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Preface 

Welcome to the workshop on Workflow Management: Net-based 
Concepts, Models, Techniques and Tools (WFM'98). This workshop 
has been organized to discuss the application of formal methods to the 
design, analysis and execution of work processes. WFM'98 is part of 
the 19th International Conference on Applications and Theory of Petri 
Nets. Therefore, it is not a surprise that most of the papers use Petri nets 
as a design language. The contributions show that Workflow 
Management (WFM) and Business Process Reengineering (BPR) are 
challenging application domains for Petri nets. On the one hand, people 
in industry are in need of concepts, methods, techniques and tools to 
support WFMlBPR efforts. On the other hand, Petri nets are a proven 
technology to describe and analyze business processes. Therefore, Petri 
nets seem to be a good candidate for becoming a standard technique for 
the modeling of work flows. 

We received 21 paper submissions from more than 10 countries. Each 
of these papers has been reviewed by three reviewers. Based on these 
reviews 12 high quality papers have been accepted for presentation at 
the workshop. These papers are included in the proceedings. Topics 
addressed by the papers presented at the workshop: 

• process modeling techniques for workflow management 
• design and analysis of workflow processes 
• business processes reengineering 
• verification of workflow procedures 
• performance analysis 
• software architectures for workflow management 
• coordination languages 
• workflow management systems 
• business process support systems 

The presentations have been grouped into four sessions: (1) Workflow 
modeling and specification, (2) Verification of workflow specifications, 
(3) Adaptive workflow, and (4) Organizational context and 
applications. We hope that the presentations will lead to stimulating 
discussions and new ideas for future research directions. 
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To conclude, we would like to thank the authors for submitting 
excellent papers and the reviewers for their comments and constructive 
suggestions. We would also like to thank the local organizers of 
UNINOV A. In particular we would like to thank Luis Gomes for taking 
care of numerous organizational matters. We, the organizers of this 
workshop, are convinced that these efforts will help to make WFM'98 a 
successful event. 

Wil van der Aalst 
(Eindhoven University of Technology, The Netherlands) 

Giorgio De Michelis 
(University of Milano, Italy) 

Skip Ellis 
(University of Colorado, USA) 
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A Workflow Specification Environment 

Pierre Azema, Frano;ois Vernadat, Pierre Gradit 

LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4 
{azema, vernadat, gradit }@laas.fr 

Abstract 

This paper proposes a workflow specification formalism, based upon 
reactive objects. This formalism is valid for several paradigms such as 
message passing or agent oriented programming, and consequently may 
describe distinct workftows, that is flows of electronic documents and/or 
human activities. A contribution is the introduction of generic modules 
for determining specific architectures, e.g. specific multicast protocols, 
or agent instance creation. A basic workflow, for object collecting, is in­
troduced as illustrative example. Several architecture definitions are then 
proposed for this example: static, hierarchical and dynamic architectures. 

keywords: Communicating Agents, Predicate/Transition Nets, State Space 
Analysis. 

1 Introduction 

A flexible workflow specification environment is proposed. A first motivation 
is to handle distinct points of view, in order to identify properties which have 
to be fulfilled whatever the implementation policy. In the case of computer 
supported cooperative activities, two complementary aspects may be consid­
ered: document circulation and people circulation. Either the documents move 
and message passing protocols have to be implemented; or people move and 
agent oriented programming is suitable. Both points of view are worth to be 
considered. 

A second motivation is the processing of dynamic system configurations. 
A configuration is considered dynamic when, according to task execution, the 
number of involved agents is changing, as in the case of group membership, or 
dynamic resource allocation. 

Several features characterize the proposed workflow specification environ­
ment : rapid prototyping, modularity, communication primitives. The derived 
specifications are executable, resulting into a rapid prototyping facility. This 
allows an early debugging through a step by step execution. Furthermore, a 
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verification processing is easily initiated, as far as the reachable state space may 
be enumerated. 

The entities involved within the workflow, either agents or preformatted 
documents, are considered as reactive elements, that is they have to react on 
line to external events. The behavioral characteristics of these entities, their 
functional attributes, are encapsulated within modules. This modularity leads 
to a rather easy scalability, that is the size of the specified system is under control 
by considering either a limited amount of components, for analysis purpose, or 
a large number of components for implementation purpose. 

In order to separate the concerns about behavior and architecture, the com­
munication primitives have to be powerful. The proposed communication fa­
cilities are similar to actor language [Agh86] or to protocol specification language 
[CCI92]: asynchronous communication through FIFO queues. Other built-in 
primitives include synchronous (rendez-vous) messages, and pattern matching 
via logic unification. 

In the next section, the VAL formalism is introduced by means of a generic 
producer-consumer example. Section 3 presents the application: the collecting 
processing of distributed objects, according to two versions: message passing 
and agent mobility. A hierarchical version of the application is presented in 
Section 4. Section 5 deals with verification. 

2 VAL Description 

2.1 Overview 

VAL formalism is based on Logic Programming and Predicate/Transition Net 
[Gen9!] allowing the description of dynamic systems of communicating and 
mobile agents [VAL95]. Agents are the basic ingredients of the formalism. 
They are active elements of the system: they communicate with partners, dis­
appear or create new agents. Agent Behavior is described by an extended 
Predicate/Transition Net. Proposed extensions concern communication and 
dynamism. 
The communication operates directly between agents as in Actor languages 
[Agh86] according to their acquaintances. 

The system is dynamic because an active agent may create new agents 
or(and) disappear by stopping its activity. Every agent may create new agents 
of any class. 

The system description is performed by means of a PROLOG-like language. 
A self-referencing mechanism is available. An agent knows its own identity: 

attributes @Class and @Ref allow an agent for referencing its class and its 
reference. Two types of components are considered: agents and structures. 
Structures are passive elements, that is without behavior. They declare the 
interconnections between the agents which constitute a configuration, and the 
agents involved in such a configuration share these interconnections. A structure 
may define the architecture of an application. Agents are the active system 
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elements: they are autonomous, they have attributes, methods and behaviors. 
They send and receive messages, they may disappear and/or create new agents. 

A class behavior is depicted by a set of transitions, where self-referencing, 
rendez-vous, on-line creation are allowed. 

Predicates are used for the state description: an agent state consists of a set 
of predicates. The system state consists of the set of agent states, the content 
of the input message queues. 

Agent behavior 
Each transition is specified by a specific clause whose the distinct fields are 

the followings. 
Trans introduces the name of the transition, 
From refers to preconditions (predicate list), 
To gives the postcondition (predicate list), 
When defines a message reception on a given port, 
Send introduces the receiver agent (class and identifier), 

the reception port and the message to be sent, 
Rdv declares a rendez-vous, 
Create declares new agents to be created, and their initial state, 
Exit indicates whether the current agent disappears or not. 
Cond introduces local constraints (conditions to be fulfilled). 

Communications Patterns For communication structuring purpose, a 
topic, that is a gate or an interaction point, is associated with any message. 

- Elementary synchronization, and emission are specified by 4-tuple 
< Class, Ref, topic, message> where Class, Ref represent the synchroniza­
tion partner, topic is the communication interaction point, message stands for 
the message content. 

- Elementary reception is specified by a pair < topic, message> where 
topic is the name of the message queue and message refers to the first queue 
element. 
An Elementary creation is specified by a 3-tuple < Class, Ref, initial > 
where Class, Ref represents the new instance identity and initial is the initial 
state. 

Firing Rule: A VAL transition (instance) is firable when pre-conditions 
hold, the expected messages are present and the needed synchronisations are 
possible. The transition firing removes the preconditions and adds the post­
conditions, consumes the received messages, issues new messages and creates 
agent instances as specified by the designer. 

2_2 Producer Consumer Example 

As preliminary step, a simple request acknowledgement protocol is considered. 
Agent consumer send a request towards agent supplier, which returns the re­
quired item. Two behavior classes are introduced: consumer and supplier. 
Class consumer consists of two transitions: order, receive, while class supplier 
is reduced to single transition deliver. Instances of these classes are character­
ized by class identifiers and their initial states. 
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In addition to the behavior description, for running a specification, two other 
data files are needed in order to declare a system: file structure specifies the 
needed agent classes, and possibly local data processing ; file configuration 
defines the set of initial agent instances and their initial states. The former 
system consists of two agent classes consumer and supplier, and an initial 
configuration has to be defined. A consistent configuration may be composed 
of a consumer and of the associated supplier, that is the supplier which delivers 
the required items. 

With respect to the case consumer-supplier, an initial configuration may 
consist of consumer instance c and supplier instance couvert. The initial state 
is then the following: 

consumer -c([request([(couvert, I])], supplier _couvert([idle, stock(2)]) 
that is consumer c is ready to order quantity 1 of product couvert, while 

supplier couvert is idle and the available quantity in stock is equal to 2. 
Several other configurations could be considered: several consumers order­

ing the same product, or a single consumer ordering several products. These 
configurations are easily declared at initialization. 

A consumer behavior is depicted by transitions order and receive. These two 
transitions are specified by parameterized clauses. For transition firing, these 
clauses have to match with the current state, A global state is composed of the 
component states, and of the content of message queues. For each transition, 
an example of the instanciated code is given. 

Generic code 
TRANS order 
FROM request(_product, Jlum) 
SEND (supplier, _product, 

TO 
END 

req(@class,@ref), _num) 
wait(_num) 

Instantiated Code 
TRANS order 
FROM request(couvert, I) 
SEND (supplier, couvert, 

TO 
END 

req(consumer, c), I) 
wait(l) 

Transition order is enable by precondition request(_product, J!Um), that 
means that there exists, for the current state, a substitution of logic vari­
ables _product and _num. The occurrence of this transition send to agent 
whose class and identifier are supplier and _product respectively, at interac­
tion point req(@ciass,@ref), message _num, and changes the current state of 
agent consumer from request(_product, _num) to wait(_num). It must be no­
ticed that the (chosen) way to declare the interaction point introduces a message 
signature. The supplier will know the sender identity. 

From the initial state, the reached global state is then the following: 
consumer _c([wait((!])]), supplier -1:ouvert([idle, stock(2)]) 
input (supplier _couvert( req( consumer, c), [[I]])) 

The supplier state is left unchanged, while on port req(consumer, c) of the 
supplier, the input file contains message 1. 
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TRANS receive TRANS recewe 
FROM wait(_num) FROM wait(1) 
WHEN (_product, _num) WHEN (couvert, 1) 
TO happy TO happy 
END END 

Transition receive: from state waii(_num), when interaction point _product 
offers message _num, transition receive is enable, the firing of this transition 
reset agent consumer into state happy. 

The supplier behavior is depicted by transition deliver. The current state 
of agent supplier is depicted by predicate stock(_s), that is number ..s of items 
is available. By receiving an order of quantity _num of items, this amount will 
be send back, if two conditions, introduced by keyword CON D, are fulfilled: 
the required quantity is less than or equal to the available stock, the next stock 
value is decremented by the just delivered quantity. 

TRANS deliver TRANS 
FROM stock(_s) FROM 
WHEN (req(_class, _ref), [_num]) WHEN 
COND _num =< _s, COND 

_ns is _8 - _num 
SEND 
TO 
END 

(_class, _ref,@ref, _num) 
stock(_ns) 

2.3 Rendez-vous 

SEND 
TO 
END 

deliver 
stock(2) 
(req( consumer, c), [1]) 
1 =< 2, 
1 is 2 - 1 
(consumer, c, couvert, 1) 
stock(1) 

The former example could be implemented by means of a strong synchronization 
between consumer and supplier, that by rendez-vous: the consumer issues the 
request and simultaneously receives the answer from the supplier. The supplier, 
by receiving the request, immediately delivers the object. 

The following two transitions concurrently fire: request on the consumer 
side, deliver on the supplier side. Each partner must precise class and identity 
of the other, while terms of port and message have to match. The partner states 
change from preconditions to postconditions. 

TRANS request TRANS 
FROM request(_product, _num) FROM 
RDV (supplier, .product, RDV 

TO 
END 

port, _num) 
happy 
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TO 
END 

request 
request(couvert, 1) 
(supplier, couvert, 
port, 1) 
happy 



TRANS deliver TRANS deliver 
FROM stock(_s) FROM stock(2) 
COND JIum =< _8, COND 1 =< 2, 

_ns is _5 - _num 1 is 2 - 1 
RDV (consumer, _consumer, RDV (consumer, c, 

port, -"urn) port, 1) 
TO stock(_ns) TO stock(l) 
END END 

3 Collecting Strategies 

In this section, message passing and agent creation are considered. The producer 
consumer case is extended. The product may not consist of a single object, the 
product may be composed of several objects which are separately ordered: a 
couvert is composed of knife and fork. The resulting requirement is the online 
computation of message patterns. 

3.1 Communication and Mobility 

When an order arrives at a desk, this order is translated into a list of required 
items, and requests are dispatched towards the corresponding suppliers. A sup­
plier checks whether the required item quantity is available, then returns the 
items to the desk. The desk finally collects the items and delivers them. For 
collecting the distinct elements, two strategies are considered: message passmg 
and mobile agents. 

order 

deliver 

desk 

dispatch 

~~c~ol~le~c~,)::E(~---
~ 

y message 

--
~ E( ~ [SUpPlier] 

---61 item 

Figure 1: Message Passing 

message passing: a multicast is performed, that is messages are sent to 
the respective component suppliers, which by receiving the request will return 
the expected number of items. 

Communication Policy As illustrated in the previous example, each corre­
spondent of the instance disposes of a specific communication queue. In our 
case, the name of the queue (or the interaction point) is a binary predicate 
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req <-class, -Ief) where variables _class and -Ief indicate the identity of the 
sender. This knowledge will be used for the reply message. 

As each desk represents a specific product, order message is reduced to the 
number of required items, and the requester identity is encoded in the name of 
the queue, 

delegate creation as many agents as the number of different sorts of items 
are created and each agent will collect the requested components. 

desk 
order dispatch .... ~=a 

~ 
supplier 

.. d~e~lie::ve~ri._~k£J collect -EE;--

" Figure 2: Delegate Creation. 

3.2 Communication Pattern 

The principle is to consider tha.t the desk decomposes a consumer request into 
a list of ingredients, each one being delivered by a distinct supplier. 

For instance, object couvert is composed of pair knife, fork, two secondary 
requests have to be issued towards the respective suppliers, as depicted by Figure 
3. 

(supplier) 

> order 

Figure 3: Hierarchical Collecting. 

An important new functionality is introduced: the on-line computation of 
messages to be issued or received. 

When a customer issues a request at a front desk, the desk is in charge of col­
lecting the needed items. From the component list, two lists are simultaneously 
computed: order list and expected list, denoted below -"end, _wait, respectively. 
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This computation is the purpose of predicate 
compute_mes(_gloss, -.request, ...send, _wait). Two input parameters are 
_gloss, which supplies the component list of an object, and 
_request, which supplies the request. 

Predicate compute_mess determines two terms ...send, _wait, which represent 
messages to be sent and messages to he received, respectively. 

Let gloss([(couvert, [knife, fork])]) be the predicate which associates with 
request = couvert, component list [knife, fork], then the following pattern are 
derived by compute_mess: 
(desk, fork, req(desk, couvert), [1]) 
(desk, knife, req(desk, couvert), [1]) 

whose interpretation is two requests are issued on the behalf of desk couvert 
towards desks knife and fork. Of course one knife and one fork are expected 
as answer. 

The behavior of agent class desk then consists of transitions order, collect. 
TRAN order (instantiation) 
FROM idle, idle 

gloss(_gloss) gloss([( couvert.[knife,fork])])) 
WHEN (req(_class, _ref), (req(consumer, c), 

COND 
SEND 

TO 

END 

_request) 1) 
compute_mes 
....send 

collect((_class, _ref), 
_request, _wait), 
gloss(_gloss) 

(desk, fork,req(desk,couvert) [1]) 
(desk, knife,req(desk,couvert) [1]) 
collect((consumer, c), 
[1], (fork, knife), 
gloss([( couvert.[knife,fork])])) 

With respect to transition collect, the purpose of predicate whengpe(_wait, _ack) 
is to derive the expected messages from list _wait of expected ingredients. By 
receiving the ingredients, the collecting desk returns the (re)composed object. 

TRAN collect instantiated by 
FROM collect((_class, -yef), collect((consumer, c), 

_request, _wait) [1], (fork, knife), 
COND 
WHEN 
SEND 
TO 
END 

whengpe(_wait, _ack) 
_ack 
(_class, _ref,@ref,_request) 
idle 

3.3 Mobility 

(fork, 1), (knife, 1) 
(consumer, c, couvert, 1) 
idle 

Instead to send an order and to receive the requested item, another approach is 
to create a new agent, let clerk be the class name, whose purpose is to collect 
the components. 

Two policies are possible: either as many agents are created as the number 
of distinct ingredients, or a single clerk will collect the ingredients, by visiting 

- 12 -



each supplier. The first policy only is described: the desk behavior is modified, 
a clerk behavior is introduced. 

3.3.1 Desk Behavior 

The desk transitions are modified, for creating new agents. The new transitions 
order, collect are defined by the following clauses. 

Trans receive_order 
From idle 
Rdv (Consumer ,_consumer ,order ,Jist) 
Cond Compute_team(Jist,_team) 
Create _team 
To 
End 
Trans 
From 
Cond 
Rdv 
To 
End 

wait(_consumer ,Jist) 

collect 
wai t (_consumer, Jist) 
Compute-tlynchronization(Jist,_team) 
[( Consumer,_consumer,deliver ,Jist) l-teamJ 
idle 

Predicate Compute.leam(Jist, .learn) receives as input the list ofrequests 
and produces as output the pattern of clerk agents to be created. In a similar 
way, predicate Compute_Synchronization(_list, .learn) determines the pattern 
of a multiple rendez-vous with several clerk agents. 

Let [(knife, I), (fork, I)J be the list of requests, the produced pattern is 
then: 
_team = (Clerk, fork, [from(couvert), req(I)]), 
(Clerk, knife, [/rom(couvert), req(l)]) 

This pattern corresponds to the tuple class, identifier, initialmarking, that 
is two clerk agents will be created, with respective names knife, fork, and their 
initial state is composed of the pair from(_desk), req(_num) which specifies the 
requesting desk, and the needed quantity. 

3.3.2 Clerk Behavior 

A clerk instance is created by a desk, and corresponds to an object to be col­
lected. After being created by a desk, a clerk agent meets the right supplier, 
picks the needed quantity, then returns to the desk. 

A clerk behavior is defined by transitions go, pick, return, deliver. 
TRANS go TRANS back 
FROM from(-<lesk) FROM atsupplier 
TO atsupplier, from(-<lesk) TO atdesk 
END END 
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TRANS 
FROM 
RDV 
TO 
END 

pick 
atsupplier ,req( _r) 
(Supplier ,@ref,pick,..r) 
atsupplier ,ack(..r) 

TRANS 
FROM 
RDV 
TO 
EXIT 
END 

deliver 
atdesk ,from (--<lesk) ,ack( _r) 
(Desk,_desk,ack,..r ) 

true 

The transition interpretation should be self explanatory: a clerk moves from 
the desk to a supplier, once at the supplier location it picks the needed quantity, 
returns to the desk, and there delivers the item. 

It is worth to notice that at the delivery the clerk agent disappears. 

4 Hierarchical Structure 

This section deals with nested structures: component clusters are defined for 
encapsulating parameterized agent structures. The system is no more composed 
of direct instances of classes, the ordered object is itself an object hierarchy. 
The interpretation of a received request is locally performed, the customer is 
not aware of the process which may internally be performed by a desk. 

The former glossary associates with an object, a list of items. In the ex­
tended glossary, an item may be tree structured. The implementation policy 
may remain unknown for an external user : either a single dispatch manager 
knows the whole glossary and issues queries for terminal objects, or a desk solic­
its an other desk, without knowing whether the expected object is terminal or 
not (i.e. it is to be decomposed). In the sequel, this latter policy is described. 

Figure 4: A query tree. 

For instance, a dining room is composed of distinct agents, whose the casting 
depends upon organizational choices. The queries may consist of the following 
reactive objects: To serve a customer, the desk needs a waiter and a seat. A 
seat consists of glass and plate in addition to couvert. A couvert is composed 
of fork and knife. A key point is to consider any agent as a desk instance, 
whose initial parameters declare the role within the structure. 
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4.1 Description of the proposed solution 

The purpose of this new solution is to be able to describe in a generic way a 
system parameterized by a hierarchical structure, as depicted in Fig 4. 

Roughly speaking, the hierarchical description of the services will be inter­
preted at the creation of the system. To each node of the tree will be associated 
a specific agent desk parameterized by the set of its sons in the hierarchy. As 
result, the central view of the hierarchy is distributed among the different agents 
representing it. 

The following table represents the initial state of the system encoding the 
abstract hierarchy depicted in Fig 4. 

Note the presence of a specific desk whose reference is general which con-
stitutes the root. This node is known by any consumer. 

consumer _c([request([( table,1 )]) ,service( desk)]) 
desk_general([idle,glossary(nil)]) 
desk_couvert ([idle ,glossary ([(couvert, [knife,fork])])]) 
desk-'leat( [idle,glossary ([ (seat, [glass ,plate,cou vert])])]) 
deskJork ([idle ,stock( 2)]) 
desLglass( [idle,stock (2)]) 
deskJ,:nife( [idle,stock (2)]) 
desLplate([idle,stock(2)]) 
desLwaiter([idle,stock(2)]) 

Finally, depending on the position of the node on the tree, two distinct 
behaviors have to be provided: a desk or a supplier behavior. In order to 
simplify the description of the example, these two distinct roles are merged 
within class desk. 

4.1.1 Supplier Component 

Predicate stock is an unary predicate on the number of available references. 
transition deliver describes the actions associated with the reception of an 

order issued by agent instance (_class, Jef) . 
The value of the available stock is determined by instantiation of predicate 

stock( -'l). 
If the required quantity num is available (that is least or equal to the available 

stock: -"um =< _5)' then a delivery message is sent to the demander (the queue 
associated with this message is given by the reference of the considered instance 
(cf meta-variable Oref)), and the remaining stock is updated. 

4.1.2 Desk Component 

The data processing, namely with respect to the communication pattern com­
putation, plays a crucial role in the proposed behavior. 

Attributes: the state of the instance is defined by the following three predi­
cates. 
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idle : the initial state of the instance 

glossary : an unary predicate recording the instance knowledge of the hierar­
chy of services. In the case of the hierarchy depicted in Fig. , glossary of 
instance seat of agent desk will be of the form 
(seat, [Glass ,Couvert ,Plate]). Then, when the desk.seat is asked he 
knows how to fulfill the order. A set of messages is derived from the initial 
order, this derivation is computed according the informations recorded in 
the glossary. 

collectCclass,...ref) ,..list,JIlait) : is a ternary predicate indicating 

l. (_class, ..ref) the identity of the requester 

2. (~ist) the list of the required items 

3. _wait the set of instance references associated with the transaction. 

Data processing: 

compute...m.es When the desk.seat is asked, the received order is translated 
in a set of messages according the hierarchy recorded in the glossary. Proce­
dure compute...m.es (...glossary, ..list ,-send ,JIlait) is is in charge of this work. 
Variables -!llossary and Jist may be considered as input datas while -"end and 
_wait are the outputs of the procedure. 
- ~lossary represents the value of the glossary of the considered instance, 
- Jist the list of ordered items 
- ...send is a set of emission patterns associated with the list of orders to be 
satisfied. The initial set (Jist) is translated into a new set of messages (-"end) 
according the value of the glossary. 
- The same computation is used to determine _wait, the set of instance references 
whose the response will determine the satisfaction of the transaction. 

whengpe is a built-in predicate for computing the set of reception patterns 
which corresponds to an agent group. 

Description of the behavior 

Transition Order: 
Transition order describes the reception of a list of orders. The instance 

is idle, that is no transaction occurs. The received message (Jist) emitted by 
instance (_class,Jef) is treated by means of procedure compute..mes. The set of 
emission patterns (-"end) is emitted and the entity evolves in a state collect 
indicating that a transaction is in progress. This predicate records the identity 
of the requester (_class,Jef), the initial order (Jist) and the set of instance 
references involved in the transaction (_wait). 
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desLcouvert([idle,glossary([(couvert , [knife,fork])])]) 
desLfork([idle,stock(2)J) 
desLknife([idle,stock(2)J) 
desLseat ([glossary( [ (seat, [glass ,plate,cou vert])]), 

collect( (desk , table ),[1 J, [couvert,plate,glass])]) 
desk_couvert([idle,glossary([( couvert , [knife,fork])])]) 
inpu t (desLcou vert (req (desk,seat), [[ 1 JJ)) 

Table 1: State enabling transition desLcouverLorder 

desLseat([ glossary([(seat , [glass,plate,couvert])]), 
collect( (desk , table) ,[1 ]'[couvert,plate,glass])]) 

desLcouvert([ glossary([(couvert , [knife,forkJ)]), 
collect((desk , seat),[lJ,[fork,knife])]) 

desLfork([ idle,stock(2)]) 
desk_knife([ idle,stock(2)]) 
in pu t (desLfork (req (desk,cou vert), [[1 JJ)) 
input( desk_knifer req (desk,couvert) ,[[1 Jl)) 

Table 2: State after firing transition desk_couvert_order 

Example Let us consider! instance couvert of the hierarchy depicted in 
Fig 4. Table 1 describes a fragment of a system state enabling transition order 

The context of instance couvert is determined by the two following clauses: 
- desk_couvert ( [idle,glossary( [(couvert, [knife ,fork] )])]) indicat­
ing the state 
- input (desk_couvert (req (desk, table) , [[1]]» indicating the presence of 
message 1 in queue req(desk,seat) 

The computation of computeJlles leads to the following instantiations: 
- ...send: 
[(desk,fork,req(desk,couvert),[l]), 
(desk,knife,req(desk,couvert),[l])] 
- _wait: [ fork, knike ] 

After transition firing, the next system state is described by table 2. 
Transition collect describes the end of the transaction. Builtin predicate 

whengpe computes the set of reception patterns associated with the set of in­
stance references whose the response is expected. When the receptions are possi­
ble, an acknowledgement message is emitted to the requester (_class,....ref,@ref,Jist). 
The communication queue associated with this communication is the reference 
of the emitter Oref. 
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desUork([idle,stock( 1 )]) 
desLknife( [idle,stock( 1)]) 
desk-Beat ([glossary ([ (seat, [glass,plate,cou vert])]), 

collect( (desk , table) ,[1 ],[couvert,plate,glass])]) 
desLcou vert ([glossary ([(couvert , [knife,fork])]), 

collect((desk , seat),[I],[fork,knife])]) 
input( desLcouvert(fork, [1])) 
in pu t( desLcouvert (knife, [1])) 

Table 3: transition desk-couvert_collect is ready 

desk_couvert([idle,glossary([( couvert , [knife,fork])])]) 
desLfork([idle,stock( 1 )]) 
desLknife( [idle,stock( 1)]) 
desk-Beat ([glossary ([ (seat, [glass ,plate,cou vert])]), 

collect ( (desk , table)'[1 ]'[couvert,plate,glass])]) 
input( desk-seat ( couvert, [[1]])) 

Table 4: After firing of transition desk_couvert_collect 

Example Let us consider, instance couvert of the hierarchy depicted 
in Fig 4. Table 3 describes a fragment of a system state enabling transition 
collect. 

Clause collect«desk , seat), [1], [fork,knife])]) indicates that 
desk_couvert is waiting the responses of instances fork and knife. The set of 
reception patterns is computed by built-in predicate whengpe. Clauses 
input (desk_couvert (fork, [1] )) and 
input (desk_couvert (knife, [1])) indicate respectively that the expected re­
sponses are arrived. A response message is sent to the initiator of the transaction 
desk-Beat. Table 4 depicts the state system after transition firing. 

5 Verification 

In order to perform formal verification, the configuration space may be generated 
(even in the case of dynamic description). The configuration space may then be 
analysed either by algebraic approaches, i.e. observational equivalence [MiI89], 
or by temporal logic model checking [ES89]. A specification, that is the formal 
interpretation of an informal description, should produce two kind of outputs: an 
operational description and expected properties. The purpose of the verification 
is then to ckeck whether the expected properties are satisfied by the operational 
description, (see Figure 5). 
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Expected Propertl 

Infonnal Descriptio 
correction 

Operational Description 

Figure 5: Verification. 

Temporal Logic Temporal logic formula are statements on the reachabil­
ity of global system states. Two basic modal operators are INEVitably or 
POTentially. Here are two examples of temporal assertions. Is it always true 
that any state for which condition pending is true is inevitably followed by a 
state for which delivered is true. ALL (pending =0> IN EV delivered) 
This statement may be false for a model for which the requests exceeds the 
resources, because a provider may refuse to serve an order. 

Bisimulation This approach allows to derive a reduced view by considering 
as observable only a subset of the events. The observational equivalent automa­
ton is an automaton where observationally equivalent states are merged into a 
single class, The behavior is then easier to analyze by considering this specific 
subset. 

Application The system associated with the hierarchy depicted is analysed. 
This system corresponds to the causal diagram depicted by Figure 5. More 
precisely, we investigate the processing of a table request. As we consider a 
single consumer request, the system has to reach a final state in which the 
request has been fulfilled, that is all the components of the table have been 
collected. 

desk 

waiter 

seat 

glass 

plate 

couvert 

knife 

fork 

~---------------~ 
- - --------------- ~ 

--- ------------- --~ 

----> 

-----> 

------> 

---------~ 

Figure 6: Causal diagram of the query tree. 

The complete state system consists in 58 states and 132 edges. This graph 
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admits a single deadlock corresponding to the expected final state. 
Temporal Logic allows to verify that this final state is still inevitable. 

ALL(Table.ordered => IN EVtable.delivered) 
Bissimulation techniques allows us to visualize some details of the request 

processing. Different points of view may be considered by selecting specific set 
of observed events. Two kinds of observation are investigated: 

In the first case, the bottom of the hierachy is considered: interactions be­
tween knife, fork and couvert are observed. The way for desk.couvert to collect 
knife and fork is observed. The obtained quotient automaton is depicted by Fig 
7. A sample analysis allows us to verify that after a couvert.order is inevitably 
followed by a couvert.collect. 

couvert. order 
fork.deliverer. 

0-~1-----~' 3 

knife 0 deltver knife.deliver 

~ fork. deliver ~ ~ 
~'-------~>~ 

couvert. collect 

Figure 7: Observational service of interactions between knife, fork and couvert 

The second observation focusses on the main steps to follow in order to 
collect a table. To keep the size of the quotient automaton manageable, the 
observation is reduced to the first level of the hierachy. The details relative to 
the processing of a seat or a couvert are not observed. 

The obtained quotien automaton is depicted by Fig 8. 

© • ..... 1 table. collect 
seat. orde~ couvert. ord~ couvert. cO~i-_s_ea_t_. C_O_'_IW .~ !A .~ .~ 

~ ~ ~ ~ 
011 011 011 011 

"tI "tI "tI "tI 

~ ~ ~ ~ .... .... .... .... 
.~ .~ .~ ~ 

2 3 \------>{s a 10 
seat.order couvert.ord couvert. colI t seat.collec 

Figure 8: Main steps needed for ..... 

A sample analysis allows us to verify that after a table.order is inevitably 
followed by a table.collect. 
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6 Conclusion 

Rapid prototyping and modularity are standard requirements for specification 
environments. The dynamic aspect seems particularly relevant for workflow 
analysis. The ability to describe dynamic systems, i.e. agent creation and 
suppression, and mobile processes, i.e. addressing by name and logic unification, 
offers a great flexibility to the designer. 

For debugging purpose, a specification may be step by step interpreted. The 
simulator and the associated graphical user interface provide standard facilities 
: display of the global state and of the communication queues, list of the enable 
transitions, .... 

The proposed approach appears useful during the first design phases [HoI96], 
in order to rather quickly elaborate a behavioral model, and to determine pre­
liminary requirements. At this level, a crucial aspect concerns the identification 
of a consistent set of actions, or methods, and the decomposition of a complex 
system into easier subproblems. 

Within the framework of cooperative systems, an agent oriented program­
ming style is particularly adapted [VA96]. 

A current study deals with the following question: how to take explicitely 
into account regular architectures during a verification process. 
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Abstract 
In the field of modelling enterprises and business processes the classical struc­
tured modelling techniques are dominating; there are only a few object-oriented 
approaches. A method for creating a business process model will be proposed 
and the Object - Process - Net (OPN) will be presented, which can be used for 
describing the dynamic aspects of systems and which can be added to the fa­
mily of diagrams combined within the UML (Unified Modelling Langnage). 
The OPN can be considered as an object-oriented Petri Net and can be trans­
formed into a high-level Petri Net conform to the standard. 

Keywords: Relationships between net theory and other approaches, Applications of 
nets to workflows, System design and verification using nets, Object 
Oriented Petri Nets, UML (Unified Modelling Language) 

1 Introduction 
Modelling of business processes attains increasing importance since it is an indispen­
sable basis for successful business process reengineering as well as for the inaugura­
tion and the use of workflow management systems. 
The business perspective focuses increasingly on an integrated, process oriented view 
on the enterprise. Hence, it appears to be advantageous to apply theoretical methods 
of computer science on business management issues. Over the last years an increas­
ingly fruitful co-operation between business management and information theory has 
developed although there was not much common ground between both sciences in the 
past. Many issues of today's management reality result in highly complex demands on 
the development of information systems, particularly in terms of user friendliness, 
complexity, safety and adaptivity. The information theory point of view, a rather 
formal one, supports the process oriented exantination of business flows. 
Although object orientation has become a standard in the field of computer science 
there are only a few approaches for object oriented modelling of business processes so 
far while this domain is still dontinated by classical structured methods [FeSi96], 
[Pres97], [PMK97]. Even the standardisation efforts of the WfMC (Workflow Man­
agement Coalition) have not been included object orientation yet. 
Another aspect, which is disregarded from our perspective is the verification of mod­
els of business processes. Due to the complexity of models which arises from the 
underlying domain of applications it is inevitable to choose a multi-stage, incremental 
modelling approach in order to make verification possible in each modelling stage. 
Here, verification should not only be understood as evaluation by simulation but as a 
formal, analytic method for model verification. 
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Our way of business process modelling assumes that the UML ([UMLI], [UML2]) 
will establish as the standard method for the object oriented paradigm. The advantage 
of this approach is the step-by-step evolution of a rather informal model to a formal 
one. The OPN, developed by the authors, is to be understood as an additional diagram 
of the UML for the description of dynamic aspects of a system. 
The following chapter gives a short introduction to some UML-diagrams and after 
then the Object Process Net will be explained in chapter 3. In chapter 4 our method 
for creating a model is presented followed by some notes to tool support and model­
checking methods. 

2 The UML as the standard technique for object oriented 
modelling 
The UML combines a set of diagrams for object oriented modelling of systems on 
different levels and from various views onto the systems. There are diagrams for the 
static, dynamic and architectural aspects. For special fields of system modelling only 
a subset of this diagrams will be used because some of them are redundant. A method 
for model-building is lacking within the UML. 
Within our modelling method described in chapter 4 we use Use Case Diagrams, 
Class Structure Diagrams, Activity Diagrams and the Object Process Net. All this 
diagrams will be shortly explained and illustrated by a common example. Due to the 
limited scope of this paper only a clipping of the whole model can be presented. 
Within the framework of co-operation between a furniture and toy producing factory 
and the Technical University of Jlmenau various methods for modelling the business 
processes of this enterprise have been applied and evaluated. We modelled the proc­
ess of handling orders for furniture within the enterprise. 
The Use Case approach was developed by Jacobson [Jac0+92] [Jac0+95]. A use case 
diagram represents the external functionality of a system or a class as visible to an 
actor external to the system. It only shows which services a system gives to the envi­
ronment but not how this service will be done by the system. Different scenarios of a 
use case are usually described textual. 
The actors are humans as well as computers or other systems. Actors communicate 
with the use cases. Between use cases two types of relationships are possible: an ex­
tends and a uses relationship. 
A Class Structure Diagram (CSD) gives a graphic view of the static structural 
model. Within a CSD the classes with their attributes and methods are described as 
well as role-associations and inheritance relationships between several classes. 
The role-associations will be considered as attributes. With respect to Figure I for 
instance an object of the class order has the attribute user from type people. 
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Figure 1: CSD for the class order 

An Activity Diagram (AD) is a special case of a state diagram combined with some 
Petri Net ideas. Within Activity Diagrams the internal dynamic behaviour of use cases 
can be described. An AD captures the sequential and/or parallel processing order of 
the activities which produce the performance of a system for the environment. The 
model components of an Activity Diagram described within the UML allow the com­
plete representation of aU elementary structures for modeHing business processes 
denoted in the glossary of the Workflow Management Coalition [WfMC97]. Activity 
Diagrams can be designed in a rather abstract manner as well as enriched with formal 
details. Therefore, they are a good entrance for the stepwise formalisation of the use 
cases. An activity is a state of the system with an inner action which is connected to 
other activities by transitions. Ao incoming transition initiate an activity. If there are 
more than one outgoing transition for an activity than they have to be distinguished by 
logical expressions. It is possible to split or synchronise transitions. The division of an 
Activity Diagram into socalled swim lanes gives the assignment between activities 
and the responsible objects. 
The following Figure 2 shows a part of the order handling process and is self­
explanatory. The fIrst steps like incoming and sorting of orders are omitted. Here, 
only the time-dependent scheduling of orders will be illustrated. 
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cancel detenrine 
new date 

Figure 2 : Part of the Activity Diagram for order handling 

In Figure 2 decisions within the flow of processing are represented by diamond 
shapes. If an activity has more than one incoming transitions (Schedule order in 
Figure 2) it represents an OR-Join conform to the WfMC-definitions for basic struc­
tures of business processes [WfMC96j. 
Another diagram for describing the dynamic aspects of systems is the Object Process 
Net developed by the authors. The individual business activities are connected via 
pre- and post-conditions. Therefore the procedural order of them is given implicitly. 
The simulation of an OPN gives various scenarios for the related use case. OPN is 
well suited for detailed modelling of parts from the system. 
Both Activity Diagram and OPN are dealing with the classes and their methods de­
fined in the Class Structure Diagram. 
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3 The Object Process Net (OPN) 

3.1 Basic Ideas 
The OPN carries on the idea of the Object Process Model (OPM) [Burk94], which 
was especially developed for software engineering starting by analysing the dynamic 
aspects of systems [Schm97]. The goal is the creation of a system model, which will 
be directly transformed into source code of the destination language [OTW97]. When 
using the OPN for modelling business processes this feature is not the most important 
one but the ability of describing the dynamic behaviour of system. 
According to the object oriented paradigm the abstract objects represent the classes 
and the processes represent the methods defined for the classes. The graphical nota­
tion of an OPN is a bipartite, directed graph the nodes of which are the objects and 
processes. A complete model describing a real-world system consists of a system of 
OPN diagrams. Every OPN belonging to such a system shows a delimited part; there­
fore the models are rather clear. 
The state of the modelled system is described by the values of attributes belonging to 
the objects. Therefore, a change of these values describes a variation of the system's 
state. Attribute values can be changed by activating and running processes. 
On the one hand, the OPN is considered as an additional diagram within the family of 
diagrams forming the UML [UMLI], [UML2]. Therefore it is possible to enhance an 
OPN by OCL-statements (Object Constraint Language) [OCL]. This makes the mod­
els more understandable and clear. 
On the other hand, the OPN can be understood as an object oriented Petri Net. It is 
possible to transform an OPN into high level Petri Nets conform to the standard 
[Conc97]. This results in the ability to find analysis techniques directly for the OPN. 

3.2 Objects 
Objects are described exclusively as abstract objects. Hence, the properties modelled 
within an OPN hold for all instantiated objects of this class and of derived classes. In 
this way, the inheritance relationships are captured by an OPN. 

<ins!> 
<AttU> 
<A.ttr_2> 

Figure 3: Abstract Object 

The graphical representation of an object is a circle, 
which is divided into three parts. In the upper part the 
name of the abstract object has to be denoted manda-
tory. The middle part can be used for showing role­
associations between various objects. This is a useful 
feature for modelling. 
In the lower part of a pattern for an object a set of at­
tributes can be specified. Every abstract object pos­
sesses an instance list <inst>, which can be considered 
as a special attribute and which contains all the instanti-

ated objects of the related class. This list can be - particularly in the initial state -
empty. Every instantiated object possesses all the attributes, which are defined for the 
abstract object to which it belongs. That is, the instance list of abstract objects having 
derived objects is the union of all instance lists of the derived abstract objects. 
It is only necessary to declare such attributes in the lower part of an object pattern 
which are essential within the context of this OPN, i.e. the same object can be de-
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picted with different subsets of attributes within various OPN belonging to a system 
of OPN's. In the following, a certain attribute is denoted by <attr> and its value by 
vallattr). The value of an attribute can be undef, that means it has no defined value. 
According to the object-oriented paradigm the attributes are instances of four pre­
defined colour classes or of a user-defined structured data type. For every colour class 
there exists a defined set of operations for dealing with the attributes. 
Now a description of the pre-defined colour classes ENUM, INT, SET, MULTISET 
follows. 
ENUM - comparable to an enumeration type. The finite set of values has to be de­
fined by enumeration of all elements. 

< attr > = ENUM {value ,valuez '''' value j, n EN, value. '" value. Vi", j 
1 n t} 

. {value, werti E ENUM 
WIth val(attrENUM ) = 

unde! 

An ENUM-attribut can be considered as a finite sequence with pair-wise different 
elements. 
INT - comparable to integers in programming languages. 

val(attr/NT) = 
{

nE N 

unde! 

With respect to the finite domain by implementation an !NT-attribute always has a 
finite value. 
SET - comparable to a container class, which can only contain one copy of each 
element, i.e. it is comparable to a mathematical set. Declaring a SET-attribute requires 
the definition of a basic set B which define the domain of the attribute. 

( ) {VAL with 
val~attrSET(B) = 

unde! 

VAL~B 

The value of a SET-attribute is a subset of the basic set B. The set B can be a previous 
defined ENUM.Type. 
MULTISET - comparable to a container class, which can contain more than one 
copy of each element, e.g. comparable to a mathematical bag. Defining a 
MULTISET -attribute includes the declaration of the underlying basic set B. 

MULT/SET: B --> N 

It is possible to use a defined ENUM as basic set. The multiplicity of an element e of 
the underlying set B within the bag is denoted by mle). The value of such an attribute 
is a bag itself and can be denoted as a weighted sum: 
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val(attrMULTlSEf(ENUM») = I. m(attr) val(attr) 
attreENUM 

Using these four elementary colour classes it is possible to declare structured types. 
called CLASS. 

CLASS=(e"e, •...• ek) withe, E (ENUM.INT.SET.MULTISET) 

A CLASS-attribute describes the merger of some elements belonging to various ele­
mentary colour classes and can be called by the name of the attribute. However. ac­
cess to the individual elements is possible too. The value of such a CLASS-attribute is 
the combination of the individual element values. 

val(attrcu.ss ) = (val(e l ). val(e, ~ ...• val(ek)) and val(attrcu.ss .e,} = val(e,} 

Another special kind of attributes are role-attributes. Roles between different classes 
can be declared within the class structure diagram belonging to the system's model 
and can be used within the OPN. 

33 Processes 
Processes represent the instances of methods of individual classes and describe the 
dynamic behaviour of objects. When they are activated they can change the values of 
attributes of the corresponding objects and thus. depict state modifications within the 
system. A process always belongs to a class and can only be activated and run with 
objects of this class. For objects of other classes processes may only cause changes to 
the attributes by sending messages. Hereby. it is ensured that an object can only call a 

different object or communicate with it out of a method. 
Class_name The graphical representation of a process in an OPN is a 

divided rectangle. In the upper region the name of the class to 
Process_name which the process belongs has to be inscribed and in the 

Figure 4: Process lower part the name of the process itself is denoted. None of 
these inscriptions can be ontitted. A process can be drawn in a 

system of OPN's only once (in opposition to objects. which can appear arbitrarily 
often). 
A process can be activated only under certain circumstances: preconditions deterntine 
the individual system state. which is necessary for statting the process. Therefore. 
preconditions check certain values of the attributes of objects. Postconditions deter­
ntine the state of the system after temnination of the process. They change the attrib­
ute's values. i.e. they describe the changes of attribute values by running a process. 
Before statting a process it has to be checked whether these changes are possible. 
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pre - condition 

arc inscription 

arc inscription 

post - arc post - condition 

Figure 5 : Graph of an OPN 

Arcs connect objects and processes and vice versa, but never net elements of the same 
type. Pre-and postconditions of processes are represented as arc inscriptions. Arc 
inscriptions are logical expressions built with attributes of related objects using suited 
operators. A condition is fulfilled if the related term will be evaluated to the value 
TRUE. Related to their directions arcs denote pre- or postconditions of processes: an 
arc directed from an object to a process is called pre-arc, an arc from a process to an 
object is a post-arc. 
Processes can subjoin new objects to the list of instances of an object via post­
conditions (create functionality). It is possible to instantiate new objects from the 
class to which the process belongs or from other classes. The values of the attributes 
of this instantiated objects can be undefined or have defaults or certain values. Ac­
cording to the create mechanism there exists a destroy functionality, i.e. instantiated 
objects can be destroyed. Furthermore, objects can be displaced by processes within 
the static class hierarchy. 
Processes can be assigned a priority in order to solve conflicts during simulation. 
Furthermore a process can have a time attribute which determines the running time of 
this process. 

3.4 Refinements of Processes 
Processes can be refined. If a process has a refinement this will be shown by denoting 
a "+" in the upper right corner of the depiction of a process. The refinement of a proc­
ess is an OPN as well, which is called subnet. 
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refined process 
~iiijf~i~~?:~ ~_~~refined process 

level of refinement 

Figure 6: Refinement of processes 

Using this mechanism of hierarchy realises inheritance and polymorphism within the 
system model. The preconditions of a process having a refinement will be inherited to 
all the processes on the refined level. Subnets can not be connected directly. Only 
indirect, invisible links between different subnets are possible because processes 
belonging to different subnets can affect the same object. 

3.5 Arc inscriptions 
Arc inscriptions are terms built of attributes by using the defined set of operations for 
each colour class. According to the actual value of the appropriate attributes the term 
results in a Boolean value. If the value of a term is TRUE, than the related condition 
is fulfilled. 
There are two types of operations/operators which are defined for the several colour 
classes. Detailed description of each operation is not possible here because of the 
limited scope of this article. 
I. Value-changing operations modify the values of an attribute. The resulting value 

belongs to the same colour class as the attribute. 

op: Ci xCi --) Ci with C. E (ENUM,lNT,SET,MULTISET) 
I 

Examples for such operations are increment or decrement of !NT-attributes. 
These operations are used for building post-conditions. 
2. Testing operations check the value of an attribute and result in a Boolean value. 

op : Ci xCi --) BOOLEAN 

Typical examples of such operations are test for equality or inequality. 
Testing operations are used within pre-conditions exclusively. 
A pre-arc inscription is a term built from one or more testing expressions related to 
attributes, which can be combined by logical AND (&&) andlor logical OR ( II ). 
Post-arc inscription terms can only contain value-changing expressions connected by 
logical AND (&&). The use of the OR-operator is prohibited within post-arc inscri­
tions. 
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3.6 Dynamics 
Simulating an OPN is comparable to playing the token game in Petri Nets: if all the 
pre- and post-conditions of a process are fulfilled it will be activated and run'. All the 
objects contained in the instance list of an object can be considered like the structured 
tokens in Petri Nets. Therefore, a process can be activated several times if there is 
more than one instantiated object fulfilling the conditions. 
A process can be activated if the pre-condition as well as the post-condition is ful­
filled, i.e. if the related terms result in the Boolean value true. This checking has to be 
done for every instantiated object contained in the instance list of the abstract object. 
Concerning pre-condition it is clear how to determine the Boolean value of the corre­
sponding term because the testing operations result in Boolean values. 
Determining the Boolean value of a post-arc inscription is a two-stage procedure: 
First one has to check whether the several operations contained within the term are 
executable. For instance the decrementation of an INT-Attribute with an actual value 
of 0 is not executable. This results in the Boolean value false for the related term. A 
value-changing post-condition is fulfilled if at the moment of starting the process the 
operation(s) result in a value different from undef 
Next it has to be checked whether the attributes, which have to be changed by the 
term, are not locked. This lock mechanism is realised for avoiding problems by multi­
ple access to the same attribute of the same instantiated object. If a process has a post­
arc inscription containing an attribute, this attribute is locked during the running of 
this process. Other processes can not be activated if they want to change the value of 
the same attribute. 
If conflicts occur they can be solved by interpreting the priorities given to the proc­
esses. 

3.7 Example for an OPN 
The following two figures show the OPN-diagram for the same facts modelled with 
an AD as shown in Figure 2 - the determination of a deadline for the order and the 
release for further activities. 
Figure 7 illustrates that the processes Order::Archive and Order::DetermineDate can 
be activated in parallel (for a single order). However, each of the two processes is 
activated only once for each of the instantiated objects. Precondition for both proc­
esses is the accomplished registration (State==registered) and that the archiv­
ing/deadline determination has not yet been performed (State! =archived / 
State!=dated). As postcondition the respective attribute values are added to the SET 
state (State+=archived / State+=dated). The performed deadline determination is a 
pre-condition for the release of the order for further activities which is represented in 
the model by Order: :Release. 
Figure 8 shows the refinement of the process Order::DetermineDate from Figure 7. 

1 For activating processes we introduce a discrete time step and running a process 
(without a refinement) takes one step. This is combined with a maximum or stochastic 
firing rule. Stochastic firing rule means that the process will run under a given prob­
ability if it is activated. Because all simple processes (without a refinement) take one 
step for running time is introduced implicitly within the model. 
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Figure 7: Final order processing 

The process Order::CalculateDate determines the calendar week the order can be 
finished in. After completion of the calculation the order is assigned a value Date 
which has not yet been tested. An unchecked deadline is tested by the process Or­
der: :TestDate in order to verify its achievability. Then, the attribute DateMeetable 
has a defined value (yes/no). In case the deadline can not be met it has to be adjusted 
by the process Order:AdaptDate. In the postcondition DateChanged=yes the change 
of the deadline is registered such that it becomes achievable. If the deadline can be 
met for sure (DateMeetable==yes / DateChanged==yes) the order is scheduled for 
production by the process Order::Schedule. A multiple scheduling of the order is 
prevented by the supplementary precondition State!=scheduled since the value 
scheduled is added to the attribute state as a postcondition of Order: :Schedule. 
When a change of date has been performed reconfirmation with the customer be­
comes necessary (Order: :CustomerEnquiry). His positive or negative answer is reg­
istered in the attribute ResponseCustomer. In case the response is negative (Respon­
seCustomer==negative) this reaction has to be evaluated in the process Or­
der::ResponseEvaluation which is further refined in Figure 9. In consequence of this 
process the attribute Date is reset because either the order has been cancelled or a new 
deadline needs to be calculated. 
The accomplishment of the deadline determination (Order::DetermineDateFinish) is 
reached when the order has been scheduled, the deadline can be achieved or a change 
of date has occurred and was confirmed by the customer. 
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Figure 8: Refinement of the process Order::DetermineDate 
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Figure 9: Refinement of process Order:: ResponseEvaluation 

In case the customer has not accepted a changed deadline two alternatives have to be 
distinguished: one the one hand the chance is that the customer is no longer interested 
in a further processing of his order, i.e. the order is getting cancelled. On the other 
hand he still may want his order to be processed if an earlier deadline can be met. 
Both cases are registered in the refinement of the process Order::ResponseEvaluation 
in Figure 9. When the customer does not want to retain his order (Customerlnter­
est==negaitve) the order has to be cancelled. 
Otherwise, only the post-condition of RepeatDetermDate is reset to the date of the 
order such that a recalculation can be done. 

4 Procedure of creating a business process model 
In cooperation between the TV Ilmenau and OWiS Software Ltd. a framework for the 
object oriented software development process has been developed, called SEPP/OT 
(Software Engineering Process for Professional Projects based on the Object Tech­
nology) [WBP98]. SEPP/OT is divided into four "Use Cases" which stay active 
throughout the intire duration of the project and describe the main columns of the 
actions. These use cases are: Requirements capture, modelling, conversion and intro­
duction. SEPP/OT is not a concrete instance of an activity flow model but rather a 
framework, which can be completed specific to a project and an enterprise. 
The main characteristic of SEPP/OT is the stepwise, incremental enhancing of a 
model starting from use cases. For business process modelling we adapted SEPP/OT. 
Figure IO illustrates our method for creating business process models. The spiral 
arrow symbolises that the modelling process is iterative and incremental. During the 
cyclic passing through the several phases the model will be completed and enhanced. 
There are interactions between all types of diagrams within Figure 10. For instance, 
the CSD diagram gives the information about the swim-lanes to the AD. Vice versa 
during creating an AD the model-builder obtains ideas about the static class structure. 
Starting point for creating a business process model is a Use Case Diagram. In the 
meaning of business process modelling a use case diagram describes the perform-
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ances of an enterprise for the environment and the interaction between them. Use 
cases facilitate the dialogue between the user and the developer. Starting from the Use 
Case Diagram there are some possibilities for enhancing the model as can be seen in 
Figure 10. The Use Case Model itself can be refined during the next modelling steps 
as well. But mostly it only gives a first informal approach for modelling the system. 
Within the Class Structure Diagram the structural makeups of an enterprise can be 
specified as the static aspects of the system. Additionally. this diagram can be used 
for declaring the attributes of the objects. the role associations between objects and 
inheritance relations between classes. The CSD captures the actors as well as the in­
firm objects. It is possible to get an organisation chart for an enterprise directly from 
the CSD. This is a good aid for the dialogue between the staff of the enterprise and 
the UML-expert. who is creating the model. 

Figure 10: Procedure of creating a business model 

For a more detailed description of the dynamic behaviour as the use cases do we use 
the Activity Diagram. The AD gives a clear view onto the logical flow of procedural 
order and it is easy to understood for non-informaticans. Outgoing from the AD the 
instantiation of an activity tree is possible. which shows the several pieces of work 
forming a business activity. This tree only shows the sub-activities which have to be 
done for fulfilling an activity but not the logical order of this sub-activities. 
For getting a more formal model which is ready for simulating an OPN can be cre­
ated. 
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5 Tool support and model checking 
UML-based modelling requires tool support for ensuring consistency between the 
several diagrams building the model. We use the OTW"2 (Object Technology Work­
bench) for modelling, development and model checking. The OTW is a modelling 
tool conform to the UML, which supports the development beginning from the re­
quirements analysis to the source-code generation. 
This tool for UML-based modelling provides several diagrams of the UML and the 
OPN. Furthermore, the OTW"2 includes some integrated tools like Source Code Gen­
erators (C++, Java), Reengineering tools, Documentation Generators, Conversion 
Tools and a Petri Net tool. This Petri Net tool provides an editor and a simulator for 
Coloured Petri Nets and some features for statistical evaluation of simulation. Addi­
tionally an interface to the net analysing tool INA [lNA98] is available. 

Requrirements 

Configuration *~-. 
Management 

Model Checking 
Tools 

Model 
Information 
Database I 
Repository 

Generation 
ImportlExport 

Verification 
(INA) 

Diagrams of 
Dynamic View 

Diagrams of 
__ .... IArchitectur View 

Figure 11 : The tool family combined within the OTW~2 

The OTW"2 bases on a repository. Inside this repository all necessary information is 
stored about modelling and development. The repository contains the whole model 
and hence it is the base for the internal consistency of the various parts of the model. 
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All the tools integrated in the OTW"2 have access to the data stored in this repository. 
The several diagrams define different views to the content of the repository. Other 
tools like scanner and generator read objects from the repository or write new objects 
into it. 
The information about the static and dynamic aspects of the system which are con­
tained in the several diagrams can be used for checking and verifying the model with 
tool support. With respect to the existence of a model or a model together with its 
application, there are four different possibilities for testing the model ([Wolf95J): 
Evaluation of diagrams, static checking of consistency, active model-checking and 
passive model-checking. 
Evaluation of diagrams 
This means static check of basic properties of the model's composition. The evalua­
tion of ergonomic properties of diagrams bases on a set of fuzzy rules. 
Static check of consistency 
This comprises the consistency checking of the static structure between the model and 
the application software. The use of a CASE tool is recommended for this step. 
Active model-checking 
Simulating an OPN is comparable to playing the token game in Petri Nets: if all the 
pre- and post-conditions of a process are fulfilled it will run. All the objects contained 
in the instance list of an object can be considered like the structured tokens in Petri 
Nets. Therefore, a process can be activated ·several times if there is more than one 
object fulfilling the conditions. For avoiding problems by multiple access to the same 
instantiated object a lock-mechanism is realised. If conflicts occur they can be solved 
by interpreting the priorities given to the processes. 
Passive model-checking 
Passive model-checking deals with the checking of the consistency between the actual 
model and the application software during the execution of the application software. 
The coupling between model and the application software allows the control of the 
modelled restrictions during the execution of the application software [Burk94). For 
the OPN the pre- and post-conditions can be observed. A possible approach for real­
ising such a dynamic check of consistency contains the following four steps: 
• Generation 

Insertion of a special checking-code into the application software 
• Compilation 

Creation of an runable application with the integrated check-mechanism 

• Run 
Observation of the fulfilment with the required restrictions 

• Adjustment 
Detection of inconsistencies, change of model or application software 

In addition to these checks a special checking of business process models based on 
the AD is possible. This can be done by testing the compliance with some modelling 
rules, which were established by the authors. Every modelling element of an AD has 
an adequate Petri Net construct. All this rudimentary nets form a construction kit for a 
Petri Net. Therefore, a created AD can be automatically transformed into an ordinary 
Place Transition Net. If there are no violations against the modelling rules the resul­
ting nets are sound workflow nets [Aals97). Checking the existence or absence of 
violations against the modelling rules can be done by applying some simple reduction 
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rules to the nets. We use INA for doing the net reduction [INA]. The net reduction 
releases PTP-sequences and parallel nodes from the net. Nonconformance in the de­
sign results in typical structures within the reduced Petri Net, hence fault detection is 
possible. 

6 Summary and further work 
The UML is the first promising approach for standardisation in the field of object 
oriented modelling techniques. The diagrams permit the construction of system mod­
els in an incremental way, whereas the level of formalisation can be staggered ac­
cording to the progress of the modelling process. With the OPN an additional means 
of description for the dynamic aspects of a system is provided expanding the facilities 
for simulation and for model verification. 
At the moment the implementation of a simulating tool for the OPN is going on. This 
tool can be enhanced by some possibilities for statistical evaluation of simulation in 
order to do business process cost accounting. Furthermore, some work has to be done 
for automatic transformation of OPN into high-level Petri Nets in order to achieve the 
opportunity to apply formal analysis techniques. Eventually it is possible to find out 
some analysing rules directly for the OPN. 
Another piece of work which has to be done is examining whether it makes sense to 
use reduction rules directly for the AD without transforming it into Place Transition 
Nets. The goal is simplification of the modelling and verification process for the user 
without knowledge about Petri Nets. But maybe by providing a meta-model for busi­
ness process modelling based on the UML this verification step is not necessary. 
Using this meta-model simplifies the modelling work for the user and increases the 
quality of created models. 
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Abstract 

Several authors propose their own technique based on Petri Nets to model Workflow 
processes. Most of them recognise the adaptability problem inherent to workflows, viz. 
the frequently andlor radically changing character due to changing business process 
rules, but suggest totally different solutions. Because the proposed techniques are 
fundamentally different, eleven of these techniques are briefly discussed and compared. 
Next, we survey approaches to reuse in the workflow field and we classify them in a 
framework derived from the information systems literature. 

1. Introduction 

Recently. both the domain of workflow modelling by using Petri Nets and the area of 
reuse in software engineering have gained much attention. We share the opinion that it 
could be opportune to take a closer look at the application of the reuse concept to 
workflow modelling. It is our intention to make an infonnal introduction to the subject 
and an attempt to make a broad outline of desirable future developments and some 
topics that need further research. First we summarise the different topics concerning 
this field that have already been covered and treated by several authors. 

The domain of workflow management seems to be characterised by lacking precise 
definitions. Because of the wide variety of definitions used by various authors 
concerning workflow, tasks, procedures etc., we define the most important terms in 
section two. 
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2. Definition of Basic Workflow Concepts 

Little agreement exists upon what workflow exactly stands for and which specific 
features a workflow management system must provide. For an overview of existing 
definitions and interpretations of workflow and workflow management systems we refer 
to Georgakopoulos et al. [21] 

In response to the proliferation of definitions, the Workflow Management Coalition 
(WfMC) performs considerable efforts to standardise terminology. The WfMC [25] is a 
non-profit international organisation which formal mission is to promote the use of 
workflow through the establishment of standards for workflow terminology, 
interoperability and connectivity between workflow products. The WfMC has also 
specified a reference architecture for workflow technology_ Since its establishment in 
August 1993 it has grown to over 100 members, consisting of workflow vendors, users 
and analysts. 

The formal definition of workflow presented by the WfMC is as follows: 

The computerised facilitation or automation of a business process, in whole or part. 

The definition of a Workflow Management System (WFMS) is consequently: 

A system that completely defines, manages and executes "work flows " through the 
execution of software whose order of execution is driven by a computer representation 
of the workflow logic. 

As various definitions of workflow are based upon the concepts of tasks, activities, 
procedures and work steps, we look here at the most conunon definitions. We refer to 
the definitions provided by Ellis and Nutt [13]. A task or procedure can be defined as a 
predefined set of work steps, and partial ordering of these steps. A work step consists of 
a header and a body. The work step contains identification, precedence, etc. and the 
body represents the actual work to be done. In this wayan activity can be defined as the 
body of the work step of. a procedure. An activity can then be either a compound 
activity, containing another procedure, or an elementary activity [13]. 

However, in the following we use the definitions proposed by the WfMC. 

3. Workflow Concepts Translated into Petri Nets 

Since Zisman [51] used Petri Nets to model workflow processes for the first time in 
1977, several authors have made attempts to model workflows in terms of Petri Nets, 
amongst which De Cindio et al. [12], Ellis and Nutt [13,14] [39], van der Aalst [3], 
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Ferscha [16], Wikarski [48], Li et al. [34], Adam et al.[7], Oberweis et al. [40], 
Badouel and Oliver [9], Merz et al. [36,37], and Sch5mig and Rau [44]. 

3.1 Why Petri Nets to Model Workflow? 

The execution structure of a workflow specifies the ordering constraints for the 
executions of the tasks. (example: "a task may not begin before a particular previously 
started task commits"). Such constraints can be specified by triggers, by finite state 
automaton or by Petri Nets. [33] 

Van der Aalst [2] identifies mainly three reasons for using Petri Nets for workflow 
modelling. The first reason is the fact that Petri Nets possess formal semantics despite 
their graphical nature. The second reason is that instead of being purely event-based, 
Petri Nets can explicitly model states. In this way, a clear distinction can be made 
between the enabling and execution of a task. The final reason lies in the abundance of 
available and theoretically proven analysis techniques. 

Oberweis et al. [40] identify five different reasons to opt for using Petri Nets when 
modelling workflows. They are: 

- Integration of data and behaviour aspects, 
- Support for concurrent, cooperative processes, 
- Different degrees of formality, 
- Availability of analysis techniques, 
- Flexibility. 

By this last property the authors refer to the fact that Petri Net models are directly 
executable by an interpreter (which is the workflow engine of the Petri Net based 
WFMS), but they are not so-called "hard-wired" application programs. This guarantees 
a reasonable degree of flexibility, because of the "late-binding" between activities and 
objects. This way it becomes possible, according to the authors, to make adjustments to 
workflow processes at run-time. 

Merz et al. [36] finally state that the combination of a mathematical foundation, a 
comprehensive graphical representation, and the possibility to carry out simulations and 
verifications is the main strength of Petri Nets when modelling workflows. 

Han [23], however, warns and states that despite the popularity of Petri Nets to model 
workflows, he does not believe that Petri Nets are directly applicable for modelling 
workflows, mainly due to their fixed structures. The author criticises the lack of 
flexibility of most of the proposed net models and indicates the mechanisms to support 
abstraction and compositionality as the main reason. 
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3.2 High Level Versus Low Level Petri Nets 

In this section we give a brief overview of the Petri Net classes proposed by various 
authors. Because of the problematic nature of modelling business processes, Petri Nets 
in their conventional form are not well suited as a modelling language. Common 
problems encountered when modelling workflows include high complexity when 
dealing with other than just toy models and lack of flexibility, especially where 
structural changes are necessary. 

As already mentioned, the structure of workflows is extremely volatile as a 
consequence of changing business process rules. Business environment and conditions 
change very quickly. System evolution is unavoidable because business processes 
evolve continuously caused by internal organisational reforms, external environmental 
changes, etc. 

Hence, business models are subject to mainly two types of changes: on the one hand 
changes in the data of the workflow systems and on the other hand changes in the rules 
of the workflow systems. 

All the above resulted in various authors proposing their own developed Petri Net class 
in order to cope with those specific issues. We synthesised different approaches of 
various authors and drew up a comparison in Table 1. 

Author Petri Net class Brief description 
Abstraction into PfT-nets of 
High Level Petri Nets with 

Van der Aalst W.M.P [I] Workflow-nets (WF-nets) two special places i and 0, 

indicating beginning and 
end of the modelled 
business procedure. 
High Level Petri Net 

Ellis C.A., Nut! G.!. [13] Information Control Nets variant intended to 
(ICN) represent control flow and 

data flow. 
High Level Petri Nets are 

Oberweis A., et al. [40] INCOMEIWF used to describe the so-
called core workflows on a 
relatively abstract level. 
Ordinary Petri Net 
extended with an interval 

Adam N. R., et al. [7] Temporal Constraint Petri function and a timestamp 
Net (TCPN) function to model absolute 

as well as relative time. 
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Low Level Petri Nets 
provided with a hierarchic 
module concept and with 
constructions designed to 

Wikarski D. [48] Modular Process Nets realise communication 
between net instances and 
their environment and 
constructions to create and 
destroy the net instances. 
A WFMS consists of two 
basic components: namely a 
WF model and a WF 

Subclass of Elementary Net Execution model. 
Agostini A .• et al. [8] Systems Simplicity of the WF model 

is stressed because it 
enhances the flexibility and 
adaptability of the WF 
Execution Module. 

Coloured Generalised CGSPN are used as an 
Schomig A.K .• Rau H. Stochastic Petri Nets adequate tool to measure 
[44] (CGSPN) performance and to model 

dynamic behaviour. 
CPN are used to introduce 
dynamic workflow 

Merz M .• et al. [36] Coloured Petri Nets (CPN) modelling in the distributed 
systems architecture COSM 
GSPN are used to model 

Ferscha A. [16] Generalised Stochastic Petri and quantify WF 
Nets (GSPN) (performance and structural 

analysis). 
Extension of the WF-nets 

Badouel E .• Oliver J. [9] Reconfigurable Nets of van der Aalst (1]. 
intended to support 
dynamic changes in 
Workflow systems. 
In contrast to Modular 
Process Nets [48]. which 
are used to model workflow 

Wikarski D .• Han Y .• Higher Order Object Nets processes, this approach is 
Lowe M. [49]. [23] (HOON) intended to model explicitly 

the structure of the 
organisation and the 
organisational resources. 

Table 1: Overview of the proposed Petri Net classes 
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Li et al. [34] also use a Petri Net variant to model office work. However, they are not 
mentioned in the table because of the limited scope of their paper concerning the 
introduction of Petri Nets to model procedural knowledge. Moreover they do not really 
go into the inherent problems of modelling workflows. The authors propose the 
Activity Manager System (AMS), which is a domain-independent formalism designed 
to hierarchically represent procedural knowledge. Activity Networks (AN) are defined, 
which are used to model the activities in office procedures. These AN can be 
transformed into Petri Nets, in this way benefiting from the various levels of abstraction 
and being capable of handling notions such as sequence, choice and concurrency, as 
offered by Petri Nets. 

3.3 High Level Petri Nets 

Ellis and Nutt [13] as well as van der Aalst [6] make a resolute choice in favour of High 
Level Petri Nets. They both state that High Level Petri Nets are an indispensable 
necessity when modelling real world applications because Low Level Petri Net models 
tend to become extremely complex and very large. Moreover, Ellis and Nutt [13] state 
that, when modelling large sets of office procedures, Low Level Petri Nets lead to "an 
exponential explosion" of the model. 

The Workflow nets (WF-nets) proposed by van der Aalst [I] are an abstraction into 
Nf-nets of High Level Petri Nets with two special places i and 0, indicating the 
beginning and the end of the modelled business procedure. These WF-nets are suitable 
not only for the representation and validation but also for the verification of workflow 
procedures. 

The question: "Given a marked Petri Net graph, what structural changes can or cannot 
be applied while maintaining consistency and correctness" I is an important and pressing 
problem which has also been recognised by Ellis and Nutt [13]. However, van der Aalst 
[4] provides an answer to this question for Workflow nets in the shape of 
transformation rules. These rules should not be confused with the more common 
reduction rules. Eight basic transformation rules allow the designer to modify sound 
WF-nets while preserving their soundness. 

Badouel and Oliver [9] extend the WF-net formalism of van der Aalst [1] and propose 
the Reconfigurable Nets. These Reconfigurable Nets intend to support dynamic changes 
in Workflow systems. A Reconfigurable Net consists in fact of several Petri Nets which 
constitute the different possible configurations of the system. Each configuration gives 
a description of the system for some mode of operation. The authors denote that 
Reconfigurable Nets are self-modifying nets, meaning generalisations of Nf-nets where 
the flow relation between a place and a transition depends on the marking. The authors 
conclude by stating that it might be interesting to extend a Reconfigurable net with a 
control part to regulate the flow in the system. 
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Ellis and Nutt [13], [14], [39] propose Information Control Nets (ICN), derived from 
High Level Petri Nets to represent office workflows. By adding a complementary data 
flow model, generalising control flow primitives and simplifying semantics, ICN are in 
fact a generalisation of Coloured Petri Nets. ICN represent control flow as well as data 
flow. The authors provide an exception handling mechanism. They note, however, that 
the mechanism allows users to escape the model, rather than helping them to analyse 
and cope with the exceptions. 

Finally, Merz et aJ. [36,37] use Coloured Petri Nets in order to enhance the distributed 
systems architecture Common Open Service Market (COSM), with concurrent 
workflow modelling. The authors introduce Coloured Petri Nets as a modelling and 
simulation technique for concurrent activity management and control. They use the 
definition of Coloured Petri Nets of Jensen [27], which is probably the most common 
one. The tokens of Coloured Petri Nets are typed (coloured) entities or data values. 
Places, transitions, edges, etc. are typed by their respective signature. Places represent 
data stores containing an arbitrary number of data values (tokens) of their respective 
type. 

3.4 Stochastic Petri Nets 

Ferscha [16] proposes Generalised Stochastic Petri Nets (GSPN) to model workflows. 
Stochastic Petri Nets (SPN) are in the classical approach based on Placelfransition 
(Pff) Petri Nets but stochastic extensions are added. With SPN, the set of transitions 
only contains stochastic timed transitions where the firing delay random variable is 
exponentially distributed. 

Generalised Stochastic Petri Nets are a class of SPN and allow to model timed 
transitions with exponentially distributed delays as well as immediate transitions. 
Transition priorities are used to avoid confusion and undesirable conflicts. Timed 
transitions have the lowest priority level and immediate transition weights define how 
transitions from extended conflict sets should be fired. Ferscha [16] exploits the natural 
correspondence between the GSPN enabling and firing rules and the dynamic behaviour 
of workflow systems. With respect to quantitative analysis, the Markovian framework is 
used within the GSPN formalism to derive the performance metrics. For qualitative 
analysis the author refers to the available broad body of Petri Net structural analysis 
techniques. 

Schomig and Rau [44] propose a variant of the above GSPN, i.e. the Coloured 
Generalised Stochastic Petri Nets (CGSPN). CGSPN are based upon Coloured Petri 
Nets as pure Petri Net formalism instead of Placeffransition Petri Nets. Compared to 
the classical approach which is based on prr Petri Nets, this approach requires more 
sophisticated analysis techniques. 

The authors [44] suggest an approach to model the dynamic behaviour of workflow in 
which resources are explicitly modelled as separate places. They state that CGSPN are 
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appropriate to model the typical characteristics of workflows, e.g. dynamic routing, 
simultaneous resource allocation, forking/joining of process control threads and 
random-order or priority based queueing disciplines. The advance of the control flow is 
modelled by a separate token, a so-called job token, which traverses the complete Petri 
Net, enabling activities according to the business rules. 

In order to cope with dynamic routing, all possible routing paths through the process 
model are exhaustively determined. All jobs following the same path are collected in 
so-called job classes. Each of the paths can be modelled by a separate Petri Net. By 
associating a colour or an attribute to the job tokens, the job class membership can be 
specified. The distinct Petri Nets can be mapped into one single Petri Net model, which 
then also captures the routing constraints accordingly. The synchronisation problem of 
split/join constructs is solved by attributing an identifier to a job token. In this way, job 
tokens belonging to different jobs can be prevented from being erroneously 
synchronised to a single job. The authors also generate and solve the Markov chain 
from the underlying random process to derive the performance data by a Petri Net 
analysis tool. 

3.5 Low Level Petri Nets 

Wikarski [48] on the contrary, starts from the observation that in the recent past a vast 
variety of Petri Net classes came into existence that aimed at increasing the 
expressiveness of the net models. This gave rise to the existence of more complex Petri 
Net classes with various sorts of tokens, arc or place inscriptions and many other 
extensions of the classic Petri Net. 

He further states that the arrival of High Level Petri Nets has created a number of 
problems the first of which is the reduction of the intuitive aspect when modelling by 
means of Petri Nets. An important characteristic of classic Petri Nets is that they can be 
learnt easily and that they are very communicative with respect to persons with no 
specific knowledge of Petri Nets. Two other problems are: (I), the impossibility to 
describe dynamic or changing behaviour and, (2), the communication of the active nets 
(i.e. those enacted by an interpreter) with each other and the rest of their environment. 

To counter the above stated problems, Wikarski proposes Modular Process Nets, which 
can be described as Elementary Net Systems with minimal syntactic extensions. 
Elementary Net Systems (EN-systems) have originally been introduced by Rozenberg 
and Thiagarajan [43]. 

When using the three level subdivision of basic net models proposed by Bernardinello 
et al. [10], EN-systems can be catalogued as first level Petri Nets. The authors use the 
nature and the number of tokens in one place as a discriminating characteristic. 
Following this line they define a third level net system as a system in which places are 
marked by structured tokens. These nets are often denoted by the term High Level Petri 
Nets. The second level concerns nets with places that are marked by several 
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unstructured tokens. In this way, places represent in fact counters. Places of first level 
net systems are marked by one unstructured token at the most hence places actually 
represent conditions. 

Modular Process Nets can be characterised best as a generalisation of safe EN-systems, 
i.e. they have untyped tokens with a maximum of one token in anyone place. One of 
the main aims of Modular Process Nets is that the fonnalism should be simple. easy to 
learn and comprehensible in order to be used as a widespread but formally precise 
means of communication. For this purpose, the author has developed a whole range of 
node types. The author defines three different kinds of places: (ordinary) places, fusion 
places and channels. Fusion places are used to improve the graphical representation of 
large nets and channels are used to support communication between nets via token 
passing. Moreover, the author defines seven transition types which deal with the 
handling of events. Wikarski states that the main and most innovative points of the nets 
are the introduction of a hierarchical module concept for nets and the definition of 
"elementary process nets". 

Like Wikarski [48], Agostini et aJ. [8] plead for simplicity of workflow modelling and 
also opt for Elementary Net Systems. Their final objective is to create a workflow 
model that allows its users to design workflows having little or no experience with 
computer science, programming or formal languages. For this purpose, they define a 
subclass of these Elementary Net Systems. The authors stress that EN-systems possess 
adequate mathematical properties which allow the modeller to generate a large class of 
behaviours. They state that a WFMS consists of two basic components: a WF model 
and a WF Execution model. Simplicity of the WF model is stressed because it enhances 
the flexibility and adaptability of the WF Execution Module. 

Adam et aJ. [7] state that an ordinary Petri Net fulfils the basic needs to model the 
control flow and value dependencies of a workflow system. In order to model the 
temporal dependencies between two tasks in a workflow, however. the authors propose 
a Temporal Constraint Petri Net (TCPN). According to the authors, existing Timed 
Petri Nets are not capable of modelling both relative and absolute time. Their 
functionality is limited to modelling relative time. The definition of a TCPN states that 
each place and each transition is associated with a time interval and a token with a time 
stamp. 

The authors develop a notion of equivalence in order to be able to check whether the 
Petri Net model represents the specified workflow correctly. Concerning workflow 
analysis, the authors provide three types of analyses. A first analysis which can be 
performed aims to identify whether inconsistent dependency relations among tasks 
exist. A second type of analysis aims to test for workflow safety, which means to check 
whether the workflow terminates in an acceptable state. And finally the third type of 
analysis aims to test the temporal feasibility. This means to check, for a given starting 
time, whether a workflow is schedulable with the specified temporal constraints. 
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3.6 Petri Nets extended with object-oriented concepts 

Modular Process Nets proposed by Wikarski [48], have sensor transitions which can 
detect triggering signals from the external environment. These signals, however, only 
contain control information in a predefined context. In contrast to Modular Process 
Nets, resource management is explicitly embodied in Higher-Order Object Nets 
(HOON), the other formalism proposed by Wikarski et a1. [49]. The central idea of 
HOON is to arrange net models and their surrounding environments in a client/server 
manner and to model the client/server interfaces explicitly [23]. 

In HOON, each transition can own an interface place, which is called a control place. 
Each control place may have several control tokens and through the exchange of control 
tokens, a specified net can interact with the external world. Tokens can be put on 
control places by software tools, either manually or by another net, depending on the 
control policy. For modelling and controlling workflows, the authors propose two 
different classes of nets, i.e. working nets and control nets. The interfaces between 
those two classes of nets are the control places. Working nets can be compared to 
Coloured Petri Nets. 
In the next paragraph we focus on the question in which of the Petri Net classes the 
reuse concept fits best. 

4. The Reuse Concept for Workflow Modelling 

4.1 Real World Workflow Modelling 

In contrast to the field of software engineering where the concept of reuse is widely 
explored, few authors have developed a theoretical framework to reuse in workflow 
modelling by Petri Nets. Nevertheless, the concept of reuse is definitely encountered or 
applied in practice by many modellers of real world workflows. This is due to the fact 
that specifying and modelling real world workflows is highly complicated and complex 
and that they are usually not developed in a single step. 

As Oberweis [41] stated, there are mainly two potential strategies for the development 
of large, real world workflow models. A first strategy is incremental construction by 
iteratively refining, evaluating and formalising net fragments. This strategy can be 
based upon composing certain elementary net building blocks from an existing Petri 
Net library. Another strategy is adapting application-specific reference process models 
and reference object models to the requirements of a specific case. These application­
specific reference models are sometimes denoted as generic models because they have 
always captured a certain generic process knowledge. 
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In both cases, the importance of a well-documented library in which the reference 
models or the Petri Net fragments are stored cannot be underestimated in any way. For 
the whole concept of both approaches is based upon the library, the quality of the 
library is a discriminating factor between failure or success of both systems. 

Van der Aalst [I] also states that when dealing with the high complexity of real world 
worktlows, designers can refer to reuse on the basis of hierarchical decomposition, 
especially in communicating with end-users. 

4.2 Approaches to Reuse of Petri Nets for Workflow Modelling 

In this section, the existing approaches to reuse of Petri Nets for workflow modelling 
are discussed and classified into a framework used in the information systems (IS) 
literature (see Table 2). 

The classification used in this paper is a summarised version of the classification 
framework by Krueger [28], which was later adopted and refined by Mili et aJ. [38]. We 
chose this framework because, as Mili explicitly states, it focuses on the « paradigmatic 
differences between the various reuse methods », A classification according to 
fundamental differences allows us to explore to what extent current approaches to Petri 
Net-reuse cover the whole reuse-spectrum. 

Krueger's [28] framework distinguishes between two main types of reuse: the building 
blocks approach (compositional approach) and the generative approach. The building 
blocks approach is further subdivided into the reuse of software patterns and into 
software architectures. 

4.2.1 Patterns 

A (software) pattern is a proven solution to a certain standard type of problem. It is 
described by four essential elements: 

- a pattern name 
- a problem description, which clarifies in which situations the pattern can be 
used 
- the solution to the problem 
- the consequences and trade-offs involved in applying the pattern. 

A limited amount of design patterns [19] and analysis patterns [18] [24] have been 
published. An example of an analysis pattern is an Object-Oriented(OO)-conceptual 
model for the concept of a 'customer' or a 'bookkeeping account'. Although these 
patterns tend to be domain-specific, many of them can be used outside of their original 
domains [18]. For example, a pattern of a bill of material can also form the basis for 
modelling an organisation's hierarchy. Design patterns are situated at a lower level of 
abstraction. An example is the observer-pattern [19]. An observer is an object which 
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monitors the state of a certain 'subject'. When the subject changes state, the observer 
notifies all interested objects of this change. A typical application of the observer 
pattern is found in spreadsheets. When a graph is produced based on data in a 
spreadsheet, it is important that the graph is notified of any changes in the underlying 
data. The observer-pattern describes how an observer can be built to achieve this goal. 

Many of the existing approaches to reuse of Petri Nets for workflow modelling can be 
interpreted as reuse of a pattern. Especially approaches discussing compositionality of 
Petri Nets fall into this category: these authors implicitly assume that some existing 
elements (for instance, workflows) are composed. We interpret these existing elements 
as patterns. 

However, before we enumerate which authors fall into this category, we add a level in 
the classification: black-box vs. white-box reuse of patterns. 

Black-box reuse is defined as the reuse of existing software components without any 
modification. White-box reuse does allow adaptation of the components, usually using 
the mechanism of inheritance. 

In the IS-literature, a preference for black-box reuse has developed over the years. For 
instance, Fayad [IS] claims that black-box reuse leads to systems that are easier to use 
and extend. Zweben [52] provides experimental evidence: his experiments show that 
black-box reuse is superior to white-box reuse in terms of required effort and 
correctness of the resulting system. The main disadvantage of white-box reuse is that 
the inheritance mechanism violates the encapsulation-principle. The aim of this 
principle is to minimise interdependencies between modules by defining strict 
interfaces. A subclass, however, has access to some of the data and code of its 
superclass. The subclass is allowed to change the values of these data items, to call 
functions of the superclass etc. As a consequence, several dependencies between the 
super- and subclass are introduced. These dependencies compromise reusability, as 
changes in a superclass frequently induce changes in the subclass. [19,46]. 

In the context of Petri-Nets, white-box reuse is discussed by Lakos [30] [31], who 
defines the notion of inheritance for Object Petri Nets. Black-box reuse, through the 
notion of compositionality of Petri Nets, is discussed by Christensen [II], Han [23], 
Holvoet [26], Kruke [29], Wikarski [48] and van der Aalst [1,3]. 

For example, van der Aalst [1] briefly draws attention to reuse ofWF-nets on the basis 
of 'task refinement' which is the refinement of a task by a subflow. In this way it 
becomes possible to decompose a complex workflow into subflows which, in their turn, 
can be built up from other subflows. In other words, one achieves a hierarchical 
decomposition. 

Compositionality is an important property for hierarchical construction of WF-nets and 
more in particular for the reuse of subflows. The author [1] proves seven characteristics 
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about compositionality with regard to verifying the correctness of subflows in the same 
way as verifying the entire workflow on a more abstract level. 

4.2.2 Software Architectures 

A Software Architecture is a high-level design of a software system, i.e. the subsystems 
and their interactions [45]. Examples of architectures are compiler architectures 
(consisting of analysers, parsers and code generators), database architectures and rule­
based architectures for expert systems. Software architectures are similar to very large­
scale patterns. However, patterns tend to focus on a small part of a system whereas an 
architecture contains the overall structure of the system. 

In the context of reuse of Petri Nets for workflows, both Han [23] and van der Aalst [3] 
define software architectures for workflow management systems. 

4.2.3 Application generators and very high-level languages 

Application generators and very high-level languages constitute the class of generative 
reuse. Forms of generative reuse are based on reusing the process of previous software 
development. rather than reusing existing products (such as patterns or software 
architectures) [38]. 

Application generators and very high-level languages allow the user to specify the 
requirements at a very high level of abstraction. From these requirements, code is 
automatically generated. This approach to reuse is considered. in the long term, to have 
the highest potential payoff. However, at the current moment, it remains very difficult 
to build generators that scale up to industrial production [42]. 

In the context of Petri Nets for workflow modelling, only van der Aalst [3] describes a 
number of Petri Net tools that belong to this category. 

4.2.4 Evaluation 

By far the most common approach to reuse of Petri Nets for workflow modelling is 
black-box reuse of patterns. Most authors discuss this kind of reuse implicitly through 
the notion of compositionality. 

However, very few authors, if any, discuss the notion of reusability explicitly andlor in 
great detail. In other words, questions such as which advantages exactly can be 
achieved or which type of reuse leads to these advantages, remain unanswered. 
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Reuse Type Authors 
Christensen [11], Han [23], Holvoet [26], 

Black-box reuse Kruke [29], Wikarski [48], van der Aalst 

Software Patterns [3] 

White-box reuse Lakos [30] 

Software Architectures Han [23], van der Aalst [3] 

Application Generators and very high van der Aalst [3] 
level languages 

Table 2: A classification of techniques for reuse of Petri Nets for workflow modelling 

4.2.5 A critical remark concerning reuse in the IS-literatnre 

The idea of building software by assembling reusable components dates back to 1968 
when Doug McIlroy proposed the idea of libraries of shared components at the NATO 
Conference of Software Engineering [35]. 

Since then, most programmers have continued to informally reuse their own code, but 
in an ad hoc way. Up to now, it has remained extremely difficult to realise a systematic 
approach to reuse [42][32][17]. Also, Prieto-Diaz [42] observes that the state-of-the­
practice is still source code reuse, in spite of numerous claims that reuse at the design­
or even analysis-level would have higher payoffs. Finally, Szyperski [47], for example, 
observes that at this moment, relatively few catalogues of reusable objects actually 
exist. 

The literature contains a wide variety of potential reasons for the lack of systematic 
reuse: some technical, but many are managerial (relating to management commitment, 
organisational issues etc.) [50]. We now focus on one of the fundamental technical 
problems that underlie reuse. 

4.2.6 Hidden assumptions 

A fundamental problem of software reuse is the problem of the hidden assumptions. 
This problem refers to the fact that software components make assumptions about their 
intended environment which are implicit and either don't match the actual environment 
or conflict with those of other parts of the system. Such conflicting assumptions make 
reuse extremely difficult or even impossible [20]. 
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For example, Garlan [20] describes an example in which several software packages 
were combined in order to build a software engineering tool. However, the assumptions 
that the different packages made about which program held the main thread of control, 
were incompatible, which drastically complicated building the new system. As these 
assumptions tend not to be documented, they are extremely difficult to detect when 
deciding which software components could be reused. 
Glass [22] provides an example in which a sort program was reused. However, the 
program performed extremely slowly when sorting strings. The undocumented 
assumption was that the structure of the sort program was far more appropriate for 
sorting numbers than strings. 

Garlan [20] suggests possible solutions for the hidden assumptions-problem: amongst 
others, make architectural assumptions explicit, provide techniques for bridging 
mismatches between assumptions and develop sources of architectural design guidance. 
Although we agree with these suggestions, it is clear that these solutions are more 
workarounds to the problem than an elimination of it. 

4.2.7 Final remarks 

We have briefly shown in this paragraph that, in the IS-field, systematic reuse has been 
pursued for up to 30 years, but that the practical state-of-the-art is still rather 
disappointing. Realising a systematic form of reuse has proven to be a very ambitious 
goal with a wide variety of problems (technical and managerial) along the way. Good 
modelling constructs alone (such as objects) have been insufficient to reach this goal. 

It is our impression that the field of workflow modelling with Petri Nets is currently 
making quick progress towards deciding which modelling constructs are most 
appropriate. In order to determine whether this will be sufficient to realise systematic 
reuse in the workflow field, empirical and experimental studies are required. We have 
yet to find these in the literature. 

5. Conclusion 

In this paper we have tried to identify the existing Petri Net formalisms proposed by 
various authors used for modelling workflow. We found that, at the moment, there is 
not yet unanimity about which class of Petri Nets suits best the specific needs of 
workflow modelling. Especially the different approaches between Low Level Petri Nets 
and High Level Petri Nets can in this view be mentioned as exemplary. 

An interesting remark, however, is that even a very good Petri Net formalism for 
modelling workflows is not worth much if there are no Workflow Management Systems 
or other computer tools based on it. This has also been stated by van der Aalst [5] 
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concerning the usability of High Level Petri Nets. The author [5] notes that the 
availability of adequate computer tools is a critical factor in the practical use of High 
Level Petri Nets and related analysis methods. 

Compared to database models, workflow models are far from being mature. In response 
to the need of coming to a standard in workflow modelling (like in the field of 
conceptual modelling with Entity Relationship Modelling which has also been 
formulated by van der Aalst [1],) we would like to make a remark. When speculating 
about the best potential formalisms to serve as a possible standard, it is likely that the 
Petri Net formalism, which is best supported by computer tools turns out to become the 
standard. 

With respect to reuse, much progress is being made towards developing an adequate 
modelling construct for modelling workflows using Petri Nets. However, we have the 
impression that adequate modelling constructs alone were not sufficient to achieve 
systematic reuse in the IS-field. Whether the sarne applies to the workflow field should 
be further investigated. 
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Finding Errors in the Design of a Workflow Process 

A Petri-net-based Approach 
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Workflow management systems facilitate the everyday operation of business processes by 
taking care of the logistic control of work. In contrast to traditional information systems, 
they attempt to support frequent changes of the workflows at hand. Therefore, the need 
for analysis methods to verify the correctness of workflows is becoming more prominent. 
In this paper we present a method based on Petri nets. This analysis method exploits the 
structure of the Petri net to find potential errors in the design of the workflow. Moreover, 
the analysis method allows for the compositional verification of workfIows. 

Keywords: Petri nets; free-choice Petri nets; workflow management systems; analysis of 
workftows; business process reengineering; analysis of Petri nets; compositional analysis. 

1 Introduction 
Workflow management systems (WFMS) are used for the modeling, analysis, enactment, 
and coordination of structured business processes by groups of people. Business processes 
supported by a WFMS are case-driven, i.e., tasks are executed for specific cases. Ap­
proving loans, processing insurance claims, billing, processing tax declarations, handling 
traffic violations and mortgaging, are typical case-driven processes which are often sup­
ported by a WFMS. These case-driven processes, also called workflows, are marked by 
three dimensions: (1) the process dimension, (2) the resource dimension, and (3) the case 
dimension (see Figure 1). The process dimension is concerned with the partial ordering 
of tasks. The tasks which need to be executed are identified and the routing of cases along 
these tasks is determined. Conditional, sequential, parallel and iterative routing are typical 
structures specified in the process dimension. Tasks are executed by resources. Resources 
are human (e.g. employee) andlor non-human (e.g. device, software, hardware). In the re­
source dimension these resources are classified by identifying roles (resource classes based 
on functional characteristics) and organizational units (groups, tearns or departments). Bo­
th the process dimension and the resource dimension are generic, i.e., they are not tailored 
towards a specific case. The third dimension of a workflow is concerned with individual 
cases which are executed according to the process definition (first dimension) by the proper 
resources (second dimension). 
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Figure I: The three dimensions of workflow. 

Managing workflows is not a new idea. Workflow control techniques have existed for 
decades and many management concepts originating from production and logistics are also 
applicable in a workflow context. However, just recently. commercially available generic 
WFMS's have become a reality. Although these systems have been applied successfully, 
contemporary WFMS's have at least two important drawbacks. First of all, today's sys­
tems do not scale well, have limited fault tolerance and are inflexible. Secondly, a solid the­
oretical foundation is missing. Most of the more than 250 commercially available WFMS's 
use a vendor-specific ad-hoc modeling technique to design workflows. In spite of the ef­
forts of the Workflow Management Coalition ([20]), real standards are missing. The ab­
sence of formalized standards hinders the development of tool-independent analysis tech­
niques. As a result, contemporary WFMS's do not facilitate advanced analysis methods 
to determine the correctness of a workflow. 

As many researchers have indicated ([II, 16,21]), Petri nets constitute a good starting 
point for a solid theoretical foundation of workflow management. In this paper we focus 
on the process dimension. We use Petri nets to specify the partial ordering of tasks. Based 
on a Petri-net-based representation of the workflow process, we tackle the problem of veri­
fication. We will provide techniques to verify the so-called soundness property introduced 
in [4]. A workflow process is sound if and only if, for any case, the process terminates 
properly, i.e., termination is guaranteed, there are no dangling references, and deadlock 
and livelock are absent. 

This paper extends the results presented in [4]. We will show that in most ofthe situations 
encountered in practice, the soundness property can be checked in polynomial time. More­
over, we identify suspicious constructs which may endanger the correctness of a workflow 
process. We will also show that the approach presented in this paper allows for the compo­
sitional verification of workflow processes, i.e., the correctness of a process can be decided 
by partitioning it into sound subprocesses. To support the application of the results pre­
sented in this paper, we have developed a Petri-net-based workflow analyzer called Woflan 
([5]). Woflan is a workflow management system independent analysis tool which inter-
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faces with two of the leading products at the Dutch workflow market. 

2 Petri nets 
This section introduces the basic Petri net tenninology and notations. Readers familiar 
with Petri nets can skip this section. I 

The classical Petri net is a directed bipartite graph with two node types called places and 
transitions. The nodes are connected via directed arcs. Connections between two nodes 
of the same type are not allowed. Places are represented by circles and transitions by rect­
angles. 

Definition 1 (Petri net) A Petri net is a triple (P, T, F): 

P is a finite set of places, 

Tis afinite set of transitions (P n T = 0), 

F <; (P x T) U (T x P) is a set of arcs (jIow relation) 

A place p is called an input place of a transition t iff there exists a directed arc from p to 
t. Place p is called an output place of transition t iff there exists a directed arc from t to p. 
We use _I to denote the set of input places for a transition t. The notations te, • p and p. 
have similar meanings, e.g. p. is the set of transitions sharing p as an input place. Note 
that we restrict ourselves to arcs with weight 1. In the context of workflow procedures it 
makes no sense to have other weights, because places correspond to conditions. 

At any time a place contains zero or more tokens, drawn as black dots. The state, often 
referred to as marking, is the distribution of tokens over places, i.e., M E P -> N. We 
will represent a state as follows: 1 PI +2P2 + Ip3 +OP4 is the state with one token in place 
PI, two tokens in P2. one token in P3 and no tokens in P4. We can also represent this state 
as follows: PI + 2P2 + P3. To compare states we define a partial ordering. For any two 
states MI and M2, MI ::0 M2 iff for all PEP: MI(p)::o M2(p) 

The number of tokens may change during the execution of the net. Transitions are the 
active components in a Petri net: they change the state of the net according to the following 
firing rule: 

(1) A transition t is said to be enabled iff each input place p of t contains at least one 
token. 

(2) An enabled transition may fire. If transition t fires, then t consumes one token from 
each input place p of t and produces one token for each output place p of t. 

Given a Petri net (P, T, F) and a state MJ, we have the following notations: 

I Note that states are represented by weighted sums and note the definition of (elementary) (conflict-free) 
paths. 
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M J ~ M2: transition t is enabled in state MI and firing t in MJ results in state M2 

MJ ~ M2: there is a transition t such that MJ ~ M2 

MJ ~ Mn: the firing sequence a = tJt2t3 ... In-I leads from state M J to state Mn. 
. M I, M t2 t~_l 
I.e., I ~ 2 ----7 ••• --+ Mn 

A state Mn is called reachable from MI (notation MI ~ Mn) iff there is a firing sequence 
t1 12 t~_1 N h fi . 

a = t,l2 ... In_I such that MJ --+ M2 --+ ... --+ Mn. ote that t e empty nng sequence 

is also allowed. i.e .• MI ~ MI. 

We use (PN. M) to denotea Petri net PN with an initial state M. A state M' is a reachable 

state of (PN. M) iff M ~ M'. Let us define some properties for Petri nets. 

Definition 2 (Live) A Petri net (PN. M) is live iff,forevery reachable state M' and every 
transition t there is a slate Mil reachable from M' which enables t. 

Definition 3 (Bounded, safe) A Petri net (PN. M) is bounded iff, for every reachable 
state and every place p the number of tokens in p is bounded. The net is safe ifffor each 
place the maximum number of tokens does not exceed 1. 

Definition 4 (Well-formed) A Petri net P N is well-formed iff there is a state M such that 
(P N • M) is live and bounded. 

Paths connect nodes by a sequence of arcs. 

Definition 5 (Path, Elementary, Conflict-free) Let P N be a Petri net. A path C from a 
node n I to a node nk is a sequence (n I. n2 • .... nk) such that (ni. ni+l) E F for I :s i :s 
k - I. C is elementary iff, for any two nodes ni and nj on C. i oF j =} ni oF nj. Cis 
conflict-free iff, for any place n j on C and any transition nj on C, j ::f:. i-I => n j rt enj. 

For convenience. we introduce the alphabet operator a on paths. If C = (nl. n2 • . " • nk), 
then arC) = {nl. n2 •... • nd. 

Definition 6 (Strongly connected) A Petri net is strongly connected iff,for every pair of 
nodes (i.e. places and transitions) x and y. there is a path leading from x to y. 

3 WF-nets 

In Figure I we indicated that a workflow has (at least) three dimensions. The process di­
mension is the most prominent one. because the core of any workflow system is formed by 
the processes it supports. In the process dimension building blocks such as the AND-split, 
AND-join. OR-split. and OR-join are used to model sequential. conditional. parallel and 
iterative routing (WFMC [20]). Clearly. a Petri net can be used to specify the routing of 
cases. Tasks are modeled by transitions and causal dependencies are modeled by places. 
In fact. a place corresponds to a condition which can be used as pre- andlor post-conditions 
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for tasks. An AND-split corresponds to a transition with two or more output places, and 
an AND-join corresponds to a transition with two or more input places. OR-splits/OR­
joins correspond to places with multiple outgoing/ingoing arcs. Moreover, in [1, 3] it is 
shown that the Petri net approach also allows for useful routing constructs absent in many 
WFMS's. 
A Petri net which models the process dimension of a workflow, is called a WorkFlow net 
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single case 
in isolation. 

Definition 7 (WF-net) A Petri net PN = (P, T, F) is a WF-net (Worlifiow net) if and 
only if: 

(i) PN has two special places: i and o. Place i is a source place: oi = 0. Place 0 is 
a sink place: oe = 0. 

(ii) [[we add a transition t* to PN which connects place 0 with i (i.e. ot* = {oj and 
t*o = {ill, then the resulting Petri net is strongly connected. 

A WF-net has one input place (i) and one output place (0) because any case handled by the 
procedure represented by the WF-net is created if it enters the WFMS and is deleted once 
it is completely handled by the WFMS, i.e., the WF-net specifies the life-cycle of a case. 
The second requirement in Definition 7 (the Petri net extended with t* should be strongly 
connected) states that for each transition t (place p) there should be a path from place ito 
o via t (p). This requirement has been added to avoid 'dangling tasks andlor conditions' , 
i.e., tasks and conditions which do not contribute to the processing of cases. 

Q) 

o 
register " 

Figure 2: A WF-net for the processing of complaints. 

Figure 2 shows a WF-net which models the processing of complaints. First the complaint 
is registered (task register), then in parallel a questionnaire is sent to the complainant (task 
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send-lJuestionnaire) and the complaint is evaluated (task evaluate). !fthe complainant re­
turns the questionnaire within two weeks, the task process_questionnaire is executed. If 
the questionnaire is not returned within two weeks, the result of the questionnaire is dis­
carded (task timeJJut). Based on the result of the evaluation, the complaint is processed or 
not. The actual processing of the complaint (task process_complaint) is delayed until con­
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The 
processing of the complaint is checked via task checLprocessing. Finally, task archive is 
executed. Note that sequential, conditional, parallel and iterative routing are present in this 
example. 

The WF-net shown in Figure 2 clearly illustrates that we focus on the process dimension. 
We abstract from resources, applications and technical platforms. Moreover, we also ab­
stract from case variables and triggers. Case variables are used to resolve choices (OR­
split), i.e., the choice between processing_required and no-processing is (partially) based 
on case variables set during the execution of task evaluate. The choice between process­
ing_OK and processing.NOK is resolved by testing case variables set by checLprocessing. 
In the WF-net we abstract from case variables by introducing non-deterministic choices in 
the Petri-net. Ifwe don't abstract from this information, we would have to model the (un­
known) behavior of the applications used in each of the tasks and analysis would become 
intractable. In Figure 2 we have indicated that timeJJut and process-questionnaire require 
triggers. The clock symbol denotes a time trigger and the envelope symbol denotes an 
external trigger. Task timeJJut requires a time trigger ('two weeks have passed') and pro­
cess_questionnaire requires a message trigger {'the questionnaire has been returned'}, A 
trigger can be seen as an additional condition which needs to be satisfied. In the remainder 
of this paper we abstract from these trigger conditions. We assume that the environment 
behaves fairly, i.e., the liveness of a transition is not hindered by the continuous absence 
of a specific trigger. As a result, every trigger condition will be satisfied eventually (if 
needed). 

4 Soundness 
In this section we summarize some of the basic results for WF-nets presented in [4]. The 
remainder of this paper will build on these results. 
The two requirements stated in Definition 7 can be verified statically, i.e., they only relate 
to the structure of the Petri net. However, there is another requirement which should be 
satisfied: 

For any case, the procedure will terminate eventually and the moment the pro­
cedure terminates there is a token in place oand all the other places are empty. 

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbitrary 
task by following the appropriate route though the WF-net. These two additional require­
ments correspond to the so-called soundness propeny. 

DefinitionS (Sonnd) A procedure modeled by a WF-net PN = (P, T, F) issoundifand 
only if: 
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(i) For every state M reachable from state i, there exists afiring sequence leadingfrom 
state M to state o. Formally:2 

. . . 
VM(' --> M) =} (M --> 0) 

(ii) State 0 is the only state reachable from state i with at least one token in place o. 
Formally: 

VMU':' M /\ M2:o)=}(M=o) 

(iii) There are no dead transitions in (PN, i). Formally: 

3 .' M t , 
Vt€T M,M' I ~ ---:l>- M 

Note that the soundness property relates to the dynamics of a WF-net. The first require­
ment in Definition 8 states that starting from the initial state (state i), it is always possible 
to reach the state with one token in place 0 (state 0). If we assume fairness (i.e. a transition 
that is enabled infinitely often will fire eventually), then the first requirement implies that 
eventually state 0 will be reached. The fairness assumption is reasonable in the context 
of workflow management; all choices are made (implicitly en explicitly) by applications, 
humans or external actors. Clearly, they should not introduce an infinite loop. The second 
requirement states that the moment a token is put in place 0, all the other places should be 
empty. Sometimes the term proper termination is used to describe the first two require­
ments [14]. The last requirement states that there are no dead transitions (tasks) in the 
initial state i. 

Q) 

register o 

Figure 3: Another WF-net for the processing of complaints. 

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If time....outJ 
and processing..2 fire or timeJJut..2 and processing_l fire, the WF-net will not terminate 
properly because a token gets stuck in c4 or c5. If time....outJ and time....out.2 fire, then the 
task processing.NOK will be executed twice and because of the presence of two tokens in 
o the moment of termination is not clear. 

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In [4] we 
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have shown that soundness corresponds to Iiveness and boundedness. To link soundness 
to liveness and boundedness, we define an extended net PN = (p, T, F). PN is the 
Petri net obtained by adding an extra transition t* which connects 0 and i. The extended 
Petri net PN = (p, T, F) is defined as follows: P = P, T = T U (t*), and F = 
FU ((0, t*), (t*, i)). The extended net allows for the fonnulation ofthe following theorem. 

Theorem 1 A WF-net PN is sound ifand only if(PN, i) is live and bounded. 

Proof, 
See [4] or [2]. o 

This theorem shows that standard Petri-net-based analysis techniques can be used to verify 
soundness. 

5 Structural characterization of soundness 
Theorem 1 gives a useful characterization of the quality of a workflow process definition. 
However, there are a number of problems: 

• For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF­
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng, 
Esparza and Palsberg [8].) 

_ Soundness is a minimal requirement. Readability and maintainability issues are not 
addressed by Theorem 1 . 

• Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does 
not identify constructs which invalidate the soundness property. 

These problems stem from the fact that the definition of soundness relates to the dynamics 
of a WF-net while the workflow designer is concerned with the static structure of the WF­
net. Therefore, it is interesting to investigate structural characterizations of sound WF­
nets. For this purpose we introduce three interesting subclasses of WF-nets: free-choice 
WF-nets, well-structured WF-nets, and S-coverable WF-nets. 

5.1 Free-choice WF-nets 

Most of the WFMS's available at the moment, abstract from states between tasks, i.e., 
states are not represented explicitly. These WFMS's use building blocks such as the AND­
split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-split 
and the AND-join are used for parallel routing. The OR-split and the OR-join are used 
for conditional routing. Because these systems abstract from states, every choice is made 
inside an OR-split building block. If we model an OR-split in tenns of a Petri net, the 
OR-split corresponds to a number of transitions sharing the same set of input places. This 
means that for these WFMS's, a workflow procedure corresponds to a free-choice Petri 
net. 

Definition 9 (Free~choice) A Petri net is a free-choice Petri net iff, for every two transi­
tions tl and t2 •• tl n .t2 "# 0 implies .tl = -t2. 
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It is easy to see that a process definition composed of AND-splits, AND-joins, OR-splits 
and OR-joins is free-choice. If two transitions tl and t2 share an input place (otl not2 "# 0), 
then they are part of an OR-split, i.e., a 'free choice' between a number of alternatives. 
Therefore, the sets of input places of tl and 12 should match (otl = ot2). Figure 3 shows 
a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice; archive and pro­
cess_complaint share an input place but the two corresponding input sets differ. 

We have evaluated many WFMS's and just one of these systems (COSA [18]) allows for 
a construction which is comparable to a non-free choice WF-net. Therefore, it makes sense 
to consider free-choice Petri nets. Clearly, parallelism, sequential routing, conditional rout­
ing and iteration can be modeled without violating the free-choice property. Another rea­
son for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free­
choice Petri nets, then the choice between conflicting tasks may be influenced by the order 
in which the preceding tasks are executed. The routing of a case should be independent of 
the order in which tasks are executed. A situation where the free-choice property is vio­
lated is often a mixture of parallelism and choice. Figure 4 shows such a situation. Firing 
transition tJ introduces parallelism. Although there is no real choice between t2 and t5 
(t5 is not enabled), the parallel execution of t2 and t3 results in a situation where t5 is not 
allowed to occur. However, if the execution of t2 is delayed until t3 has been executed, 
then there is a real choice between t2 and t5. In our opinion parallelism itself should be 
separated from the choice between two or more alternatives. Therefore, we consider the 
non-free-choice construct shown in Figure 4 to be improper. In literature, the tenn confu­
sion is often used to refer to the situation shown in Figure 4. 

Figure 4: A non-free-choice WF-net containing a mixture of parallelism and choice. 

Free-choice Petri nets have been studied extensively (cf. Best [7]. Desel and Esparza [10, 
9,12], Hack [15]) because they seem to be a good compromise between expressive power 
and analyzability. It is a class of Petri nets for which strong theoretical results and efficient 
analysis techniques exist. For example, the well-known Rank Theorem (Desel and Esparza 
[10]) enables us to fonnulate the following corollary. 

Corollary 1 The following problem can be solved in polynomial time. 
Given afree-choice WF-net, to decide ifit is sound. 

Proof. 
Let P N be a free-choice WF-net. The extended net P N is also free-choice. Therefore, 
the problem of deciding whether (PN, i) is live and bounded can be solved in polynomial 
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time (Rank Theorem [10]). By Theorem I, this corresponds to soundness. o 

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide sound­
ness. Moreover, a sound free-choice WF-net is guaranteed to be safe. 

Lemma 1 A sound free-choice WF-net is safe. 

Proof, 
Let P N be a sound free-choice WF-net. P N is the Petri net P N extended with a transition 
connecting 0 and i. PN is free-choice and well-formed. Hence, PN is covered by state­
machines (S-components, cf. [10]), i.e., each place is part of such a state-machine compo­
nent. Clearly, i and 0 are nodes of any state-machine component. Hence, for each place 
p there is a semi-positive invariant with weights 0 or 1 which assigns a positive weight to 
p, i and o. Therefore, PN is safe and so is PN. 0 

Safeness is a desirable property, because it makes no sense to have multiple tokens in a 
place representing a condition. A condition is either true (l token) or false (no tokens). 

Although most WFMS's only allow for free-choice workflows, free-choice WF-nets are 
not a completely satisfactory structural characterization of 'good' workflows. On the one 
hand, there are non-free-choice WF-nets which correspond to sensible workflows (cf. Fig­
ure 2). On the other hand there are sound free-choice WF-nets which make no sense. Nev­
ertheless, the free-choice property is a desirable property. If a workflow can be modeled as 
a free-choice WF-net, one should do so. A workflow specification based on a free-choice 
WF-net can be enacted by most workflow systems. Moreover, a free-choice WF-net allows 
for efficient analysis techniques and is easier to understand. Non-free-choice constructs 
such as the construct shown in Figure 4 are a potential source of anomalous behavior (e.g. 
deadlock) which is difficult to trace. 

5,2 Well-structured WF -nets 

Another approach to obtain a structural characterization of 'good' workftows, is to balance 
AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split, 
should not be joined by an OR-join. Two alternative flows created via an OR-split, should 
not be synchronized by an AND-join. As shown in Figure 5, an AND-split should be com­
plemented by an AND-join and an OR-split should be complemented by an OR-join. 

One of !he deficiencies of the WF-net shown in Figure 3 is the fact that the AND-split 
register is complemented by the OR-join c3 or the OR-join o. To formalize the concept 
illustrated in Figure 5 we give the following definition. 

Definition 10 (Well-handled) A Petri net P N is well-handled iff,for any pair of nodes x 
and y such that one of the nodes is a place and the other a transition and for any pair of 
elementary paths C I and C2 leading from x to y, a(CI) n a(C2) = Ix, y) =} CI = C2. 

Note that the WF-net shown in Figure 3 is not well-handled. A Petri net which is well­
handled has a number of nice properties, e.g. strong connectedness and well-formedness 
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-------

0: ~D 
AND-split --- ------ AND-join 

0: - ~)J -
OR-split --- ------ OR-join 

Figure 5: Good and bad constructions. 

coincide_ 

Lemma 2 A strongly connected well-handled Petri net is well-fonned. 

Proof. 
Let PN be a strongly connected well-handled Petri net. Clearly, there are no circuits that 
have PT-handles nor TP-handles ([13]). Therefore, the net is structurally bounded (See 
Theorem 3.1 in [13]) and structurally live (See Theorem 3.2 in [13]). Hence, PN is well­
formed. 0 

Clearly, well-handledness is a desirable property for any WF-net PN. Moreover, we also 
require the extended P N to be well-handled. We impose this additional requirement for 
the following reason. Suppose we want to use PN as a part of a larger WF-net PN'. PN' 
is the original WF-net extended with an 'undo-task', See Figure 6. Transition undo corre­
sponds to the undo-task, transitions t I and t2 have been added to make P N' a WF-net. It 
is undesirable that transition undo violates the well-handIedness property of the original 
net. However, PN' is well-handled iff PN is well-handled. Therefore, we require PN to 
be well-handled, We use the term well-structured to refer to WF-nets whose extension is 
well-handled. 

PN': 

PN o 
" 

Figure 6: The WF-net PN' is well-handled iff PN is well-handled. 

Definition 11 (Well-structured) A WF-net P N is well-structured iff P N is well-handled. 

Well-structured WF-nets have a number of desirable properties. Soundness can be verified 
in polynomial time and a sound well-structured WF-net is safe, To prove these properties 
we use some of the results obtained for elementary extended non-self controlling nets. 
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Definition 12 (Elementary extended non-self controlling) A Petri net P N is elementary 
extended non-self controlling (ENSC) iff. for every pair of transitions tl and t2 such that 
otl n ot2 # 0, there does not exist an elementary path C leading from tl to t2 such that 
otl n a(C) = 0. 

Theorem 2 Let P N be a WF-net. If P N is well-structured, then P N is elementary ex­
tended non-self controlling. 

Proof. 
Assume that P N is not elementary extended non-self controlling. This means that there 
is a pair of transitions tl and tk such that otl n otk # 0 and there exist an elementary path 
C = (tl' P2, t2, ... , p" tk) leading from tl to tk and otl n a(C) = 0. Let PI E otl n otk. 
CI = (PI, tk) and C2 = (PI, tl, P2, t2, ... , p" tk) are paths leading from PI to tk' (Note 
that C2 is the concatenation of (pd and C.) Clearly, CI is elementary. We will also show 
that C2 is elementary. C is elementary, and PI ¢ a (C) because PI E otl. Hence, C2 is also 
elementary. Since CI and C2 are both elementary paths, CI # C2 and a(CI) n a(C2 ) = 
(PI, td, we conclude that PN is not well-handled. 0 

'" 

o 
o 

Figure 7: A well-structured WF-net. 

Consider for example the WF-net shown in Figure 7. The WF-net is well-structured and, 
therefore, also elementary extended non-self controlling. However, the net is not free­
choice. Nevertheless, it is possible to verify soundness for such a WF-net very efficiently. 

Corollary 2 The following problem can be solved in polynomial time. 
Given a well-structured WF-net, to decide if it is sound. 

Proof. 
Let P N be a well-structured WF-ne!. The extended net P N is elementary extended non­
self controlling (Theorem 2) and structurally bounded (see proof of Lemma 2). For bounded 
elementary extended non-self controUing nets the problem of deciding whether a given 
marking is live, can be solved in polynomial time (See [6]). Therefore, the problem of 
deciding whether (PN, i) is live and bounded can be solved in polynomial time. By The­
orem 1, this corresponds to soundness. 0 

Lemma 3 A sound well-structured WF-net is safe. 
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Proof. 
Let PN be the net PN extended with a transition connecting 0 and i. PN is extended 
non-self controlling. PN is covered by state-machines (S-components), see Corollary 5.3 
in [6]. Hence, PN is safe and so is PN (see proof of Lemma I). D 

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases 
soundness can be verified very efficiently and soundness implies safeness. In spite of these 
similarities, there are sound well-structured WF-nets which are not free-choice (Figure 7) 
and there are sound free-choice WF-nets which are not well-structured. In fact, it is pos­
sible to have a sound WF-net which is neither free-choice nor well-structured (Figures 2 
and 4). 

5.3 S-coverable WF-nets 

What about the sound WF-nets shown in Figure 2 and Figure 4? The WF-net shown in Fig­
ure 4 can be transformed into a free-choice well-structured WF-net by separating choice 
and parallelism. The WF-net shown in Figure 2 cannot be transformed into a free-choice or 
well-structured WF-net without yielding a much more complex WF-net. Place c5 acts as 
some kind of milestone which is tested by the task process_complaint. Traditional work­
flow management systems which do not make the state of the case explicit, are not able 
to handle the workflow specified by Figure 2. Only workflow management systems such 
as COSA ([18]) have the capability to enact such a state-based workflow. Nevertheless, it 
is interesting to consider generalizations of free-choice and well-structured WF-nets: S­
coverable WF-nets can be seen as such a generalization. 

Definition 13 (S-coverable) A WF-net P N is S-coverable iff the extended net P N = (P, 
T, F) satisfies the/ollowingproperty. For each place p there is subnet PN, = (P" T" F,) 
such that: pEP" P, <; P, T, <; T, F, <; F, P N, is strongly connected, P N , is a state 
machine (i.e. each transition in PN, has one input and one output place), and/or every 
q E P,andt ET: (q,t) E F=? (q,t) E F,and(t,q) EF=? (t,q) E F,. 

This definition corresponds to the definition given in [10]. A subnet P N, which satis­
fies the requirements stated in Definition 13 is called an S-component. P N, is a strongly 
connected state machine such that for every place q: if q is an input (output) place of a 
transition t in P N, then q is also an input (output) place of t in P N ,. 
The WF-nets shown in Figure 2 and Figure 4 are S-coverable. The WF-net shown in Fig­
ure 3 is not S-coverable. The following two corollaries show that S-coverability is a gen­
eralization of the free-choice property and well-structuredness. 

Corollary 3 A sound/ree-choice WF-net is S-coverable. 

Proof. 
The extended net PN is free-choice and well-formed. Hence, PN is S-coverable (cf. [10]). 
D 

Corollary 4 A sound well-structured WF-net is S-coverable. 
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Proof. 
PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable (cf. Corol­
lary 5.3 in [6]). 0 

All the sound WF-nets presented in this paper are S-coverable. Every S-coverable WF­
net is safe. The only WF-net which is not sound, i.e. the WF-net shown in Figure 3, is not 
S-coverable. These and other examples indicate that there is a high correlation between S­
coverability and soundness. It seems that S-coverability is one of the basic requirements 
any workflow process definition should satisfy. From a formal point of view, it is possible 
to construct WF-nets which are sound but not S-coverable. Typically. these nets contain 
places which do not restrict the firing of a transition, but which are not in any S-component. 
(See for example Figure 65 in [17].) From a practical point of view, these WF-nets are to be 
avoided. WF-nets which are not S-coverable are difficult to interpret because the structural 
and dynamical properties do not match. For example, these nets can be live and bounded 
but not structurally bounded. There is no practical need for using constructs which violate 
the S-coverability property. Therefore, we consider S-coverability to be a basic require­
ment any WF-net should satisfy. 

S-coverability can be verified in polynomial time. Unfortunately, in general it is not pos­
sible to verify soundness of an S-coverable WF-net in polynomial time. The problem of 
deciding soundness for an S-coverable WF-net is PSPACE-complete. For most applica­
tions this is not a real problem. In most cases the number of tasks in one workflow process 
definition is less than 100 and the number of states is less than 200.000. Tools using stan­
dard techniques such as the construction of the coverability graph have no problems in 
coping with these workflow process definitions. 

The three structural characterizations (free-choice, well-structured and S-coverable) turn 
out to be very useful for the analysis of workflow process definitions. S~coverability is a 
desirable property any workflow definition should satisfy. Constructs violating S-cover­
ability can be detected easily and tools can be build to help the designer to construct an 
S-coverable WF-net. S-coverability is a generalization of well-structuredness and the free­
choice property (Corollary 3 and 4). Both well-structuredness and the free-choice prop­
erty also correspond to desirable properties of a workflow. A WF-net satisfying at least one 
one of these two properties can be analyzed very efficiently. However, we have shown that 
there are workflows that are not free-choice and not well-structured. Consider for example 
Figure 2. The fact that taskprocesLcomplainttests whether there is a token in c5, prevents 
the WF-net from being free-choice or well-structured. Although this is a very sensible 
workflow, most workflow management systems do not support such an advanced routing 
construct. Even if one is able to use state-based workflows (e.g. COSA) allowing for con­
structs which violate well-structuredness and the free-choice property, then the structural 
characterizations are still useful. If a WF-net is not free-choice or not well-structured, one 
should locate the source which violates one of these properties and check whether it is 
really necessary to use a non-free-choice or a non-weB-structured construct. If the non­
free-choice or non-well-structured construct is really necessary, then the correctness ofthe 
construct should be double-checked, because it is a potential source of errors. 
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o 

Figure 8: Task refinement: WF-net P N 3 is composed of P N I and P N ,. 

6 Composition of WF -nets 
The WF-nets in this paper are very simple compared to the workflows encountered in prac­
tise. For example, in the Dutch Customs Department there are workflows consisting of 
more than 80 tasks with a very complex interaction structure (cf. [3]). For the designer of 
such a workflow the complexity is overwhelming and communication with end-users using 
one huge diagram is difficult. In most cases hierarchical (de)composition is used to tackle 
this problem. A complex workflow is decomposed into subflows and each of the subflows 
is decomposed into smaller subflows until the desired level of detail is reached. Many 
WFMS's allow for such a hierarchical decomposition. In addition, this mechanism can 
be utilized for the reuse of existing workflows. Consider for example multiple workflows 
sharing a generic subflow. Some WFMS-vendors also supply reference models which cor­
respond to typical workflow processes in insurance, banking, finance, marketing, purchase, 
procurement, logistics and manufacturing. 

Reference models, reuse and the structuring of complex workflows require a hierarchy 
concept. The most common hierarchy concept supported by many WFMS's is task re­
finement, i.e., a task can be refined into a subflow. This concept is illustrated in Figure 8. 
The WF-net PN I contains a task t+ which is refined by another WF-net PN" i.e., t+ is 
no longer a task but a reference to a subflow. A WF-net which represents a subflow should 
satisfy the same requirements as an ordinary WF-net (see Definition 7). The semantics 
of the hierarchy concept are straightforward; simply replace the refined transition by the 
corresponding subne!. Figure 8 shows that the refinement of t + in P N I by P N , yields a 
WF-net PN3. 

The hierarchy concept can be exploited to establish the correctness of a workflow. Given 
a complex hierarchical workflow model, it is possible to verify soundness by analyzing 
each of the subflows separately. The following theorem shows that the soundness property 
defined in this paper allows for modular analysis. 

Theorem 3 (Compositionality) Let PN I = (PI, TI, FI ) and PN, = (P" T" F,) be 
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two WF-nets such that TI nT, = 0, PI n P, = (i, 0) and t+ E h PN 3 = (P3, T3, F3) 
is the WF-net obtained by replacing transition t+ in PN I by PN" i.e., P3 = PI UP" 
T3 = (TI \ {t+)) U T, and 

F3 = {(x,y)EFllx¥<t+ /\ y¥<t+) U {(x,Y)EF,I{x,y)n(i,0)=0) U 

{(x, y) E PI X T, I (x, t+) E FI /\ (i, y) E F2} U 

{(x,Y) E T, x PI I (t+,y) E FI /\ (x, 0) E F2}. 

For P N 1- P N , and P N 3 the following statements hold: 

1. If PN 3 isfree-choice, then PN I and PN2 are free-choice. 

2. If P N 3 is well-structured, then P N I and P N , are well-structured. 

3. If(PN I, i) is safe and PN I and PN, are sound, then PN3 is sound. 

4. (PN I, i) and (PN" i) are safe and sound iff(PN 3, i) is safe and sound. 

5. P N I and P N , are free-choice and sound iff P N 3 is free-choice and sound. 

6. If P N 3 is well-structured and sound, then P N I and P N 2 are well-structured and 
sound. 

7. If .t+ and t+. are both singletons, then PN I and PN, are well-structured and 
sound iff P N 3 is well-structured and sound. 

Proof, 

1. The only transitions that may violate the free-choice property are t+ (in PN I) and 
{t E T, I (i, t) E F,} (in PN ,). Transition t+ has the sarne input set as any of the 
transitions {I E T, I (i, I) E F,) in PN 3 if we only consider the places in P3 n PI. 
Hence, t+ does not violate the free-choice property in PN I. All transitionst in PN 2 

such that (i, I) E F, respect the free-choice property; the input places in P3 \ P, are 
replaced by i. 

2. PN I (PN 2) is well-handled because any elementary path in PN I (PN ,) corresponds 
to a path in PN3 . 

3. Let (PN I, i) be safe and let PN I and PN 2 be sound. We need to prove that (PN 3, i) 
is live and bounded. The subnet in P N 3 which corresponds to 1+ behaves like a 
transition which may postpone the production of tokens for 1+ •. It is essential that 
the input places oft+ in (PN 3, i) are safe. This way it is guaranteed thatthe states of 
the subnet correspond to the states of (PN " i). Hence, the transitions in T3 n T, are 
live (1+ is live) and the places in P, \ PI are bounded. Since the subnet behaves like 
1+, the transitions in T3 n (TI \ {t+)) are live and the places in P3 n PI are bounded. 
Hence, P N 3 is sound. 

4. Let (PN 1> i) and (PN" i) be safe and sound. Clearly, PN 3 is sound (see proof of 
3.). (P N 3, i) is also safe because every reachable state corresponds to a combination 
of a safe state of (P N I, i) and a safe state of (P N 2, i). 
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Let (P N 3, i) be safe and sound. Consider the subnet in P N 3 which corresponds 
to t+ X is the set of transitions in T3 n T2 consuming from .t+ and Y is the set 
of transitions in T3 n T2 producing tokens for t+ •. If a transition in X fires, then it 
should be possible to fire a transition in Y because of the liveness of the original net. 
If a transition in Y fires, the subnet should become empty. If the subnet is not empty 
after firing a transition in Y, then there are two possibilities: (I) it is possible to move 
the subnet to a state such that a transition in Y can fire (without firing transitions in 
T3nT,) or (2) it is not possible to move to such a state. In the first case, the places t+. 
in P N 3 are not safe. In the second case, a token is trapped in the subnet or the subnet 
is not safe the moment a transition in X fires. (PN 2, i) corresponds to the subnet 
bordered by X and Y and is, as we have just shown, sound and safe. It remains 
to prove that (PN" i) is safe and sound. Since the subnet which corresponds to 
t+ behaves like a transition which may postpone the production of tokens, we can 
replace the subnet by t+ without changing dynamic properties such as safeness and 
soundness. 

5. Let P N , and P N 2 be free-choice and sound. Since (P N " i) is safe (see Lemma I), 
PN 3 is sound (see proof on.). Itremains to prove that PN 3 is free-choice. The only 
transitions in P N 3 which may violate the free-choice property are the transitions in 
T3 n T2 consuming tokens from .t+. Because P N 2 is sound, these transitions need 
to have an input set identical to t+ in P N, (if this is not the case at least one of the 
transitions is dead). Since P N 1 is free-choice, P N 3 is also free-choice. 
Let P N 3 be free-choice and sound. P N, and P N 2 are also free-choice (see proof 
of \.). Since (PN 3, i) is safe (see Lemma I), PN, and PN 2 are sound (see proof 
of 4.). 

6. Let P N 3 be well-structured and sound. P N, and P N 2 are also well-structured (see 
proof of 2.). Since (PN 3, i) is safe (see Lemma 3), PN, and PN 2 are sound (see 
proof of 4.). 

7. It remains to prove that if PN, and PN 2 are well-structured, then PN 3 is also well­
structured. Suppose that P N 3 is not well-structured. There are two disjunct elemen­
tary paths leading from x to y in P N 3. Since P N 1 is well-structured, at least one of 
these paths is enabled via the refinement of t+. However, because t+ has precisely 
one input and one output place and P N 2 is also well-structured, this is not possible. 

o 

Theorem 3 is a generalization of Theorem 3 in [19]. It extends the concept of a block with 
multiple entry and exit transitions and gives stronger results for specific subclasses. 

Figure 9 shows a hierarchical WF-net. Both of the subflows (handle-LJuestionnaire and 
processing) and the main flow are safe and sound. Therefore, the overall workflow repre­
sented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice prop­
erty and well-structuredness are also preserved by the hierarchical composition. Theo­
rem 3 is of particular importance for the reuse of subflows. For the analysis of a complex 
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Figure 9: A hierarchical WF-net for the processing of complaints. 

workflow, every safe and sound subflow can be considered to be a single task. This allows 
for an efficient modular analysis of the soundness property. Moreover, the statements em­
bedded in Theorem 3 can help a workflow designer to construct correct workflow process 
definitions. 

7 Woflan 
To allow users of today's workflow management systems to benefit from the results pre­
sented in this paper we have developed Woflan, a tool which analyzes workflow process 
definitions specified in terms of Petri nets, Woflan (WOrkFLow ANalyzer) has been de­
signed to verify process definitions which are downloaded from a workflow management 
system ([5]). Clearly, there is a need for such a verification tool, because today's work­
flow management systems do not support advanced techniques to verify the correctness of 
workflow process definitions. These systems typically restrict themselves to a number of 
(trivial) syntactical checks. Therefore, serious errors such as deadlocks and livelocks may 
remain undetected. This means that an erroneous workflow may go into production, thus 
causing dramatic problems for the organization. An erroneous workflow may lead to extra 
work, legal problems, angry customers, managerial problems, and ill-motivated employ­
ees. Therefore, it is important to verify the correctness of a workflow process definition 
before it becomes operational, 
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At the moment there are two workflow tools which can interface with Woflan: COSA 
(COSASolutions/Software-Ley, Pullheim, Germany) and Protos (Pallas Athena, Plasmolen, 
The Netherlands). COSA (COSA Solutions) is one of the leading products in the Dutch 
workflow market. COSA allows for the modeling and enactment of complex workflow 
processes which use advanced routing constructs. However, COSA does not support veri­
fication. Fortunately, Woflan can analyze any workflow process definition constructed by 
using CONE (COSA Network Editor), the design tool of the COSA system. Woflan can 
also import process definitions made with Protos. Protos (Pallas Athena) is a so-called 
BPR-tool. Protos supports Business Process Reengineering (BPR) efforts and can be used 
to model and analyze business processes. The tool is very easy to use and is based on Petri 
nets. To facilitate the modeling of simple workflows by users not familiar with Petri nets, 
it is possible to abstract from states. However, Protos cannot detect subtle design flaws 
which may result in deadlocks or livelocks. Therefore, it is useful to download workflows 
specified with Protos and analyze them with Woflan. 

Q) 

o 
register 

Figure 10: An alternative WF-net for the processing of complaints. 

If the workflow process definition is not sound, Woflan guides the user in finding and cor­
recting the error. Since a detailed description of the functionality of Woflan is beyond the 
scope of this paper, we will use the example shown in Figure 10 to illustrate the features 
of Woflan. For this particular workflow net, Woflan gives the following diagnostics: 

• Woflan points out the fact that place cIO is not bounded in the net extended with 
transition t' which connects the output place ready with the input place staN. This 
means that it is possible to terminate and leave a token in cIO (Le. a dangling refer­
ence) . 

• The OR-split c3 is complemented by the AND-join archive, Le., there are two dis­
junct paths (one via cIO) leading from place c3 to transition archive. Such a con­
struct may lead to a potential deadlock. In this case it does! 
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• Woflan reports that the workflow net is not covered by state machines (S-components) 
i.e., the net is not S-coverable. In fact, Woflan indicates that c10 is the only place 
not in any S-component. 

• The fact that something is wrong with cia is also highlighted by the fact that place 
cia is not in the support of any of the semi-positive place invariants generated by 
Woflan. 

The above diagnostics clearly show that the optional synchronization of the two parallel 
flows via place cia is the source of the error. Removing cia or replacing cia by the con­
struct shown in Figure 2 solves this problem and results in a sound workflow process def­
inition. For a small workflow with only 8 tasks these results may seem trivial. However, 
workflows encountered in practice may have up to a 100 tasks. Experience shows that for 
workflows with more than 20 tasks it is not easy to locate the source of the error if the 
workflow net is not sound. Therefore, the support offered by Woflan is of the utmost im­
portance for the verification of workflow process definitions. 

To assist the user in repairing the error, Woflan offers an on-line help facility. The on-line 
help is based on a step-wise approach to locate and remove constructs which violate the 
soundness property. This enables users without a background in Petri nets to operate the 
tool and repair an erroneous workflow process definition. 

8 Conclusion 
In this paper we have investigated a basic property that any workflow process definition 
should satisfy: the soundness property. For WF-nets, this property coincides with live­
ness and boundedness. In our quest for a structural characterization of WF-nets satisfying 
the soundness property, we have identified three important subclasses: free-choice, well­
structured, and S-coverable WF-nets. The identification of these subclasses is useful for 
the detection of design errors. 
If a workflow process is specified by a hierarchical WF-net, then modular analysis of the 
soundness property is often possible. A workflow composed of correct subflows can be 
verified without incorporating the specification of each subflow. 
The results presented in this paper give workflow designers a handle to construct correct 
workflows. Although it is possible to use standard Petri-net-based analysis tools, we have 
developed a workflow analyzer which can be used by people not familiar with Petri-net 
theory. This workflow analyzer interfaces with existing workflow products such as COSA 
and Protos. 
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Abstract. A workflow is the automation of business processes which 
describes activities in a business context. A workflow management sys­
tem defines, creates and manages the execution of workflows. Petri nets 
have been shown to be a well-suited formalism to model and analyse 
business processes. The verification of soundness of a procedure, i.e. cor­
rect termination, using Petri nets, was considered in [vdA97]. In this 
paper, we extend this work by also taking into account resources shared 
by workflow procedures. We show how the soundness property can be 
proved efficiently by using structural Petri net techniques. These allow 
us to obtain parameterized results. Moreover, it leads to a tailoring of 
the system in order to enhance its performances. 

1 Introduction 

Workflow Management and Business Process Reengineering consider adminis­
trative tasks in large organisations, which interact and compete for shared re­
sources. The key entity in such systems is the business process ([WFM96]). It 
consists in a set of linked activities which collectively realise a business objective 
or policy goal, normally within the context of an organisational structure defin­
ing functional roles and relationships. A single enactment of a process is a case. A 
workflow is the automation of a business process, in whole or part, during which 
documents, information or tasks are passed from one participant to another for 
action, according to a set of procedural rules. A Worflow Management System 
(WFMS for short) is a system that defines, creates and manages the execution 
of workflows through the use of software which is able to understand the process 
definition, interacts with workflow participants. It is possible to distinguish two 
different categories of workflow software which support respectively structured 
and unstructured processes. Structured processes have a fixed behaviour, and 
they will not change during the time. On the contrary, unstructured processes 
are susceptible to be influenced by external actions. 
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Numerous WFMS are nowadays available. Unfortunately, there are few the­
oretical formalisms and tools to deal with these. The need to model and analyse 
the correctnesss of workflow procedures has lead to use Petri nets as a formalism. 
They are a well-suited formalism allowing to capture the business processes con­
cepts and structure, i.e. splitting, synchronisation, conflicts, parallel and sequen­
tial routing, conditions, ... Moreover, the representation of business processes in 
terms of Petri nets supports automated manipulation and formal verification 
techniques. In particular, this last point is extremely important as the numerous 
WFMS nowadays available ([BPR97], [OSS+97], [Obe94]) generally offer only 
a simulation based partial verification. A significant work tackling the verifica­
tion of workflow procedures using Petri nets theory was presented in [vdA97]. 
The soundness of a procedure, i.e. the correct termination (absence of dangling 
cases, deadlocks, livelocks, ... ), can be checked in polynomial time under some 
conditions on the flow relation of the net model. 

The work we present in this paper significantly extends these results. In­
deed, we first take into account the general use of resources shared by workflow 
procedures. Second, we show how the soundness property, under this resource 
use constraint, can be proved efficiently by using structural Petri net techniques. 
The major advantage in using such techniques is to obtain parameterized results. 
Effectively, we charaterize families of sound models, where the number of cases 
and resources are considered as parameters. Another benefit of this approach 
is related to the performances of the whole WFMS. This is done by proposing 
another distribution of resources between tasks. It helps tailoring the workflow 
model, while preserving the soundness property. 

2 Basic Notions of Petri Nets and Structural Analysis 

In this section, we introduce the basic notions and notations used throughout 
this paper. We first define a Petri net. 

Definition 1. A Petri net is a tuple P N = < P, T, F, W > where: 

(i) P op 0 is a set of places; 
(ii) T op 0 is a set of transitions; 

(iii) F ~ P x T u T x P is the flow relation; 
(iv) W : P x TUT x P -4 IN 1\ [W(x, y) = 0 ¢} (x, y) rt F] is the weight function. 

In the following, we define the marking of a Petri net. 

Definition 2. A marking of a Petri net P N is a function M : P -4 IN. The 
initial marking of P N is denoted by Mo. 

We then introduce the notations for pre-sets, post-sets and the incidence matrix. 

Notation 1 

\lxEPUT, ·X={YEPUT/(y,x)EF}andx·={yEPUT/(x,y)EF} 

\I(p, t) E P x T : C(p, t) = W(t,p) - W(P, t). 
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Then, we recall the firing rules. 

Definition 3. A transition t E T is enabled in a marking M (denoted by M[t)) 
iffVp E·t: M(P) 2: W(p, t). 

If transition t is enabled in marking M, it can be fired, leading to a new 
marking M' such that: Vp E P : M'(P) = M(p, t) + C(p, t). The firing is denoted 
by M[t)M'. 

The set of all markings reachable from a marking M is denoted by [M). 

We define the classical properties checked for Petri nets. 

Definition 4. Let P N be a Petri net and Mo its initial marking. 

(i) a marking Mh is a home state iff '1M E [Mo), Mh E [Mo) ; 
(ii) (P N, Mo) is reversible ¢} Mo is a home state; 

(iii) (PN, Mo) is bounded ¢} Vp E P: [3k E IN: '1M E [Mo), M(P) ::: kJ 
¢} [Mo) is finite; 

(iv) (PN,Mo) is quasi-live ¢} 'It E T: 3M E [Mo), M[t) ; 
(v) (PN, Mo) is deadlock-free ¢} '1M E [Mo) : 3t E T, M[t) ; 

(vi) (PN, Mo) is live ¢} 'It E T: ['1M E [Mo) : 3M' E [M), M'[t)J ; 
(vii) PN is structurally live ¢} [3Mo, (PN,Mo) is liveJ. 

Definition 5. A junction v : [Mo) -+ IN is a norm (strict) for a marking 
Mh E [Mo) iff: 

(i) v(M) = 0 ¢} M = Mh ; 
(ii) '1M E [Mo) : [v(M) > 0 ¢} 3t E T: M[t)M' A v(M') < v(M)J. 

In this paper, we use techniques from structure theory of Petri nets. Therefore, 
we introduce the basic notion of invariants. 

Definition 6. Let P N be a Petri net. An integer vector f, f "I 0, indexed by P 
(J E 2ZP ) is a place invariant iff it satisfies' f . C = o. 
The positive support of f is the set of places Ilfll+ = {p E P : f(p) > o}. 
The negative support of f is the set of places 11111- = {p E P : f(P) < OJ. 
P N is conservative ¢} 3f, f p-invariant, IIfll+ = P 

=} V Mo, N is bounded. 

A key concept in structural analysis is the siphon. 

Definition 7. Let PN be a Petri net and 5 ~ P, 5 "I 0. 5 is a siphon iff 
• 5 ~ 5·. 5 is minimal iff it contains no other siphon as a proper subset. 

Now, we introduce the notion of controlled siphon. 

Definition 8. Let (PN,Mo) be a Petri net, and 5 a siphon of PN. 

(i) 5 is controlled iff '1M E [Mo),3p E 5: M(P) 2: maxp• = max'Ep. W(p,t) ; 
(ii) (P N, Mo) satisfies the controlled-siphon property (cs-property) iff each min-

imal siphon of P N is controlled. 

Two basic relations between liveness properties and the cs-property are stated 
in the following proposition. 
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Proposition 1. Let (PN,Mol be a Petri net. The following properties hold: 

(i) (P N, Mol live '* (P N, Mol satisfies the cs-property ; 
(ii) (P N, Mol satisfies the cs-property '* (P N, Mol is deadlock-free; 

Two other properties useful to liveness analysis are recalled below. 

Proposition 2. Let (PN,Mol be a Petri net and Mh E [Mo). Then: 

(i) (P N, Mo) is quasi-live under home state Mh '* (P N, Mol is live under Mh 
(ii) Mh is a home state ¢} 3 a norm for Mh. 

3 WorkFlow Nets 

Van der Aalst showed in [vdA97] that Petri nets modelling business processes 
generally satisfy some typical properties. They always have two special places i 
and 0, which correspond to the beginning and termination of the processing of 
a case. They are respectively source and sink places. 

Definition 9. A Petri net PN is a WF-net iff: 

(i) PN has two special places: i and o. Place i is a source place: °i = 0. Place 
o is a sink place: o· = 0. 

(ii) If we add a transition to to P N, connecting place 0 with i, i.e. 'to = {o} and 
tOO = {i}, the Petri net P N obtained is strongly connected. P N is called the 
augmented net of PN. 

A key property of workflow procedures is the soundness property. It states that, 
for any case, the procedure will terminate eventually, and at the moment the 
procedure terminates, there is a token in place 0 and all other places are empty. 
This is a slight extension of the soundness definition given in [vdA97] which 
considers only one case. 

Definition 10. A WF-net (PN,n.i), n being the number of cases to process, is 
sound iff: 

(i) '1M E [n.i}, n.o E [M} ; 
(ii) '1M E [n.i} : M(o) ~ n '* M = n.O ; 

(iii) 'It E T, 3M E [n.i} : M[t). 

It was proved in [vdA97] that the soundness of a WF-net (PN,i) is equivalent 
to the liveness plus boundedness of the augmented net (P N, i). One can easily 
extend this property to n cases. 

Proposition 3. A WF-net (PN,n.i) is sound iff (PN,n.i) is live and bounded, 
with W(o, to) = W(tO, 0) = n. 

Proof. The proof is similar to the one in [vdA97]. 
{:: Let us suppose that (PN,n.i) is live and bounded. As (PN,n.i) is live, 

'1M E [n.i) : 3M' E [M), M'[tO}. 
Thus, '1M E [n.i} : 3M' E [M), M'(o) ~ n. 
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Let us suppose that M' = n.D + M", M" ¥ O. Then M'[t')n.i + M", which 
contradicts the boundedness hypothesis. Therefore M' = n.D and conditions (i), 
(ii) of definition lO are ensured. Condition (iii) is guaranteed by liveness. 

=>: Let us assume that (P N, n.i) is sound. 
We first prove that (PN,n.i) is bounded. Suppose that (PN,n.i) is not 

bounded. Then 3MI E [n.i) : 3M2 E [MI)' M2 > MI. 
As (P N, n.i) is sound, we know, by definition lO.(i) that 317 E T' : MI [a)n.D. 

Thus, 3M, M 2[a)M: M > n.D. This contradicts the soundness hypothesis (def­
inition lO.(ii)). Thus (P N, n.i) is bounded and therefore (P N, n.i) is bounded. 

We now prove that (P N, n.i) is live. As (P N, n.i) is sound, from defini­
tion lO.(i) '1M E [n.i) : n.D E [M). Then, by firing to, we obtain: '1M E [n.i) : 
n.i E [M), i.e. n.i is a home state of (PN, n.i). Using definition lO.(iii), we 
conclude that all transitions are quasi-live and thus, by proposition 2.(i) that 
(P N, n.i) is live. 0 

For a Free-Choice WF-net, proposition 3 can be checked in polynomial time 
using algorithms based either on the rank theorem ([KB92]) or on Commoner's 
property ([BM92]). This is due to the fact that checking soundness for one case 
is equivalent to checking it for any number of cases, as liveness is monotonic for 
Free Choice nets, contrary to the general case. However, a structural necessary 
and sufficient liveness condition for Asymmetric Choice nets was presented in 
[BP96]. This condition, namely cs-property, generalizes Commoner's property. 

In [vdA97], it is said that most (all but one) of the existing WFMS use 
constructs corresponding to free-choice nets. In our opinion, non free-choice syn­
chronization patterns can be encountered in practice. 

4 Structural Soundness of WF-Nets 

OUf aim is to consider the number of cases as a parameter, and to monitor the 
number of cases which can be processed simultaneously, such that the soundness 
property is satisfied. As in OUf model liveness is not monotonic, the techniques 
used for Free Choice nets are not appropriate. Therefore, we introduce the notion 
of structural soundness. 

Definition 11. A WF-net PN is structurally sound iff3n such that (PN,n.i) 
is sound. 

In order to prove structural soundness of a model, we will use the cs-property. 
This technique will also allow us, when adding resources, to enhance their use. 

In the general case, the cs-property guarantees the absence of deadlock apart 
from the final marking M = n.D. But the soundness is not ensured. In the 
particular case of Asymmetric Choice WF-nets (including Free Choice WF-nets), 
the soundness is verified iff the augmented net is bounded and satisfies the cs­
property. Moreover, it is possible to characterise a set of initial markings for 
which soundness is guaranteed. 

Now, we will characterise a more general class, abstracting from circuits 
which can be performed by a case. In fact, WF -nets with circuits can be changed 
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into WF-nets without circuits, using transformations presented in [vdA97]. From 
the soundness property, one can easily see that n.o is a home state of (P N, n.i). 
Using property 2.(ii), there exists a norm for n.o. In the particular case of circuit­
free nets, this norm can easily be built, as shown in the proof of theorem 1, where 
the soundness property is structurally characterized. 

Definition 12. A net PN is a Circuit Free WF-net (CFWF) iff PN is a WF­
net and has no circuit. 

For a hounded and quasi-live CFWF, the cs-property is a necessary and suffi­
cient soundness condition. One can consider easily that boundedness and quasi­
liveness properties are minimal requirements. 

Theorem 1. Let PN be a CFWF. PN is structurally sound iff 3n such that 
(PN, n.i) is bounded, quasi-live and satisfies the cs-property. 

Proof. =}: Let us suppose that PN is structurally sound. This means (defini­
tion 11) that 3n such that (PN,n.i) is sound. From proposition 3, (PN,n.i) is 
live and bounded, in particular bounded and quasi-live. Moreover, from propo­
sition 1.(i), it satisfies the cs-property. 

-:=: Let us suppose that 3n such that (PN,n.i) is bounded, quasi-live and 
satisfies the cs-property. We will first exhibit a norm v for marking n.o. We 
construct function v as follows: we number the places in reverse topological order, 
i.e. place a is numbered 0, place i has the highest number, and the other places 
are such that a successor p' of a place p in the graph of the Petri net has a lower 
number than place p. This can be done due to the absence of cycles. We call num 
this numbering function. Then we define 'tiM : v(M) = EvEP M(p)num(p). 

We now prove that v is a norm for n.O. By construction, v( M) = 0 {o} M = 
x.o. If x < n, then $t E T : M[t). As (PN, n.i) satisfies the cs-property, we 
deduce from proposition 1.(ii) that (PN,n.i) is deadlock-free, i.e. '1M E [n.i) : 
3t E T, M[t). Thus, there is a contradiction. If x > n, x.o[t')M' > n.i. This 
contradicts the boundedness hypothesis. Thus, we have proved condition (i) of 
definition 5. 

Let us suppose that v(M) > 0 for a marking M. As (PN, n.i) is deadlock-free, 
3t: M[t)M'. If t i' t', by construction of v, v(M') < v(M). Otherwise (t = t'), 
as v(M) > 0 and v(M) = 0 {o} M = n.O (already proven), marking M must 
have the form M = n.o + M" with M" i' O. Then M[t')n.i + M" > n.i, which 
contradicts the boudedness hypothesis. Thus, =} of definition 5.(ii) is satisfied. 

Let us nOw suppose that 3t E T : M[t)M' Av(M') < v(M). The construction 
of function v is such that 'tiM : v(M) 2: O. Then v(M) > v(M') 2: O. Thus, -:= 
of definition 5.(ii) is satisfied. 

We deduce from all this that we found a norm function v for n.o. 
From proposition 2.(ii), n.o is a home marking. Then, as n.o[t')n.i, n.i also 

is. As (PN,n.i) is quasi-live and its initial state is a home state, it is live. From 
proposition 3, (P N, n.i) is sound. 0 

In some subclasses of Petri nets, these last conditions can be lessened. 
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Definition 13. A Petri net P N is an Asymmetric Choice net iff: 

1I(p,q) E P x P: [po nq" ¥ 0 =} p" ~ q" Vq" ~p"J. 

Corollary 1. Let P N be an Asymmetric Choice CFWF-net. P N is structurally 
sound iff 3n such that (PN, n.i) is bounded and satisfies the cs-property. 

Proof. For Asymmetric Choice nets, the cs-property is a necessary and sufficient 
liveness condition ([BP96]). The result follows from the fact that liveness implies 
quasi-liveness and from theorem 1. 0 

In the next section, we will add resources to sound nets in order to study the 
adequation between the number of resources available and the number of cases 
to be handled. 

5 Coping with Shared Resources 

In this section, we first introduce the model of WF-nets with resources and 
combine them into a system where they share resources. Secondly, we show how 
to perform analysis of structural soundness. 

5.1 Modelling Business Processes Competing for Shared Resources 

We introduce the notion of WF-net with resources. It is basically a WF-net 
plus a set of places modelling the resources. We demand the WF-net (without 
resources) to be sound, and the resources to be preserved by the net, Le. a 
resource requested will eventually be released and a resource released has pre­
viously been requested. Several resources can be requested/released at a same 
time. The resource preservation can be expressed by a place invariant of the 
system (definition 14.(v)). One can note that the subnet associated with this 
invariant is not necessarily a state machine. 

Definition 14. A WFR-net is a tuple PNR = < PuPR,T,FUFR, WUWR > 
where: 
(i) P N = < P, T, F, W > is a structurally sound WF-net. 

(ii) PR ¥ 0/\ P n PR = 0 (set of resources) 
(iii) FR ~ (PR X T) U (T x PRJ (flow relation for resources) 
(iv) lIu E FR, WR(u) :::: 1 (resource use) 
(v) IIr E PR,3fr :::: 0 : t fr . C = 0 /\ IIfrll n PR = {r} (resource preservation) 

Then, we can compose several WFR-nets into a system where they share re­
sources. This is obtained by fusion of the places representing the shared re­
sources. 

Definition 15. A WFRS is recursively defined. A WFR-net is a WFRS. 
Let PNi = < Pi U PRi , Ti, Fi, Wi >, i E {1,2}, be two WFRS such that 

PI n P, = TI n T, = 0. We denote the set of shared resources by PRIR2 = 
PRI n PR2 . The net P N = P NI 0 P N, resulting of the fusion of nets P NI and 
P N, over the set PRIR2 is a WFRS. 
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Definition 16. Let N be a WFR5. We denote by N the generalized Petri net 
constructed as N, where the WF-nets components (definition 14.(i)} are replaced 
by the corresponding augmented WF-nets. 

One can note that, compared to other daBses presented in the literature, WFRS 
extend 54 R-nets ([BBA96]), which are a generalisation of 53 R-nets ([ECM95]) 
proposed to cope with deadlocks in flexible manufacturing systems. 

5.2 Structural Analysis 

The definition of structural soundness (definition 11) can eaBily be extended to 
WFRS. 

Lemma 1. Let N be a WFR5, and 5 a minimal siphon of N. There exists an 
initial marking Mo under which S is controlled. 

Proof. Let N be a WFRS and S a minimal siphon of N. 
Let us first suppose that S n UPRi = 0. By construction, 3PNi : S ~ Pi. 

As P Ni is structurally sound, there exists an initial marking under which S is 
controlled. 

Let us now consider the complementary case: S n U PRi '" 0. We suppose 
that siphon S is not controlled. We denote by f(r) a flow of minimal support 
associated with a resource r, and by f(P) a flow of minimal support aBsociated 
with p in its WF-net. Let: 

gS = L f(r) 
rESnUPRi 

Qut(S) = Ilgll \ S 

hs = L f(P) 
pEOut(S) 

AS = max g(p) 
pEOut(s)nllhsll 

zs = gs - As·hs 

Siphon S is controlled aB soon aB: 

tzs· Mo > Lz,(p).(m::x-l) 
pES P 

Therefore, there exists a marking under which S is controlled. 

The following property holds for any WFRS. 

Lemma 2. Let N be a structurally sound WFR5. There exists an initial mark­
ing Mo such that (N, Mo) satisfies the cs-property. 
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Proof. Let N be a structurally sound WFRS. If it does not satisfy the cs­
property, it cannot be live (proposition 1.(i)). l'hus, it cannot be sound. 0 

In theorem 2, we extend lemma 2 in the particular case where the components 
P Ni are circuit free. 

Theorem 2. Let N be a WFRS where the P Ni are CFWF. N is structurally 
sound iff there exists an initial marking Mo under which (N, Mo) is bounded, 
quasi-live and satisfies the cs-property. 

Proof. ¢=: The cs-property is ensured by lemma 2. The boundedness and quasi­
liveness are deduced from soundness. 

=>: Let N be a WFRS where the P Ni are CFWF. Let us suppose that there 
exists an initial marking Mr; under which (N, Mo) is bounded, quasi-live and 
satisfies the cs-property. We will now prove that (N, Mo) is live. To do that, we 
proceed as in the proof of theorem 1, i.e. we will exhibit a norm "R. This norm 
l/R is an extension of norm v where the resources are numbered O. The proofs 
of the properties of a norm are similar to those in theorem 1, taking also into 
account resource preservation (definition 14.(v)). 0 

d 
o 

Fig. 1. A Circuit-Free WFRS. 
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We will now apply theorem 2 to the net of figure 1. The minimal siphons of the 
augmented net are: 

S, = {i,pl,p3,p5,p6,0} 
S2 = {i,p2,p3,p4,p5,p6,0} 
S3 = {p3,p5,p6,rl} 
S4 = {p4,p5,p6, r2} 
S5 = {rl,r2,p5,p6} 
S6 = {i,pl,p5,p6,0,r2} 
The WF-net composing the WFRS is structurallay sound: it is live and 

bounded for e.g. Mo(i) = 1. Thus, the two siphons without resource places, 
S, and S2 are controlled as soon as Mo (i) > O. Siphons S3 and S4 are the sup­
port of positive flows. Hence they are invariant-controlled. The control condition 
for S3 is Mo(rl) > 1, and for S., Mo(r2) > O. We now have to examine siphons 
S5 and S6 more in detail in order to calculate their control condition. 

gs, = f(rl) + f(r2) 
= rl + 2.p3 + 2.p5 + p6 + r2 + p4 + p5 + p6 
= rl + r2 + 2.p3 + p4 + 3.p5 + 2.p6 

DUt(S5) = {p3,p4} 
hs, = f(P3) + f(P4) 

= i +pl + p3 +p5 +p6 +o+i + p2+p3 +p4+p5 + p6+0 
= 2.i + pI + p2 + 2.p3 + p4 + 2.p5 + 2.p6 + 2.0 

AS, = 2 
zs, = rl + r2 + 2.p3 + p4 + 3.p5 + 2.p6 

-4.i - 2.pl - 2.p2 - 4.p3 - 2.p4 - 4.p5 - 4.p6 - 4.0 
= rl + r2 - 4.i - 2.pl - 2.p2 - 2.p3 - p4 - p5 - 2.p6 - 4.0 

S5 is controlled as soon as Mo(rl) + Mo(r2) - 4.Mo(i) > 1. 
gs, = f(r2) 

= r2 + p4 + p5 + p6 
Dut(S6) = {p4} 
hs, = f(p4) 

= i + p2 + p3 + p4+ p5 + p6+0 
As, = 1 
zs, = r2 + p4 + p5 + p6 - i - p2 - p3 - p4 - p5 - p6 - 0 

=r2-i-p2-p3-0 
S6 is controlled as soon as Mo(r2) - Mo(i) > O. 
To conclude, the net of figure 1 is controlled as soon as the following inequal­

ities are satisfied: 

Mo(rl) > 0, Mo(r2) > 0, Mo(i) > 0, 

Mo(rl) + Mo(r2) - 4.Mo(i) > 1, Mo(r2) - Mo(i) > 0 

In the next section, we show how to enhance the performances of the system 
by allowing more cases to enter the system and still preserve the structural 
soundness property. 
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6 Enhancing Performances of WFRS 

The control we have up to now is global, and a thinner control can only improve 
the concurrency, i.e. increase the number of concurrent cases in the system. The 
basic idea is to dissociate the control of the siphons from the input places of the 
WF-nets constituting the WFRS. In practice, these places can be considered as 
part of the environment. 

The set of minimal siphons of a given WFRS can be partitionned into 
3 classes. The first class (type 1) contains the minimal siphons without re­
source places. They are controlled since the WF -nets constituting the WFRS 
are sound. The second class (type 2) contains those which include resources and 
are invariant-controlled in the sense of [BP96]. The last class (type 3) contains 
the minimal siphons including resource places but not invariant-controlled. 

We associate, with each siphon 5 of type 3, a local control place C s with: 

Cs' = 'Out(5), 'Cs = Out(5)' 

Vp E Out(5), '1t E 'p, Vt' E p' : W(C8, t) = W(t', Cs) = g(p) 

One can easily avoid self-loops introduced by the flow relation restricted to Cs, 
since this operation preserves the invariant and thus the future control. Adding 
place C 8 has created a new flow: 

f(Cs) = Cs + L g(P).p 
PEOut{S) 

Let zCs = gs - f(C8). For siphon 5 to be controlled, we must have: 

tzcs' Mo > "zcs(p)·(max-1) ~ p' 
pES 

New control places behave like resources, i.e. they satisfy the resource preser­
vation condition of definition 14.(v). Hence the net with these new control places 
is a WFRS. 

Let us now consider the simple example in figure 2 without the grey part 
(place C). The initial marking is parameterized by Mo(i), Mo(T1) and MO(T2). 
The initial marking is Mo = Mo(i).i + Mo(rl).rl + MO(T2).r2. Our example 
presents one minimal siphon of each of the 3 types: 

5, = {i,p1,p2,p3,p4,p5,p6,o} (type 1) 
52 = {T2,p2,p3,p5} (type 2) 
53 = {T1,p2,p3,p4,p5,p6} (type 3) 
Siphons 5, and 52 are the support of positive flows. 5, is controlled as soon 

as Mo(i) > 0, 52 is controlled for Mo(r2) > O. 
We now consider siphon 5 of type 3 for which the control is not guaranteed. 

We use the same notations for flows associated with places and for the calculus 
of the cs-property as in the proof of lemma 1. For 53 in our example: 

9S, = f(T1) 
= T1 + 2.p1 + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6 
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Qut(S3) = {pI} 
hs, = f(Pl) 

" 

Fig. 2. A Free Choice Circuit-Free WFRS. 

= i + pI + p2 + p3 + p4 + p5 + p6 + 0 

ASs = 2 
zs, = rl + 2.pl + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6 

-2.i - 2.pl - 2.p2 - 2.p3 - 2.p4 - 2.p5 - 2.p6 - 2.0 
= r1 - 2.i + 2.p2 + p3 + 3.p4 + p5 + p6 - 2.0 

Thus, S3 is controlled as soon as Mo(rl) - 2.Mo(i) > 1. We conclude, using 
theorem 2, that this net is structurally sound for any initial marking Mo = 
Mo(i).i + Mo(rl).rl + Mo(r2).r2 such that: 

Mo(i) > 0, Mo(r2) > 0, Mo(rl) > 2.Mo(i) + 1 

Hence, for example if Mo(rl) = 7, Mo(r2) = 1 then Mo(i) :s 2, i.e. at most 
2 cases can be simultaneously processed. 

We now want to enhance the performances of the example of figure 2. S3 is the 
only siphon of type 3. Thus, we will control it more locally. Since Qut(S3) = {pI}, 
the associated local control place C (see figure 2) satisfies: C· = {tl},·C = {t2}, 
W(C, tI) = W(t2, C) = 2. We have: ftC) = C + 2.p1. Then: 

Zc = 9S, - ftC) 
= r1 + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6 - C 
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Siphon 53 is controlled for any marking satisfying Mo(rl) - Mo(C) > 1. 
For example, if Mo(rl) = 7, Mo(r2) = 1, we must have Mo(C) $ 5. The 

introduction of place C adds only one siphon 54 = {C,pl}, which is of type 2, and 
thus controlled when Mo (C) > 1. The new WFRS is structurally sound for the 
initial marking we have exhibited. Without place C, we could only handle 2 cases 
at a time. Now, we can process 3 cases simultaneously. Thus the throughput, 
resources use and parallelism are better with a local control than with a global 
one. One could object that this new place can add siphons of type 3. If there 
are new uncontrolled siphons, they can be handled in the same manner, either 
locally or globally. It was proved in [Bar97] that this iterative process necessarily 
stops: we eventually reach a step where the role of the control place to be added 
can be played by an already existing one. 

7 Conclusion 

Many researchers have investigated properties related to the soundness property. 
In this work, we have shown that, for an important subclass of WF-nets sharing 
resources, called WFRS, the soundness property can be structurally character­
ized. The technique presented has a great advantage compared to other ap­
proaches based on the computation of the reachability set. Indeed, if the initial 
marking, i.e. the number of cases involved and resources availability, is modi­
fied, the soundness checking requires only to compute the initial markings of the 
control places. 

We are currently applying our method in the workflow of an hospital ([Car97]) 
in order to enhance the performances of an operating theatre block by performing 
reengineering. This can be achieved by introducing a balance between specialisa­
tion and generalisation or between centralisation and decentralisation of resource 
classes (human and material) of the system. 
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Abstract 
A semantics for workflow processes is proposed, based on tasks that 

have a duration and may be executed concurrently. The semantics sup­
ports operators that can be used to compose processes from simpler ones. 
An important operator is refinement, replacing a task by a process. By 
abstracting from certain tasks, a related notion allows verifications based 
upon step by step reduction of the process. The approach is illustrated 
by means of an example Petri net model. 

Keywords: Workflow, Concurrency, Validation, Verification. 

1 Introduction 

Workflow management is an important new development in the computerized 
support of human work. As such, it is an emerging market with scores of com­
mercially available products, not to mention research prototypes at universities. 
A workflow management system (WFMS) focuses on cases flowing through the 
organization, while tasks are executed for them, needing resources. 

A workflow management system needs models that describe the cases, tasks 
and resources) and the way they interact. This interaction is modeled by stages 
or states that cases may be in. The stage of a case determines the possible 
tasks that can be executed. After executing such a task, the case moves to a 
new stage. Each task has a set of resources required for its execution. The 
WFMS elicits the proper tasks at the proper stage of a case and keeps track of 
its progress. See [10J for an overview of workflow terminology. 
In this paper we limit ourselves to the process aspect: determining which tasks or 
actions can be executed in which stage of a given case. This aspect of workflow 
can be aptly described by Petri Nets [7], [IJ. 

In Figure 1, such a net is shown, modeling the process of travel arrangement. A 
travel request initially enters the process and three parallel activities are started. 
A budget check is performed and the hotel and travel requirements are studied. 
If necessary, hotel and travel information is obtained. After obtaining enough 
information and receiving a budget approval, travel and hotel accommodation 
is booked, the travel documents and budget approval are assembled and sent to 
the client. 
Models such as the one in Figure 1 can be understood with a little training 
and are formal, which means they represent precisely defined mathematical 
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Figure 1: A workflow process model: travel department 

objects. This allows rigorous verification of a model, e.g. by model checking. 
One states desired properties for the workflow process and checks whether the 
model satisfies them. 

Related to modeling is the comparison of different model proposals for the same 
problem. All models may satisfy the stated requirements, however one would 
like to see whether and how they differ, in order to choose the most appropriate 
one. 
A third issue addresses the maintenance of workflow processes. One must be 
able to modify a process on an ad-hoc basis (e.g. due to temporary absence of 
a resource) or permanently. Many workflow processes have an inherent protocol 
with some external party. In Figure 1 there will be a client wishing his trip 
to be arranged, who starts the process and receives the final trip documents. 
In between, the client must be prepared to answer requests from the get info 
actions, giving additional information. The client, however, is unaware of the 
execution of other (internal) actions. Often a modification may not affect the 
protocols with certain external parties. After abstracting from internal actions 
the old and new nets must be equivalent. This problem has been addressed in 
[2] and [9]. 
The last two issues have something in common. One is about (in)equality of 
processes in all respects, and the other about equivalence to a certain extent. 
This equality and equivalence is the subject of this paper. We define a semantics 
for processes, making it possible to conclude whether different nets model the 
same system. A related notion deals with equivalence. This last notion can 
speedup model checking, by checking a reduced model instead of the original 
one. The reduced model is obtained after abstracting from actions that the 
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requirement is not addressing and applying certain reduction rules that allow 
e.g. to remove nodes and arcs in the net. 
In the remainder of the paper, we first define a workflow process as a class of 
equivalent nets. This equivalence class is the semantics of a given net model. 
We then define some operators for workflow nets, allowing the construction of 
workflow nets by composition and refinement. Replacing the composing nets 
by equivalent ones in a construction will result in net equivalent to the original 
one. This means that the operators have a definition for workflow processes, as 
intended. We show how the example process modeled by Figure 1 can be con­
structed from simple actions alone. We finally introduce a related equivalence 
notion that allows one to abstract from certain actions and give an example 
reduction. 

2 Semantics 

A workflow process - either modeled by a net or otherwise - is based on actions. 
A process can be represented by a graph where the nodes are states and the (di­
rected) edges denote state changes. The graphs representing workflow processes 
will be called workflow graphs. To each state correspond a bag (or multiset) 
of actions that are busy executing and a set of actions that are enabled. 1 In 
addition, there are two special states: the initial and terminal state. In the 
initial and terminal state no actions are busy; in the terminal state no actions 
are enabled. 
A process can move from state to state in various ways. An enabled action can 
start. The started action is added to the busy part of the state. The started 
action and other enabled actions may then become disabled. Starting an action 
does not enable new actions. 
A busy action can be removed from the busy part of the state in three ways. It 
may commit, whereby new actions may become enabled. It may also rollback, 
whereby it may become enabled again, together with other actions that became 
disabled when starting it. Finally it may abort, disappearing from the state 
without further enabling or re-enabling any actions. Only rollback actions allow 
to reach the initial state. 
Two workflow graphs are said to be bisimilar if there exists a bisimulation 
between their nodes. A bisimulation is a relation between the nodes of graphs 
such that if nodes, say, rand s are related, 

i) r is initial iff s is initial, 

ii) r is terminal iff s is terminal, 

iii) rand s have the same bag of busy actions, 

iv) to any state s' reachable from s by start, commit, rollback or abort cor­
responds a related state rl reachable from r in the same way, 

lThe set of enabled actions is in fact redundant. 
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v) to any state r' reachable from r by start, commit, rollback or abort cor­
responds a related state s' reachable from s in the same way. 

Bisimilar workflow graphs are equivalent: there is no way to tell the processes 
apart. Workflow processes are defined as the equivalence classes of workflow 
graphs modulo bisimilarity. Notions about workflow processes are defined for 
graphs and must be proved to be preserved modulo bisimilarity, i.e. if the notion 
holds for a given graph, it must also hold for a graph bisimilar to it. One such 
notion is soundness. A workflow graph is sound iff every state reachable from 
the initial state can reach the terminal state in the same way. If two graphs are 
bisimilar and one is sound, the other is sound too. So soundness is a property 
of processes. 
A process is modeled by a labeled Petri net like in Figure 1. The net must 
have special initial and terminal places and labeled transitions. In most cases 
there is a single initial and another single terminal place. Every transition label 
corresponds to an action in the workflow system. We describe how a net defines 
a graph, and thus models a process. 
A state of the net is a bag (multiset) of both places and transitions. Given 
a state, every node (place or transition) has a finite nonnegative weight. The 
initial state of the process corresponds to the state where the initial places have 
weight one and the other nodes weight zero. The terminal state corresponds to 
the state where the terminal places have weight one and the other nodes weight 
zero. 
Given a state, the bag of busy actions is obtained by summation of the labels of 
the transitions in the state. An action is enabled iff a transition with that label 
has all its input places marked. Starting an enabled action results in the state 
with the enabled action added to the state and its input removed. Committing 
it removes the action and adds its output. Rollback is the inverse of start. 
Aborting a busy action removes it from the state without changing the marking 
of the other nodes. 
In Figure 2, the complete graph of a given workflow net is depicted, i.e. all 
the edges and nodes connected to the node representing the initial state. The 
start and rollback events are denoted by a solid line with two arrowheads. The 
commit event by a solid line with a single arrowhead The abort event with a 
dashed line. The depicted states are those that can be reached from the initial 
state by any kind of event. On the left four marked nets are depicted that 
correspond to states of the graph. For reasons of space, the other seventeen 
are not shown, but it is not hard to construct one from the information given. 
The correspondance between the nets and the node labels in the graph can be 
easily assessed. In e.g. the second net a b-labeled action is running and another 
b-labeled action is enabled; indeed, the corresponding node is labled with the 
pair (b, b). 
In Figure 3, bisimilar graphs are depicted. The graph on the left is the smallest 
one (i.e. with the least number of states) that is bisimilar to the graph on the 
right. It is easy to ascertain that no nodes with the same label in the left-hand 
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net can related by a bisimulation to one and the same node. For instance, 
there are two nodes labeled (0,0) in the graph, but one of therm is terminal, 
whereas the other is not. The left-hand graph corresponds to a net with weighted 
(multiple) arcs as indicated. So the two nets depict the same process. Indeed, 
one can be seen as the reduction of the other. Several relations between states 
are given in the figure. 

3 Composition of workflow processes 

In this section we define some operators that allow to construct workflow pro­
cesses. A construction involves an operator with one or more parameter graphs 
(or nets) giving a result graph (net). Bisimilarity is a congruence for these op­
erators, which means that replacing parameters in a construction by bisimilar 
ones gives a bisimilar result. This means that the operators can be defined on 
processes (equivalence classes modulo bisimilarity) and thus are true operators 
on a semanticallevel. 
The operators are sequencing, choice, iteration, free merge, synchronous com­
munication, asynchronous communication, relabeling and refinement. We give 
a net-based description; formal net-based and graph based definitions can be 
given (as in [3J and [8]). 
Sequencing, choice and iteration share the notion of place fusion. Fusing a set 
A of places to another set B of places means adding a new place for every pair 
(a, b) of places from A x B, adding an edge to the place corresponding to (a, b) 
iff there exists a similar edge to a or b and then removing the places in A and B 
and edges from or to them. If A and B are singleton sets, this is equivalent to 
ordinary fusion. If A or B is empty, it becomes removal of places and edges. In 
other cases a kind of '(weaving" occurs, as illustrated in Figure 4. In the figure, 
place identifiers are added to illustrate the correspondence between the original 
and the new places. 
The sequencing and choice operators have two parameter nets. Sequencing 
fuses the terminal places of one net to the initial places of the other, so that the 
second net can start iff the first one has terminated. Choice fuses the initial and 
terminal places of its two parameter nets so that either net can start, disabling 
the other. Iteration has three parameter nets; the terminal places of the first 
are fused with the initial and terminal places ofthe second and the initial places 
of the third, thus creating a loop. 

Th.e merge operator juxtaposes two nets. The initial and terminal places of 
the merge result are obtained by taking the union of the initial, respectively 
terminal places of the parameter nets. These disjoint nets can be connected 
by communication. Synchronous communication fuses transitions, so that the 
actions they represent are executed simultaneously. This involves relabeling the 
synchronized transitions. Asynchronous communication adds places, so that 
some actions must wait until others have occurred. Relabeling means applying 
a function to the transition labels. Refinement means substituting a net for the 
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A 

Figure 4: Place fusion 

transitions with a given label. Here, another place fusion occurs: the initial 
places of the net refining the transition are fused with the input places of that 
transition. Likewise, the output places of the transition are fused to the terminal 
places of the net refining it. 
In Figure 5, the operators defined above are illustrated. We see the nets A and 
B, the sequencing A.B (A followed by B), the choice A+B (A or B), their merge 
(AIIB)d~o with asynchronous communication c after d, their merge AIIB)dlo=! 
with synchronous communication of d and c to /, the iteration BA * B (B 
followed by iterated A, terminated by B) and the refinement A[b <- B] (A with 
action b refined to B. The relabeling operator does not occur in the figure. 
The synchronization operators must be used with great care; note that all nets 
in Figure 5 are sound, except for the two nets whose construction involves 
synchronization. Rather than formally defining the operators, we show the 
construction of our trip planning example, illustrated in Figure 6. 
By sequential composition of three actions, the first net is arrived at. Now the 
middle action do_work is refined into the parallel composition (merge) of admin­
istration, travel and hotel actions. These actions on their turn are refined into 
nets involving sequencing and iteration. Asynchronous communication causes 
the hotel and travel booking to wait for budget approval. The hotel and travel 
booking is performed synchronously (as they influence one another). A reduc­
tion modulo bisimilarity can be performed, giving the net in Figure l. 
The construction operators can be incorporated in an editor for workflow pro­
cesses. All operators except those involving communication preserve the sound­
ness property: the construction is sound if all the parameters are sound. 
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Figure 7: Prototype sound net 

4 Verification 

The primary reason for modeling workflow is the possibility to control and 
monitor the work by means of a WFMS. However, the existence of a formal 
model also allows for verification. As models become more complex, the need 
for verification will grow. 

There are various properties that need verification. First of ali, the modeled 
process must be sound. Next, the process may be a redefinition of an already 
existing process. In that case, one would like the interface to an external party 
of the old and new process to be the same. Generally, one would like to compare 
different models of different processes and see how they behave w.r.t. certain 
important actions. 

One can relabel the net, so that the unimportant actions have a null label (are 
unlabeled) and use weak bisimilarity. This is an equivalence relation between 
graphs that abstracts from null actions. Two graphs are weakly bisimilariffthere 
exists a weak bisimulation between them. A weak bisimulation differs from an 
ordinary (or strong) bisimulation by the fact that one no longer observes null 
actions. So the correspondence between states is weakened as only the non-null 
busy actions must correspond. One also cannot observe the difference between 
directly starting an action and starting it after having started and committed 
some null actions. On the other hand, starting or committing a null action 
may correspond to not doing anything at all. Finally, the states that are only 
reachable from the initial state by aborting a null action do not need to be 
related by a weak bisimulation. 

In [8], an equivalence relation is defined for general labeled nets that amounts 
to weak bisimilarity when applied to workflow nets. Strong bisimilarity implies 
weak bisimilarity, so the fact that two nets are weakly bisimilar after relabeling 
with null labels is a property of their whole equivalence classes, i.e. the processes. 
The operators in the previous section are congruences for both weak and strong 
bisimilarity. 

Weak bisimilarity allows to reformulate the soundness property. A process being 
sound is equivalent to it being weakly bisimilar to the net in Figure 7 after 
relabeling all its actions to null. This makes sense, as a sound process from its 
initial state performs any number of actions before arriving in its final state. As 
all actions become null, it must correspond to the process modeled in Figure 7. 
Nets can be reduced modulo weak bisimilarity, e.g. by the reduction rules from [8]. 
Reduction yields a simpler net (less places, transitions and/or arcs) for which 
will be easier to verify whether it behaves as expected w.r.t. the important 
actions. 
We give an example for our travel department example, illustrated in Figure 8. 

- , 05 -



get 
buoget 

finish 

get 
buaget 

book 

Figure 8: An example reduction 

106 -



The requirement to verify, is that no trip can be booked without budget. The 
important actions for this requirement are getbudget and book. The top net in 
the figure shows the relabeling (or rather delabeling) result. The shaded place 
is redundant and can be removed. The shaded transitions are inert and can 
be removed after fusing their input and output places. The net thus reduced 
is shown below, where two more places are seen to be redundant. Transitions 
affecting initial and terminal places cannot be inert, so they are not removed. 
The stated requirement holds for the reduced net and thus also for the original 
one. 

5 Conclusion and further work 

The present paper proposes a semantics for workflow processes based on nOll­

atomic actions. Actions have a duration and can be started, committed, rolled 
back and aborted. This dramatically increases the number of states when com­
pared with atomic actions. However, when interfacing with a given workflow 
system, the above aspects of actions can become manifest. Most important, 
non-atomic actions allow refinement of processes and thus a hierarchical mod­
eling strategy. 

Labeled Petri (place-transition) nets are proposed as models for workflow pro­
cesses. Models are equivalent if they are (strongly) bisimilar. Operators are 
defined for composing processes. The refinement operator allows a hierarchical 
approach to workflow modeling. 

The increase in the number of states (due to actions being non-atomic), causes 
brute-force model checking verification to becomes less viable. Instead, a model 
can be verified locally, by examining small portions at a time, reducing it step by 
step. One can modify a workflow procedure and yet guarantee that it presents 
the same interface to its clients. 

In [4], a non-atomic approach to actions has been proposed too. The ST bisim­
ilarity defined there corresponds to ours in many respects. Markings comprise 
both transitions and places, and start and commit events are possible. There is 
also a notion corresponding to our abort event, which is essential for allowing re­
finement. The rollback possibility is new. Since actions are non-atomic and can 
be rolled back, the notions of weak bisimilarity [6] and branching bisimilarity 
[5] coincide. 

We believe that the proposed semantics and equivalence are promising enough to 
justify further work. One direction is the development of reduction algorithms. 
Another one is theoretical, e.g. to investigate the kind of operators on labeled 
nets that strong/weak bisimilarity is a congruence for. 
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Abstract. Workflow Management Systems[26] are networked computer 
systems which enable the specification, analysis, coordination, and en­
actment of organizational procedures. Although some of these workflow 
management systems (we abbreviate to workflow systems) have been suc­
cessful, many have failed to improve organizational processes. One reason 
for this failure is the dynamically changing nature of organizations and 
work which is not well supported by workflow systems. 
In a previous paper[9], the authors defined notions of dynamic change in 
workflow systems by utilizing Petri net models. Some types of workflow 
change are safe, non-disruptive, and can be performed anytime. Other 
changes disturb ongoing transactions, and cause problems if they are at­
tempted in a dynamic fashion. That previous paper also presented var­
ious definitions of dynamic change correctness. In this paper, we define 
the timed flow nets as a way to accommodate time issues into the design 
of workflow systems and the analysis of their structural changes. We also 
expand upon the issue of "safe" structural transformations which pre­
serve the soundedness[20] properties. This paper introduces another new 
Petri net based model, the timed hybrid flow net model, that is suitable 
'to address dynamic changes within workflow systems, their analysis. This 
model generalizes the notions of SCOC[9] and Extended SCOC[13]. 
This work is part of an ongoing research effort of the Collaboration Tech­
nology Research Group (CTRG) at the University of Colorado. Previ­
ous CTRG work introduced the many dimensions of workflow that can 
change, including process change, change of roles and actors, applica­
tion data change, organizational structure change, and change of social 
structures. 

1 Modeling Workflow Procedures 

We assume the reader to have some basic understanding of the Petri net mod­
els, their firing semantics and basic properties including boundedness, safeness, 
liveness, and reachability graphs (the reader is refereed to [17, 15] otherwise.) 

Many Petri-net based workfiow models have been introduced in the literature[7, 
8], but only few of them deal with time issues. Meeting commitments and dead­
lines has been identified for long as a key requirement in organization business 
models to achieve customer retention and expansion. Therefore, there is an ur­
gent need to accommodate the temporal behavior of workflow systems. This 
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situation has been acknowledged but merely addressed by the WFMC[26]. On 
the other hand, many efforts have and are being put in place to address the is­
sue in many other areas; including real time systems, communication protocols, 
process planning, work-force management systems etc ... 

In a previous work[9] (and similarly in [20],) workflow procedures are modeled 
by the so-called flow nets (workflow nets,) this modeling is carried out as fol­
lows: Activities that define the procedure are represented by transitions. Each 
transition has a label, a set of input places to mark the beginning of the modeled 
activity, and a set of output places to mark the end of the activity. The workflow 
procedure also specifies the order in which its activities ought to be carried out; 
activities may be mandatory or optional, they may be executed in sequence or 
in parallel. This partial ordering is modeled in the net by the so-called flow re­
lation. Each flow net has a single entry place to reflect the start of the modeled 
procedure and a single exit place to mark the end of the modeled procedure. 

Note 1. In the remainder of the paper, AN denotes a finite alphabet of activity 
names, J N denotes a finite alphabet of job names. T denotes the time domain 
each element of which is a non negative rational number, and I denotes the time 
interval domain. A time interval may be unbounded (e.g. [2, ooD. [; <;:; (AN x T) 
denotes the alphabet of event labe/s. For a finite set A, A MS denotes the class of 
multi-sets over A. 

Definition 2. A flow net, flow = (pSet, tSet, f Rei, lab, Sin, Sou,) consists of: 

- disjoint, finite and non empty sets pSet of places and tSet of transitions. 
- the flow relation f Rei <;:; (pSet x tSet) U (tSet x pSet) which is such that: 

dom(f Rei) U ran(f Rei) = pSet U tSet 
Vt E tSet, 3p,p' E PSet, [(t,p) E fRel & (p',t) E fRel] 

- the labelling function lab: tSet --* AN. 

- Sin E pSet is the entry place, and Sout E pSet is the exit place, are such that: 

VI E tSet, [(t,Sin) ¢ fRel& (sout,t) ¢ fRel] 

Moreover, F Nets denotes the class of all flow nets. 

Note 3. For x E pSet U tSet, x is called an element of flow. The set of ele­
ments of flow is denoted Elem(flow). The output set of an element x, denoted 
outflow(x), is the set {y I (x, y) E f Rei}. The input set of x, denoted inp flow (x), 
is the set {y I (y,x) E fRel}. These notions are extended to sets in the usual 
manner. The subscript flow will be dropped whenever it is clear from the con­
text. The interface of flow, denoted interface(Flow), is the set {Sin, Sou.}. 
Interior (flow) denotes the set of interior places (i.e. non bordering) of flow. 

Since flow nets are Petri nets, some notions concerning Petri Nets carryover to 
flow nets. In particular, We use 1 (resp. I to denote the unique marking which 
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consists of a single token residing in the entry (resp. the exit) of a flow net. 
Mark(flO'UJ) denotes the class of all markings of flO'UJ. 
For m, m E M ark(flO'UJ) and w E tSet', we write m [flO'UJ) m' to state that w 
is a firing sequence of flO'UJ leading from m to m'. Reach(flow,m) denotes the 
class of all marking of flow reachable from m. mflO'UJ = (flow; m) is called a 
marked flow net. 

In the remainder of the paper, we assume that flow nets do not use the symbol 
teuc , be it as place, transition or label. flO'UJ' denotes the marked Petri Net 
obtained from flO'UJ, by adding a transition t ez" labeled teuc connecting the 
exit place to the entry place and a single token in the entry place. 

In [20], Van der Aalst introduces workflow nets and the notion of sound workflow 
nets. A flow net relaxes the strong connectivity property that a workflow net has 
to met due to our model of delayed change (to be explained later). Furthermore, 
the author shows that the soundedness property id decidable by linking it to the 
boundedness and liveness properties. 

Definition 4 .• flow is sound iff the following conditions hold: 

l. flO'UJ' is strongly connected. 
2. 11m E Reach(flO'UJ, 1), I E Reach(flow,m). 
3. mflO'UJ = (flow; 1) has no dead transitions. 

Adding time to flow nets 

Different ways of accommodating time in Petri net models have been proposed 
by many researchers. These different proposals were influenced by the specific 
application domains, however there seem to be a commonly shared concern not 
to modify the basic behavior of the untimed model (parallelism and non deter­
minism.) Three main-streams can be identified: Timing is associated with places 
[18], Timing is associated with transitions [16, 14, 27, 10, 22, 5J and Stochastic 
Petri Nets [2, 3J 
Without claiming the superiority of anyone with respect to others, we adopt 
the timed transition proposal as defined in [14, 22, 5J. Our choice is pragmatic 
and is driven by our concern to use a model which is in the middle of the com­
plexity spectrum. It is well known that the modeling power of Timed Place Petri 
nets is equivalent to the limited modeling power of Timed Transition Petri nets 
with fixed durations. Although the analysis of Stochastic Petri Nets is possible 
under certain somewhat severe conditions, the behavior of these nets is better 
analyzed under simulation. This does not mean that Timed Transition Petri nets 
do not resist any kind of analysis. On the contrary, analysis is possible only if 
boundedness (in general undecidable, but always carries over from the under­
lying untimed net) holds [6J and this is the best result known to date (at least 
to us.) Luckily, boundedness is in general a well accepted requirement for work­
flow models. In our model, each transition will be associated with a firing delay 
interval. Formally, 
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Definition 5. A timed flow net, is a system tflaw =< flaw, fdelay > which 
consists of: 

- flaw E F Nets, the underlying flow of tflaw. 
- fdelay : tSet --+ I, the firing delay function. 

Moreover, T F Nets denotes the class of all timed flow nets. 

Note 6. For t E tSet and [x, yJ = fdelay(t), x is the early firing time oft and is 
denoted ef _time (t), and y is the latest firing time of t and is denoted If _time (t). 

Example 1. Consider an office procedure for order processing within a typical 
electronics company. When a customer requests by mail, or in person, an elec­
tronic part, this is the beginning of a job. A form is filled out by the order entry 
activity (abbreviated to oe) ; the job is sent to credit check Check (abbreviated 
to cc ) , and then to inventory check (abbreviated to ic). After the evaluation 
(abbreviated to ev), the order is approved (abbreviated ap) and then sent to 
shipping (abbreviated sh) and billing (abbreviated to bi) and then to archiving 
(abbreviated to ar.) The shipping department will actually cause the part to be 
sent to the customer; the billing department will see that the customer is sent 
a bill, and that it is paid. Fig.l. depicts two versions of this procedure along, 
namely aldN et and newN et. The firing delays are expressed in minutes; for in· 
stance the firing delay of oe is between 2mn and 5mn. Whenever the activity 
labeling is injective, we will identify an activity with its label. The entry place 
of oldN et is Po and its exit place is P6. 

The question as to how to deal with marking extension has also given rise to 
at least two proposals. The original one [14, 6J extends the (untimed) marking 
with a set of dynamic firing intervals. The "new" current [22, 5, 10, 11] tends 
to lean toward the Coloured Petri net current[12J; a timed token contains time 
information (a time·stamp and/or a time interval) which in general is related to 
the creation of the token. In our model, a timed token is used to keep track of 
the creation and the availability time of a token. The creation time of a token 
is equal to the enabling time (see below for definition) of the activity which has 
produced the token. It does not have any bearing on the firing semantics, but it 
will become handy to carry out dynamic changes. 

Definition 7. Let tflaw E TFNets. A timed token over tflaw is a system tk, 
which consists of 

- loe E pSet, the location of tk. 
- c_time E T, the creation time-stamp of tk. 
- av_time E T, the availability time-stamp of tk. 

Moreover, Tks (tflaw) denotes the class of all tokens over tflaw. 

Definition8. Let tflaw E TFNets . 
• A marking of tflaw is a distribution m S;; Tks (tflaw)Ms' 
• Mark(tflaw) denotes the class of all markings of tflaw 
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Note 9. if m consists of a single token tk = (Sin, 0, 0), then m is referred to 
as the initial marking of m and is denoted It/low' Likewise, if m consists of 
a single token tk = (sout,a,r), then m is referred to as a terminal marking. 
It/low denotes the class of all terminal markings. The subscript will be dropped 
whenever it is clear from the context. 

We use a two-phase firing semantics: 

wait phase: This phase begins the moment the activity is enabled and cannot go 
beyond the limits prescribed by the firing delay. During this phase, either the 
activity is disabled by the initiation of another (confiicting) activity or it must 
fire (Strong Time Semantics or STS [IOJ.) However, the model can be extended 
to accommodate the Weak Time Semantics or WTS which relaxes the "must 
" into a "may. Traditionally, the WTS has being used in the modeling of soft 
real-time systemswith soft deadlines whereas the STS has been applied for hard 
real-time systemsin which deadlines are hard target to meet. 

The wait phase may be necessary in some situations; for instance when the ac­
tivity has to wait for some external events to happen (e.g. triggers), in this case 
a timeout may be set. Consider the case of a workfiow specification which reads 
as " If the customer form arrives within 5 days, then activity A is executed, oth­
erwise activity B" . This situation can be easily modeled by using two conflicting 
transitions labeled A and B with the firing delay of A being [0,5J and the firing 
delay of B being [5,5J. 

firing phase: The activity fires by consuming one token from each of the input 
places and producing a new token in each output place. For the sake of simplicity, 
we assume that activity are instantaneous, however the model can be extended 
to include activities with fixed or variable duration. 

The questions as to which tokens are selected for consumption, how to deal with 
multiple enabledness and conflict resolution are addressed within the context of 
the so-called firing policy. We choose (for the sake of simplicity) a policy based 
on eager firing with infinite server , enabling memory and race-based conflict 
resolution. The next definition formalizes the behavior of timed flow nets. 

Definition 10. Let tflow E TFNets and let m E Mark(tflow) 

o An event over tflow, is a system e = (tkino t, r), such that: 

t E tSet & tkin ~ Tks (tflow) & dom(loc) = inp(t) 
loc is injective & r E (fdelay(t) + en_time (e)) 

where en.time (e), called the enabling time e, denotes the the maximum avail­
ability time-stamp associated with the tokens of tkin . 
o Evts (tflow) denotes the class of all events over tflow. 

o e is enabled under m, written m [[e), iff bin ~ m. 

o e is time enabled under m, written m [e), iff the following conditions hold: 

m [[e) & 'Ie' E Evts (tflow) ,m [[e') =? en time (e) :s:: en.time (e') 
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In this case, the enabling of e under m leads to the marking m', written m [e) m', 
where 

m' = (m - tkin ) U {(sout, en_time (e), r)lsout E out(t)} 

• t~c;; Mark(tflaw) x Evts (tflawl' x Mark(tflaw) denotes the timed firing 
sequence relation associated with tflaw and is given by: 

(m, w, m') Et~ iff m = m' & w = A or the following condition is true: 
3m" E Mark(tflaw), 3e E Euts (tflaw), 

[w = w'. e& (m,w',m") Et~ &m" [[elm'] 

Notell. We will write m[w)",ow m' instead of (m,w,m') E~. tflaw will be 
dropped whenever it is clear from the context. w is called a (m, m')-timed firing 
sequence and the sequence w', obtained from w by dropping the information 
about consumed tokens, is called a (m, m')-firing sequence. Fire (tflow, m, m') 
will be used to denote the language of all (m, m') firing sequences. 

These notions are lifted to the level of activity names. Thus, the sequence 
w" = lab(w') is called a (m, m')-labeled firing sequence. In particular, if m = 1 
and m' E I, then w" is called a schedule, the availability time-stamp of the ter­
minal marking is called the completion time of sch and is denoted cpUime(sch). 
LFire(tflaw, m, m') denotes the language of all (m, m')-labeled firing sequences, 
Sched(tflow) denotes the language of all schedules and cpUime(tflaw) denotes 
the set of completion times of tflaw. 

Example 2. Consider the timed flow net oldN et introduced in Example 1 and 
the initial marking mo = 1 = {tk, = (Po,O,O)}. 
Under mo, the event e, = (mo, oe, 3) is enabled and mo [e,) m, where m, = 
{tk2 = (q,,0,3),tk3 = (q2,0,3)). 
Under m" the events e2 = (tk2, cc, 7) and e3 = (tk3, ic, 5) are enabled, both have 
the same enabling time 3, so they can fire in any order. Thus, m, [e2) m2 [e3) m3 
where ffi2 = {tk3, tk, = (q3, 3, 7)} and m3 = {tk" tks = (Q3, 3, 5)}. 
Under m3, the event e, = (tk" tks, ev, 10) is enabled, its enabling time is 7, and 
m3 [e,)ms where ms = {tk6 = (P1, 7,1O)}. 
Under ms, the event es = (tk., ap, 13) is enabled and ms res) m6 where m. = 
{tk7 = (P3, 10, 13), tk, = (P2, 10, 13)}. 
Then, we could have m. [e.) m7 [e7) m, [e,) m9, where e. = (tk7, sh, 15), m7 = 
{tk"tk9 = (Ps,13,15)}, e7 = (tk8,bi,16), m, = {tk9,tklO = (P,,13,16)}, e8 = 
(tk9,tklO,ar,20) and mg = {tku = (P.,16,20)} 
The sequence sch = (oe, 3) (cc, 7){ic, 5){ev, 10) (ap, 13){sh, 15){bi, 16){ar, 20) is a 
schedule, its completion time is 20mn. The completion time of oldN et is [1O,34J 
it is the same as the completion time of newN et (we have readjusted the firing 
delays of bi in newNet.) 

Definition 12. Let tflaw, and tflaw2 be timed flow nets. 
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• tflow, is a time approximation of tflow2, written tflow, I;;T tflow2, iff 
cpl time(tflow,) c;; cpUime(tflow2)' 

• tflow, is a schedule approximation of tflow2, written tflow, I;;s tflow2, 
iff Sched(tflow,J C;; Sched(tflaw2). 

The execution proceeds by processing what is commonly known as a job. Each 
job has a name which uniquely identifies the job at any given time, a flow which 
identifies the workflow procedure which is operating upon the job. It also has a 
history of the event firings which have so-far taken place as part of the execution 
of the job. Actually, we keep track of the labels and times of the event firings 
for dynamic change analysis. In the sequel, we assume that jobs do not interfere 
with each other. This assumption is carried out using the so-called copy rule. A 
formal definition will be given in the next section. 

Like in the case of (untimed) flow nets, the notion of soundedness carryover to 
timed flow nets and can be argued to be desirable for timed flow nets. Unfortu­
nately, the nice decidability properties that flow nets enjoy break down for the 
timed flow nets. Indeed, these properties for the most part are linked to reach­
ability analysis, and as we have previously mentioned timed flow nets resist in 
general any kind of reachability analysis. 

Furthermore, the linkage to boundedness and liveness properties is broken (in 
fact, boundness and liveness are sufficient conditions but not necessary.) To see 
that, consider the timed flow net, tflow" depicted in Fig.2. Clearly, tflow, is 
not sound, there is a schedule whose underlying firing sequence is t,t2t3t4t5t6 
which leads to the marking under which both the exit place Sout and the place 
P8 are both marked. On the other hand, tflawi is live and I-safe. To see the 
safeness, note that the only place which may not be I-safe is P8 (consider the 
untimed structure). However, note that the first iteration of tflawi will result 
in both Sin and P8 marked, and that at the end of the nth iteration, one of the 
following things may occur: 

1. if P8 is not initially marked, then it will be marked with I token. 
2. if P8 is initially marked, then the token is either flushed (t8t9) or kept (t8tlO 

or t,t2t3t4t7t5t6). 

The soundedness property do not carryover to timed flow nets from their un­
derlying (untimed) flow nets. To see that consider the timed flow net tflow2 
depicted in Fig.2. Clearly, the underlying (untimed) flow net is sound, but the 
timed version is not. After firing t" (P"P2) becomes a sort of home marking 
and (P4,P5) is not reachable. 

2 Modeling Structural Change within Workflow Systems 

We adapt the model of change from [9J to accommodate the temporal nature of 
the flow net and to analyze the change correctness on a job basis. Like in the 
previous work, we shall focus on a special type of workflow procedure changej 
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namely the structural change. Structural entails that the change is made to the 
structure of the procedure (as opposed to the data-value). A change is either 
dynamic or static with respect to a job; dynamic means that the change is 
applied while the job is in progress, otherwise if the change is applied before the 
job starts executing, then the change is static. Another classification could be 
made based on the scope of the change; if the change is applicable to a specific 
set of jobs (i.e. execution instances,) then the change is referred to as an instance 
change, otherwise it is said to be a class change. Examples of instance changes 
include exceptions. Re-engineering plans are in general considered as instance 
changes before the cut-off or roll-out date is reached and class changes onward. 
Critical changes such as fixing hard bugs or related to mission critical systems 
are considered as class changes. 
In a nutshell, our model of structural change is driven by a well-defined discipline 
which makes its analysis more manageable. This discipline is articulated around 
the selection of the change regions and is based upon the principle of change 
locality. 

The old change region, denoted aldRegian, contains all the activities of the 
old timed flow net, referred to herein as the old net and denoted aldN et, which 
are involved in the change (e.g. deleted, reorganized etc ... ). This means that 
when selecting the old region, places connected to these activities as well as the 
connecting edges are made part of the old region. The new change region, denoted 
newRegian, embodies the alterations that the old region undergoes as a result of 
the change. In order to make the analysis of the change more manageable, The 
scope of the change should be as much as possible limited to the change regions; 
this requirement is referred to as the the principle of change locality. In other 
words, the selection of the old change region minimizes its interaction with its 
context. This interaction is structurally maintained solely by the interface of the 
old region, and is reduced to tokens exchange; the context supplies tokens to the 
old region for consumption (through its input place) and consumes the tokens 
produced by the old change region in its output place. The old change region is 
said to be a closed subnet of the old net, written clased(aldRegian, aldN et). 
After the change regions are selected properly, the replacement may take place, 
resulting in a new flow, referred to as the new net and denoted newNet. The 
new net is obtained from the old net by: 

1. plugging the new change region into the old net by using the interface of the 
new change region as sockets. 

2. removing all the elements of the old change region from the resulting flow 
net. 

Note 13. We will write newNet = aldNet[aldRegian --+ newRegion] to say 
that the timed flow net, newN et, is obtained from the timed flow net, aldN et, 
by applying the replacement mechanism as previously outlined. The pair 6 = 
(aldRegian, newRegion) will be referred to as a replacement pair and the tuple 
repl = (oldNet, 6, newNet) will be referred to as a replacement step. 
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Example 3. In the case or our order processing procedure, it has been decided to 
initiate sh and bi is sequence, instead of concurrently as it was previously done. 
Moreover, this change should not affect the completion times previously reached. 
The general consensus was to speed up bi by acquiring high end systems. The 
old and new change regions as well as the old and the new nets are depicted in 
Fig.I. The reader is asked to ignore the jumpers and their connectors for now; 
their meaning will be clear shortly. 

The introduction of the replacement mechanism leads to the natural question 
as to whether timed flow nets properties are preserved. In the case of (untimed) 
flow nets, the question has been addressed in [20J for untimed workflow nets. 
We extend these results and we will enumerate some transformations which are 
"safe" with respect to soundedness. But first, we need to define the notion of 
k-embedding. Informally, oldRegian is k-embedded in oldNet (1 ~ k), written 
embed(k, oldRegian, oldN et), iff no more than k simultaneous "executions" of 
oldRegian are active at any given point. Note here that in this case the entry 
place of oldRegian is k-safe, but the converse does not generally hold. 

Proposition 14. Let repl = (oldNet, (oldRegian,newRegian), newN et) be a 
replacement step such that embed(I, oldRegion, oldN et) 

1. if oldNet is sound, then oldRegian is sound. 
2. if newRegian !;;T oldRegian, then the following properties hold: 

(a) embed(I, newRegian, newN et) 
(b) new Net !;;T oldNet. 
(c) if oldNet is sound and newRegion is sound, then newNet is sound. 

Proof. In what follows we will give a sketch of the proof. 

Partl oldRegian' is strongly connected and (oldRegian;1) does not have dead 
transition, otherwise oldN et would not be sound. Note here that there exists 
a marking m E Reach( oldN et, 1) such that oldRegian,sin is marked under m 
(otherwise every transition of oldRegian would be dead in (oldN et; 1)). Assume 
that oldRegian does not enjoy the clean the termination property, then there 
exists a marking m' E Reach( oldRegian, 1) such that oldRegian.sout and some 
p E oldRegian.pSet are marked. In order to get clean termination in oldN et, 
another token has to enter oldRegian to flush out the token in p, which meanS 
that 2 executions of oldRegian would be simultaneously in progress. Clearly, this 
violates the I-embedding property. 

Part2-a Without loss of generality, assume that the completion times of oldRegian 
and newRegian are time intervals. Let newN et' be the timed flow net ob­
tained from newN et by replacing newRegian with an activity tnew such that 
fdelay(t new ) = cpUime(newRegian). Let oldNet' be the timed flow net ob­
tained from oldN et by replacing oldRegian with an activity told such that 
fdelay(told) = cpUime(oldRegian). embed(I,newRegian,newNet) iff the dis­
tance between two consecutive firings of tnew is greater than If _time (tnew ) and 
embed(I, oldRegian, oldN et) iff the distance between two consecutive firings of 
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told is greater than Ii _time (told). Since the latter holds and If _time (tn,w) ~ 
Ii_time (told), the former holds too. 

Part 2.b Using an induction on the length of the firing sequence in newN et and 
a lengthy case analysis, show that the following property, which in essence states 
that the newN et is externally marking weakly equivalent to oldN et, holds 

(11m E Reach(newNet, 1)) 
(3m' E Reach(oldNet, 1)) 

[\Itk (tk E m & loc(tk) <Ie Interiar (oldRegion)J =? 

[3tk' (tk' Em' & loc(tk) = loc(tk') & av_time(tk) = av_time(tk'))J 

Let w be a firing sequence of newN et which leads from 1 to a terminal marking 
of newN et. Without loss of generality, assume that that w contains at least 
1 segment belonging to newRegion (otherwise, w would be a valid sequence 
of oldN et and the case is closed,) all these execution segments in new Region 
are ordered (consequence of I-embedding). Each segment can be replaced by a 
segment in oldRegion with exactly the same completion time, and the resulting 
sequence is valid in oldN et due to the external marking weak equivalence. 

Part2.c In this case, the soundedness of newN et is equivalent to the soundedness 
of newN et'. Since the soundedness of oldN et' (which is given by the soundedness 
of oldN et) implies the soundedness of newN et', the result follows immediately. 

Example 4. Note that for the case depicted in Fig.l, these results may be applied. 
Indeed, we have both oldRegion ~T newRegion and new Region ~T oldRegion; 
their completion· time is [4, 15J. Thus, the soundedness property is preserved. 

Next, we enumerate some transformations which preserve the soundedness prop­
erty. These transformations, except TO, have been introduced and investigated 
by Van der Aalst in [20J for (untimed) workflow nets. Due to the space limitation, 
the figures will be omitted. The idea is to make sure that the time approximation 
property holds. 

TO optimization The firing delay window of an activity t is shrinked. 

Tla division: An activity t is divided into two consecutive activities tl and t2 
such that: 

idelay(tll U idealy(t2) ~ idealy(t). 

Tlb aggregation: The reverse of Tla with 

idelay(t) <; idelay(tl) U idealy(t2). 

T2a specialization: An activity t is replaced by two conditional activities h and 
t2 such that 

idelay(tll <; idealy(t) & idealy(t2) ~ idealy(t). 

T2b generalization: The reverse of T2b with 

idelay(t) ~ idelay(tl) & idelay(t) ~ idealy(t2). 
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T3a : An activity t is replaced by two parallel activities tl t2 such that 

[max(el Jime (til ,el Jime (t2)), max(lf-time (til ,II _time (t2))) ~ Idealy(t). 

T3b: The reverse of T3b with 

Idealy(t) ~ [max(el _time (til ,el _time (t2)), max(ll _time (tl) ,II _time (t2))) 

T4a : An activity tl is replaced by an iteration of t2 and such that either both 
it and t2 are immediate or 

II Jime (til = II Jime (t 2) = DC & el Jime (t2) :s; el .time (t l ) . 

T4b: The reverse of T3b with 

Idealy(t,) ~ Idealy(t2). 

Other rules such as sequentialization, parallelization and swapping can be de­
rived from the previous ones. 

Proposition 15. The transformations above persevere soundedness. 

3 Modeling Dynamic Changes within Workflow Systems 

The application of a change to an in-progress procedure raises the issue of the 
whereabouts of a job's work units after the change takes place. In [9) the authors 
have considered the following approaches to deal with this issue: 

Flush-Change-Restart: cancel the job (Flush), make the change (Change) and 
resubmit the job to the new procedure for processing (Restart.) This kind of 
change, generally "safe" and static in nature, may be recommended to fix hard 
bugs in workflow systems or in mission critical systems. In some cases, it may 
not be cost effective Uust to mention one of its down-sides); hours of work and 
almost finished products are lost. 

Wait-Change: wait until the job reaches a safe state or is finished (Wait) and 
make the change (Change.) This solution may not be feasible; it may take some 
time before the system reaches the sought state. It is also inadequate to deal 
with punctual changes such as exceptions handling. 

Change- Transler: Work units associated with the job are transfered to the new 
procedure. The transfer may affect all or some of the wok units. The work units 
not affected by the transfer continue their progression in the old net as if the 
change never took place. The transfer can also be optimized to ensure "safeness". 
It is based upon the principle of change locality; the units of work evolving 
outside of the old change region remain unchanged in the new procedure. The 
work units bordering the old change region are moved to the interface of the new 
region. Some of the work units progressing inside of the old change region are 
moved to the new change region, others terminate their progression in the old 
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change region and are moved to the new region when they reach the exit place. 
Additionally, the connection to the old change region's entry place is severed so 
as not to allow in any new work unit. In [9], the authors have introduced the 
Synthetic Cut-Over Change (SCaC) to reflect the situation where no work unit 
can be safely transfered from the old change region. Heuristics have also been 
devised to determine cases where SCOC is a safe solution. The work has been 
expanded in an in-progress work [13J through the Extended Synthetic Cut-Over 
Change (E-SCOC) which reflects the case where the token transfer is partial. 

Change-Jump: The Change-Transfer solution may unnecessarily delay a change. 
An improvement is to maintain the tokens of the old change region where they 
are and to set up jumpers which would allow these tokens to jump into the new 
change region. 

A jumper is a high level box whose in-lets (i.e. input places) in the old change 
region and whose out-lets (i.e. output places) are in the new change region. It 
also has a time expression which associates with each tuple of input timed tokens 
a tuple of output timed tokens. The idea here is to be able to readjust the avail­
ability time-stamps of the tokens to achieve time coherency in the new change 
region. This is crucial since the firing semantics is driven by the availability 
time-stamps of the tokens. 

The execution of the job resumes in a hybrid timed flow net where the old change 
region is linked, as long as it is active, to the new change region through jumpers, 
and to ensure connectivity, there is at least two jumpers linking the entry (exit) 
place of the old change region to the entry (exit) place of the new change region. 
The firing policy is modified to that these token jumps are triggered whenever 
possible. 

Example 5. Fig.!. depicts a possible configuration with 5 jumpers, denoted J i 
for i = O ... 4. their time expression, e" are defined as follows: 

eo := [PI = pd 
el := lP2 = P2J 
e2 := [P; = P2] 
e3 := [p~.av_time = max(p4.av_time,P5.avJime)J 
e4 := [p~ = P6] 

(1) 

This means that when J1 is used, the token in P3 is destroyed and the token 
in P2 is moved to p,. When J2 is used, the token in P5 is destroyed. When J3 
is used, the token with the minimal available time-stamp is destroyed and the 
other one is moved to p~. Finally, J, moves a token from P6 to p' 5. 

When considering the reverse configuration where the jumpers are reversed; that 
is the roles of the in-lets and the out-lets are reversed. The new time expressions 
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become: 
eo := [P, = p;] 
e, := [p, = P2 & P3 = P',] 

PS=P3' 1 e2 := 
P2.avjime = p;.c_time 
P5·av_time = P4' .c_time 1 

e3 := 
P4.av_time = p~.c_time + 1 

e4 := [P~ = P6] 

(2) 

This means that J, splits the token in p, in two. j, moves the token to P3 and 
creates a new one. The same holds for J3 with respect to p~. J4 is a token mover. 

Example 6. Let J ob, be a job which happens to be running on the old order 
processing procedure and assume that its state consists of two tokens tks = 
(P2, 10, 13) and tk. = (Ps, 13, 15). After the change is made, the jumper J, 
is used. tks is destroyed and tk. is moved to P3' The new marking is tk12 = 
(P3' 13, 15). 

Example 7. Assume that after an audit, the company finds out that the change 
decision was not such a "good idea" and decides to undo the change. Let Job, 
be a job running on the new order processing, with a state consisting of a tk,2 . 

After the change is undone, the jumper J2 is active and should be used. After 
the jump takes place, tk. and tk,3 = (P" 0,13) are created (0 is the default 
creation time-stamp). Except for the creation time-stamp of tk,3 , the marking 
in the old net is valid. This may be tolerable, because the creation time-stamp 
has no bearing on the firing semantics. However, this is problematic if another 
change takes place right before tk13 is used. A solution would be to mark the 
token as forbidden from jumping. 

In the remainder of this section, we introduce formally jumpers and timed hybrid 
flow nets. Due to space limitations, we do not formalize their firing semantics. 

Definition 16. Let tflowl, tflow, be disjoint timed flow nets. 
A (tflowl, tflow,)-jumper is is a system jmp = (inLet, outLet, texpr) which 
consists of: 

- finite and disjoint sets inLet of input sockets and outLet of output sockets of 
the jumper. 

- texpr, called the time expression of the jumper, such that: 

inLet c tflowl.pSet 
autLet c tflow,.pSet 
texpr C; (inLet x TxT) x (outLet x TxT) 

Moreover, Jumps (tflowl , tflow,) denotes the class of all (tflowl, tflow,)-jumpers. 
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Note 17. We shall be interested in two particular jumpers, namely the entry and 
exit jumpers. These are jumpers which move tokens from the entry (exit) place 
of tflowl to the entry (exit) place of the tflow, without modifying the tokens 
time-stamps. They will be denoted respectively entry_jmp(tflowl, tflow,) and 
exit jmp(tflowl,tflow,) and interface_jmps(tflowl,tflow,) will denote the 
set containing both of these jumpers. 

The timed hybrid flow nets are introduced to accommodate the dynamic change 
as outlined earlier. Each timed hybrid flow net has an (ordered) sequence of con­
stituents, a root and set of jumpers. Each constituent is a timed flow net which 
represents an old change region in a previously carried out dynamic change. Since 
the changes are carried out in an orderly manner, the constituents are ordered. 
The root is also a timed flow net and represents the latest version (i.e. the new 
net of the latest change.) This means that no jumper has an input socket in the 
root. 

Definition 18. A timed hybrid flow net, thflow, consists of: 

- a nonempty sequence tflows of pairwise disjoint timed flow nets, called 
constituents. 

- a timed flow net,root, the root. 
- jmpers, a set of pairwise disjoint jumpers such that: 

Vjmp E jumpers, 3i < j [jmp E Jumps(tflows[iJ, tflows[j])] 
Vjmp E jumpers, [jmp.inLet n Elem(root) = 0J 

Moreover, T H F Nets denotes the class of all timed hybrid flow nets. 

(3) 

Note 19. The notion of marking carries over to timed hybrid nets; each marking 
is the sum of the root and the constituents markings. Events firing occur within 
the boundary of a constituent or the root as formalized in the previous section, or 
across them using the jumpers as described earlier in this section. Furthermore, 
we assume that jumping occurs whenever possible. 

Definition 20. A job is a system job where: 

- name E IN, the name of job. 
- thflow E THFNets, the flow of job. 
- state E Mark(thflow), the state of job. 
- hist E S', the history of job. 

Moreover, Jobs denotes the class of all jobs. 

Definition 21. A dynamic change is a system, change = (oldJob, newJob, repl), 
which consists of: 

- oldJob E Jobs, the old job. 
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- newJob E Jobs, the new job. 

- repl = (oldR, newR), the replacement pair 

which are such that: 

newJob.name = oldJob.name (4) 

new Job. state = oldJob.state (5) 

newJob.hist = oldJob.hist (6) 

newRoot = oldRoot [oldR -t newRj (7) 

newConst = oldConst • oldR (8) 

newJmps ;2 oldJmps (9) 

newJmps;2 inter/ace_jmps(oldR,newR) (10) 

newJmps - oldJmps ~ Jumps(oldR, newR) (11) 

where 

n = mflows,.length 
newRoot = newJob.thflow.root 
newConst = newJob.thflow.constituents 
new Jumps = newJob.thflow.jumpers 
oldRoot = oldJob.thflow.root 
oldConst = oldJob.thflow.constituentsoldJumps = oldJob.thflow.jumpers 

In the last definition, conditions 8-10 state that the name, state and history 
information carryover to the new job. Condition 11 ensures that the root of the 
new job is the last version of the procedure. Condition 12 appends the old region 
to the old sequence of the constituents. Conditions 13-15 reflects the possibility 
of setting up jumpers from the old to the new change region; at least the entry 
and the exit jumpers are added to the previous list of jumpers. In particular, 
if only these jumpers are added then, the change is referred to as a synthetic 
cut-over change. 

To conclude this section, we would like to report that we are able to extend the 
results from [9] to the new timed model of workflow procedures and dynamic 
changes. In particular, if the new change region is a schedule approximation of the 
old change region, then the synthetic cut-over change is correct when a history­
based correctness is adopted. Other results concerning change composition and 
iteration are under investigation. 

4 Related Work 

Recently, the problem of workflow structural change has been the focus of nu­
merous work efforts, but none of these efforts consider the time issues. Thus, our 
comparison will be done with respect to the untimed hybrid flow nets. 
In [4], the authors introduce a class of high level Petri nets, called reconfigurable 
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nets, which dynamically modify their own structure. As far as dynamic change 
is concerned, the reconfigurable nets can be used to emulate synthetic cut over 
changes but fails in general to emulate jumpers. The reason is that the model 
does not allow the creation nor the disappearing of tokens, but only token move­
ments. On the other hand, reconfigurable nets are better suitable than hybrid 
flow nets to support multiple modes of operation. 
In [1], the authors are independently adopting a methodology similar to flow 
jumpers. Their dynamic correctness revolves around the notion of safe state 
w.r.t. a change. According to their model, a dynamic change occurs only if the 
state reached by ajob (in the old procedure) is safe w.r.t. the change. To comply 
with this requirement, they propose linear jumpers as means to "force" a job into 
a safe state (in the old procedure.) There seems to be at least one fundamental 
difference in our respective approaches. Their model accommodates retroactive 
changes, in the sense that in some cases, getting to a safe state may require 
undoing some of the activities which have taken place. This gives rise to the not 
so trivial issue of the undo semantics. 
In [25], the issue of workflow flexibility is addressed. The authors introduce ad­
hoc workflows based on process templates. These process templates are consid­
ered as reference models. They also give a set of static structural transformations 
which may be used to build safe and successfully terminating workflow nets start­
ing from a library of basic process templates which enjoy these properties. 
In [24], the authors define process equivalence based on delay bisimilarity. Simi­
larity between cases (i.e. jobs) is conserved by considering them as extensions or 
reductions of the same ancestor. In the event that a change results in a process 
extension, the change can be applied dynamically without delay to a running 
job. However, no mention is made if the change results in a process reduction. 

5 Conclusions and Summary 

Dynamic structural change to office procedures is a pervasive unsolved problem 
within workflow environments. This paper has introduced the timed flow nets 
as a way of accommodating time issues into the design of workflow systems and 
the analysis of their static changes. It has also expanded on the issue of "safe" 
static transformations which preserve the soundedness properties. 

This work has also briefly presented a new Petri-net based model, namely the 
timed hybrid flow nets, that is especially suitable to address workflow dynamic 
changes . In a companion technical report to this paper, we formally define 
timed hybrid flow nets, their semantics and their application to the problems of 
dynamic change. We also expand upon the results from [9], state and establish 
results concerning the dynamic change composition and iteration. 

The issue of dynamic change correctness is currently under investigation in a 
broader context than in [9, 20]. This effort is concerned with the design and 
implementation of SL-DEWS, a specification language for the dynamic evolution 
of workflow systems. We hope that by the time of the 1998 Petri net conference 
in Portugal, we will have interesting results to report on SL-DEWS. 
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Abstract. We introduce a class of high level Petri nets, called reconfig­
urable nets, that can dynamically modify their own structure by rewrit­
ing some of their components. Boundedness of a reconfigurable net can 
be decided by constructing its cover ability tree. Moreover such a net 
can be simulated by a self-modifying Petri net. The class of reconfig­
urable nets thus provide a subclass of self-modifying Petri nets for which 
boundedness can be decided. Delayed dynamic changes within workflow 
systems in the sense of [8] can then be handled in an extension of van 
der Aalst's workflow nets [2[. For this class (the reconfigurable workflow 
nets), a notion of soundness has been defined that can also be verified 
using the coverability tree construction. 

Keywords: Reconfigurable Nets, Workflow Systems, Boundedness, Self­
Modifying Petri Nets. 

1 Introduction 

Since their introduction in the early sixties [17J, Petri nets have come to play 
a pre-eminent role in the formal study of the behaviour of concurrent and dis­
tributed systems. Let us mention some of the attractive features that have made 
this model successful. First of all, like vector addition systems or commutative 
semi Thue systems, Petri nets are a very simple and natural extension of au­
tomata. Therefore the study of their mathematical properties becomes a man­
ageable task; in particular much effort have been devoted to decidability and 
complexity issues for Petri nets. Second, a lot of techniques and automated tools 
support the verification of properties of systems modelled by Petri nets. For in­
stance one can decide by constructing its coverability tree whether a Petri net 
is bounded, i.e. whether it is a finite state system. Reduction techniques and 
linear algebra techniques have also received wide attention. Third, Petri net is 
a graphical tool that can easily be used for the description and the design of 
concurrent systems . 

• This work was partially supported by the H.C.M. Network Express and by CICYT, 
TIC 95-0433-C03-03. 
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Recently, Petri nets have been used for modelling Computer Supported Co­
operative Work (cscw) [9,5]. These applications, also called groupware applica­
tions, involve distributed systems of agents (computer systems or humans) which 
cooperate to solve a global task and whose structure can dynamically change. 
More precisely, we consider in this paper workflow systems. These systems aim 
to support the realization of work procedures by a group of collaborating agents 
by coordinating the flow of tasks within the distributed system. As in [2] we 
define a workflow net as a Petri net with a specific input place and a specific 
output place. A token in the input place corresponds to a new case entering the 
system, the structure of the Petri net describe the set of tasks required to process 
this case and the order in which these tasks can be executed (taking the dis­
tributed nature of the system into account). Finally a token in the output place 
witnesses the termination of the case. An important feature of these workflow 
systems is their ability to manage dynamic change: the structure of the Petri 
net should be allowed to vary as a case proceeds within the system. Petri nets 
however do not offer a direct way to express processes whose structure evolves 
along computations. For that reason they have been used in conjunction with 
sets of rewriting rules in order to cope with workflow systems: such a system is 
locally described by a Petri net while rewriting rules allow for the modification 
of the structure of the Petri net. The purpose of this paper is to introduce re­
configurable nets which is a class of high level Petri nets that can dynamically 
modify their own structures by rewriting some of their components thus sup­
porting dynamic changes within workflow systems. Reconfigurable nets is a very 
natural extension of Petri nets, we therefore have confidence that many of the 
theoretical results and automated tools that exist for Petri nets could be used 
or adapted for them. For instance, we show in this paper that we can decide 
the boundedness property for reconfigurable nets using a variant of cover ability 
trees. 

The Dynamic nets of Asperti and Busi [1] is also a model that allows for 
dynamic changes. In Dynamic nets tokens are names for places, an input token 
of a transition can be used in its postset to specify a destination, and moreover 
the creation of new nets during the firing of a transition is also possible. The 
work of Asperti and Busi recasts in the context of net theory ideas and con­
cepts that originated in the ,,-calculus [15] and the related join-calculus [10, 11]. 
It is our opinion that the intricacy of this model leaves little hope to obtain 
significant mathematical results and/or automated verification tools in a close 
future. Moreover this model is probably too sophisticated to be easily used for 
the modelling and design of groupware applications. 

Self-modifying nets introduced by Valk [18, 19] and their subclass of strati­
fied Petri nets [3] is another extension of Petri nets. Dynamicity is introduced 
there via self-modification. More precisely the flow relations between places and 
transitions in self-modifying nets are linear functions of the marking. Techniques 
of linear algebra used in the study of the structural properties of Petri nets can 
be adapted to this extended framework; in particular each transition may be 
associated with a matrix and the modification of the marking due to a sequence 
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of firable transitions can be coded by the corresponding product of matrices. 
Even though self-modifying nets constitute a small variation in the Petri net 
paradigm, some important properties are lost, e.g. we cannot decide the bound­
edness of self-modifying nets. Moreover even if this class of nets has a clean and 
concise definition it is hopeless to describe and design realistic systems directly 
in this formalism. 

It is our opinion that self-modifying nets is a very reasonable attempt to add 
mobility in Petri nets but that they should be used rather as a back-end model. 
Reconfigurable nets on the other hand constitute a more direct formalisation of 
the manner in which groupware applications are described using a combination 
of Petri nets and rewriting rules as in [8J; moreover we describe in this paper a 
translation of reconfigurable nets into equivalent self-modifying nets. Therefore 
reconfigurable nets can be viewed as a subclass of self-modifying nets for which 
boundedness can be decided. 

The rest of the paper is organized as follows. Reconfigurable nets are in­
troduced in Section (2) and we indicate how they can be used for modelling 
workflow nets with a dynamic structure, the so-called reconfigurable workflow 
nets. We show in Section (3) that we can decide whether a reconfigurable net is 
bounded by constructing its coverability tree, and that the soundness of a re­
configurable workflow net implies its boundedness and can also be verified using 
the coverability tree. We also prove an analogue of a result of [2J showing that 
the soundness of a reconfigurable workflow net reduces to the boundedness and 
liveness of the reconfigurable net obtained by adding an extra transition con­
necting the output place of the reconfigurable workflow net to its input place. 
In Section (4) we show that any reconfigurable net can be simulated by a self­
modifying net. Finally we conclude in Section (5). 

2 Reconfigurable Nets 

Reconfigurable nets are high level Petri nets supporting dynamic changes within 
workflow systems. For instance one can admit local changes in the scheduling of 
the tasks required to process a case which is currently flowing in the system. If the 
case is ,an order request from a customer the involved tasks may be Order Check, 
Inventory Check, Credit Check, Shipping, Billing, and Archiving [8J. A dynamic 
change may then enable the parallel execution of two tasks (e.g. Shipping and 
Billing) that were previously performed sequentially in some order; it may also 
refine some task into more elementary tasks with a prescribed ordering. We 
assume however that the set of involved tasks as well as the set of local changes 
are known in advance and can be listed. This assumption implies that the set 
of tasks instances is finite. This set constitutes the set of transitions of the 
reconfigurable net. The switching from one configuration to another one due 
to a local change is taken care of by the introduction of a new kind of place 
content which denotes whether a place does exist or not in the current state of 
the system. 
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Definition 1 A reconfigurable net is a structure N = (P, T, F, R) where P = 
{Pl, ... ,Pm} is a non empty and finite set of places, T = {t" ... , tn} is a non 
empty and finite set of transitions disjoint from P (P n T = 0), F: (P x T) U 
(T x P) -+ IN is a weighted flow relation, and R = {r" ... , rd is a finite set of 
structure modifying rules. A structure modifying rule is a map r : P, -+ P2 whose 
domain and codomain are disjoint subsets of places (P

" 
P2 <; P and P, nP2 = 0). 

A marking of net N is a map M: P -+ INU {a} where a rt IN, when M(p) = a 
place p is said not to exist in marking M whereas M(p) = n E IN expresses that 
p exists in marking M and has value n. We let M denote the set of markings 
of net N. We let E = T U R denote the set of events of the reconfigurable net. 
We let M[e > M' denote the fact that event e is enabled in marking M and that 
the net reaches marking M' when firing this event. This transition relation is 
defined as follows. A transition t E T is enabled in marking M if: 

'1pE P M(p)"I a =} M(p) ~ F(p,t) 

When transition t is fired in marking M, the resulting marking M[t > M' is such 
that '1p E P 

M(p) = a =} M'(p) = a 
M(p) "I a =} M'(p) = M(p) - F(p, t) + F(t,p) 

A structure modifying rule r E R is enabled in marking M if: 

'1p E P, M(p)"I a 
'1p E P2 M(p) = a 

The firing of this enabled rule r produces the new marking M' defined as: 

'1pE P, 
'1pE P2 

'1p E P\(P, U P2) 

M'(p) = a 
M'(p) = L{M(q) I q E P, f\ r(q) = p} 
M'(p) = M(p) 

A marked reconfigurable net is a reconfigurable net together with an initial mark­
ing. 

The firing policy of transitions is like in the Petri net obtained by discarding the 
non existing places. This Petri net is called a configuration of the reconfigurable 
net. As long as no structure modifying rule take place, the reconfigurable net 
behaves exactly like this Petri net. Structure modifying rules produce a structure 
change in the net by removing existing places and creating new ones, thus moving 
the system from one configuration to another one. When a place is removed, the 
tokens of this place do not disappear, but they are moved to other places of the 
net. Hence, the number of tokens remains constant through the application of 
structure modifying rules. The rule defines how tokens should be moved in the 
net. Places of set P2 which are not in the range of r are places created by the 
structure modifying rule and containing initially no token. Roughly speaking 
a reconfigurable net can be seen as a bunch of Petri nets (its configurations) 
which correspond to the various modes of operation of the system. The structure 
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modifying rules allow to switch from one mode of operation to another one 
while it modifies the current marking accordingly; work cases are not processed 
during the firing of a structure modifying rule, therefore there is no creation 
nor disappearing of tokens, these tokens are simply displaced from vanishing 
places to created ones. Thus a system modelled by a reconfigurable net has the 
ability of dynamically change its own structure when certain conditions are met. 
For instance if the content of some place becomes too large (there is a large 
amount of work cases waiting for being processed) one can duplicate the ouput 
transitions of this place, technically we replace this place by a new one having 
twice as many output transitions playing the same role as the output transitions 
of the original place. Using reconfigurable nets one can also easily implement the 
delayed dynamic changes of [8J. These dynamic structural changes also called 
synthetic cut-over changes are defined as follows, quoted from [8J. 

[in a synthetic cut-over change} both the old and the new change regions 
are maintained in the new procedure. This ensures that tokens already 
in the old change region will continue their progression as if the change 
did not take place immediately (which justifies the attribute delayed). 
However tokens evolving in the context of the old change region will never 
enter the old change region (but possibly new change region); that is to 
say that in view of these tokens the change is immediate. 

We can illustrate synthetic cut-over change with the example of Fig. 1. This 

: - - - - - - - - - - - - .... 'P6'" ... - "''4' - -' - -' 'P9' - - - - - _ .... _ .. : parallel mode 

: P2 -rbl...r-'l: region 

: j ~ t8: • 
• , I = Inventory Check 

: P5 

c = Credit Check 
b = Billing 
s = Shipping 
a = Archiving 

: .equential mode 
.......... - _. region 

Fig. 1. synthetic cut-over change 

reconfigurable net describes how to proceed an order request from a customer, 
there are two modes of operation corresponding to distinct regions in the graph­
ical representation of the net, one in which the Billing and Shipping operations 
are processed sequentially and the other in which they are processed in paral­
lel. The structure modifying rule r ; {P.;P2} -4 {P3;PS} given by r(p.) = P3 
and r(p2) = Ps permits to switch from the sequential mode of operation to the 
parallel mode of operation. Conversely the structure modifying rule r- 1 realizes 
the switching in the converse direction. Figure 2 represents a fragment of the 
marking graph of this reconfigurable net, a place is graphically represented in a 
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given state if and only if that place exists in the current marking (i.e. its value is 
different from a). Observe that when we switch from the sequential mode to the 
parallel mode the tokens which are in the old region (sequential mode region) 
continue their progression as if the change did not take place but the tokens 
in the context (in place p,) will now enter the new region (the parallel mode 
region). 

17 I, 17 

• 

Fig. 2. (part of) the marking graph of the reconfigurable net of Fig. 1 

The set of places that exists in marking M, let D(M) = {p E PI M(P) 01 a}, 
is termed the domain of M. Two markings are said to be equivalent when they 
have the same domain: MJ = M2 {o> D(MJ) = D(M2). A mode of operation is 
an equivalence class for =, it can be identified with a subset D <;; P of places. 
Usually, a reconfigurable net is implicitly attached with a fixed subset of modes of 
operation. In the above example one has two modes of operation, the sequential 
mode and the parallel mode, whose respective domains are P \ {P3;P5} and 
P\ {p,; P4}; any marking whose domain is different from these two sets intuitively 
should not correspond to any state of the system. Moreover as in [2J we consider 
that nets that model workflow systems have two distinctive places, an input place 
i which is a source place i.e. a place with no pre-transitions: 1ft E T F(t, i) = 0; 
and an ouput place 0 which is a sink place i.e. a place with no post-transitions 
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'lit E T F(o, t) = O. These places correspond respectively to the beginning and 
the termination of the processing of a case. In the example of Fig. 1 the input 
place is place PI and the output place is place P13. We end up with the notion of 
a reconfigurable workflow net which is an adaptation of van der Aalst's notion 
of workflow net [2J. 

Definition 2 A reconfigurable workflow net N = (N, 0, i, 0) is a reconfigurable 
net N = (P, T, F, R) with an explicit set of modes of operation 0 <;; 2P and two 
distinguished places i, 0 E P where i is a source place and 0 is a sink place. Every 
mode of operation D E 0 contains places i and 0; moreover the set 0 is strongly 
connected in the sense that every D E 0 derives from every other D' E 0 by a 
(finite) sequence r" ... ,rn of structure modifying rules, where D derives from 
D' by a rule r : P, -+ P, when D = (D' \ P,) UP,. Finally if D and D' are 
subsets of places such that D = (D' \ P,) UP, for some structure modifying rule 
r :P, -+P" then D E O{} D' E O. 

The set of modes of operation of a reconfigurable workflow net is therefore a 
connected component of the directed graph whose vertices are the subsets of 
places and whose arcs are pairs (D, D') such that D = (D' \ P,) U P, for some 
structure modifying rule r : P, -+ P,; and moreover this component is strongly 
connected. If D E 0 is a mode of operation, we let in stand for the marking of 
domain n with one token in place i and no token elsewhere, and similarly Of} 

is the marking of domain D with one token in place 0 and no token elsewhere. 
If U <;; E is a subset of events (usually T, R or E itself), we let M[U > M' 
if marking M' can be reached from marking M by firing a sequence of events 
in U. Because of the strong connectedness we can restore any particular mode 
of operation before starting (or after finishing) the processing of a case: i.e. 
in[R>in' and on[R>on' for any pair D,D' E 0 of modes of operation. 

A token in the input place corresponds to a case entering the system. This 
case then flows through the system until a token appearing in the output place 
indicates the termination of this case. In the meantime the role played by the 
marking is twofold. On the one hand, it accounts for the current (distributed) 
state of progress of the case; on the other hand, it encodes the current state of 
the system which processes the case. Without loss of generality we can assume 
that the state of the system be empty when starting a new case. When the case 
terminates the system should have recovered its initial state in order to be ready 
to process a new case. The mode of operation may however have changed, but 
this is not significant because a case should be unaware of the current mode of 
operation of the system. Finally, since such a system is intended to process cases 
endlessly it should not have a degraded behaviour: if a transition becomes dead 
in some state (i.e. it cannot be fired from this state on), then this transition 
might have been discarded in the first place! These requirements are captured 
in the following definition which is an adaptation of the similar definition for 
workflow nets [2J. We let M ~ M' when M and M' are markings with the same 
domain D such that 'lip E D M(P):S M'(P) and we let M denote the set of 
markings. 
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Definition 3 A reconfigurable workflow net is sound if the following conditions 
are met. 
(i) Every processing of a case can terminate: 

11M E M lin E 0 in[E>M =? 3M' E M 3n' E 0 (M[E>M' 1\ On' ~ M') 

(ii) Every termination of a case restores the initial state of the system (but 
possibly the mode of operation): 

11M E M IIn,n' E 0 (in[E>M 1\ on' ~ M) =? M = On' 

(iii) There are no dead transitions: 

lit E T lin E 0 3M,M' E M in[E>M 1\ M[t>M' 

Observe that the processing of a case may not terminate and that a change of 
mode of operation may be required in order to reach termination. The above 
definition states some properties of the expected behaviour of a workflow system 
processing an individual case but it says nothing about that system when several 
cases are being processed concurrently. In real applications every case has an 
identity, an agent performing a task within a worflow system knows which case he 
is currently processing. We may consider therefore that every new case entering 
the system is given a colour and that this colour is distinct from the colours of 
the other cases currently flowing through the system. The resulting colored Petri 
net behaves as follows: in order to fire, a transition is only allowed to pick from 
its input places tokens of the same colour, it then produces tokens in its ouput 
places of that same colour. This means that the concurrent processing of multiple 
cases is represented as the non interfering superimposition of the processings of 
the individual cases. Therefore a reconfigurable workflow net is considered only 
with respect to an individual case and this justifies the above definition. A weak 
form of interference between cases exists however due to the fact that the current 
state of the system may have an effect on the decision as to whether an allowed 
structure modifying rule should be invoked. For example if the number of tokens 
in a certain place exceeds a given threshold one may regulate the flow by invoking 
some structure modifying rule, the converse modification may be invoked latter 
when the content of that place goes under another threshold; in that sense the 
manner in which a case is processed may be influenced by the other cases. Notice 
that such thresholds do not appear in our definition of structure modifying rules 
which reflect the fact that the decisions concerning the invocation of these rules 
are external to the system. Moreover this interference concerns only the modes 
of operation which are used when processing a case and our formalism allows the 
designer of the system to make sure that the processing of a Case is insensitive 
to the dynamic changes occurring within the system. We can if necessary enrich 
the description of the net by adding extra places and transitions in order to 
ensure that the processing of cases are independent of the dynamic changes. 
For instance, one can identify a list of properties that characterize the fact that 
the case has been correctly processed. In general such a property corresponds 
to the completion of a task. These properties are represented by extra places 
Pn+l,." ,Pn+k. Another extra place is introduced as the new output place of the 
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enriched net. This place is filled by an extra transition whose preconditions are 
the places Pn+l, ... , PnH together with the old output place. In that manner a 
token in the new output place indicates that the case has been correctly processed 
regardless of the dynamic changes that may have occurred. 

3 Boundedness of a Reconfigurable Net 

The reachability tree of a marked reconfigurable net is the tree whose root is 
labelled with the initial marking and such that if V is an arbitrary vertex of 
that tree labelled with marking M, the arcs originating in V are in bijective 
correspondence with the firings M[e > M' and the arc associated with M[e > M' 
is labelled with event e and has its extremity labelled with M'. The reachability 
tree is thus the "unfolding" of the marking graph of the marked net. If the net is 
unbounded this tree is infinite. Similar to what is done for ordinary Petri nets, 
a finite approximation of the reachability tree called the coverability tree can be 
constructed. Two properties are at the basis of the algorithm of Karp and Miller 
[14]. They correspond to the two following propositions. 

Proposition 4 The order relation between markings is a well-ordering. 

Proof: We recall (see e.g. [6]) that an order relation (X,:'O) is a well-ordering 
if for every infinite sequence (Xi, i E IN) indices i < j can be found such that 
Xi :S Xj, equivalently if every infinite sequence in X has an infinite increasing 
subsequence. The usual ordering on IN is a well-ordering. Moreover 1 by extract­
ing subsequences iteratively (n times), we notice that if (X,:'O) is a well-ordering, 
then xn with the pointwise ordering is also a well-ordering. Finally, D'IU{,,} with 
the order X :'0 y ¢'} (x = y = "V [x, y E lN 1\ x :'0 y]) is a well-ordering. Indeed, 
if (Xi, i E IN) is a sequence in lNU {,,}, then we can extract a subsequence which 
is constantly equal to Q: or an increasing sequence of integers according whether 
we respectively have an infinite number of indices i E IN such that Xi = 0, or 
Xi E IN. Therefore the order between markings is a well-ordering. • 

Proposition:; The firing rule is monotone: 'Ie E E(Ml [e > M, 1\ M, ~ 
M{) '* 3M~ (Mj[e>M~ 1\ M, ~ M~); moreover IM{I-IM,I = IM~I­
IM2 1. Thus if M[u>M' with M ~ M' then the sequence u E E' of firings can 
be reproduced, i.e. 3M[un > M(n) for every n E lN, and then IM(n) I = IMI + kn 
where k = IM'I-IMI. 

Proof: If e = t E T we have (M, [t > M2 1\ M, ~ MD '* 3M2 (MHt> M2 1\ 
M2 ~ M~) and M{ - M, = M~ - M2 (the property of constant effect) as these 
properties hold for Petri nets. If e = r E R, the first property holds trivially 
while the property of constant effect is weaken: as token are moved from some 
places to other places we only have conservation of the total number of tokens, 
i.e. IM{I-IM,I = IM~I-IM21. • 

The key observation for the algorithm of Karp and Miller for Petri nets is that, 
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because of the property of constant effect, when markings M and M' and a 
sequence of firings u E T' can be found such that M[u> M' and M [;; M', one 
can deduce M[un > M(n) for every n E IN. Moreover, for every place pEP such 
that M(p) < M'(P) one has M(n)(p) = M(P) + nk where k = M'(P) - M(P) > 
o and therefore this place is not bounded. Because of the weak form of the 
property of constant effect, this observation no longer holds for reconfigurable 
nets. However if one is not concerned with the boundedness of any particular 
place of the net but with the boundedness of the net itself (i.e. whether there 
exists some place in the net that is unbounded), then the above propositions are 
sufficient and boundedness can be verified using the following simplified version 
of cover ability tree. 

Definition 6 The coverability tree of a marked reconfigurable net (N, Mo) is 
constructed by the following algorithm: 

Initially the tree is reduced to its root labelled Mo and tagged as a "new" 
vertex. 
While "new" vertices exist, do the following: 

• Select a new vertex V, let M be its label. 
• For every firing M[e > M' do the following: 

* Create a new vertex V' labelled M' and an arc from V to V' labelled 
e. 

* If there exists some node V" on the path from the root to vertex V 
whose label M" is such that M" [;; M' then 

. If M" = AI' then tag vertex V' "old" else tag it ffunbounded". 
else tag V' "new", 

• Withdraw V from the set of "new" vertices. 

Proposition 7 The coverability tree of a marked reconfigurable net is finite. 

Proof Since the order relation on the set of markings is a well-ordering, the cov­
erability tree of a marked reconfigurable net contains no infinite branch. Since 
moreover, each vertex has at most lEI successors we deduce by Konig lemma 
that this tree is finite. • 

Proposition 8 A marked reconfigurable net is bounded if and only if no vertex 
of its coverability tree is tagged "unbounded". 

Proof: If the cover ability tree contains no vertex tagged "unbounded" then the 
set of labels of its vertices coincides with the set of markings of the reconfigurable 
net reachable from the initial state (label of the root), therefore the marked re­
configurable net is bounded. If on the contrary the coverability tree contains 
some vertex V' tagged "unbounded". Thus there exists some vertex V on the 
path from the root such that Mo[u > M[v > M' where u labels the path from 
the root to vertex V, v labels the path from vertex V to vertex V', M [;; M' 
and M oft M'. Then by Prop. 5, M[vn>M(n) with IM(n)1 = IMI + kn where 
k = IM'I-IMI > O. Since there are finitely many places the net is unbounded .• 
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Corollary 9 The boundedness of reconfigurable net is decidable. 

A reconfigurable workflow net N is said to be bounded if the marked reconfig­
urable net (N, in) for fl E 0 some mode of operation is bounded. This defini­
tion does not depend on the choice of fl E 0 because in[R>in' for every pair 
fl, fl' E O. 

Proposition 10 A sound reconfigurable workflow net is bounded and we can 
decide whether a reconfigurable workflow net is sound. 

Proof: If (N, in) is not bounded then as seen in the proof of Prop. (8) there 
exists markings M and M' such that in[E>M, M[E>M', M !; M' and 
M(p) < M(p') for some place p. Since N is sound one has M[u>on' for some 
sequence u E E'. By monotony M'[u > M" with on' !; M" and M" oJ on' which 
contradicts the fact that N is sound. Once boundedness has been checked, the 
properties i to (iii) of Def. 3 may be checked directly on the coverability tree 
which then coincide with the reachability tree. • 

However as noted by Hack in [12J "The size of Karp and Miller's construction 
in their decision procedure for boundedness and coverability can grow as fast as 
Ackermann's function of the size of the Petri nef' which shows the intractability 
of the verification of soundness property via the construction of the coverabil­
ity tree. Van der Aalst showed in [2J that soundness of a workflow net reduces 
to boundedness and liveness of a Petri net obtained by adding an extra transi­
tion connecting its output place to its input place. Since it is possible to decide 
boundedness and liveness of free-choice Petri nets in polynomial time [4], he de­
duced therefrom that soundness of free-choice workflow nets can be decided in 
polynomial time. We show that van der Aalst '8 construction can be carried to re­
configurable nets with no significant changes, unfortunately one cannot directly 
deduce therefrom a polynomial time algorithm for the decision of soundness 
of reconfigurable workflow nets all of whose configurations are free-choice Petri 
nets. 

Definition 11 If}/ = (N, 0, i, 0) is a reconfigurable workflow net where N = 
(P,T,F,R) and fl E 0 is a mode of operation, we let Nn = (N,in) be the 
marked reconfigurable net consisting of the reconfigurable net N = (P, '1', F, R) 
and initial marking in where '1' = TU {t'} with t' rf. T a new transition and the 
extended flow relation F : (P x '1') U ('1' x P) .... IN is given by 

1
F(t'P)if tET and pEP 

F t _ -1 if t = t' and p = 0 

(,p) - 1 if t=t' and p=i 
o otherwise 

N is obtained from N by adding a new transition t' which is enabled when a 
case has reached termination (there is one token in the output place) and then 
removes that case to the system and introduces a new one (by adding one token 
in the input place). 
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Proposition 12 The reconfigurable workflow net N = (N, 0, i, 0) is sound if 
and only if the reconfigurable net 1\1 U is live and bounded. 

Proof: We first notice that since each initial state in is reachable from any 
other initial state by structure modifying rules (in[R>in'), the reconfigurable 
net 1\1 n is live and bounded if and only if 1\1 n' is live and bounded for any 
n' EO. We first show that if 1\1 n is live and bounded then N is a sound 
reconfigurable workflow net. Since 1\1 U is live, transition t' is potentially firable in 
every reachable marking, i.e. condition (i) in Def. 3 is satisfied. If n, n' EO, we 
let < f1, f1' > denote the set of integers n E IN for which there exists some marking 
M such that in[E U {to} >M, iu' !;;: M, and IMI = n + 1. That is to say, by 
Prop. 5, that < f1, f1' > records all possible increases of the size of markings along 
computations in 1\1 U from some marking greater than iu to some marking greater 
than in', Therefore (n E <f1,f1'> 1\ mE <f1',f1"» => n+m E <f1,f1">. Now 
< f1, f1' > oj 0. Actually since condition (i) in Def. 3 is satisfied, iu[E> M for 
some M such that on" !;;: M for some n" E 0; since aU" [R > on' and by Prop. 5 
we deduce M[R > M' with On' !;;: M' and then M'[t' > M" with iu' !;;: M" as 
required. Therefore, since 1\1 n is bounded, we deduce that < f1, f1' > = {O} for 
all n,n' E 0, and thus (iu[E>M 1\ au'!;;: M) => M = au', i.e. condition (ii) 
in Def 3 is satisfied. Condition (iii) in Def 3 follows from the fact that 1\1 u is live 
for every n E O. 

Conversely, let us assume that N is sound. 
First we show that 1\1 u is bounded. Since N is sound, the extended net 1\1 

returns to some initial state in when t' fires, it is then enough to check that the 
marked reconfigurable net (N, in) is bounded for every n E O. If this is not the 
case, then by construction of the coverability tree, we deduce there exist markings 
Ml and M, such that iu[E>M1 , M1[E>M" Ml !;;: M" and Ml oj M,. By 
soundness of N, we deduce MJ[u > aU' for some u E E', and then by Prop. 5 
M,[u>M, with aU' !;;: M, and M, oj au' (because IM,I- 1 = IM,I-IMJ[ > 0) 
which contradicts soundness of N. 

Second we show that 1\1 n is live. Since N is sound, transition t' is potentially 
firable in every reachable marking and its firing always leads to some initial state 
in, since moreover infR> if}' for arbitrary pair of mode of operations, we deduce 
that net 1\1 n is cyclic (every initial state iu and thus any reachable marking is 
reachable from any reachable marking). Since moreover there is no dead tran­
sitions in 1\1 u (by condition (iii) in Def. 3 and the fact that t' is not dead) we 
deduce that this marked net is live. • 

4 Reconfigurable Nets as Self-Modifying Nets 

The purpose of this section is to show that reconfigurable nets are self-modifying 
nets. Self-modifying nets [18, 19J are generalizations of place/transition nets 
where the flow relation between a place and a transition depends on the marking. 
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Definition 13 A self-modifying net is a structure N = (P, T, F) where P = 
{Pl, ... ,Pm} is a non empty and finite set of places, T = {t" ... , tn} is a non 
empty and finite set of transitions disjoint from P, and F : (P x T) U (T x P) ~ 
INP

' is the flow relation where P, = PU { *} and * rf- P. A vector cp E INP' can be 
represented by a formal sum cp = AD + E::, Ai . Pi where the constant coefficient 
is the entry corresponding to the fictituous place: AD = cp(*) and Ai = cp(p;). A 
marking of net N is a map M : P ~ IN. If M E INP is a marking and cp E W' , 
we let cp(M) = AD + E::, Ai . M(P;) denote the evaluation of the affine function 
cp in marking M. We let M[t>M' when transition t is enabled in marking M 
and leads to marking M'. This transition relation is given by: 

M[t>M' <0} '1p E P M(P) ~ F(P, t)(1I1) 1\ M' = 111 - F(P,t)(M) + F(t,p)(1I1) 

A marked self-modifying net is a self-modifying net together with an initial mark­
ing. 

Proposition 14 A ny marked reconfigurable net can be associated with a marked 
self-modifying net with isomorphic marking graph and whose set of transitions 
is the set of events of the reconfigurable net. 

Proof: The translation of a reconfigurable net into an equivalent self-modifying 
net is staightforward: we represent each place p of the reconfigurable net by 
three places 3p , ,3p and p. The first two places are complementary 1-bounded 
places whose contents indicate whether place p exists in the current marking 
and the third place, also denoted p, has the same content than the original 
place p when this place exists. Figure 3 gives a sketch of the translation whose 
precise definition follows. Any reconfigurable net N = (P, T, F, R) is associated 

p '" " 
r:Pl4-P2 

" PI E PI 

" 
r{P1 rIp) = P2} p, E P, 

q -.3 P1 '" " 
Fig. 3. translating a reconfigurable net into an equivalent self-modifying net 

with a self-modifying net if = (P, T, F) defined as follows. The set of places 
P = 3P U ,3P U P is the disjoint union of three copies of set P whose respective 
typical elements are noted 3p , ,3p and p for p ranging in P. The set of transitions 
T = T U R consists of the transitions of the original net together with its set 
of structure modifying rules, i.e. its set of events. Finally the flow relation F is 
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given by the following identities where p, t and r : P, ---+ P2 range respectively 
in P, Tand R. 

F(P t) = {F(P, t) . 3p if P =. pEP 
) 0 otherwise 

F(t -) = {F(t,P)' 3p if p = pEP 
, P 0 otherwise 

A marking M of the reconfigurable net N is associated with the marking M of 
the self-modifying net N given by 

M(3 p) = if M(P) ,..: "then 1 else 0 
M(~3p) = if M(P) ,..:" then 0 else 1 
M(P) = if M(P) ,..: "then M(p) else 0 

The above relations induce a bijective correspondance between the markings 
of N and those markings M of N such that Vp E P M(3p),M(~3p) E 
{O; I} and M(3p) = 1 ¢} M(~3p) = 0 and M(3p) = 0 =} M(p) = O. 
A direct comparison of Def. 1 and Def. 13 shows that an event e E T U R of N 
is enabled in a marking M of the reconfigurable net N if and only if as a tran­
sition of the self-modifying net N it is enabled in the associated marking M; 
moreover M[e> M' in N if and only if M[e> M' in N. Therefore the mapping 
() is an isomorphism between the marking graph of the marked reconfigurable 
net (N, M) and the marking graph of the marked self-modifying net (N, M) for 
~m~qM~N. • 

Boundedness is not decidable for self-modifying nets whereas it is decidable for 
reconfigurable nets. In order to better delimit the borderline between those self­
modifying nets for which boundedness can be decided from those for which it 
cannot, let us precise some terminology. A pair (p, t) E P x T is termed an input 
arc (with respect to transition t) if F(p, t) ,..: O. Similarly a pair (t,p) E T x P 
such that F(t,p) ,..: 0 is termed an output arc. An input arc (p, t) is an ordinary 
arc if F(p, t) E lN, and it is a reset arc if F(P, t) = p. An output arc (t, p) is an 
ordinary arc if F(t,p) E IN. A self-modifying net is a post-self-modifying net (re­
spectively a pre-self-modifying net) [18J if every input arc (resp. ouput arc) is an 
ordinary arc; and it is a Reset/Set nets with infinite capacity [13J if every input 
arc is either an ordinary arc or a reset arc. Valk proved in [18J that boundedness 
of post-self-modifying nets can be decided. The same result has been erroneously 
stated for the class of Reset/Set nets with infinite capacity and for the class of 
pre-self-modifying nets. Indeed Dufourd [7J has proved recently that bounded­
ness is indecidable for the class of Petri nets with reset arcs, i.e. for the class of 
self-modifying nets such that every input arc is either an ordinary arc or a reset 
arc and every output arc is an ordinary arc. 
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5 Conclusion 

In this paper we have introduced a class of high level Petri nets, called recon­
figurable nets, that can dynamically modify their own structures by rewriting 
some of their components. Boundedness of a reconfigurable net can be decided 
by constructing its cover ability tree. Moreover such a net can be simulated by a 
self-modifying Petri net. The class of reconfigurable nets thus provide a subclass 
of self-modifying Petri nets for which boundedness can be decided. Delayed dy­
namic changes within workflow systems in the sense of [8J can then be handled 
in an extension of van der Aalst's workflow nets [2J. For this class (the recon­
figurable workflow nets), a notion of soundness has been defined that can be 
verified using the cover ability tree construction. 

A reconfigurable net can be seen as a bunch of Petri nets: its configurations. 
A configuration of a reconfigurable net gives a description of the system for 
some mode of operation. It could be interesting to investigate the properties of 
a reconfigurable net in relationship with specific assumptions on its configura­
tions, e.g. according whether they are acyclic, I-safe or free-choice. The workflow 
net models of [5J for instance are acyclic, extended free-choice elementary net 
systems, whereas the worflow nets of [2J are usually assumed to be free-choice 
or almost free-choice. An open question in that direction is whether there ex­
ists a polynomial time algorithm for deciding the soundness property of free­
choice reconfigurable workflow nets. Additional assumptions concerning the set 
of structure modifying rules may also be considered. For instance in a forth­
comming paper we shall restrict our attention to the class of reconfigurable nets 
whose structure modifying rule r : P, -+ P2 are bijections. Under some extra 
assumption such a net can be simulated by a stratified Petri net [3J, that is to 
say by a self-modifying Petri net for which a stratification of the set of places 
into layers exists so that the flow relations attached to a place involve only the 
content of places of lower layers. The self-modifying Petri nets that we have used 
to simulate reconfigurable nets were not stratified, and this was essential since 
reconfigurable nets unlike stratified Petri nets are in general not reversible in 
the sense that we cannot for each firing M[e > M' deduce marking M from the 
data of event e and marking M'; reconfigurable nets are reversible however if all 
structure modifying rules are assumed to be bijective. 

We have assumed, as it is implicitly done in [2J for workflow nets, that the 
system can identify, e.g. by using coloured tokens, each of the cases that are 
processed. Since a marking accounts at the same time for the current states of 
progress of the cases and the state of the system which processes these cases, 
this implies that the state of the system itself be multi-coloured, i.e. it is a 
vector of states associated with each of the cases currently flowing within the 
system. This assumption may be considered indesirable and we may seek for a 
non interference condition to be added to the definition of soundness that will 
ensure that the behaviour is not changed when colours are forgotten. 

Finally, it might be interesting to investigate the notion of a controlled re­
configurable net which stands for a reconfigurable net together with a control 
part that regulate the flow in the system. This control would have the marking 
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of the evolving net as input and for a set of allowed structure modifying rules as 
output. 
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Abstract. Workflow management systems are considered a hot technology but 
they do not have up to now the diffusion of productivity tools. e-mail systems 
and/or groupware platforms. We think that this is due to the fact that existing 
workflows management systems, in general, do not offer all the services needed 
by the potential users. In particular, they do not have modeling capabilities 
adequately supporting exceptions, multiple views as well as static and dynamic 
changes. In this paper we introduce the modeling environment of the workflow 
management module of the Milano system -a prototype of a CSCW platform 
we are developing at the Cooperation Technology Laboratory of the University 
of Milano. The underlying idea of the Milano workflow management module is 
that workflow models must be simple and based on a formal theory, so that the 
various views, properties, changes can be computed when needed and not 
explicitly modeled. The modeling environment of Milano is based on a 
subclass of the Elementary Net Systems and on its properties. An example, 
derived from a real bank procedure, is discussed throughout the paper. 

1. Introduction 

Since several years, workflow management systems are announced as the next 
best-selling computer application (Koulopoulos, 1995) but up to now they do not 
have reached the success of other packages as productivity tools, e-mail systems, 
web-browsers and even groupware platforms. 

Why do workflow management systems remain in limbo while almost every 
observer argues for their utility and so few users really apply them within real 
organizations? The question has not a unique simple answer (Abbott, Sarin, 1994), 
but it deserves the attention of anyone interested in the development of workflow 
technology. Let us recall one issue emerging when we try to understand what 
workflow management systems should be to become usable in real work situations; 
we do not claim that it is the unique point with respect to the above question, but we 
think that its relevance should not be underestimated. 

The relevance of workflow technology has grown together with the emergence of 
process oriented organizations and the related change management techniques (e.g., 
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business process reengineering and continuous process improvement; White, Fischer, 
1994). Any workflow management system, therefore, should be oriented to support 
changes in the organization and to make it flexible. Moreover, workflow changes 
should be as fast as possible in order to react timely to process changes, and they 
should be implemented on the fly into already running workflow instances. With 
respect to these features, most existing workflow management systems appear to be 
inadequate: it is difficult to interrupt them, to exit their normal flow and to reenter 
into it, while breakdowns are very frequent (they are the norm in many cases); they 
are based on complex and sometimes multiple process models (integrating data 
models, normal and exceptional flows, role descriptions), whose changes need careful 
and time consuming analysis; they need to be designed by expert programmers, 
introducing a time delay between process and workflow changes; they do not support 
multiple viewpoints on the process, corresponding to the various actors with the 
different objectives and roles they support (the manager, the initiator, the task 
executor and, why not, the customer). 

Many observers have also argued that most workflow management systems make 
business processes too rigid, not allowing their users to react freely to the breakdowns 
occurring during their evolution (Bowers et aI., 1995). Some of them seem to charge 
the responsibility of this rigidity to their using formal workflow models (formal 
models can not fully capture the knowledge people use while acting within a business 
process), other to the strict coupling between modeling and executing they introduce 
(models should be cognitive artifacts; Norman, 1991; not constraining the behaviour 
of the actors; Suchman, 1987; Dourish et aI., 1996). We agree with the above points, 
but we are convinced that the rigidity of existing workflow management systems 
should not be attributed neither to their using fonnal models nor to their coupling of 
modeling and execution, but to the above mentioned weaknesses affecting them. 

We argue in this paper that, contrary to what appears common sense, formal, 
theory-based models can contribute to the solution of the above problems, if they are 
conceived from a different perspective. Good algebra, in fact, offers effective tools 
for creating a process modeling environment exhibiting the following properties: 
• it allows to simulate the process before its execution; 
• it allows formal verification of some workflow properties; 
• it supports an unambiguous graphical representation of the workflow; 
• it allows to use a minimal input for redundant outputs, through the algorithmic 

completion of the model; 
• it supports multiple views of the process, through synthesis algorithms and model 

conversions; 
• it allows the automatic derivation of exceptional paths from the acyclic normal 

flow of the process, when needed; 
• it enacts automatically model changes on the running instances of a workflow, 

protecting them from undesired outcomes. 
What is needed in order to get all these services from algebraic theory is to keep 

workflow models as simple as possible, i.e., to use a divide et impera approach to the 
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workflow, treating in a distinct way: the execution of the tasks embedded in the 
workflow steps; the data flow, the control flow, the latter being the only issue to be 
handled directly by the workflow management system. 

In this paper, we present the prototype of the workflow management system we are 
developing within the Milano system, a groupware platform supporting its users 
while performing concurrently various cooperative processes, discussing how, the 
theory it embodies is· providing the above services to its users. An example derived 
from a real credit procedure used within an Italian bank is used throughout the paper. 

2. The Workflow Management System of Milano 

In 1994 at the Cooperation Technology Laboratory the authors -together with 
Maria Antonietta Grasso, and several students- started the development of the 
prototype of a new CSCW system, called Milano (De Michelis, Grasso, 1994; 
Agostini et a!., 1997). Milano is a CSCW platform supporting its users while 
performing within cooperative processes (De Michelis, 1995, 1997). Milano is based 
on a situated language-action perspective (Suchman, 1987; Winograd, Flores, 1986; 
Winograd, 1987) supporting them to keep themselves aware of the history they share 
with the actors with whom they cooperate. It offers them a set of tools strictly 
integrated with each other to live with them that history; in particular, a multimedia 
conversation handler and a workflow management system. Without adding more 
details about the other components of Milano (the interested reader can find a more 
complete account on it in (Agostini et a!., 1997)), let us spend some more words on 
its workflow management system and, in particular on its specification module. 

The Milano workflow management system is a new generation workflow 
management system (Abbott, Sarin, 1994): its aim is to support not only its users 
while performing in accordance with the procedure described in its model, but also 
when they either need to follow an exceptional path or when they need to change the 
workflow model. The workflow model, therefore, within Milano is not only an 
executable code, but also a cognitive artifact. It is, in fact, an important part of the 
knowledge its different users (the initiator of a workflow instance, the performer of 
an activity within it, the supervisor of the process where it is enacted and, finally, the 
designer of the workflow model) share while performing within a cooperative 
process. 

The model, therefore, must not only support the execution of several workflow 
instances, but it must also support the enactment of any model change on all the 
ongoing instances (dynamic changes). On the other hand, its cognitive nature requires 
that a workflow model supports all its users to understand their situation, to make 
decisions, to perform effectively. The workflow model is not merely a program to be 
executed and/or simulated by the execution module with a graphical interface to 
make it readable by its users. Rather, it is a formal model whose properties allow the 
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user to get different representations of the workflow, to compute exceptional paths 
from the standard behaviour, to verify if a change in the model is correct with respect 
to a given criterion and to enact safely a change on the ongoing instances. 

For this reason, the specification module of the Milano workflow management 
system is based on the theory of Elementary Net Systems (ENS) (Rozenberg, 1987; 
Thiagarajan, 1987). In fact ENS has some nice mathematical properties that appear 
suitable to provide the above services. For instance, using ENS, it is possible to 
compute and classify forward- and backward-rolls linking their states; there is a 
synthesis algorithm from Elementary Transition Systems (ETS) to ENS (Nielsen et 
aI., 1992); the morphisms in ENS (ETS) preserve some important behavioural 
properties. Moreover, since Milano is based on the idea that workflows must be as 
simple as possible, its workflow models constitute a small subcategory of ENS, 
namely Free-Choice Acyclic Elementary Net Systems, whose main properties are 
computable in polynomial time, allowing an efficient realization of the specification 
module. 

3. A Workflow Example: the Credit Procedure 

The selected exarople is the process through which a customer request for a new 
credit is managed by a bank. This exarople is extracted from a real case study; for a 
more complete description see (Schael, Zeller, 1993; Agostini et aI., 1994). 

In the credit procedure the client interacts with the agency director who is 
responsible for the whole procedure. After a preliminary informal investigation of 
which the director is in charge, where the client motivation is exploited, the 
documents the clients provides to support her request are collected and two parallel 
processes start: in the first, the information about the client accounts are collected and 
the practice is perfected, while in the second, several external data bases are checked 
to control if the client has other credits, financial insolvency or any other critical 
financial situation. The two processes meet when a report on the credit request is 
written. At this point the decision process starts, that follows different paths 
depending on the value of the requested credit. 

If the credit request is under 50,000,000 Lit. the agency director can write a credit 
proposal and submit it to the district coordinator for her approval. Otherwise other 
bodies of the bank have to write the credit proposal and/or decide its approval. If the 
credit proposal gets the corresponding approval, the client has to sign a copy of the 
contract. 

The organizational structure of the bank is sketched in Figure I, where only people 
or offices taking part in the credit procedure are shown. In the following a brief 
description of the organizational roles belonging to the cooperation network is 
provided. 
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Figure I: Organizational Structure of the Bank 

The Agency Director -AD in short in the next Figures- is responsible for the 
agency's overall performance and for commercial development. According to the 
organizational model of the bank. she is the initiator of the credit procedure. In line 
with current rules of the bank, her role is characterized by autonomy and full 
responsibility in initiating a credit request procedure; her deliberation competence is 
limited to loans 2 50,000,000 Lit. 

The District Coordinator (DC) has responsibility over the bank budget for credit 
operations in her area of competence. She is informed on all credit proposals in order 
to explore new business opportunities. Her deliberation competence is limited to 
loans 2 80,000,000 Lit. 

The Credit Office director (CO) is an experienced manager. She has the 
responsibility to assure a check on credit activities in general. Her deliberation 
competence is limited to loans 2 200,000,000 Lit. 

The Resolution Body (RB) -that is, the Top Management Council of the Bank­
has the deliberation competence on all the loans> 200,000,000 Lit. 

In order to take her decision, the agency director asks agency employees (generally 
credit andlor EDP experts) for information about the client. This information can be 
obtained from several sources, which can be internal or external to the bank. 

4. Modeling Workflows in Milano 

Let us introduce, in the following, the main definitions and facts about modeling 
workflows in Milano and let us illustrate them through the credit procedure example. 
To avoid repetitions, we refer, for the main definitions on Elementary Net Systems 
and Elementary Transition Systems to (Rozenberg, Thiagarajan, 1986; Nielsen et aI., 
1992; Bernardinello, 1993) 

As anticipated above, the specification module offers two different representations 
of a workflow model: the first one, called Workflow Net-Model, is based on 
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Elementary Net Systems, while the second one, called Workflow Sequential-Model, 
is based on Elementary Transition Systems. 

Definition 1 - Workflow Net Model 
A Workflow Net-Model is an Elementary Net System, L=(B,E,F,c,,), such that the 
following hold: 
a) L is structurally acyclic (there are not cycles in the graph); 
b) L is extended Free-Choice (all conflicts are free). 

The class of Workflow Net Models is called WNM. 

Example 2 
In Figure 2 it is presented the Workflow Net Model representing the credit 

procedure described in paragraph 3. 
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We would like to anticIpate that within Figure 2 -thanks to the capacity of 
handling exceptions by jumps see Example 9- we can avoid to specify all possible 
cases of withdraw or rejection of the credit procedure. In this particular procedure it is 
of paramount importance since rejections and withdraws can occur in almost every 
state of the process. 

Definition 3· Workflow Sequential Model 
A Workflow Sequential Model is an Elementary Transition System A=(S,E,T,s,,), 
such that the following hold: 
a) A is acyclic (there are not cycles in the graph); 
b) A is well structured (all diamonds have no holes and the transitions with the same 
name are parallel lines in a diamond). 
The class of Workflow Sequential Models is called WSM. 

Example 4 
Figure 3 presents the Workflow Sequential Model of the credit procedure introduced 
in paragraph 3, whose Workflow Net Model is given in Figure 2 . 
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While the Workflow Net Model (Figure 2) is a local state representation making 
explicit, for example, the independence between the actions of 'Perfecting Practice' 
and 'Checking Financial Insolvencies', the Workflow Sequential Model (Figure 3) is 
a global state representation, where the path followed during the execution of an 
instance is made immediately visible. 

It is well known that the sequential behaviour of an ENS can be represented as an 
ETS and, conversely, given an ETS it is possible to synthesize an ENS whose 
sequential behaviour is equivalent to the source ETS (Nielsen et a!., 1992). It is easy 
to show that the above relation between ENS and ETS restricts itself to a relation 
between WNM and WSM. 

The algorithm to build the ENS corresponding to ETS is based on the computation 
of Regions (subsets of S uniformly traversed by action names). While the algorithm 
presented in (Nielsen et a!., 1992) generates a saturated ENS, having a place for each 
region of the source ETS, Luca Bernardinello (1993) has introduced a synthesis 
algorithm generating an ENS having a place for each Minimal Region of the source 
ETS, that is not a minimal representation of an ENS having the behaviour described 
in the source ETS but has some nice properties (e.g., it is contact-free and state­
machine decomposable) making it very readable and well structured. We have 
therefore decided to normalize each WNM to its Minimal Regional representation and 
to associate to each WSM its minimal regional representation. 

FactS 
The sequential behaviour of a WNM can be represented as a WSM and conversely, 
given a WSM there is a WNM whose sequential behaviour is equivalent to it. 

Proof outline 
The proof is based on the fact that the sequential behaviour of an acyclic extended 

free-choice Elementary Net System is acyclic and well structured and, conversely, the 
(Minimal) Regions of an acyclic well structured Elementary Transition System are 
such that the corresponding Elementary Net System is both acyclic and extended free­
choice. 

The synthesis algorithm for ENS has been proved to be NP-complete (Badouel et 
a!., 1997), making impossible to use it in real applications. The strong constraints 
imposed to WNM allow a rather efficient computation of Minimal Regions, so that it 
is usable in the specification module of the Milano Workflow Management System. 
Let us sketch the algorithm for the computation of the Minimal Regions of a WNM. 
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Algorithm 6 

Let A=(S,E,T, s'o) be a Workflow Sequential Model. The following algorithm 
computes the minimal regions of A. 

~ 
C := {(S - ( s'o)'( s'o})}; 
R:=0; 
whileC _ 0 do 

C := C - (S' ,r) with S' maximal; 
Er := (el3s E S', e exits s); 
E'r := (el e E Er and 3s E S' - r; e exits s); 
ifEr =0 

then 
R:= R u (r); 

else 
ifE'r= 0 

fi 
fi 

Example 7 

then 
R :=Ru (r); 
C:= C u (S",r')13e E Er, r' = (sl e enters s) 
and S" =(sl s E S' - (r u r') and s reachable from a state of r'}; 

else 
C:= C u (S",r')13e E E'r, r' = r U (sl e exits s}and S" = S' - r'); 

Figure 4 labels each state of the WSM of Figure 3 with the Minimal Regions 
containing it. 

It is not diffIcult to see that the WNM of Figure 2 has a place for each of its 
Regions (it is therefore the result of the synthesis algorithm applied to the WSM of 
Figure 4) and that the WSM of Figure 3 is isomorphic to it. 
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FactS 
The algorithm given above is polynomial in the size of A (of its set of States, S). 

Proof outline 
The number of elements we can put in C lies between lSI and 2:"ISI. Moreover 

each step of the algorithm requires at most one observation of each element of S. 

The efficiency of Algorithm 6 grants that the switch between the two 
representations of a workflow model (namely WNM and WSM) can be computed 
whenever necessary, so that there are no constraints imposing a particular 
representation to the user. The problems related to the graphical visualization of the 
two representations (e.g., multi-dimensional diamonds will appear as intricate and 
difficult to read graphs) are not considered in this context. They are taken into 
account within the framework of a system for the visualization of graph-based models 
(Bertolazzi et aI., 1995). 

The reader may object that the constraints imposed to WNM (WSM) are too strong 
so that the actors are forced to follow very rigid prescriptions. This is not true, since 
the actors, whenever they can not act in accordance with the model, can jump (either 
forward or backward) to another state from which execution can progress again. The 
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freedom in the choice of the states that may be reached through jumps is not 
constrained by the model but can be constrained in accordance with the rules of the 
organization where the workflow is modeled. The actors are supported in the choice 
of an authorized jump by the possibility of computing and classifying composed 
paths in the graph. 

Without entering into irrelevant technical details, let us present a simple example 
where it is assumed that the organization allows two different classes of jumps: 
strongly linear jumps (moving in the WNM only one token) not requiring any type of 
authorization and weakly linear jumps (canceling two or more tokens and writing one 
token in the WNM) requiring the authorization of the process initiator, i.e. of the 
person responsible for the execution of the procedure. 

Example 9 
Let an instance of the credit procedure presented in Figures 2, 4 be in the state (b4 , 

b,l (Figure 5, a). Then the allowed strongly linear jumps -dashed lines in Figure 5, 
b)- can either move the process back to the states (b" b,), or (b" b, I, or (b" b.), or 
(b), b,}' or move the process forward to the state (b" b,l. In practice -in the state 
(b" b,l- the backward strongly linear jumps allow the bank employees to refine the 
investigation on the client. In other words, when an employee needs additional 
information, which might have been produced previously in the process, she can 
directly jump backward and ask to her collegue responsible for one of the previous 
activities. 

b19 
c::::J E~"loitalion of 
-----,- Client Motivation 

"9 
~:~~=nu 

bJ 6 %~.!':!:..J'" 
Collcmng , 9 b1 
Clicntlnfonnation 
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Figure 5 a) 
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From the same state {b., b,) (Figure 5, a), weakly linear jumps ----<lashed lines in 
Figure 6--- may either move the process back to the states {bd or {bz)' or move 
forward to all possible states {blO) ... {bl,)' 
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As previously aoticipated, within the credit procedure, these jumps allow to handle 
all cases of rejection or withdraw of the credit, while leaving its definition as simple 
as possible, For instance, every time the experienced managers --e.g., the agency 
director, the district coordinator, etc.- intend to reject the request of the credit, it is 
sufficient to jump forward at the end of the procedure. 

To make an additional simple example of the utility of these jumps, every time a 
well known and very important client of the bank asks for a new credit, the agency 
director would like to jump directly to the negotiation part of the credit (e.g., the state 
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(bw)), or even directly to the signature of the credit contract (i.e., the state (b lS )). Of 
course, while strongly linear jumps can be applied directly by the employees, weakly 
linear jumps (as the ones described above) involve the approval of a responsible 
manager like the agency director. 

The modeling framework constituted by the couple (WNM, WSM) is therefore 
offering various services to its various categories of users. Actors, initiators, 
administrators and designers can choose between WNM and WSM to have the most 
effective visualization of the workflow model with respect to their current interest; 
actors and initiators can analyze the context in which a breakdown occurs choosing 
how to solve it. 

Administrators and/or designers receive from the above modeling framework also 
some relevant services with respect to their responsibility on the model and on its 
changes. If we assume that they are free to design the most efficient and/or effective 
workflow for executing within some constraints characterizing what, anyhow. the 
procedure must do, then they need to check any change with respect to those 
constraints. OUf modeling framework provides them with some services supporting 
both change design and its verification with respect to the constraints imposed to the 
procedure. They can, in fact, define a Minimal Critical Specification (see Defmition 
10, below) that must be satisfied by the adopted workflow model and by al1 its 
changes, using it as a reference to guide changes. The theory embedded in the 
framework (i.e., the properties of the morphisms between WNMs and/or WSMs) 
al10ws it to support them with the automatic verification of the correctness of 
changes. Moreover, they can enact the change on al1 the already ongoing instances of 
the workflow, moving to the new model al1 the instances that are in a safe state while 
postponing the enactment of the change in those instances that are in an unsafe state 
until they reach a safe one (for the definition of safe and unsafe states see Definition 
II, below). 

These services are based on the following: 
• the class constituted by a minimal critical specification together with an the 

workflows that are correct with respect to it is closed under the morphisms 
induced by the action-labels; 

• the composition of morphisms and inverse morphisms (morphisms always admit 
inverse, since they are injective and total).al1ows to distinguish between safe and 
unsafe states with respect to a given change. 

Let us explain the above claim with some simple examples, assuming that any 
workflow model must have the same set of action labels as its minimal critical 
specification and that only changes not modifying the set of action labels are al1owed. 

Definition 10 - Minimal Critical Specification 
A WSM, A = (S, E, T, s,,), is correct with respect to a minimal critical specification 
MCS = (S', E, T', s,,') if and only if the morphism induced by E, g:S -> S', is 
injective and total. 
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As its name evokes and its definition grants. a minimal critical specification is less 
constraining than any workflow model correct with respect to it, i.e. it admits a larger 
class of behaviours. Whenever no minimal critical specification is given. it can be 
assumed that the n-dimensional diamond representing the sequential behaviours of 
the workflow where all the n actions labels are concurrent is the implicit minimal 
critical specification to be taken into account. 

Definition 11 - Unsafe states with respect to a change 
Let A=(S, E, T, s'o) be a WSM and A'=(S', E, T, s,;) be the a WSM being the 

effect of a change on it. Let both, A and A', be correct with respect to the minimal 
critical specification, MCS = (S", E, T", s'o"). Let, finally, g: S->S" and g':S'->S" 
be, respectively, their morphisms on MCS induced by E: then S - g-l(g'(S')) is the set 
of unsafe states of A with respect to the given change. If a state is not unsafe with 
respect to a change, then it is safe with respect to it. 

S - g-l(g'(S')) contains all the states of A not having an image in S' (the new 
changed model); therefore it is impossible to move an instance being in one of them 
to the changed model since we can not find univocally the state in which it will be 
after the change. Moreover, any choice we do for it, does not allow a correct 
completion of the process. 

Example 12 
Let the WSM of Figure 7 (in the cube only the most external edges are labeled, 

since every parallel arc has the same label) be the effect of a change to the WSM of 
Figure 4. 

Figure 7 

This change makes the procedure more efficient allowing to perform concurrently 
the activity 'Checking external Credits' and the sequence of activities 'Checking 
Financial Insolvencies', 'Funher Investigation'. In this case all states of the original 
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procedure are safe states with respect to this change; that is, all running instances can 
be safely moved in the new model. 

Example 13 
Let the WSM of Figure 8, b, be the effect of a change of the WSM of Figure 8, a. 

In this case, the bank decided that possible 'Financial Insolvencies' of the Client 
should be checked as soon as possible in order not to proceed further and wasting 
time in 'Checking external Credits' in case of client's insolvency. 

Then the three shaded states of the first WSM (Figure 8, a) are its only unsafe 
states with respect to this change. 
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Example 14 
Figure 9 summarizes the three patterns of change allowed by our theoretical 

framework: parallelization, making two sequential action labels concurrent (Figure 9, 
a); sequentialization, creating a sequence with two concurrent action labels (Figure 9, 
b); swapping, inverting the order of two sequential action labels (Figure 9, c). The 
shaded states represent the unsafe states. 

'~- SQ.?" " e2 e2 el 

---. 
,,~ '~ 

" " --- -j 
Swapping 

Parallellzation Sequentializalion 

a) b) c) 

Figure 9 

The class of changes introduced above is quite small. An extension of the allowed 
changes may be obtained weakening the condition that the minimal critical 
specification contains all the action labels of any workflow model correct with respect 
to it, to the one imposing only that its action labels are contained in the set of action 
labels of any workflow model correct with respect to it. 

Finally, a precise definition of action-label refinement within the above theoretical 
framework will further extend the class of changes supported by the specification 
module of the Milano workflow management system. 

Conclusion 

The approach we have followed in the development of the modeling capabilities of 
the workflow management system of Milano is, for what we know, the first attempt to 
use the synthesis of Elementary Net Systems proposed by Nielsen, Rozenberg and 
Thiagarajan (Nielsen et aI., 1992) and further developed by Bernardinello (1993) to 
the application domain. 

The treatment of dynamic changes we propose is strictly related to the one 
proposed by Ellis, Rozenberg and Keddara (Ellis et aI., 1995). The main difference 
between them is that while Ellis and co-workers move any workflow instance to a 
new model, where unsafe states and paths are preserved in order to avoid 
inconsistencies, in our approach the move of the instances is delayed until they reach 
a safe state. 

Solutions for the static change of workflow models have been developed by 
several scholars (Abbott, Sarin, 1994; Swenson et aI., 1994; Simone et aI., 1995; 
Dourish et aI., 1996; Voorhoeve, van der Aalst, 1997). While some of them have a 
different objective, since they allow any change without any request for consistency 
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between the old and the new model (Swenson et aI., 1994, Dourish et aI., 1996), other 
are based, as is our proposal. on transformation rules granting the desired consistency 
relation between the two models (Simone et aI., 1995; Voorhoeve, van der Aalst, 
1997). Generally they propose larger classes of transformation rules than us, since 
they do not take into account the dynarnicity of changes. It is our intention, in any 
case, to extend our transformation rules to allow also refinements and/or abstractions. 

A part from the full integration of the workflow management system within the 
Milano platform and from the new software modules it needs, some further 
developments are planned in the Cooperation Technologies Laboratory at the 
University of Milano. 

As already mentioned above, we plan to extend the transformation rules for 
changing a workflow model to allow also refinements and abstractions. This requires 
the development of both its theoretical basis and its modeling capabilities. 

We want to enrich OUT modeling framework with a recursive capability, allowing 
to reduce a part of a workflow model to a single node, if and when it has the required 
interfaces with the rest of it. 

The graphical interface we need for our workflow management system is rather 
complex. since managing changes and exceptions with respect to multiple different 
representations requires the automatic generation of a graphical representation on the 
basis of a formal model. We are experimenting with a graphical editor developed at 
the University of Rome (Bertolazzi et aI., 1995) to evaluate if it fits within our 
system. 
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Abstract. In this paper we apply a formal approach, based on Petri nets, to design a 
logical structure for call centers based on sophisticated computer telephony 
integration (CTI) applications. A typical call center consists of a set of operators, 
called agents, who process inbound calls from clients. This call processing may 
involve the use of computer systems and other devices, such as faxes. as well as 
communication with other agents. The treatment of each call being processed is 
heavily regulated by a script, which is specially designed for specific kinds of calls 
by the experts in telemarketing. However, the design of such scripts can be 
problematic. In this· paper, we stress the need for tools supporting a scripting 
process. We propose a. formal model intended to serve as a basis for such tools. 
Specifically, we introduce formal models called script nets for formal representation 
of scripts and of the call center as a whole. We have also introduced various ways to 
structure script nets, using a transition hierarchy and macroplaces. 

1. Introduction 

Over the last few years phone call-center systems have continued to grow at a remarkable 
pace. Several manufacturers and service providers are developing and introducing 
systems with enhanced functionality, principally through what is known as computer­
telephony integration (CTI) [15]. The general purpose of a call center is to connect 
operators called agents with members of the public called clients, i.e., people interested 
in using the services of the call center. Typically a call center is based on at least one 
telephony switch to which agent stations are connected by extension lines and directory 
numbers, and to which incoming and outgoing trunk lines may carry telephone calls 
between the switch and the parties who call in. In addition, most modern high-capacity 
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call centers have agent stations that include computer platforms, often PCs, equipped 
with video display units (VDUs). The PCNDU platforms are typically interconnected, 
usually by a local area network (LAN). There may also be servers of various sorts (e.g. 
data base or fax server) for various purposes on the LAN, and the LAN may also be 
connected to a cn server, in turn connected to the central switch through a cn link. 

Within a call center, agents process telephone calls from clients and carry out call-related 
business. 

The typical processing of calls includes using data from computer systems, including 
databases; incorporating other devices such as fax and e-mail; and communication with 
other agents. The communication of the agent during call processing is heavily directed 
by a specific scenario, specially developed for such calls by telemarketing experts. These 
scenarios are referred to as scripts. The same agent can work with varying call types, 
controlled by different scripts. Thus, a call center is a distributed system, usually built on 
top of a local area network that connects agent stations, server computers and telephone 
equipment. 

It is interesting that concept of workflow management [1,6] can be very useful in 
designing call centers. In fact, a call center can be understood as a specific case of a 
workflow system, which substitutes telephone calIs for documents circulating in the 
system. We should also mention that because office activity very often involves working 
with inbound and outbound calls, the processing of such calls should be naturally 
incorporated into workflow management systems. 

The present paper is devoted to call center management, and is specifically directed 
toward scripting for call centers. Usually, scripts are written in a relatively high-level 
programming language. The complexity of a call center presents a challenge for any 
programming tool. Moreover, as with any other sort of programming, when a bug 
appears or a change is made in the purpose or operation either of a call center or a 
segment of call center operations, it is often necessary to rewrite a large number of 
scripts. This endeavor is no small task, and may take a considerable time. Moreover, such 
reprogramming introduces numerous opportunities for errors, both in programming and 
in the layout of the script. 

Given the nature of call center management, and scripting in particular, it is highly 
desirable to reduce the complexity and amount of effort required to direct these activities. 
It is especially important to simplify the activities of agents, such as engagement with 
clients, and to provide enough flexibility so that changes and adaptations can be easily 
and quickly made without fear of error. To handle this issue we need special tools, such 
as a visual language, graphical editor, and others. Essentially, the requirement is to build 
a platform for a generation of CTl applications of varied types. Such tools for the 
generation of cn applications already exist, but for the most part they do not take into 
account the distributed nature of call centers and therefore do not allow the production of 
scripts with complex communications between agents, hardware and other resources. In 
this paper we present the progress we have made in an ongoing project aimed at 
designing such a platform. 

If we examine scripts of a typical call center, we see that their key features include the 
flexible use of resources during call processing; extensive manipulation of calls, 
including attached data; allowance for exceptions; complexity of real-world scripts; 
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parallel call processing; and strict requirements for real-time call processing. It is clear 
that scripting tools should be designed according to a formal approach. This paper is 
devoted to developing such an approach, using the theory of Petri nets [11,12]. More 
specifically, in this paper we build a Petri net-based formal model for representing call 
center scripts. 
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Fax Server 

Telephony Server 

GTI-link Data Base & 
Application Servers 

Telephone rn":::=~i'P'il!::'-'" processing boards, 
specific equipment 

Workstation 

Agent workplace 

Agents 

Figure 1: A call center environment 

Structure of a call center 

In this section we present an abstract model of a typical call center that will serve as a 
subject for the formalization process. From now on, the call center will be referred to as a 
"system ". 

Typically, a system operates with a set of resources. These are: equipment (e.g. phones, 
fax machines, switches, a local area network, etc.), software components (database, text 
editor, etc.) and personnel involved in system operation (agents, administration). All 
communications of the system is accessed through these resources. A typical Call-Center 
environment is shown on Figure 1. 
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From the point of view of applications, the system can be perceived as a collection of 
communicating objects. We will divide all objects of the application level into two types: 
resource objects and call objects. The former represents objects corresponding physical 
resource of the system while the latter represents objects intended for call processing. 

The behavior of each object is regulated by a scenario specification, called a 'script'. 
There may be several objects working in accordance with one and the same script. For 
example, for a script describing the behavior of a telephone, there may be several objects 
corresponding to actual telephones in the system; a script specifying the call processing, 
may have several objects processing different calls of the same type. 

We will assume that each script is identified by a unique name within the system. 
Moreover, we associate with each script a domain of object names, to identify each object 
within the script. This addressing scheme allows us to uniquely identify objects within 
the whole system. 

3. Formal Model 

For formal specification of scripts of eTI-applications, we developed a Petri net-based 
model called script-net [3] combining some featured from other Petri net models [11,12]. 
The model consists of the following four (quite orthogonal) constituents: 

1. High level and object oriented Petri net model called cooperative nets [14] that 
allows to represent complex system as a set of subsystems communicating via the 
client server protocol [13]; 

2. For structured specification of complex scripts, we suggest the concept of 
hierarchical transition [8]. Under this concept, a net can be represented as a set of 
disjointed subnets with links between hierarchical transitions and subnets forming a 
hierarchical structure. Firing any hierarchical transition results in execution of its 
internal net. This construction makes script representation modular and allows for 
the simple modification and reuse of specifications. 

3. For processing exceptions in scripts, such as receipt of unsolicited events, we suggest 
a macroplace construction [2]. 

4. To represent real-time constraints that are very critical for scripts, we incorporate 
Merlin's time constructs into our model [10]. 

In the following we consider some of these constituents in detail and show how they can 
be used. 

3.1. Basis of script-nets 

As a basis of script-net we take an object-oriented model of high level Petri nets known 
as cooperative nets [14] that allows us to represent a system as a set of communicating 
subnets. In particular, each transition can be associated with the process of 
communication (sending or receiving of message) with other script-nets: 

• Sending a command: s(scrip/(v).com(v" •.. ,v.)), where scrip/(v) specifies a target 
object, and com(vj, ... ,v,J is a command with parameters. 
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• Receiving a command: r(script(v).com(vb ... ,Vm)), that gives a command with 
parameters from the objectscripl(v). 

This enables us to specify a communication between a CTI application and a server using 
a client-server protocol [13]. Moreover, it is possible to associate a transition with a 
creation of new objects for some script-net. 

• Creating a new object: c(scripl(V).V/, ... ,vJ, where scripl(v) identifies a creating 
object and Vb ••• ,Vn its initial parameters. 

Thus each script of a cn application can be described as a corresponding script-net. In 
this case the process of call processing can be understood as creating an object (injecting 
a token in head place of script net) and moving it through the net. Some examples of 
script-nets are presented in [3,4]. 

We allow multilabeling of net [5], i.e., labeling where each transition may be labeled by a 
set of expressions, such as sending and receiving a message, or creating a new object. 
This extension can simplify specifications and make them more compact. 

By collecting communicating script-nets, we can produce a script system that represents a 
call center's logical structure. In this structure we can distinguish application scripts and 
system scripts representing system services such as resource management and call 
routing. 

3.2 Macronels: exception handling 

At this point, we should note that scripts describing real scenarios are usually extremely 
complicated to work with and therefore require some means of modularization. We will 
consider the problem of structural representation of script nets. In this respect, we can 
point out two techniques for modularization in Petri net-based models we would like to 
employ - hierarchical transitions and macroplaces. The first technique is well elaborated 
within the framework of high-level Petri nets, e.g. see [8]. Generally, it consists of 
representing a hierarchical net as a set of disjoint subnets with links between transitions 
and subnets forming a hierarchical structure. Firing of such a hierarchical transition 
causes an execution of its internal net that consists of the firing of a transition (or step) 
sequence from initial marking to the terminal one. So using this technique we can 
represent script nets as a set of hierarchical organized script subnets. 

At the same time, in call processing, we may face situations, which are asynchronous to 
normal processing, and a reaction to such events should also be specified. For example, 
there may be situations when, during the dialogue between agent and client, the telephone 
line is disconnected (e.g. suddenly client puts down a receiver); as well as more 
sophisticated situations when the processing of current calls is interrupted and the agent 
is forwarded to process new calls with higher priority. Moreover, processing of such 
broken calls could be recommenced upon availability of agents. To specify such 
situations in script nets, special constructs are needed. To accomplish this, we suggest 
using the concept of macronets reported in [2] and generalized on high level Petri nets 
[4]. 

Petri nets with macropiaces. Notions of macronets and macroplaces have been 
introduced in [2] for specification of such situations where starting the execution of one 
procedure may interrupt execution of another procedure. Syntactically, a macronet is 
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defined similar to nets with hierarchical transitions, however we use macroplaces instead 
of transitions. In other words. a macronet could be perceived as a set of Petri nets 
equipped with hierarchical links of the type "place ____ m". 

Graphically, a macronet can be represented as a set of included nets, each internal net 
being drawn within a circle of corresponding macroplaces. The head place of an internal 
net is marked by an incoming extra arc. 

The firing rules of macronets are as follows: 

• A macroplace is considered to have a token if its internal net also has a token; 

• adding a token to a macroplace results in adding a token to the head place of the 
internal net~ 

• removing a token from macroplace results in removing a token from the internal net 
no matter what position it is in. 

lt is clear that the concept of a macroplace is helpful for representing various situations 
where an interruption is involved. 

High level macronels. Using standard possibilities of high-level nets we generalize the 
notion of macroplaces, allowing us to specify more general constructions. First, we will 
be able to build constructions where execution of an internal net can be interrupted only 
in specified regions. Second. we can specify a head place of internal nets dynamically. 
helping us to inject a token into any desired place. 

m (S,) 

Figure 2: Macroplace and internal net 

Let m be a macroplace and Nm={SnuTnuFm} be its internal subnet. For an internal net we 
introduce a data type typem with a domain equal to a set of internal places: 
Dom(typem)=Sm={s/o .... s,}. Let us add to the token internal net an item of type typem• the 
value of the item is exactly equal to the place where the token is situated. This can be 
easily implemented by assigning to tuples of incoming arcs with corresponding values 
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from Sm, see Figure 2. Then we add to this a precondition of outgoing transition IE m" aJ 

expression of the type V,A= S', where S' s;; Sn. Firing of the transition t results in removing 
a token from a place of S'. Note that we can 'remember' the actual place where the token 
was before it had been removed. For an arc coming in to the macropJace m, the 
corresponding item of the tuple is stated in a suitable manner. For instance, if it is equal 
to a place SF Sm the adding of a token to macroplace m will result in injecting a token 
into Sj of the internal net. Apart from a constant, we can write a variable of the type typem 

that allows us to determine the incoming place dynamically. Specifically, we can replace 
taken to its point of origination, see Figure 2. More strict definition of high-level 
macronets can be found in [3]. 

With the aid of a macroplace. one can easily specify the next situation in an agent's 
scenario: 

• Interruption of a script execution (naturally with an apology to a client) at any stage 
with subsequent return to an initial state. In this case the processing of the interrupted 
call is cancelled 

• Interruption of a script execution only if it is in special regions of the script. 

• Interruption of a script execution while noting the place of interruption and possible 
current parameters of the call processing. This information can be used for future 
recommencing of the processing of the call. 

3.3 Time constraints 

To represent real-time constraints that are very critical for scripts, we incorporate 
Merlin's time constructs [9] into our model. In particular. each transition in a script-net 
can be associated with a pair [tmin.tmax] that provides a time interval enabling the 
transition. This enables us to specify timeouts in script execution. 

~ g~i~;;ge~i .......... --.......... --. 

[t,t] 

(i) (ii) 

Figure 3: Resource capturing 

Using this client server scheme of communication and time constraints, we can build a 
mechanism of resource capturing!release. On Figure 3 (i) the scheme of agent capturing 
within time interval 't is depicted. The capturing is started by sending c command get 
(firing of the transition I,) to the script agent that defines the behavior of the agents. If 
within the time interval [O,t] a positive reply is received r(ok(x)) (firing I,) then the agent 
with that identifier x is considered to be captured. If within time interval nothing happens 
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then transition t3 fires hence there are no agents available. This construction is called 
get_agent(t). If no time interval is specified then the transition 13 will never fire and thus 
can be removed, see Figure 3 (ii). 

4. Examples 

In the section we discuss a methodology of representing scripts according to the model 
we are introducing, with the aid of some realistic script examples. 

Example 1. On FigA the script corresponding to resource of operators (agents) is 
depicted. The agents can be in three states: READY, BUSY, NOT-READY (NR for 
short). The transition from READY to BUSY is caused by receiving a command get from 
an object X and sending it a reply ok. Note that this transition is labeled by two labels that 
correspond to receiving and sending commands. In a BUSY state the agent can return to a 
READY state by receiving a command r(X]ree) from the application. Moreover, in a 
BUSY state the agent can move to a NOT-READY state (e.g. switching to more urgent 
work) informing the application by sending a command notJeady. The place S says that 
the operator a can work with script A, the operator b can work with script Band c can 
work with both scripts A and B. 

AGENT 
s 

"ready" NR s(noCready) 

Figure 4: Script-net of agent. 

(x) 

r(Z.free) 

Example 2. In this example we build a script-net corresponding to a script for the 
processing of a retail catalogue sales call center [9]. In this context, many customers call 
to inquire about the availability of items in a catalogue, status of their order, delivery 
options, and similar routine questions. Such simple calls can be processed automatically 
by a voice processing system. Other calls, especially those involving new customers who 
need special assistance, must be processed by an operator. In Figure 5, we present a script 
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net corresponding to processing this type of call. When the system enters a call into a 
script (a token appears in a head place so), it plays a greeting and gives a choice of 
pressing" 1", "2", or "3" (the transition t/). These choices correspond to calls concerning 
availability of items, the status of a current order, or other types of calls, respectively. 

MO 

Ml 

"sorry" ····················gei~ag~~ii8i·: 

s(agent.get) 

r(disconnect) s(agentfree) 

Figure 5: Example of a Script-Net, in Catalogue Sales Context 

In the first two cases the call is processed automatically (hierarchical transitions I, and (4). 
The third case needs the intervention of an operator, who is captured by the expression 
s(agent.get). Here, the agent is the name of the script-net for resources corresponding to 
operators, get the name of capturing command. If there is a free operator in the system, 
he is captured. At this point the call is transferred and the operator works with the 
customer (hierarchical transition tlO)' At the end of the conversation, the operator is 
released (111). If there are no free operators (1/2) the system plays a recorded sound file 
with appropriate explanations. 

In this example, two possibilities for agent capturing within the time interval 't are shown 
within dashed boxes. The capturing is initiated by sending a get command to the "agent" 

- 173 -



script that defines the behavior of the agents. If a positive reply r(ok) is received within 
the time interval represented by [O,t] then the agent with that identifier is considered to 
be captured. If within the time interval nothing happens, then transition nok fires, 
indicating that no agents are available. This construction is called get_agent(r), 

Imagine that an agent involved in call processing presses a "not ready" button on his 
telephone and becomes unavailable. This event corresponds to firing the transition t14' At 
this point the script tries to find another agent (t15). If another agent is indeed available, 
control of the script is returned to the same place where it was interrupted, and call 
processing continues. The state where the call processing was interrupted is saved in the 
variable v. 

Alternatively, imagine that a client suddenly hangs up during a call. This event 
corresponds to firing the transition Izo. Firing of this transition disrupts the execution of 
the script including the construction defined above, releases its active agent (if any), and 
then terminates the call processing. 

Figure 6: Graphical script editor 

4. Implementation Issues 

In this section we briefly sketch some tools for generation call center applications based 
on developed formal model. In particular, we developed a programming system for 
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building scripts for processing both inbound and outbound calls with extensive 
intervention of living agents. The system functions in an Intranet environment, is based 
on thin-client technology, and uses a graphic language to describe agent work scripts. 
More specifically, the system comprises the following components: 

• A front-end graphical language for specification scripts with semantics based on 
Petri net-based model; 

• A graphic script editor that supports the scripting language and allows to build 
scripts in a simple and convenient way; 

• Form manager for creating a set of forms to be interchanged between application and 
agent station during a call processing; 

• A script engine that executes scripts upon emerging inbound and outbound calls in 
the run-time stage. 

The graphical scripting language allows one to represent a script as a graph where each 
node depicted by icon corresponds to elementary communication with other objects (e.g. 
devise object, agent). Arrows between icons define a causal relation between 
communication actions. Among other features of the language, we can mention features 
which inherited from the formal model: 

• Parallel constructs allowing one to represent multithreading and synchronization 
between threads; 

• Hierarchical constructs which allow one to build scripts in a modular fashion; 

• Exception handling constructs which enable one to specify the reaction of the scripts 
on receiving asynchronous and unsolicited events. 

On Figure 6, we present the snapshot of the script editor with the fragment of the script 
discussed in the example 2. 

5. Concluding Remarks 

In this paper we have proposed the Petri net-based model for design different distributed 
cn applications. This approach enables a designer to represent a logical structure of 
complex applications for call centers. 

In the nearest future we plan to pay more attention to architectural aspects in the process 
of formalization taking into consideration different related architectural approaches [7]. 

Considering almost all CTI-applications are real time systems, we must take into 
consideration time and stochastic aspects of the model under discussion, i.e., it is 
desirable to calculate availability of a call center (for specific sort of calls), agent's 
loading, optimal configuration of call-center, etc. By extending our model towards 
stochastic Petri nets, these issues can be addressed. 
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Appendix A: Basic notions 

A net is a tuple N=(S,T,F) where S={SI'S" ... ,s,} is a set of places, 

T = (tl,t" ... ,tm) is a set of transitions such that S (") T = 0, F ~ S x Tv Tx S is a 

flow relation. For each t E T define its a pre-set of places as °t = (sl(s,1) E F} and a 

post-set t" = (sl(l,s) E F}. Analogously, Os = (tl(t,s) E F} and s = (tl(s,!) E F}. A 

marking of a net N is a function M: S -'> {0,1,2, ... } . A Petri net is a tuple :E = (N, M 0) 
where N is a net and Mo is an initial marking. 
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1. Introduction 

Today, most companies and organisations are seeking for methodologies and tools 
capable of helping them to make appropriate management decisions. In these 
organisations, the workforce may vary from a few np to tens of thousands of people 
and, the range of skill and knowledge levels is usually quite large. More than ever, co­
operative work turns out to be a compelling way to reach project goals and company 
objectives effectively and in due time. 

Methods and tools allowing for better co-operative work practices have emerged 
recently as for example the CSCW approach ((Scrivener, 1994), (Bowers & Benford, 
1991), (Connoly & Edmonds, 1994)), and efficient operational software appeared on 
the market (Lotus Notes, Microsoft Exchange, Novell's and Digital's solutions). 

Although they seem to be well suited to solve problems where just a few people are 
just interacting in a more or less isolated process and workflow issues, they are not 
appropriate for large complex systems at least without preliminary, sound and detailed 
analysis and modelling steps (Schael, 1997). 

The purpose of this paper is to present a way to tackle human organisation 
problems based on both an analysis and a modelling exercise. It is based on a real case 
study, which will be exposed in detail. We will conclude this paper by discussing 
some research perspectives. 

2. Requirement analysis in a complex human 
organisation: the context 

In general, a complex organisation is hierarchical and composed of semi -autonomous 
subsystems ((Koestler, 1969), (Adam et aI., 1997)). Our study is focused on the 
complex human organisation within a co-operative workplace, where management of 
people is a crucial issue. 

Moreover, many organisations today strongly expressed a need for optimiSing their 
management processes and activities by using appropriate computerised means. 

By questioning and interviewing people, we already can already obtain a local but 
rather patchy solution. To identify real needs in complex organisations, it is necessary 
to analyse them in detail and to define a rigorous method. Human activities and also 
human factors characterising co-operative work are to be made explicit. The 
representations issued from this modelling exercise will serve as a base for discussion 
with the human actors within the different processes; their goals are to define 
specifications for new management solutions. 
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3. Analysis and modelling approach 

Our case studies were conducted in an Industrial Patent Department of a large 
Company. The workforce in this department is comprised mainly of experts in patents 
and trademark issues. Most of these people have no background in computer science. 

We initially a quite some time analysing organisational practices. Then, we looked 
at a method that helped us to identify its intrinsic structure. For this purpose, we have 
analysed representative methods such as MERISE (Tardieu et al., 1991), OMT 
(Rumbaugh et al., 1991), OSSAD (Dumas & Charbonnel, 1990), SADT (IGL, 1989), 
MKSM (Ermine, 1995). Most of these methods have a data model, an activity model 
and a processing model. For our case study, we needed a detailed data modelling (such 
as OMT or UML one). We also needed a representation of the actor level in the 
organisation (such as in OS SAD), and it was necessary for us to follow data flows 
between system actors. 

After having shown that no method completely fit with our objectives (Adam et al., 
98), further to this set of methods, we propose one for the modelling and the 
simulation of human organisation. 

3.1. The analysis phase 

The analysis of the organisation and the understanding of its practices are key points in 
our approach. 

To properly identify its needs, at general levels, it was necessary to perform a 
detailed analysis of the human activities within the department. On the other hand, in 
order to assess the needs at specific levels, an analysis of the individual tasks was also 
necessary; the techniques we used are quite conventional: observations, 
questionnaires, interviews, protocol analysis, document analysis". «Diaper, 1989), 
(Wilson & Corlett, 1990), (KolSki, 1997». 

It is also worth noting that nothing would have been possible without the support 
and the agreement of the different actors. 

3.2. The modelling phase 

The modelling phase started by conSidering and defining the basic <<raw material» of 
the Patent Department (the document) and by setting up a data model. We therefore 
chose an Object model, which allows a clear representation for the data (especially a 
hierarchical link between types of documents). An object model not only allows the 
representation of static data (for example paper documents integrated in the 
organisation data flow), but also dynamic ones (for example electronic documents). 
We opted for the OMT object model (Rumbaugh et al" 1991) because it satisfies our 
«readability» criteria. (Fig l(a)). 
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After the data modelling exercise, we started modelling the data flows on the basis 
of the activity analysis which has been described: a global view of working 
mechanisms in the organisation has been exploited by using the Actigram model of 
SADT (IGL, 1989) (Abed & Angue, 1994). Moreover hierarchical andlor 
responsibility concepts had also to be introduced; we drew inspiration from OSSAD 
(Dumas & Charbonnel, 1990) and we represented responsibility levels in rows. (Fig 
I(b)). 

Based on the data and data flow models, we then tackled data processing which 
required more detail than activity models. There are few processing models oriented 
towards human organisations. OSSAD is one of them, it proposes a model able to 
represent both co-operative and hierarchical concepts. (Fig I(c)) 

~~. 

firslnam., 
· account mmber, 
· date, 
· type, 

amount. 

ftrslname, 
. account nl.nlber, 
. date, 

",.. 
amounl. 

c d 

Fig. I. Four steps for modelling an organisation (example inspired from (Dumas, 1990) 

(a) Object model of a paper and electronic application 
(b) Activity model of an application for a loan 
(e) Process model of an application/or a loan 
(d)Dynamic model of an application for a loan: the parameterisedplaces allow us to easy 
represent interruptedjob and state change (in the second place, the agent memorises his 
job when client interrupts him) 
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3.2.1. Modelling the Dynamics: choice of the Petri Net 

Three models have been proposed so that most people (including those NOT 
conversant with computer science) can easily use them, the first one for modelling 
data, the second for modelling data flow and one for modelling data processing. 

These models, however, are still not sufficient to model the dynamics of human 
organisations, which have to take into account interruptions, parallel work and loops 
(Reason, 1990), (lambon, 1996). 

Several authors (such as (Abed & Angue, 1994), (lambon, 1996), (Palanque 92)) 
suggested the Petri net formalism. 

We have chosen a parameterised Petri net (Agimont, 1996) (Gracanion et al, 1994), 
which allows for interrupt, parallel andlor synchronised data management. (Fig led) 
for a better readability, the net is drawn in time) 

The four models introduced to date have to be discussed with the staff concerned 
(during meeting and brainstorming) in order to identify the critical points within the 
processes and to set up new solutions in a collaborative way. 

3.2.2. Choice of Parameterised Petri Net 

The Petri network has to allow the follow-up of system data flows, as well as actors' 
flows; especially those who move from one office to another. This network must also 
allow identification of document state and actors' activities. In particular, it has to be 
able to represent interrupts, which are inherent in human organisations. Classical Petri 
net does not give sufficiently clear representation of these requirements (Fig.2 & 3). 

end ~ and ~ 
"I"-~ 111"'"4'1 .... <Iffi4lI lnt"'n{II 

.---->1 Activity 1 

IasIlnI......p -
• 

Fig. 2. PN where place represents activities, e.g. the actor going from place to place 
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acljy~y 1 sloris 

lnlea",1 = mgs or comes 
and Allorminalod 

Fig. 3. PN where actor is represented by a place (his stale is define by token nalure in the 
place). 

In these examples, representation of interrupts is possible. But the application to an 
entire procedure would make understanding (by non-experts) somewhat difficult. We 
must bear in mind the fact that modelling will be presented to actors for validation 

To simplify the global structure, the parameterised Petri net has been proposed by 
several authors. (Agimont, 96). 

3.2.2.1. Dermition 

A parameterised Petri net is define as follow: 

0) RPP = {C,D,Pp,T,I,O} 

1) C = ~V; , ... , CV;cl J 
2) D = CV; xCV, x ... xCV1CJ 

3) PPj is a parameterised place, by definition a D subset 

4) D = CV; X CV, X ... X CV1c1 is a parameterisation deSCriptor 

Pp 

with U Pl~ = D and PE'; n PPj = 0 
j=l 

5) ptj is a vector transition, pt,: J(pt,) -7 O(pt,) , I(Pt.) is the set of 

consummate places, and O(pt
j
), the set of product places. 
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6) T = {ptl , ••• , PtlTI J is the set of all actions that can be executed by the system. 

7) t; = tvt;! , ... , pt;jlj.},;; T is a parameterised transition <;> 

Vi,j,k: pt;,ptj E t'PPk E Pp, 

II(pt) (j PPkl = II(pt) (j PPkland IO(pt) (j PPkl = IO(pt) (j PPkl 

8) The set of all parameterised transition PT is defined by parameterisation 
descriptor Pp and by T, the set of vector transition. 

9) A parameterisation is a correspondence between a PPN and a set of PPN which 
represent all the same system, so that only the Pp descriptor changes. 

The next paragraph is an example of a PPN application. 

3.2.2.2. Example 

Instead of the traditional philosophers' diner example (which have been modelled with 
PPN in (Agimont, 96), let us take the following example: 

Six computers have to scan and print (i.e. to photocopy) documents and classify 
scanned documents. But, there are only three scanners and three printers. 

This problem can be classically modelled, but parameterised Petri net allows 
simplification of the net. 

Let us come back to the definition: 

RPP = {C,D,Pp,T,I,O} 

c = {CV" CV,} with 
CVj = { compO' campi' comP2' comP3' comp., comps' scano• scanj • scanz• impo' imp/. 

imp,}, 
CV, = { manage, copy,free, busy} 

We have D = CV; X CV2 

Let us define vector transitions (we shall see that there are several definitions of 
parameterised places). 

There are two rules, for two actions, vector transitions are: 

launch photocopy: 
[(Pt,) = { (camp), manage), (scan~,_" free), (imp,,,,,,,,,free) } 
O(pt,) = { (camp), copy), (scan,." .. ", busy), (imp,,,,,,,,, busy) } 

launch management: 
[(Pt,) = { (camp), copy), (scan~" .. ", busy), (imp,,,,,,,,, busy) } 
O(pt)= { (camp" manage), (scan,,, .. ,,,free), (imp,,,,,,,,,free) } 

for i E [0, II J (the I2 objects) etj E [0,6](6 computers) 
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Fig. 4. Maximum detailed representation 

We have T = {PI, , ... , PI'2} 
Parameterised places (!'pi), which are included in parameterisation descriptors (!'p), 

are not unique. It is possible to obtain the Petrinet (the fig. 3, or the fig. 4), with a 
higher abstraction level. The Petrinet illustrated by the Fig. 5 represents the highest 
abstraction level, all the system is defined by one place. 
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.A ~~ 
C:~~}:bfl 

launch photocopy 

launch manag.m.nt 

a) Re resentation of a middle abstraction b Re resentation with maximum abstraction 

Fig. S. Two different representations by PPN 

So, parameterisation allows to simplification of a net, but the problem is limiting 
the abstraction, to have a net still readable. The Petri net on the fig. 5a is a good 
compromise between abstraction and detail. It allows, with rules, to follow system 
dynamic. 

In our case, parameterisation to interrupt management has been applied. 

3.2.3. Use of Parameterised Petri Net 

Our net is based on the fig.2. This simplification leads to the building of two 
parameterized places building, one for activity representation, and the other for 
interrupt representation (fig.6). In actual fact, this two places system describes a 
workspace (an office). 

r (1) new interrupt 

---------~~.I--.( (2) activity 
'·changing 

.. ' .' .... "interrupt 
~~l'I-\ tasks 

.. 
actors 

Fig. 6. Interrupt management by PPN 

'" 
"'(3) end 

interrupt 

Activities are represented by states of actors which are present in the main place 
(this place may also contain used documents too). 

Transition 1 is fired by an interruption. Actor state (the current activity, his progress 
in this activity) is stored in the second place. 
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Transition 3 is fIred by the end of interrupt management. Actor returns to his task, 
or on the most urgent task. 

Transition 2 is fIred at the end of an activity. Actor gets a new state corresponding 
to a new activity (related to the documents in the main place). 

Let us come back to the defInition for this system: 

RPP = {C.D.Pp.T,l.O} 

c= (CV, CV,) with 

CV; = t~,. W z •...• WI'. __ I • doc,. docz ..... docl"'_"'1 .int,. intz •...• intl"'_"'1 J 
Cv: = {actiVity,. activityz ..... activityl",.,"m.,,~ • } 

z waiting. processing. interrupted. completed 

We have D = CV; X CVz 

In this set of two places, there are three rules: to store state, to restore state, to 
change state. The vector transitions are defIned by: 

Store state 

{

J(Pt!) = {(w,., activity.); (docd, processing); (docd., waiting)} 

O(pt;) = ~w ,., activity •. ); (docd' interrupted); (docd., processing); (intli"l.l' activity.)] 

Restore state 

{
J(Pt;) = {(w" ,activity •. ); (docd ,interrupted);(docd ., processing); (int, ,activity.)} 

O(pt;) = {( w" ,activity.); (docd ,processing)} 

Change state 

{
I(Pt;) = {(w" • activity. ); (docd,completed)} 

O(pt;) = {(w".activity G'); (doc d'. processing)} 

Following example shows an interrupt management: 

The actor is reading a patent, the 
telephone rings, transition 1 is fIred, (store 
state rule is applied). 
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appel.Gn_traltomon 

brovot,eo_attGnte 

brevGt.en_traitumen 

w1·lirG_breVGt 

~~.....\.. 

Fig. 7. Example of an interrupt management 

Activity is interrupted and the actor 
answers to the telephone 

When the telephone conversation is 
closed, state is restored by the third 
transition 

Interrupting one activity for another is related to an actor. In fact, each 
parameterised system represents an office, decision and priority rules on the activities 
are different from system to system, i.e, linked to offices or playing roles. 

The dynamic of Patent Department procedures has been modelled with these 
parameterised systems. An example of an application for a loan is shown in figure I 
(the dynamic model of an actual procedure requires two A4 pages). This modelling 
dynamiC is only possible with very detailed activity and actor task analyses. Our 
dynamic modelling process is a progressive top-down approach, from the activity 
model and the processing model. 

3,3. The simulating phase 

Although Petri nets are less accessible to a non-expert, we think that a Petri net based 
on a simulation tool will allow the dynamic simulation of organisational working 
practices in a rather didactic way. 

A simulator has been built (Gran sac, 1997), and is actually under test. It has been 
built in two parts: one for the rule execution and the other for the interface. 

The following structure is an abstract of the internal part: 

Activity::; {attributes (name. date, associatedJoles, run time, interrupted), preconditions, actions} 

Token = {attributes (name). Activities, functions (run,srop)} 

Place = {attributes (name, runable), Activities, Tokens ... or •• Tokenscb:wDtaIS' Tokensu-rup,' functions 
(add_token, run, supp_token)} 

Transition::; {attributes (name, crossable, date), Pl~. Placeo..po... Activities} 

Net = { attributes (name, nb_actors, nb_doc), Transitions, functions (add_transtion, add_token, .. )} 

Each part of the net has its own activities, i.e. its own preconditions and actions. As 
soon as an event appears in a place (document arrival or actor coming), tokens present 
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in the place check their preconditions. If an actor interrupts the current job for another 
one, an interrupt event is raised and the place creates an interrupt. 

Transitions have, of course, their own activities too. In our case, transition actions 
generally consist of documents passing and actors moving. As these actions take time 
so, our transitions are temporised. 

The two parameterised place system is programmed in one place. Activities 
(preconditions and actions) directly follow from the Petri net used in the dynamic 
model. The two-place systems appear only at the screen. 

The second part of the simulator is the interface. It has been defined classically or 
nearly so (PPN = (Tokens, Two-place System, Transitions, Arc}). Each object drawn 
on the screen involves the creation of its twin in the internal part. 

The precondition rules are keyed in a window, which show rules in a form close to 
natural language. (fig 8) 

Fig. 8. Keyboarding of preconditions 

The analysis part of the net deals only with the net physical aspect (test if all places 
and transitions are linked). The more thorough aspects, the fact that all places could be 
reached or that the net does not loop have not yet been programmed. The simulator is 
based on a modelling of the reality, so it is the people who have made the dynamic 
model who perform this net validation task. 

The simulator has a learning goal, some new work organisation (with or without 
new tools) can be checked in a didactic way, with loops and jamming appearing 
clearly. 

This simulator has been built in order to be used by people who are not conversant 
with modelling or Petri net. Simulator initialisation does not take too much time, and 
first tests allow us to identify 7 elementary activities on documents. 
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4. First results 

As already mentioned, our study case was conducted in a Patent Department involving 
about thirty people. This department wanted clearly to set up a computerised solution 
for helping document handling, whilst rendering co-operative work easier. 

Today, the complete analysis of the Patent Department processes and activities has 
been achieved «Carrere, 1996), (Notte, 1996)). 

The highest priority procedure has been built as part of a BPR process. The results 
are twofold: 

• Organisational level: for each procedure, concerned persons have been 
confronted with static modelling of data, activity and processing. Some 
organisational solutions have been proposed and have been kept. 
The simulation allows the antiCipation of future jamming and higher 
workload. 

• Computer level: data, data flow, data processing modelling has allowed 
uS to specify a CSCW solution helping actor systems to communicate 
data. PPN initialisation and its firsts usage aims at specifying in a more 
detailed way this solution. Rules definitions of parameterised systems, 
linked to roles, are a first attempt to specify a helping system for each 
role. 

To make this modelling exercise eaSier, a CAD Software Workshop has been 
established. (Fig 9) 

It proposes a set of four pages (one for each model) and a toolbox including the list 
of symbols using during the modelling exercise. (Fig 9). It is based on the Visio 3.0 
Software. 
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Fig. 9. Screen copy of the workshop 

5. Conclusions and perspectives 

The proposed model based approach makes the integration of computerised solutions 
in a complex human organisation easier. It is necessary for all people involved in the 
exercise to clearly understand their role and their position. The success of co-operative 
working practice is entirely dependent upon this process. 

For the time being, our approach was restricted to organisation modelling. We are 
now planning to extend into the setting up of Intranet and Internet solutions. 

As for a better and more systematic use of models, it is important to construct an 
easy-to-use computerised system, we believe that emerging CAD software will be of 
great help in achieving these goals. 

Our tool based on the Petri net is currently in a test phase, which will allow us not 
only to simulate the way organisations work but also to check the effectiveness of the 
proposed paradigm 

Finally, we are planning to «expor\» our methodology into Research Units. 
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Abstract. Flexibility in workflow management can be obtained through 
an unanticipated interplay between the identification of recurrent pat­
terns of behaviour and a dynamic use of information about the context 
where the workflow actors operate. (awareness). 
The design of flexible workflow management systems can take advantage 
of results in process modelling, that combine abstraction and context 
in all phases of its life cycle. A specifical approach, proposed in [5], is 
illustrated and interpreted in the light of the above claims. The approach 
is taken as a starting point for a research agenda aimed at enlarging the 
set of problems that a formal approach to workflow management system 
can deal with. 

1 Introduction and motivations 

The term workflow usually refers to the representation of the part of coordination 
which is based on recurrent patterns of behavior based on work practices and 
organization rules. According to the terminology proposed by [6J we distinguish 
three basic phases in workflow management: definition, enactment and execution. 

The theme of Workflow Management (WFM) is common to various domains 
that take quite different perspectives on it. First of all, the domain of production 
of commercial systems: vendors offer more than 200 WFM systems and have 
dedicated a remarkable effort in searching for a standardization [6J to guarantee 
interoperability among themselves as well as with the legacy system environ­
ments where they are inserted. Secondly, the domain of research on process 
modelling: here Petri net theory played a relevant role since very beginning and 
produced results overcoming one of the basic limits of the commercial systems, 
namely a very limited support to validation when business processes are defined 
and modified, both during their conception and enactment. Third, the domain 
of Computer Supported Cooperative Work (CSCW) where the development of 
(prototype) systems supporting cooperation, and among them WFM systems, is 
enriched with conceptualizations of what cooperative work is. These conceptu­
alizations are often based on field studies aimed at capturing the requirements 
of cooperative systems (see, e.g., [3J for the case of WFM systems) by analyzing 
work practices in settings where both a supporting technology is adopted or not. 
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The three domains developed, indeed, with a very loose interaction, For ex­
ample, within CSCW, one of the first attempts to build a system based on net 
models [13], showed very soon its weakness in the way the modeled reality was 
considered [12]. Among others, the considerations relevant here are the tension 
between an understandable language and its expressive power, and the fact that 
each procedure instance is treated separately. 

On the other hand, in the framework of Petri net theory, the approach to 
WFM systems was mainly focused on the definition of tools to support the 
design of the business process at hand based on various forms of refinement 
or compositional operators [15, 19]. These techniques provide process designers 
with useful tools that have, on the other side, the drawback of not supporting 
adaptive design: that is to say, design as a continuous action which is situated 
in a context and that can last for the all life cycle of the considered business 
process. 

More recently, both commercial products and theoretical framework propos­
als have devoted much attention to incremental design in order to take into 
consideration the contingent aspects of process execution. Again, commercial 
products lack support to validation. The problem of modifying the structure of 
running instances was the focus of some theoretical work [1, 11]: however, the 
proposed solutions are only applicable under some constraints on the net struc­
ture (e.g., input/output places, no cycles, etc.) which make their application 
sometimes problematic in real contexts, at least at this present stage. 

Adaptation is not the only open issue: recent experiences in empirical studies 
and in CSCW system design have increasingly emphasized the role of awareness 
in cooperative work and of its impacts on system design (and therefore also on 
WFM systems design). Most of this paper is indeed devoted to this problem. 

Awareness has become a keyword denoting how the knowledge of the context 
of cooperative aCtions plays a relevant role in actors coordination. Awareness can 
take different forms and contents: however, it can generally be defined as the mu­
tual perception that actors maintain about their different views on the common 
working space. These multiple views are necessarily present in cooperative work 
due to its inherent distributed nature [17], and concern the structure and be­
havior of the cooperative business processes in which the cooperating actors are 
involved. Formal approaches to business process design privilege instead, in an 
attempt to master the complexity of the problem, the view of a process (or any 
sub-part of it) as uprooted from its context, both when it is defined and when it 
is enacted and activated. Refinement techniques are a representative example of 
the approach: all rules we know of can be applied under the basic hypothesis that 
the module to be substituted for an event is fully disjoint from the net system 
to be refined. Since the goal is the highest degree of context-independence, these 
techniques impose severe requirements in order to guarantee a good behavior of 
the substitution in any context. The limit of this approach was already put in ev­
idence in [7} where it is observed that resources can hardly be seen as local to an 
action since they are normally shared by definition and they are used across the 
actions and their refinements. Also the approach proposed in [2], which gives a 
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small response to the last problem, basically suffers from a limited applicability 
due to the many constraints imposed on shared objects. 

A similar argumentation holds for the run-time modification of process in­
stances. Its correctness and consistency is sought for, rightly, in relation to the 
process functionality but the impacts of this modification on the interacting co­
operative processes are not considered. Apparently, what seems to he relevant 
here is a sort of input/output behavior that has been so aptly criticized by R. 
Milner [14] in the early 80's when concurrent systems are concerned. 

In summary, the current approaches to business process design and enact­
ment consider the process as a "global" entity that contains all the necessary 
information, possibly represented at different levels of abstraction. In our view, 
this approach induces a bias in the above techniques which, though useful within 
their range of application, are limited in dealing with the distributed nature of 
cooperative work. On the other hand, the traditional notion of abstraction "as a 
black box hiding the implementation details" has been questioned [9] in relation 
to the design of user interfaces which guarantee system extendibility and mod­
ularity and at the same time a meaningful information for the user when the 
system breaks down. While the black-box approach supports system manage­
ability, software reuse and a modular and reliable software maintenance, it lacks 
to provide the connection between the interface and the inner behavior of the 
system when the latter is needed by the user to interpret or react to a complex 
or unexpected behavior. In Dourish's words [9]: "It does not imply to provide a 
set of hooks directly into the implementation . . . Instead, . .. a rationalized model 
of the inherent behavior of a system offering its particular functionality". 

It is not difficult to transpose this argument from user interface to more gen­
eral interfaces between cooperative business processes. Basically, this is another 
way to stress the relevance of that type of information that we formerly denoted 
as awareness about processes. Now, the point is to decide if and how the manage­
ment of this type of awareness is hand in gloves with the design of the business 
process itself, or if it has to remain off-line, as part of some unconnected design 
or user's activity. In our opinion they have to be strongly connected if awareness 
information has to be aligned with the current definition and behavior of the 
system it refers to. In addition, and unlike Dourish's conclusions, we believe that 
the use of formal design techniques can be helpful to avoid leaving all awareness 
management up to the users. 

The context of a process is the environment in which it is defined and acti­
vated: an abstraction of a set of processes both interacting with the considered 
one and evolving in an autonomous way is part of the context. Every modifica­
tion in the context or in the process has to do with the constraints defined by 
the other. The already mentioned classical approach to the abstraction, postu­
lating or guaranteeing modifiability in any context, is not an ultimate answer, 
since it is too demanding; on the contrary, the possibility to take into account 
specific context properties allows for a greater flexibility in the description and 
modification of the process at hand. 

Moreover, in the case of WFMS, where awareness management is fundamen-
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tal, this last approach seems more appropriate, since context management can 
serve different purposes at the same time: supporting process design and the 
mutual awareness of the involved actors executing it. Then, if one is able to ad­
equately combine abstraction and context in the framework of Petri net theory, 
it is possible to enlarge the use of Petri nets in the design of WFM systems, if 
not in improving existing techniques to solve well known problems, at least in 
enlarging the types of problems that WFM systems can contribute to deal with. 

The paper is organized as follows: Section 2 discusses the role of awareness, 
Section 3 illustrates an approach proposed in [5] which goes in the direction of the 
above requirements as it combines context management with abstraction tech­
niques. The approach originated from a completely different framework, namely 
performance evaluation and specifically the management of state explosion. Al­
though quantitative aspects are not considered in this paper, the proposed ap­
proach leaves open the possibility to consider performance evaluation also in the 
case of WFM systems. Section 4 discusses how the approach of Section 3 can 
be used for WFM to take into consideration awareness. Section 5 illustrates the 
basic ideas through a simple example. This proposal is taken as a witness of 
a possible research approach and not as a fully satisfactory solution. Section 6 
concludes the paper by illustrating a research agenda. 

2 Interplay between workflow and awareness III 

coordination 

The experience derived from the studies on how people achieve coordination in 
real work setting shows that coordination is based on a continuous interplay of 

(a) recurrent patterns of behavior associated to work practices and organization 
rules: those patterns have been aptly called precomputation [16], 

(b) ad-hoc forms of behavior to adapt to the needs and constraints of a contin-
gent situation. 

The notion of workflow is typically associated to behavior of type (a), but cannot 
be separated from the second one if one wants to achieve the flexibility required 
by the real work settings. 

Flexibility can be achieved through the partial definition of workflows to 
be completed, possibly during their execution, through incremental design and 
run-time modifications. Even in the most standardized work setting, recurrent 
patterns of behavior cannot be fully specified and "the vagueness of plans" is 
"ideally suited to the fact that the detail of intention and action must be con­
tingent on circumstantial and interactional particulars of actual situations" [18]. 
These circumstantial and interactional particulars are exactly what awareness is 
about. In fact, the completion and adaptation of a workflow can be performed 
in a more effective way if the involved actors are aware of the state of affairs of 
the common field of work that is constituted, at least, by the resources and the 
cooperating workflows that make possible the successful execution of the work­
flow at hand. The consequence is that a technological support to coordination 
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should take into account both workflow and awareness management in order to 
be suited to handle any possible mix ofrecurrent and ad-hoc behavior and their 
inherently dynamic specification. This idea is sketched in Figure 1, where the 
point of view of a "distinct workflow" is taken: its environment is made up of 
resources and its cooperating workflow. Typically, awareness information can be 

o 
partially t 
''''''fi'''l activity 6 

cooperating 
WF 

ratio 
WF 

.. 

awareness to 
solve nondeterminism • 

awareness for 
incremental specification , 

Fig.!. The use of awareness information. 

used by the actors involved in the execution of the workflow to select the more 
appropriate action, e.g. in solving the non-determinisms inherent in conflicts or 
in choosing among alternative ways to complete the workflow specification. 

Awareness information can be used also to evaluate the impacts of choices 
local to a workflow in relation to the properties of the workflows cooperating 
with it. This means that awareness information concerns both the structure and 
the behavior of the entities constituting the context of the workflow at hand. 
These aspects will be discussed in the next sections in terms of a formal approach 
combining abstraction and contexts in workflow management. 

3 Combining abstraction and context 

The modeling methodology presented by Buchholz in [5] organizes models into 
a hierarchy. Leaf nodes are called atomic processes and non leaf ones are called 
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coupling processes. The innovative feature of the approach is that each node is 
made up of two parts: a description of a local behavior and a description of the 
environment. 

The basic modeling formalism used to specify processes (coupling or atomic 
ones) is a class of labelled stochastic automata called PMTS (Parametrised 
Multi-labeled Transition System), that can take into account also time, in partic­
ular time as delays associated to activities, but we consider here only its untimed 
counterpart. For PMTS an operation of Synchronized Product is defined, that, 
despite its name, allows both synchronous and asynchronous communication 
among PMTS; we indicate it with the symbol 0. Labels are used to distinguish 
state transitions that are local to a PMTS (T label), transitions that require 
a synchronous change of state in two or more automata, and transitions that 
simply send or receive a message in an asynchronous manner. 

father(CP) 

Fig.2. Hierarchy definition. 

Figure 2 shows a portion of a three level hierarchy. Leaf nodes L 1 , •.. LK are 
the atomic processes. Each atomic process is the Synchronized Product of two 
PMTS Pi and Ergg

, the first one representing the detailed model of a portion 
of the modelled system, and the second one representing an abstract view of the 
rest of the system (called environment). 

Abstraction is defined through state space aggregation (each state of the 
aggregated view represents a set of equivalent states of the detailed model). 

A non leaf node CP with f{ children contains J( + 2 PMTS: an aggregated 
representation of each child Li and of the father of CP, and the local behavior of 
the coupling activity (denoted by CA in the figure), if any is necessary, describing 
the interaction among the J( + 1 children. 

Each node defines therefore, to a certain abstraction level, the full model, but 
the details of the model are contained only in the leaves. For a node to be consid-
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ered a good representation of the global model, each aggregated PMTS should 
be consistent with the corresponding detailed PMTS. The proposal in [5J allows 
different levels of consistency which are based on different relations among de­
tailed and aggregated PMTSs obtained by means of different types of partitions 
of their state space. 

An aggregated view that preserves the interface behavior is said to be com­
pletely consistent: this notion is a form of weak bisimulation and preserves, e.g.) 
deadlocks. The state space partition is then obtained by the classical inductive 
algorithm. Complete consistency guarantees behavioral properties, but may be 
too strict, as the aggregated view may have the same order of states as the 
detailed model. 

To overcome this problem, a notion of weak consistency has been introduced: 
a weakly consistent aggregated view is a pair of PMTS, one describing an almost 
consistent view, and the other describing an at least consistent view of detailed 
process. The almost consistent view can be constructed by partitioning the state 
space according to any equivalence relation, with the only constraint that it is 
a refinement of the equivalence induced by the states of the aggregated view 
of the environment: state transitions among equivalence classes is such that the 
communication language of the detailed view is a subset of the communication 
language of the almost consistent view. The at least consistent view can be con­
structed on top of the almost consistent state space aggregation by eliminating 
the state transitions of the aggregated view according to the following ideal. 

Let sand s' be states of the detailed view, z and z' be states of the aggre­
gated view, and a a communication label: then the state transition z 4 z' is 
eliminated if states sand s', belonging to the equivalence classes represented 
respectively by z and z', exist such that..., (s ~ s'). In this case the communi­
cation language of the detailed view is a superset of the communication language 
of the at least consistent view. To sum up, the three notions of consistency define 
the following relations among the languages I:- of the different views: 

Lat-Iea"t-con"i"tent ~ Lcomplete-con"i"tent = Ldetailed-view ~ LalmO&t-con"i"tent 

In [5] some operations on the static hierarchy are discussed. First of all, 
the refinement operation can be applied just to leaf nodes) which contain the 
detailed views. In order to keep the desired consistency, either complete or weak, 
the original and refined leaf should be indistinguishable from the environment, 
i.e., both can be represented by the aggregated view which is completely (weakly) 
consistent for both. The contrary operation is aggregation, of which the above 
discussed aggregated view is an example preserving behavioral properties. These 
operations modify the state space and the state transitions in the affected nodes. 
Other operations, called abstraction and reduction, modify the structure of static 
hierarchy leaving unchanged the underlying state space: they are not considered 
here because they seem to be of little use in the framework of workflow modeling. 

1 It is behind the scope of this paper to give all the technical details, specifically 
about the problems arising from the presence of synchronous and asynchronous 
communication. 
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4 Applying the approach to WFM 

This section gives an intuition of how the above approach could be used for 
the modeling of cooperative workflows. To this aim we reconsider the portion 
of hierarchy illustrated in Figure 2 in the light of the arguments discussed in 
Section 2, that is shown in Figure 3. 

Let P and Q be two cooperative workflows of alphabet alP) and a(Q), that 
is) workflows that interact by means of a non empty communication alphabet 
A(P, Q) = alP) n a(Q). In the atomic processes incorporating them they are 
combined with the aggregated view of the environment in which they operate. 
The flexible definition of aggregation criteria, in combination with the hierar­
chical description, allows the workflow designer to organize the information in a 
way that can help the management of the workflow description complexity. 

precomputed interaction awareness 

L?!I 0 L?9 0 L;!l!l0 CA 

on A(P,Q) 

L?i 0 L?./ 0 L;!JJ 0 CA 
onA P 

... 

some consistency 

complete consistency 

Fig. 3. Hierarchy and workflow. 

Let A(P) (A(Q)) be the actions of P (Q) not belonging to A(P,Q). The 
portion of the aggregated environment that refers to A(P) (A(Q)) is called 
the "local environment" of P (Q), denoted LEp (LEQ). Actions in A(P, Q) 
are considered as "potentially possible" both in P and Q) as the constraints 
governing them are specified in the coupling process. Before moving to coupling, 
let us consider the possibility of an additional leaf node representing a process 
Z that does not interact directly with P and Q, but nevertheless belongs to 
their environment. In the WFM framework this process can be either a totally 
unconneted one or, more interestingly, a process that has to monitor the behavior 
of P and Q for some unspecified reasons (e.g., for sake of auditing or for sake of 
awareness) . 

The construction of the aggregated is what is left to be specified: the consis­
tency criteria can support an articulated methodological approach in relation to 
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the already discussed interplay of workflow and awareness in coordination, and 
to the meaning and use of the contextual information in the two cases. Since 
both workflow and awareness mechanisms have to be explicitly designed, their 
specification has to appear in the coupling process node: however, they can be 
governed by different consistency criteria. 

As far as workflows are concerned, the context plays the role of constraint of 
refinements/modifications local to the workflow or a role oftrigger of propagation 
of changes from a workflow to the workflows cooperating with it. This happens 
when the modification violating the constraints represented by the context can­
not be avoided and the latter has to be realigned together with all processes 
generating it. In this case, complete consistency has then to be considered the 
appropriate criteria: in fact, modifications/refinements are the typical ways to 
reduce the complexity of workflow definition where strong behavioral proper­
ties have to be taken into account. Of course, this is not a complete solution of 
the problem: that is, providing refinement or modification techniques preserving 
good behaviour in relation to a given context. What is provided is a support 
to the workflow design in terms of allocation of functionality between context 
and process and of "a posteriori" check of the correctness of the realized refine­
ment/modification. Moreover, a reduced representation of the context can make 
it easier for the designer to identify the extent to what a modification affects the 
cooperating workflows, in a sort of domino effect, and to define accordingly the 
appropriate propagation strategy. One has to notice that also in the execution 
phase modifications local to an instantiated process (typically, the enforcement 
of a transition to a new state) can affect the cooperating workflows. Finally, if a 
WFM system is able to keep trace not just of the context structure but also of its 
behavior, then the above reasoning can govern the application of the techniques 
mentioned in Section 1 for run-time modifications. 

On the other hand, weaker notions of consistency can be used for dealing 
with awareness mechanisms: in this case, again according to the arguments pro­
posed in [9), the required information can be less precise, in favour of a smaller 
representation that users can more easily understand and take advantage of. 
Here the problem is to decide what information can be considered as sufficient 
to promote the suitable awareness for each specific recipient. This choice is in 
charge of the users/designers: however, notions like almost consistency and at 
least consistency give examples of different techniques to provide it. This point 
will be further illustrated in the next section, where an example is discussed. 

Coming back to the construction of the coupling process, we can say that in 
the framework of WFM the coupling node can be viewed as consisting of two 
parts, represented as separated coupling nodes in Figure 3. 

The first part relates to the handling of the "precomputed" interaction of 
cooperating workflows, the second to the interaction in terms of awareness. In 
the first part, the coupling processes node contains the completely consistent 
aggregated views of the atomic process nodes related to P and Q and their 
local contexts. In addition it contains the representation of the local coupling 
activity defining the constraints on the interaction between P and Q in terms of 
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the actions belonging to the A(P, Q). In this way, the coupling processes node 
contains all the information concerning "precomputed') interaction among the 
cooperating workflows. 

The second part contains the aggregated views of the atomic process nodes 
related to P and Q and their local contexts according to the selected consis­
tency criteria for sake of awareness management. In this case, the local coupling 
activity can be omitted by interpreting it as the most flexible way to access 
the information contained in the related aggregated views: this local activity 
does not need to be explicitly designed as it can be automatically provided by 
the engine supporting workflow execution, a standard component of any WFM 
system. 

It is worthwhile to notice that the presence of a massive use of aggregation 
does not lead to any overhead to the users/designers. In fact, the construction of 
completely consistent aggregations can be automated when the state aggregation 
is based on a notion of equivalence implying complete consistency and for which 
an aggregation algorithm exists (e.g., in the case of the largest weak bisimulation, 
as proposed in [5]). This is a valuable support in refinement and modification: in 
fact, once the refinement/modification is performed on the leaf nodes, the related 
aggregation can be dynamically computed. For sake of validation, a check of 
isomorphism between the aggregated views of the source and refined processes 
(according to the same aggregation criteria) can then be performed, on a possibly 
radically reduced representation. The same holds when aggregations are based 
on the weaker notion of state space partition: also in this case the check of at 
least consistency can be automated. 

5 A simple example 

In order to show how the above concepts can be applied to the design and en­
actment of a workflow, we discuss a simple example which is adapted from [5]. 
Consider a business process which serves two types of requests coming from the 
outside, distinguished by the (high or low) amount ofresources they require and 
indicated by Rh and Rl, respectively. Only a single request belonging to Rh is 
allowed to be in the system, at any time, while a finite number (let us denote 
it by max) of requests of the second type can be simultaneously present and 
satisfaction of low priority requests is not checked by the outside. Service can be 
suspended at any time for some internal reasons while its resumption depends 
on external conditions: for example, the suspension might concern some asyn­
chronous operation (like an inventory or an auditing process) or more traditional 
exceptional situations requiring external interventions. 

Now, one could decide to define the service process by incorporating in it 
all the above requirements. Let's suppose that we can trust the environment of 
being able to control the flow of requests belonging to Rh and in so doing, it 
is able to guarantee that no Rh arrives while one is already in. By using the 
approach presented in the previous section we give an explicit representation of 
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both the context (environment) and the process in such a way that the latter 
can deal just with the requirements under its responsibility. 

For sake of presentation we describe the state space of the business process 
by the labelled PIT system generating it, shown in Figure 4 (this is not to say 
that we claim that the proposed approach operates at the system level, as it will 
be discussed in the concluding section). Label hin (lin) indicates the arrival of 
a Rh (Rl) request; hou' indicates the termination of a Rh request (observe that 
there is no corresponding IQut since there is no feedback for Rl requests); as/ex 
indicates instead the event that causes a diversion from the regular activity. 
Internal actions are, as usual, represented by T (tau). 

P 

~ 
.7

P3 

las/ex 

Fig.4. Nets for the generation of the state space. 

Transition tl has priority over t2, and this allows to eliminate all requests 
that exceed max. Transition t3 represents the end of a Rl request. Observe that 
the left portion of the net in Figure 4 represents an unbounded system, while 
the net on the right has all places bounded by max. 

To complete the atomic process we need to define the context, as seen from 
the processes. The context is of course not complete: rather, it mentions just what 
is needed for the process at hand to behave according to the above requirements. 
The aggregated state space can be described by the labelled state machine of 
Figure 5. States Y and N denote the situations in which a high priority request 
is present or not, respectively. 

In the corresponding state space, each state is described as a triple: (z, nl, nh), 
where z is the aggregated context state (Y or N), nl is the number of tokens 
in P6, and nh is the sum of tokens in PI and P2. Its structure is quite obvious 
from the above labelled net system: we want to recall only that in all states 
where the first component equals max, any transition labelled by /;n will leave 
these states unmodified. This is modeled in Figure 6 (only the pertinent part of 
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N 
hi" 

y 

• lin Itout 

(].s/ex 

Fig. 5. The aggregated context of the process. 

the state space is shown) where x denotes any non-negative number. 

(max - 1, x) (max, x) 

Fig.6. State space border conditions. 

Once the workflow is defined, it has to be enacted in order to be executed. 
One basic part of the enactment is the assignment of resources to the process 
together with their possible constraints. Let us assume that two actors are as­
signed to it in order to answer the various requests. Moreover) as part of the 
above mentioned interference with the request handling, the resources can be­
come temporarily unavailable, e.g., employees can be sick Of assigned to other 
duties. The enactment of the process can then be performed by enriching the 
workflow description in the above atomic process with an additional component 
modeling the resources, again described as a net system in Figure 7. 

Each state of the enriched atomic process contains an additional component 
to represent the number nact of available actors: (z, nact, nl, nh). The resulting 
state space, for max = 3, contains 24 states, listed in Table l. 

As illustrated at the end of the previous section, the atomic process has 
to become part of the context of other atomic processes cooperating with it 
(through the coupling process level). This problem can be dealt with both from 
the design and enactment perspective. Since the resulting argumentation is quite 
similar, we consider the second perspective. 

How to construct the aggregated view of the above 24 states? As anticipated, 
the selection of the aggregated view depends on its use within the coupling 
process node. For what concerns the part of the node related to the precomputed 
interaction, the choice is towards completely consistent aggregations. The only 
partition that does not lead to a trivial aggregation (i.e., that makes a true 
reduction of the state space) and that is completely consistent, is the one based 
on the state of the environment and number of actors. This aggregation, shown 
in Figure 8, fully maintains the interface behavior of the detailed view. 
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lex 
tau 

Fig. 7. Adding resources. 

1 (N,a,a,a) 13 (Y, a, a, 1) 
2 (N, 1,a, a) 14 (Y, 1, a, 1) 
3 (N,2,a,a) 15 (Y, 2, a, 1) 
4 (N,a,l,O) 16 (Y, a, 1, 1) 
5 (N,l,l,a) 17 (Y,l,l,l) 
6 (N, 2, 1, a) 18 (Y, 2, 1, 1) 
7 (N,a,2,a) 19 (Y, a, 2,1) 
8 (N,1,2,a) 2a (Y, 1, 2,1) 
9 (N, 2, 2, a) 21 (Y, 2, 2,1) 

10 (N,a,3,a) 22 (Y, a, 3,1) 
11 (N,1,3,a) 23 (Y, 1,3,1) 
12 (N,2,3,a) 24 (Y, 2, 3,1) 

Table 1. State space of the leaf node. 

As far as the management of awareness is concerned, there are various pos­
sibilities, that, on the basis of different semantics represented by the selected 
partition, and guarantee different levels of consistency. A first choice is to ag­
gregate the states according the states of the environment (that is, the resulting 
aggregated state space has just two states corresponding to the value Y and N): 
in this case, the aggregation is obviously almost consistent but not completely 
consistent with the atomic process since a high priority request can be satisfied 
(ho"t can fire) also when no actor is available. This behavior is not possible in 
the detailed view. More generically, the choice to focus on the local environment 
of a workflow disregards the information about any type of constraint contained 
in the workflow description. Consequently, this choice can be considered, again 
in general, not satisfactory from the point of view of the workflows cooperating 
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with the considered one but it can be acceptable from the point of view of other 
parts of the organization which can have different purposes, e.g., to have aware­
ness information just on the presence of high level requests for starting some 
monitoring activity concerning them. Now, there are different ways to take into 
account information about the specific behavior of the workflow. For example, 
one may want to get information about all the current requests, irrespective of 
their priority: in this case, the aggregation can be based on the state of the 
environment to capture high priority requests and the number of low priority 
requests. This choice reduces the state space (to 8 states) and leads to an almost 
consistent aggregation telling about the dynamics governing the number of the 
requests of the two types. 

The not completely consistent aggregation based on the existing requests can 
be transformed in an at least consistent aggregation by deleting the state transi­
tions labelled by hout . In fact, in this case, the interface behavior is maintained 
on a subset of the language of the detailed view. This type of information focuses 
just on the arrival of requests and not on their completion. 

as/ex U l;" -
1,4,7,10 3,6,9,12 

T 

) hutd 
bin 

butd 

as/ex -
13,16,19,22 14,17,20,23 15,18,21, 24 

T T 

Fig. 8. Aggregated state space. 

6 Research agenda 

The approach shown in the previous sections has not to be considered as con­
clusive, rather as inspiring a new research agenda. In fact, while the basic idea 
is quite interesting, the current achievements show severe limitations. First of 
all, the approach strongly relies on a behavioral description and not on the net 
system level representation. Some results have being obtained for a restricted 
class of net system [4]. On the other hand, the emerging synthesis techniques 
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(rooted in the seminal notion of region [10] ) could, to some extent, allow one 
to accept this approach. An interesting point could be the combination of syn­
thesis techniques with the hierarchical approaches, e.g. the one presented in this 
paper. Secondly, the consistency criteria should be better understood in order 
to provide system modeler with aggregation policies that preserve the desired 
behavior. 

On the other hand, other techniques to get more abstracted representa­
tions [8], while very powerful to check behavioral properties or construct well 
behaved models, exhibit the basic drawback of producing abstract representa­
tions of the target system which can be hardly interpretable as such by design­
ers/users for sake of directing their future action (both in system design and 
use). 

In any case, we foresee an interesting merge of interests in system design, 
coming from different application domains and different goals. In fact, the need 
of combining abstraction and context is an emerging requirement in the modeling 
of real systems, which are "open" by definition, and is a mandatory prerequisite 
when performance evaluation is concerned. 

References 

1. A. Agostini, G. De Michelis, and K. Petruni. Keeping workflow models as simple 
as possible. In G. De Michelis, C. Ellis, and G. Memmi, editors, Proc. of the Work­
shop on Computer-Supported Cooperative Work, Petri Nets and related formalisms, 
pages 1l~29, Zaragoza, 1994. 

2. L. Bernardinello, L. Pomello, and C. Simone. A class of morphisms for the refine­
ment of EN systems. Research report, Dipartimento di Scienze dell'informazione, 
Universita di Milano, Italy, 1996. submitted for pubblication. 

3. J. Bowers, G. Button, and W. Sharrock. Workflow from within and without: tech­
nology and cooperative work on the print industry shopfloor. In H. Marmolin, 
Y. Sundblad, and K. Schimdt, editors, Proc. of the Fourth European Conference 
on Computer-Supported Cooperative Work, pages 51~66. Kluwer Academic Pub­
lishers, 1995. 

4. P. Buchholz. A hierarchical view of GCSPN's and its impact on qualitative and 
quantitative analysis. Journal of Parallel and Distributed Computing, 15(3):207-
224, July 1992. 

5. P. Buchholz. A framework for the hierarchical analysis of discrete event dynamic 
systems. Habilitationsschrift, Universitaet Dortmund, 1996. 

6. Workflow Management Coalition. Workflow reference model. 1994. 
7. F. Di Cesare and M. Der Jeng. Synthesis for manifacturing systems integration. 

In F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F.B. Vernadat, editors, 
Practice of Petri Nets in Manufacturing. Chapman & Hall, London, 1993. 

8. F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F.B. Vernadat, editors. 
Practice of Petri Nets in Manufacturing. Chapman & Hall, London, 1993. 

9. P. Dourish. Accounting for system behaviour: representation, reflection and re­
sourceful action. Technical report, Rank Xerox Research Center, 1995. 

10. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures: I and ii. Acta Infor­
matica, 27(4):315-368, 1990. 

- 208 -



11. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys­
tems. In Proc. of the 1995 conference on Organizational Computing Systems, pages 
10-21, San Jose', CA, 1995. 

12. T. Kreifelts, E. Hinrichs, K. H. Klein, P. Seuffert, and G. Woetzel. Experiences 
with the DOMINO office procedure system. In L. Bannon, M. Robinson, and 
K Schmidt, editors, Proc. of the Second European Conference on Computer­
Supported Cooperative Work, pages 117-130. Kluwer Academic Publishers, 1991. 

13. T. Kreifelts and G. Woetzel. Distribution and eITor handling in an office procedure 
system. In G. Bracchi and D. Tsichritzis, editors, Proc. of Office Systems: Methods 
and Tools, pages 197-208. North-Holland, 1987. 

14. R. Milner. A calculus of Communicating systems, volume 92 of Lecture Notes in 
Computer Science. Springer-Verlag, Berlin Heidelberg, 1980. 

15. R. Pareschi, G. De Michelis, and S. Sarin. Proceeedings of the first International 
Conference on Practical Aspects of Knowledge Management- Workshop on Adap­
tive Workflow. Basel, 1996. 

16. K. Schmidt. Of maps and scripts: the status of formal constructs in cooperative 
work. In Proc. of the ACM conference on supporting group work, pages 138-147, 
Phoenix', AZ, 1997. ACM Press, NY. 

17. C. Simone and K. Schmidt. Taking the distributed nature of cooperative work 
seriously. In Proc. of the 6th Euromicro Workshop on Parallel and Distributed 
Processing, pages 295-301. IEEE-eS, 1998. 

18. L.A. Suchman. Plans and situated actions: the problem of human-machine com­
munication. Cambridg University Press, Cambridge, 1987. 

19. W. Van der Aalst. Verification of workflow nets. In P. Azema and G. Balbo, 
editors, Proc. of the 18th Intern. Conference on Applications and Theory of Petri 
Nets, volume 1248 of Lecture Notes in Computer Science, pages 407-426. Springer­
Verlag, Berlin Heidelberg, 1997. 

This article was processed using the 15TEX macro package with LLNCS style 

- 209 -



Computing Science Reports 

In this series appeared: 

96/01 M. Voorhoeve and T. Basten 

96/02 P. de Bra and A. Aerts 

96/03 W .M.P. van dec Aalst 

96/04 S. Mauw 

96/05 T. Basten and W.M.P. v.d. Aalst 

96/06 W .M.P. van dec Aalst and T. Basten 

96/07 M. Voorhoeve 

96/08 A.T.M. Aerts, P.M.E. De Bra, 
J.T. de Munk 

96/09 F. Dignum, H. Weigand, E. Verharen 

96/10 R. Bloo, H. Geuvers 

96/11 T. Laan 

96/12 F. Kamareddine and T. Laan 

96/13 T. Borghuis 

96/14 S.H.!. Bos and M.A. Reniers 

96/15 M.A. Reniers and U. Vereijken 

96/17 E. Boiten and P. Hoogendijk 

96/18 P.D.V. van dec Stok 

96/19 M.A. Reniers 

96/20 L. Feijs 

96/21 L. Bijlsma and R. Nederpe\t 

96122 M.C.A. van de Graaf and GJ. Houben 

96/23 W.M.P. van dec Aalst 

96124 M. Voorhoeve and W. van dec Aalst 

96/25 M. Vaccari and R.e. Backhouse 

97/01 B. Knaack and R. Genh 

97/02 J. Hooman and O. v. Roosmalen 

97/03 J. Blanco and A. v. Deursen 

97/04 I.C.M. Baeten and I.A. Bergstra 

97/05 I.C.M. Baeten and J.1. Vereijken 

97/06 M. Franssen 

97107 I.C.M. Baeten and I.A. Bergstra 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

process Algebra with Autonomous Actions, p. 12. 

Multi-User Publishing in the Web: DreSS, A Document Repository Service 
Station, p. 12 

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26. 

Example specifications in phi-SOL. .. 
A Process-Algebraic Approach to Life-Cycle Inheritance 
Inheritance = Encapsulation + Abstraction, p. 15. 

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18. 

structura1 Petri Net Equivalence, p. 16. 

0008 Support for WWW Applications: Disclosing the internal structure of 
Hyperdocuments, p. 14. 

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18. 

Explicit Substitution: on the Edge of Strong Normalisation, p. 13. 

AUTOMA TH and Pure Type Systems, p. 30. 

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12. 

Priorean Tense Logics in Modal Pure Type Systems, p. 61 

The /2 C-bus in Discrete-Time Process Algebra, p. 25. 

Completeness in Discrete-Time Process Algebra, p. 139. 

Nested collections and polytypism. p. II. 

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints, p. 71. 

Static Semantics of Message Sequence Charts, p. 71 

Algebraic Specification and Simulation of Lazy Functional Programs in a concur­
rent Environment, p. 27. 

Predicate calculus: concepts and misconceptions, p. 26. 

Designing Effective Workflow Management Processes, p. 22. 

Structural Characterizations of sound workflow nets, p. 22. 

Conservative Adaption of Workflow, p.22 

Deriving a systolic regular language recognizer, p. 28 

A Discretisation Method for Asynchronous Timed Systems. 

A Programming-Language Extension for Distributed Real-Time Systems, p. SO. 

Basic Conditional Process Algebra, p. 20. 

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric 
Time. p. 26. 

Discrete-Time Process Algebra with Empty process, p. 5 I. 

Tools for the Construction of Correct Programs; an Overview, p. 33. 

Bounded Stacks, Bags and Queues, p. 15. 

! j 



97/08 P. Hoogendijk and R.c. Backhouse When do datatypes commute? p. 35. 

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147. 

97/10 

97/11 

97/12 

97113 

97/14 

97/15 

97/16 

97117 

97/18 

98/01 

98/02 

98/03 

98/04 

98/05 

98/06 

Workshop on Communication Modeling, 
Veldhoven, The Netherlands, 9-10 June, 1997. 

P,C.N. v. Gorp, EJ. Luit, O.K. Hammer 
E.H.L. Aarts 

A. Engels, S. Mauw and M.A. Reniers 

D. Hauschildt, E. Verbeek and 
W. van der Aalst 

W .M.P. van der Aalst 

J.F. Groote, F. Monin and 
J. $pringintveld 

M. Franssen 

W.M.P. van der Aalst 

M. Vaccari and R.c. Backhouse 

Werkgemeenschap Informatiewetenschap 
redactie: P.M.E. De Bra 

W. Van der Aalst 

M. Voorhoeve 

J.C.M. Baeten and I.A. Bergstra 

R.C. Backhouse 

D. Dams 

G. v.d. Bergen, A. Kaldewaij 
V.1. Dielissen 

Distributed real-time systems: a survey of applications and a general design 
model, p. 31. 

A Hierarchy of Communication Models for Message Sequence Charts, p.30. 

WOFLAN: A Petri·net·based Workflow Analyzer, p.30. 

Exploring the Process Dimension of Workflow Management, p. 56. 

A computer checked algebraic verification of a distributed summation algorithm, 
p.28 

AP~: A Pure Type System for First Order Loginc with Automated 
Theorem Proving, p.35. 

On the verification of Inter·organizational workflows, p. 23 

Calculating a Round·Robin Scheduler, p. 23. 

Informatiewetenschap 1997 
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie 
Informatiewetenschap, p. 60. 

Formalization and Verification of Event·driven Process Chains, p. 26. 

State I Event Net Equivalence. 

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15. 

Pair Algebras and Galois Connections, p. 14 

Flat Fragments of CTL and CTL"': Separating the Expressive and Distinguishing 
Powers. P. 22. 

Maintenance of the Union ofIntervals on a Line Revisited, p. 10. 

/2 


	Preface
	Table of contents
	A Workflow Specification Environment
	Object-Oriented and Net-Based Modelling of Business Processes
	Reuse-oriented Workflow Modelling with Petri Nets
	Finding Errors in the Design of a Workflow Process
	Structural Analysis of Workflow Nets with Shared Resources
	Modeling and Verification of Workflow Nets
	Modeling Workflow Dynamic Changes Using Timed Hybrid Flow Nets
	Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes*
	Simple Workflow Models
	The Formal Representation of Call Processing in Call Centers
	Parameterized Petri nets for modelling and simulation human organisations in a workflow context
	Combining abstraction and context: a challenge in formal approaches to workflow management

