition firings that will

lead to the initial state, it does not rely on the reachability graph of the underlying PN.

Propositions 2 and 3 form the basis for the analysis of the PNSM. The next section

discusses synthesis techniques and reduction rules for PNs. The mappings from the data

specification to the PN are analyzed using theses rules.

6.2 Synthesis and Reduction Techniques for Petri nets

6.2.1 Synthesis Techniques for Petri nets

Jeng [22] distinguishes between bottom-up and top-down synthesis techniques. Bottom-

up synthesis methods use sub-PNs, which are modeled separately ignoring interactions
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between the subsystems. At each step, the interactions between the subsystems are con-

sidered and the corresponding PNs are combined through merging of places or transitions.

These bottom-up techniques focus on place invariant analysis, i.e., rules are derived for

obtaining place invariants of the synthesized system from the invariants of the subsystems.

However, invariants do not convey all system properties, which can make the analysis of

some properties, such as liveness, difficult.

Top-down techniques on the other hand start with an aggregate model, which neglects

details at first. Through refinement of transitions or places, the level of detail is increased.

Places or transitions are replaced with subnets, which increases the level of detail to the de-

sired level. However, these techniques are difficult to use for systems with shared resources.

6.2.2 Reduction Methods for Petri Nets

Reduction methods are primarily used to simplify the analysis of PNs. Most reduction

steps do not change important properties of the PN. This also means that the same tech-

niques may be used to augment an existing PN without changing the same properties. The

following reduction rules preserve liveness, safeness, and boundedness [33].

Fusion of Serial Places (FSP) is depicted in Figure 54. Two places p1 and p2 that are

in series and are only connected through a single transition t can be fused together; i.e., if

p•1 = t, t• = p2, and t ⊆ •p2, the places p1 and p2 can be replaced by a single place p3, such

that •p3 = •p1 ∪ •p2\{t} and p•3 = p•2. Each token that arrives in p1 will automatically be

transferred to p2, as t will always be enabled if a token is present in p1. Since firing of t

does not change the overall token count, boundedness and safeness are maintained with this

transformation. Liveness is maintained as well, as any marking m(p1) will be transferred

to p2. The merging of the two places will result in the same marking for p3. As p•3 = p•2,

the same output transitions will be enabled as in the original net.

Fusion of Serial Transitions (FST) is similar to FSP except that transitions are fused

together. Figure 55 shows two transitions t1 and t2 in series and connected through a single

place p. If t•1 ⊆ p, •p = t1, p• = t2, and •t2 = p, then these two transitions can be fused to

a single transition t3, so that •t3 = •t3 and t•3 = t•2 ∪ t•1\{p}. If the initial marking of p is
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Figure 54: Fusion of Serial Places (FSP)

zero, this transition also maintains safeness and boundedness, as the total token count will

not be affected by the transformation. Since all tokens that are consumed by t1 will also be

consumed by t3, and all tokens generated by t2 will also be generated by t3, safeness and

boundedness will not be affected. If t1 fires, it will automatically enable t2. Since every

firing of t1 will trigger a firing of t2, liveness will also be maintained by this transformation.

t
1

t
2

t
3

p

Figure 55: Fusion of Serial Transitions (FST)

Fusion of Parallel Places (FPP) is depicted in Figure 56. Two places p1 and p2 in

parallel can be fused together, i.e., they can be replaced by a single place p3 with •p3 = t1

and p•3 = t2, if •p1 = •p2 = t1 and p•1 = p•2 = t2. This transformation will maintain liveness

as the firing of t1 will always enable t2. Safeness and boundedness are also unaffected. All

the tokens that t1 consumes are also consumed by t3, and all tokens that t2 produces are

also produced by t3.

Fusion of Parallel Transitions (FPT) is shown in Figure 57. Two transitions t1 and t2

that are in parallel can be fused together to a single transition t3 when •t1 = •t2 = p1 and

t•1 = t•2 = p2. The token count remains unchanged in both cases, which implies that safeness

and boundedness are maintained. Since any marking that enables t1 or t2 will also enable

t3, liveness is also preserved.

Elimination of Self-Loop Places (ESP) is illustrated in Figure 58. Place p1 can be
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Figure 56: Fusion of Parallel Places (FPP)
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Figure 57: Fusion of Parallel Transitions (FPT)

eliminated if •p1 = p1
• = t1. Since firing of t1 will not change the marking of p1, the

liveness of t1 will not be influenced by p1. Obviously, the marking of p1 has to be > 1 or

else t1 is not live. Safeness and boundedness are also unaffected by this transformation as

•t1\{p1} and t•1\{p1} remains unchanged.

t
1

t
1

p
1

Figure 58: Elimination of Self-Loop Places (ESP)

Elimination of Self-Loop Transitions (EST) is depicted in Figure 59. If •t1 = t•1 = p1,

clearly t1 can be eliminated from the net. Obviously, firing of t1 will not change the

marking of the net. Hence boundedness, safeness, and liveness are not affected by this

transformation.
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Figure 59: Elimination of Self-Loop Transitions (EST)

All these transformations can also be used sequentially in any order; however, one must

take into consideration that every transformation will reduce the state space, and therefore

the level of detail of the model is also reduced. This is not a problem as long as these

transformations are only used to prove liveness, safeness, and boundedness of the PN.

6.2.3 Relationship between Reduction and Synthesis Methods for Petri Nets

The reduction and synthesis methods for PNs are closely related. Reduction methods can be

seen as the inverse of synthesis methods and vice versa. When synthesis rules are used, the

interpretation of the rule with respect to the target system has to be considered. The PN

that is created using synthesis rules should have an interpretation in the target system. On

the other hand, the interpretation of a reduction rule is not important. When a reduction

rule is applied, detail is lost, but the primary goal is to simplify the analysis of the PN.
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6.3 Application of Reduction Rules

This section uses the aforementioned reduction rules and applies it to the different process

step types. This will lead to a set of constructs that are easier to analyze than the original

process steps.

6.3.1 Basic Process Step

The basic process step module (Section 5.2.4.1) can be reduced to a set of very compact

constructs using reduction rules from Section 6.2.2. Figure 60 shows the application of the

FST reduction rule which results in the elimination of P2 and the fusion of TSP and TEP .

P1 P2 P3

O1

R1

T
SP

T
EP

P1 P3

R1

T’

O1

Figure 60: Reduction of Basic Process Step Module

Note that, in general, it is not possible to reduce this construct further. The ESP rule

cannot be applied to the right side of Figure 60, as in general the resource places R1 and O1

will usually be connected to other process steps that require them as resources. Figure 61

shows the basic process step with tool travel time modeled. First the FSP is applied and

TM and P3 are eliminated. Then the FST rule is applied as before.

Figure 62 shows the reduction of the basic process step with partial operator processing.

The FST rule is applied twice. First the transitions TEPO and TEP are fused together. The

resulting subnet, shown in Figure 60, is then reduced in the same way as in Figure 60.

Figure 63 shows the basic process step with operator loading. The FSP rule is used first

to eliminate TSP and merge P2 and P3. Then the FST rule is applied as in Figure 60.

Figure 64 shows the basic process step with operator loading and operator unloading.

The FSP rule is applied twice to merge P2, P3, and P4 and eliminate TSP and TEP . Then
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Figure 61: Reduction of Basic Process Step Module with Tool Travel Time
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Figure 62: Reduction of Basic Process Step Module with Partial Operator Processing

the FST rule is applied as in Figure 60.

Figure 65 shows the basic process step with operator travel time modeled. The left

portion is identical to Figure 60. The right portion models the transportation to the next

tool that requires an operator. The FST rule is used twice to first fuse TSP and TEP and

eliminate P2, and then to fuse TST and TET and eliminate P4.

All previous examples lead to the same basic construct. This is not the case when a

process step does not require an operator during the entire processing time and releases the

operator before finish processing.

Figure 66 shows a basic process step with all modeling possibilities. The FSP rule

eliminates TP , TSP , and TM and fuses each of the pairs {P0, P1}, {P2, P3} and {P6, P7}.

Then the FST rule can be applied sequentially to first fuse TSL and TEPO and, finally,

TEP and TEU . This scenario cannot be simplified to the same level as in the previous

cases (Figures 60-65). This is because TEPO and TEP cannot simply be fused together as
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Basic Process Step with Operator

Loading
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Figure 63: Reduction of Basic Process Step with Operator Loading

Basic Process Step with Operator

Loading and Unloading
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Figure 64: Reduction of Basic Process Step Module with Op. Loading and Unloading

P •4 = TEP but •TEP = {P4, O1}.

119



Basic Process Step with Travel Time

to Next Tool
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Figure 65: Reduction of Basic Process Step Module with Travel Time
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Figure 66: Reduction of Basic Process Step Module with All Options
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6.3.2 Process Step with Setup

The process step with setup can be reduced similar to the constructs in Section 6.3.1

constructs. The main difference is the modeling of the setup step before actual processing

starts. Figure 67 shows how the setup process step is reduced. The FST rule is applied to

fuse TS1 and TE1 to T ′S1
, TS2 and TE2 to T ′E2

, and TS3 and TS3 to T ′S3
. Further, TSP and

TEP can be fused together.

Basic Process Step with Setup

P1 P2S1 P3

O1

R1S1

R1S2

R1S3

P2S2

P2S3

P4T
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T
S2

T
S3

T
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T
SP

T
E2

T
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P5

T
EP

P1 P3

O1

R1S1

R1S2

R1S3

T’
S1

T’
S2

T’
S3

P4
T
EP

Figure 67: Reduction of Setup Process Step Module

Figure 68 depicts the setup process step with all possible options except for the travel

step to the next tool. The setup process step can be reduced to T ′S1
, T ′S2

, and T ′S3
as before.

The resulting net is very similar to Figure 66 and can be reduced in the same manner. The

net at the bottom of Figure 68 cannot be reduced further as the operator is released during

processing and later seized again for the unloading operation.

6.4 Mutual Exclusion

This section introduces several mutual exclusion concepts. These are used in Section 6.7 for

the analysis of the synthesized PN. Zhou et al. [58] introduce a complex theory of mutual
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Figure 68: Reduction of Setup Process Step Module with All Possibilities
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exclusion concepts for PNs, which is limited to single resources (i.e., resource places that

are safe). Parallel mutual exclusions are used to represent independent processes that share

the same resources, whereas serial mutual exclusion refers to resources that are used by the

same process at different times. The Sematech data set includes resources with multiple

units, often more than 20 units are quoted.

In this section we introduce a simplified mutual exclusion concept, which is based on the

constructs that have been derived in Sections 6.3.1 and 6.3.2. For the following discussion

the following sets of places are used: the set of operator places O, the set of tool places

R, and the set of process places Π. The tool set and operator set places are used to

model available tools and operators, respectively. The process places are used to model the

different processing stages of a wafer lot traveling through the wafer fab.

6.4.1 Simple Mutual Exclusion

Definition 1. A simple mutual exclusion consists of a tool set place R1 and/or an operator

place O1, process places PIN, POUT, and a transition T , such that •T = {O1, R1, PIN} and

T • = {O1, R1, POUT}, with all arc weights equal to one and initial markings m(R1) > 1 and

m(O1) > 1. In other words, T has the same tool place as input place and output places. If

an operator is used, it has the operator place as an input place and output place as well.

IN OUT

R1

T

O1

Figure 69: Simple Mutual Exclusion

6.4.2 Analysis of Simple Mutual Exclusions

The simple mutual exclusion presented in Figure 69 is not live by itself. In order to analyze

it, we make the following augmentation: A transition TR is added with •TR = POUT and
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T •R = PIN. Further k > 1 tokens are added to PIN. TR is added to ensure a steady supply of

tokens to PIN. The k tokens in PIN represents k jobs in the system. TR is enabled whenever

there are tokens in POUT, that is, for each finished job a new job can be released by TR.

IN OUT

R1

T

O1

k

T
R

Figure 70: Simple Mutual Exclusion Analysis

6.4.2.1 Liveness

Initially T will be live, as there are tokens in all input places. T will be able to fire at least

k times. The firing of T will result in the same marking for R1 and O1, hence the liveness

of T depends solely on the marking of PIN. Each firing of T will also enable TR. Each firing

of TR will enable T if it is not already enabled. Therefore, the augmented simple mutual

exclusion module (Figure 70) is live for any initial marking with m(O1) > 1 and m(R1) > 1.

6.4.2.2 Reversibility

Reversibility requires that the system can assume the initial state (i.e., m(O1) > 1, m(R1) >

1, and m(IN) = k). Initially there are k tokens in PIN. Firing each of T and TR n times

(n ≤ k) will lead to the same state as the initial state, hence reversibility is established.

6.4.2.3 Boundedness

Each firing of T and TR will keep the token count constant. Therefore, boundedness is

guaranteed for the construct in Figure 70. Safeness is not an issue in general, as the
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markings of O1 and R1 can be greater than one.

6.4.2.4 Reachability

For the simple mutual exclusion, it is important to show that tokens arriving at the PIN

place will ultimately reach the POUT place. Recall that the POUT place represents the

completion of a job or wafer lot. It is obvious in this case that every token in PIN can reach

POUT by the firing of T .

The analysis above was done for Case C in Figure 69, but the same arguments can be clearly

applied for Cases A and B.

6.4.3 Nested Mutual Exclusion

Figure 71 shows a nested mutual exclusion that motivates the following definition.

Definition 2. A nested mutual exclusion consists of a tool set place R1, and an operator

place O1, process places PIN, POUT, and P2, and transitions T1 and T2 such that •T1 =

{PIN, O1, R1}, T •1 = {P2, O1}, •T2 = {P2, O1}, and T •2 = {R1, O1, OUT}, with all arc

weights equal to one and initial markings m(O1) > 1, and m(R1) > 1. Note that if only

the tool is modeled, this construct can be reduced to a simple mutual exclusion.

IN P2

R1

T1

O1

OUT

T2

Figure 71: Nested Mutual Exclusion

6.4.4 Analysis of Nested Mutual Exclusions

The nested mutual exclusion in Figure 71 can be analyzed in the same fashion as before. A

transition TR is added, as shown in Figure 72.
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IN P2

R1

T1

O1

OUT

T2

T
R

k

Figure 72: Nested Mutual Exclusion Analysis

6.4.4.1 Liveness

Initially, T1 is live because there are tokens in all input places of T1. Each firing of T1 will

enable T2 since T •1 = •T2. T1 can fire up to n times, with n = min{m(R1), k}. When T2

fires, a token will be put back into R1. Hence, any sequence that contains equal numbers

of T1 and T2 firings will lead to the same initial marking of O1 and R1. After each firing

of T2, there will be a token in POUT, which in turn will enable TR. Each firing of TR will

put back a token to PIN, which then enables T1 again. Hence the augmented nested mutual

exclusion module is live for any initial marking with m(O1) > 1 and m(R1) > 1.

6.4.4.2 Reversibility

Initially there are k tokens in PIN. Firing each of T1, T2, and TR n times with n ≤

min{m(R1), k}, will lead to the same state as the initial state establishing reversibility.

6.4.4.3 Boundedness

The firing of the pair {T1, T2} will keep the total token count constant. A firing by T2 will

increase the token count by one. On the other hand, a firing by T1 will decrease the token

count by one. As the number of T2 firings can never exceed the number of T1 firings because

of T •1 = •T2, boundedness is guaranteed.
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Another way to formally prove boundedness is to inspect the place invariants (see also

Section 3.2.7). It can be easily seen that all places are covered by a place invariant, i.e.,

{PIN, P2, POUT}, {R1, P2}, {O1}, which is a necessary and sufficient condition for bound-

edness. Safeness is also not an issue, as the markings of O1 and R1 can be greater than

one.

6.4.4.4 Reachability

As with a simple mutual exclusion, every token that arrives in PIN is able to reach the

completion stage POUT. In this case, firing of T1 and T2 will take a job token from PIN to

P2 and then to POUT.

6.4.5 Mutual Exclusion with Resource Setup States

A more complex situation arises for the case when setup states have to be modeled. Fig-

ure 73 shows the basic construct for a mutual exclusion with setup states. There are two

possible cases: Case A is the standard case similar to the simple mutual exclusion, and Case

B is similar to the nested mutual exclusion. The standard case is defined as follows.

Definition 3. A mutual exclusion with resource setup states consists of a set of resource

places RS1 , . . . , RSk
, each corresponding to a distinct setup state. Further, there is a set

of process places {PIN, POUT, P}, an operator place O, and transitions TS1, . . . , TSk
and

TEP , such that •TSj = {PIN, RSj} and T •Sj
= {P} for all j ∈ {1, . . . , k}, •TEP = {P},

and T •EP = {POUT, O,RSl
}, with l indicating the setup state required for the process step.

Further the initial markings are m(O) > 1 and
∑k

j=1m(PSj ) > 1, i.e., there is at least one

token in the set of places that represent the resource. The transitions TS1, . . . , TSk
mark

the beginning of the setup. At the end of processing, the resource is released by TEP to the

appropriate setup state.

The nested case is defined as follows.

Definition 4. A nested mutual exclusion with resource setup states consists of a set of

resource places RS1 , . . . , RSk
, each corresponding to a distinct setup state. There is a set of

process places {PIN, POUT, P, P2}, an operator place O, and transitions TS1, . . . , TSk
, TEPO,
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Figure 73: Mutual Exclusion with Resource Setup States

and TEU , such that •TSj = {PIN, RSj} and T •Sj
= {P} for all j ∈ {1, . . . , k}, •TEPO = {P},

T •EPO = {O}, •TEU = {P2, O}, and T •EU = {O,RSl
}, with l indicating the setup state

required for the process step. The transitions TS1, . . . , TSk
mark the beginning of the setup

as in the standard case. Finally, TEPO represents the end of processing with and operator,

and TEU represents the end of unloading.

6.4.6 Analysis of Mutual Exclusions with Resource Setup States

The mutual exclusion with resource setup states in Figure 73 can be analyzed in the same

fashion as before. A transition TR is also added (see Figure 74) and k tokens are placed

into PIN.

6.4.6.1 Liveness

Initially one of TS1 , . . . , TSk
will be live, as there will be k tokens in PIN and at least one

token will be present in the set {RS1 , . . . , RSk
} because of the condition

∑k
j=1m(PSj ) > 1.
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Figure 74: Analysis of Mutual Exclusion with Resource Setup States

After a transition TSl
, l ∈ {1, . . . , k} fires, TEP will be enabled. After TEP fires, the marking

of O1 will be equal to the initial marking. However, TEP will always place a token into RSl
,

with l being the required setup state for the process step (in this case l = 1). This means

that the token could originate from any place RSj , j ∈ {1, . . . , k}. This is not a problem,

as
∑k

j=1m(PiSj ) will stay constant. Note that the arcs to RSj , j ∈ {1, . . . , k} \ {l}, with

l being the required setup state, are not displayed, as they will come from other process

steps. See also Figure 42 in Chapter 5.

6.4.6.2 Reversibility

Reversibility can only be established for the case where all tokens of the resource are in

setup state l, where l is the required setup state of the process step. Intuitively, this means

that the required resource has to be in the required setup state to guarantee reversibility.

The firing sequence comprised of n firings by TSj , n firings by TEP , and n firings by TR with
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n = min{k,minl≤j≤k RSj} establishes reversibility. The latter requirement is not necessary

when analyzing jointly all process steps that use a particular resource with setup states.

With an appropriate sequence of setups, it is possible to return the system to the initial

state.

6.4.6.3 Boundedness

Boundedness can be established with the place invariants {IN, P,OUT}, {O,P}, and

{RS1 , . . . , RSk
, P}. Intuitively it can be seen that by firing any pair from TSj , j ∈ {1, . . . , k}

and TEP the token count will stay constant. Firing TR does not change the token count.

The firing of TSj , j ∈ {1, . . . , k} will decrease the token count by one and the firing of TEP

will increase the token count by one. The number of times TEP can fire is limited by the

number firings of TSj , j ∈ {1, . . . , k}. Hence the token count will not increase, establishing

boundedness for a mutual exclusion with setup.

6.4.6.4 Reachability

Every token that arrives in PIN is clearly able to reach the completion place POUT by firing

of TSj , j ∈ {1, . . . , k} and TEP .

6.5 Simple Batch Process Step

The most complex construct is the batch process step. As discussed in Section 5.2.4.3, the

basic problem is that the size of the batches that are to be processed is not known in advance

and can vary. A batch process step with minimum batch size a and maximum batch size b is

defined as follows: Given is the (sub-)PN with P = {P1, P2, P3, P4, B1, B2, B3, B10, B20, C,

L,R1} and transitions T = {TS1 , TS2 , TEP , TP , TD2 , TB1 , TB2 , TB3 , TD1}. The arc weights

are w(TB1 , C) = a, w(TB1 , L) = b− a, w(B1, TB1) = a, w(TB3 , B20) = b, with all other arc

weights equal to 1. The initial markings are m(C) = b − a, m(R1) > 1, with all others

being zero. The transition input and output arcs are: •TS1 = {P1, C}, T •S1
= {P2, B1},

•TS2 = {P2, B10}, T •S2
= {P3}, •TEP = {P3, B20}, T •EP = {P4}, •TP1 = {C,L}, T •P1

=

{P3}, •TB1 = {B1, R1}, T •B1
= {B2, C, L,B10}, •TB2 = {B2}, T •B2

= {B3}, •TB3 = {B3},

T •B3
= {R1, B20}, •TD1 = {B20}, T •D1

= {∅}, •TD2 = {L}, T •D2
= {∅}, •TP1 = {P1, L}, and
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T •P1
= {P2}. Another way to express the above construct is the incidence matrix:

A =



−1 1 0 0 1 0 0 0 0 −1 0 0

0 −1 1 0 0 0 0 −1 0 0 0 0

0 0 −1 1 0 0 0 0 −1 0 0 0

−1 0 1 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 −a 1 0 a 0 a b− a −1

0 0 0 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 0 −1 0 b 0 0 1

0 0 0 0 0 0 0 0 −1 0 0 0


Each row represents the state change when the associated transition fires. The rows and

columns are ordered according to the sets T and P , respectively. This matrix is helpful to

calculate the state changes for the analysis in the next section.

6.6 Analysis of Batch Process Step

Figures 75 and 76 are used for the analysis of the batch process step. This graph is

not a reachability graph in the traditional sense. A reachability graph for a classical PN

enumerates all possible transitions firings from a given state. Here we consider only the

transitions that are eligible to fire according to the execution mechanism. This means that

the ordering of the enabled transitions in the FEL is considered. There are two reasons for

this consideration: (1) the resulting graph will be much more compact than the traditional

reachability graph; and (2) due to the execution mechanism, some of the states in the tradi-

tional graph cannot be reached (this prioritizes transitions according to time and priority).

The right-hand column of both graphs shows the firing time of the events.

The graph starts with Figure 75 and continues with Figure 76. The row vectors represent

the state of the system, and the labeled arrows indicate an event, i.e., the firing of the

corresponding transition. A series of firings of the same transition is compressed into one

arrow with a label that indicates the number of firings. A transition T that fires a times is
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denoted by a × T . Events that can be executed independently can be compressed to one

arrow, with the labels listing the transitions that can fire independently.
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The analysis assumes that jobs will always be able to arrive at place P1. This assumption

ensures that there will be at least a tokens after a finite amount of time. When x > a jobs

have arrived there are x tokens in P1 (state 1 in Figure 75). At this instance TS1 can fire

a times, leading to state 2. Then TB1 can fire, bringing the system to state 3. In this

state transitions TB2 , TS2 , and TD2 are enabled. However, TD2 has the lowest possible

priority assigned, as described in Section 5.2.4.3. Hence TB2 and TS2 can fire in any order,

as •TB2 ∩ •TS2 = ∅ and TS2 does not enable any other transition; this will lead to state

4. In this state TB3 , TP and TD2 are enabled. The enabling time of TB3 is t1 (note that

the time has not advanced yet). At this point there are two cases to distinguish. Case 1

corresponds to x 6 b and Case 2 corresponds to x > b. Case 2 will be analyzed with the

help of Figure 76. For Case 1, TP will fire x− a times and then TD2 will fire b− a times, as

the priority of TP will be higher. This will lead to state 5a; in this state only TB3 will be

enabled. If there are no arrivals during the time interval (t0, t1), TB3 will fire leading to state

10a. If there are x′′ arrivals during the time interval (t0, t1), it will lead to state 6a. In state

10a time has advanced to t1 and TEP and TD2 are enabled. First, TEP will fire x times and

then TD2 will fire b− x times, leading to state 11a. This state is basically identical to state

1 after x′ arrivals to P1, except for the tokens in P4, which do not influence the liveness.

In state 6a, x′′ tokens have arrived at place P1. Two cases have to be distinguished: Case

1(a) with x′′ < a and Case 1(b) with x′′ > a.

For Case 1(a), TS1 will fire x′′ times and lead to state 7a. At time t1, TB3 will fire and

lead to state 10b. From here TEP will fire x times before TD2 fires b − x times leading to

state 11b. After x′′′ arrivals, the system will be in state 12a, which is identical to state 2,

except for the tokens in P4.

For Case 1(b), TS1 will fire a times and lead to state 7b. Transition TB3 will fire at time

t1 and lead to state 10c. In this state TEP will fire x times before TD2 fires b − x times,

which brings the system to state 11c, which is also identical to state 2, except for the tokens

in P4.

Case 2 is shown in Figure 76. Firing b − a times by TP leads to state 5b. Here again

two cases can be distinguished: Case 2(a) with b < x < b+ a and Case 2(b) with x > b+ a
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(recall that x was the initial number of tokens in place P1).

For Case 2(a) TS1 will fire x− b times, which leads to state 7b. If there are no arrivals

until t1, TB3 will fire at time t1 and lead to state 10d. If there are x′′ arrivals during the

interval (t0, t1) at state 7b, the system will assume state 8. From state 10d, TEP will fire

b times and the system will be in state 11d. After x′ arrivals to P1, with x′ > a − (x − b)

the system will move to state 12b and transition TS1 is enabled. After TS1 fires a− (x− b)

times, the system assumes state, 13 which is identical to state 2, except for the tokens in

P4. In state 8 there are two cases to consider, Case 3(a) with x′′ < a − (x − b) and Case

3(b) with x′′ > a− (x− b). For Case 3(a), TS1 will fire x′′ times, leading to state 9a, which

is identical to state 7b. For Case 3(b) TS1 will fire a times and lead to state 9b, which is

identical to state 7c.

For Case 2(b) in state 5b, TS1 will fire a times, which will lead to state 7c. Then TB3

will fire at time t1 and lead to state 10e. Then after TEP fires b times state 11e is reached,

which is identical to state 2, except for the tokens in P4.

6.6.0.5 Liveness

The graph has no states in which no transition will be enabled; hence all leaf nodes in the

graph cover a previous state. Hence the batch process step is live.

6.6.0.6 Reversibility

Reversibility cannot be proved with the graphs in Figures 75 and 76. After all jobs are

processed, the system will be in almost the same state as the initial state, except that the

job tokens are in P4 instead of P1. However, when adding a hypothetical transition TR with

•TR = {P4} and T •R = {P1} to the batch process module (just like in the previous cases),

one can see that when all the tokens are transferred from P4 to P1, the system will be in

the same state, establishing reversibility.

6.6.0.7 Boundedness

The batch process step is not bounded by itself, as there are states that cover other states.

This is because tokens can always arrive in place P1. More importantly, it can be seen in

136



the graph that the tokens in P4 cannot exceed the number of tokens that arrived in P1, as

they are on the same path. When no additional tokens arrive in P1, it can be seen from the

analysis above that the system will be bounded.

6.6.0.8 Reachability

It is important that tokens can arrive in place P4, i.e., jobs can finish. Clearly, all the tokens

that arrive in P1 can reach the final stage in P4, establishing the reachability of the finished

processing stage.

The preceding analysis is for a simple batch process step, where no loading and un-

loading is modeled. Further, the graph in Figures 75 and 75 is for a single tool set and

no operator. Adding an operator will not change the sequence of events, and making the

analysis essentially identical. The analysis is also very similar for multiple tool sets having

more than one resource available (i.e., the number of tokens in R1 is greater than one). The

difference is that the quantity that enters the processing stage may exceed the maximum

batch size. If there are n tools available, n times the maximum batch size can be processed

simultaneously. This makes the analysis more complex, but the basic mechanism is the

same.

It can easily be seen that the addition of a loading and unloading process, as modeled

in Figures 38 and 39, will not change the basic sequence of events analyzed before. The

difference is that there are more events, and the token in B1 will go through the additional

places B4, B5, B6, and B7 for the case where loading and unloading is modeled. After

transition TB1 has fired, the token will be moved along the direct path connecting TB2 , B2,

TB3 , B3, TB4 , B5, TB5 , B6, TB6 , B7, and TB7 (Figure 39). All transitions along this path will

automatically become enabled because they have only one input place, which is the output

place of the previous transition. The only exception is TB5 , which requires an operator for

the unloading process. This situation is analogous to the nested mutual exclusion in Section

6.4.3. The transitions TB1 , TB2 , TB3 , TB4 , T5, and TB6 are in series and can be fused using

the FST rule in Section 6.2.2. This will lead to an almost identical construct as in Figure

71. The input places for the transitions will be identical, the only difference being that
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there will be additional outgoing arcs to the places B20, B30, and B40, which control the

movement of the job tokens.

For batch process steps that only model loading or unloading, the situation is analogous

to the simple mutual exclusion in Section 6.4.1.

6.7 Analysis of Synthesized Petri Net Simulation Model

The previous sections establish the properties of the individual modules. However, this is

not sufficient for the properties of the synthesized PN. The complete simulation model is

synthesized using the modules that were introduced earlier. This section will establish the

properties for the completed PNSM. Each module represents a type of process step, which

was reduced from its original structure. These reductions did not influence liveness and

boundedness. Each of these modules has an input place PIN and output place POUT, which

represent the waiting for processing and the end of processing. Further, each module is

connected to resource places and other control places in a specific way. Now it remains

to show that these connections will guarantee the liveness, boundedness, reversibility, and

reachability of the entire PN.

6.7.1 Analysis of Serial Coupling of Process Step Modules

As mentioned in Section 5.3.2, every process step module has a place PIN that receives job

tokens and a place POUT that holds the job token(s) when processing has finished. The

previous sections have shown that all process step modules are live, bounded, reversible, and

that the finished processing state is reachable. According to the PN generation algorithm in

Section 5.3, process step modules are joined in such a way that place POUT of the preceding

module coincides with place PIN of the following module. Figure 77 shows two process step

modules coupled in series. The transition TR is added for the same reasons as before to

ensure an infinite supply of tokens as well as boundedness.

There are four basic types of process step modules:

I. Simple mutual exclusion

II. Nested mutual exclusion
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Figure 77: Serial Coupling

III. Mutual exclusion with resource setup state

IV. Batch process

Based on these basic types the following cases of combinations of modules need to be

analyzed:

(a) both modules are of type I

(b) both modules are of type II or one module is of type I and one module is of type II

(c) both modules are of type III

(d) both modules are of type IV

(e) both modules are of a different type, except for Case (b)

6.7.1.1 Liveness

It has been shown that all process modules are live when analyzed as standalone modules.

Hence it can be assumed that module 1 is also live by itself. We consider five cases.

Case (a) We consider two sub-cases: module 2 uses different resources than module 1 or

module 2 uses the same resources as module 1. When different resources are used, module

2 will be live as no places are shared with module 1, except for P ′IN, and POUT. If both
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modules share resources, then both modules also share the corresponding places. Initially

no transition in module 2 will be able to fire, as there are no job tokens in the module.

This also means that none of the tokens of the resources has been used within module 2.

Therefore, the liveness of module 1 is not affected. All resources are released automatically

after processing finishes, i.e., the marking of the resource places will be the same as before

processing began. Therefore the resources will be available in module 2, making this module

live.

Case (b) Again two sub-cases are considered: module 1 and module 2 use different

resources, and both modules use the same resources. In the first case, liveness is not affected

by the same arguments as in Case (a) above. If the modules share resources, module 1 will

be live and can process the tokens in PIN. If module 1 is a nested mutual exclusion consisting

of two transitions (see also Figure 71), then the first transition will seize the tool and will

seize and release the operator. This means that the marking of the operator places will be

unchanged after firing. The second transition will only seize the operator, hence it will be

able to fire. After the firings, all the resource markings will also be the same. Hence module

2 will also be live, as all resources will be available.

Case (c) Again two sub-cases can be distinguished. If both modules use different re-

sources, liveness is not affected for the same reasons as for Case (a). If the resources are

shared, then module 1 will be live at first. After firing of the appropriate transition TSj ,

j ∈ {1, . . . , k} (see Figure 73), TEP will release the operator and the tool. Since the sum of

tokens
k∑

j=1
m(RSj ) will remain constant, module 2 will be able to start processing with one

of the transitions T ′Sj
, j ∈ {1, . . . , k′}.

Case (d) Again we consider two cases. Liveness is not affected when both modules use

different resources. When the resources are shared, two sub-cases have to be considered:

the value for batchId is identical for both modules and the value for batchId is different.

The PN will look like Figure 78 if both batch process steps use the same batchId value.

Specifically the resource is only seized by TB1 and released by TB3 . The places B10 and
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B20 control the progress of the tokens in the process places P1, P2, P3, P4, P ′2, P
′
3, and P ′4.

Tokens that arrive in P1 and P ′1 will trigger processing if the minimum batch size has been

reached. After TS1 and T ′S1
have fired a times (a is the minimum batch size), the sum of

tokens in P2 and P ′2 will be a. Further, b − a tokens will be in place L after TB1 has fired

(recall that b is the maximum batch size). These tokens allow TP1 and T ′P1
to fire at most

b− a times. Therefore, the maximum number of tokens in P3 and P ′3 will be at most b. At

the end of processing, there will be b tokens in place B20, which are sufficient to move the

tokens in P3 and P ′3 to places P4 and P ′4, respectively.
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Figure 78: Batch Process Steps in Series with Identical batchId

If the process steps have different batchId values, the PN will look like Figure 79. In

this case TB1 , B1, TB2 , B2, TB3 , B3, T ′B1
, B′1, T

′
B2

, B′2, T
′
B3

, B′3, and R1 form a simple

mutual exclusion. The only difference is that there are arcs to C, C ′, B10, B20, B′10, and

B′20. These places are used to control the movement of the job tokens. TB1 and T ′B1
are

both competing for the same resource. If one seizes the resource first, then the other has to
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wait until processing finishes. Other than that, both batch process steps operate as in the

standalone version.
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Figure 79: Batch Process Steps in Series with Different batchId

Case (e) If both modules are of a different type, they do not share any resources. There-

fore liveness cannot be affected, and will be preserved.

6.7.1.2 Reversibility and Reachability

Reversibility and reachability can be analyzed simultaneously. If all tokens can reach P ′OUT,

then firing TR as many times will establish reversibility. Hence it is sufficient to show that

all tokens can reach P ′OUT. It has been shown that it is possible to reach the POUT place

of each individual module. Initially module 1 will be live, hence it will be able to process

at least one of the tokens in PIN. Either all tokens are processed first in module 1, or only

some tokens are processed by module 1 and some by module 2. If all tokens are processed

by module 1 first, they will be in P ′IN after processing. Then all tokens can be processed by
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module 2. If only some tokens are processed by module 1, these tokens will be in P ′IN after

processing, where they can be processed by module 2. When module 2 has no more tokens

to process, then any leftover token in PIN will be processed. When all tokens in PIN have

been processed, the remaining of the tokens in P ′IN can be processed in module 2. Hence

all tokens will eventually be able to reach P ′OUT.

6.7.1.3 Boundedness

None of the transitions for the basic type I, II, or III will change the total token count

when fired. Hence adding these basic types to an existing series of modules of type I, II, or

III does not affect boundedness. The batch process step has been analyzed individually in

Section 6.6. When there are no shared resources, it is clear that two batch process steps in

series will also be bounded. On the other hand, if the two batch process steps use the same

resources and the same batchId value, the situation is similar to a single batch process step,

with the exception that the places C, L, B10, and B20 in Figure 78 are connected to the

transitions in both batch process steps. However, transitions TB1 , TB2 , TB3 , TD1 , TD2 , B1,

B2, B3, B10, B20, C, L, and R1 form the same structure as in the standalone module, which

is bounded. The transitions TS1 , TS2 , TEP , T ′S1
, T ′S2

, and T ′EP control the movement of a job

token. Each of these transitions does not increase the token count when firing. Therefore,

boundedness is preserved. It can be shown by repetitive usage of these arguments that

adding another module in series will also preserve the aforementioned properties.

6.7.2 Analysis of Parallel Coupling of Process Step Modules

Section 6.7.1 showed that it is possible to couple process step modules in series. Each

series of process step modules represents a process route in the manufacturing system. This

section will analyze the case when modules are coupled in parallel. Figure 80 shows such a

configuration. The analysis is very similar to the serial case.

6.7.2.1 Liveness

Parallel modules can process in any order. After a module has finished processing, the

resources used are available for any other module. Hence liveness is not affected.
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6.7.2.2 Reachability and Reversibility

In general, reversibility cannot be guaranteed. It will depend on the dispatch rule that

is used, because it is possible that the transitions of a module will always have a higher

priority assigned then the transitions of another parallel module.

In general, reachability of the final state can only be guaranteed by dispatch rules that

assign priorities to transitions such that priority of T1 > priority of T2, if the firing time of

T1 is earlier than the firing time of T2. This will guarantee that the older enabled transitions

will fire before newer enabled transitions. Hence, there cannot be a transition that has to

wait indefinitely to be able to fire. An example of this would be the FIFO rule, as the

assigned priorities are the negative values of the firing times.

6.7.2.3 Boundedness

Clearly, the argument for the serial case can be used in a similar fashion. Therefore bound-

edness is maintained. Further, it can be shown that adding another parallel process module

will not change the properties.

6.8 Analysis of Rework and Scrap Modeling

Rework sequences are modeled in the same way as normal process steps. A rework sequence

is “forked off” the original process route. A switch transition will send the job token to

the rework sequence instead of the scheduled next process step. After the rework sequence

is executed, the job token will reenter the original sequence before, at, or after the leaving

process step.

Figure 81 shows a process route with process steps 1, 2, 3, and 4. After process step 1,

there is a chance that the rework process sequence has to be entered. This is indicated by the

dashed arc. A job token will either travel to process step 2 or will be diverted to the rework

sequence. This would change the original sequence to 1, R1, R2, 2, 3, 4. Rework steps are

modeled in the same way as normal process steps; therefore, the situation is equivalent to

serial coupling of process steps. There is a slight chance that a job token has to go through

several rework steps; however, the probability that this will happen indefinitely approaches
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zero, as there is a positive probability that a job token will not have to go through a rework

sequence. Since rework sequences simply extend the normal process routes with additional

process steps, the previous analysis is still valid.

... ... ... ... ... ... ... ...

... ... ... ...

1 2 3 4

R1 R2

Figure 81: Analysis of Rework Sequence

The modeling of scrap is shown in Figure 82. After process step 1, a “scrapped” job

token is sent to place S1. This will effectively end all the future processing for that lot.

... ... ... ... ... ...1 2 3

S2S1

Figure 82: Analysis of Scrap Modeling
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6.9 Legitimacy

Legitimacy was introduced in Section 2.6.1. It is an important property, as it guarantees

that the simulation time will be able to advance. The simulation time will not be able to

advance if there is an infinite series of events, which will occur at the same instance in time.

For example, consider the case where an event A at time t causes event B and event B in

turn causes event A at the same time. The following definitions are used in the following

discussion.

Definition 5. (Elementary Path) An elementary path, or dipath is a sequence of distinct

nodes (i.e., transitions or places): x1, x2, . . . , xn, n > 1, with (xi, xi+1) ∈ A.

Definition 6. (Elementary Circuit, Directed Cycle) An elementary circuit or directed cycle

is a sequence of nodes x1, x2, . . . , xn, n > 1, with (xi, xi+1) ∈ A such that x1, x2, . . . , xn−1

is a elementary path and x1 = xn.

Proposition 4. Sufficient conditions for the generated PN to be legitimate are: (1) For

any process module, every path between PIN and POUT has at least one transition with a

positive delay; (2) every transition of the process module must be on such a path; and (3)

there must not be any circuit with zero delay transitions.

Proof. An infinite sequence of transition firings that is repeated indefinitely will be repre-

sented as a circuit in the PN. If there is at least one transition with a positive delay, there

cannot be an infinite sequence with no time advancement. For a token to travel from PIN

to POUT, there has to be a path between these places. If all possible paths have at least

one delay transition, the token timestamp will be guaranteed to be greater in POUT than

PIN, which means that time will advance.

Not all conditions above are true for the batch process step. There are no circuits with

any delay transitions, but there are paths from PIN to POUT with no delay transitions.

However, all job tokens that go through a batch process step will have a greater timestamp

after processing. The analysis of the batch process step in Section 6.6 showed that there

cannot be any infinite sequences with no time advances.
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6.10 Conclusions

This chapter analyzed the PNSM. It was shown that liveness and boundedness are preserved

for the simulation model, when the underlying PN has these properties. The different types

of process steps of Chapter 5 were transformed with reduction rules to four distinct types of

constructs, which were analyzed an shown to be live and bounded. With the help of these

constructs it was shown that the generated PN will also maintain these properties.

The next chapter introduces a complexity measure, that allows us to describe differences

in execution speed of different PNSM.
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CHAPTER VII

COMPLEXITY ANALYSIS

7.1 Literature Review

There is not a universally accepted definition for the complexity of simulation models.

Zeigler [57] defines three kinds of complexity: analytic complexity, simulation complexity,

and exploratory complexity. Analytic complexity is directly related to the number of states

of the simulation model. Simulation complexity is the time and space required to simulate

the model. Exploratory complexity refers to the resources that are required to explore the

state space of simulation model. It can be very expensive to explore the state space for a

coupled simulation model due to state space explosion. Measures of analytic complexity

or exploratory complexity are often impractical because the state space may not be known

explicitly. For a practitioner, the simulation complexity is of primary interest as it is tied

to the resources and time needed to run a simulation model. However, Zeigler does not

introduce a quantitative measure for simulation model complexity.

Schruben [48] defines complexity only as a measure that reflects the requirements of

computational resources. He introduces and compares several measures such as the car-

dinality of the vertex set, the edge-to-vertex ratio, and the cyclomatic complexity, which

is based on the cyclomatic number of the simulation graph. All these measures are graph

theoretic approaches based on simulation graphs. Therefore, they can only be applied if a

description in the form of a simulation graph exists.

In this chapter we will introduce a measure, related to the PN graph, that can capture

differences in the execution speed of PNSM. We will also discuss, a simple measure that

can capture the memory requirements for the simulation model. The first step is to analyze

how execution algorithms work. This will provide insight to which are the driving forces

that influence the runtime.
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7.2 Analysis of Execution Algorithms

The execution of the PNSM goes through two main phases. First the PNSM is initialized

during the initialization phase. The execution phase follows.

7.2.1 Initialization Phase

The initialization phase is the first task that has to be performed before the simulation

can start, and consists of two steps. First, the set toUpdate for each transition has to be

determined. This is the set of transitions that need to be updated after the transition fires.

This will allow for a more efficient time update mechanism, as it does not require scanning

the entire PN each time a transition is firing. Then for each transition updateTime() has

to be called, which will determine if the transition is enabled and at what time.

The algorithm in Section 3.3.5.3 that determines the set toUpdate for each transition

has two parts. The outer loop of the first part of the algorithm loops over |•t| places, and

the inner loop over |p•| transitions for each place p ∈ •t. Similarly, for the second part of

the algorithm the outer loop iterates over |t•| places, and the inner loop over |p•| transitions

for each place p ∈ t•. The total number of iterations therefore is
∑

p∈•t∪t•
|p•|. In Figure 83

the field T1.toUpdate consists of the transitions {T2, T3, T4, T5, T6, T7, T8, T9}.

The toUpdate field of a Transition object is implemented as a TreeSet, which imple-

ments the Set interface. Both are standard types in the Java API. The Set interface is used

to ensure that each transition is unique. Otherwise, the algorithm might add duplicates,

which will slower its performance. Duplicates are created when some of the places in •t and

t• share some output transitions. The TreeSet is implemented as a red-black tree in Java,

thus insertion and deletion take O(log n) time [15], with n being the number of nodes in the

tree. In most cases n is usually not very large. An upper bound on n is the upper bound

on the number of transitions in toUpdate for transition t, which is
∑

p∈•t∪t•
|p•|. Assuming

a linear runtime for insertion for simplicity, an upper bound for the initialization time of a

transition is given by K = C ·

( ∑
p∈•tk∪t•k

|p•|

)2

, where C is a constant, k is the index of the

transition with the most transitions in the field toUpdate, i.e., k = arg max
j∈{1,...,n}

∑
p∈•tj∪t•j

|p•|,

with tj ∈ T, j ∈ {1, . . . , n}, and T being the set of transitions in the PN. Therefore, the
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initialization of every transition can be limited by a constant, independently of the size of

the PN. Since every transition has to be initialized, the initialization of all transitions can

be performed in O(|T |) time. Hence, the running time requirement appears to grow linearly

with the number of transitions.

The second step of the initialization phase is to call updateTime() for each transitions

in the PN. This requires |•t| calls to updateTime(). The Update Time algorithm (Sec-

tion 3.3.5.2) iterates over all input places of the transition t to be updated. The operation

inside the loop that iterates over the input places of the transition checks if the number of

tokens is greater than zero and then finds the token with the smallest timestamp. Checking

if the number of tokens is greater than zero requires a constant amount of time. The tokens

are stored in a red-black tree, which is ordered according to the timestamps. Hence, the

time to find the token with the smallest timestamp is of the order O(log n). To simplify

the analysis; this time is approximated by a constant; this means that all operations inside

the loop can be also approximated by a constant. The only exception occurs if the arc

weight w is greater than one. This is rarely the case and will only increase the runtime

to O(w). Hence, the runtime can be approximated for most transitions to be of the order

O(1). This means that for a transition t the runtime for Update Time is O(|•t|), hence it

grows linearly with the size of the set |•t|. An upper bound on the size of this set can be

obtained by K = |•tk| and k = arg max
j∈{1,...,n}

|•tj |, tj ∈ T ,j = {1, . . . , n}. Therefore, the runtime

for Update Time for each transition can be considered as constant. As the Update Time

algorithm is called for each transition in the PN, the total time to update the time for all

transitions in the PN is of the order O(|T |). In summary the runtime of the algorithms for

the initialization phase is typically of the order O(|T |). This is an important as it indicates

that the time for the initialization phase will approximately grow linearly with the number

of transitions in the PN.

As the initialization phase requires calling the initialization of each transition only once,

the total time for the initialization will typically be substantially smaller compared to the

time required by the execution phase. The next section will investigate the time require-

ments of the execution phase.
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7.2.2 Execution Phase

The simulation of discrete-event models usually consists of processing events, scheduling new

events, and, if necessary, canceling events. Under the proposed framework, the execution

phase of the simulation consists entirely of the firing of transitions. Each firing usually

corresponds to a real-world event; however, some firings of transitions are “artificial”. Each

firing of a transition consists of three phases:

1. Remove tokens

2. Send tokens

3. Update time
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Figure 83: Neighborhood of a Firing Transition

7.2.2.1 Token Removal

Algorithm Remove Tokens was introduced in Section 3.3.5.5. For each place p ∈ •t, with

t being the firing transition, the method removeTokens() is called. In Figure 83, T1 is the

firing transition and these places are {P1, P2, P3}.
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Method removeTokens() will identify all tokens with a timestamp less or equal to

the current simulation time. Tokens with timestamps greater than the current simulation

time are not yet available for the transition and therefore cannot be removed. Among the

identified tokens, the method will choose the token with the highest priority. If the arc

weight between the place p and the transition t is w(p, t), the first w(p, t) tokens with the

highest priority will be removed by this method.

The algorithm first needs to traverse through the set of tokens until it reaches the token

with the appropriate timestamp. The object that holds the tokens is also a red-black tree.

Assuming there are n tokens in the place, the traversal will take of the order O(n) time.

Each of the tokens is then added to a new temporary red-black tree that holds all the tokens

with appropriate timestamps. This operation will take O(log n) time for each token. When

the tokens are added, they are inserted according to their priority. The first k tokens in

this temporary set represent the k tokens to be removed from the place. Removing each of

these tokens from the original place also takes O(log n) time. Hence, the runtime to remove

a token from one place will be of the order O(n) time. As discussed in Chapter 6, most

places are bounded in the PN, which means that there is an upper bound for the possible

number of tokens and therefore for the runtime of their removal. As a token removal has to

be executed for each place in •t, the total run time for this phase will be of the order O(•t).

7.2.2.2 Sending Tokens

The next step is to send tokens to the places in t•. This simply means to adding one or

more tokens depending on the arc weight to every place in t•. In Figure 83 these places are

{P4, P5, P6}. Each operation can also be performed in O(log(n)) time (given the red-black

tree). The total number of add operations is |t•|. Hence the total runtime of sendTokens()

will also be O(|t•|), with the approximation of each add operation as a constant.

7.2.2.3 Update time

Finally, the method updateTime() (analyzed in Section 7.2.1) has to be called on each of

the transitions in the field toUpdate, which was analyzed in Section 7.2.1. After this, the

FEL will contain all the current enabled transitions, with the first transition in the list
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being the next firing transition.

7.2.3 Memory Requirements

Another important consideration is the memory requirements to store the simulation model.

This section explores the driving forces for the memory requirements.

The PN simulation model consists of a set of transitions and a set of places. These form

the static elements of the model. Tokens are the dynamic elements that are created, removed

from places, and added to places. There are also other objects, mainly the simulation data

objects that hold the simulation data specification. These are of auxiliary character and

will not be included in the analysis as they are only needed during the generation phase.

Each transition requires a certain amount of memory to be stored as it has fields that

hold references to the places it is connected to as well as fields for identifier, times, etc. (see

also Section 3.3.4). Once the PN simulation model is created, the amount of memory to

hold transitions will be constant over time. Each place also requires a certain amount of

memory. Each place has fields for identifier and references to the transitions that the place

is connected to. These fields will also require a constant amount of memory. In addition

to that, each place has a field that holds the token objects that are currently in that place.

The memory requirements for this will fluctuate over time as the number of tokens will

fluctuate.

In summary, there are fixed memory requirements to store the PN structure and variable

memory requirements depending on the total number of tokens in the system. Therefore,

a simple measure to compare the memory requirements of the PN simulation models is the

sum of the number of places and transitions, i.e., |T |+|P |. Here, it will only be used to com-

pare the memory requirements of the simulation models. In order to determine the actual

memory usage, factors can be estimated by analyzing each of the objects. Unfortunately, as

the simulation framework is implemented in Java, there is no function that directly allows

the determination of the size of a given object.

A critical factor is the number of tokens in the system. A PN simulation model that

is flooded with a large number of tokens can run out of memory. This is not necessary a
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real problem, as this indicates that the corresponding real-world model will not be able to

handle the desired throughput.

7.3 Measures of Complexity for the Framework

This section attempts to derive a measure that can be used to predict the execution speed

of the simulation. A naive approach is to assume that the speed of a simulation model is

always constant for all simulation models. This might be true for similar simulation models.

However, it is unlikely to be true for all simulation models.

The execution time of a simulation model will be determined by the time to process

events and the number of events that have to be processed. For the PN simulation model

the time to process an event is equivalent to the time it will take to fire a transition, thus

the total execution time can be written as Ttot = t̄f ·K, where Ttot is the total time to run

the simulation, t̄f is the average time to fire, and K is the total number of transitions to

fire.

The number of transitions to be fired will depend on the number of process routes in

the PN simulation model, the number of process steps, and the rate with which jobs are

released into the system. Differences in the firing rate will indicate structural differences in

the simulation model.

In order to explain the differences in the firing rates one has to look at the PN data struc-

ture. As discussed in Section 7.2.2, firing of a transition consists of three parts: removing

tokens, adding tokens to the new places, and updating all affected transitions.

The time to remove the tokens during the first part of the firing of a transition is mainly

dependent on the size of the set of input places of the transition. For each input place, the

method removeTokens() has to be called. Figure 83 shows the neighborhood of places and

transitions of a transition T1 just after it has fired. The set of places {P1, P2, P3} form the set

of input places for transition T1, hence for each of these places the method removeTokens()

has been called. It can be expected that the time will grow linearly with the size of •T1,

assuming that the removal of a token will take constant time. Note that the actual time

will depend on the number of tokens in those places, which is not known in advance. If
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the time for the removeTokens() operation for a given place can be approximated by a

constant, the time for removing all tokens when a transition t fires will be O(|•t|).

Similarly, the time to add tokens to the output places of T1 is mostly determined by the

size of the set of output places. Based on the same argument as before, one can expect this

time to be O(|t•|).

The most complex operation is the time update operation. The method updateTime()

has to be called for each transition in the set t.toUpdate because these transitions could be

affected by the firing of transition T1 in Figure 83. This set is {T2, T3, T4, T5, T6, T7, T8, T9}.

As shown in Section 7.2.1, the run time for each individual call to updateTime() for a single

transition is of the order O(|•t|).

Base on the aforementioned analysis, several measures are conceivable for the time

required to fire a transition t. The time required for the token removal phase can be captured

by |•t|, i.e., the size of the set of input places. The time required to add tokens to the places

in the output set will be approximately proportional to |t•|. These measures, however

cannot capture completely the time requirements for the more complex time update phase.

A more appropriate measure for this phase is
∑

t′∈t.toUpdate

|•t′|. This expression represents

the summation of all input places of the transitions. It can also capture indirectly the time

requirements for the remaining two phases. This is because one can expect the sizes of |t•|

and |•t| to grow with the size of the set t.toUdate as the transitions in t.toUdate are

connected to t through the places in t• and •t.

Clearly, not every transition requires the same amount of computational time as dis-

cussed above. Some transitions that are connected to many places and transitions in their

immediate neighborhood will certainly require more time than transitions with only few

places and transitions in their neighborhood. Therefore, a weighing factor for each transi-

tion is used. Using the weight w =
∑

t′∈t.toUpdate

|•t′| for each transition t, the model com-

plexity of the PN simulation model with the set of transitions T and set of places P will be

defined as
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Ψ(PN) =

∑
t∈T

(
∑

t′∈t.toUpdate

|•t′|)

|T |
. (7)

This measure does not depend on the actual size of the PN and will be used to explain

differences in the firing rate of the PN simulation model.

7.4 Experimental Results

In this section the measure in Equation (7) is applied to some of the Sematech data sets.

The runtimes were obtained on a PC with an Intel T2050 CPU @ 1.6 GHz and 1 GB main

memory under Windows XP. Tables 3 and Table 4 display the results for each data set for

100 and 500 days of simulated time, respectively.

Table 3: Runtime for 100 Days of Simulation Time

Data Set Runtime [s] # Firings Firing rate [1/s] Avg. Firing Duration [µs]
1 9 257,742 28,638 34.92
2 308 8,259,534 26,817 37.29
3 265 4,117,077 15,536 64.37
4 2 140,438 70,219 14.24
5 149 925,153 6,209 161.05
6 400 794,678 1,986 503.35

Table 4: Runtime for 500 Days of Simulation Time

Data Set Runtime [s] # Firings Firing rate [1/s] Avg. Firing Duration [µs]
1 11 302,669 27,515 36.34
2 1,737 46,294,332 26,652 37.52
3 1,911 21,642,961 11,325 88.30
4 2 156,031 78,016 12.82
5 1218 7,312,023 6,003 166.57
6 1380 2,598,718 1,883 531.03

Clearly, the average firing rate can vary greatly between different simulations. The

maximum and the minimum times differ by almost a factor of 30. For further analysis only

the larger data sets are considered. The runtime for data sets 1 and 4 are fairly small, but

the average firing rates are very high. In order to avoid the influence of caching of main

memory, these data sets are not considered. Table 5 compares only data sets where |P |+ |T |

is of the same magnitude. Caching can accelerate the simulation performance extremely for
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small models that can be stored entirely in the CPU cache because the access time to this

type of memory is an order of magnitude faster than the access times to RAM. Hence it is

difficult to make any comparison between very small models and very large models.

Table 5: Overview of Complexity Measures

Data Set |P | |T | |P |+ |T | Ψ(PN)
2 19,751 19,303 39,054 39.61
3 31,845 27,109 58,954 228.91
5 36,075 31,661 67,736 678.23
6 25,463 22,097 47,560 1,506.91

Table 5 gives an overview of the data sets. Sets 2, 3, 5, and 6 are of comparable size as

|P |+ |T | is of the same magnitude. Set 6 has the highest value for Ψ(PN), which indicates

that it will have the longest mean firing duration. The total number of transitions is not

as high as for other data sets. This data set has only eight product routes and an average

number of process steps of over 300. This indicates that the average transition is connected

to many other places and transitions, which will increase the average size of the toUpdate

field of each transition, which will also increase the value of Ψ(PN).

Figure 84 shows data points for simulation runs of length 100 days and 500 days. An

almost linear relationship between the firing rate and Ψ(PN) can be observed. The measure

Ψ(PN) does not take congestion of the system into account. A system with a low release

rate will have fewer tokens. A very congested system will certainly require more time as

the constant time approximations for removing and adding tokens do not hold when the

number of tokens become large in some places.

The data points for the 500 day simulation runs are all below the data points of the 100

day runs, except for the leftmost data points that are almost identical (i.e., 37.29 µs for

100 day run and 37.52 µs for 500 day run). This can be expected, as the longer runtime

would result in a higher congestion of the system. The system is empty at the onset of

the simulation run, hence the average number of tokens in a buffer place will be low. Over

time the system fills up with jobs that are waiting to be processed, which will lead to more

tokens in the buffer places.
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Figure 84: Average Firing time vs. Ψ(PN)

7.5 Conclusions

This chapter analyzed the execution algorithm that is used in the simulation framework. As

the execution of the PN simulation model involves primarily transition firing, the analysis

on a detailed level is possible. The analysis indicated a good scalability for large-scale

simulation models. Further, the measure ψ(PN) for simulation model complexity was

introduced. Tests run on Sematech data sets of similar size showed significant differences

in the average firing time. An almost linear relationship was observed between Ψ(PN)

and the average firing time of a transition. Hence the measure Ψ(PN) appears to be a

good indicator for the speed of a simulation model created with the proposed framework.

The experiments also indicated good scalability for long simulation runs, as the firing rate

remains roughly constant during a run.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

8.1 Summary and Conclusions

This thesis introduced a novel approach to simulation model generation. The grand chal-

lenges in manufacturing simulation provided the motivation for developing the proposed

simulation framework. We started with a review of the principles of simulation modeling,

reviewed existing simulation model specifications and modeling frameworks, and discussed

their shortcomings.

The proposed simulation framework allows the effective generation of large-scale simu-

lation models, based on the example of semiconductor manufacturing. The contributions

of this approach are:

• A PN data structure (PNSM) that can be analyzed directly.

• The simulation model is not represented in a simulation language and does not have

to be compiled.

• A simulation execution mechanism that is based on a PN with extension for time and

priorities and allows flexible modeling of various dispatch rules.

• This data structure (PNSM) describes the behavior of the simulation model in its

entirety, hence closing the gap between conceptual model and simulation model.

• This data structure (PNSM) can serve as a basis for the use of simulation for real-time

decision making as it can be altered at any time.

• Introduction of an object model for a simulation data specification.

• Introduction of detailed mappings from this data specification to PN, with verifiable

properties.

• Introduction of conditions for a legitimate simulation model.
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• Introduction of a measure for simulation model complexity.

The core elements in the implementation of the PN framework are objects representing

places, transitions, and tokens. Hence, the graph structure of the PN is directly mod-

eled within the simulation model. The execution of the PNSM consists only of firing of

transitions. The simulation model is not defined in terms of simulation code in a particular

simulation language, and therefore no executable file is complied. An instance of the PNSM

is created by populating a data structure that represents the simulation model. This opens

new possibilities for creating online simulation models, i.e., simulation models that can rep-

resent the current state of a manufacturing system and can be used for real-time decision

making. This is true because the simulation model can be altered at any time.

This framework has some unique novel features. It uses as a basis the same execution

rules as classical PNs, yet it has extensions for time and priorities for firing of transitions.

This allows the representation of time as well as the implementation of various dispatch

rules. This is not directly possible with classical and colored Petri nets, as the firing of

transitions is undetermined. In manufacturing simulation models, it is necessary to establish

an order between enabled transitions. The only mechanism available for classical or colored

PN is the use of inhibitor arcs. This is, however, an inflexible approach.

It has been shown that the simulation mechanism will not affect liveness and bounded-

ness. Hence, it is possible to use standard analysis methods for liveness and boundedness

directly on the generated PNSM.

The simulation model generation is based on an object model, which serves as basis for

the simulation data specification. This object model contains all information needed for

the generation of the simulation model. Instances of the simulation data specification can

be stored in an XML file, which is based on this object model. Changes to the simulation

model can be performed by editing this file and regenerating the PNSM.

The procedure that generates the PN simulation model is based on a mapping from the

object model of the simulation data specification to the PN. Each of the main objects in the

simulation data specification, such as resources and process steps, corresponds to parts in

the PN. This mapping serves also as an unambiguous description of the simulation model.
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This closes the gap between the conceptual model and implementation of a simulation

model.

The mapping from the data specification to the PN follows a process-oriented view.

Each process step is described in terms of the PN. The behavior of the process step is

encapsulated within a sub-PN, yet these sub-nets are connected in specific ways to other

parts in the PN that represent resources and control structures. Each of the sub-PNs are

verifiable live, bounded, and reversible. These properties were also shown to be true for the

complete generated PN simulation model.

Sufficient conditions for a legitimate simulation model have also been introduced. These

conditions will ensure that the simulation model will be able to advance time.

Finally, we developed a measure to estimate simulation model complexity. This measure

allows to measure simulation runtime speed. There are only a few small-scale examples in

the literature for measures of this type.

In summary, the proposed simulation framework is intended to make the creation of

large-scale discrete-event (computer) simulation (DES) models for manufacturing systems

more manageable. It has several advantages: (1) There is an unambiguous description of the

simulation model in the form of a PN. (2) The user can verify exactly how each component

is working. (3) The user does not have to code the simulation model. The simulation model

is described in a problem specific domain; in this case, semiconductor manufacturing. The

simulation model is specified as an instance of an object model that serves as a simulation

data specification. The mapping from this object model to the PN is fixed; this means that

the simulation model generation is a rigid process, which can avoid programming errors.

Theoretically, there is no limitation for this framework to model any discrete-event

system. In principle, all systems that can be modeled as a finite state system can be

modeled. However, there are some disadvantages. Due to the rigid control, it is not easily

possible to make arbitrary changes in the behavior of the simulation model because this

behavior is determined by the mapping from the object model to the PN simulation model.

Hence, this mapping has to be altered accordingly.

Another practical concern is the modeling of material handling systems on a detailed
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level. For example, in order to model a conveyor, the conveyor would have to be discretized

in some way.

8.2 Future Research

There are many interesting possibilities for research is this area. Considering the steady

increase of computing power, effective simulation modeling is the key for many new applica-

tions. For instance, the application domain can be extended to other types of manufacturing

systems. One area that has not been treated here is assembly processes, which involve merg-

ing of different product streams. This can be easily modeled in terms of a PN. On a broader

scale, this approach can be extended to modeling and simulating entire supply chains or

networks.

Another area would be a tighter integration of the simulation framework with existing

product and resource data. Here an object-oriented model for a semiconductor manufactur-

ing system was developed, which contains all the necessary information for the simulation

model generation. In the same fashion, it is possible to create a standard model that can

specify a manufacturing model and supply chain. This model can then be used as a basis to

generate a PN simulation model. If such modeling standards are available, they could lead

to entirely new usages of simulation, e.g., integration of simulation for real-time decision

making. This would obviously require a lot of groundwork.

All problems mentioned above are application-oriented. A more fundamental research

area involves the use of parallel and distributed computing for PN simulation models. The

research question here is how to take advantage of the graphical representation of the

simulation model in form of a PN. It is clear that there are transitions in a PN that can

fire independently from each other, as they are in different areas of the PN. The challenge

is to find a suitable time advance mechanism such that causality is not violated. Further,

an appropriate segmentation algorithm would have to be found that allows for a parallel

execution of the PN simulation model.
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APPENDIX A

SIMULATION DATA SPECIFICATION

A.1 Data Description

Table 6 explains in detail the meaning of each field for each object. The explanation is based

on the information given in [1]. For a complete overview it, should be viewed together with

Figure 26, the object model for the data specification.

Table 6: Description of Simulation Data Specification

Object Field Description
Fabmodel processRoutes List of all ProcessRoute

objects in wafer fab
reworkSequence List of all ReworkSequence

objects in wafer fab
toolSets List of all ToolSet objects

in wafer fab
operatorSets List of all OperatorSet

objects in wafer fab
products List of all Product objects

in wafer fab
ProcessRoute processSteps List of all ProcessStep

objects in process route
ReworkSequence reworkSteps List of all ProcessStep

objects in rework route,
process steps in the rework
sequence have same format
as normal process steps

Product id String representing the
unique id of product

flowId String id of the process
route of the product

name String name of the product
startRate double release rate to wafer

fab in [wafers/day]
lotSize int lot size in wafers
processRoute ProcessRoute object

representing the process
route of the product

Continued on next page
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Table 6 (continued).
Object Field Description

ToolSet id String representing the
unique id of tool set

toolDescritpion String describing tool set
quantity int # of identical tools

available
operatorLoading boolean indicating if oper-

ator is needed for loading
operatorUnloading boolean indicating if oper-

ator is needed for unloading
operatorProcessFraction double fraction of time

operator is needed during
processing

setupModeled boolean indicating if setup
states are modeled

downTimes List of DownTime objects
setupStates List of String objects with

setup state ids
DownTime id String representing the

unique id of product
description String describing downtime
duration long duration [msec] of

downtime
timeBetween long avg. time [msec]

between downtimes (exp.
distributed)

OperatorSet id String representing the
unique id of operator set

descritpion String describing operator
set

quantity int # of identical operators
available

ProcessStep stepId String representing unique
id for process step

processRoute ProcessRoute object that
this object belongs to

toolSet ToolSet object that is
needed for this process step

operatorSet OperatorSet object that is
needed for this process step

operationDescription String that describes the
process step

loadTime long time [msec] to load
wafer lot into tool

unloadTime long time [msec] to unload
wafer lot from tool

Continued on next page
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Table 6 (continued).
Object Field Description

timePerWaferInProcess long time [msec] to process
a single wafer in the tool

waferTravelTimeWithinTool long time [msec] wafer
spends traveling inside tool,
tool can process other lots
during travel time

timePerLot long time [msec] to process
a wafer lot

lotScrapProbability double probability that the
entire lot is scrapped after
this operation

waferScrapProbability double probability that
wafer is scrapped after this
operation

lotReworkProbability double probability that
lot has to go through rework
sequence

reworkSequenceId String id of rework
sequence

returnStepId String id of step where
reworked lot will enter the
original sequence

travelTime travel time [msec] to next
tool

travelOperatorSet OperatorSet object needed
for travel to next tool

BatchProcessStep minBatchSize int minimum number of
(subclass of batches that must be
ProcessStep) present to start processing

maxBatchSize int maximum number of
batches that can be
processed at once

individualWaferModeled boolean indicating if
lot is separated into single
wafers for processing

timePerBatch long time [msec] to process
single batch

batchID String id of batch, lots
from other process steps
with the same batchID can
be batched together

ProcessStepWithSetup timePerSpecSetup long time [msec] for setup,
(subclass of has to be performed at the
ProcessStep) beginning of each processing

timePerGroupSetup long time [msec] for group
Continued on next page
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Table 6 (continued).
Object Field Description

specific setup, has to be
performed each time the
tool changes to a different
setup group

setupGroupId String representing the
setup group of this process
step
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A.2 Processing Times

The Sematech data sets specifies the following formulae for calculating processing time per

lot (pt), time until tool becomes free (tf), and total lot cycle time through an operation

(ct):

pt =timePerBatch ∗Number of batches required for the lot

+ timePerLot + timePerWaferInProcess ∗ lotSize

+ timePerSpecSetup(if appropriate) + timePerGroupSetup(if appropriate)

(8)

Note that in most cases only one of the three times will be non zero, i.e., the processing time

is either given as time per batch, time per lot, or time per wafer. The number of batches

required for the lot is usually one. It can be greater than one for batch process steps that

have a capacity that is less than the lot size; then, the lot has to be split into several smaller

batches. One has

tf = loadTime + pt + unloadTime (9)

ct = loadTime + pt + waferTravelTime + unloadTime. (10)

A.3 XML Schema for Data Specification

This XML schema is using the XMI standard, which is a standard for defining, interchang-

ing, manipulating and integrating XML data and objects. XMI provides rules by which a

schema can be generated for any valid XMI-transmissible MOF-based metamodel. Details

are availabe in [2].

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:fabmodel="http:///fabmodel.ecore"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http:///fabmodel.ecore">

<xsd:import namespace="http://www.omg.org/XMI"
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schemaLocation="../../../plugin/org.eclipse.emf.ecore/model/XMI.xsd"/>

<xsd:complexType name="BatchProcessStep">

<xsd:complexContent>

<xsd:extension base="fabmodel:ProcessStep">

<xsd:attribute name="minBatchSize" type="xsd:int"/>

<xsd:attribute name="maxBatchSize" type="xsd:int"/>

<xsd:attribute name="individualWaferModeled"

type="xsd:boolean"/>

<xsd:attribute name="timePerBatch" type="xsd:long"/>

<xsd:attribute name="batchId" type="xsd:string"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="BatchProcessStep" type="fabmodel:BatchProcessStep"/>

<xsd:complexType name="DownTime">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="description" type="xsd:string"/>

<xsd:attribute name="duration" type="xsd:long"/>

</xsd:complexType>

<xsd:element name="DownTime" type="fabmodel:DownTime"/>

<xsd:complexType name="DownTimeRunBased">

<xsd:complexContent>

<xsd:extension base="fabmodel:DownTime">

<xsd:attribute name="runsBetween" type="xsd:int"/>

</xsd:extension>

169



</xsd:complexContent>

</xsd:complexType>

<xsd:element name="DownTimeRunBased" type="fabmodel:DownTimeRunBased"/>

<xsd:complexType name="DownTimeTimeBased">

<xsd:complexContent>

<xsd:extension base="fabmodel:DownTime">

<xsd:attribute name="timeBetween" type="xsd:long"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="DownTimeTimeBased" type="fabmodel:DownTimeTimeBased"/>

<xsd:complexType name="FabModel">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="toolSets" type="fabmodel:ToolSet"/>

<xsd:element name="processRoutes" type="fabmodel:ProcessRoute"/>

<xsd:element name="operatorSets" type="fabmodel:OperatorSet"/>

<xsd:element name="products" type="fabmodel:Product"/>

<xsd:element name="reworkSequences" type="fabmodel:ReworkSequence"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="FabModel" type="fabmodel:FabModel"/>

<xsd:complexType name="OperatorBreak">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>
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<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="description" type="xsd:string"/>

<xsd:attribute name="timeBetween" type="xsd:long"/>

<xsd:attribute name="duration" type="xsd:long"/>

</xsd:complexType>

<xsd:element name="OperatorBreak" type="fabmodel:OperatorBreak"/>

<xsd:complexType name="OperatorSet">

<xsd:complexContent>

<xsd:extension base="fabmodel:Comparable">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="operatorBreaks"

type="fabmodel:OperatorBreak"/>

</xsd:choice>

<xsd:attribute name="id" type="xsd:string"/>

<xsd:attribute name="description" type="xsd:string"/>

<xsd:attribute name="quantity" type="xsd:int"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="OperatorSet" type="fabmodel:OperatorSet"/>

<xsd:complexType name="ProcessRoute">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="product" type="fabmodel:Product"/>

<xsd:element name="processSteps" type="fabmodel:ProcessStep"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
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<xsd:attribute name="id" type="xsd:string"/>

<xsd:attribute name="product" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="ProcessRoute" type="fabmodel:ProcessRoute"/>

<xsd:complexType name="ProcessStep">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="processRoute" type="fabmodel:ProcessRoute"/>

<xsd:element name="toolSet" type="fabmodel:ToolSet"/>

<xsd:element name="operatorSet" type="fabmodel:OperatorSet"/>

<xsd:element name="travelOperatorSet" type="fabmodel:OperatorSet"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="stepId" type="xsd:string"/>

<xsd:attribute name="operationDescription" type="xsd:string"/>

<xsd:attribute name="loadTime" type="xsd:long"/>

<xsd:attribute name="unLoadTime" type="xsd:long"/>

<xsd:attribute name="timePerWaferInProcess" type="xsd:long"/>

<xsd:attribute name="waferTravelTimeWithinTool" type="xsd:long"/>

<xsd:attribute name="timePerLot" type="xsd:long"/>

<xsd:attribute name="lotScrapProbability" type="xsd:double"/>

<xsd:attribute name="waferScrapProbability" type="xsd:double"/>

<xsd:attribute name="lotReworkProbability" type="xsd:double"/>

<xsd:attribute name="reworkSequenceId" type="xsd:string"/>

<xsd:attribute name="returnStepId" type="xsd:string"/>

<xsd:attribute name="travelTime" type="xsd:long"/>

<xsd:attribute name="processRoute" type="xsd:string"/>

<xsd:attribute name="toolSet" type="xsd:string"/>
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<xsd:attribute name="operatorSet" type="xsd:string"/>

<xsd:attribute name="travelOperatorSet" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="ProcessStep" type="fabmodel:ProcessStep"/>

<xsd:complexType name="ProcessStepWSetup">

<xsd:complexContent>

<xsd:extension base="fabmodel:ProcessStep">

<xsd:attribute name="timePerSpecSetup" type="xsd:long"/>

<xsd:attribute name="timePerGroupSetup" type="xsd:long"/>

<xsd:attribute name="setupGroupId" type="xsd:string"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="ProcessStepWSetup" type="fabmodel:ProcessStepWSetup"/>

<xsd:complexType name="Product">

<xsd:complexContent>

<xsd:extension base="fabmodel:Comparable">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="processRoute" type="fabmodel:ProcessRoute"/>

</xsd:choice>

<xsd:attribute name="id" type="xsd:string"/>

<xsd:attribute name="flowId" type="xsd:string"/>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="startRate" type="xsd:double"/>

<xsd:attribute name="lotSize" type="xsd:int"/>

<xsd:attribute name="processRoute" type="xsd:string"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>
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<xsd:element name="Product" type="fabmodel:Product"/>

<xsd:complexType name="ReworkSequence">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="reworkSteps" type="fabmodel:ProcessStep"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="ReworkSequence" type="fabmodel:ReworkSequence"/>

<xsd:complexType name="ToolSet">

<xsd:complexContent>

<xsd:extension base="fabmodel:Comparable">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element name="setupStates" nillable="true"

type="xsd:string"/>

<xsd:element name="downTimes" type="fabmodel:DownTime"/>

</xsd:choice>

<xsd:attribute name="id" type="xsd:string"/>

<xsd:attribute name="toolDescription" type="xsd:string"/>

<xsd:attribute name="quantity" type="xsd:int"/>

<xsd:attribute name="operatorLoading" type="xsd:boolean"/>

<xsd:attribute name="operatorUnloading" type="xsd:boolean"/>

<xsd:attribute name="operatorProcessFraction" type="xsd:double"/>

<xsd:attribute name="setupModeled" type="xsd:boolean"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>
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<xsd:element name="ToolSet" type="fabmodel:ToolSet"/>

<xsd:complexType abstract="true" name="Comparable">

<xsd:choice maxOccurs="unbounded" minOccurs="0">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Comparable" type="fabmodel:Comparable"/>

</xsd:schema>
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APPENDIX B

PETRI NET GENERATION ALGORITHMS

The following pseudo-code is based on Java, but it is not in compilable form. Unimportant

details have been omitted to improve readability. Comments start with “//”.

B.1 Generate Tool Sets

Generate all tool sets for fabmodel:

for a l l t o o l s e t s t s in fabmodel{
i f ( t s . setupModeled ) {

for each setup s t a t e s in t s . s e tupSta t e s {
t = new Tool ( ) ;
t . id = t s . ge t Id ()+” S ”+setupState Id ;

}
q = t s . quant i ty ;
for i = 0 to q{

t . addToken (new Token ( ) ) ;
}
createBreakDowns2 ( ) ;

} else {
t = new Tool ( ) ;
t . id = t s . id ;
q = t s . quant i ty ;
for i = 0 to q{

t . addToken (new Token ( ) ) ;
}
createBreakDowns1 ( ) ;

}
}

B.1.1 CreateBreakdowns1()

Create breakdowns for toolSet ts:

for each downtime d in t o o l s e t t s {
timeBetwn = d . TimeBetween / t oo l S e t . getQuantity ( ) ;
t r = new Tr igge rTrans i t i on ( ) ;
t r . setDelay ( timeBetwn ) ;
breakDown = new Contro lPlace ( ) ;
de lay = new FixedMaxPr ior i tyTrans i t ion ( ) ;
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de lay . setDelay (downTime . getDurat ion ( ) ) ;
t r . addOutPlace ( breakDown ) ;
de lay . addInPlace ( breakDown ) ;
de lay . addOutPlace ( t ) ;
de lay . addInPlace ( t ) ;

}

B.1.2 CreateBreakdowns2()

Create breakdowns for toolSet ts, with setup states:

for each downtime d in t o o l s e t t s {
timeBetwn = d . TimeBetween / t oo l S e t . getQuantity ( ) ;
t r = new Tr igge rTrans i t i on ( ) ;
t r . setDelay ( timeBetwn ) ;
breakDown = new Contro lPlace ( ) ;
t r . addOutPlace ( breakDown ) ;
for each setup s t a t e s in t oo l S e t . s e tupSta t e s {

delay = new FixedMaxPr ior i tyTrans i t ion ( ) ;
de lay . setDelay (downTime . durat ion ) ;

de lay . addInPlace ( breakDown ) ;
t = too l p lace cor re spond ing to setup s t a t e s ;
de lay . addOutPlace ( t ) ;

}
}

B.2 Create Operator Sets

for each operato rSe t os in fabModel . ope ra to rSe t s {
o = new Operator ( ) ;
for i = o to os . quant i ty {

o . addToken (new Token ( ) ) ;
}

}

B.3 Create Process Routes

for each ProcessRoute pr in FabModel fm {
f l owId = pr . id ;
l o t S i z e = pr . product . l o t S i z e ;
s t a r tP l a c e = new ProcessPlace ( ) ;
l a s tP l a c e = s t a r tP l a c e ;
for each ProcessStep ps in pr{

l a s tP l a c e = createProce sStep ( . . . ) ;
}

}
The method createProcessStep(...) will call the appropriate method according to the type

of process step.
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B.3.1 Create Basic Process Step

Creates places and transitions for process step ps.

operatorModeled = ps . operato rSe t != null ? true : fa l se ;
t o o l S e i z ed = fa l se ;
ope ra to rSe i z ed = fa l se ;
p r i o r i t y S e t = new ProcessPlace ( ) ;
s e tP r i o r i t y = new Trans i t i on ( ) ;
s e tP r i o r i t y . setDispatchRule ( d i spatchRule ) ;
s e tP r i o r i t y . addInPlace ( l a s tP l a c e ) ;
s e tP r i o r i t y . addOutPlace ( p r i o r i t y S e t ) ;
l a s tP l a c e = p r i o r i t y S e t ;
t s = ps . t o o l S e t ;
t o o l = too l p lace o f r equ i r ed t o o l ;
operator = null ;
i f ( operatorModeled ) {

operator = operator p lace o f r equ i r ed operator ;
}
delay = ps . timePerLot+ps . t imePerWaferInProcess ∗ l o t S i z e ;
// l oad ing
i f ( proce s sStep . getLoadTime ( ) > 0) {

l oad ing = new ProcessPlace ( ) ;
s ta r tLoad ing = new Trans i t i on ( ) ) ;
s ta r tLoad ing . setDelay ( proce s sStep . loadTime ) ;
s tar tLoad ing . addInPlace ( l a s tP l a c e ) ;
s ta r tLoad ing . addInPlace ( t o o l ) ;
s ta r tLoad ing . addOutPlace ( l oad ing ) ;
t o o l S e i z ed = true ;
i f ( operatorModeled && ts . operatorLoading ) {

s tar tLoad ing . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
l a s tP l a c e = load ing ;

}
// proce s s ing wi th opera tor
i f ( operatorModeled ) {

inProcessWOperator = new ProcessPlace ( ) ;
startProcess ingWOperator = new Trans i t i on ( ) ;
startProcess ingWOperator . setDelay (

de lay ∗ t s . ope ra to rProce s sFrac t i on ) ;
i f ( l a s tP l a c e instanceof BatchPlace )

startProcess ingWOperator
. addInJobBatchPlace ( l a s tP l a c e ) ;

else
startProcess ingWOperator . addInPlace ( l a s tP l a c e ) ;

startProcess ingWOperator . addOutPlace ( inProcessWOperator ) ;
i f ( not t o o l S e i z ed ) {

startProcess ingWOperator . addInPlace ( t o o l ) ;
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t o o l S e i z ed = true ;
}
i f ( not ope ra to rSe i z ed &&

not ( t s . ope ra to rProce s sFrac t i on == 0)) {
startProcess ingWOperator . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
l a s tP l a c e = inProcessWOperator ;

}
// proce s s ing w/o opera tor
i f ( not operatorModeled | | t s . ope ra to rProce s sFrac t i on < 1 . 0 ) {

inProcessWoutOperator = new ProcessPlace ( ) ;
startProcess ingWoutOperator = new Trans i t i on ( ) ;
startProcess ingWoutOperator . setDelay (

de lay ∗(1 − t s . ope ra to rProce s sFrac t i on ) ) ;
i f ( l a s tP l a c e instanceof BatchPlace )

startProcess ingWoutOperator
. addInJobBatchPlace ( l a s tP l a c e ) ;

else
startProcess ingWoutOperator . addInPlace ( l a s tP l a c e ) ;

startProcess ingWoutOperator . addOutPlace ( inProcessWoutOperator ) ;
i f ( not t o o l S e i z ed ) {

startProcess ingWoutOperator . addInPlace ( t o o l ) ;
t o o l S e i z ed = true ;

}
i f ( ope ra to rSe i z ed && operatorModeled ) {

startProcess ingWoutOperator . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
l a s tP l a c e = inProcessWoutOperator ;

}
// unloading
i f ( proce s sStep . getUnLoadTime ( ) > 0) {

unloading = new ProcessPlace ( ) ;
startUnloadLoading = new Trans i t i on ( ) ;

startUnloadLoading . setDelay ( proce s sStep . unLoadTime ) ;
startUnloadLoading . addInPlace ( l a s tP l a c e ) ;
startUnloadLoading . addOutPlace ( unloading ) ;
i f ( not ope ra to rSe i z ed && operatorModeled &&

ts . operatorUnloading ){
startUnloadLoading . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
l a s tP l a c e = unloading ;

}
// wa f e r t r a v e l t ime
i f ( proce s sStep . getWaferTravelTimeWithinTool ( ) > 0) {

inToolTransport = new ProcessPlace ( ) ;
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s tar t InToo lTransport = new Trans i t i on ( ) ;
s ta r t InToo lTransport . setDelay ( ps . waferTravelTimeWithinTool ) ;
s ta r t InToo lTransport . addInPlace ( l a s tP l a c e ) ;
s ta r t InToo lTransport . addOutPlace ( inToolTransport ) ;
i f ( t o o l S e i z ed ) {

s tar t InToo lTransport . addOutPlace ( t o o l ) ;
t o o l S e i z ed = fa l se ;

}
i f ( ope ra to rSe i z ed ) {

s tar t InToo lTransport . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
l a s tP l a c e = inToolTransport ;

}
// t r a v e l l i n g to next t o o l
i f ( proce s sStep . getTravelTime ( ) > 0) {

r e l e a s eOpera to r = new ProcessPlace ( ) ;
r e l e a s e = new Trans i t i on ( ) ;
r e l e a s e . addInPlace ( l a s tP l a c e ) ;
r e l e a s e . addOutPlace ( r e l e a s eOpera to r ) ;
l a s tP l a c e = re l ea s eOpera to r ;
i f ( t o o l S e i z ed ) {

r e l e a s e . addOutPlace ( t o o l ) ;
t o o l S e i z ed = fa l se ;

}
i f ( ope ra to rSe i z ed ) {

r e l e a s e . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
transportToNextTool = new ProcessPlace ( ) ;
startTransportToNextTool = new Trans i t i on ( ) ;
startTransportToNextTool . setProcess ingTime (

ps . timePerLot + ps . t imePerWaferInProcess ∗ l o t S i z e ) ;
startTransportToNextTool . addInPlace ( l a s tP l a c e ) ;
startTransportToNextTool . addOutPlace ( transportToNextTool ) ;
i f ( proce s sStep . t rave lOperato rSe t != null ) {

t rave lOperator = operator p lace o f r equ i r ed t r a v e l operator ;
startTransportToNextTool . addInPlace ( t rave lOperator ) ;

}
l a s tP l a c e = transportToNextTool ;

}
// end
end = new ProcessPlace ( ) ;
endT = new Trans i t i on ( ) ;
endT . addInPlace ( l a s tP l a c e ) ;
endT . addOutPlace ( end ) ;
i f ( t o o l S e i z ed ) {

endT . addOutPlace ( t o o l ) ;
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t o o l S e i z ed = fa l se ;
}

i f ( ope ra to rSe i z ed ) {
endT . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
i f ( ps . t rave lOperato rSe t != null ) {

t rave lOperator = operator p lace o f r equ i r ed t r a v e l operator ;
endT . addOutPlace ( t rave lOperator ) ;

}
i f ( ps has a rework sequence ) {

switchP = new ProcessPlace ( ) ;
reworkStart = new ProcessPlace ( ) ;
reworkEnd = place o f return s tep ;
switchT = new SwitchTrans i t ion ( ) ,
switchT . s e tSw i t chProbab i l i t y ( ps . l o tReworkProbab i l i ty ) ;
switchT . addInPlace ( end ) ;
switchT . addOutPlace ( switchP ) ;
i f ( reworkEnd == null ) {

reworkStepsToFinish . add ( ps . reworkSequence ) ;
} else {

createReworkSequence ( ) ;
}
end = switchP ;

}
i f ( ps . l o tS c r apProbab i l i t y > 0) {

scrapP = new ProcessPlace ( ) ;
scrapEnd = new ProcessPlace ( ) ;
scrapT = new SwitchTrans i t ion ( ) ;
scrapT . s e tSw i t chProbab i l i t y ( ps . l o tS c r apProbab i l i t y ) ;
scrapT . addInPlace ( end ) ;
scrapT . addOutPlace ( scrapEnd ) ;
end = scrapEnd ;

}
return end ;

B.3.2 Batch Process Step

Creates places and transitions for batch process step bs.

t o o l S e t = p lace o f r equ i r ed t o o l s e t ;
ope ratorSe t = p lace o f r equ i r ed operator s e t ;
operatorModeled = bs . operato rSe t != null ? true : fa l se ;
minBatchSize = bs . minBatchSize ;
maxBatchSize = bs . maxBatchSize ;
i f ( not bs . i s Indiv idualWaferMode led ( ) ) {

minBatchSize = minBatchSize / l o t S i z e +1;
maxBatchSize = maxBatchSize / l o t S i z e ;
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} else {
t = new Trans i t i on ( ) ;
b = new BatchPlace ( ) ;
this . weightIn = l o t S i z e ;
i f ( l a s tP l a c e instanceof BatchPlace )

t . addInJobBatchPlace ( l a s tP l a c e ) ;
else

t . addInPlace ( l a s tP l a c e ) ;
t . addOutJobBatchPlace (b ) ;
l a s tP l a c e = b ;

}
operator = null ;
i f ( bs . opera torSet != null )

operator = p lace o f r equ i r ed operator ;
t o o l = p lace o f r equ i r ed t o o l ;
// sp i s an o b j e c t t h a t r ep r e s en t s a
// s e t o f p l a c e s and t r a n s i t i o n s r ep r e s en t i n g
// the batch proces s p l ace
sp = getSharedBatchProcesStep ( ) ;
loadingModeled = bs . loadTime > 0 ? true : fa l se ;
unloadingModeled = bs . unLoadTime > 0 ? true : fa l se ;
// i f the batch proces s s t ep has not been crea t ed ye t
i f ( sp == null ) {

i f ( loadingModeled && unloadingModeled )
sp = createSharedBatchProcess ingStepLoadingAndUnloading ( ) ;

i f ( not loadingModeled && unloadingModeled )
sp = createSharedBatchProcess ingStepUnLoading ( ) ;

i f ( loadingModeled && not unloadingModeled )
sp = createSharedBatchProcess ingStepLoading ( ) ;

i f ( not loadingModeled && not unloadingModeled )
sp = createSharedBatchProcess ingStep ( ) ;

}
p0 = l a s tP l a c e ;
p1 = new ProcessPlace ( ) ;
p3 = new ProcessPlace ( ) ;
p4 = null ;
i f ( loadingModeled )

p4 = new ProcessPlace ( ) ;
p5 = null ;
i f ( unloadingModeled )

p5 = new ProcessPlace ( ) ;
p6 = new ProcessPlace ( ) ;
p a r a l l e l = new Trans i t i on ( ) ;
p a r a l l e l . addInPlace ( p1 ) ;
p a r a l l e l . addOutPlace ( p3 ) ;
p a r a l l e l . addBatchInPlace ( sp . c2 ) ;
t0 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
t0 . setDispatchRule ( d ispatchRule ) ;
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t1 = new Trans i t i on ( ) ;
t2 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
t3 = null ;
i f ( loadingModeled ) {

t3 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
}
t4 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
t5 = null ;
i f ( unloadingModeled )

t5 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
i f ( p0 instanceof BatchPlace )

t0 . addInJobBatchPlace ( p0 ) ;
else

t0 . addInPlace ( p0 ) ;
t0 . addOutPlace ( p1 ) ;
t1 . addInPlace ( p1 ) ;
t1 . addOutJobBatchPlace ( sp . b1 ) ;
t1 . addBatchInPlace ( sp . c1 ) ;
t2 . addBatchInPlace ( sp . b10 ) ;
i f ( loadingModeled ) {

t3 . addBatchInPlace ( sp . b20 ) ;
t3 . addInPlace ( p3 ) ;
t3 . addOutPlace ( p4 ) ;
t4 . addInPlace ( p4 ) ;

} else {
t4 . addInPlace ( p3 ) ;

}
t4 . addBatchInPlace ( sp . b30 ) ;
t1 . addOutPlace ( p2 ) ;
t2 . addInPlace ( p2 ) ;
t2 . addOutPlace ( p3 ) ;
t6 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
t6 . setProcess ingTime ( bs . timePerBatch ) ;
i f ( unloadingModeled ) {

t4 . addOutPlace ( p5 ) ;
t5 . addInPlace ( p5 ) ;
t5 . addBatchInPlace ( sp . b40 ) ;
t5 . addOutPlace ( p6 ) ;

} else {
t4 . addOutPlace ( p6 ) ;

}
t6 . addInPlace ( p6 ) ;
end = null ;
i f ( bs . i s Indiv idualWaferMode led ( ) ) {

s ta r tBatch ing = new FixedMaxPr ior i tyTrans i t ion ( ) ;
b = new BatchPlace ( ) ;
t6 . addOutJobBatchPlace (b ) ;
s ta r tBatch ing . addInJobBatchPlace (b ) ;

183



end1 = new ProcessPlace ( ) ;
s ta r tBatch ing . addOutPlace ( end1 ) ;
end = end1 ;

} else {
end2 = new ProcessPlace ( ) ;
t6 . addOutPlace ( end2 ) ;
end = end2 ;

}
i f ( bs . getTravelTime ( ) > 0) {

transportToNextTool = new ProcessPlace ( ) ;
TransstartTransportToNextTool = new Trans i t i on ( ) ;
startTransportToNextTool . addInPlace ( end ) ;
startTransportToNextTool . addOutPlace ( transportToNextTool ) ;
startTransportToNextTool . setDelay ( bs . travelTime ) ;
i f ( bs . t rave lOperato rSe t != null ) {

t rave lOperator = p lace or r equ i r ed t r a v e l operator ;
startTransportToNextTool . addInPlace ( t rave lOperator ) ;

}
l a s t = new ProcessPlace ( ) ;
endT = new FixedMaxPr ior i tyTrans i t ion ( ) ;
endT . addInPlace ( transportToNextTool ) ;
endT . addOutPlace ( l a s t ) ;
i f ( bs . t rave lOperato rSe t != null ) {

endT . addOutPlace ( t rave lOperator ) ;
}
end = l a s t ;

}
i f ( bs has rework sequence ) {

switchP = new ProcessPlace ( ) ;
reworkStart = new ProcessPlace ( ) ;
reworkEnd = getReworkEnd ( ) ;
switchT = new SwitchTrans i t ion ( ) ;
switchT . s e tSw i t chProbab i l i t y ( bs . r eworkProbab i l i ty ) ;
switchT . addInPlace ( end ) ;
switchT . addOutPlace ( switchP ) ;
i f ( reworkEnd == null ) {

reworkStepsToFinish . add ( bs . reworkSequence ) ;
} else {

createReworkSequence ( ) ;
}

}
i f ( bs . l o tS c r apProbab i l i t y > 0) {

scrapP = new ProcessPlace ( ) ;
scrapEnd = new ProcessPlace ( ) ;
scrapT = new SwitchTrans i t ion ( ) ;
scrapT . addInPlace ( end ) ;
scrapT . addOutPlace ( scrapEnd ) ;
end = scrapEnd ;
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}
return end ;

B.3.2.1 Create Shared Batch Process Step

Creates the control places and transitions for batch process step bs without loading and

unloading.

t o o l S e t = p lace o f r equ i r ed t o o l s e t ;
ope ratorSe t = p lace o f r equ i r ed operator s e t ;
minBatchSize = bs . getMinBatchSize ( ) ;
maxBatchSize = bs . getMaxBatchSize ( ) ;
i f not ( bs . i s Indiv idualWaferModeled ( ) ) {

minBatchSize = minBatchSize / l o t S i z e + 1 ;
maxBatchSize = maxBatchSize / l o t S i z e ;

}
// t h i s i s a he l p e r o b j e c t
sp = new SharedBatchProcessStep ( ) ;
process ingTime = bs . timePerBatch ;
b1 = new BatchPlace ( ) ;
Proces sPlace b4 = new ProcessPlace ( ) ;
Proces sPlace b5 = new ProcessPlace ( ) ;
sp . b1 = b1 ;
tb1 = new Trans i t i on ( ) ;
tb4 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 . setDelay ( process ingTime ) ;
tb5 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb1 . addInJobBatchPlace ( b1 ) ;
tb1 . addInPlace ( t o o l S e t ) ;
tb1 . addOutPlace ( b4 ) ;
tb4 . addInPlace ( b4 ) ;
tb4 . addOutPlace ( b5 ) ;
tb5 . addInPlace ( b5 ) ;
tb5 . addOutPlace ( t o o l S e t ) ;
b10 = new BatchPlace ( ) ;
tb1 . addBatchOutPlace ( b10 ) ;
sp . b10 = b10 ;
b30 = new BatchPlace ( ) ;
tb5 . addBatchOutPlace ( b30 ) ;
sp . b30 = b30 ;
d i spose3 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose3 . addBatchInPlace ( b30 ) ;
// t h i s p l ace l im i t s the number o f tokens in b1 p lace
c1 = new BatchPlace ( ) ;
c1 . addToken (new Token ( ) ) ;
tb1 . addBatchOutPlace ( c1 ) ;
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sp . c1 = c1 ;
c2 = new BatchPlace ( ) ;
sp . c2 = c2 ;
d i spo s e = new FixedMinPr io r i tyTrans i t i on ( ) ;
tb1 . addBatchOutPlace ( c2 ) ;
d i spo s e . addBatchInPlace ( c2 ) ;
return sp ;

B.3.2.2 Create Shared Batch Process Step with Loading

Creates the control places and transitions for batch process step bs with loading.

t o o l S e t = p lace o f r equ i r ed t o o l s e t ;
ope ratorSe t = p lace o f r equ i r ed operator s e t ;
operatorModeled = bs . operato rSe t != null ? true : fa l se ;
minBatchSize = bs . minBatchSize ;
maxBatchSize = bs . maxBatchSize ;
i f not ( batchProcessStep . individualWaferModeled ) {

minBatchSize = minBatchSize / l o t S i z e +1;han
maxBatchSize = maxBatchSize / l o t S i z e ;

}
// he l p e r o b j e c t
sp = new SharedBatchProcessStep ( ) ;
loadingTime = batchProcessStep . getLoadTime ( ) ;
process ingTime = batchProcessStep . getTimePerBatch ( ) ;
b1 = new BatchPlace ( ) ;
b2 = new ProcessPlace ( ) ;
b3 = new ProcessPlace ( ) ;
b4 = new ProcessPlace ( ) ;
b5 = new ProcessPlace ( ) ;
sp . b1 = b1 ;
tb1 = new Trans i t i on ( ) ;
tb2 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb2 . setDelay ( loadingTime ) ; // l oad ing
tb3 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 . setDelay ( process ingTime ) ; // proce s s ing
tb5 = new FixedMaxPr ior i tyTrans i t ion ( ) ) ;
tb1 . addInJobBatchPlace ( b1 ) ;
tb1 . addInPlace ( t o o l S e t ) ;
tb1 . addOutPlace ( b2 ) ;
tb2 . addInPlace ( b2 ) ;
tb2 . addOutPlace ( b3 ) ;
tb3 . addInPlace ( b3 ) ;
tb3 . addOutPlace ( b4 ) ;
tb4 . addInPlace ( b4 ) ;
tb4 . addOutPlace ( b5 ) ;
tb5 . addInPlace ( b5 ) ;
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i f ( operatorModeled ) {
tb1 . addInPlace ( operatorSet ) ;
tb3 . addOutPlace ( operatorSet ) ;

}
tb5 . addOutPlace ( t o o l S e t ) ;
b10 = new BatchPlace ( ) ;
tb1 . addBatchOutPlace ( b10 ) ;
sp . b10 = b10 ;
b20 = new BatchPlace ( ) ;
tb3 . addBatchOutPlace ( b20 ) ;
sp . b20 = b20 ;
d i spose2 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose2 . addBatchInPlace ( b20 ) ;
b30 = new BatchPlace ( ) ;
tb5 . addBatchOutPlace ( b30 ) ;
sp . b30 = b30 ;
d i spose3 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose3 . addBatchInPlace ( b30 ) ;
// t h i s p l ace l im i t s the number o f tokens in b1 p lace
c1 = new BatchPlace ( ) ;
c1 . addToken (new Token ( ) ) ;
tb1 . addBatchOutPlace ( c1 ) ;
sp . c1 = c1 ;
c2 = new BatchPlace ( ) ;
sp . c2 = c2 ;
d i spo s e = new FixedMinPr io r i tyTrans i t i on ( ) ;
tb1 . addBatchOutPlace ( c2 ) ;
d i spo s e . addBatchInPlace ( c2 ) ;
return sp ;

B.3.2.3 Create Shared Batch Process Step with Loading and Unloading

Creates the control places and transitions for batch process step bs with loading and un-

loading.

t o o l S e t = p lace o f r equ i r ed t o o l s e t ;
ope ratorSe t = p lace o f r equ i r ed operator s e t ;
operatorModeled = bs . getOperatorSet ( ) != null ? true : fa l se ;
minBatchSize = bs . minBatchSize ;
maxBatchSize = bs . maxBatchSize ;
i f ( ! bs . i s Indiv idualWaferModeled ( ) ) {

minBatchSize = minBatchSize / l o t S i z e + 1 ;
maxBatchSize = maxbatchSize / l o t S i z e ;

}
SharedBatchProcessStep sp = new SharedBatchProcessStep ( ) ;
loadingTime = bs . loadTime ;
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unloadingTime = bs . unLoadTime ;
process ingTime = bs . getTimePerBatch ;
b1 = new BatchPlace ( ) ;
b2 = new ProcessPlace ( ) ;
b3 = new ProcessPlace ( ) ;
b4 = new ProcessPlace ( ) ;
b5 = new ProcessPlace ( ) ;
b6 = new ProcessPlace ( ) ;
b7 = new ProcessPlace ( ) ;
sp . b1 = b1 ;
tb1 = new Trans i t i on ( ) ;
tb2 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb2 . setDelay ( loadingTime ) ; // l oad ing
tb3 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 . setDelay ( process ingTime ) ; // proce s s ing
tb5 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb6 = new FixedMaxPr ior i tyTrans i t ion ( ) ) ;
tb6 . setDelay ( unloadingTime ) ; // unloading
tb7 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb1 . addInJobBatchPlace ( b1 ) ;
tb1 . addInPlace ( t o o l S e t ) ;
tb1 . addOutPlace ( b2 ) ;
tb2 . addInPlace ( b2 ) ;
tb2 . addOutPlace ( b3 ) ;
tb3 . addInPlace ( b3 ) ;
tb3 . addOutPlace ( b4 ) ;
tb4 . addInPlace ( b4 ) ;
tb4 . addOutPlace ( b5 ) ;
tb5 . addInPlace ( b5 ) ;
tb5 . addOutPlace ( b6 ) ;
tb6 . addInPlace ( b6 ) ;
tb6 . addOutPlace ( b7 ) ;
tb7 . addInPlace ( b7 ) ;

i f ( operatorModeled ) {
tb1 . addInPlace ( operatorSet ) ;
tb3 . addOutPlace ( operatorSet ) ;
tb5 . addInPlace ( operatorSet ) ;
tb7 . addOutPlace ( operatorSet ) ;

}
tb7 . addOutPlace ( t o o l S e t ) ;
b10 = new BatchPlace ( ) ;
tb1 . addBatchOutPlace ( b10 ) ;
sp . b10 = b10 ;
b20 = new BatchPlace ( ) ;
tb3 . addBatchOutPlace ( b20 ) ;
sp . b20 = b20 ;
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d i spose2 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose2 . addBatchInPlace ( b20 ) ;
b30 = new BatchPlace ( ) ;
tb5 . addBatchOutPlace ( b30 ) ;
sp . b30 = b30 ;
d i spose3 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose3 . addBatchInPlace ( b30 ) ;
b40 = new BatchPlace ( ) ;
tb7 . addBatchOutPlace ( b40 ) ;
sp . b40 = b40 ;
d i spose4 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose4 . addBatchInPlace ( b40 ) ;
// t h i s p l ace l im i t s the number o f tokens in b1 p lace
c1 = new BatchPlace ( ) ;
c1 . addToken (new Token ( 0 ) ) ;
tb1 . addBatchOutPlace ( c1 ) ;
sp . c1 = c1 ;
c2 = new BatchPlace ( ) ;
sp . c2 = c2 ;
d i spo s e = new FixedMinPr io r i tyTrans i t i on ( ) ;
tb1 . addBatchOutPlace ( c2 ) ;
d i spo s e . addBatchInPlace ( c2 ) ;
return sp ;

B.3.2.4 Create Shared Batch Process Step with Unloading

Creates the control places and transitions for batch process step bs with unloading.

t o o l S e t = p lace o f r equ i r ed t o o l s e t ;
ope ratorSe t = p lace o f r equ i r ed operator s e t ;
operatorModeled = bs . getOperatorSet ( ) != null ? true : fa l se ;
minBatchSize = bs . getMinBatchSize ( ) ;
maxBatchSize = bs . getMaxBatchSize ( ) ;
i f ( ! bs . i s Indiv idualWaferModeled ( ) ) {

minBatchSize = minBatchSize / l o t S i z e + 1 ;
maxBatchSize = maxbatchSize / l o t S i z e ;

}
// he l p e r o b j e c t
sp = new SharedBatchProcessStep ( ) ;
unloadingTime = batchProcessStep . getUnLoadTime ( ) ;
process ingTime = batchProcessStep . getTimePerBatch ( ) ;
b1 = new BatchPlace ( ) ;
b4 = new ProcessPlace ( ) ;
b5 = new ProcessPlace ( ) ;
b6 = new ProcessPlace ( ) ;
b7 = new ProcessPlace ( ) ;
sp . b1 = b1 ;
tb1 = new Trans i t i on ( ) ;
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tb4 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb4 . setDelay ( process ingTime ) ; // proce s s ing
tb5 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb6 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb6 . setDelay ( unloadingTime ) ; // unloading
tb7 = new FixedMaxPr ior i tyTrans i t ion ( ) ;
tb1 . addInJobBatchPlace ( b1 ) ;
tb1 . addInPlace ( t o o l S e t ) ;
tb1 . addOutPlace ( b4 ) ;
tb4 . addInPlace ( b4 ) ;
tb4 . addOutPlace ( b5 ) ;
tb5 . addInPlace ( b5 ) ;
tb5 . addOutPlace ( b6 ) ;
tb6 . addInPlace ( b6 ) ;
tb6 . addOutPlace ( b7 ) ;
tb7 . addInPlace ( b7 ) ;
i f ( operatorModeled ) {

tb5 . addInPlace ( operatorSet ) ;
tb7 . addOutPlace ( operatorSet ) ;

}
tb7 . addOutPlace ( t o o l S e t ) ;
b10 = new BatchPlace ( ) ;
tb1 . addBatchOutPlace ( b10 ) ;
sp . b10 = b10 ;
b30 = new BatchPlace ( ) ;
tb5 . addBatchOutPlace ( b30 ) ;
sp . b30 = b30 ;
d i spose3 = new FixedMinPr io r i tyTrans i t i on ( ) ;
d i spose3 . addBatchInPlace ( b30 ) ;
b40 = new BatchPlace ( ) ;
tb7 . addBatchOutPlace ( b40 ) ;
sp . b40 = b40 ;
d i spose4 = new FixedMinPr io r i tyTrans i t i on ( ) ) ;
d i spose4 . addBatchInPlace ( b40 ) ;
// t h i s p l ace l im i t s the number o f tokens in b1 p lace
c1 = new BatchPlace ( ) ;
c1 . addToken (new Token ( 0 ) ) ;
tb1 . addBatchOutPlace ( c1 ) ;
sp . c1 = c1 ;
c2 = new BatchPlace ( ) ;
sp . c2 = c2 ;
d i spo s e = new FixedMinPr io r i tyTrans i t i on ( ) ;
tb7 . addBatchOutPlace ( c2 ) ;
d i spo s e . addBatchInPlace ( c2 ) ;
return sp ;
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B.3.3 Process Step with Setup

Creates places and transitions for process step with setup ps.

t s = p lace o f r equ i r ed t o o l s e t ;
operator = null ;
i f ( ps . opera torSet != null ) {

operator = p lace o f r equ i r ed operator s e t ;
}
p r i o r i t y S e t = new ProcessPlace ( ) ;
s e tP r i o r i t y = new FixedMaxPr ior i tyTrans i t ion ( ) ;
s e tP r i o r i t y . setDispatchRule ( d i spatchRule ) ;
s e tP r i o r i t y . addInPlace ( l a s tP l a c e ) ;
s e tP r i o r i t y . addOutPlace ( p r i o r i t y S e t ) ;
l a s tP l a c e = p r i o r i t y S e t ;
operatorModeled = ps . operato rSe t != null ? true : fa l se ;
ope ra to rSe i z ed = fa l se ;
endSetup = new ProcessPlace ( ) ;
for each setup s t a t e s in t s . s e tupSta t e s {

setupTime = ps . timePerSpecSetup ;
setup = new ProcessPlace ( ) ;
i f ( not ( s == ps . getSetupGroupId ) ) {

setupTime = setupTime + ps . timePerGroupSetup ;
s e tupStar t = new Trans i t i on ( ) ;

} else {
s e tupStar t = new Trans i t i on ( ) ;

}
t o o l = p lace o f t o o l s e t for setup s t a t e s ;
s e tupSta r t . setDelay ( setupTime ) ;
setupEnd = new Trans i t i on ( ) ;
s e tupSta r t . addInPlace ( l a s tP l a c e ) ;
s e tupSta r t . addInPlace ( t o o l ) ;
i f ( operatorModeled ) {

s e tupStar t . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
s e tupStar t . addOutPlace ( setup ) ;
setupEnd . addInPlace ( setup ) ;
setupEnd . addOutPlace ( endSetup ) ;

}
l a s tP l a c e = endSetup ;
de lay = ps . timePerLot + ps . t imePerWaferInProcess ∗ l o t S i z e ;
// l oad ing
i f ( ps . getLoadTime > 0) {

l oad ing = new ProcessPlace ( ) ;
s ta r tLoad ing = new Trans i t i on ( ) ;
s ta r tLoad ing . setDelay ( processStepWSetup . getLoadTime ( ) ) ;
i f ( l a s tP l a c e instanceof BatchPlace )

s tar tLoad ing . addInJobBatchPlace ( l a s tP l a c e ) ;

191



else
s tar tLoad ing . addInPlace ( l a s tP l a c e ) ;

s ta r tLoad ing . addOutPlace ( l oad ing ) ;
l a s tP l a c e = load ing ;

}
// proce s s ing wi th opera tor
i f ( operatorModeled ) {

inProcessWOperator = new ProcessPlace ( ) ;
startProcess ingWOperator = new Trans i t i on ( ) ;
startProcess ingWOperator . setDelay (

de lay ∗ t s . ope ra to rProce s sFrac t i on ) ;
i f ( l a s tP l a c e instanceof BatchPlace )

startProcess ingWOperator . addInJobBatchPlace ( l a s tP l a c e ) ;
else

startProcess ingWOperator . addInPlace ( l a s tP l a c e ) ;
startProcess ingWOperator . addOutPlace ( inProcessWOperator ) ;
i f ( not ope ra to rSe i z ed ) {

startProcess ingWOperator . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
l a s tP l a c e = inProcessWOperator ;

}
// proce s s ing w/o opera tor
i f ( ( not operatorModeled ) | | t s . ope ra to rProce s sFrac t i on < 1 . 0 ) {

inProcessWoutOperator = new ProcessPlace ( ) ;
startProcess ingWoutOperator = new FixedMaxPr ior i tyTrans i t ion ( ) ;
startProcess ingWoutOperator . setDelay (

de lay ∗ (1 − t s . ope ra to rProce s sFrac t i on ) ) ;
i f ( l a s tP l a c e instanceof BatchPlace )

startProcess ingWoutOperator . addInJobBatchPlace ( l a s tP l a c e ) ;
else

startProcess ingWoutOperator . addInPlace ( l a s tP l a c e ) ;
startProcess ingWoutOperator . addOutPlace ( inProcessWoutOperator ) ;
i f ( ope ra to rSe i z ed && operatorModeled ) {

startProcess ingWoutOperator . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
l a s tP l a c e = inProcessWoutOperator ;
}
// unloading
i f ( ps . unLoadTime > 0) {

unloading = new ProcessPlace ( ) ;
startUnloadLoading = new Trans i t i on ( ) ;
startUnloadLoading . setDelay ( ps . unLoadTime ) ;
startUnloadLoading . addInPlace ( l a s tP l a c e ) ;
startUnloadLoading . addOutPlace ( unloading ) ;
i f ( not ope ra to rSe i z ed && operatorModeled &&

ts . operatorUnloading ) {
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startUnloadLoading . addInPlace ( operator ) ;
ope ra to rSe i z ed = true ;

}
l a s tP l a c e = unloading ;

}
// wa f e r t r a v e l t ime
i f ( ps . waferTravelTimeWithinTool > 0) {

inToolTransport = new ProcessPlace ( ) ;
s ta r t InToo lTransport = new FixedMaxPr ior i tyTrans i t ion ( ) ;
s ta r t InToo lTransport . setDelay ( ps . waferTravelTimeWithinTool ) ;
s ta r t InToo lTransport . addInPlace ( l a s tP l a c e ) ;
s ta r t InToo lTransport . addOutPlace ( inToolTransport ) ;
i f ( ope ra to rSe i z ed ) {

s tar t InToo lTransport . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;

}
l a s tP l a c e = inToolTransport ;

}
end = new ProcessPlace ( ) ;
endT = new FixedMaxPr ior i tyTrans i t ion ( ) ;
endT . addInPlace ( l a s tP l a c e ) ;
endT . addOutPlace ( end ) ;
t o o l = p lace for t o o l in setup s t a t e ps . setupGroupId ;
endT . addOutPlace ( t o o l ) ;
i f ( ope ra to rSe i z ed ) {

endT . addOutPlace ( operator ) ;
ope ra to rSe i z ed = fa l se ;
}

return end ;

B.3.3.1 Create Rework Sequences

Creates the processing steps for rework sequence rs.

Place l a s t = null ;
for each proce s s s tep s in rework sequence r s {

// t h i s i s a c a l l to same method t ha t c r ea t e s the
//normal proces s s t e p s
reworkStart = createProce sStep ( ) ;
l a s t = reworkStart ;

}
Trans i t i on returnT = new Trans i t i on ( ) ;
returnT . addInPlace ( l a s t ) ;
reworkEnd = place o f return proce s s s tep ;
returnT . addOutPlace ( reworkEnd ) ;
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B.4 Create Input Transitions

for each proce s s route pr {
input = f i r s t p lace o f pr ;
p = product o f pr
r e l e a s eRate = p . s ta r tRate ; // s t a r t ra t e in wafers per day
l o t S i z e = p . l o t S i z e ;
r e l e a s eRate = re l e a s eRate / l o t S i z e ; // ra t e in l o t s per day
// i n t e r v a l i s the time between l o t r e l e a s e s in msec ;
i n t e r v a l = ( long ) ( (24 ∗ 3600 ∗ 1000 l ) / r e l e a s eRate ) ;
t1 = new Tr igge rTrans i t i on ( ) ;
t1 . setDelay ( i n t e r v a l ) ;
t1 . s t o c h a s t i c = fa l se ;
t1 . addOutPlace ( input ) ;

}
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