

Workflow management : net-based concepts, models,
techniques, and tools (WFM '98) : proceedings of the
workshop, June 22, 1998, Lisbon, Portugal
Citation for published version (APA):
Aalst, van der, W. M. P. (Ed.) (1998). Workflow management : net-based concepts, models, techniques, and
tools (WFM '98) : proceedings of the workshop, June 22, 1998, Lisbon, Portugal. (Computing science reports;
Vol. 9807). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/70d1defa-2094-4328-80c1-c15012a0d346

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

Proceedings of the workshop on
Workflow Management:

Net-based Concepts, Models, Techniques, and Tools

(WFM'98)

June 22, 1998
Lisbon, Portugal

edited by W. v.d. Aalst

editors: prof.dr. R.C. Backhouse
prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

Computing Science Reports 98/07
Eindhoven, June 1998

Workflow Management:

June 22, 1998
Hotel Costa da Caparica,
Lisbon, Portugal

Net-based Concepts,
Models,

Techniques,
and Tools

Edited by Wil van der Aalst

Proceedings of the workshop on

Workflow Management:
Net-based Concepts,

Models,
Techniques,

and Tools

(WFM'98)

June 22,1998
Hotel Costa da Caparica,

Lisbon, Portugal

Organized by

W.M.P. van der Aalst
(Eindhoven University of Technology)

G. De Michelis
(University of Milano)

C.A. Ellis
(University of Colorado)

Preface

Welcome to the workshop on Workflow Management: Net-based
Concepts, Models, Techniques and Tools (WFM'98). This workshop
has been organized to discuss the application of formal methods to the
design, analysis and execution of work processes. WFM'98 is part of
the 19th International Conference on Applications and Theory of Petri
Nets. Therefore, it is not a surprise that most of the papers use Petri nets
as a design language. The contributions show that Workflow
Management (WFM) and Business Process Reengineering (BPR) are
challenging application domains for Petri nets. On the one hand, people
in industry are in need of concepts, methods, techniques and tools to
support WFMlBPR efforts. On the other hand, Petri nets are a proven
technology to describe and analyze business processes. Therefore, Petri
nets seem to be a good candidate for becoming a standard technique for
the modeling of work flows.

We received 21 paper submissions from more than 10 countries. Each
of these papers has been reviewed by three reviewers. Based on these
reviews 12 high quality papers have been accepted for presentation at
the workshop. These papers are included in the proceedings. Topics
addressed by the papers presented at the workshop:

• process modeling techniques for workflow management
• design and analysis of workflow processes
• business processes reengineering
• verification of workflow procedures
• performance analysis
• software architectures for workflow management
• coordination languages
• workflow management systems
• business process support systems

The presentations have been grouped into four sessions: (1) Workflow
modeling and specification, (2) Verification of workflow specifications,
(3) Adaptive workflow, and (4) Organizational context and
applications. We hope that the presentations will lead to stimulating
discussions and new ideas for future research directions.

- 1 -

To conclude, we would like to thank the authors for submitting
excellent papers and the reviewers for their comments and constructive
suggestions. We would also like to thank the local organizers of
UNINOV A. In particular we would like to thank Luis Gomes for taking
care of numerous organizational matters. We, the organizers of this
workshop, are convinced that these efforts will help to make WFM'98 a
successful event.

Wil van der Aalst
(Eindhoven University of Technology, The Netherlands)

Giorgio De Michelis
(University of Milano, Italy)

Skip Ellis
(University of Colorado, USA)

- 2 -

Table of Contents

A Workflow Specification Environment
P. Azema, F. Vemadat, P. Gradit
LAAS-CNRS, France 5

Object-Oriented and Net-Based Modelling of Business Processes
A. Molders, M. Wolf, W. Fengler
Technical University ofIlmenau, Germany 22

Reuse-Oriented Workflow Modelling with Petri nets
G.K. Janssens, J. Verelst, and B. Weyn
University of Antwerp, Belgium. 40

Finding Errors in the Design of a Workflow Process: A Petri-net­
based Approach
W.M.P. van der Aalst
Eindhoven University of Technology, The Netherlands 60

Structural Analysis of Workflow Nets with Shared Resources
K. Barkaoui, and L. Petrucci
CEDRIC, France 82

Modeling and Verification of Workflow Nets
M. Voorhoeve
Eindhoven University of Technology, The Netherlands 96

Modeling Workflow Dynamic Changes Using Timed Hybrid Flow
Nets
C.A. Ellis, K. Keddara, and J. Wainer
University of Colorado, USA I University of Campinas, Brasil 109

Reconfigurable Nets, a Class of High Level Petri Nets Supporting
Dynamic Changes
E. Badouel, and J. Oliver
IRISA, France I University of Valencia, Spain 129

Simple Workflow Models
A. Agostini, and G. De Michelis
University of Milano, Italy 146

-3-

The Formal Representation of Call Processing in Call Centers
Using a Petri Net Approach
N. Anisimov, K. Kishinski, and A. Miloslavski
Genesys Labs, USA 165

Parameterized Petri Nets for Modelling and Simulating Human
Organisations in a Workflow Context
E. Adam, R. Mandiau, and E Vergison
SOLVAY, Belgium I Univerisity of Valenciennes, France 178

Combining Abstraction and Context: a Challenge in Formal
Approaches to Workflow Management
S. Donatelli, C. Simone and D. Trentin
University of Torino, Italy 194

- 4-

A Workflow Specification Environment

Pierre Azema, Frano;ois Vernadat, Pierre Gradit

LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4
{azema, vernadat, gradit }@laas.fr

Abstract

This paper proposes a workflow specification formalism, based upon
reactive objects. This formalism is valid for several paradigms such as
message passing or agent oriented programming, and consequently may
describe distinct workftows, that is flows of electronic documents and/or
human activities. A contribution is the introduction of generic modules
for determining specific architectures, e.g. specific multicast protocols,
or agent instance creation. A basic workflow, for object collecting, is in­
troduced as illustrative example. Several architecture definitions are then
proposed for this example: static, hierarchical and dynamic architectures.

keywords: Communicating Agents, Predicate/Transition Nets, State Space
Analysis.

1 Introduction

A flexible workflow specification environment is proposed. A first motivation
is to handle distinct points of view, in order to identify properties which have
to be fulfilled whatever the implementation policy. In the case of computer
supported cooperative activities, two complementary aspects may be consid­
ered: document circulation and people circulation. Either the documents move
and message passing protocols have to be implemented; or people move and
agent oriented programming is suitable. Both points of view are worth to be
considered.

A second motivation is the processing of dynamic system configurations.
A configuration is considered dynamic when, according to task execution, the
number of involved agents is changing, as in the case of group membership, or
dynamic resource allocation.

Several features characterize the proposed workflow specification environ­
ment : rapid prototyping, modularity, communication primitives. The derived
specifications are executable, resulting into a rapid prototyping facility. This
allows an early debugging through a step by step execution. Furthermore, a

- 5 -

verification processing is easily initiated, as far as the reachable state space may
be enumerated.

The entities involved within the workflow, either agents or preformatted
documents, are considered as reactive elements, that is they have to react on
line to external events. The behavioral characteristics of these entities, their
functional attributes, are encapsulated within modules. This modularity leads
to a rather easy scalability, that is the size of the specified system is under control
by considering either a limited amount of components, for analysis purpose, or
a large number of components for implementation purpose.

In order to separate the concerns about behavior and architecture, the com­
munication primitives have to be powerful. The proposed communication fa­
cilities are similar to actor language [Agh86] or to protocol specification language
[CCI92]: asynchronous communication through FIFO queues. Other built-in
primitives include synchronous (rendez-vous) messages, and pattern matching
via logic unification.

In the next section, the VAL formalism is introduced by means of a generic
producer-consumer example. Section 3 presents the application: the collecting
processing of distributed objects, according to two versions: message passing
and agent mobility. A hierarchical version of the application is presented in
Section 4. Section 5 deals with verification.

2 VAL Description

2.1 Overview

VAL formalism is based on Logic Programming and Predicate/Transition Net
[Gen9!] allowing the description of dynamic systems of communicating and
mobile agents [VAL95]. Agents are the basic ingredients of the formalism.
They are active elements of the system: they communicate with partners, dis­
appear or create new agents. Agent Behavior is described by an extended
Predicate/Transition Net. Proposed extensions concern communication and
dynamism.
The communication operates directly between agents as in Actor languages
[Agh86] according to their acquaintances.

The system is dynamic because an active agent may create new agents
or(and) disappear by stopping its activity. Every agent may create new agents
of any class.

The system description is performed by means of a PROLOG-like language.
A self-referencing mechanism is available. An agent knows its own identity:

attributes @Class and @Ref allow an agent for referencing its class and its
reference. Two types of components are considered: agents and structures.
Structures are passive elements, that is without behavior. They declare the
interconnections between the agents which constitute a configuration, and the
agents involved in such a configuration share these interconnections. A structure
may define the architecture of an application. Agents are the active system

- 6 -

elements: they are autonomous, they have attributes, methods and behaviors.
They send and receive messages, they may disappear and/or create new agents.

A class behavior is depicted by a set of transitions, where self-referencing,
rendez-vous, on-line creation are allowed.

Predicates are used for the state description: an agent state consists of a set
of predicates. The system state consists of the set of agent states, the content
of the input message queues.

Agent behavior
Each transition is specified by a specific clause whose the distinct fields are

the followings.
Trans introduces the name of the transition,
From refers to preconditions (predicate list),
To gives the postcondition (predicate list),
When defines a message reception on a given port,
Send introduces the receiver agent (class and identifier),

the reception port and the message to be sent,
Rdv declares a rendez-vous,
Create declares new agents to be created, and their initial state,
Exit indicates whether the current agent disappears or not.
Cond introduces local constraints (conditions to be fulfilled).

Communications Patterns For communication structuring purpose, a
topic, that is a gate or an interaction point, is associated with any message.

- Elementary synchronization, and emission are specified by 4-tuple
< Class, Ref, topic, message> where Class, Ref represent the synchroniza­
tion partner, topic is the communication interaction point, message stands for
the message content.

- Elementary reception is specified by a pair < topic, message> where
topic is the name of the message queue and message refers to the first queue
element.
An Elementary creation is specified by a 3-tuple < Class, Ref, initial >
where Class, Ref represents the new instance identity and initial is the initial
state.

Firing Rule: A VAL transition (instance) is firable when pre-conditions
hold, the expected messages are present and the needed synchronisations are
possible. The transition firing removes the preconditions and adds the post­
conditions, consumes the received messages, issues new messages and creates
agent instances as specified by the designer.

2_2 Producer Consumer Example

As preliminary step, a simple request acknowledgement protocol is considered.
Agent consumer send a request towards agent supplier, which returns the re­
quired item. Two behavior classes are introduced: consumer and supplier.
Class consumer consists of two transitions: order, receive, while class supplier
is reduced to single transition deliver. Instances of these classes are character­
ized by class identifiers and their initial states.

- 7 -

In addition to the behavior description, for running a specification, two other
data files are needed in order to declare a system: file structure specifies the
needed agent classes, and possibly local data processing ; file configuration
defines the set of initial agent instances and their initial states. The former
system consists of two agent classes consumer and supplier, and an initial
configuration has to be defined. A consistent configuration may be composed
of a consumer and of the associated supplier, that is the supplier which delivers
the required items.

With respect to the case consumer-supplier, an initial configuration may
consist of consumer instance c and supplier instance couvert. The initial state
is then the following:

consumer -c([request([(couvert, I])], supplier _couvert([idle, stock(2)])
that is consumer c is ready to order quantity 1 of product couvert, while

supplier couvert is idle and the available quantity in stock is equal to 2.
Several other configurations could be considered: several consumers order­

ing the same product, or a single consumer ordering several products. These
configurations are easily declared at initialization.

A consumer behavior is depicted by transitions order and receive. These two
transitions are specified by parameterized clauses. For transition firing, these
clauses have to match with the current state, A global state is composed of the
component states, and of the content of message queues. For each transition,
an example of the instanciated code is given.

Generic code
TRANS order
FROM request(_product, Jlum)
SEND (supplier, _product,

TO
END

req(@class,@ref), _num)
wait(_num)

Instantiated Code
TRANS order
FROM request(couvert, I)
SEND (supplier, couvert,

TO
END

req(consumer, c), I)
wait(l)

Transition order is enable by precondition request(_product, J!Um), that
means that there exists, for the current state, a substitution of logic vari­
ables _product and _num. The occurrence of this transition send to agent
whose class and identifier are supplier and _product respectively, at interac­
tion point req(@ciass,@ref), message _num, and changes the current state of
agent consumer from request(_product, _num) to wait(_num). It must be no­
ticed that the (chosen) way to declare the interaction point introduces a message
signature. The supplier will know the sender identity.

From the initial state, the reached global state is then the following:
consumer _c([wait((!])]), supplier -1:ouvert([idle, stock(2)])
input (supplier _couvert(req(consumer, c), [[I]]))

The supplier state is left unchanged, while on port req(consumer, c) of the
supplier, the input file contains message 1.

- 8 -

TRANS receive TRANS recewe
FROM wait(_num) FROM wait(1)
WHEN (_product, _num) WHEN (couvert, 1)
TO happy TO happy
END END

Transition receive: from state waii(_num), when interaction point _product
offers message _num, transition receive is enable, the firing of this transition
reset agent consumer into state happy.

The supplier behavior is depicted by transition deliver. The current state
of agent supplier is depicted by predicate stock(_s), that is number ..s of items
is available. By receiving an order of quantity _num of items, this amount will
be send back, if two conditions, introduced by keyword CON D, are fulfilled:
the required quantity is less than or equal to the available stock, the next stock
value is decremented by the just delivered quantity.

TRANS deliver TRANS
FROM stock(_s) FROM
WHEN (req(_class, _ref), [_num]) WHEN
COND _num =< _s, COND

_ns is _8 - _num
SEND
TO
END

(_class, _ref,@ref, _num)
stock(_ns)

2.3 Rendez-vous

SEND
TO
END

deliver
stock(2)
(req(consumer, c), [1])
1 =< 2,
1 is 2 - 1
(consumer, c, couvert, 1)
stock(1)

The former example could be implemented by means of a strong synchronization
between consumer and supplier, that by rendez-vous: the consumer issues the
request and simultaneously receives the answer from the supplier. The supplier,
by receiving the request, immediately delivers the object.

The following two transitions concurrently fire: request on the consumer
side, deliver on the supplier side. Each partner must precise class and identity
of the other, while terms of port and message have to match. The partner states
change from preconditions to postconditions.

TRANS request TRANS
FROM request(_product, _num) FROM
RDV (supplier, .product, RDV

TO
END

port, _num)
happy

- 9 -

TO
END

request
request(couvert, 1)
(supplier, couvert,
port, 1)
happy

TRANS deliver TRANS deliver
FROM stock(_s) FROM stock(2)
COND JIum =< _8, COND 1 =< 2,

_ns is _5 - _num 1 is 2 - 1
RDV (consumer, _consumer, RDV (consumer, c,

port, -"urn) port, 1)
TO stock(_ns) TO stock(l)
END END

3 Collecting Strategies

In this section, message passing and agent creation are considered. The producer
consumer case is extended. The product may not consist of a single object, the
product may be composed of several objects which are separately ordered: a
couvert is composed of knife and fork. The resulting requirement is the online
computation of message patterns.

3.1 Communication and Mobility

When an order arrives at a desk, this order is translated into a list of required
items, and requests are dispatched towards the corresponding suppliers. A sup­
plier checks whether the required item quantity is available, then returns the
items to the desk. The desk finally collects the items and delivers them. For
collecting the distinct elements, two strategies are considered: message passmg
and mobile agents.

order

deliver

desk

dispatch

~~c~ol~le~c~,)::E(~---
~

y message

--
~ E(~ [SUpPlier]

---61 item

Figure 1: Message Passing

message passing: a multicast is performed, that is messages are sent to
the respective component suppliers, which by receiving the request will return
the expected number of items.

Communication Policy As illustrated in the previous example, each corre­
spondent of the instance disposes of a specific communication queue. In our
case, the name of the queue (or the interaction point) is a binary predicate

- 10 -

req <-class, -Ief) where variables _class and -Ief indicate the identity of the
sender. This knowledge will be used for the reply message.

As each desk represents a specific product, order message is reduced to the
number of required items, and the requester identity is encoded in the name of
the queue,

delegate creation as many agents as the number of different sorts of items
are created and each agent will collect the requested components.

desk
order dispatch ~=a

~
supplier

.. d~e~lie::ve~ri._~k£J collect -EE;--

" Figure 2: Delegate Creation.

3.2 Communication Pattern

The principle is to consider tha.t the desk decomposes a consumer request into
a list of ingredients, each one being delivered by a distinct supplier.

For instance, object couvert is composed of pair knife, fork, two secondary
requests have to be issued towards the respective suppliers, as depicted by Figure
3.

(supplier)

> order

Figure 3: Hierarchical Collecting.

An important new functionality is introduced: the on-line computation of
messages to be issued or received.

When a customer issues a request at a front desk, the desk is in charge of col­
lecting the needed items. From the component list, two lists are simultaneously
computed: order list and expected list, denoted below -"end, _wait, respectively.

- 11 -

This computation is the purpose of predicate
compute_mes(_gloss, -.request, ...send, _wait). Two input parameters are
_gloss, which supplies the component list of an object, and
_request, which supplies the request.

Predicate compute_mess determines two terms ...send, _wait, which represent
messages to be sent and messages to he received, respectively.

Let gloss([(couvert, [knife, fork])]) be the predicate which associates with
request = couvert, component list [knife, fork], then the following pattern are
derived by compute_mess:
(desk, fork, req(desk, couvert), [1])
(desk, knife, req(desk, couvert), [1])

whose interpretation is two requests are issued on the behalf of desk couvert
towards desks knife and fork. Of course one knife and one fork are expected
as answer.

The behavior of agent class desk then consists of transitions order, collect.
TRAN order (instantiation)
FROM idle, idle

gloss(_gloss) gloss([(couvert.[knife,fork])]))
WHEN (req(_class, _ref), (req(consumer, c),

COND
SEND

TO

END

_request) 1)
compute_mes
....send

collect((_class, _ref),
_request, _wait),
gloss(_gloss)

(desk, fork,req(desk,couvert) [1])
(desk, knife,req(desk,couvert) [1])
collect((consumer, c),
[1], (fork, knife),
gloss([(couvert.[knife,fork])]))

With respect to transition collect, the purpose of predicate whengpe(_wait, _ack)
is to derive the expected messages from list _wait of expected ingredients. By
receiving the ingredients, the collecting desk returns the (re)composed object.

TRAN collect instantiated by
FROM collect((_class, -yef), collect((consumer, c),

_request, _wait) [1], (fork, knife),
COND
WHEN
SEND
TO
END

whengpe(_wait, _ack)
_ack
(_class, _ref,@ref,_request)
idle

3.3 Mobility

(fork, 1), (knife, 1)
(consumer, c, couvert, 1)
idle

Instead to send an order and to receive the requested item, another approach is
to create a new agent, let clerk be the class name, whose purpose is to collect
the components.

Two policies are possible: either as many agents are created as the number
of distinct ingredients, or a single clerk will collect the ingredients, by visiting

- 12 -

each supplier. The first policy only is described: the desk behavior is modified,
a clerk behavior is introduced.

3.3.1 Desk Behavior

The desk transitions are modified, for creating new agents. The new transitions
order, collect are defined by the following clauses.

Trans receive_order
From idle
Rdv (Consumer ,_consumer ,order ,Jist)
Cond Compute_team(Jist,_team)
Create _team
To
End
Trans
From
Cond
Rdv
To
End

wait(_consumer ,Jist)

collect
wai t (_consumer, Jist)
Compute-tlynchronization(Jist,_team)
[(Consumer,_consumer,deliver ,Jist) l-teamJ
idle

Predicate Compute.leam(Jist, .learn) receives as input the list ofrequests
and produces as output the pattern of clerk agents to be created. In a similar
way, predicate Compute_Synchronization(_list, .learn) determines the pattern
of a multiple rendez-vous with several clerk agents.

Let [(knife, I), (fork, I)J be the list of requests, the produced pattern is
then:
_team = (Clerk, fork, [from(couvert), req(I)]),
(Clerk, knife, [/rom(couvert), req(l)])

This pattern corresponds to the tuple class, identifier, initialmarking, that
is two clerk agents will be created, with respective names knife, fork, and their
initial state is composed of the pair from(_desk), req(_num) which specifies the
requesting desk, and the needed quantity.

3.3.2 Clerk Behavior

A clerk instance is created by a desk, and corresponds to an object to be col­
lected. After being created by a desk, a clerk agent meets the right supplier,
picks the needed quantity, then returns to the desk.

A clerk behavior is defined by transitions go, pick, return, deliver.
TRANS go TRANS back
FROM from(-<lesk) FROM atsupplier
TO atsupplier, from(-<lesk) TO atdesk
END END

- 13 -

TRANS
FROM
RDV
TO
END

pick
atsupplier ,req(_r)
(Supplier ,@ref,pick,..r)
atsupplier ,ack(..r)

TRANS
FROM
RDV
TO
EXIT
END

deliver
atdesk ,from (--<lesk) ,ack(_r)
(Desk,_desk,ack,..r)

true

The transition interpretation should be self explanatory: a clerk moves from
the desk to a supplier, once at the supplier location it picks the needed quantity,
returns to the desk, and there delivers the item.

It is worth to notice that at the delivery the clerk agent disappears.

4 Hierarchical Structure

This section deals with nested structures: component clusters are defined for
encapsulating parameterized agent structures. The system is no more composed
of direct instances of classes, the ordered object is itself an object hierarchy.
The interpretation of a received request is locally performed, the customer is
not aware of the process which may internally be performed by a desk.

The former glossary associates with an object, a list of items. In the ex­
tended glossary, an item may be tree structured. The implementation policy
may remain unknown for an external user : either a single dispatch manager
knows the whole glossary and issues queries for terminal objects, or a desk solic­
its an other desk, without knowing whether the expected object is terminal or
not (i.e. it is to be decomposed). In the sequel, this latter policy is described.

Figure 4: A query tree.

For instance, a dining room is composed of distinct agents, whose the casting
depends upon organizational choices. The queries may consist of the following
reactive objects: To serve a customer, the desk needs a waiter and a seat. A
seat consists of glass and plate in addition to couvert. A couvert is composed
of fork and knife. A key point is to consider any agent as a desk instance,
whose initial parameters declare the role within the structure.

- 14 -

4.1 Description of the proposed solution

The purpose of this new solution is to be able to describe in a generic way a
system parameterized by a hierarchical structure, as depicted in Fig 4.

Roughly speaking, the hierarchical description of the services will be inter­
preted at the creation of the system. To each node of the tree will be associated
a specific agent desk parameterized by the set of its sons in the hierarchy. As
result, the central view of the hierarchy is distributed among the different agents
representing it.

The following table represents the initial state of the system encoding the
abstract hierarchy depicted in Fig 4.

Note the presence of a specific desk whose reference is general which con-
stitutes the root. This node is known by any consumer.

consumer _c([request([(table,1)]) ,service(desk)])
desk_general([idle,glossary(nil)])
desk_couvert ([idle ,glossary ([(couvert, [knife,fork])])])
desk-'leat([idle,glossary ([(seat, [glass ,plate,cou vert])])])
deskJork ([idle ,stock(2)])
desLglass([idle,stock (2)])
deskJ,:nife([idle,stock (2)])
desLplate([idle,stock(2)])
desLwaiter([idle,stock(2)])

Finally, depending on the position of the node on the tree, two distinct
behaviors have to be provided: a desk or a supplier behavior. In order to
simplify the description of the example, these two distinct roles are merged
within class desk.

4.1.1 Supplier Component

Predicate stock is an unary predicate on the number of available references.
transition deliver describes the actions associated with the reception of an

order issued by agent instance (_class, Jef) .
The value of the available stock is determined by instantiation of predicate

stock(-'l).
If the required quantity num is available (that is least or equal to the available

stock: -"um =< _5)' then a delivery message is sent to the demander (the queue
associated with this message is given by the reference of the considered instance
(cf meta-variable Oref)), and the remaining stock is updated.

4.1.2 Desk Component

The data processing, namely with respect to the communication pattern com­
putation, plays a crucial role in the proposed behavior.

Attributes: the state of the instance is defined by the following three predi­
cates.

- 15 -

idle : the initial state of the instance

glossary : an unary predicate recording the instance knowledge of the hierar­
chy of services. In the case of the hierarchy depicted in Fig. , glossary of
instance seat of agent desk will be of the form
(seat, [Glass ,Couvert ,Plate]). Then, when the desk.seat is asked he
knows how to fulfill the order. A set of messages is derived from the initial
order, this derivation is computed according the informations recorded in
the glossary.

collectCclass,...ref) ,..list,JIlait) : is a ternary predicate indicating

l. (_class, ..ref) the identity of the requester

2. (~ist) the list of the required items

3. _wait the set of instance references associated with the transaction.

Data processing:

compute...m.es When the desk.seat is asked, the received order is translated
in a set of messages according the hierarchy recorded in the glossary. Proce­
dure compute...m.es (...glossary, ..list ,-send ,JIlait) is is in charge of this work.
Variables -!llossary and Jist may be considered as input datas while -"end and
_wait are the outputs of the procedure.
- ~lossary represents the value of the glossary of the considered instance,
- Jist the list of ordered items
- ...send is a set of emission patterns associated with the list of orders to be
satisfied. The initial set (Jist) is translated into a new set of messages (-"end)
according the value of the glossary.
- The same computation is used to determine _wait, the set of instance references
whose the response will determine the satisfaction of the transaction.

whengpe is a built-in predicate for computing the set of reception patterns
which corresponds to an agent group.

Description of the behavior

Transition Order:
Transition order describes the reception of a list of orders. The instance

is idle, that is no transaction occurs. The received message (Jist) emitted by
instance (_class,Jef) is treated by means of procedure compute..mes. The set of
emission patterns (-"end) is emitted and the entity evolves in a state collect
indicating that a transaction is in progress. This predicate records the identity
of the requester (_class,Jef), the initial order (Jist) and the set of instance
references involved in the transaction (_wait).

- 16 -

desLcouvert([idle,glossary([(couvert , [knife,fork])])])
desLfork([idle,stock(2)J)
desLknife([idle,stock(2)J)
desLseat ([glossary([(seat, [glass ,plate,cou vert])]),

collect((desk , table),[1 J, [couvert,plate,glass])])
desk_couvert([idle,glossary([(couvert , [knife,fork])])])
inpu t (desLcou vert (req (desk,seat), [[1 JJ))

Table 1: State enabling transition desLcouverLorder

desLseat([glossary([(seat , [glass,plate,couvert])]),
collect((desk , table) ,[1]'[couvert,plate,glass])])

desLcouvert([glossary([(couvert , [knife,forkJ)]),
collect((desk , seat),[lJ,[fork,knife])])

desLfork([idle,stock(2)])
desk_knife([idle,stock(2)])
in pu t (desLfork (req (desk,cou vert), [[1 JJ))
input(desk_knifer req (desk,couvert) ,[[1 Jl))

Table 2: State after firing transition desk_couvert_order

Example Let us consider! instance couvert of the hierarchy depicted in
Fig 4. Table 1 describes a fragment of a system state enabling transition order

The context of instance couvert is determined by the two following clauses:
- desk_couvert ([idle,glossary([(couvert, [knife ,fork])])]) indicat­
ing the state
- input (desk_couvert (req (desk, table) , [[1]]» indicating the presence of
message 1 in queue req(desk,seat)

The computation of computeJlles leads to the following instantiations:
- ...send:
[(desk,fork,req(desk,couvert),[l]),
(desk,knife,req(desk,couvert),[l])]
- _wait: [fork, knike]

After transition firing, the next system state is described by table 2.
Transition collect describes the end of the transaction. Builtin predicate

whengpe computes the set of reception patterns associated with the set of in­
stance references whose the response is expected. When the receptions are possi­
ble, an acknowledgement message is emitted to the requester (_class,....ref,@ref,Jist).
The communication queue associated with this communication is the reference
of the emitter Oref.

- 17 -

desUork([idle,stock(1)])
desLknife([idle,stock(1)])
desk-Beat ([glossary ([(seat, [glass,plate,cou vert])]),

collect((desk , table) ,[1],[couvert,plate,glass])])
desLcou vert ([glossary ([(couvert , [knife,fork])]),

collect((desk , seat),[I],[fork,knife])])
input(desLcouvert(fork, [1]))
in pu t(desLcouvert (knife, [1]))

Table 3: transition desk-couvert_collect is ready

desk_couvert([idle,glossary([(couvert , [knife,fork])])])
desLfork([idle,stock(1)])
desLknife([idle,stock(1)])
desk-Beat ([glossary ([(seat, [glass ,plate,cou vert])]),

collect ((desk , table)'[1]'[couvert,plate,glass])])
input(desk-seat (couvert, [[1]]))

Table 4: After firing of transition desk_couvert_collect

Example Let us consider, instance couvert of the hierarchy depicted
in Fig 4. Table 3 describes a fragment of a system state enabling transition
collect.

Clause collect«desk , seat), [1], [fork,knife])]) indicates that
desk_couvert is waiting the responses of instances fork and knife. The set of
reception patterns is computed by built-in predicate whengpe. Clauses
input (desk_couvert (fork, [1])) and
input (desk_couvert (knife, [1])) indicate respectively that the expected re­
sponses are arrived. A response message is sent to the initiator of the transaction
desk-Beat. Table 4 depicts the state system after transition firing.

5 Verification

In order to perform formal verification, the configuration space may be generated
(even in the case of dynamic description). The configuration space may then be
analysed either by algebraic approaches, i.e. observational equivalence [MiI89],
or by temporal logic model checking [ES89]. A specification, that is the formal
interpretation of an informal description, should produce two kind of outputs: an
operational description and expected properties. The purpose of the verification
is then to ckeck whether the expected properties are satisfied by the operational
description, (see Figure 5).

- 18 -

Expected Propertl

Infonnal Descriptio
correction

Operational Description

Figure 5: Verification.

Temporal Logic Temporal logic formula are statements on the reachabil­
ity of global system states. Two basic modal operators are INEVitably or
POTentially. Here are two examples of temporal assertions. Is it always true
that any state for which condition pending is true is inevitably followed by a
state for which delivered is true. ALL (pending =0> IN EV delivered)
This statement may be false for a model for which the requests exceeds the
resources, because a provider may refuse to serve an order.

Bisimulation This approach allows to derive a reduced view by considering
as observable only a subset of the events. The observational equivalent automa­
ton is an automaton where observationally equivalent states are merged into a
single class, The behavior is then easier to analyze by considering this specific
subset.

Application The system associated with the hierarchy depicted is analysed.
This system corresponds to the causal diagram depicted by Figure 5. More
precisely, we investigate the processing of a table request. As we consider a
single consumer request, the system has to reach a final state in which the
request has been fulfilled, that is all the components of the table have been
collected.

desk

waiter

seat

glass

plate

couvert

knife

fork

~---------------~
- - --------------- ~

--- ------------- --~

---->

----->

------>

---------~

Figure 6: Causal diagram of the query tree.

The complete state system consists in 58 states and 132 edges. This graph

- 19 -

admits a single deadlock corresponding to the expected final state.
Temporal Logic allows to verify that this final state is still inevitable.

ALL(Table.ordered => IN EVtable.delivered)
Bissimulation techniques allows us to visualize some details of the request

processing. Different points of view may be considered by selecting specific set
of observed events. Two kinds of observation are investigated:

In the first case, the bottom of the hierachy is considered: interactions be­
tween knife, fork and couvert are observed. The way for desk.couvert to collect
knife and fork is observed. The obtained quotient automaton is depicted by Fig
7. A sample analysis allows us to verify that after a couvert.order is inevitably
followed by a couvert.collect.

couvert. order
fork.deliverer.

0-~1-----~' 3

knife 0 deltver knife.deliver

~ fork. deliver ~ ~
~'-------~>~

couvert. collect

Figure 7: Observational service of interactions between knife, fork and couvert

The second observation focusses on the main steps to follow in order to
collect a table. To keep the size of the quotient automaton manageable, the
observation is reduced to the first level of the hierachy. The details relative to
the processing of a seat or a couvert are not observed.

The obtained quotien automaton is depicted by Fig 8.

© • 1 table. collect
seat. orde~ couvert. ord~ couvert. cO~i-_s_ea_t_. C_O_'_IW .~ !A .~ .~

~ ~ ~ ~
011 011 011 011

"tI "tI "tI "tI

~ ~ ~ ~
.~ .~ .~ ~

2 3 \------>{s a 10
seat.order couvert.ord couvert. colI t seat.collec

Figure 8: Main steps needed for

A sample analysis allows us to verify that after a table.order is inevitably
followed by a table.collect.

- 20 -

6 Conclusion

Rapid prototyping and modularity are standard requirements for specification
environments. The dynamic aspect seems particularly relevant for workflow
analysis. The ability to describe dynamic systems, i.e. agent creation and
suppression, and mobile processes, i.e. addressing by name and logic unification,
offers a great flexibility to the designer.

For debugging purpose, a specification may be step by step interpreted. The
simulator and the associated graphical user interface provide standard facilities
: display of the global state and of the communication queues, list of the enable
transitions,

The proposed approach appears useful during the first design phases [HoI96],
in order to rather quickly elaborate a behavioral model, and to determine pre­
liminary requirements. At this level, a crucial aspect concerns the identification
of a consistent set of actions, or methods, and the decomposition of a complex
system into easier subproblems.

Within the framework of cooperative systems, an agent oriented program­
ming style is particularly adapted [VA96].

A current study deals with the following question: how to take explicitely
into account regular architectures during a verification process.

References

[Agh86] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, 1986.

[CCI92] CCITT. SDL. Z100,Z104 Recommendations, 1992.

[ES89]

[Gen91]

[Hol96]

[MiI89]

[VA96]

[VAL95]

E.A. Emerson and J. Srinivasan. Branching Time Temporal Logic.
LNCS, vo1.354, 1989.

H. J. Genrich. Predicate/transition nets. In High-Level Petri Nets:
Theory and Application. Springer Verlag, 1991.

G. Holtzmann. Early fault detection tools. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 1-13. Springer
Verlag, LNCS 1055, 1996.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

F. Vernadat and P. Azema. Prototyping of communicating agent sys­
tem. In ECOOP'96, Workshop on Proof Theory of Concurrent Object­
Oriented Programming, European Conference on Object-Oriented Pro­
gramming, Linz, Austria, July 1996.

F. Vernadat, P. Azema, and A. Lanusse. Actor Validation by means of
Petri Nets. In Workshop on Object-Oriented Programming and Models
of Concurrency, Torino, Italy, june 1995.

- 21 -

Object - Oriented and Net-Based Modelling
of Business Processes

Angela Molders, Martin Wolf, Wolfgang Fengier
Technical University of Ilmenau, Germany
Rainer Burkhardt, OWiS Software GmbH

Abstract
In the field of modelling enterprises and business processes the classical struc­
tured modelling techniques are dominating; there are only a few object-oriented
approaches. A method for creating a business process model will be proposed
and the Object - Process - Net (OPN) will be presented, which can be used for
describing the dynamic aspects of systems and which can be added to the fa­
mily of diagrams combined within the UML (Unified Modelling Langnage).
The OPN can be considered as an object-oriented Petri Net and can be trans­
formed into a high-level Petri Net conform to the standard.

Keywords: Relationships between net theory and other approaches, Applications of
nets to workflows, System design and verification using nets, Object
Oriented Petri Nets, UML (Unified Modelling Language)

1 Introduction
Modelling of business processes attains increasing importance since it is an indispen­
sable basis for successful business process reengineering as well as for the inaugura­
tion and the use of workflow management systems.
The business perspective focuses increasingly on an integrated, process oriented view
on the enterprise. Hence, it appears to be advantageous to apply theoretical methods
of computer science on business management issues. Over the last years an increas­
ingly fruitful co-operation between business management and information theory has
developed although there was not much common ground between both sciences in the
past. Many issues of today's management reality result in highly complex demands on
the development of information systems, particularly in terms of user friendliness,
complexity, safety and adaptivity. The information theory point of view, a rather
formal one, supports the process oriented exantination of business flows.
Although object orientation has become a standard in the field of computer science
there are only a few approaches for object oriented modelling of business processes so
far while this domain is still dontinated by classical structured methods [FeSi96],
[Pres97], [PMK97]. Even the standardisation efforts of the WfMC (Workflow Man­
agement Coalition) have not been included object orientation yet.
Another aspect, which is disregarded from our perspective is the verification of mod­
els of business processes. Due to the complexity of models which arises from the
underlying domain of applications it is inevitable to choose a multi-stage, incremental
modelling approach in order to make verification possible in each modelling stage.
Here, verification should not only be understood as evaluation by simulation but as a
formal, analytic method for model verification.

- 22 -

Our way of business process modelling assumes that the UML ([UMLI], [UML2])
will establish as the standard method for the object oriented paradigm. The advantage
of this approach is the step-by-step evolution of a rather informal model to a formal
one. The OPN, developed by the authors, is to be understood as an additional diagram
of the UML for the description of dynamic aspects of a system.
The following chapter gives a short introduction to some UML-diagrams and after
then the Object Process Net will be explained in chapter 3. In chapter 4 our method
for creating a model is presented followed by some notes to tool support and model­
checking methods.

2 The UML as the standard technique for object oriented
modelling
The UML combines a set of diagrams for object oriented modelling of systems on
different levels and from various views onto the systems. There are diagrams for the
static, dynamic and architectural aspects. For special fields of system modelling only
a subset of this diagrams will be used because some of them are redundant. A method
for model-building is lacking within the UML.
Within our modelling method described in chapter 4 we use Use Case Diagrams,
Class Structure Diagrams, Activity Diagrams and the Object Process Net. All this
diagrams will be shortly explained and illustrated by a common example. Due to the
limited scope of this paper only a clipping of the whole model can be presented.
Within the framework of co-operation between a furniture and toy producing factory
and the Technical University of Jlmenau various methods for modelling the business
processes of this enterprise have been applied and evaluated. We modelled the proc­
ess of handling orders for furniture within the enterprise.
The Use Case approach was developed by Jacobson [Jac0+92] [Jac0+95]. A use case
diagram represents the external functionality of a system or a class as visible to an
actor external to the system. It only shows which services a system gives to the envi­
ronment but not how this service will be done by the system. Different scenarios of a
use case are usually described textual.
The actors are humans as well as computers or other systems. Actors communicate
with the use cases. Between use cases two types of relationships are possible: an ex­
tends and a uses relationship.
A Class Structure Diagram (CSD) gives a graphic view of the static structural
model. Within a CSD the classes with their attributes and methods are described as
well as role-associations and inheritance relationships between several classes.
The role-associations will be considered as attributes. With respect to Figure I for
instance an object of the class order has the attribute user from type people.

- 23 -

1 .. 1 bool

MailMode 1 .. 1

T""

People
0 .. ,

Order I _____ ... __ -:::'='~ FurnitureMode
; ""'"

1..1
int

AgeniRegion

PosNegType

Figure 1: CSD for the class order

An Activity Diagram (AD) is a special case of a state diagram combined with some
Petri Net ideas. Within Activity Diagrams the internal dynamic behaviour of use cases
can be described. An AD captures the sequential and/or parallel processing order of
the activities which produce the performance of a system for the environment. The
model components of an Activity Diagram described within the UML allow the com­
plete representation of aU elementary structures for modeHing business processes
denoted in the glossary of the Workflow Management Coalition [WfMC97]. Activity
Diagrams can be designed in a rather abstract manner as well as enriched with formal
details. Therefore, they are a good entrance for the stepwise formalisation of the use
cases. An activity is a state of the system with an inner action which is connected to
other activities by transitions. Ao incoming transition initiate an activity. If there are
more than one outgoing transition for an activity than they have to be distinguished by
logical expressions. It is possible to split or synchronise transitions. The division of an
Activity Diagram into socalled swim lanes gives the assignment between activities
and the responsible objects.
The following Figure 2 shows a part of the order handling process and is self­
explanatory. The fIrst steps like incoming and sorting of orders are omitted. Here,
only the time-dependent scheduling of orders will be illustrated.

- 24 -

treetable not treetable

'-------y---/ costutrer response
positiv

cancel detenrine
new date

Figure 2 : Part of the Activity Diagram for order handling

In Figure 2 decisions within the flow of processing are represented by diamond
shapes. If an activity has more than one incoming transitions (Schedule order in
Figure 2) it represents an OR-Join conform to the WfMC-definitions for basic struc­
tures of business processes [WfMC96j.
Another diagram for describing the dynamic aspects of systems is the Object Process
Net developed by the authors. The individual business activities are connected via
pre- and post-conditions. Therefore the procedural order of them is given implicitly.
The simulation of an OPN gives various scenarios for the related use case. OPN is
well suited for detailed modelling of parts from the system.
Both Activity Diagram and OPN are dealing with the classes and their methods de­
fined in the Class Structure Diagram.

- 25 -

3 The Object Process Net (OPN)

3.1 Basic Ideas
The OPN carries on the idea of the Object Process Model (OPM) [Burk94], which
was especially developed for software engineering starting by analysing the dynamic
aspects of systems [Schm97]. The goal is the creation of a system model, which will
be directly transformed into source code of the destination language [OTW97]. When
using the OPN for modelling business processes this feature is not the most important
one but the ability of describing the dynamic behaviour of system.
According to the object oriented paradigm the abstract objects represent the classes
and the processes represent the methods defined for the classes. The graphical nota­
tion of an OPN is a bipartite, directed graph the nodes of which are the objects and
processes. A complete model describing a real-world system consists of a system of
OPN diagrams. Every OPN belonging to such a system shows a delimited part; there­
fore the models are rather clear.
The state of the modelled system is described by the values of attributes belonging to
the objects. Therefore, a change of these values describes a variation of the system's
state. Attribute values can be changed by activating and running processes.
On the one hand, the OPN is considered as an additional diagram within the family of
diagrams forming the UML [UMLI], [UML2]. Therefore it is possible to enhance an
OPN by OCL-statements (Object Constraint Language) [OCL]. This makes the mod­
els more understandable and clear.
On the other hand, the OPN can be understood as an object oriented Petri Net. It is
possible to transform an OPN into high level Petri Nets conform to the standard
[Conc97]. This results in the ability to find analysis techniques directly for the OPN.

3.2 Objects
Objects are described exclusively as abstract objects. Hence, the properties modelled
within an OPN hold for all instantiated objects of this class and of derived classes. In
this way, the inheritance relationships are captured by an OPN.

<ins!>
<AttU>
<A.ttr_2>

Figure 3: Abstract Object

The graphical representation of an object is a circle,
which is divided into three parts. In the upper part the
name of the abstract object has to be denoted manda-
tory. The middle part can be used for showing role­
associations between various objects. This is a useful
feature for modelling.
In the lower part of a pattern for an object a set of at­
tributes can be specified. Every abstract object pos­
sesses an instance list <inst>, which can be considered
as a special attribute and which contains all the instanti-

ated objects of the related class. This list can be - particularly in the initial state -
empty. Every instantiated object possesses all the attributes, which are defined for the
abstract object to which it belongs. That is, the instance list of abstract objects having
derived objects is the union of all instance lists of the derived abstract objects.
It is only necessary to declare such attributes in the lower part of an object pattern
which are essential within the context of this OPN, i.e. the same object can be de-

- 26 -

picted with different subsets of attributes within various OPN belonging to a system
of OPN's. In the following, a certain attribute is denoted by <attr> and its value by
vallattr). The value of an attribute can be undef, that means it has no defined value.
According to the object-oriented paradigm the attributes are instances of four pre­
defined colour classes or of a user-defined structured data type. For every colour class
there exists a defined set of operations for dealing with the attributes.
Now a description of the pre-defined colour classes ENUM, INT, SET, MULTISET
follows.
ENUM - comparable to an enumeration type. The finite set of values has to be de­
fined by enumeration of all elements.

< attr > = ENUM {value ,valuez '''' value j, n EN, value. '" value. Vi", j
1 n t}

. {value, werti E ENUM
WIth val(attrENUM) =

unde!

An ENUM-attribut can be considered as a finite sequence with pair-wise different
elements.
INT - comparable to integers in programming languages.

val(attr/NT) =
{

nE N

unde!

With respect to the finite domain by implementation an !NT-attribute always has a
finite value.
SET - comparable to a container class, which can only contain one copy of each
element, i.e. it is comparable to a mathematical set. Declaring a SET-attribute requires
the definition of a basic set B which define the domain of the attribute.

() {VAL with
val~attrSET(B) =

unde!

VAL~B

The value of a SET-attribute is a subset of the basic set B. The set B can be a previous
defined ENUM.Type.
MULTISET - comparable to a container class, which can contain more than one
copy of each element, e.g. comparable to a mathematical bag. Defining a
MULTISET -attribute includes the declaration of the underlying basic set B.

MULT/SET: B --> N

It is possible to use a defined ENUM as basic set. The multiplicity of an element e of
the underlying set B within the bag is denoted by mle). The value of such an attribute
is a bag itself and can be denoted as a weighted sum:

- 27 -

val(attrMULTlSEf(ENUM») = I. m(attr) val(attr)
attreENUM

Using these four elementary colour classes it is possible to declare structured types.
called CLASS.

CLASS=(e"e, •...• ek) withe, E (ENUM.INT.SET.MULTISET)

A CLASS-attribute describes the merger of some elements belonging to various ele­
mentary colour classes and can be called by the name of the attribute. However. ac­
cess to the individual elements is possible too. The value of such a CLASS-attribute is
the combination of the individual element values.

val(attrcu.ss) = (val(e l). val(e, ~ ...• val(ek)) and val(attrcu.ss .e,} = val(e,}

Another special kind of attributes are role-attributes. Roles between different classes
can be declared within the class structure diagram belonging to the system's model
and can be used within the OPN.

33 Processes
Processes represent the instances of methods of individual classes and describe the
dynamic behaviour of objects. When they are activated they can change the values of
attributes of the corresponding objects and thus. depict state modifications within the
system. A process always belongs to a class and can only be activated and run with
objects of this class. For objects of other classes processes may only cause changes to
the attributes by sending messages. Hereby. it is ensured that an object can only call a

different object or communicate with it out of a method.
Class_name The graphical representation of a process in an OPN is a

divided rectangle. In the upper region the name of the class to
Process_name which the process belongs has to be inscribed and in the

Figure 4: Process lower part the name of the process itself is denoted. None of
these inscriptions can be ontitted. A process can be drawn in a

system of OPN's only once (in opposition to objects. which can appear arbitrarily
often).
A process can be activated only under certain circumstances: preconditions deterntine
the individual system state. which is necessary for statting the process. Therefore.
preconditions check certain values of the attributes of objects. Postconditions deter­
ntine the state of the system after temnination of the process. They change the attrib­
ute's values. i.e. they describe the changes of attribute values by running a process.
Before statting a process it has to be checked whether these changes are possible.

- 28 -

pre - condition

arc inscription

arc inscription

post - arc post - condition

Figure 5 : Graph of an OPN

Arcs connect objects and processes and vice versa, but never net elements of the same
type. Pre-and postconditions of processes are represented as arc inscriptions. Arc
inscriptions are logical expressions built with attributes of related objects using suited
operators. A condition is fulfilled if the related term will be evaluated to the value
TRUE. Related to their directions arcs denote pre- or postconditions of processes: an
arc directed from an object to a process is called pre-arc, an arc from a process to an
object is a post-arc.
Processes can subjoin new objects to the list of instances of an object via post­
conditions (create functionality). It is possible to instantiate new objects from the
class to which the process belongs or from other classes. The values of the attributes
of this instantiated objects can be undefined or have defaults or certain values. Ac­
cording to the create mechanism there exists a destroy functionality, i.e. instantiated
objects can be destroyed. Furthermore, objects can be displaced by processes within
the static class hierarchy.
Processes can be assigned a priority in order to solve conflicts during simulation.
Furthermore a process can have a time attribute which determines the running time of
this process.

3.4 Refinements of Processes
Processes can be refined. If a process has a refinement this will be shown by denoting
a "+" in the upper right corner of the depiction of a process. The refinement of a proc­
ess is an OPN as well, which is called subnet.

- 29 -

refined process
~iiijf~i~~?:~ ~_~~refined process

level of refinement

Figure 6: Refinement of processes

Using this mechanism of hierarchy realises inheritance and polymorphism within the
system model. The preconditions of a process having a refinement will be inherited to
all the processes on the refined level. Subnets can not be connected directly. Only
indirect, invisible links between different subnets are possible because processes
belonging to different subnets can affect the same object.

3.5 Arc inscriptions
Arc inscriptions are terms built of attributes by using the defined set of operations for
each colour class. According to the actual value of the appropriate attributes the term
results in a Boolean value. If the value of a term is TRUE, than the related condition
is fulfilled.
There are two types of operations/operators which are defined for the several colour
classes. Detailed description of each operation is not possible here because of the
limited scope of this article.
I. Value-changing operations modify the values of an attribute. The resulting value

belongs to the same colour class as the attribute.

op: Ci xCi --) Ci with C. E (ENUM,lNT,SET,MULTISET)
I

Examples for such operations are increment or decrement of !NT-attributes.
These operations are used for building post-conditions.
2. Testing operations check the value of an attribute and result in a Boolean value.

op : Ci xCi --) BOOLEAN

Typical examples of such operations are test for equality or inequality.
Testing operations are used within pre-conditions exclusively.
A pre-arc inscription is a term built from one or more testing expressions related to
attributes, which can be combined by logical AND (&&) andlor logical OR (II).
Post-arc inscription terms can only contain value-changing expressions connected by
logical AND (&&). The use of the OR-operator is prohibited within post-arc inscri­
tions.

- 30 -

3.6 Dynamics
Simulating an OPN is comparable to playing the token game in Petri Nets: if all the
pre- and post-conditions of a process are fulfilled it will be activated and run'. All the
objects contained in the instance list of an object can be considered like the structured
tokens in Petri Nets. Therefore, a process can be activated several times if there is
more than one instantiated object fulfilling the conditions.
A process can be activated if the pre-condition as well as the post-condition is ful­
filled, i.e. if the related terms result in the Boolean value true. This checking has to be
done for every instantiated object contained in the instance list of the abstract object.
Concerning pre-condition it is clear how to determine the Boolean value of the corre­
sponding term because the testing operations result in Boolean values.
Determining the Boolean value of a post-arc inscription is a two-stage procedure:
First one has to check whether the several operations contained within the term are
executable. For instance the decrementation of an INT-Attribute with an actual value
of 0 is not executable. This results in the Boolean value false for the related term. A
value-changing post-condition is fulfilled if at the moment of starting the process the
operation(s) result in a value different from undef
Next it has to be checked whether the attributes, which have to be changed by the
term, are not locked. This lock mechanism is realised for avoiding problems by multi­
ple access to the same attribute of the same instantiated object. If a process has a post­
arc inscription containing an attribute, this attribute is locked during the running of
this process. Other processes can not be activated if they want to change the value of
the same attribute.
If conflicts occur they can be solved by interpreting the priorities given to the proc­
esses.

3.7 Example for an OPN
The following two figures show the OPN-diagram for the same facts modelled with
an AD as shown in Figure 2 - the determination of a deadline for the order and the
release for further activities.
Figure 7 illustrates that the processes Order::Archive and Order::DetermineDate can
be activated in parallel (for a single order). However, each of the two processes is
activated only once for each of the instantiated objects. Precondition for both proc­
esses is the accomplished registration (State==registered) and that the archiv­
ing/deadline determination has not yet been performed (State! =archived /
State!=dated). As postcondition the respective attribute values are added to the SET
state (State+=archived / State+=dated). The performed deadline determination is a
pre-condition for the release of the order for further activities which is represented in
the model by Order: :Release.
Figure 8 shows the refinement of the process Order::DetermineDate from Figure 7.

1 For activating processes we introduce a discrete time step and running a process
(without a refinement) takes one step. This is combined with a maximum or stochastic
firing rule. Stochastic firing rule means that the process will run under a given prob­
ability if it is activated. Because all simple processes (without a refinement) take one
step for running time is introduced implicitly within the model.

- 31 -

Figure 7: Final order processing

The process Order::CalculateDate determines the calendar week the order can be
finished in. After completion of the calculation the order is assigned a value Date
which has not yet been tested. An unchecked deadline is tested by the process Or­
der: :TestDate in order to verify its achievability. Then, the attribute DateMeetable
has a defined value (yes/no). In case the deadline can not be met it has to be adjusted
by the process Order:AdaptDate. In the postcondition DateChanged=yes the change
of the deadline is registered such that it becomes achievable. If the deadline can be
met for sure (DateMeetable==yes / DateChanged==yes) the order is scheduled for
production by the process Order::Schedule. A multiple scheduling of the order is
prevented by the supplementary precondition State!=scheduled since the value
scheduled is added to the attribute state as a postcondition of Order: :Schedule.
When a change of date has been performed reconfirmation with the customer be­
comes necessary (Order: :CustomerEnquiry). His positive or negative answer is reg­
istered in the attribute ResponseCustomer. In case the response is negative (Respon­
seCustomer==negative) this reaction has to be evaluated in the process Or­
der::ResponseEvaluation which is further refined in Figure 9. In consequence of this
process the attribute Date is reset because either the order has been cancelled or a new
deadline needs to be calculated.
The accomplishment of the deadline determination (Order::DetermineDateFinish) is
reached when the order has been scheduled, the deadline can be achieved or a change
of date has occurred and was confirmed by the customer.

- 32 -

Figure 8: Refinement of the process Order::DetermineDate

- 33 -

Figure 9: Refinement of process Order:: ResponseEvaluation

In case the customer has not accepted a changed deadline two alternatives have to be
distinguished: one the one hand the chance is that the customer is no longer interested
in a further processing of his order, i.e. the order is getting cancelled. On the other
hand he still may want his order to be processed if an earlier deadline can be met.
Both cases are registered in the refinement of the process Order::ResponseEvaluation
in Figure 9. When the customer does not want to retain his order (Customerlnter­
est==negaitve) the order has to be cancelled.
Otherwise, only the post-condition of RepeatDetermDate is reset to the date of the
order such that a recalculation can be done.

4 Procedure of creating a business process model
In cooperation between the TV Ilmenau and OWiS Software Ltd. a framework for the
object oriented software development process has been developed, called SEPP/OT
(Software Engineering Process for Professional Projects based on the Object Tech­
nology) [WBP98]. SEPP/OT is divided into four "Use Cases" which stay active
throughout the intire duration of the project and describe the main columns of the
actions. These use cases are: Requirements capture, modelling, conversion and intro­
duction. SEPP/OT is not a concrete instance of an activity flow model but rather a
framework, which can be completed specific to a project and an enterprise.
The main characteristic of SEPP/OT is the stepwise, incremental enhancing of a
model starting from use cases. For business process modelling we adapted SEPP/OT.
Figure IO illustrates our method for creating business process models. The spiral
arrow symbolises that the modelling process is iterative and incremental. During the
cyclic passing through the several phases the model will be completed and enhanced.
There are interactions between all types of diagrams within Figure 10. For instance,
the CSD diagram gives the information about the swim-lanes to the AD. Vice versa
during creating an AD the model-builder obtains ideas about the static class structure.
Starting point for creating a business process model is a Use Case Diagram. In the
meaning of business process modelling a use case diagram describes the perform-

- 34 -

ances of an enterprise for the environment and the interaction between them. Use
cases facilitate the dialogue between the user and the developer. Starting from the Use
Case Diagram there are some possibilities for enhancing the model as can be seen in
Figure 10. The Use Case Model itself can be refined during the next modelling steps
as well. But mostly it only gives a first informal approach for modelling the system.
Within the Class Structure Diagram the structural makeups of an enterprise can be
specified as the static aspects of the system. Additionally. this diagram can be used
for declaring the attributes of the objects. the role associations between objects and
inheritance relations between classes. The CSD captures the actors as well as the in­
firm objects. It is possible to get an organisation chart for an enterprise directly from
the CSD. This is a good aid for the dialogue between the staff of the enterprise and
the UML-expert. who is creating the model.

Figure 10: Procedure of creating a business model

For a more detailed description of the dynamic behaviour as the use cases do we use
the Activity Diagram. The AD gives a clear view onto the logical flow of procedural
order and it is easy to understood for non-informaticans. Outgoing from the AD the
instantiation of an activity tree is possible. which shows the several pieces of work
forming a business activity. This tree only shows the sub-activities which have to be
done for fulfilling an activity but not the logical order of this sub-activities.
For getting a more formal model which is ready for simulating an OPN can be cre­
ated.

- 35 -

5 Tool support and model checking
UML-based modelling requires tool support for ensuring consistency between the
several diagrams building the model. We use the OTW"2 (Object Technology Work­
bench) for modelling, development and model checking. The OTW is a modelling
tool conform to the UML, which supports the development beginning from the re­
quirements analysis to the source-code generation.
This tool for UML-based modelling provides several diagrams of the UML and the
OPN. Furthermore, the OTW"2 includes some integrated tools like Source Code Gen­
erators (C++, Java), Reengineering tools, Documentation Generators, Conversion
Tools and a Petri Net tool. This Petri Net tool provides an editor and a simulator for
Coloured Petri Nets and some features for statistical evaluation of simulation. Addi­
tionally an interface to the net analysing tool INA [lNA98] is available.

Requrirements

Configuration *~-.
Management

Model Checking
Tools

Model
Information
Database I
Repository

Generation
ImportlExport

Verification
(INA)

Diagrams of
Dynamic View

Diagrams of
__ IArchitectur View

Figure 11 : The tool family combined within the OTW~2

The OTW"2 bases on a repository. Inside this repository all necessary information is
stored about modelling and development. The repository contains the whole model
and hence it is the base for the internal consistency of the various parts of the model.

- 36 -

All the tools integrated in the OTW"2 have access to the data stored in this repository.
The several diagrams define different views to the content of the repository. Other
tools like scanner and generator read objects from the repository or write new objects
into it.
The information about the static and dynamic aspects of the system which are con­
tained in the several diagrams can be used for checking and verifying the model with
tool support. With respect to the existence of a model or a model together with its
application, there are four different possibilities for testing the model ([Wolf95J):
Evaluation of diagrams, static checking of consistency, active model-checking and
passive model-checking.
Evaluation of diagrams
This means static check of basic properties of the model's composition. The evalua­
tion of ergonomic properties of diagrams bases on a set of fuzzy rules.
Static check of consistency
This comprises the consistency checking of the static structure between the model and
the application software. The use of a CASE tool is recommended for this step.
Active model-checking
Simulating an OPN is comparable to playing the token game in Petri Nets: if all the
pre- and post-conditions of a process are fulfilled it will run. All the objects contained
in the instance list of an object can be considered like the structured tokens in Petri
Nets. Therefore, a process can be activated ·several times if there is more than one
object fulfilling the conditions. For avoiding problems by multiple access to the same
instantiated object a lock-mechanism is realised. If conflicts occur they can be solved
by interpreting the priorities given to the processes.
Passive model-checking
Passive model-checking deals with the checking of the consistency between the actual
model and the application software during the execution of the application software.
The coupling between model and the application software allows the control of the
modelled restrictions during the execution of the application software [Burk94). For
the OPN the pre- and post-conditions can be observed. A possible approach for real­
ising such a dynamic check of consistency contains the following four steps:
• Generation

Insertion of a special checking-code into the application software
• Compilation

Creation of an runable application with the integrated check-mechanism

• Run
Observation of the fulfilment with the required restrictions

• Adjustment
Detection of inconsistencies, change of model or application software

In addition to these checks a special checking of business process models based on
the AD is possible. This can be done by testing the compliance with some modelling
rules, which were established by the authors. Every modelling element of an AD has
an adequate Petri Net construct. All this rudimentary nets form a construction kit for a
Petri Net. Therefore, a created AD can be automatically transformed into an ordinary
Place Transition Net. If there are no violations against the modelling rules the resul­
ting nets are sound workflow nets [Aals97). Checking the existence or absence of
violations against the modelling rules can be done by applying some simple reduction

- 37 -

rules to the nets. We use INA for doing the net reduction [INA]. The net reduction
releases PTP-sequences and parallel nodes from the net. Nonconformance in the de­
sign results in typical structures within the reduced Petri Net, hence fault detection is
possible.

6 Summary and further work
The UML is the first promising approach for standardisation in the field of object
oriented modelling techniques. The diagrams permit the construction of system mod­
els in an incremental way, whereas the level of formalisation can be staggered ac­
cording to the progress of the modelling process. With the OPN an additional means
of description for the dynamic aspects of a system is provided expanding the facilities
for simulation and for model verification.
At the moment the implementation of a simulating tool for the OPN is going on. This
tool can be enhanced by some possibilities for statistical evaluation of simulation in
order to do business process cost accounting. Furthermore, some work has to be done
for automatic transformation of OPN into high-level Petri Nets in order to achieve the
opportunity to apply formal analysis techniques. Eventually it is possible to find out
some analysing rules directly for the OPN.
Another piece of work which has to be done is examining whether it makes sense to
use reduction rules directly for the AD without transforming it into Place Transition
Nets. The goal is simplification of the modelling and verification process for the user
without knowledge about Petri Nets. But maybe by providing a meta-model for busi­
ness process modelling based on the UML this verification step is not necessary.
Using this meta-model simplifies the modelling work for the user and increases the
quality of created models.

7 References and Links

[Aa1s97l

[Burk94]

[Burk97l

[Conc97]

[FeSi96l

[INAI

[Jaco+92]

[Jaco+95]

van dec Aalst, W. M. P.: Verification of Workflow Nets. LNCS 1248. S. 407426.
Springer Verlag. 1997

Burkhardt, R.: Modellierung dynamischer Aspekte mit dem Objekt-ProzeB-Modell,
Dissertation. TV I1menau 1994 (in Gennan)

Burkhardt. R.: UML - Unified Modeling Language. Addison-Wesley 1997 (in Ger­
man)

High-level Petri Nets - Concepts, Definitions and Graphical Notation, Corrunittee
Draft IS07lEC 15909. October 2, 1997. Version 3.4

Ferstl, 0 .. Sinz. E.: GeschtiftsprozeBmodellierung im Rahmen des Semantischen
Objektmodells, Geschfiftsprozessmodellierung und Workflow-Management - Mod­
elle, Methoden, Werkzeuge (Herausgeber: Vossen, G.; Becker, 1.); International
Thomson Publishing; Bonn! Albany 1996 (in Gennan]

Integrated Net Analyzer, 2.1,
http://www.informatik.hu-berlin.dellehrstuehlelautomatenlinal (in German)

Jacobsen, I., Christerson, M., Jonsson, P., 6vergaard, G.: Object-Oriented Software
Engineering, A Use Case Driven Approach. Addison Wesley. 1992.

Jacobsen, I., Ericcson. M., Jacobsen, A.: The Object Advantage. Business Process
Reengineering with Object Technology. Addison-Wesley. 1995.

- 38 -

[MOId96]

[OCL]

[OTW97]

[PMK97]

[Pres97]

[Schm971

[UMLl]

[UML2]

[WBP98]

[WfMC96]

[WoIf95]

MOlders, A., Fengler. W., Burkhardt, R., Philippow. I.: Workflow Configuration
Using the Object Process ModeJ, in: Proceedings of the I. International Conference
PAKM. Basel Oktober 1996

Booch, G., Jacobson, I., Rumbaugh, I.: Unified Modeling Language, Object Con­
straint Language Specification, Version 1.1, Rational Software Corporation,
www.rationul.com. I. September 1997

Objekttechno)ogie-Werkbank, Benutzerhandbuch OTW 2. OWiS Software GmbH
Martinrodallimenau. 1997 (in German)

Petersen, U .• Molders, A.. Kohler, T.: Optimierung von Geschiiftsprozessen durch
objektorientierte Modellierung und Simulation, in: Proceedings of "Workflow­
Management in Geschaftsprozessen im Trend 2000", SchmalkaIden, 15J16. Oct.
1991 (in German)

Prescher, G.: Proze3modelle filr Workflow·Management - ein Ansatz mit Use Case,
in: Proceedings of "Workflow-Management in Geschtiftsprozessen im Trend 2000",
Schmalkalden, 15116. Oct. 1997 (in German)

Schmutterer, A: Theoretische Formalisierungen verschiedener objektorientierter
Workflow·Modellierungstechniken, Diplomarbeit (Master Thesis) TU I1menau, 1997
(in German)

Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language, Notation·Guide.
Version 1.1, Rational Software Corporation, www.fationai.com. I. September 1997

Booch, G .• Jacobson. L, Rumbaugh. J.: Unified Modeling Language. UML·
Semantics, Version 1.1, Rational Software Corporation, www.rational.com. 1. Sep·
tember 1997

Wolf. M., Burkhardt, R., Philippow I.: Software Engineering Process with the UML.
in: Schader, M., Korthaus. A (oos.): The UML. Technical Aspects and Applications.
Physica· Verlag. 1998.

Workflow Management Coalition: Tenninology & Glossary; Document Number TC
1011; Issue 2.0; Brtissel, Juni 1996.

Wolf. M.:Validierung und Optimierung dynamischer Modelle auf der Basis des
Objekt·Prozess·Modells, Technische Universitlit Ilmenau, Diploma Thesis, 1995 (in
Gennan).

Dipl.-Math. Angela Molders, Dipl.-Inf. Martin Wolf, Prof. Dr.-Ing. habil. Wolfgang Fengler
Technical University of I1menau, Faculty of Informatics and Automation,

Institute of Theoretical and Technical Informatics
P.O. Box 100565, 98684 Dmenau, Germany

eMail: [wfenglerlmoelderslmwolf]@theoinf.tu-ilmenau.de
URL: http://www.theoinf.tu-ilmenau.del moeldersl

Dr.-Ing Rainer Burkhardt, OWiS Software GmbH -Society for object-oriented and
knowledge-based systems Ltd.

Lindenstrasse 28, 98693 TImenau, Germany
eMail: rsb@otw.de

URL: http://www.otw.de

- 39 -

Reuse-oriented Workflow Modelling with Petri Nets

Gerrit K. Janssens, Jan Verelst, Bart Weyn

University of Antwerp - RUCA
Information Systems & Operations and Logistics Management

Middelheimlaan I, B-2020 Antwerp, Belgium
E-mail: {gerritj.verelst.bweyn)@ruca.ua.ac.be

Abstract

Several authors propose their own technique based on Petri Nets to model Workflow
processes. Most of them recognise the adaptability problem inherent to workflows, viz.
the frequently andlor radically changing character due to changing business process
rules, but suggest totally different solutions. Because the proposed techniques are
fundamentally different, eleven of these techniques are briefly discussed and compared.
Next, we survey approaches to reuse in the workflow field and we classify them in a
framework derived from the information systems literature.

1. Introduction

Recently. both the domain of workflow modelling by using Petri Nets and the area of
reuse in software engineering have gained much attention. We share the opinion that it
could be opportune to take a closer look at the application of the reuse concept to
workflow modelling. It is our intention to make an infonnal introduction to the subject
and an attempt to make a broad outline of desirable future developments and some
topics that need further research. First we summarise the different topics concerning
this field that have already been covered and treated by several authors.

The domain of workflow management seems to be characterised by lacking precise
definitions. Because of the wide variety of definitions used by various authors
concerning workflow, tasks, procedures etc., we define the most important terms in
section two.

- 40 -

2. Definition of Basic Workflow Concepts

Little agreement exists upon what workflow exactly stands for and which specific
features a workflow management system must provide. For an overview of existing
definitions and interpretations of workflow and workflow management systems we refer
to Georgakopoulos et al. [21]

In response to the proliferation of definitions, the Workflow Management Coalition
(WfMC) performs considerable efforts to standardise terminology. The WfMC [25] is a
non-profit international organisation which formal mission is to promote the use of
workflow through the establishment of standards for workflow terminology,
interoperability and connectivity between workflow products. The WfMC has also
specified a reference architecture for workflow technology_ Since its establishment in
August 1993 it has grown to over 100 members, consisting of workflow vendors, users
and analysts.

The formal definition of workflow presented by the WfMC is as follows:

The computerised facilitation or automation of a business process, in whole or part.

The definition of a Workflow Management System (WFMS) is consequently:

A system that completely defines, manages and executes "work flows " through the
execution of software whose order of execution is driven by a computer representation
of the workflow logic.

As various definitions of workflow are based upon the concepts of tasks, activities,
procedures and work steps, we look here at the most conunon definitions. We refer to
the definitions provided by Ellis and Nutt [13]. A task or procedure can be defined as a
predefined set of work steps, and partial ordering of these steps. A work step consists of
a header and a body. The work step contains identification, precedence, etc. and the
body represents the actual work to be done. In this wayan activity can be defined as the
body of the work step of. a procedure. An activity can then be either a compound
activity, containing another procedure, or an elementary activity [13].

However, in the following we use the definitions proposed by the WfMC.

3. Workflow Concepts Translated into Petri Nets

Since Zisman [51] used Petri Nets to model workflow processes for the first time in
1977, several authors have made attempts to model workflows in terms of Petri Nets,
amongst which De Cindio et al. [12], Ellis and Nutt [13,14] [39], van der Aalst [3],

- 41 -

Ferscha [16], Wikarski [48], Li et al. [34], Adam et al.[7], Oberweis et al. [40],
Badouel and Oliver [9], Merz et al. [36,37], and Sch5mig and Rau [44].

3.1 Why Petri Nets to Model Workflow?

The execution structure of a workflow specifies the ordering constraints for the
executions of the tasks. (example: "a task may not begin before a particular previously
started task commits"). Such constraints can be specified by triggers, by finite state
automaton or by Petri Nets. [33]

Van der Aalst [2] identifies mainly three reasons for using Petri Nets for workflow
modelling. The first reason is the fact that Petri Nets possess formal semantics despite
their graphical nature. The second reason is that instead of being purely event-based,
Petri Nets can explicitly model states. In this way, a clear distinction can be made
between the enabling and execution of a task. The final reason lies in the abundance of
available and theoretically proven analysis techniques.

Oberweis et al. [40] identify five different reasons to opt for using Petri Nets when
modelling workflows. They are:

- Integration of data and behaviour aspects,
- Support for concurrent, cooperative processes,
- Different degrees of formality,
- Availability of analysis techniques,
- Flexibility.

By this last property the authors refer to the fact that Petri Net models are directly
executable by an interpreter (which is the workflow engine of the Petri Net based
WFMS), but they are not so-called "hard-wired" application programs. This guarantees
a reasonable degree of flexibility, because of the "late-binding" between activities and
objects. This way it becomes possible, according to the authors, to make adjustments to
workflow processes at run-time.

Merz et al. [36] finally state that the combination of a mathematical foundation, a
comprehensive graphical representation, and the possibility to carry out simulations and
verifications is the main strength of Petri Nets when modelling workflows.

Han [23], however, warns and states that despite the popularity of Petri Nets to model
workflows, he does not believe that Petri Nets are directly applicable for modelling
workflows, mainly due to their fixed structures. The author criticises the lack of
flexibility of most of the proposed net models and indicates the mechanisms to support
abstraction and compositionality as the main reason.

- 42 -

3.2 High Level Versus Low Level Petri Nets

In this section we give a brief overview of the Petri Net classes proposed by various
authors. Because of the problematic nature of modelling business processes, Petri Nets
in their conventional form are not well suited as a modelling language. Common
problems encountered when modelling workflows include high complexity when
dealing with other than just toy models and lack of flexibility, especially where
structural changes are necessary.

As already mentioned, the structure of workflows is extremely volatile as a
consequence of changing business process rules. Business environment and conditions
change very quickly. System evolution is unavoidable because business processes
evolve continuously caused by internal organisational reforms, external environmental
changes, etc.

Hence, business models are subject to mainly two types of changes: on the one hand
changes in the data of the workflow systems and on the other hand changes in the rules
of the workflow systems.

All the above resulted in various authors proposing their own developed Petri Net class
in order to cope with those specific issues. We synthesised different approaches of
various authors and drew up a comparison in Table 1.

Author Petri Net class Brief description
Abstraction into PfT-nets of
High Level Petri Nets with

Van der Aalst W.M.P [I] Workflow-nets (WF-nets) two special places i and 0,

indicating beginning and
end of the modelled
business procedure.
High Level Petri Net

Ellis C.A., Nut! G.!. [13] Information Control Nets variant intended to
(ICN) represent control flow and

data flow.
High Level Petri Nets are

Oberweis A., et al. [40] INCOMEIWF used to describe the so-
called core workflows on a
relatively abstract level.
Ordinary Petri Net
extended with an interval

Adam N. R., et al. [7] Temporal Constraint Petri function and a timestamp
Net (TCPN) function to model absolute

as well as relative time.

- 43 -

Low Level Petri Nets
provided with a hierarchic
module concept and with
constructions designed to

Wikarski D. [48] Modular Process Nets realise communication
between net instances and
their environment and
constructions to create and
destroy the net instances.
A WFMS consists of two
basic components: namely a
WF model and a WF

Subclass of Elementary Net Execution model.
Agostini A .• et al. [8] Systems Simplicity of the WF model

is stressed because it
enhances the flexibility and
adaptability of the WF
Execution Module.

Coloured Generalised CGSPN are used as an
Schomig A.K .• Rau H. Stochastic Petri Nets adequate tool to measure
[44] (CGSPN) performance and to model

dynamic behaviour.
CPN are used to introduce
dynamic workflow

Merz M .• et al. [36] Coloured Petri Nets (CPN) modelling in the distributed
systems architecture COSM
GSPN are used to model

Ferscha A. [16] Generalised Stochastic Petri and quantify WF
Nets (GSPN) (performance and structural

analysis).
Extension of the WF-nets

Badouel E .• Oliver J. [9] Reconfigurable Nets of van der Aalst (1].
intended to support
dynamic changes in
Workflow systems.
In contrast to Modular
Process Nets [48]. which
are used to model workflow

Wikarski D .• Han Y .• Higher Order Object Nets processes, this approach is
Lowe M. [49]. [23] (HOON) intended to model explicitly

the structure of the
organisation and the
organisational resources.

Table 1: Overview of the proposed Petri Net classes

- 44 -

Li et al. [34] also use a Petri Net variant to model office work. However, they are not
mentioned in the table because of the limited scope of their paper concerning the
introduction of Petri Nets to model procedural knowledge. Moreover they do not really
go into the inherent problems of modelling workflows. The authors propose the
Activity Manager System (AMS), which is a domain-independent formalism designed
to hierarchically represent procedural knowledge. Activity Networks (AN) are defined,
which are used to model the activities in office procedures. These AN can be
transformed into Petri Nets, in this way benefiting from the various levels of abstraction
and being capable of handling notions such as sequence, choice and concurrency, as
offered by Petri Nets.

3.3 High Level Petri Nets

Ellis and Nutt [13] as well as van der Aalst [6] make a resolute choice in favour of High
Level Petri Nets. They both state that High Level Petri Nets are an indispensable
necessity when modelling real world applications because Low Level Petri Net models
tend to become extremely complex and very large. Moreover, Ellis and Nutt [13] state
that, when modelling large sets of office procedures, Low Level Petri Nets lead to "an
exponential explosion" of the model.

The Workflow nets (WF-nets) proposed by van der Aalst [I] are an abstraction into
Nf-nets of High Level Petri Nets with two special places i and 0, indicating the
beginning and the end of the modelled business procedure. These WF-nets are suitable
not only for the representation and validation but also for the verification of workflow
procedures.

The question: "Given a marked Petri Net graph, what structural changes can or cannot
be applied while maintaining consistency and correctness" I is an important and pressing
problem which has also been recognised by Ellis and Nutt [13]. However, van der Aalst
[4] provides an answer to this question for Workflow nets in the shape of
transformation rules. These rules should not be confused with the more common
reduction rules. Eight basic transformation rules allow the designer to modify sound
WF-nets while preserving their soundness.

Badouel and Oliver [9] extend the WF-net formalism of van der Aalst [1] and propose
the Reconfigurable Nets. These Reconfigurable Nets intend to support dynamic changes
in Workflow systems. A Reconfigurable Net consists in fact of several Petri Nets which
constitute the different possible configurations of the system. Each configuration gives
a description of the system for some mode of operation. The authors denote that
Reconfigurable Nets are self-modifying nets, meaning generalisations of Nf-nets where
the flow relation between a place and a transition depends on the marking. The authors
conclude by stating that it might be interesting to extend a Reconfigurable net with a
control part to regulate the flow in the system.

- 45 -

Ellis and Nutt [13], [14], [39] propose Information Control Nets (ICN), derived from
High Level Petri Nets to represent office workflows. By adding a complementary data
flow model, generalising control flow primitives and simplifying semantics, ICN are in
fact a generalisation of Coloured Petri Nets. ICN represent control flow as well as data
flow. The authors provide an exception handling mechanism. They note, however, that
the mechanism allows users to escape the model, rather than helping them to analyse
and cope with the exceptions.

Finally, Merz et aJ. [36,37] use Coloured Petri Nets in order to enhance the distributed
systems architecture Common Open Service Market (COSM), with concurrent
workflow modelling. The authors introduce Coloured Petri Nets as a modelling and
simulation technique for concurrent activity management and control. They use the
definition of Coloured Petri Nets of Jensen [27], which is probably the most common
one. The tokens of Coloured Petri Nets are typed (coloured) entities or data values.
Places, transitions, edges, etc. are typed by their respective signature. Places represent
data stores containing an arbitrary number of data values (tokens) of their respective
type.

3.4 Stochastic Petri Nets

Ferscha [16] proposes Generalised Stochastic Petri Nets (GSPN) to model workflows.
Stochastic Petri Nets (SPN) are in the classical approach based on Placelfransition
(Pff) Petri Nets but stochastic extensions are added. With SPN, the set of transitions
only contains stochastic timed transitions where the firing delay random variable is
exponentially distributed.

Generalised Stochastic Petri Nets are a class of SPN and allow to model timed
transitions with exponentially distributed delays as well as immediate transitions.
Transition priorities are used to avoid confusion and undesirable conflicts. Timed
transitions have the lowest priority level and immediate transition weights define how
transitions from extended conflict sets should be fired. Ferscha [16] exploits the natural
correspondence between the GSPN enabling and firing rules and the dynamic behaviour
of workflow systems. With respect to quantitative analysis, the Markovian framework is
used within the GSPN formalism to derive the performance metrics. For qualitative
analysis the author refers to the available broad body of Petri Net structural analysis
techniques.

Schomig and Rau [44] propose a variant of the above GSPN, i.e. the Coloured
Generalised Stochastic Petri Nets (CGSPN). CGSPN are based upon Coloured Petri
Nets as pure Petri Net formalism instead of Placeffransition Petri Nets. Compared to
the classical approach which is based on prr Petri Nets, this approach requires more
sophisticated analysis techniques.

The authors [44] suggest an approach to model the dynamic behaviour of workflow in
which resources are explicitly modelled as separate places. They state that CGSPN are

- 46 -

appropriate to model the typical characteristics of workflows, e.g. dynamic routing,
simultaneous resource allocation, forking/joining of process control threads and
random-order or priority based queueing disciplines. The advance of the control flow is
modelled by a separate token, a so-called job token, which traverses the complete Petri
Net, enabling activities according to the business rules.

In order to cope with dynamic routing, all possible routing paths through the process
model are exhaustively determined. All jobs following the same path are collected in
so-called job classes. Each of the paths can be modelled by a separate Petri Net. By
associating a colour or an attribute to the job tokens, the job class membership can be
specified. The distinct Petri Nets can be mapped into one single Petri Net model, which
then also captures the routing constraints accordingly. The synchronisation problem of
split/join constructs is solved by attributing an identifier to a job token. In this way, job
tokens belonging to different jobs can be prevented from being erroneously
synchronised to a single job. The authors also generate and solve the Markov chain
from the underlying random process to derive the performance data by a Petri Net
analysis tool.

3.5 Low Level Petri Nets

Wikarski [48] on the contrary, starts from the observation that in the recent past a vast
variety of Petri Net classes came into existence that aimed at increasing the
expressiveness of the net models. This gave rise to the existence of more complex Petri
Net classes with various sorts of tokens, arc or place inscriptions and many other
extensions of the classic Petri Net.

He further states that the arrival of High Level Petri Nets has created a number of
problems the first of which is the reduction of the intuitive aspect when modelling by
means of Petri Nets. An important characteristic of classic Petri Nets is that they can be
learnt easily and that they are very communicative with respect to persons with no
specific knowledge of Petri Nets. Two other problems are: (I), the impossibility to
describe dynamic or changing behaviour and, (2), the communication of the active nets
(i.e. those enacted by an interpreter) with each other and the rest of their environment.

To counter the above stated problems, Wikarski proposes Modular Process Nets, which
can be described as Elementary Net Systems with minimal syntactic extensions.
Elementary Net Systems (EN-systems) have originally been introduced by Rozenberg
and Thiagarajan [43].

When using the three level subdivision of basic net models proposed by Bernardinello
et al. [10], EN-systems can be catalogued as first level Petri Nets. The authors use the
nature and the number of tokens in one place as a discriminating characteristic.
Following this line they define a third level net system as a system in which places are
marked by structured tokens. These nets are often denoted by the term High Level Petri
Nets. The second level concerns nets with places that are marked by several

- 47 -

unstructured tokens. In this way, places represent in fact counters. Places of first level
net systems are marked by one unstructured token at the most hence places actually
represent conditions.

Modular Process Nets can be characterised best as a generalisation of safe EN-systems,
i.e. they have untyped tokens with a maximum of one token in anyone place. One of
the main aims of Modular Process Nets is that the fonnalism should be simple. easy to
learn and comprehensible in order to be used as a widespread but formally precise
means of communication. For this purpose, the author has developed a whole range of
node types. The author defines three different kinds of places: (ordinary) places, fusion
places and channels. Fusion places are used to improve the graphical representation of
large nets and channels are used to support communication between nets via token
passing. Moreover, the author defines seven transition types which deal with the
handling of events. Wikarski states that the main and most innovative points of the nets
are the introduction of a hierarchical module concept for nets and the definition of
"elementary process nets".

Like Wikarski [48], Agostini et aJ. [8] plead for simplicity of workflow modelling and
also opt for Elementary Net Systems. Their final objective is to create a workflow
model that allows its users to design workflows having little or no experience with
computer science, programming or formal languages. For this purpose, they define a
subclass of these Elementary Net Systems. The authors stress that EN-systems possess
adequate mathematical properties which allow the modeller to generate a large class of
behaviours. They state that a WFMS consists of two basic components: a WF model
and a WF Execution model. Simplicity of the WF model is stressed because it enhances
the flexibility and adaptability of the WF Execution Module.

Adam et aJ. [7] state that an ordinary Petri Net fulfils the basic needs to model the
control flow and value dependencies of a workflow system. In order to model the
temporal dependencies between two tasks in a workflow, however. the authors propose
a Temporal Constraint Petri Net (TCPN). According to the authors, existing Timed
Petri Nets are not capable of modelling both relative and absolute time. Their
functionality is limited to modelling relative time. The definition of a TCPN states that
each place and each transition is associated with a time interval and a token with a time
stamp.

The authors develop a notion of equivalence in order to be able to check whether the
Petri Net model represents the specified workflow correctly. Concerning workflow
analysis, the authors provide three types of analyses. A first analysis which can be
performed aims to identify whether inconsistent dependency relations among tasks
exist. A second type of analysis aims to test for workflow safety, which means to check
whether the workflow terminates in an acceptable state. And finally the third type of
analysis aims to test the temporal feasibility. This means to check, for a given starting
time, whether a workflow is schedulable with the specified temporal constraints.

- 48 -

3.6 Petri Nets extended with object-oriented concepts

Modular Process Nets proposed by Wikarski [48], have sensor transitions which can
detect triggering signals from the external environment. These signals, however, only
contain control information in a predefined context. In contrast to Modular Process
Nets, resource management is explicitly embodied in Higher-Order Object Nets
(HOON), the other formalism proposed by Wikarski et a1. [49]. The central idea of
HOON is to arrange net models and their surrounding environments in a client/server
manner and to model the client/server interfaces explicitly [23].

In HOON, each transition can own an interface place, which is called a control place.
Each control place may have several control tokens and through the exchange of control
tokens, a specified net can interact with the external world. Tokens can be put on
control places by software tools, either manually or by another net, depending on the
control policy. For modelling and controlling workflows, the authors propose two
different classes of nets, i.e. working nets and control nets. The interfaces between
those two classes of nets are the control places. Working nets can be compared to
Coloured Petri Nets.
In the next paragraph we focus on the question in which of the Petri Net classes the
reuse concept fits best.

4. The Reuse Concept for Workflow Modelling

4.1 Real World Workflow Modelling

In contrast to the field of software engineering where the concept of reuse is widely
explored, few authors have developed a theoretical framework to reuse in workflow
modelling by Petri Nets. Nevertheless, the concept of reuse is definitely encountered or
applied in practice by many modellers of real world workflows. This is due to the fact
that specifying and modelling real world workflows is highly complicated and complex
and that they are usually not developed in a single step.

As Oberweis [41] stated, there are mainly two potential strategies for the development
of large, real world workflow models. A first strategy is incremental construction by
iteratively refining, evaluating and formalising net fragments. This strategy can be
based upon composing certain elementary net building blocks from an existing Petri
Net library. Another strategy is adapting application-specific reference process models
and reference object models to the requirements of a specific case. These application­
specific reference models are sometimes denoted as generic models because they have
always captured a certain generic process knowledge.

- 49 -

In both cases, the importance of a well-documented library in which the reference
models or the Petri Net fragments are stored cannot be underestimated in any way. For
the whole concept of both approaches is based upon the library, the quality of the
library is a discriminating factor between failure or success of both systems.

Van der Aalst [I] also states that when dealing with the high complexity of real world
worktlows, designers can refer to reuse on the basis of hierarchical decomposition,
especially in communicating with end-users.

4.2 Approaches to Reuse of Petri Nets for Workflow Modelling

In this section, the existing approaches to reuse of Petri Nets for workflow modelling
are discussed and classified into a framework used in the information systems (IS)
literature (see Table 2).

The classification used in this paper is a summarised version of the classification
framework by Krueger [28], which was later adopted and refined by Mili et aJ. [38]. We
chose this framework because, as Mili explicitly states, it focuses on the « paradigmatic
differences between the various reuse methods », A classification according to
fundamental differences allows us to explore to what extent current approaches to Petri
Net-reuse cover the whole reuse-spectrum.

Krueger's [28] framework distinguishes between two main types of reuse: the building
blocks approach (compositional approach) and the generative approach. The building
blocks approach is further subdivided into the reuse of software patterns and into
software architectures.

4.2.1 Patterns

A (software) pattern is a proven solution to a certain standard type of problem. It is
described by four essential elements:

- a pattern name
- a problem description, which clarifies in which situations the pattern can be
used
- the solution to the problem
- the consequences and trade-offs involved in applying the pattern.

A limited amount of design patterns [19] and analysis patterns [18] [24] have been
published. An example of an analysis pattern is an Object-Oriented(OO)-conceptual
model for the concept of a 'customer' or a 'bookkeeping account'. Although these
patterns tend to be domain-specific, many of them can be used outside of their original
domains [18]. For example, a pattern of a bill of material can also form the basis for
modelling an organisation's hierarchy. Design patterns are situated at a lower level of
abstraction. An example is the observer-pattern [19]. An observer is an object which

- 50 -

monitors the state of a certain 'subject'. When the subject changes state, the observer
notifies all interested objects of this change. A typical application of the observer
pattern is found in spreadsheets. When a graph is produced based on data in a
spreadsheet, it is important that the graph is notified of any changes in the underlying
data. The observer-pattern describes how an observer can be built to achieve this goal.

Many of the existing approaches to reuse of Petri Nets for workflow modelling can be
interpreted as reuse of a pattern. Especially approaches discussing compositionality of
Petri Nets fall into this category: these authors implicitly assume that some existing
elements (for instance, workflows) are composed. We interpret these existing elements
as patterns.

However, before we enumerate which authors fall into this category, we add a level in
the classification: black-box vs. white-box reuse of patterns.

Black-box reuse is defined as the reuse of existing software components without any
modification. White-box reuse does allow adaptation of the components, usually using
the mechanism of inheritance.

In the IS-literature, a preference for black-box reuse has developed over the years. For
instance, Fayad [IS] claims that black-box reuse leads to systems that are easier to use
and extend. Zweben [52] provides experimental evidence: his experiments show that
black-box reuse is superior to white-box reuse in terms of required effort and
correctness of the resulting system. The main disadvantage of white-box reuse is that
the inheritance mechanism violates the encapsulation-principle. The aim of this
principle is to minimise interdependencies between modules by defining strict
interfaces. A subclass, however, has access to some of the data and code of its
superclass. The subclass is allowed to change the values of these data items, to call
functions of the superclass etc. As a consequence, several dependencies between the
super- and subclass are introduced. These dependencies compromise reusability, as
changes in a superclass frequently induce changes in the subclass. [19,46].

In the context of Petri-Nets, white-box reuse is discussed by Lakos [30] [31], who
defines the notion of inheritance for Object Petri Nets. Black-box reuse, through the
notion of compositionality of Petri Nets, is discussed by Christensen [II], Han [23],
Holvoet [26], Kruke [29], Wikarski [48] and van der Aalst [1,3].

For example, van der Aalst [1] briefly draws attention to reuse ofWF-nets on the basis
of 'task refinement' which is the refinement of a task by a subflow. In this way it
becomes possible to decompose a complex workflow into subflows which, in their turn,
can be built up from other subflows. In other words, one achieves a hierarchical
decomposition.

Compositionality is an important property for hierarchical construction of WF-nets and
more in particular for the reuse of subflows. The author [1] proves seven characteristics

- 51 -

about compositionality with regard to verifying the correctness of subflows in the same
way as verifying the entire workflow on a more abstract level.

4.2.2 Software Architectures

A Software Architecture is a high-level design of a software system, i.e. the subsystems
and their interactions [45]. Examples of architectures are compiler architectures
(consisting of analysers, parsers and code generators), database architectures and rule­
based architectures for expert systems. Software architectures are similar to very large­
scale patterns. However, patterns tend to focus on a small part of a system whereas an
architecture contains the overall structure of the system.

In the context of reuse of Petri Nets for workflows, both Han [23] and van der Aalst [3]
define software architectures for workflow management systems.

4.2.3 Application generators and very high-level languages

Application generators and very high-level languages constitute the class of generative
reuse. Forms of generative reuse are based on reusing the process of previous software
development. rather than reusing existing products (such as patterns or software
architectures) [38].

Application generators and very high-level languages allow the user to specify the
requirements at a very high level of abstraction. From these requirements, code is
automatically generated. This approach to reuse is considered. in the long term, to have
the highest potential payoff. However, at the current moment, it remains very difficult
to build generators that scale up to industrial production [42].

In the context of Petri Nets for workflow modelling, only van der Aalst [3] describes a
number of Petri Net tools that belong to this category.

4.2.4 Evaluation

By far the most common approach to reuse of Petri Nets for workflow modelling is
black-box reuse of patterns. Most authors discuss this kind of reuse implicitly through
the notion of compositionality.

However, very few authors, if any, discuss the notion of reusability explicitly andlor in
great detail. In other words, questions such as which advantages exactly can be
achieved or which type of reuse leads to these advantages, remain unanswered.

- 52 -

Reuse Type Authors
Christensen [11], Han [23], Holvoet [26],

Black-box reuse Kruke [29], Wikarski [48], van der Aalst

Software Patterns [3]

White-box reuse Lakos [30]

Software Architectures Han [23], van der Aalst [3]

Application Generators and very high van der Aalst [3]
level languages

Table 2: A classification of techniques for reuse of Petri Nets for workflow modelling

4.2.5 A critical remark concerning reuse in the IS-literatnre

The idea of building software by assembling reusable components dates back to 1968
when Doug McIlroy proposed the idea of libraries of shared components at the NATO
Conference of Software Engineering [35].

Since then, most programmers have continued to informally reuse their own code, but
in an ad hoc way. Up to now, it has remained extremely difficult to realise a systematic
approach to reuse [42][32][17]. Also, Prieto-Diaz [42] observes that the state-of-the­
practice is still source code reuse, in spite of numerous claims that reuse at the design­
or even analysis-level would have higher payoffs. Finally, Szyperski [47], for example,
observes that at this moment, relatively few catalogues of reusable objects actually
exist.

The literature contains a wide variety of potential reasons for the lack of systematic
reuse: some technical, but many are managerial (relating to management commitment,
organisational issues etc.) [50]. We now focus on one of the fundamental technical
problems that underlie reuse.

4.2.6 Hidden assumptions

A fundamental problem of software reuse is the problem of the hidden assumptions.
This problem refers to the fact that software components make assumptions about their
intended environment which are implicit and either don't match the actual environment
or conflict with those of other parts of the system. Such conflicting assumptions make
reuse extremely difficult or even impossible [20].

- 53 -

For example, Garlan [20] describes an example in which several software packages
were combined in order to build a software engineering tool. However, the assumptions
that the different packages made about which program held the main thread of control,
were incompatible, which drastically complicated building the new system. As these
assumptions tend not to be documented, they are extremely difficult to detect when
deciding which software components could be reused.
Glass [22] provides an example in which a sort program was reused. However, the
program performed extremely slowly when sorting strings. The undocumented
assumption was that the structure of the sort program was far more appropriate for
sorting numbers than strings.

Garlan [20] suggests possible solutions for the hidden assumptions-problem: amongst
others, make architectural assumptions explicit, provide techniques for bridging
mismatches between assumptions and develop sources of architectural design guidance.
Although we agree with these suggestions, it is clear that these solutions are more
workarounds to the problem than an elimination of it.

4.2.7 Final remarks

We have briefly shown in this paragraph that, in the IS-field, systematic reuse has been
pursued for up to 30 years, but that the practical state-of-the-art is still rather
disappointing. Realising a systematic form of reuse has proven to be a very ambitious
goal with a wide variety of problems (technical and managerial) along the way. Good
modelling constructs alone (such as objects) have been insufficient to reach this goal.

It is our impression that the field of workflow modelling with Petri Nets is currently
making quick progress towards deciding which modelling constructs are most
appropriate. In order to determine whether this will be sufficient to realise systematic
reuse in the workflow field, empirical and experimental studies are required. We have
yet to find these in the literature.

5. Conclusion

In this paper we have tried to identify the existing Petri Net formalisms proposed by
various authors used for modelling workflow. We found that, at the moment, there is
not yet unanimity about which class of Petri Nets suits best the specific needs of
workflow modelling. Especially the different approaches between Low Level Petri Nets
and High Level Petri Nets can in this view be mentioned as exemplary.

An interesting remark, however, is that even a very good Petri Net formalism for
modelling workflows is not worth much if there are no Workflow Management Systems
or other computer tools based on it. This has also been stated by van der Aalst [5]

- 54 -

concerning the usability of High Level Petri Nets. The author [5] notes that the
availability of adequate computer tools is a critical factor in the practical use of High
Level Petri Nets and related analysis methods.

Compared to database models, workflow models are far from being mature. In response
to the need of coming to a standard in workflow modelling (like in the field of
conceptual modelling with Entity Relationship Modelling which has also been
formulated by van der Aalst [1],) we would like to make a remark. When speculating
about the best potential formalisms to serve as a possible standard, it is likely that the
Petri Net formalism, which is best supported by computer tools turns out to become the
standard.

With respect to reuse, much progress is being made towards developing an adequate
modelling construct for modelling workflows using Petri Nets. However, we have the
impression that adequate modelling constructs alone were not sufficient to achieve
systematic reuse in the IS-field. Whether the sarne applies to the workflow field should
be further investigated.

References

[1] W. M. P. van der Aalst, "Structural Characterizations of Sound Workflow Nets",
Eindhoven University of Technology, Computing Science Reports 96/23,1996.

[2] W. M. P. van der Aalst, "Three Good Reasons for using a Petri Net based
Workflow Management System", in Proceedings of the International Working
Conference on Information and Process Integration in Enterprises (IPIC '96), T.
Wakayama, S. Kannapan, C. M. Khoong, S. Navathe and J. Yates, Eds., Cambridge,
Massachusetts, pp.179-201, 1996.

[3] W. M. P. van der Aalst, "The Application of Petri Nets to Workflow Management",
The Journal of Circuits, Systems and Computers, pp. 1-53, 1998.

[4] W. M. P. van der Aalst, "Verification of Workflow Nets", in Proceedings of 18th
International Conference, ICATPN'97; Toulouse, France; 23-27 Jun 1997, P. Azema
and G. Balbo, Eds., vol. 1248 of Lecture notes in Computer Science, Application and
theory of Petri nets 1997, Springer-Verlag, pp. 407-426,1997.

[5] W. M. P. van der Aalst, and K. van Hee, "Framework for Business Process
Redesign" in Proceedings of the Fourth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 95), J. R. Callahan, Ed., IEEE
Computer Society Press, Berkeley Springs, pp. 36-45, 1995.

- 55 -

[6] W. M. P. van der Aalst and K. van Hee, "Business Process Redesign: A Petri-net­
based approach", Computers in Industry, vol. 29, no. 1-2, pp. 15-26, 1996.

[7] N. R. Adam, V. Atluri, and W. K. Huang, "Modeling and Analysis of Workflows
Using Petri Nets" Journal of Intelligent Information Systems: Special Issue on
Workflow and Process Management, M. Rusinkiewicz and S. H. Abdelsalam, Eds., vol.
10, no. 2, pp. 1-29, 1998.

[8] A. Agostini, G. De Michelis and K. Petruni, "Keeping Workflow Models as Simple
as Possible", in Proceedings of the Workshop on Computer-Supported Cooperative
Work, Petri Nets and Related Formalisms within the 15th International Conference on
Application and Theory of Petri Nets, Zaragoza, Spain, June 21st, pp. 11-29, 1994.

[9] E. Badouel and 1. Oliver, "Reconfigurable Nets, a Class of High Level Petri Nets
Supporting Dynamic Changes within Workflow Systems", Publication Interne IRISA PI
1163, 1998.

[10] L. Bernardinello and F. De Cindio, "A survey of Basic Net Models and Modular
Net Classes", G. Rozenberg, Ed., vol. 609 of Lecture Notes in Computer Science,
Advances in Petri Nets 1992, Springer-Verlag, pp.304-35I, 1992.

[II] S. Christensen and L. Petrucci, "Towards a Modular Analysis of Coloured Petri
Nets", in Proceedings of the 13th International Conference Sheffield, UK, June 1992,
K. Jensen, Ed., vol. 616 of Lecture notes in Computer Science, Application and Theory
of Petri Nets 1992, Springer-Verlag, pp. 113-133, 1992.

[12] F. De Cindio, C. Simone, R. Vassallo and A Zanaboni, "CHAOS: a Knowledge­
based System for Conversing within Offices", Office Knowledge Representation,
Management and Utilization, W. Lamersdorf, Ed., Elsevier Science Publishers B.V.,
North-Holland, pp. 257-275, 1988.

[13] c. A. Ellis and G. J. Nut!, "Modeling and Enactment of Workflow Systems", in
Proceedings of the 14th International Conference Chicago, Illinois, USA, June 1993,
M. A. Marsan, Ed., vol. 691 of Lecture notes in Computer Science, Application and
Theory of Petri Nets 1993, Springer-Verlag, pp. 1-16, 1993.

[14] C.A. Ellis and G. J. Nut!, "Workflow: The Process Spectrum", in Proceedings of
the NSF Workshop on Workflow and Process Automation in Infonnation Systems:
State-of-the-Art and Future Directions, Athens, Georgia, pp. 140-145, 1996.

[15] M. A. Fayad and D. C. Schmidt, "Object-oriented Application Frameworks",
Computers in Industry, vol. 40, no. 10, pp. 32-38, 1997.

[16] A. Ferscha, "Qualitative and Quantitative Analysis of Business Workflows using
Generalized Stochastic Petri Nets" Oesterreichische NationalBank Austria Project No.
5096, 1997.

- 56 -

[17] R. Fichman, C. Kemerer, "Object Technology and Reuse: lessons from early
adopters", IEEE Computer, pp. 47-59, October 1997.

[18] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

[19] E. Gamma and R. Helm, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[20] D. Garlan, "Architectural mismatch: why reuse is so hard", IEEE software, pp 17-
26, November 1995.

[21] D. Georgakopoulos, M. Hornick and A. Sheth, "An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure",
Distributed and Parallel Databases, no. 3, pp. 119-153, 1995

[22] R. Glass, "A word of warning about reuse", ACM SIGMIS Database, vol. 28 no. 2,
pp. 19-21, spring 1997.

[23] Y. Han, "HOON - A Formalism Supporting Adaptive Workflows", Technical
Report #UGA-CS-TR-97-005, Department of Computer Science, University of
Georgia, November 1997.

[24] D. Hay, "Data model patterns: conventions of thought", Dorset House Publishers,
pp. 268, 1996.

[25] D. Hollingsworth, "Workflow Management Coalition: The Workflow Reference
Model" 4-29-1994, Brussels, Belgium.

[26] T. Holvoet and P. Verbaeten, "Petri Charts, An Alternative Technique for
Hierarchical Net Construction" in Proceedings of the 1995 IEEE Conference on
Systems, Man and Cybernetics (lEEE-SMC'95), pp. 1-19, 1995.

[27] K. Jensen, "Coloured Petri Nets": Vol. I, Springer-Verlag, 1992.

[28] c. W. Krueger, "Software Reuse", ACM Computing Surveys, vol. 24, no. 2, pp.
131-183, 1992.

[29] V. Kruke, "Reuse in Workflow Modelling", Diploma Thesis, Information System
Group, Department of Computer Systems, Norwegian University of Science and
Technology, 1996.

[30] C. Lakos, "From coloured Petri Nets to Object Petri Nets", Technical Report
TR94-9, Computer Science Department, University of Tasmania, 1994.

- 57 -

[31] c. Lakos, "The Consistent Use of Names and Polymorphism in the Definition of
Object Petri Nets", in Proceedings of the 17th International Conference on Application
and Theory of Petri Nets, Osaka, Japan, June 1996, vol. 1091 of Lecture Notes in
Computer Science, , J. Billington and W. Reisig, Eds., Springer-Verlag, pp. 380-399,
1996.

[32] N-Y, Lee, c.R. Litecky, "An empirical study of software reuse with special
attention to ada", IEEE Trans SE, vol. 23 no. 9, pp 537-549, September 1997.

[33] Y. Lei and M. P. A. Singh, "A Comparison of Workflow Metamodels", in
Proceedings of the ER'97 Workshop on Behavioral Models and Design
Transformations: Issues and Opportunities in Conceptual Modeling, 6-7 November
1997, UCLA, Los Angeles, California, S. Liddle, Ed., pp. 1-12, 1997.

[34] 1. Li, 1.S.K. Ang, X. Tong and M. Tueni, "AMS: A Declarative Formalism for
Hierarchical Representation of Procedural Knowledge", IEEE Transactions on
Knowledge and Data Engineering, vol. 6, no. 4, pp. 639-643, 1994.

[35] M. McIlroy, "Mass-Produced Software Components", 1968 NATO Conference on
Software Engineering, pp. 138-155, 1968.

[36] M. Merz, D. Moldt, K. Muller and W. Lamersdorf, "Workflow Modeling and
Execution with Coloured Petri Nets in COSM", In Proceedings of the Workshop on
Applications of Petri Nets to Protocols within the 16th International Conference on
Application and Theory of Petri Nets, pp. 1-12, 1995.

[37] M. Merz, K. Muller-Jones and W. Lamersdorf, "Petrinetz-basierte Modellierung
und Steuerung unternehmensiibergreifender Geschtiftsprozesse". in Proceedings of the
GIISI Jahrestagung 1995, Tagungsband der GISI 95 Herausforderungen eines globalen
Informationsverbundes fUr die Informatik, F. Huber-Wlischle, H. Schauer and P.
Widmayer, Eds., Springer-Verlag, Zurich, pp. 1-8, 18-20 Sept. 1995.

[38] H. Mili, F. Mili, and A. Mili, "Reusing software: issues and research directions",
IEEE Transactions on Software Engineering, vol. 21 no. 6, pp. 528-561,1995.

[39] G. J. Nutt, "The Evolution towards Flexible Workflow Systems", Distributed
Systems Engineering, no. 3 4, pp. 276-294, 1996.

[40] A. Oberweis, R. Schlitzle, W. Stucky, W. Weitz and G. Zimmermann,
"INCOMElWF- A Petri-net Based Approach to Workflow Management", H.
Krallmann, Ed. Wirtschaftsinformatik '97, Springer-Verlag, pp. 557-580,1997.

[41] A. Oberweis, "An Integrated Approach for the Specification of Processes and
Related Complex Structured Objects in Business Applications", Decision Support
Systems, no. 17, pp. 31-53 ,1996.

- S8 -

[42) R. Prieto-Diaz, "Status Report: Software Reusability", IEEE Software, pp. 61-66,
may 1993.

[43) G. Rozenberg, P.S. Thiagarajan, "Petri Nets: Basic Notions, Structure,
Behaviour", in: J.W. de Bakker, W.-P. de Roever, G. Rozenberg, Eds., Current Trends
in Concurrency, Lecture Notes in Computer Science, vol. 224, Springer-Verlag, 1986.

[44) A.K. Schomig and H. Rau, "A Petri Net Approach for the Performance Analysis of
Business Processes", University ofWtirzburg, Report n° 116 Seminar at IBFI, Schloss
Dagstuhl, May 22-26,1995.

[45) M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Addison-Wesley, 1996.

[46) A. Snyder, "Encapsulation and Inheritance in Object-Oriented Programming
Languages", in Proceedings of the International Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPS LA), 1986.

[47) c. Szyperski, "Component software: beyond object-oriented programming",
Addison-Wesley, 1997.

[48) D. Wikarski, "An Introduction to Modular Process Nets", International Computer
Science Institute (ICSI) Berkeley, Technical Report TR-96-019, CA, USA, 1996.

[49) D. Wikarski, Y. Han and M. Lowe, "Higher-Order Object Nets and Their
Application to Workflow modeling", Technische UniversiUit Berlin,
Forschu~gsberichte der FB Informatik 95-34, 1995.

[50) M. Zand, M. Samadzadeh, "Software reuse: current status and trends", Journal of
systems and software, vol. 30, pp. 167-170, 1995.

[51) M. D. Zisman, "Representation, Specification and Automation of Office
Procedures", University of Pennsylvania Wharton School of Business, PhD Thesis,
1977.

[52) S. H. Zweben, and S. H. Edwards, "The effects of layering and encapsulation on
software development cost and quality", IEEE Transactions on Software Engineering,
vol. 21, no. 3, pp. 200-208, 1995.

- 59 -

Finding Errors in the Design of a Workflow Process

A Petri-net-based Approach

Abstract

W.M.P. van der Aalst

Department of Mathematics and Computing Science
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
telephone: -31402474295, e-mail: wsinwawin.tue.nl

Workflow management systems facilitate the everyday operation of business processes by
taking care of the logistic control of work. In contrast to traditional information systems,
they attempt to support frequent changes of the workflows at hand. Therefore, the need
for analysis methods to verify the correctness of workflows is becoming more prominent.
In this paper we present a method based on Petri nets. This analysis method exploits the
structure of the Petri net to find potential errors in the design of the workflow. Moreover,
the analysis method allows for the compositional verification of workfIows.

Keywords: Petri nets; free-choice Petri nets; workflow management systems; analysis of
workftows; business process reengineering; analysis of Petri nets; compositional analysis.

1 Introduction
Workflow management systems (WFMS) are used for the modeling, analysis, enactment,
and coordination of structured business processes by groups of people. Business processes
supported by a WFMS are case-driven, i.e., tasks are executed for specific cases. Ap­
proving loans, processing insurance claims, billing, processing tax declarations, handling
traffic violations and mortgaging, are typical case-driven processes which are often sup­
ported by a WFMS. These case-driven processes, also called workflows, are marked by
three dimensions: (1) the process dimension, (2) the resource dimension, and (3) the case
dimension (see Figure 1). The process dimension is concerned with the partial ordering
of tasks. The tasks which need to be executed are identified and the routing of cases along
these tasks is determined. Conditional, sequential, parallel and iterative routing are typical
structures specified in the process dimension. Tasks are executed by resources. Resources
are human (e.g. employee) andlor non-human (e.g. device, software, hardware). In the re­
source dimension these resources are classified by identifying roles (resource classes based
on functional characteristics) and organizational units (groups, tearns or departments). Bo­
th the process dimension and the resource dimension are generic, i.e., they are not tailored
towards a specific case. The third dimension of a workflow is concerned with individual
cases which are executed according to the process definition (first dimension) by the proper
resources (second dimension).

- 60 -

resource dimension

,," activity

t~k

process dimension

....,.~~ ~ workuem

'"''
case dimension

Figure I: The three dimensions of workflow.

Managing workflows is not a new idea. Workflow control techniques have existed for
decades and many management concepts originating from production and logistics are also
applicable in a workflow context. However, just recently. commercially available generic
WFMS's have become a reality. Although these systems have been applied successfully,
contemporary WFMS's have at least two important drawbacks. First of all, today's sys­
tems do not scale well, have limited fault tolerance and are inflexible. Secondly, a solid the­
oretical foundation is missing. Most of the more than 250 commercially available WFMS's
use a vendor-specific ad-hoc modeling technique to design workflows. In spite of the ef­
forts of the Workflow Management Coalition ([20]), real standards are missing. The ab­
sence of formalized standards hinders the development of tool-independent analysis tech­
niques. As a result, contemporary WFMS's do not facilitate advanced analysis methods
to determine the correctness of a workflow.

As many researchers have indicated ([II, 16,21]), Petri nets constitute a good starting
point for a solid theoretical foundation of workflow management. In this paper we focus
on the process dimension. We use Petri nets to specify the partial ordering of tasks. Based
on a Petri-net-based representation of the workflow process, we tackle the problem of veri­
fication. We will provide techniques to verify the so-called soundness property introduced
in [4]. A workflow process is sound if and only if, for any case, the process terminates
properly, i.e., termination is guaranteed, there are no dangling references, and deadlock
and livelock are absent.

This paper extends the results presented in [4]. We will show that in most ofthe situations
encountered in practice, the soundness property can be checked in polynomial time. More­
over, we identify suspicious constructs which may endanger the correctness of a workflow
process. We will also show that the approach presented in this paper allows for the compo­
sitional verification of workflow processes, i.e., the correctness of a process can be decided
by partitioning it into sound subprocesses. To support the application of the results pre­
sented in this paper, we have developed a Petri-net-based workflow analyzer called Woflan
([5]). Woflan is a workflow management system independent analysis tool which inter-

- 61 -

faces with two of the leading products at the Dutch workflow market.

2 Petri nets
This section introduces the basic Petri net tenninology and notations. Readers familiar
with Petri nets can skip this section. I

The classical Petri net is a directed bipartite graph with two node types called places and
transitions. The nodes are connected via directed arcs. Connections between two nodes
of the same type are not allowed. Places are represented by circles and transitions by rect­
angles.

Definition 1 (Petri net) A Petri net is a triple (P, T, F):

P is a finite set of places,

Tis afinite set of transitions (P n T = 0),

F <; (P x T) U (T x P) is a set of arcs (jIow relation)

A place p is called an input place of a transition t iff there exists a directed arc from p to
t. Place p is called an output place of transition t iff there exists a directed arc from t to p.
We use _I to denote the set of input places for a transition t. The notations te, • p and p.
have similar meanings, e.g. p. is the set of transitions sharing p as an input place. Note
that we restrict ourselves to arcs with weight 1. In the context of workflow procedures it
makes no sense to have other weights, because places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state, often
referred to as marking, is the distribution of tokens over places, i.e., M E P -> N. We
will represent a state as follows: 1 PI +2P2 + Ip3 +OP4 is the state with one token in place
PI, two tokens in P2. one token in P3 and no tokens in P4. We can also represent this state
as follows: PI + 2P2 + P3. To compare states we define a partial ordering. For any two
states MI and M2, MI ::0 M2 iff for all PEP: MI(p)::o M2(p)

The number of tokens may change during the execution of the net. Transitions are the
active components in a Petri net: they change the state of the net according to the following
firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P, T, F) and a state MJ, we have the following notations:

I Note that states are represented by weighted sums and note the definition of (elementary) (conflict-free)
paths.

- 62 -

M J ~ M2: transition t is enabled in state MI and firing t in MJ results in state M2

MJ ~ M2: there is a transition t such that MJ ~ M2

MJ ~ Mn: the firing sequence a = tJt2t3 ... In-I leads from state M J to state Mn.
. M I, M t2 t~_l
I.e., I ~ 2 ----7 ••• --+ Mn

A state Mn is called reachable from MI (notation MI ~ Mn) iff there is a firing sequence
t1 12 t~_1 N h fi .

a = t,l2 ... In_I such that MJ --+ M2 --+ ... --+ Mn. ote that t e empty nng sequence

is also allowed. i.e .• MI ~ MI.

We use (PN. M) to denotea Petri net PN with an initial state M. A state M' is a reachable

state of (PN. M) iff M ~ M'. Let us define some properties for Petri nets.

Definition 2 (Live) A Petri net (PN. M) is live iff,forevery reachable state M' and every
transition t there is a slate Mil reachable from M' which enables t.

Definition 3 (Bounded, safe) A Petri net (PN. M) is bounded iff, for every reachable
state and every place p the number of tokens in p is bounded. The net is safe ifffor each
place the maximum number of tokens does not exceed 1.

Definition 4 (Well-formed) A Petri net P N is well-formed iff there is a state M such that
(P N • M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free) Let P N be a Petri net. A path C from a
node n I to a node nk is a sequence (n I. n2 • nk) such that (ni. ni+l) E F for I :s i :s
k - I. C is elementary iff, for any two nodes ni and nj on C. i oF j =} ni oF nj. Cis
conflict-free iff, for any place n j on C and any transition nj on C, j ::f:. i-I => n j rt enj.

For convenience. we introduce the alphabet operator a on paths. If C = (nl. n2 • . " • nk),
then arC) = {nl. n2 •... • nd.

Definition 6 (Strongly connected) A Petri net is strongly connected iff,for every pair of
nodes (i.e. places and transitions) x and y. there is a path leading from x to y.

3 WF-nets

In Figure I we indicated that a workflow has (at least) three dimensions. The process di­
mension is the most prominent one. because the core of any workflow system is formed by
the processes it supports. In the process dimension building blocks such as the AND-split,
AND-join. OR-split. and OR-join are used to model sequential. conditional. parallel and
iterative routing (WFMC [20]). Clearly. a Petri net can be used to specify the routing of
cases. Tasks are modeled by transitions and causal dependencies are modeled by places.
In fact. a place corresponds to a condition which can be used as pre- andlor post-conditions

- 63 -

for tasks. An AND-split corresponds to a transition with two or more output places, and
an AND-join corresponds to a transition with two or more input places. OR-splits/OR­
joins correspond to places with multiple outgoing/ingoing arcs. Moreover, in [1, 3] it is
shown that the Petri net approach also allows for useful routing constructs absent in many
WFMS's.
A Petri net which models the process dimension of a workflow, is called a WorkFlow net
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single case
in isolation.

Definition 7 (WF-net) A Petri net PN = (P, T, F) is a WF-net (Worlifiow net) if and
only if:

(i) PN has two special places: i and o. Place i is a source place: oi = 0. Place 0 is
a sink place: oe = 0.

(ii) [[we add a transition t* to PN which connects place 0 with i (i.e. ot* = {oj and
t*o = {ill, then the resulting Petri net is strongly connected.

A WF-net has one input place (i) and one output place (0) because any case handled by the
procedure represented by the WF-net is created if it enters the WFMS and is deleted once
it is completely handled by the WFMS, i.e., the WF-net specifies the life-cycle of a case.
The second requirement in Definition 7 (the Petri net extended with t* should be strongly
connected) states that for each transition t (place p) there should be a path from place ito
o via t (p). This requirement has been added to avoid 'dangling tasks andlor conditions' ,
i.e., tasks and conditions which do not contribute to the processing of cases.

Q)

o
register "

Figure 2: A WF-net for the processing of complaints.

Figure 2 shows a WF-net which models the processing of complaints. First the complaint
is registered (task register), then in parallel a questionnaire is sent to the complainant (task

- 64 -

send-lJuestionnaire) and the complaint is evaluated (task evaluate). !fthe complainant re­
turns the questionnaire within two weeks, the task process_questionnaire is executed. If
the questionnaire is not returned within two weeks, the result of the questionnaire is dis­
carded (task timeJJut). Based on the result of the evaluation, the complaint is processed or
not. The actual processing of the complaint (task process_complaint) is delayed until con­
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The
processing of the complaint is checked via task checLprocessing. Finally, task archive is
executed. Note that sequential, conditional, parallel and iterative routing are present in this
example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the process dimension.
We abstract from resources, applications and technical platforms. Moreover, we also ab­
stract from case variables and triggers. Case variables are used to resolve choices (OR­
split), i.e., the choice between processing_required and no-processing is (partially) based
on case variables set during the execution of task evaluate. The choice between process­
ing_OK and processing.NOK is resolved by testing case variables set by checLprocessing.
In the WF-net we abstract from case variables by introducing non-deterministic choices in
the Petri-net. Ifwe don't abstract from this information, we would have to model the (un­
known) behavior of the applications used in each of the tasks and analysis would become
intractable. In Figure 2 we have indicated that timeJJut and process-questionnaire require
triggers. The clock symbol denotes a time trigger and the envelope symbol denotes an
external trigger. Task timeJJut requires a time trigger ('two weeks have passed') and pro­
cess_questionnaire requires a message trigger {'the questionnaire has been returned'}, A
trigger can be seen as an additional condition which needs to be satisfied. In the remainder
of this paper we abstract from these trigger conditions. We assume that the environment
behaves fairly, i.e., the liveness of a transition is not hindered by the continuous absence
of a specific trigger. As a result, every trigger condition will be satisfied eventually (if
needed).

4 Soundness
In this section we summarize some of the basic results for WF-nets presented in [4]. The
remainder of this paper will build on these results.
The two requirements stated in Definition 7 can be verified statically, i.e., they only relate
to the structure of the Petri net. However, there is another requirement which should be
satisfied:

For any case, the procedure will terminate eventually and the moment the pro­
cedure terminates there is a token in place oand all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbitrary
task by following the appropriate route though the WF-net. These two additional require­
ments correspond to the so-called soundness propeny.

DefinitionS (Sonnd) A procedure modeled by a WF-net PN = (P, T, F) issoundifand
only if:

- 65 -

(i) For every state M reachable from state i, there exists afiring sequence leadingfrom
state M to state o. Formally:2

. . .
VM(' --> M) =} (M --> 0)

(ii) State 0 is the only state reachable from state i with at least one token in place o.
Formally:

VMU':' M /\ M2:o)=}(M=o)

(iii) There are no dead transitions in (PN, i). Formally:

3 .' M t ,
Vt€T M,M' I ~ ---:l>- M

Note that the soundness property relates to the dynamics of a WF-net. The first require­
ment in Definition 8 states that starting from the initial state (state i), it is always possible
to reach the state with one token in place 0 (state 0). If we assume fairness (i.e. a transition
that is enabled infinitely often will fire eventually), then the first requirement implies that
eventually state 0 will be reached. The fairness assumption is reasonable in the context
of workflow management; all choices are made (implicitly en explicitly) by applications,
humans or external actors. Clearly, they should not introduce an infinite loop. The second
requirement states that the moment a token is put in place 0, all the other places should be
empty. Sometimes the term proper termination is used to describe the first two require­
ments [14]. The last requirement states that there are no dead transitions (tasks) in the
initial state i.

Q)

register o

Figure 3: Another WF-net for the processing of complaints.

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If time....outJ
and processing..2 fire or timeJJut..2 and processing_l fire, the WF-net will not terminate
properly because a token gets stuck in c4 or c5. If time....outJ and time....out.2 fire, then the
task processing.NOK will be executed twice and because of the presence of two tokens in
o the moment of termination is not clear.

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In [4] we

- 66 -

have shown that soundness corresponds to Iiveness and boundedness. To link soundness
to liveness and boundedness, we define an extended net PN = (p, T, F). PN is the
Petri net obtained by adding an extra transition t* which connects 0 and i. The extended
Petri net PN = (p, T, F) is defined as follows: P = P, T = T U (t*), and F =
FU ((0, t*), (t*, i)). The extended net allows for the fonnulation ofthe following theorem.

Theorem 1 A WF-net PN is sound ifand only if(PN, i) is live and bounded.

Proof,
See [4] or [2]. o

This theorem shows that standard Petri-net-based analysis techniques can be used to verify
soundness.

5 Structural characterization of soundness
Theorem 1 gives a useful characterization of the quality of a workflow process definition.
However, there are a number of problems:

• For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF­
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [8].)

_ Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1 .

• Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dynamics
of a WF-net while the workflow designer is concerned with the static structure of the WF­
net. Therefore, it is interesting to investigate structural characterizations of sound WF­
nets. For this purpose we introduce three interesting subclasses of WF-nets: free-choice
WF-nets, well-structured WF-nets, and S-coverable WF-nets.

5.1 Free-choice WF-nets

Most of the WFMS's available at the moment, abstract from states between tasks, i.e.,
states are not represented explicitly. These WFMS's use building blocks such as the AND­
split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-split
and the AND-join are used for parallel routing. The OR-split and the OR-join are used
for conditional routing. Because these systems abstract from states, every choice is made
inside an OR-split building block. If we model an OR-split in tenns of a Petri net, the
OR-split corresponds to a number of transitions sharing the same set of input places. This
means that for these WFMS's, a workflow procedure corresponds to a free-choice Petri
net.

Definition 9 (Free~choice) A Petri net is a free-choice Petri net iff, for every two transi­
tions tl and t2 •• tl n .t2 "# 0 implies .tl = -t2.

- 67 -

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-splits
and OR-joins is free-choice. If two transitions tl and t2 share an input place (otl not2 "# 0),
then they are part of an OR-split, i.e., a 'free choice' between a number of alternatives.
Therefore, the sets of input places of tl and 12 should match (otl = ot2). Figure 3 shows
a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice; archive and pro­
cess_complaint share an input place but the two corresponding input sets differ.

We have evaluated many WFMS's and just one of these systems (COSA [18]) allows for
a construction which is comparable to a non-free choice WF-net. Therefore, it makes sense
to consider free-choice Petri nets. Clearly, parallelism, sequential routing, conditional rout­
ing and iteration can be modeled without violating the free-choice property. Another rea­
son for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free­
choice Petri nets, then the choice between conflicting tasks may be influenced by the order
in which the preceding tasks are executed. The routing of a case should be independent of
the order in which tasks are executed. A situation where the free-choice property is vio­
lated is often a mixture of parallelism and choice. Figure 4 shows such a situation. Firing
transition tJ introduces parallelism. Although there is no real choice between t2 and t5
(t5 is not enabled), the parallel execution of t2 and t3 results in a situation where t5 is not
allowed to occur. However, if the execution of t2 is delayed until t3 has been executed,
then there is a real choice between t2 and t5. In our opinion parallelism itself should be
separated from the choice between two or more alternatives. Therefore, we consider the
non-free-choice construct shown in Figure 4 to be improper. In literature, the tenn confu­
sion is often used to refer to the situation shown in Figure 4.

Figure 4: A non-free-choice WF-net containing a mixture of parallelism and choice.

Free-choice Petri nets have been studied extensively (cf. Best [7]. Desel and Esparza [10,
9,12], Hack [15]) because they seem to be a good compromise between expressive power
and analyzability. It is a class of Petri nets for which strong theoretical results and efficient
analysis techniques exist. For example, the well-known Rank Theorem (Desel and Esparza
[10]) enables us to fonnulate the following corollary.

Corollary 1 The following problem can be solved in polynomial time.
Given afree-choice WF-net, to decide ifit is sound.

Proof.
Let P N be a free-choice WF-net. The extended net P N is also free-choice. Therefore,
the problem of deciding whether (PN, i) is live and bounded can be solved in polynomial

- 68 -

time (Rank Theorem [10]). By Theorem I, this corresponds to soundness. o

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide sound­
ness. Moreover, a sound free-choice WF-net is guaranteed to be safe.

Lemma 1 A sound free-choice WF-net is safe.

Proof,
Let P N be a sound free-choice WF-net. P N is the Petri net P N extended with a transition
connecting 0 and i. PN is free-choice and well-formed. Hence, PN is covered by state­
machines (S-components, cf. [10]), i.e., each place is part of such a state-machine compo­
nent. Clearly, i and 0 are nodes of any state-machine component. Hence, for each place
p there is a semi-positive invariant with weights 0 or 1 which assigns a positive weight to
p, i and o. Therefore, PN is safe and so is PN. 0

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (l token) or false (no tokens).

Although most WFMS's only allow for free-choice workflows, free-choice WF-nets are
not a completely satisfactory structural characterization of 'good' workflows. On the one
hand, there are non-free-choice WF-nets which correspond to sensible workflows (cf. Fig­
ure 2). On the other hand there are sound free-choice WF-nets which make no sense. Nev­
ertheless, the free-choice property is a desirable property. If a workflow can be modeled as
a free-choice WF-net, one should do so. A workflow specification based on a free-choice
WF-net can be enacted by most workflow systems. Moreover, a free-choice WF-net allows
for efficient analysis techniques and is easier to understand. Non-free-choice constructs
such as the construct shown in Figure 4 are a potential source of anomalous behavior (e.g.
deadlock) which is difficult to trace.

5,2 Well-structured WF -nets

Another approach to obtain a structural characterization of 'good' workftows, is to balance
AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split,
should not be joined by an OR-join. Two alternative flows created via an OR-split, should
not be synchronized by an AND-join. As shown in Figure 5, an AND-split should be com­
plemented by an AND-join and an OR-split should be complemented by an OR-join.

One of !he deficiencies of the WF-net shown in Figure 3 is the fact that the AND-split
register is complemented by the OR-join c3 or the OR-join o. To formalize the concept
illustrated in Figure 5 we give the following definition.

Definition 10 (Well-handled) A Petri net P N is well-handled iff,for any pair of nodes x
and y such that one of the nodes is a place and the other a transition and for any pair of
elementary paths C I and C2 leading from x to y, a(CI) n a(C2) = Ix, y) =} CI = C2.

Note that the WF-net shown in Figure 3 is not well-handled. A Petri net which is well­
handled has a number of nice properties, e.g. strong connectedness and well-formedness

- 69 -

0: ~D
AND-split --- ------ AND-join

0: - ~)J -
OR-split --- ------ OR-join

Figure 5: Good and bad constructions.

coincide_

Lemma 2 A strongly connected well-handled Petri net is well-fonned.

Proof.
Let PN be a strongly connected well-handled Petri net. Clearly, there are no circuits that
have PT-handles nor TP-handles ([13]). Therefore, the net is structurally bounded (See
Theorem 3.1 in [13]) and structurally live (See Theorem 3.2 in [13]). Hence, PN is well­
formed. 0

Clearly, well-handledness is a desirable property for any WF-net PN. Moreover, we also
require the extended P N to be well-handled. We impose this additional requirement for
the following reason. Suppose we want to use PN as a part of a larger WF-net PN'. PN'
is the original WF-net extended with an 'undo-task', See Figure 6. Transition undo corre­
sponds to the undo-task, transitions t I and t2 have been added to make P N' a WF-net. It
is undesirable that transition undo violates the well-handIedness property of the original
net. However, PN' is well-handled iff PN is well-handled. Therefore, we require PN to
be well-handled, We use the term well-structured to refer to WF-nets whose extension is
well-handled.

PN':

PN o
"

Figure 6: The WF-net PN' is well-handled iff PN is well-handled.

Definition 11 (Well-structured) A WF-net P N is well-structured iff P N is well-handled.

Well-structured WF-nets have a number of desirable properties. Soundness can be verified
in polynomial time and a sound well-structured WF-net is safe, To prove these properties
we use some of the results obtained for elementary extended non-self controlling nets.

- 70 -

Definition 12 (Elementary extended non-self controlling) A Petri net P N is elementary
extended non-self controlling (ENSC) iff. for every pair of transitions tl and t2 such that
otl n ot2 # 0, there does not exist an elementary path C leading from tl to t2 such that
otl n a(C) = 0.

Theorem 2 Let P N be a WF-net. If P N is well-structured, then P N is elementary ex­
tended non-self controlling.

Proof.
Assume that P N is not elementary extended non-self controlling. This means that there
is a pair of transitions tl and tk such that otl n otk # 0 and there exist an elementary path
C = (tl' P2, t2, ... , p" tk) leading from tl to tk and otl n a(C) = 0. Let PI E otl n otk.
CI = (PI, tk) and C2 = (PI, tl, P2, t2, ... , p" tk) are paths leading from PI to tk' (Note
that C2 is the concatenation of (pd and C.) Clearly, CI is elementary. We will also show
that C2 is elementary. C is elementary, and PI ¢ a (C) because PI E otl. Hence, C2 is also
elementary. Since CI and C2 are both elementary paths, CI # C2 and a(CI) n a(C2) =
(PI, td, we conclude that PN is not well-handled. 0

'"

o
o

Figure 7: A well-structured WF-net.

Consider for example the WF-net shown in Figure 7. The WF-net is well-structured and,
therefore, also elementary extended non-self controlling. However, the net is not free­
choice. Nevertheless, it is possible to verify soundness for such a WF-net very efficiently.

Corollary 2 The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof.
Let P N be a well-structured WF-ne!. The extended net P N is elementary extended non­
self controlling (Theorem 2) and structurally bounded (see proof of Lemma 2). For bounded
elementary extended non-self controUing nets the problem of deciding whether a given
marking is live, can be solved in polynomial time (See [6]). Therefore, the problem of
deciding whether (PN, i) is live and bounded can be solved in polynomial time. By The­
orem 1, this corresponds to soundness. 0

Lemma 3 A sound well-structured WF-net is safe.

- 71 -

Proof.
Let PN be the net PN extended with a transition connecting 0 and i. PN is extended
non-self controlling. PN is covered by state-machines (S-components), see Corollary 5.3
in [6]. Hence, PN is safe and so is PN (see proof of Lemma I). D

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of these
similarities, there are sound well-structured WF-nets which are not free-choice (Figure 7)
and there are sound free-choice WF-nets which are not well-structured. In fact, it is pos­
sible to have a sound WF-net which is neither free-choice nor well-structured (Figures 2
and 4).

5.3 S-coverable WF-nets

What about the sound WF-nets shown in Figure 2 and Figure 4? The WF-net shown in Fig­
ure 4 can be transformed into a free-choice well-structured WF-net by separating choice
and parallelism. The WF-net shown in Figure 2 cannot be transformed into a free-choice or
well-structured WF-net without yielding a much more complex WF-net. Place c5 acts as
some kind of milestone which is tested by the task process_complaint. Traditional work­
flow management systems which do not make the state of the case explicit, are not able
to handle the workflow specified by Figure 2. Only workflow management systems such
as COSA ([18]) have the capability to enact such a state-based workflow. Nevertheless, it
is interesting to consider generalizations of free-choice and well-structured WF-nets: S­
coverable WF-nets can be seen as such a generalization.

Definition 13 (S-coverable) A WF-net P N is S-coverable iff the extended net P N = (P,
T, F) satisfies the/ollowingproperty. For each place p there is subnet PN, = (P" T" F,)
such that: pEP" P, <; P, T, <; T, F, <; F, P N, is strongly connected, P N , is a state
machine (i.e. each transition in PN, has one input and one output place), and/or every
q E P,andt ET: (q,t) E F=? (q,t) E F,and(t,q) EF=? (t,q) E F,.

This definition corresponds to the definition given in [10]. A subnet P N, which satis­
fies the requirements stated in Definition 13 is called an S-component. P N, is a strongly
connected state machine such that for every place q: if q is an input (output) place of a
transition t in P N, then q is also an input (output) place of t in P N ,.
The WF-nets shown in Figure 2 and Figure 4 are S-coverable. The WF-net shown in Fig­
ure 3 is not S-coverable. The following two corollaries show that S-coverability is a gen­
eralization of the free-choice property and well-structuredness.

Corollary 3 A sound/ree-choice WF-net is S-coverable.

Proof.
The extended net PN is free-choice and well-formed. Hence, PN is S-coverable (cf. [10]).
D

Corollary 4 A sound well-structured WF-net is S-coverable.

- 72 -

Proof.
PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable (cf. Corol­
lary 5.3 in [6]). 0

All the sound WF-nets presented in this paper are S-coverable. Every S-coverable WF­
net is safe. The only WF-net which is not sound, i.e. the WF-net shown in Figure 3, is not
S-coverable. These and other examples indicate that there is a high correlation between S­
coverability and soundness. It seems that S-coverability is one of the basic requirements
any workflow process definition should satisfy. From a formal point of view, it is possible
to construct WF-nets which are sound but not S-coverable. Typically. these nets contain
places which do not restrict the firing of a transition, but which are not in any S-component.
(See for example Figure 65 in [17].) From a practical point of view, these WF-nets are to be
avoided. WF-nets which are not S-coverable are difficult to interpret because the structural
and dynamical properties do not match. For example, these nets can be live and bounded
but not structurally bounded. There is no practical need for using constructs which violate
the S-coverability property. Therefore, we consider S-coverability to be a basic require­
ment any WF-net should satisfy.

S-coverability can be verified in polynomial time. Unfortunately, in general it is not pos­
sible to verify soundness of an S-coverable WF-net in polynomial time. The problem of
deciding soundness for an S-coverable WF-net is PSPACE-complete. For most applica­
tions this is not a real problem. In most cases the number of tasks in one workflow process
definition is less than 100 and the number of states is less than 200.000. Tools using stan­
dard techniques such as the construction of the coverability graph have no problems in
coping with these workflow process definitions.

The three structural characterizations (free-choice, well-structured and S-coverable) turn
out to be very useful for the analysis of workflow process definitions. S~coverability is a
desirable property any workflow definition should satisfy. Constructs violating S-cover­
ability can be detected easily and tools can be build to help the designer to construct an
S-coverable WF-net. S-coverability is a generalization of well-structuredness and the free­
choice property (Corollary 3 and 4). Both well-structuredness and the free-choice prop­
erty also correspond to desirable properties of a workflow. A WF-net satisfying at least one
one of these two properties can be analyzed very efficiently. However, we have shown that
there are workflows that are not free-choice and not well-structured. Consider for example
Figure 2. The fact that taskprocesLcomplainttests whether there is a token in c5, prevents
the WF-net from being free-choice or well-structured. Although this is a very sensible
workflow, most workflow management systems do not support such an advanced routing
construct. Even if one is able to use state-based workflows (e.g. COSA) allowing for con­
structs which violate well-structuredness and the free-choice property, then the structural
characterizations are still useful. If a WF-net is not free-choice or not well-structured, one
should locate the source which violates one of these properties and check whether it is
really necessary to use a non-free-choice or a non-weB-structured construct. If the non­
free-choice or non-well-structured construct is really necessary, then the correctness ofthe
construct should be double-checked, because it is a potential source of errors.

- 73 -

o

Figure 8: Task refinement: WF-net P N 3 is composed of P N I and P N ,.

6 Composition of WF -nets
The WF-nets in this paper are very simple compared to the workflows encountered in prac­
tise. For example, in the Dutch Customs Department there are workflows consisting of
more than 80 tasks with a very complex interaction structure (cf. [3]). For the designer of
such a workflow the complexity is overwhelming and communication with end-users using
one huge diagram is difficult. In most cases hierarchical (de)composition is used to tackle
this problem. A complex workflow is decomposed into subflows and each of the subflows
is decomposed into smaller subflows until the desired level of detail is reached. Many
WFMS's allow for such a hierarchical decomposition. In addition, this mechanism can
be utilized for the reuse of existing workflows. Consider for example multiple workflows
sharing a generic subflow. Some WFMS-vendors also supply reference models which cor­
respond to typical workflow processes in insurance, banking, finance, marketing, purchase,
procurement, logistics and manufacturing.

Reference models, reuse and the structuring of complex workflows require a hierarchy
concept. The most common hierarchy concept supported by many WFMS's is task re­
finement, i.e., a task can be refined into a subflow. This concept is illustrated in Figure 8.
The WF-net PN I contains a task t+ which is refined by another WF-net PN" i.e., t+ is
no longer a task but a reference to a subflow. A WF-net which represents a subflow should
satisfy the same requirements as an ordinary WF-net (see Definition 7). The semantics
of the hierarchy concept are straightforward; simply replace the refined transition by the
corresponding subne!. Figure 8 shows that the refinement of t + in P N I by P N , yields a
WF-net PN3.

The hierarchy concept can be exploited to establish the correctness of a workflow. Given
a complex hierarchical workflow model, it is possible to verify soundness by analyzing
each of the subflows separately. The following theorem shows that the soundness property
defined in this paper allows for modular analysis.

Theorem 3 (Compositionality) Let PN I = (PI, TI, FI) and PN, = (P" T" F,) be

- 74 -

two WF-nets such that TI nT, = 0, PI n P, = (i, 0) and t+ E h PN 3 = (P3, T3, F3)
is the WF-net obtained by replacing transition t+ in PN I by PN" i.e., P3 = PI UP"
T3 = (TI \ {t+)) U T, and

F3 = {(x,y)EFllx¥<t+ /\ y¥<t+) U {(x,Y)EF,I{x,y)n(i,0)=0) U

{(x, y) E PI X T, I (x, t+) E FI /\ (i, y) E F2} U

{(x,Y) E T, x PI I (t+,y) E FI /\ (x, 0) E F2}.

For P N 1- P N , and P N 3 the following statements hold:

1. If PN 3 isfree-choice, then PN I and PN2 are free-choice.

2. If P N 3 is well-structured, then P N I and P N , are well-structured.

3. If(PN I, i) is safe and PN I and PN, are sound, then PN3 is sound.

4. (PN I, i) and (PN" i) are safe and sound iff(PN 3, i) is safe and sound.

5. P N I and P N , are free-choice and sound iff P N 3 is free-choice and sound.

6. If P N 3 is well-structured and sound, then P N I and P N 2 are well-structured and
sound.

7. If .t+ and t+. are both singletons, then PN I and PN, are well-structured and
sound iff P N 3 is well-structured and sound.

Proof,

1. The only transitions that may violate the free-choice property are t+ (in PN I) and
{t E T, I (i, t) E F,} (in PN ,). Transition t+ has the sarne input set as any of the
transitions {I E T, I (i, I) E F,) in PN 3 if we only consider the places in P3 n PI.
Hence, t+ does not violate the free-choice property in PN I. All transitionst in PN 2

such that (i, I) E F, respect the free-choice property; the input places in P3 \ P, are
replaced by i.

2. PN I (PN 2) is well-handled because any elementary path in PN I (PN ,) corresponds
to a path in PN3 .

3. Let (PN I, i) be safe and let PN I and PN 2 be sound. We need to prove that (PN 3, i)
is live and bounded. The subnet in P N 3 which corresponds to 1+ behaves like a
transition which may postpone the production of tokens for 1+ •. It is essential that
the input places oft+ in (PN 3, i) are safe. This way it is guaranteed thatthe states of
the subnet correspond to the states of (PN " i). Hence, the transitions in T3 n T, are
live (1+ is live) and the places in P, \ PI are bounded. Since the subnet behaves like
1+, the transitions in T3 n (TI \ {t+)) are live and the places in P3 n PI are bounded.
Hence, P N 3 is sound.

4. Let (PN 1> i) and (PN" i) be safe and sound. Clearly, PN 3 is sound (see proof of
3.). (P N 3, i) is also safe because every reachable state corresponds to a combination
of a safe state of (P N I, i) and a safe state of (P N 2, i).

- 75 -

Let (P N 3, i) be safe and sound. Consider the subnet in P N 3 which corresponds
to t+ X is the set of transitions in T3 n T2 consuming from .t+ and Y is the set
of transitions in T3 n T2 producing tokens for t+ •. If a transition in X fires, then it
should be possible to fire a transition in Y because of the liveness of the original net.
If a transition in Y fires, the subnet should become empty. If the subnet is not empty
after firing a transition in Y, then there are two possibilities: (I) it is possible to move
the subnet to a state such that a transition in Y can fire (without firing transitions in
T3nT,) or (2) it is not possible to move to such a state. In the first case, the places t+.
in P N 3 are not safe. In the second case, a token is trapped in the subnet or the subnet
is not safe the moment a transition in X fires. (PN 2, i) corresponds to the subnet
bordered by X and Y and is, as we have just shown, sound and safe. It remains
to prove that (PN" i) is safe and sound. Since the subnet which corresponds to
t+ behaves like a transition which may postpone the production of tokens, we can
replace the subnet by t+ without changing dynamic properties such as safeness and
soundness.

5. Let P N , and P N 2 be free-choice and sound. Since (P N " i) is safe (see Lemma I),
PN 3 is sound (see proof on.). Itremains to prove that PN 3 is free-choice. The only
transitions in P N 3 which may violate the free-choice property are the transitions in
T3 n T2 consuming tokens from .t+. Because P N 2 is sound, these transitions need
to have an input set identical to t+ in P N, (if this is not the case at least one of the
transitions is dead). Since P N 1 is free-choice, P N 3 is also free-choice.
Let P N 3 be free-choice and sound. P N, and P N 2 are also free-choice (see proof
of \.). Since (PN 3, i) is safe (see Lemma I), PN, and PN 2 are sound (see proof
of 4.).

6. Let P N 3 be well-structured and sound. P N, and P N 2 are also well-structured (see
proof of 2.). Since (PN 3, i) is safe (see Lemma 3), PN, and PN 2 are sound (see
proof of 4.).

7. It remains to prove that if PN, and PN 2 are well-structured, then PN 3 is also well­
structured. Suppose that P N 3 is not well-structured. There are two disjunct elemen­
tary paths leading from x to y in P N 3. Since P N 1 is well-structured, at least one of
these paths is enabled via the refinement of t+. However, because t+ has precisely
one input and one output place and P N 2 is also well-structured, this is not possible.

o

Theorem 3 is a generalization of Theorem 3 in [19]. It extends the concept of a block with
multiple entry and exit transitions and gives stronger results for specific subclasses.

Figure 9 shows a hierarchical WF-net. Both of the subflows (handle-LJuestionnaire and
processing) and the main flow are safe and sound. Therefore, the overall workflow repre­
sented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice prop­
erty and well-structuredness are also preserved by the hierarchical composition. Theo­
rem 3 is of particular importance for the reuse of subflows. For the analysis of a complex

- 76 -

archive

"
o

proces$ing~ required

"

prucessingflOK

Figure 9: A hierarchical WF-net for the processing of complaints.

workflow, every safe and sound subflow can be considered to be a single task. This allows
for an efficient modular analysis of the soundness property. Moreover, the statements em­
bedded in Theorem 3 can help a workflow designer to construct correct workflow process
definitions.

7 Woflan
To allow users of today's workflow management systems to benefit from the results pre­
sented in this paper we have developed Woflan, a tool which analyzes workflow process
definitions specified in terms of Petri nets, Woflan (WOrkFLow ANalyzer) has been de­
signed to verify process definitions which are downloaded from a workflow management
system ([5]). Clearly, there is a need for such a verification tool, because today's work­
flow management systems do not support advanced techniques to verify the correctness of
workflow process definitions. These systems typically restrict themselves to a number of
(trivial) syntactical checks. Therefore, serious errors such as deadlocks and livelocks may
remain undetected. This means that an erroneous workflow may go into production, thus
causing dramatic problems for the organization. An erroneous workflow may lead to extra
work, legal problems, angry customers, managerial problems, and ill-motivated employ­
ees. Therefore, it is important to verify the correctness of a workflow process definition
before it becomes operational,

- 77 -

At the moment there are two workflow tools which can interface with Woflan: COSA
(COSASolutions/Software-Ley, Pullheim, Germany) and Protos (Pallas Athena, Plasmolen,
The Netherlands). COSA (COSA Solutions) is one of the leading products in the Dutch
workflow market. COSA allows for the modeling and enactment of complex workflow
processes which use advanced routing constructs. However, COSA does not support veri­
fication. Fortunately, Woflan can analyze any workflow process definition constructed by
using CONE (COSA Network Editor), the design tool of the COSA system. Woflan can
also import process definitions made with Protos. Protos (Pallas Athena) is a so-called
BPR-tool. Protos supports Business Process Reengineering (BPR) efforts and can be used
to model and analyze business processes. The tool is very easy to use and is based on Petri
nets. To facilitate the modeling of simple workflows by users not familiar with Petri nets,
it is possible to abstract from states. However, Protos cannot detect subtle design flaws
which may result in deadlocks or livelocks. Therefore, it is useful to download workflows
specified with Protos and analyze them with Woflan.

Q)

o
register

Figure 10: An alternative WF-net for the processing of complaints.

If the workflow process definition is not sound, Woflan guides the user in finding and cor­
recting the error. Since a detailed description of the functionality of Woflan is beyond the
scope of this paper, we will use the example shown in Figure 10 to illustrate the features
of Woflan. For this particular workflow net, Woflan gives the following diagnostics:

• Woflan points out the fact that place cIO is not bounded in the net extended with
transition t' which connects the output place ready with the input place staN. This
means that it is possible to terminate and leave a token in cIO (Le. a dangling refer­
ence) .

• The OR-split c3 is complemented by the AND-join archive, Le., there are two dis­
junct paths (one via cIO) leading from place c3 to transition archive. Such a con­
struct may lead to a potential deadlock. In this case it does!

- 78 -

• Woflan reports that the workflow net is not covered by state machines (S-components)
i.e., the net is not S-coverable. In fact, Woflan indicates that c10 is the only place
not in any S-component.

• The fact that something is wrong with cia is also highlighted by the fact that place
cia is not in the support of any of the semi-positive place invariants generated by
Woflan.

The above diagnostics clearly show that the optional synchronization of the two parallel
flows via place cia is the source of the error. Removing cia or replacing cia by the con­
struct shown in Figure 2 solves this problem and results in a sound workflow process def­
inition. For a small workflow with only 8 tasks these results may seem trivial. However,
workflows encountered in practice may have up to a 100 tasks. Experience shows that for
workflows with more than 20 tasks it is not easy to locate the source of the error if the
workflow net is not sound. Therefore, the support offered by Woflan is of the utmost im­
portance for the verification of workflow process definitions.

To assist the user in repairing the error, Woflan offers an on-line help facility. The on-line
help is based on a step-wise approach to locate and remove constructs which violate the
soundness property. This enables users without a background in Petri nets to operate the
tool and repair an erroneous workflow process definition.

8 Conclusion
In this paper we have investigated a basic property that any workflow process definition
should satisfy: the soundness property. For WF-nets, this property coincides with live­
ness and boundedness. In our quest for a structural characterization of WF-nets satisfying
the soundness property, we have identified three important subclasses: free-choice, well­
structured, and S-coverable WF-nets. The identification of these subclasses is useful for
the detection of design errors.
If a workflow process is specified by a hierarchical WF-net, then modular analysis of the
soundness property is often possible. A workflow composed of correct subflows can be
verified without incorporating the specification of each subflow.
The results presented in this paper give workflow designers a handle to construct correct
workflows. Although it is possible to use standard Petri-net-based analysis tools, we have
developed a workflow analyzer which can be used by people not familiar with Petri-net
theory. This workflow analyzer interfaces with existing workflow products such as COSA
and Protos.

Acknowledgements

The author would like to thank Dr. M. Voorhoeve and Jr. T. Basten for their valuable sug­
gestions and all the other people involved in the development of Woflan, in particular Ir.
E. Verbeek and Dr. D. Hauschildt.

- 79 -

References

[I] W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In A. Sheth,
editor, Proceedings of the NFS Workshop on Wor!;tlow and Process Automation in
Information Systems, pages 114-118, Athens, Georgia, May 1996.

[2] W.M.P. van der Aalst. Structural Characterizations of Sound Workflow Nets. Com­
puting Science Reports 96/23, Eindhoven University of Technology, Eindhoven,
1996.

[3] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based Workflow
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of the
International Working Conference on Information and Process Integration in Enter­
prises (IPIC'96), pages 179-20 I, Camebridge, Massachusetts, Nov 1996.

[4] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407-426. Springer-Verlag, Berlin, 1997.

[5] W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-based Tool
to Analyze Workflows. In B. Farwer, D. Moldt, and M.O. Stehr, editors, Proceedings
of Petri Nets in System Engineering (PNSE'97), pages 78-90, Hamburg, Sept 1997.
University of Hamburg (FBI-HH-B-205/97).

[6] K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self­
Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory
of Petri Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25-44.
Springer-Verlag, Berlin, 1995.

[7] E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central
models and their properties, volume 254 of Lecture Notes in Computer Science,
pages 168-206. Springer-Verlag, Berlin, 1987.

[8] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for I-safe nets. In
R.K. Shyamasundar, editor, Foundationsofsoftware technology and theoretical com­
puter science, volume 761 of Lecture Notes in Computer Science, pages 326-337.
Springer-Verlag, Berlin, 1993.

[9] J. Dese!. A proof of the Rank theorem for extended free-choice nets. In K. Jensen,
editor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in
Computer Science, pages 134-153. Springer-Verlag, Berlin, 1992.

[10] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1995.

[II] C.A. Ellis and GJ. Nut!. Modelling and Enactment of Workflow Systems. In M. Aj­
mone Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lec­
ture Notes in Computer Science, pages 1-16. Springer-Verlag, Berlin, 1993.

- eo -

[12) I. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In
I.C.M. Baeten andI.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of
Lecture Notes in Computer Science, pages 182-198. Springer-Verlag, Berlin, 1990.

[13) I. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, edi­
tor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science,
pages 210-242. Springer-Verlag, Berlin, 1990.

[14) K. Gostellow, V. Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of­
control in Programs Involving Concurrent Processes. ACM Sigplan, 7(11): 15-27,
1972.

[15) M.H.T. Hack. Analysis production schemata by Petri nets. Master's thesis, Mas­
sachusetts Institute of Technology, Cambridge, Mass., 1972.

[16) G. De Michelis, C. Ellis, and G. Memmi, editors. Proceedings of the second Work­
shop on Computer-Supported Cooperative Work, Petri nets and related formalisms,
Zaragoza, Spain, Iune 1994.

[17) W. Reisig. Petri nets: an introduction, volume 4 of Monographs in theoretical com­
puter science: an EATCS series. Springer-Verlag, Berlin, 1985.

[18) Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1996.

[19) R. Valette. Analysis of Petri Nets by Stepwise Refinements. Journal of Computer
and System Sciences, 18:35-46,1979.

[20) WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-
1011). Technical report, Workflow Management Coalition, Brussels, 1996.

[21) M. Wolf and U. Reimer, editors. Proceedings of the International Conference on
Practical Aspects of Knowledge Management (PAKM'96), Workshop on Adaptive
Workflow, Basel, Switzerland, Oct 1996.

- 81 -

Structural Analysis of Workflow Nets with
Shared Resources

Kamel Barkaoui1 and Laure Petrucci'

1 CEDRIC-CNAM
292 rue St-Martin

F-75141 PARIS Cedex 03
barkaoui<ocnam. fr

2 CEDRIC-lIE
18, allee Jean Rostand
F-91025 EVRY Cedex
petrucci&iie.cnam.fr

Abstract. A workflow is the automation of business processes which
describes activities in a business context. A workflow management sys­
tem defines, creates and manages the execution of workflows. Petri nets
have been shown to be a well-suited formalism to model and analyse
business processes. The verification of soundness of a procedure, i.e. cor­
rect termination, using Petri nets, was considered in [vdA97]. In this
paper, we extend this work by also taking into account resources shared
by workflow procedures. We show how the soundness property can be
proved efficiently by using structural Petri net techniques. These allow
us to obtain parameterized results. Moreover, it leads to a tailoring of
the system in order to enhance its performances.

1 Introduction

Workflow Management and Business Process Reengineering consider adminis­
trative tasks in large organisations, which interact and compete for shared re­
sources. The key entity in such systems is the business process ([WFM96]). It
consists in a set of linked activities which collectively realise a business objective
or policy goal, normally within the context of an organisational structure defin­
ing functional roles and relationships. A single enactment of a process is a case. A
workflow is the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules. A Worflow Management System
(WFMS for short) is a system that defines, creates and manages the execution
of workflows through the use of software which is able to understand the process
definition, interacts with workflow participants. It is possible to distinguish two
different categories of workflow software which support respectively structured
and unstructured processes. Structured processes have a fixed behaviour, and
they will not change during the time. On the contrary, unstructured processes
are susceptible to be influenced by external actions.

- 82 -

Numerous WFMS are nowadays available. Unfortunately, there are few the­
oretical formalisms and tools to deal with these. The need to model and analyse
the correctnesss of workflow procedures has lead to use Petri nets as a formalism.
They are a well-suited formalism allowing to capture the business processes con­
cepts and structure, i.e. splitting, synchronisation, conflicts, parallel and sequen­
tial routing, conditions, ... Moreover, the representation of business processes in
terms of Petri nets supports automated manipulation and formal verification
techniques. In particular, this last point is extremely important as the numerous
WFMS nowadays available ([BPR97], [OSS+97], [Obe94]) generally offer only
a simulation based partial verification. A significant work tackling the verifica­
tion of workflow procedures using Petri nets theory was presented in [vdA97].
The soundness of a procedure, i.e. the correct termination (absence of dangling
cases, deadlocks, livelocks, ...), can be checked in polynomial time under some
conditions on the flow relation of the net model.

The work we present in this paper significantly extends these results. In­
deed, we first take into account the general use of resources shared by workflow
procedures. Second, we show how the soundness property, under this resource
use constraint, can be proved efficiently by using structural Petri net techniques.
The major advantage in using such techniques is to obtain parameterized results.
Effectively, we charaterize families of sound models, where the number of cases
and resources are considered as parameters. Another benefit of this approach
is related to the performances of the whole WFMS. This is done by proposing
another distribution of resources between tasks. It helps tailoring the workflow
model, while preserving the soundness property.

2 Basic Notions of Petri Nets and Structural Analysis

In this section, we introduce the basic notions and notations used throughout
this paper. We first define a Petri net.

Definition 1. A Petri net is a tuple P N = < P, T, F, W > where:

(i) P op 0 is a set of places;
(ii) T op 0 is a set of transitions;

(iii) F ~ P x T u T x P is the flow relation;
(iv) W : P x TUT x P -4 IN 1\ [W(x, y) = 0 ¢} (x, y) rt F] is the weight function.

In the following, we define the marking of a Petri net.

Definition 2. A marking of a Petri net P N is a function M : P -4 IN. The
initial marking of P N is denoted by Mo.

We then introduce the notations for pre-sets, post-sets and the incidence matrix.

Notation 1

\lxEPUT, ·X={YEPUT/(y,x)EF}andx·={yEPUT/(x,y)EF}

\I(p, t) E P x T : C(p, t) = W(t,p) - W(P, t).

- 83 -

Then, we recall the firing rules.

Definition 3. A transition t E T is enabled in a marking M (denoted by M[t))
iffVp E·t: M(P) 2: W(p, t).

If transition t is enabled in marking M, it can be fired, leading to a new
marking M' such that: Vp E P : M'(P) = M(p, t) + C(p, t). The firing is denoted
by M[t)M'.

The set of all markings reachable from a marking M is denoted by [M).

We define the classical properties checked for Petri nets.

Definition 4. Let P N be a Petri net and Mo its initial marking.

(i) a marking Mh is a home state iff '1M E [Mo), Mh E [Mo) ;
(ii) (P N, Mo) is reversible ¢} Mo is a home state;

(iii) (PN, Mo) is bounded ¢} Vp E P: [3k E IN: '1M E [Mo), M(P) ::: kJ
¢} [Mo) is finite;

(iv) (PN,Mo) is quasi-live ¢} 'It E T: 3M E [Mo), M[t) ;
(v) (PN, Mo) is deadlock-free ¢} '1M E [Mo) : 3t E T, M[t) ;

(vi) (PN, Mo) is live ¢} 'It E T: ['1M E [Mo) : 3M' E [M), M'[t)J ;
(vii) PN is structurally live ¢} [3Mo, (PN,Mo) is liveJ.

Definition 5. A junction v : [Mo) -+ IN is a norm (strict) for a marking
Mh E [Mo) iff:

(i) v(M) = 0 ¢} M = Mh ;
(ii) '1M E [Mo) : [v(M) > 0 ¢} 3t E T: M[t)M' A v(M') < v(M)J.

In this paper, we use techniques from structure theory of Petri nets. Therefore,
we introduce the basic notion of invariants.

Definition 6. Let P N be a Petri net. An integer vector f, f "I 0, indexed by P
(J E 2ZP) is a place invariant iff it satisfies' f . C = o.
The positive support of f is the set of places Ilfll+ = {p E P : f(p) > o}.
The negative support of f is the set of places 11111- = {p E P : f(P) < OJ.
P N is conservative ¢} 3f, f p-invariant, IIfll+ = P

=} V Mo, N is bounded.

A key concept in structural analysis is the siphon.

Definition 7. Let PN be a Petri net and 5 ~ P, 5 "I 0. 5 is a siphon iff
• 5 ~ 5·. 5 is minimal iff it contains no other siphon as a proper subset.

Now, we introduce the notion of controlled siphon.

Definition 8. Let (PN,Mo) be a Petri net, and 5 a siphon of PN.

(i) 5 is controlled iff '1M E [Mo),3p E 5: M(P) 2: maxp• = max'Ep. W(p,t) ;
(ii) (P N, Mo) satisfies the controlled-siphon property (cs-property) iff each min-

imal siphon of P N is controlled.

Two basic relations between liveness properties and the cs-property are stated
in the following proposition.

- 84 -

Proposition 1. Let (PN,Mol be a Petri net. The following properties hold:

(i) (P N, Mol live '* (P N, Mol satisfies the cs-property ;
(ii) (P N, Mol satisfies the cs-property '* (P N, Mol is deadlock-free;

Two other properties useful to liveness analysis are recalled below.

Proposition 2. Let (PN,Mol be a Petri net and Mh E [Mo). Then:

(i) (P N, Mo) is quasi-live under home state Mh '* (P N, Mol is live under Mh
(ii) Mh is a home state ¢} 3 a norm for Mh.

3 WorkFlow Nets

Van der Aalst showed in [vdA97] that Petri nets modelling business processes
generally satisfy some typical properties. They always have two special places i
and 0, which correspond to the beginning and termination of the processing of
a case. They are respectively source and sink places.

Definition 9. A Petri net PN is a WF-net iff:

(i) PN has two special places: i and o. Place i is a source place: °i = 0. Place
o is a sink place: o· = 0.

(ii) If we add a transition to to P N, connecting place 0 with i, i.e. 'to = {o} and
tOO = {i}, the Petri net P N obtained is strongly connected. P N is called the
augmented net of PN.

A key property of workflow procedures is the soundness property. It states that,
for any case, the procedure will terminate eventually, and at the moment the
procedure terminates, there is a token in place 0 and all other places are empty.
This is a slight extension of the soundness definition given in [vdA97] which
considers only one case.

Definition 10. A WF-net (PN,n.i), n being the number of cases to process, is
sound iff:

(i) '1M E [n.i}, n.o E [M} ;
(ii) '1M E [n.i} : M(o) ~ n '* M = n.O ;

(iii) 'It E T, 3M E [n.i} : M[t).

It was proved in [vdA97] that the soundness of a WF-net (PN,i) is equivalent
to the liveness plus boundedness of the augmented net (P N, i). One can easily
extend this property to n cases.

Proposition 3. A WF-net (PN,n.i) is sound iff (PN,n.i) is live and bounded,
with W(o, to) = W(tO, 0) = n.

Proof. The proof is similar to the one in [vdA97].
{:: Let us suppose that (PN,n.i) is live and bounded. As (PN,n.i) is live,

'1M E [n.i) : 3M' E [M), M'[tO}.
Thus, '1M E [n.i} : 3M' E [M), M'(o) ~ n.

- 85 -

Let us suppose that M' = n.D + M", M" ¥ O. Then M'[t')n.i + M", which
contradicts the boundedness hypothesis. Therefore M' = n.D and conditions (i),
(ii) of definition lO are ensured. Condition (iii) is guaranteed by liveness.

=>: Let us assume that (P N, n.i) is sound.
We first prove that (PN,n.i) is bounded. Suppose that (PN,n.i) is not

bounded. Then 3MI E [n.i) : 3M2 E [MI)' M2 > MI.
As (P N, n.i) is sound, we know, by definition lO.(i) that 317 E T' : MI [a)n.D.

Thus, 3M, M 2[a)M: M > n.D. This contradicts the soundness hypothesis (def­
inition lO.(ii)). Thus (P N, n.i) is bounded and therefore (P N, n.i) is bounded.

We now prove that (P N, n.i) is live. As (P N, n.i) is sound, from defini­
tion lO.(i) '1M E [n.i) : n.D E [M). Then, by firing to, we obtain: '1M E [n.i) :
n.i E [M), i.e. n.i is a home state of (PN, n.i). Using definition lO.(iii), we
conclude that all transitions are quasi-live and thus, by proposition 2.(i) that
(P N, n.i) is live. 0

For a Free-Choice WF-net, proposition 3 can be checked in polynomial time
using algorithms based either on the rank theorem ([KB92]) or on Commoner's
property ([BM92]). This is due to the fact that checking soundness for one case
is equivalent to checking it for any number of cases, as liveness is monotonic for
Free Choice nets, contrary to the general case. However, a structural necessary
and sufficient liveness condition for Asymmetric Choice nets was presented in
[BP96]. This condition, namely cs-property, generalizes Commoner's property.

In [vdA97], it is said that most (all but one) of the existing WFMS use
constructs corresponding to free-choice nets. In our opinion, non free-choice syn­
chronization patterns can be encountered in practice.

4 Structural Soundness of WF-Nets

OUf aim is to consider the number of cases as a parameter, and to monitor the
number of cases which can be processed simultaneously, such that the soundness
property is satisfied. As in OUf model liveness is not monotonic, the techniques
used for Free Choice nets are not appropriate. Therefore, we introduce the notion
of structural soundness.

Definition 11. A WF-net PN is structurally sound iff3n such that (PN,n.i)
is sound.

In order to prove structural soundness of a model, we will use the cs-property.
This technique will also allow us, when adding resources, to enhance their use.

In the general case, the cs-property guarantees the absence of deadlock apart
from the final marking M = n.D. But the soundness is not ensured. In the
particular case of Asymmetric Choice WF-nets (including Free Choice WF-nets),
the soundness is verified iff the augmented net is bounded and satisfies the cs­
property. Moreover, it is possible to characterise a set of initial markings for
which soundness is guaranteed.

Now, we will characterise a more general class, abstracting from circuits
which can be performed by a case. In fact, WF -nets with circuits can be changed

- 86 -

into WF-nets without circuits, using transformations presented in [vdA97]. From
the soundness property, one can easily see that n.o is a home state of (P N, n.i).
Using property 2.(ii), there exists a norm for n.o. In the particular case of circuit­
free nets, this norm can easily be built, as shown in the proof of theorem 1, where
the soundness property is structurally characterized.

Definition 12. A net PN is a Circuit Free WF-net (CFWF) iff PN is a WF­
net and has no circuit.

For a hounded and quasi-live CFWF, the cs-property is a necessary and suffi­
cient soundness condition. One can consider easily that boundedness and quasi­
liveness properties are minimal requirements.

Theorem 1. Let PN be a CFWF. PN is structurally sound iff 3n such that
(PN, n.i) is bounded, quasi-live and satisfies the cs-property.

Proof. =}: Let us suppose that PN is structurally sound. This means (defini­
tion 11) that 3n such that (PN,n.i) is sound. From proposition 3, (PN,n.i) is
live and bounded, in particular bounded and quasi-live. Moreover, from propo­
sition 1.(i), it satisfies the cs-property.

-:=: Let us suppose that 3n such that (PN,n.i) is bounded, quasi-live and
satisfies the cs-property. We will first exhibit a norm v for marking n.o. We
construct function v as follows: we number the places in reverse topological order,
i.e. place a is numbered 0, place i has the highest number, and the other places
are such that a successor p' of a place p in the graph of the Petri net has a lower
number than place p. This can be done due to the absence of cycles. We call num
this numbering function. Then we define 'tiM : v(M) = EvEP M(p)num(p).

We now prove that v is a norm for n.O. By construction, v(M) = 0 {o} M =
x.o. If x < n, then $t E T : M[t). As (PN, n.i) satisfies the cs-property, we
deduce from proposition 1.(ii) that (PN,n.i) is deadlock-free, i.e. '1M E [n.i) :
3t E T, M[t). Thus, there is a contradiction. If x > n, x.o[t')M' > n.i. This
contradicts the boundedness hypothesis. Thus, we have proved condition (i) of
definition 5.

Let us suppose that v(M) > 0 for a marking M. As (PN, n.i) is deadlock-free,
3t: M[t)M'. If t i' t', by construction of v, v(M') < v(M). Otherwise (t = t'),
as v(M) > 0 and v(M) = 0 {o} M = n.O (already proven), marking M must
have the form M = n.o + M" with M" i' O. Then M[t')n.i + M" > n.i, which
contradicts the boudedness hypothesis. Thus, =} of definition 5.(ii) is satisfied.

Let us nOw suppose that 3t E T : M[t)M' Av(M') < v(M). The construction
of function v is such that 'tiM : v(M) 2: O. Then v(M) > v(M') 2: O. Thus, -:=
of definition 5.(ii) is satisfied.

We deduce from all this that we found a norm function v for n.o.
From proposition 2.(ii), n.o is a home marking. Then, as n.o[t')n.i, n.i also

is. As (PN,n.i) is quasi-live and its initial state is a home state, it is live. From
proposition 3, (P N, n.i) is sound. 0

In some subclasses of Petri nets, these last conditions can be lessened.

- 87 -

Definition 13. A Petri net P N is an Asymmetric Choice net iff:

1I(p,q) E P x P: [po nq" ¥ 0 =} p" ~ q" Vq" ~p"J.

Corollary 1. Let P N be an Asymmetric Choice CFWF-net. P N is structurally
sound iff 3n such that (PN, n.i) is bounded and satisfies the cs-property.

Proof. For Asymmetric Choice nets, the cs-property is a necessary and sufficient
liveness condition ([BP96]). The result follows from the fact that liveness implies
quasi-liveness and from theorem 1. 0

In the next section, we will add resources to sound nets in order to study the
adequation between the number of resources available and the number of cases
to be handled.

5 Coping with Shared Resources

In this section, we first introduce the model of WF-nets with resources and
combine them into a system where they share resources. Secondly, we show how
to perform analysis of structural soundness.

5.1 Modelling Business Processes Competing for Shared Resources

We introduce the notion of WF-net with resources. It is basically a WF-net
plus a set of places modelling the resources. We demand the WF-net (without
resources) to be sound, and the resources to be preserved by the net, Le. a
resource requested will eventually be released and a resource released has pre­
viously been requested. Several resources can be requested/released at a same
time. The resource preservation can be expressed by a place invariant of the
system (definition 14.(v)). One can note that the subnet associated with this
invariant is not necessarily a state machine.

Definition 14. A WFR-net is a tuple PNR = < PuPR,T,FUFR, WUWR >
where:
(i) P N = < P, T, F, W > is a structurally sound WF-net.

(ii) PR ¥ 0/\ P n PR = 0 (set of resources)
(iii) FR ~ (PR X T) U (T x PRJ (flow relation for resources)
(iv) lIu E FR, WR(u) :::: 1 (resource use)
(v) IIr E PR,3fr :::: 0 : t fr . C = 0 /\ IIfrll n PR = {r} (resource preservation)

Then, we can compose several WFR-nets into a system where they share re­
sources. This is obtained by fusion of the places representing the shared re­
sources.

Definition 15. A WFRS is recursively defined. A WFR-net is a WFRS.
Let PNi = < Pi U PRi , Ti, Fi, Wi >, i E {1,2}, be two WFRS such that

PI n P, = TI n T, = 0. We denote the set of shared resources by PRIR2 =
PRI n PR2 . The net P N = P NI 0 P N, resulting of the fusion of nets P NI and
P N, over the set PRIR2 is a WFRS.

- 88 -

Definition 16. Let N be a WFR5. We denote by N the generalized Petri net
constructed as N, where the WF-nets components (definition 14.(i)} are replaced
by the corresponding augmented WF-nets.

One can note that, compared to other daBses presented in the literature, WFRS
extend 54 R-nets ([BBA96]), which are a generalisation of 53 R-nets ([ECM95])
proposed to cope with deadlocks in flexible manufacturing systems.

5.2 Structural Analysis

The definition of structural soundness (definition 11) can eaBily be extended to
WFRS.

Lemma 1. Let N be a WFR5, and 5 a minimal siphon of N. There exists an
initial marking Mo under which S is controlled.

Proof. Let N be a WFRS and S a minimal siphon of N.
Let us first suppose that S n UPRi = 0. By construction, 3PNi : S ~ Pi.

As P Ni is structurally sound, there exists an initial marking under which S is
controlled.

Let us now consider the complementary case: S n U PRi '" 0. We suppose
that siphon S is not controlled. We denote by f(r) a flow of minimal support
associated with a resource r, and by f(P) a flow of minimal support aBsociated
with p in its WF-net. Let:

gS = L f(r)
rESnUPRi

Qut(S) = Ilgll \ S

hs = L f(P)
pEOut(S)

AS = max g(p)
pEOut(s)nllhsll

zs = gs - As·hs

Siphon S is controlled aB soon aB:

tzs· Mo > Lz,(p).(m::x-l)
pES P

Therefore, there exists a marking under which S is controlled.

The following property holds for any WFRS.

Lemma 2. Let N be a structurally sound WFR5. There exists an initial mark­
ing Mo such that (N, Mo) satisfies the cs-property.

- 89 -

Proof. Let N be a structurally sound WFRS. If it does not satisfy the cs­
property, it cannot be live (proposition 1.(i)). l'hus, it cannot be sound. 0

In theorem 2, we extend lemma 2 in the particular case where the components
P Ni are circuit free.

Theorem 2. Let N be a WFRS where the P Ni are CFWF. N is structurally
sound iff there exists an initial marking Mo under which (N, Mo) is bounded,
quasi-live and satisfies the cs-property.

Proof. ¢=: The cs-property is ensured by lemma 2. The boundedness and quasi­
liveness are deduced from soundness.

=>: Let N be a WFRS where the P Ni are CFWF. Let us suppose that there
exists an initial marking Mr; under which (N, Mo) is bounded, quasi-live and
satisfies the cs-property. We will now prove that (N, Mo) is live. To do that, we
proceed as in the proof of theorem 1, i.e. we will exhibit a norm "R. This norm
l/R is an extension of norm v where the resources are numbered O. The proofs
of the properties of a norm are similar to those in theorem 1, taking also into
account resource preservation (definition 14.(v)). 0

d
o

Fig. 1. A Circuit-Free WFRS.

- 90 -

We will now apply theorem 2 to the net of figure 1. The minimal siphons of the
augmented net are:

S, = {i,pl,p3,p5,p6,0}
S2 = {i,p2,p3,p4,p5,p6,0}
S3 = {p3,p5,p6,rl}
S4 = {p4,p5,p6, r2}
S5 = {rl,r2,p5,p6}
S6 = {i,pl,p5,p6,0,r2}
The WF-net composing the WFRS is structurallay sound: it is live and

bounded for e.g. Mo(i) = 1. Thus, the two siphons without resource places,
S, and S2 are controlled as soon as Mo (i) > O. Siphons S3 and S4 are the sup­
port of positive flows. Hence they are invariant-controlled. The control condition
for S3 is Mo(rl) > 1, and for S., Mo(r2) > O. We now have to examine siphons
S5 and S6 more in detail in order to calculate their control condition.

gs, = f(rl) + f(r2)
= rl + 2.p3 + 2.p5 + p6 + r2 + p4 + p5 + p6
= rl + r2 + 2.p3 + p4 + 3.p5 + 2.p6

DUt(S5) = {p3,p4}
hs, = f(P3) + f(P4)

= i +pl + p3 +p5 +p6 +o+i + p2+p3 +p4+p5 + p6+0
= 2.i + pI + p2 + 2.p3 + p4 + 2.p5 + 2.p6 + 2.0

AS, = 2
zs, = rl + r2 + 2.p3 + p4 + 3.p5 + 2.p6

-4.i - 2.pl - 2.p2 - 4.p3 - 2.p4 - 4.p5 - 4.p6 - 4.0
= rl + r2 - 4.i - 2.pl - 2.p2 - 2.p3 - p4 - p5 - 2.p6 - 4.0

S5 is controlled as soon as Mo(rl) + Mo(r2) - 4.Mo(i) > 1.
gs, = f(r2)

= r2 + p4 + p5 + p6
Dut(S6) = {p4}
hs, = f(p4)

= i + p2 + p3 + p4+ p5 + p6+0
As, = 1
zs, = r2 + p4 + p5 + p6 - i - p2 - p3 - p4 - p5 - p6 - 0

=r2-i-p2-p3-0
S6 is controlled as soon as Mo(r2) - Mo(i) > O.
To conclude, the net of figure 1 is controlled as soon as the following inequal­

ities are satisfied:

Mo(rl) > 0, Mo(r2) > 0, Mo(i) > 0,

Mo(rl) + Mo(r2) - 4.Mo(i) > 1, Mo(r2) - Mo(i) > 0

In the next section, we show how to enhance the performances of the system
by allowing more cases to enter the system and still preserve the structural
soundness property.

- 91 -

6 Enhancing Performances of WFRS

The control we have up to now is global, and a thinner control can only improve
the concurrency, i.e. increase the number of concurrent cases in the system. The
basic idea is to dissociate the control of the siphons from the input places of the
WF-nets constituting the WFRS. In practice, these places can be considered as
part of the environment.

The set of minimal siphons of a given WFRS can be partitionned into
3 classes. The first class (type 1) contains the minimal siphons without re­
source places. They are controlled since the WF -nets constituting the WFRS
are sound. The second class (type 2) contains those which include resources and
are invariant-controlled in the sense of [BP96]. The last class (type 3) contains
the minimal siphons including resource places but not invariant-controlled.

We associate, with each siphon 5 of type 3, a local control place C s with:

Cs' = 'Out(5), 'Cs = Out(5)'

Vp E Out(5), '1t E 'p, Vt' E p' : W(C8, t) = W(t', Cs) = g(p)

One can easily avoid self-loops introduced by the flow relation restricted to Cs,
since this operation preserves the invariant and thus the future control. Adding
place C 8 has created a new flow:

f(Cs) = Cs + L g(P).p
PEOut{S)

Let zCs = gs - f(C8). For siphon 5 to be controlled, we must have:

tzcs' Mo > "zcs(p)·(max-1) ~ p'
pES

New control places behave like resources, i.e. they satisfy the resource preser­
vation condition of definition 14.(v). Hence the net with these new control places
is a WFRS.

Let us now consider the simple example in figure 2 without the grey part
(place C). The initial marking is parameterized by Mo(i), Mo(T1) and MO(T2).
The initial marking is Mo = Mo(i).i + Mo(rl).rl + MO(T2).r2. Our example
presents one minimal siphon of each of the 3 types:

5, = {i,p1,p2,p3,p4,p5,p6,o} (type 1)
52 = {T2,p2,p3,p5} (type 2)
53 = {T1,p2,p3,p4,p5,p6} (type 3)
Siphons 5, and 52 are the support of positive flows. 5, is controlled as soon

as Mo(i) > 0, 52 is controlled for Mo(r2) > O.
We now consider siphon 5 of type 3 for which the control is not guaranteed.

We use the same notations for flows associated with places and for the calculus
of the cs-property as in the proof of lemma 1. For 53 in our example:

9S, = f(T1)
= T1 + 2.p1 + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6

- 92 -

Qut(S3) = {pI}
hs, = f(Pl)

"

Fig. 2. A Free Choice Circuit-Free WFRS.

= i + pI + p2 + p3 + p4 + p5 + p6 + 0

ASs = 2
zs, = rl + 2.pl + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6

-2.i - 2.pl - 2.p2 - 2.p3 - 2.p4 - 2.p5 - 2.p6 - 2.0
= r1 - 2.i + 2.p2 + p3 + 3.p4 + p5 + p6 - 2.0

Thus, S3 is controlled as soon as Mo(rl) - 2.Mo(i) > 1. We conclude, using
theorem 2, that this net is structurally sound for any initial marking Mo =
Mo(i).i + Mo(rl).rl + Mo(r2).r2 such that:

Mo(i) > 0, Mo(r2) > 0, Mo(rl) > 2.Mo(i) + 1

Hence, for example if Mo(rl) = 7, Mo(r2) = 1 then Mo(i) :s 2, i.e. at most
2 cases can be simultaneously processed.

We now want to enhance the performances of the example of figure 2. S3 is the
only siphon of type 3. Thus, we will control it more locally. Since Qut(S3) = {pI},
the associated local control place C (see figure 2) satisfies: C· = {tl},·C = {t2},
W(C, tI) = W(t2, C) = 2. We have: ftC) = C + 2.p1. Then:

Zc = 9S, - ftC)
= r1 + 4.p2 + 3.p3 + 5.p4 + 3.p5 + 3.p6 - C

- 93 -

Siphon 53 is controlled for any marking satisfying Mo(rl) - Mo(C) > 1.
For example, if Mo(rl) = 7, Mo(r2) = 1, we must have Mo(C) $ 5. The

introduction of place C adds only one siphon 54 = {C,pl}, which is of type 2, and
thus controlled when Mo (C) > 1. The new WFRS is structurally sound for the
initial marking we have exhibited. Without place C, we could only handle 2 cases
at a time. Now, we can process 3 cases simultaneously. Thus the throughput,
resources use and parallelism are better with a local control than with a global
one. One could object that this new place can add siphons of type 3. If there
are new uncontrolled siphons, they can be handled in the same manner, either
locally or globally. It was proved in [Bar97] that this iterative process necessarily
stops: we eventually reach a step where the role of the control place to be added
can be played by an already existing one.

7 Conclusion

Many researchers have investigated properties related to the soundness property.
In this work, we have shown that, for an important subclass of WF-nets sharing
resources, called WFRS, the soundness property can be structurally character­
ized. The technique presented has a great advantage compared to other ap­
proaches based on the computation of the reachability set. Indeed, if the initial
marking, i.e. the number of cases involved and resources availability, is modi­
fied, the soundness checking requires only to compute the initial markings of the
control places.

We are currently applying our method in the workflow of an hospital ([Car97])
in order to enhance the performances of an operating theatre block by performing
reengineering. This can be achieved by introducing a balance between specialisa­
tion and generalisation or between centralisation and decentralisation of resource
classes (human and material) of the system.

References

[Bar97] K. Barkaoui. Control systems design for automated manufacturing systems.
Technical report, CEDRIC, 1997.

[BBA96] K. Barkaoui and I. Ben Abdallah. Analysis of a resource allocation prob­
lem in FMS using structure theory of Petri nets. In Proceedings of the l.!1t
International Workshop on FMS and Petri Nets, Osaka, June 1996.

[BM92] K. Barkaoui and M. Minoux. A polynomial-time graph algorithm to decide
liveness of some basic classes of bounded Petri nets. LNCS, 616, June 1992.

[BP96] K. Barkaoui and J-F. Pradat Peyre. On liveness and controlled siphons in
Petri nets. LNCS, 1091, June 1996.

[BPR97] BPR tools description. http://www-a5.igd.fhg.de/reuse-rn/bpr-description.
html,1997.

[Car97] P. Carvalho. Modelling, by queuing network, of hospital operating theatre
block. Memorre d'ingenieur CNAM, March 1997.

[ECM95] J. Ezpeleta, J.M. Colom, and J. Martinez. A Petri net based deadlock pre­
vention policy for flexible manufacturing systems. IEEE Transactions on
Robotics and Automation, 11(2), April 1995.

- 94 -

{KB92] P. Kemper and F. Bause. An efficient polynomial-time algorithm to decide
liveness and boundedness of free-choice nets. LNCS, 616, 1992.

[Obe94] A. Oberweis. Workflow management in software engineering. In Proceedings
of the 2nd International Conference on ConcuJ"Tent Engineering and Elec­
tronic Design Automation, Bournemouth, April 1994.

[OSS+97] A. Oberweis, R. Schiitzle, W. Stucky, W. Weitz, and G. Zimmermann.
INCOME/WF - A Petri net based approach to workflow management. In
Wirlscheftsinformatik'97. Springer-Verlag, 1997.

[vdA97] W. M. P. van der Aalst. Verification of workflow nets. LNCS, 1248, June
1997.

[WFM96] Workflow Management Coalition Specification: terminology and glossary.
http://www.aiai.ed.ac. uk/WtM C /DOCS / glossary / glossary.html, 1996.

- 95 -

Modeling and Verification of Workflow
Nets

M. Voorhoeve (email: wsinmarc@win.tue.nl)

Eindhoven University of Technology

Abstract
A semantics for workflow processes is proposed, based on tasks that

have a duration and may be executed concurrently. The semantics sup­
ports operators that can be used to compose processes from simpler ones.
An important operator is refinement, replacing a task by a process. By
abstracting from certain tasks, a related notion allows verifications based
upon step by step reduction of the process. The approach is illustrated
by means of an example Petri net model.

Keywords: Workflow, Concurrency, Validation, Verification.

1 Introduction

Workflow management is an important new development in the computerized
support of human work. As such, it is an emerging market with scores of com­
mercially available products, not to mention research prototypes at universities.
A workflow management system (WFMS) focuses on cases flowing through the
organization, while tasks are executed for them, needing resources.

A workflow management system needs models that describe the cases, tasks
and resources) and the way they interact. This interaction is modeled by stages
or states that cases may be in. The stage of a case determines the possible
tasks that can be executed. After executing such a task, the case moves to a
new stage. Each task has a set of resources required for its execution. The
WFMS elicits the proper tasks at the proper stage of a case and keeps track of
its progress. See [10J for an overview of workflow terminology.
In this paper we limit ourselves to the process aspect: determining which tasks or
actions can be executed in which stage of a given case. This aspect of workflow
can be aptly described by Petri Nets [7], [IJ.

In Figure 1, such a net is shown, modeling the process of travel arrangement. A
travel request initially enters the process and three parallel activities are started.
A budget check is performed and the hotel and travel requirements are studied.
If necessary, hotel and travel information is obtained. After obtaining enough
information and receiving a budget approval, travel and hotel accommodation
is booked, the travel documents and budget approval are assembled and sent to
the client.
Models such as the one in Figure 1 can be understood with a little training
and are formal, which means they represent precisely defined mathematical

- 96 -

got
buoge!

approve

finish

""ok

,-,~-,got

'-""-----' hinfo

Figure 1: A workflow process model: travel department

objects. This allows rigorous verification of a model, e.g. by model checking.
One states desired properties for the workflow process and checks whether the
model satisfies them.

Related to modeling is the comparison of different model proposals for the same
problem. All models may satisfy the stated requirements, however one would
like to see whether and how they differ, in order to choose the most appropriate
one.
A third issue addresses the maintenance of workflow processes. One must be
able to modify a process on an ad-hoc basis (e.g. due to temporary absence of
a resource) or permanently. Many workflow processes have an inherent protocol
with some external party. In Figure 1 there will be a client wishing his trip
to be arranged, who starts the process and receives the final trip documents.
In between, the client must be prepared to answer requests from the get info
actions, giving additional information. The client, however, is unaware of the
execution of other (internal) actions. Often a modification may not affect the
protocols with certain external parties. After abstracting from internal actions
the old and new nets must be equivalent. This problem has been addressed in
[2] and [9].
The last two issues have something in common. One is about (in)equality of
processes in all respects, and the other about equivalence to a certain extent.
This equality and equivalence is the subject of this paper. We define a semantics
for processes, making it possible to conclude whether different nets model the
same system. A related notion deals with equivalence. This last notion can
speedup model checking, by checking a reduced model instead of the original
one. The reduced model is obtained after abstracting from actions that the

- 97 -

requirement is not addressing and applying certain reduction rules that allow
e.g. to remove nodes and arcs in the net.
In the remainder of the paper, we first define a workflow process as a class of
equivalent nets. This equivalence class is the semantics of a given net model.
We then define some operators for workflow nets, allowing the construction of
workflow nets by composition and refinement. Replacing the composing nets
by equivalent ones in a construction will result in net equivalent to the original
one. This means that the operators have a definition for workflow processes, as
intended. We show how the example process modeled by Figure 1 can be con­
structed from simple actions alone. We finally introduce a related equivalence
notion that allows one to abstract from certain actions and give an example
reduction.

2 Semantics

A workflow process - either modeled by a net or otherwise - is based on actions.
A process can be represented by a graph where the nodes are states and the (di­
rected) edges denote state changes. The graphs representing workflow processes
will be called workflow graphs. To each state correspond a bag (or multiset)
of actions that are busy executing and a set of actions that are enabled. 1 In
addition, there are two special states: the initial and terminal state. In the
initial and terminal state no actions are busy; in the terminal state no actions
are enabled.
A process can move from state to state in various ways. An enabled action can
start. The started action is added to the busy part of the state. The started
action and other enabled actions may then become disabled. Starting an action
does not enable new actions.
A busy action can be removed from the busy part of the state in three ways. It
may commit, whereby new actions may become enabled. It may also rollback,
whereby it may become enabled again, together with other actions that became
disabled when starting it. Finally it may abort, disappearing from the state
without further enabling or re-enabling any actions. Only rollback actions allow
to reach the initial state.
Two workflow graphs are said to be bisimilar if there exists a bisimulation
between their nodes. A bisimulation is a relation between the nodes of graphs
such that if nodes, say, rand s are related,

i) r is initial iff s is initial,

ii) r is terminal iff s is terminal,

iii) rand s have the same bag of busy actions,

iv) to any state s' reachable from s by start, commit, rollback or abort cor­
responds a related state rl reachable from r in the same way,

lThe set of enabled actions is in fact redundant.

- 98 -

v) to any state r' reachable from r by start, commit, rollback or abort cor­
responds a related state s' reachable from s in the same way.

Bisimilar workflow graphs are equivalent: there is no way to tell the processes
apart. Workflow processes are defined as the equivalence classes of workflow
graphs modulo bisimilarity. Notions about workflow processes are defined for
graphs and must be proved to be preserved modulo bisimilarity, i.e. if the notion
holds for a given graph, it must also hold for a graph bisimilar to it. One such
notion is soundness. A workflow graph is sound iff every state reachable from
the initial state can reach the terminal state in the same way. If two graphs are
bisimilar and one is sound, the other is sound too. So soundness is a property
of processes.
A process is modeled by a labeled Petri net like in Figure 1. The net must
have special initial and terminal places and labeled transitions. In most cases
there is a single initial and another single terminal place. Every transition label
corresponds to an action in the workflow system. We describe how a net defines
a graph, and thus models a process.
A state of the net is a bag (multiset) of both places and transitions. Given
a state, every node (place or transition) has a finite nonnegative weight. The
initial state of the process corresponds to the state where the initial places have
weight one and the other nodes weight zero. The terminal state corresponds to
the state where the terminal places have weight one and the other nodes weight
zero.
Given a state, the bag of busy actions is obtained by summation of the labels of
the transitions in the state. An action is enabled iff a transition with that label
has all its input places marked. Starting an enabled action results in the state
with the enabled action added to the state and its input removed. Committing
it removes the action and adds its output. Rollback is the inverse of start.
Aborting a busy action removes it from the state without changing the marking
of the other nodes.
In Figure 2, the complete graph of a given workflow net is depicted, i.e. all
the edges and nodes connected to the node representing the initial state. The
start and rollback events are denoted by a solid line with two arrowheads. The
commit event by a solid line with a single arrowhead The abort event with a
dashed line. The depicted states are those that can be reached from the initial
state by any kind of event. On the left four marked nets are depicted that
correspond to states of the graph. For reasons of space, the other seventeen
are not shown, but it is not hard to construct one from the information given.
The correspondance between the nets and the node labels in the graph can be
easily assessed. In e.g. the second net a b-labeled action is running and another
b-labeled action is enabled; indeed, the corresponding node is labled with the
pair (b, b).
In Figure 3, bisimilar graphs are depicted. The graph on the left is the smallest
one (i.e. with the least number of states) that is bisimilar to the graph on the
right. It is easy to ascertain that no nodes with the same label in the left-hand

- 99 -

,'-----_V
, a,Q

I a,a _

j \,
.. ~ ; "" ... ~~ ",D.b, ,

, __ , 1"'\'O~_-?b'~ \,

b,lr'"b,ty.. "t"
I '..('\<:, - 0,0 '"~,,

b,O D,b1:\, b,O ',O,C-'''- ____ ~O,O
\ '/ \'{ " #<

r

,>~(00--'-'; ,:,'~bf/'/ _... '_' -" I ~ ,
_-- Y-, O,b "

d,O '", I,'
finish : ... "=!i,.O,Q /

L _______ -="-" _______ -l D,d - - - - - - - ~- - ~

I
0,0

V

Figure 2: Nels and graph

V V
~ ~

I I _

, , ,

OJ''' ',_- , ,1°'~~':--'----,
;"'" ... : I "

'f0 -', " ",0 b~'

_--"I~~-<~------~':'~~---"'>'/,\~---d ''\ \,
/

'\- ----------bO' -b~-'b\ # ,b.. , " ," " -- j ',"
_-- -"'"J ,:' I '..{- '<:, ~ --"" "~,, "\' J' lr" D,c, Qb I b,O o,bb.,. b,Q. -, o,c ______ -<>0.p

\ "" j"/:- ';...1- '\t", ~j~! /f,
, " " " , _ - - n.. _ ... - ... , , I

,u.. _____ -------odfr- - - - - - u, Q,b- "'''',,', I

'-, Y-, O,b,' I
d,Q ' : -_... d,D I /
I '", ------i-- ---~O,O:'
D,d _ D,d- _________ J

I '---~
O,ll- ______________________ 0,0 ----"

V V
Figure 3: Bisimilar graphs

100 -

, ,
,

, , ,

net can related by a bisimulation to one and the same node. For instance,
there are two nodes labeled (0,0) in the graph, but one of therm is terminal,
whereas the other is not. The left-hand graph corresponds to a net with weighted
(multiple) arcs as indicated. So the two nets depict the same process. Indeed,
one can be seen as the reduction of the other. Several relations between states
are given in the figure.

3 Composition of workflow processes

In this section we define some operators that allow to construct workflow pro­
cesses. A construction involves an operator with one or more parameter graphs
(or nets) giving a result graph (net). Bisimilarity is a congruence for these op­
erators, which means that replacing parameters in a construction by bisimilar
ones gives a bisimilar result. This means that the operators can be defined on
processes (equivalence classes modulo bisimilarity) and thus are true operators
on a semanticallevel.
The operators are sequencing, choice, iteration, free merge, synchronous com­
munication, asynchronous communication, relabeling and refinement. We give
a net-based description; formal net-based and graph based definitions can be
given (as in [3J and [8]).
Sequencing, choice and iteration share the notion of place fusion. Fusing a set
A of places to another set B of places means adding a new place for every pair
(a, b) of places from A x B, adding an edge to the place corresponding to (a, b)
iff there exists a similar edge to a or b and then removing the places in A and B
and edges from or to them. If A and B are singleton sets, this is equivalent to
ordinary fusion. If A or B is empty, it becomes removal of places and edges. In
other cases a kind of '(weaving" occurs, as illustrated in Figure 4. In the figure,
place identifiers are added to illustrate the correspondence between the original
and the new places.
The sequencing and choice operators have two parameter nets. Sequencing
fuses the terminal places of one net to the initial places of the other, so that the
second net can start iff the first one has terminated. Choice fuses the initial and
terminal places of its two parameter nets so that either net can start, disabling
the other. Iteration has three parameter nets; the terminal places of the first
are fused with the initial and terminal places ofthe second and the initial places
of the third, thus creating a loop.

Th.e merge operator juxtaposes two nets. The initial and terminal places of
the merge result are obtained by taking the union of the initial, respectively
terminal places of the parameter nets. These disjoint nets can be connected
by communication. Synchronous communication fuses transitions, so that the
actions they represent are executed simultaneously. This involves relabeling the
synchronized transitions. Asynchronous communication adds places, so that
some actions must wait until others have occurred. Relabeling means applying
a function to the transition labels. Refinement means substituting a net for the

- 101 -

A

Figure 4: Place fusion

transitions with a given label. Here, another place fusion occurs: the initial
places of the net refining the transition are fused with the input places of that
transition. Likewise, the output places of the transition are fused to the terminal
places of the net refining it.
In Figure 5, the operators defined above are illustrated. We see the nets A and
B, the sequencing A.B (A followed by B), the choice A+B (A or B), their merge
(AIIB)d~o with asynchronous communication c after d, their merge AIIB)dlo=!
with synchronous communication of d and c to /, the iteration BA * B (B
followed by iterated A, terminated by B) and the refinement A[b <- B] (A with
action b refined to B. The relabeling operator does not occur in the figure.
The synchronization operators must be used with great care; note that all nets
in Figure 5 are sound, except for the two nets whose construction involves
synchronization. Rather than formally defining the operators, we show the
construction of our trip planning example, illustrated in Figure 6.
By sequential composition of three actions, the first net is arrived at. Now the
middle action do_work is refined into the parallel composition (merge) of admin­
istration, travel and hotel actions. These actions on their turn are refined into
nets involving sequencing and iteration. Asynchronous communication causes
the hotel and travel booking to wait for budget approval. The hotel and travel
booking is performed synchronously (as they influence one another). A reduc­
tion modulo bisimilarity can be performed, giving the net in Figure l.
The construction operators can be incorporated in an editor for workflow pro­
cesses. All operators except those involving communication preserve the sound­
ness property: the construction is sound if all the parameters are sound.

- 102 -

A B (AIIB)d_x (AIIB)dlo=f
start start

start start

,C\?,
finish

b
start A.B

'finish" -', ', "fiiiish" finish

A+B
A[b->B]

start start

,
d

. "finish"'

Figure 5: Workflow net operators

103 -

start

got
budget

approve

fmish

gO[
budget

refine

finish

~refine
,...---------, , ,

start

,,,:c

tbook

finish

r'_-"got
'-'~"L---' tinfo

finish

refine

l.1'ync: tbook+hbook->hook

us}'nc: approve->book

start

init

r~..r--,get

,--,_,---' tinfo

start

hboo

finish

approve LJ----------{

tenn

finish

Figure 6: Top-down net composition

104

,.,~---, got

\"'>"---L.....l hinfo

r, .. r, got

'--'_""L--' hinfo

start 0---0----0 finish

Figure 7: Prototype sound net

4 Verification

The primary reason for modeling workflow is the possibility to control and
monitor the work by means of a WFMS. However, the existence of a formal
model also allows for verification. As models become more complex, the need
for verification will grow.

There are various properties that need verification. First of ali, the modeled
process must be sound. Next, the process may be a redefinition of an already
existing process. In that case, one would like the interface to an external party
of the old and new process to be the same. Generally, one would like to compare
different models of different processes and see how they behave w.r.t. certain
important actions.

One can relabel the net, so that the unimportant actions have a null label (are
unlabeled) and use weak bisimilarity. This is an equivalence relation between
graphs that abstracts from null actions. Two graphs are weakly bisimilariffthere
exists a weak bisimulation between them. A weak bisimulation differs from an
ordinary (or strong) bisimulation by the fact that one no longer observes null
actions. So the correspondence between states is weakened as only the non-null
busy actions must correspond. One also cannot observe the difference between
directly starting an action and starting it after having started and committed
some null actions. On the other hand, starting or committing a null action
may correspond to not doing anything at all. Finally, the states that are only
reachable from the initial state by aborting a null action do not need to be
related by a weak bisimulation.

In [8], an equivalence relation is defined for general labeled nets that amounts
to weak bisimilarity when applied to workflow nets. Strong bisimilarity implies
weak bisimilarity, so the fact that two nets are weakly bisimilar after relabeling
with null labels is a property of their whole equivalence classes, i.e. the processes.
The operators in the previous section are congruences for both weak and strong
bisimilarity.

Weak bisimilarity allows to reformulate the soundness property. A process being
sound is equivalent to it being weakly bisimilar to the net in Figure 7 after
relabeling all its actions to null. This makes sense, as a sound process from its
initial state performs any number of actions before arriving in its final state. As
all actions become null, it must correspond to the process modeled in Figure 7.
Nets can be reduced modulo weak bisimilarity, e.g. by the reduction rules from [8].
Reduction yields a simpler net (less places, transitions and/or arcs) for which
will be easier to verify whether it behaves as expected w.r.t. the important
actions.
We give an example for our travel department example, illustrated in Figure 8.

- , 05 -

get
buoget

finish

get
buaget

book

Figure 8: An example reduction

106 -

The requirement to verify, is that no trip can be booked without budget. The
important actions for this requirement are getbudget and book. The top net in
the figure shows the relabeling (or rather delabeling) result. The shaded place
is redundant and can be removed. The shaded transitions are inert and can
be removed after fusing their input and output places. The net thus reduced
is shown below, where two more places are seen to be redundant. Transitions
affecting initial and terminal places cannot be inert, so they are not removed.
The stated requirement holds for the reduced net and thus also for the original
one.

5 Conclusion and further work

The present paper proposes a semantics for workflow processes based on nOll­

atomic actions. Actions have a duration and can be started, committed, rolled
back and aborted. This dramatically increases the number of states when com­
pared with atomic actions. However, when interfacing with a given workflow
system, the above aspects of actions can become manifest. Most important,
non-atomic actions allow refinement of processes and thus a hierarchical mod­
eling strategy.

Labeled Petri (place-transition) nets are proposed as models for workflow pro­
cesses. Models are equivalent if they are (strongly) bisimilar. Operators are
defined for composing processes. The refinement operator allows a hierarchical
approach to workflow modeling.

The increase in the number of states (due to actions being non-atomic), causes
brute-force model checking verification to becomes less viable. Instead, a model
can be verified locally, by examining small portions at a time, reducing it step by
step. One can modify a workflow procedure and yet guarantee that it presents
the same interface to its clients.

In [4], a non-atomic approach to actions has been proposed too. The ST bisim­
ilarity defined there corresponds to ours in many respects. Markings comprise
both transitions and places, and start and commit events are possible. There is
also a notion corresponding to our abort event, which is essential for allowing re­
finement. The rollback possibility is new. Since actions are non-atomic and can
be rolled back, the notions of weak bisimilarity [6] and branching bisimilarity
[5] coincide.

We believe that the proposed semantics and equivalence are promising enough to
justify further work. One direction is the development of reduction algorithms.
Another one is theoretical, e.g. to investigate the kind of operators on labeled
nets that strong/weak bisimilarity is a congruence for.
Acknowledgements
I wish to thank Wil van der Aalst for his help and advice.

- 107 -

References

1. W. van def Aalst. Verification of Workflow Nets. In Application and Theory of
Petri Nets 1997, 18th. International Conference, Proceedings, volume 1248 of Lec­
ture Notes in Computer Science, Toulouse, France, 1997. Springer-Verlag, Berlin,
Germany.

2. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys­
tems. In N. Comstock and C. Ellis, editors, Conf. on Organizational Computing
Systems, pages 10 - 21. ACM SIGOIS, ACM, Aug 1995. Milpitas, CA.

3. R.J. van Glabbeek and U. Goltz. Equivalence Notions for Concurrent Systems
and Refinement of Actions. In A. Kreczrnar and G. Mirkowska, editors, Mathe­
matical Foundations of Computer Science 1989, 14th. International Symposium,
Proceedings, volume 379 of Lecture Notes in Computer Science, pages 237-248.
Springer-Verlag, Berlin, Germany, 1989.

4. R.J. van Glabbeek and F. Vaandrager. Petri Net Models for Algebraic Theories
of Concurrency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors,
PARLE: Parallel Architectures and Languages 1987, Vol II: Parallel Languages,
volume 259 of Lecture Notes in Computer Science, pages 224-242, Eindhoven,
Netherlands, 1987. Springer-Verlag, Berlin, Germany.

5. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim­
ulation Semantics. Journal of the ACM, 43(3):555-600, 1996.

6. R. Milner. Communication and Concurrency. Prentice-Hall, London, UK, 1989.

7. W. Reisig. Petri Nets. Springer-Verlag, Berlin, Germany, 1985.

8. M. Voorhoeve.
ence Reports

State
98/02,

Event Net Equivalence.
Eindhoven University of

http://gggis.gin.tue.nl/-gsinmarc/techreports.html.

Computing
Technology,

Sci-
1998.

9. M. Voorhoeve and W. van der Aalst. Conservative Adaptation of Workflow. Com­
puting Science Reports 96/24, Eindhoven University of Technology, 1996.

10. WFMC. Workflow Management Coalition Terminology and Glossary. Technical
Report WFMC-TC-1011, Workflow Management Coalition, Brussels, 1996.

- 108 -

Modeling Workflow Dynamic Changes Using
Timed Hybrid Flow Nets

Clarence Ellis' and Karim Keddara' and Jacques Wainer2

1 University of Colorado, CTRG Labs, Dept of Computer Science,
Boulder CO 80309-0430, USA

2 University of Campinas, Dept of Computer Science, Campinas Brazil

Abstract. Workflow Management Systems[26] are networked computer
systems which enable the specification, analysis, coordination, and en­
actment of organizational procedures. Although some of these workflow
management systems (we abbreviate to workflow systems) have been suc­
cessful, many have failed to improve organizational processes. One reason
for this failure is the dynamically changing nature of organizations and
work which is not well supported by workflow systems.
In a previous paper[9], the authors defined notions of dynamic change in
workflow systems by utilizing Petri net models. Some types of workflow
change are safe, non-disruptive, and can be performed anytime. Other
changes disturb ongoing transactions, and cause problems if they are at­
tempted in a dynamic fashion. That previous paper also presented var­
ious definitions of dynamic change correctness. In this paper, we define
the timed flow nets as a way to accommodate time issues into the design
of workflow systems and the analysis of their structural changes. We also
expand upon the issue of "safe" structural transformations which pre­
serve the soundedness[20] properties. This paper introduces another new
Petri net based model, the timed hybrid flow net model, that is suitable
'to address dynamic changes within workflow systems, their analysis. This
model generalizes the notions of SCOC[9] and Extended SCOC[13].
This work is part of an ongoing research effort of the Collaboration Tech­
nology Research Group (CTRG) at the University of Colorado. Previ­
ous CTRG work introduced the many dimensions of workflow that can
change, including process change, change of roles and actors, applica­
tion data change, organizational structure change, and change of social
structures.

1 Modeling Workflow Procedures

We assume the reader to have some basic understanding of the Petri net mod­
els, their firing semantics and basic properties including boundedness, safeness,
liveness, and reachability graphs (the reader is refereed to [17, 15] otherwise.)

Many Petri-net based workfiow models have been introduced in the literature[7,
8], but only few of them deal with time issues. Meeting commitments and dead­
lines has been identified for long as a key requirement in organization business
models to achieve customer retention and expansion. Therefore, there is an ur­
gent need to accommodate the temporal behavior of workflow systems. This

- 109 -

situation has been acknowledged but merely addressed by the WFMC[26]. On
the other hand, many efforts have and are being put in place to address the is­
sue in many other areas; including real time systems, communication protocols,
process planning, work-force management systems etc ...

In a previous work[9] (and similarly in [20],) workflow procedures are modeled
by the so-called flow nets (workflow nets,) this modeling is carried out as fol­
lows: Activities that define the procedure are represented by transitions. Each
transition has a label, a set of input places to mark the beginning of the modeled
activity, and a set of output places to mark the end of the activity. The workflow
procedure also specifies the order in which its activities ought to be carried out;
activities may be mandatory or optional, they may be executed in sequence or
in parallel. This partial ordering is modeled in the net by the so-called flow re­
lation. Each flow net has a single entry place to reflect the start of the modeled
procedure and a single exit place to mark the end of the modeled procedure.

Note 1. In the remainder of the paper, AN denotes a finite alphabet of activity
names, J N denotes a finite alphabet of job names. T denotes the time domain
each element of which is a non negative rational number, and I denotes the time
interval domain. A time interval may be unbounded (e.g. [2, ooD. [; <;:; (AN x T)
denotes the alphabet of event labe/s. For a finite set A, A MS denotes the class of
multi-sets over A.

Definition 2. A flow net, flow = (pSet, tSet, f Rei, lab, Sin, Sou,) consists of:

- disjoint, finite and non empty sets pSet of places and tSet of transitions.
- the flow relation f Rei <;:; (pSet x tSet) U (tSet x pSet) which is such that:

dom(f Rei) U ran(f Rei) = pSet U tSet
Vt E tSet, 3p,p' E PSet, [(t,p) E fRel & (p',t) E fRel]

- the labelling function lab: tSet --* AN.

- Sin E pSet is the entry place, and Sout E pSet is the exit place, are such that:

VI E tSet, [(t,Sin) ¢ fRel& (sout,t) ¢ fRel]

Moreover, F Nets denotes the class of all flow nets.

Note 3. For x E pSet U tSet, x is called an element of flow. The set of ele­
ments of flow is denoted Elem(flow). The output set of an element x, denoted
outflow(x), is the set {y I (x, y) E f Rei}. The input set of x, denoted inp flow (x),
is the set {y I (y,x) E fRel}. These notions are extended to sets in the usual
manner. The subscript flow will be dropped whenever it is clear from the con­
text. The interface of flow, denoted interface(Flow), is the set {Sin, Sou.}.
Interior (flow) denotes the set of interior places (i.e. non bordering) of flow.

Since flow nets are Petri nets, some notions concerning Petri Nets carryover to
flow nets. In particular, We use 1 (resp. I to denote the unique marking which

- 110 -

consists of a single token residing in the entry (resp. the exit) of a flow net.
Mark(flO'UJ) denotes the class of all markings of flO'UJ.
For m, m E M ark(flO'UJ) and w E tSet', we write m [flO'UJ) m' to state that w
is a firing sequence of flO'UJ leading from m to m'. Reach(flow,m) denotes the
class of all marking of flow reachable from m. mflO'UJ = (flow; m) is called a
marked flow net.

In the remainder of the paper, we assume that flow nets do not use the symbol
teuc , be it as place, transition or label. flO'UJ' denotes the marked Petri Net
obtained from flO'UJ, by adding a transition t ez" labeled teuc connecting the
exit place to the entry place and a single token in the entry place.

In [20], Van der Aalst introduces workflow nets and the notion of sound workflow
nets. A flow net relaxes the strong connectivity property that a workflow net has
to met due to our model of delayed change (to be explained later). Furthermore,
the author shows that the soundedness property id decidable by linking it to the
boundedness and liveness properties.

Definition 4 .• flow is sound iff the following conditions hold:

l. flO'UJ' is strongly connected.
2. 11m E Reach(flO'UJ, 1), I E Reach(flow,m).
3. mflO'UJ = (flow; 1) has no dead transitions.

Adding time to flow nets

Different ways of accommodating time in Petri net models have been proposed
by many researchers. These different proposals were influenced by the specific
application domains, however there seem to be a commonly shared concern not
to modify the basic behavior of the untimed model (parallelism and non deter­
minism.) Three main-streams can be identified: Timing is associated with places
[18], Timing is associated with transitions [16, 14, 27, 10, 22, 5J and Stochastic
Petri Nets [2, 3J
Without claiming the superiority of anyone with respect to others, we adopt
the timed transition proposal as defined in [14, 22, 5J. Our choice is pragmatic
and is driven by our concern to use a model which is in the middle of the com­
plexity spectrum. It is well known that the modeling power of Timed Place Petri
nets is equivalent to the limited modeling power of Timed Transition Petri nets
with fixed durations. Although the analysis of Stochastic Petri Nets is possible
under certain somewhat severe conditions, the behavior of these nets is better
analyzed under simulation. This does not mean that Timed Transition Petri nets
do not resist any kind of analysis. On the contrary, analysis is possible only if
boundedness (in general undecidable, but always carries over from the under­
lying untimed net) holds [6J and this is the best result known to date (at least
to us.) Luckily, boundedness is in general a well accepted requirement for work­
flow models. In our model, each transition will be associated with a firing delay
interval. Formally,

- ", -

Definition 5. A timed flow net, is a system tflaw =< flaw, fdelay > which
consists of:

- flaw E F Nets, the underlying flow of tflaw.
- fdelay : tSet --+ I, the firing delay function.

Moreover, T F Nets denotes the class of all timed flow nets.

Note 6. For t E tSet and [x, yJ = fdelay(t), x is the early firing time oft and is
denoted ef _time (t), and y is the latest firing time of t and is denoted If _time (t).

Example 1. Consider an office procedure for order processing within a typical
electronics company. When a customer requests by mail, or in person, an elec­
tronic part, this is the beginning of a job. A form is filled out by the order entry
activity (abbreviated to oe) ; the job is sent to credit check Check (abbreviated
to cc) , and then to inventory check (abbreviated to ic). After the evaluation
(abbreviated to ev), the order is approved (abbreviated ap) and then sent to
shipping (abbreviated sh) and billing (abbreviated to bi) and then to archiving
(abbreviated to ar.) The shipping department will actually cause the part to be
sent to the customer; the billing department will see that the customer is sent
a bill, and that it is paid. Fig.l. depicts two versions of this procedure along,
namely aldN et and newN et. The firing delays are expressed in minutes; for in·
stance the firing delay of oe is between 2mn and 5mn. Whenever the activity
labeling is injective, we will identify an activity with its label. The entry place
of oldN et is Po and its exit place is P6.

The question as to how to deal with marking extension has also given rise to
at least two proposals. The original one [14, 6J extends the (untimed) marking
with a set of dynamic firing intervals. The "new" current [22, 5, 10, 11] tends
to lean toward the Coloured Petri net current[12J; a timed token contains time
information (a time·stamp and/or a time interval) which in general is related to
the creation of the token. In our model, a timed token is used to keep track of
the creation and the availability time of a token. The creation time of a token
is equal to the enabling time (see below for definition) of the activity which has
produced the token. It does not have any bearing on the firing semantics, but it
will become handy to carry out dynamic changes.

Definition 7. Let tflaw E TFNets. A timed token over tflaw is a system tk,
which consists of

- loe E pSet, the location of tk.
- c_time E T, the creation time-stamp of tk.
- av_time E T, the availability time-stamp of tk.

Moreover, Tks (tflaw) denotes the class of all tokens over tflaw.

Definition8. Let tflaw E TFNets .
• A marking of tflaw is a distribution m S;; Tks (tflaw)Ms'
• Mark(tflaw) denotes the class of all markings of tflaw

- "2 -

Note 9. if m consists of a single token tk = (Sin, 0, 0), then m is referred to
as the initial marking of m and is denoted It/low' Likewise, if m consists of
a single token tk = (sout,a,r), then m is referred to as a terminal marking.
It/low denotes the class of all terminal markings. The subscript will be dropped
whenever it is clear from the context.

We use a two-phase firing semantics:

wait phase: This phase begins the moment the activity is enabled and cannot go
beyond the limits prescribed by the firing delay. During this phase, either the
activity is disabled by the initiation of another (confiicting) activity or it must
fire (Strong Time Semantics or STS [IOJ.) However, the model can be extended
to accommodate the Weak Time Semantics or WTS which relaxes the "must
" into a "may. Traditionally, the WTS has being used in the modeling of soft
real-time systemswith soft deadlines whereas the STS has been applied for hard
real-time systemsin which deadlines are hard target to meet.

The wait phase may be necessary in some situations; for instance when the ac­
tivity has to wait for some external events to happen (e.g. triggers), in this case
a timeout may be set. Consider the case of a workfiow specification which reads
as " If the customer form arrives within 5 days, then activity A is executed, oth­
erwise activity B" . This situation can be easily modeled by using two conflicting
transitions labeled A and B with the firing delay of A being [0,5J and the firing
delay of B being [5,5J.

firing phase: The activity fires by consuming one token from each of the input
places and producing a new token in each output place. For the sake of simplicity,
we assume that activity are instantaneous, however the model can be extended
to include activities with fixed or variable duration.

The questions as to which tokens are selected for consumption, how to deal with
multiple enabledness and conflict resolution are addressed within the context of
the so-called firing policy. We choose (for the sake of simplicity) a policy based
on eager firing with infinite server , enabling memory and race-based conflict
resolution. The next definition formalizes the behavior of timed flow nets.

Definition 10. Let tflow E TFNets and let m E Mark(tflow)

o An event over tflow, is a system e = (tkino t, r), such that:

t E tSet & tkin ~ Tks (tflow) & dom(loc) = inp(t)
loc is injective & r E (fdelay(t) + en_time (e))

where en.time (e), called the enabling time e, denotes the the maximum avail­
ability time-stamp associated with the tokens of tkin .
o Evts (tflow) denotes the class of all events over tflow.

o e is enabled under m, written m [[e), iff bin ~ m.

o e is time enabled under m, written m [e), iff the following conditions hold:

m [[e) & 'Ie' E Evts (tflow) ,m [[e') =? en time (e) :s:: en.time (e')

- 113 -

In this case, the enabling of e under m leads to the marking m', written m [e) m',
where

m' = (m - tkin) U {(sout, en_time (e), r)lsout E out(t)}

• t~c;; Mark(tflaw) x Evts (tflawl' x Mark(tflaw) denotes the timed firing
sequence relation associated with tflaw and is given by:

(m, w, m') Et~ iff m = m' & w = A or the following condition is true:
3m" E Mark(tflaw), 3e E Euts (tflaw),

[w = w'. e& (m,w',m") Et~ &m" [[elm']

Notell. We will write m[w)",ow m' instead of (m,w,m') E~. tflaw will be
dropped whenever it is clear from the context. w is called a (m, m')-timed firing
sequence and the sequence w', obtained from w by dropping the information
about consumed tokens, is called a (m, m')-firing sequence. Fire (tflow, m, m')
will be used to denote the language of all (m, m') firing sequences.

These notions are lifted to the level of activity names. Thus, the sequence
w" = lab(w') is called a (m, m')-labeled firing sequence. In particular, if m = 1
and m' E I, then w" is called a schedule, the availability time-stamp of the ter­
minal marking is called the completion time of sch and is denoted cpUime(sch).
LFire(tflaw, m, m') denotes the language of all (m, m')-labeled firing sequences,
Sched(tflow) denotes the language of all schedules and cpUime(tflaw) denotes
the set of completion times of tflaw.

Example 2. Consider the timed flow net oldN et introduced in Example 1 and
the initial marking mo = 1 = {tk, = (Po,O,O)}.
Under mo, the event e, = (mo, oe, 3) is enabled and mo [e,) m, where m, =
{tk2 = (q,,0,3),tk3 = (q2,0,3)).
Under m" the events e2 = (tk2, cc, 7) and e3 = (tk3, ic, 5) are enabled, both have
the same enabling time 3, so they can fire in any order. Thus, m, [e2) m2 [e3) m3
where ffi2 = {tk3, tk, = (q3, 3, 7)} and m3 = {tk" tks = (Q3, 3, 5)}.
Under m3, the event e, = (tk" tks, ev, 10) is enabled, its enabling time is 7, and
m3 [e,)ms where ms = {tk6 = (P1, 7,1O)}.
Under ms, the event es = (tk., ap, 13) is enabled and ms res) m6 where m. =
{tk7 = (P3, 10, 13), tk, = (P2, 10, 13)}.
Then, we could have m. [e.) m7 [e7) m, [e,) m9, where e. = (tk7, sh, 15), m7 =
{tk"tk9 = (Ps,13,15)}, e7 = (tk8,bi,16), m, = {tk9,tklO = (P,,13,16)}, e8 =
(tk9,tklO,ar,20) and mg = {tku = (P.,16,20)}
The sequence sch = (oe, 3) (cc, 7){ic, 5){ev, 10) (ap, 13){sh, 15){bi, 16){ar, 20) is a
schedule, its completion time is 20mn. The completion time of oldN et is [1O,34J
it is the same as the completion time of newN et (we have readjusted the firing
delays of bi in newNet.)

Definition 12. Let tflaw, and tflaw2 be timed flow nets.

- "4 -

• tflow, is a time approximation of tflow2, written tflow, I;;T tflow2, iff
cpl time(tflow,) c;; cpUime(tflow2)'

• tflow, is a schedule approximation of tflow2, written tflow, I;;s tflow2,
iff Sched(tflow,J C;; Sched(tflaw2).

The execution proceeds by processing what is commonly known as a job. Each
job has a name which uniquely identifies the job at any given time, a flow which
identifies the workflow procedure which is operating upon the job. It also has a
history of the event firings which have so-far taken place as part of the execution
of the job. Actually, we keep track of the labels and times of the event firings
for dynamic change analysis. In the sequel, we assume that jobs do not interfere
with each other. This assumption is carried out using the so-called copy rule. A
formal definition will be given in the next section.

Like in the case of (untimed) flow nets, the notion of soundedness carryover to
timed flow nets and can be argued to be desirable for timed flow nets. Unfortu­
nately, the nice decidability properties that flow nets enjoy break down for the
timed flow nets. Indeed, these properties for the most part are linked to reach­
ability analysis, and as we have previously mentioned timed flow nets resist in
general any kind of reachability analysis.

Furthermore, the linkage to boundedness and liveness properties is broken (in
fact, boundness and liveness are sufficient conditions but not necessary.) To see
that, consider the timed flow net, tflow" depicted in Fig.2. Clearly, tflow, is
not sound, there is a schedule whose underlying firing sequence is t,t2t3t4t5t6
which leads to the marking under which both the exit place Sout and the place
P8 are both marked. On the other hand, tflawi is live and I-safe. To see the
safeness, note that the only place which may not be I-safe is P8 (consider the
untimed structure). However, note that the first iteration of tflawi will result
in both Sin and P8 marked, and that at the end of the nth iteration, one of the
following things may occur:

1. if P8 is not initially marked, then it will be marked with I token.
2. if P8 is initially marked, then the token is either flushed (t8t9) or kept (t8tlO

or t,t2t3t4t7t5t6).

The soundedness property do not carryover to timed flow nets from their un­
derlying (untimed) flow nets. To see that consider the timed flow net tflow2
depicted in Fig.2. Clearly, the underlying (untimed) flow net is sound, but the
timed version is not. After firing t" (P"P2) becomes a sort of home marking
and (P4,P5) is not reachable.

2 Modeling Structural Change within Workflow Systems

We adapt the model of change from [9J to accommodate the temporal nature of
the flow net and to analyze the change correctness on a job basis. Like in the
previous work, we shall focus on a special type of workflow procedure changej

- "5 -

namely the structural change. Structural entails that the change is made to the
structure of the procedure (as opposed to the data-value). A change is either
dynamic or static with respect to a job; dynamic means that the change is
applied while the job is in progress, otherwise if the change is applied before the
job starts executing, then the change is static. Another classification could be
made based on the scope of the change; if the change is applicable to a specific
set of jobs (i.e. execution instances,) then the change is referred to as an instance
change, otherwise it is said to be a class change. Examples of instance changes
include exceptions. Re-engineering plans are in general considered as instance
changes before the cut-off or roll-out date is reached and class changes onward.
Critical changes such as fixing hard bugs or related to mission critical systems
are considered as class changes.
In a nutshell, our model of structural change is driven by a well-defined discipline
which makes its analysis more manageable. This discipline is articulated around
the selection of the change regions and is based upon the principle of change
locality.

The old change region, denoted aldRegian, contains all the activities of the
old timed flow net, referred to herein as the old net and denoted aldN et, which
are involved in the change (e.g. deleted, reorganized etc ...). This means that
when selecting the old region, places connected to these activities as well as the
connecting edges are made part of the old region. The new change region, denoted
newRegian, embodies the alterations that the old region undergoes as a result of
the change. In order to make the analysis of the change more manageable, The
scope of the change should be as much as possible limited to the change regions;
this requirement is referred to as the the principle of change locality. In other
words, the selection of the old change region minimizes its interaction with its
context. This interaction is structurally maintained solely by the interface of the
old region, and is reduced to tokens exchange; the context supplies tokens to the
old region for consumption (through its input place) and consumes the tokens
produced by the old change region in its output place. The old change region is
said to be a closed subnet of the old net, written clased(aldRegian, aldN et).
After the change regions are selected properly, the replacement may take place,
resulting in a new flow, referred to as the new net and denoted newNet. The
new net is obtained from the old net by:

1. plugging the new change region into the old net by using the interface of the
new change region as sockets.

2. removing all the elements of the old change region from the resulting flow
net.

Note 13. We will write newNet = aldNet[aldRegian --+ newRegion] to say
that the timed flow net, newN et, is obtained from the timed flow net, aldN et,
by applying the replacement mechanism as previously outlined. The pair 6 =
(aldRegian, newRegion) will be referred to as a replacement pair and the tuple
repl = (oldNet, 6, newNet) will be referred to as a replacement step.

- 116 -

Example 3. In the case or our order processing procedure, it has been decided to
initiate sh and bi is sequence, instead of concurrently as it was previously done.
Moreover, this change should not affect the completion times previously reached.
The general consensus was to speed up bi by acquiring high end systems. The
old and new change regions as well as the old and the new nets are depicted in
Fig.I. The reader is asked to ignore the jumpers and their connectors for now;
their meaning will be clear shortly.

The introduction of the replacement mechanism leads to the natural question
as to whether timed flow nets properties are preserved. In the case of (untimed)
flow nets, the question has been addressed in [20J for untimed workflow nets.
We extend these results and we will enumerate some transformations which are
"safe" with respect to soundedness. But first, we need to define the notion of
k-embedding. Informally, oldRegian is k-embedded in oldNet (1 ~ k), written
embed(k, oldRegian, oldN et), iff no more than k simultaneous "executions" of
oldRegian are active at any given point. Note here that in this case the entry
place of oldRegian is k-safe, but the converse does not generally hold.

Proposition 14. Let repl = (oldNet, (oldRegian,newRegian), newN et) be a
replacement step such that embed(I, oldRegion, oldN et)

1. if oldNet is sound, then oldRegian is sound.
2. if newRegian !;;T oldRegian, then the following properties hold:

(a) embed(I, newRegian, newN et)
(b) new Net !;;T oldNet.
(c) if oldNet is sound and newRegion is sound, then newNet is sound.

Proof. In what follows we will give a sketch of the proof.

Partl oldRegian' is strongly connected and (oldRegian;1) does not have dead
transition, otherwise oldN et would not be sound. Note here that there exists
a marking m E Reach(oldN et, 1) such that oldRegian,sin is marked under m
(otherwise every transition of oldRegian would be dead in (oldN et; 1)). Assume
that oldRegian does not enjoy the clean the termination property, then there
exists a marking m' E Reach(oldRegian, 1) such that oldRegian.sout and some
p E oldRegian.pSet are marked. In order to get clean termination in oldN et,
another token has to enter oldRegian to flush out the token in p, which meanS
that 2 executions of oldRegian would be simultaneously in progress. Clearly, this
violates the I-embedding property.

Part2-a Without loss of generality, assume that the completion times of oldRegian
and newRegian are time intervals. Let newN et' be the timed flow net ob­
tained from newN et by replacing newRegian with an activity tnew such that
fdelay(t new) = cpUime(newRegian). Let oldNet' be the timed flow net ob­
tained from oldN et by replacing oldRegian with an activity told such that
fdelay(told) = cpUime(oldRegian). embed(I,newRegian,newNet) iff the dis­
tance between two consecutive firings of tnew is greater than If _time (tnew) and
embed(I, oldRegian, oldN et) iff the distance between two consecutive firings of

- 117 -

told is greater than Ii _time (told). Since the latter holds and If _time (tn,w) ~
Ii_time (told), the former holds too.

Part 2.b Using an induction on the length of the firing sequence in newN et and
a lengthy case analysis, show that the following property, which in essence states
that the newN et is externally marking weakly equivalent to oldN et, holds

(11m E Reach(newNet, 1))
(3m' E Reach(oldNet, 1))

[\Itk (tk E m & loc(tk) <Ie Interiar (oldRegion)J =?

[3tk' (tk' Em' & loc(tk) = loc(tk') & av_time(tk) = av_time(tk'))J

Let w be a firing sequence of newN et which leads from 1 to a terminal marking
of newN et. Without loss of generality, assume that that w contains at least
1 segment belonging to newRegion (otherwise, w would be a valid sequence
of oldN et and the case is closed,) all these execution segments in new Region
are ordered (consequence of I-embedding). Each segment can be replaced by a
segment in oldRegion with exactly the same completion time, and the resulting
sequence is valid in oldN et due to the external marking weak equivalence.

Part2.c In this case, the soundedness of newN et is equivalent to the soundedness
of newN et'. Since the soundedness of oldN et' (which is given by the soundedness
of oldN et) implies the soundedness of newN et', the result follows immediately.

Example 4. Note that for the case depicted in Fig.l, these results may be applied.
Indeed, we have both oldRegion ~T newRegion and new Region ~T oldRegion;
their completion· time is [4, 15J. Thus, the soundedness property is preserved.

Next, we enumerate some transformations which preserve the soundedness prop­
erty. These transformations, except TO, have been introduced and investigated
by Van der Aalst in [20J for (untimed) workflow nets. Due to the space limitation,
the figures will be omitted. The idea is to make sure that the time approximation
property holds.

TO optimization The firing delay window of an activity t is shrinked.

Tla division: An activity t is divided into two consecutive activities tl and t2
such that:

idelay(tll U idealy(t2) ~ idealy(t).

Tlb aggregation: The reverse of Tla with

idelay(t) <; idelay(tl) U idealy(t2).

T2a specialization: An activity t is replaced by two conditional activities h and
t2 such that

idelay(tll <; idealy(t) & idealy(t2) ~ idealy(t).

T2b generalization: The reverse of T2b with

idelay(t) ~ idelay(tl) & idelay(t) ~ idealy(t2).

- 118 -

T3a : An activity t is replaced by two parallel activities tl t2 such that

[max(el Jime (til ,el Jime (t2)), max(lf-time (til ,II _time (t2))) ~ Idealy(t).

T3b: The reverse of T3b with

Idealy(t) ~ [max(el _time (til ,el _time (t2)), max(ll _time (tl) ,II _time (t2)))

T4a : An activity tl is replaced by an iteration of t2 and such that either both
it and t2 are immediate or

II Jime (til = II Jime (t 2) = DC & el Jime (t2) :s; el .time (t l) .

T4b: The reverse of T3b with

Idealy(t,) ~ Idealy(t2).

Other rules such as sequentialization, parallelization and swapping can be de­
rived from the previous ones.

Proposition 15. The transformations above persevere soundedness.

3 Modeling Dynamic Changes within Workflow Systems

The application of a change to an in-progress procedure raises the issue of the
whereabouts of a job's work units after the change takes place. In [9) the authors
have considered the following approaches to deal with this issue:

Flush-Change-Restart: cancel the job (Flush), make the change (Change) and
resubmit the job to the new procedure for processing (Restart.) This kind of
change, generally "safe" and static in nature, may be recommended to fix hard
bugs in workflow systems or in mission critical systems. In some cases, it may
not be cost effective Uust to mention one of its down-sides); hours of work and
almost finished products are lost.

Wait-Change: wait until the job reaches a safe state or is finished (Wait) and
make the change (Change.) This solution may not be feasible; it may take some
time before the system reaches the sought state. It is also inadequate to deal
with punctual changes such as exceptions handling.

Change- Transler: Work units associated with the job are transfered to the new
procedure. The transfer may affect all or some of the wok units. The work units
not affected by the transfer continue their progression in the old net as if the
change never took place. The transfer can also be optimized to ensure "safeness".
It is based upon the principle of change locality; the units of work evolving
outside of the old change region remain unchanged in the new procedure. The
work units bordering the old change region are moved to the interface of the new
region. Some of the work units progressing inside of the old change region are
moved to the new change region, others terminate their progression in the old

- "9 -

change region and are moved to the new region when they reach the exit place.
Additionally, the connection to the old change region's entry place is severed so
as not to allow in any new work unit. In [9], the authors have introduced the
Synthetic Cut-Over Change (SCaC) to reflect the situation where no work unit
can be safely transfered from the old change region. Heuristics have also been
devised to determine cases where SCOC is a safe solution. The work has been
expanded in an in-progress work [13J through the Extended Synthetic Cut-Over
Change (E-SCOC) which reflects the case where the token transfer is partial.

Change-Jump: The Change-Transfer solution may unnecessarily delay a change.
An improvement is to maintain the tokens of the old change region where they
are and to set up jumpers which would allow these tokens to jump into the new
change region.

A jumper is a high level box whose in-lets (i.e. input places) in the old change
region and whose out-lets (i.e. output places) are in the new change region. It
also has a time expression which associates with each tuple of input timed tokens
a tuple of output timed tokens. The idea here is to be able to readjust the avail­
ability time-stamps of the tokens to achieve time coherency in the new change
region. This is crucial since the firing semantics is driven by the availability
time-stamps of the tokens.

The execution of the job resumes in a hybrid timed flow net where the old change
region is linked, as long as it is active, to the new change region through jumpers,
and to ensure connectivity, there is at least two jumpers linking the entry (exit)
place of the old change region to the entry (exit) place of the new change region.
The firing policy is modified to that these token jumps are triggered whenever
possible.

Example 5. Fig.!. depicts a possible configuration with 5 jumpers, denoted J i
for i = O ... 4. their time expression, e" are defined as follows:

eo := [PI = pd
el := lP2 = P2J
e2 := [P; = P2]
e3 := [p~.av_time = max(p4.av_time,P5.avJime)J
e4 := [p~ = P6]

(1)

This means that when J1 is used, the token in P3 is destroyed and the token
in P2 is moved to p,. When J2 is used, the token in P5 is destroyed. When J3
is used, the token with the minimal available time-stamp is destroyed and the
other one is moved to p~. Finally, J, moves a token from P6 to p' 5.

When considering the reverse configuration where the jumpers are reversed; that
is the roles of the in-lets and the out-lets are reversed. The new time expressions

- 120 -

become:
eo := [P, = p;]
e, := [p, = P2 & P3 = P',]

PS=P3' 1 e2 :=
P2.avjime = p;.c_time
P5·av_time = P4' .c_time 1

e3 :=
P4.av_time = p~.c_time + 1

e4 := [P~ = P6]

(2)

This means that J, splits the token in p, in two. j, moves the token to P3 and
creates a new one. The same holds for J3 with respect to p~. J4 is a token mover.

Example 6. Let J ob, be a job which happens to be running on the old order
processing procedure and assume that its state consists of two tokens tks =
(P2, 10, 13) and tk. = (Ps, 13, 15). After the change is made, the jumper J,
is used. tks is destroyed and tk. is moved to P3' The new marking is tk12 =
(P3' 13, 15).

Example 7. Assume that after an audit, the company finds out that the change
decision was not such a "good idea" and decides to undo the change. Let Job,
be a job running on the new order processing, with a state consisting of a tk,2 .

After the change is undone, the jumper J2 is active and should be used. After
the jump takes place, tk. and tk,3 = (P" 0,13) are created (0 is the default
creation time-stamp). Except for the creation time-stamp of tk,3 , the marking
in the old net is valid. This may be tolerable, because the creation time-stamp
has no bearing on the firing semantics. However, this is problematic if another
change takes place right before tk13 is used. A solution would be to mark the
token as forbidden from jumping.

In the remainder of this section, we introduce formally jumpers and timed hybrid
flow nets. Due to space limitations, we do not formalize their firing semantics.

Definition 16. Let tflowl, tflow, be disjoint timed flow nets.
A (tflowl, tflow,)-jumper is is a system jmp = (inLet, outLet, texpr) which
consists of:

- finite and disjoint sets inLet of input sockets and outLet of output sockets of
the jumper.

- texpr, called the time expression of the jumper, such that:

inLet c tflowl.pSet
autLet c tflow,.pSet
texpr C; (inLet x TxT) x (outLet x TxT)

Moreover, Jumps (tflowl , tflow,) denotes the class of all (tflowl, tflow,)-jumpers.

- 121 -

Note 17. We shall be interested in two particular jumpers, namely the entry and
exit jumpers. These are jumpers which move tokens from the entry (exit) place
of tflowl to the entry (exit) place of the tflow, without modifying the tokens
time-stamps. They will be denoted respectively entry_jmp(tflowl, tflow,) and
exit jmp(tflowl,tflow,) and interface_jmps(tflowl,tflow,) will denote the
set containing both of these jumpers.

The timed hybrid flow nets are introduced to accommodate the dynamic change
as outlined earlier. Each timed hybrid flow net has an (ordered) sequence of con­
stituents, a root and set of jumpers. Each constituent is a timed flow net which
represents an old change region in a previously carried out dynamic change. Since
the changes are carried out in an orderly manner, the constituents are ordered.
The root is also a timed flow net and represents the latest version (i.e. the new
net of the latest change.) This means that no jumper has an input socket in the
root.

Definition 18. A timed hybrid flow net, thflow, consists of:

- a nonempty sequence tflows of pairwise disjoint timed flow nets, called
constituents.

- a timed flow net,root, the root.
- jmpers, a set of pairwise disjoint jumpers such that:

Vjmp E jumpers, 3i < j [jmp E Jumps(tflows[iJ, tflows[j])]
Vjmp E jumpers, [jmp.inLet n Elem(root) = 0J

Moreover, T H F Nets denotes the class of all timed hybrid flow nets.

(3)

Note 19. The notion of marking carries over to timed hybrid nets; each marking
is the sum of the root and the constituents markings. Events firing occur within
the boundary of a constituent or the root as formalized in the previous section, or
across them using the jumpers as described earlier in this section. Furthermore,
we assume that jumping occurs whenever possible.

Definition 20. A job is a system job where:

- name E IN, the name of job.
- thflow E THFNets, the flow of job.
- state E Mark(thflow), the state of job.
- hist E S', the history of job.

Moreover, Jobs denotes the class of all jobs.

Definition 21. A dynamic change is a system, change = (oldJob, newJob, repl),
which consists of:

- oldJob E Jobs, the old job.

- 122 -

- newJob E Jobs, the new job.

- repl = (oldR, newR), the replacement pair

which are such that:

newJob.name = oldJob.name (4)

new Job. state = oldJob.state (5)

newJob.hist = oldJob.hist (6)

newRoot = oldRoot [oldR -t newRj (7)

newConst = oldConst • oldR (8)

newJmps ;2 oldJmps (9)

newJmps;2 inter/ace_jmps(oldR,newR) (10)

newJmps - oldJmps ~ Jumps(oldR, newR) (11)

where

n = mflows,.length
newRoot = newJob.thflow.root
newConst = newJob.thflow.constituents
new Jumps = newJob.thflow.jumpers
oldRoot = oldJob.thflow.root
oldConst = oldJob.thflow.constituentsoldJumps = oldJob.thflow.jumpers

In the last definition, conditions 8-10 state that the name, state and history
information carryover to the new job. Condition 11 ensures that the root of the
new job is the last version of the procedure. Condition 12 appends the old region
to the old sequence of the constituents. Conditions 13-15 reflects the possibility
of setting up jumpers from the old to the new change region; at least the entry
and the exit jumpers are added to the previous list of jumpers. In particular,
if only these jumpers are added then, the change is referred to as a synthetic
cut-over change.

To conclude this section, we would like to report that we are able to extend the
results from [9] to the new timed model of workflow procedures and dynamic
changes. In particular, if the new change region is a schedule approximation of the
old change region, then the synthetic cut-over change is correct when a history­
based correctness is adopted. Other results concerning change composition and
iteration are under investigation.

4 Related Work

Recently, the problem of workflow structural change has been the focus of nu­
merous work efforts, but none of these efforts consider the time issues. Thus, our
comparison will be done with respect to the untimed hybrid flow nets.
In [4], the authors introduce a class of high level Petri nets, called reconfigurable

- 123 -

nets, which dynamically modify their own structure. As far as dynamic change
is concerned, the reconfigurable nets can be used to emulate synthetic cut over
changes but fails in general to emulate jumpers. The reason is that the model
does not allow the creation nor the disappearing of tokens, but only token move­
ments. On the other hand, reconfigurable nets are better suitable than hybrid
flow nets to support multiple modes of operation.
In [1], the authors are independently adopting a methodology similar to flow
jumpers. Their dynamic correctness revolves around the notion of safe state
w.r.t. a change. According to their model, a dynamic change occurs only if the
state reached by ajob (in the old procedure) is safe w.r.t. the change. To comply
with this requirement, they propose linear jumpers as means to "force" a job into
a safe state (in the old procedure.) There seems to be at least one fundamental
difference in our respective approaches. Their model accommodates retroactive
changes, in the sense that in some cases, getting to a safe state may require
undoing some of the activities which have taken place. This gives rise to the not
so trivial issue of the undo semantics.
In [25], the issue of workflow flexibility is addressed. The authors introduce ad­
hoc workflows based on process templates. These process templates are consid­
ered as reference models. They also give a set of static structural transformations
which may be used to build safe and successfully terminating workflow nets start­
ing from a library of basic process templates which enjoy these properties.
In [24], the authors define process equivalence based on delay bisimilarity. Simi­
larity between cases (i.e. jobs) is conserved by considering them as extensions or
reductions of the same ancestor. In the event that a change results in a process
extension, the change can be applied dynamically without delay to a running
job. However, no mention is made if the change results in a process reduction.

5 Conclusions and Summary

Dynamic structural change to office procedures is a pervasive unsolved problem
within workflow environments. This paper has introduced the timed flow nets
as a way of accommodating time issues into the design of workflow systems and
the analysis of their static changes. It has also expanded on the issue of "safe"
static transformations which preserve the soundedness properties.

This work has also briefly presented a new Petri-net based model, namely the
timed hybrid flow nets, that is especially suitable to address workflow dynamic
changes . In a companion technical report to this paper, we formally define
timed hybrid flow nets, their semantics and their application to the problems of
dynamic change. We also expand upon the results from [9], state and establish
results concerning the dynamic change composition and iteration.

The issue of dynamic change correctness is currently under investigation in a
broader context than in [9, 20]. This effort is concerned with the design and
implementation of SL-DEWS, a specification language for the dynamic evolution
of workflow systems. We hope that by the time of the 1998 Petri net conference
in Portugal, we will have interesting results to report on SL-DEWS.

- 124 -

Acknowledgements We wish to thank the anonymous referees for their helpful
comments which helped to improve the quality of this work and for pointing out
some related references.

References

1. A. Agostini, F. De Michelis. "Simple workflow models» In Proceedings of WFM98:
Workflow Management: Net-Based Concepts, Models, Techniques and Tools, PN98,
Lisbon, Portugal.

2. M. Ajmone Marsna, G. Balbo, A. Bobbio, C. Chioia, G. Conte, A. Cumani. "On
Petri Nets with Stochastic Timing" In Proc. of the International Workshop on
Timed Petri Nets, Torino, 1985, IEEE Computer Society Press.

3. M. Ajmone Marsna, G. Balbo, G. Conte. "A Class of Generalized Stochastic Petri
Petri Nets for the Performance Evaluation of Multiprocessor Systems» ACM Trans­
actions on Computer Systems, 2 (1984).

4. E. Badouel, J. Oliver. "Reconfigurable Nets, a Class of High Level Petri Nets Sup­
porting Dynmaic Changes" In Proceedings ofWFM98: Workflow Management: Net­
Based Concepts, Models, Techniques and Tools, PN98, Lisbon, Portugal.

5. G. Berthelot, H. Boucheneb. "Occurence Graphs For Interval Timed Coloured Nets"
Application and Theory of Petri Nets 1994, Lecture Notes in Computer Science,
volume 815, Springer-Verlag, 1994.

6. B. Berthomieu, M. Diaz. " Modeling and verification of time depenedent systems
using time Petri nets" IEEE Transactions on Software Engineering, vol. 17, No 3,
March 1991.

7. G. De Michelis, and Ellis, C.A. Computer Supported Cooperative Work and Petri
Nets. Third Advanced Course on Petri Nets, Dagstuhl Castle, Germany (1996).
Springer Verlag Lecture Notes in Computer Science.

S. A. Ellis and Nutt, G.J. "Modeling and Enactment of Workflow Systems". In M.
Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of
Lecture Notes in Computer Science, pages 1-16. Springer-Verlag, Berlin, 1993.

9. C.A. Ellis, Keddara, K and Rozenberg, G. "Dynamic Change within Workflow Sys­
tems" . Proceedings of the Conference on organizational Computing systems, ACM
Press, New York (1995) 10-21.

10. C. Guezzi, D. Mandrioli, S. Morasca, P. Mauro. "A general way to put time into
Petri nets" In Proc. of the Fifth International Workshop on Software Specification,
Vol. 14-3 of ACM SIGSOFT Engineering Notes, Pittsburg, Pennsylvania, USA,
1989.

11. C. Guezzi, S. Morasca, M. Pezze. "Validating Timing Requirements for TB Net
Specifications" The Journal of Systems and Software, vo. 27, No 7, November 1994.

12. K. Jensen. "Coloured Petri Nets: Basic concepts, Analysis Methods and Practical
use. volume 1: Basic Concepts". EATCS Monographs on Theoretical Computer
Science, Springer-Verlag 1992.

13. K. Keddara. "On the Dynamic Evolution of Workflow Systems" Ph.D. Thesis in
preparation.

14. P. Merlin, D.J. Farber. "Recoverability of communication protocols". IEEE Trans­
actions on Communications, 24, 1976.

15. T. Murata. "Petri nets: properties, analysis, and applications. Proceedings of the
IEEE 77(4), 1989.

- 125 -

16. C. Ramchandani "Analysis of Asynchroneous Concurrent Systems by Timed Petri
Nets" Project MAC, TR 120, MIT, 1974

17. W. Reisig. "Petri Nets", Springger 1985.
18. J. Sifakis. "Use of Petri Nets for Performance Evaluation". Measuring, Modeling

and Evaluating Computer Systems, H. Beilnerand E. Gelenbe editors, North Hol­
land, 1977

19. Saastamoinen " On the Handling of Exceptions in Information Systems" University
of Jyvaskyla PhD Dissertation, Nov. 1995.

20. W.M.P. van der Aalst. "Verification of Workflow Nets)). In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997,voiume 1248 of Lecture Notes
in Computer Science, pages 407-426. Springer-Verlag, Berlin, 1997.

21. W.M.P. van der Aalst. nFinding Erros in the Design of a Workflow Processll
•

In Proceedings of WFM98: Workflow Management: Net-Based Concepts, Models,
Techniques and Tools, PN98, Lisbon, Portugal.

22. W.M.P. van der Aalst. n Interval Timed Colored Petri Nets and their Analysis".
Application and Theory of Petri Nets 1993, 14th International Conference, Chicago,
Illinois, USA, LNCS 691, Springer-Verlag.

23. R. Viak. "Self-Modifying Nets, a Natural Extension of Petri Nets". Proceedings of
Icalp'78, Lecture Notes in Computer Science vo1.62 (1978) 464-476.

24. M. Voorhoeve, W.M.P. Van der Aalst. "Conservative Adaption of Workflow" In
M. Wolf and U. Reimer, editors, Proceedings of the International Conference on
Practical Aspects of Knowledge Management (PAKM'96), Workshop on Adaptive
Workflow, Basel, Switzerland, 1996

25. M. Voorhoeve, W.M.P. Van der Aalst. "Ad-hoc Workflow: Problems and Solutions"
In R. Wagner, editor, Proceedings of the 8th DEXA Conference on Database and
Expert Systems Applications, Toulouse, France, 1997.

26. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-
1011) Technical Report, Workflow Management Coalition, Brussels, 1996.

27. W. Zuberek. "Timed Petri nets and preliminary performance evaluation". In Proc.
7th Annual Symposium on Computer Architecture, La Baule, France.

This article was processed using the InEX macro package with LLNCS style

- 126 -

old net old change .egion

ah [1,3]

new net new "hange .egion

Fig. I.

127

t3 [3,3) t5 [1,1)
tftowl

sin sout

t9

<10

t5 [1.5,1.5)
tftow2

t4 [0.5,0.5

pI
tl [1,1)

sin
t2 [1,1) t3 [1,1)

t7 [2,3)

t6 [0,0)

tl,1l

t2, I t[O,O]

sout

sin sexec
newRegion

Fig. 2.

128 -

Reconfigurable Nets, a Class of High Level Petri
Nets Supporting Dynamic Changes*

Eric Badouel§ and Javier Oliver'

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.
E-mail: Eric.Badouel@irisa.fr.

, DSIC, UPV, Camino de Vera sIn, 46071 Valencia, Spain.
E-mail: fjoliver@dSic.upv.es.

Abstract. We introduce a class of high level Petri nets, called reconfig­
urable nets, that can dynamically modify their own structure by rewrit­
ing some of their components. Boundedness of a reconfigurable net can
be decided by constructing its cover ability tree. Moreover such a net
can be simulated by a self-modifying Petri net. The class of reconfig­
urable nets thus provide a subclass of self-modifying Petri nets for which
boundedness can be decided. Delayed dynamic changes within workflow
systems in the sense of [8] can then be handled in an extension of van
der Aalst's workflow nets [2[. For this class (the reconfigurable workflow
nets), a notion of soundness has been defined that can also be verified
using the coverability tree construction.

Keywords: Reconfigurable Nets, Workflow Systems, Boundedness, Self­
Modifying Petri Nets.

1 Introduction

Since their introduction in the early sixties [17J, Petri nets have come to play
a pre-eminent role in the formal study of the behaviour of concurrent and dis­
tributed systems. Let us mention some of the attractive features that have made
this model successful. First of all, like vector addition systems or commutative
semi Thue systems, Petri nets are a very simple and natural extension of au­
tomata. Therefore the study of their mathematical properties becomes a man­
ageable task; in particular much effort have been devoted to decidability and
complexity issues for Petri nets. Second, a lot of techniques and automated tools
support the verification of properties of systems modelled by Petri nets. For in­
stance one can decide by constructing its coverability tree whether a Petri net
is bounded, i.e. whether it is a finite state system. Reduction techniques and
linear algebra techniques have also received wide attention. Third, Petri net is
a graphical tool that can easily be used for the description and the design of
concurrent systems .

• This work was partially supported by the H.C.M. Network Express and by CICYT,
TIC 95-0433-C03-03.

- '29 -

Recently, Petri nets have been used for modelling Computer Supported Co­
operative Work (cscw) [9,5]. These applications, also called groupware applica­
tions, involve distributed systems of agents (computer systems or humans) which
cooperate to solve a global task and whose structure can dynamically change.
More precisely, we consider in this paper workflow systems. These systems aim
to support the realization of work procedures by a group of collaborating agents
by coordinating the flow of tasks within the distributed system. As in [2] we
define a workflow net as a Petri net with a specific input place and a specific
output place. A token in the input place corresponds to a new case entering the
system, the structure of the Petri net describe the set of tasks required to process
this case and the order in which these tasks can be executed (taking the dis­
tributed nature of the system into account). Finally a token in the output place
witnesses the termination of the case. An important feature of these workflow
systems is their ability to manage dynamic change: the structure of the Petri
net should be allowed to vary as a case proceeds within the system. Petri nets
however do not offer a direct way to express processes whose structure evolves
along computations. For that reason they have been used in conjunction with
sets of rewriting rules in order to cope with workflow systems: such a system is
locally described by a Petri net while rewriting rules allow for the modification
of the structure of the Petri net. The purpose of this paper is to introduce re­
configurable nets which is a class of high level Petri nets that can dynamically
modify their own structures by rewriting some of their components thus sup­
porting dynamic changes within workflow systems. Reconfigurable nets is a very
natural extension of Petri nets, we therefore have confidence that many of the
theoretical results and automated tools that exist for Petri nets could be used
or adapted for them. For instance, we show in this paper that we can decide
the boundedness property for reconfigurable nets using a variant of cover ability
trees.

The Dynamic nets of Asperti and Busi [1] is also a model that allows for
dynamic changes. In Dynamic nets tokens are names for places, an input token
of a transition can be used in its postset to specify a destination, and moreover
the creation of new nets during the firing of a transition is also possible. The
work of Asperti and Busi recasts in the context of net theory ideas and con­
cepts that originated in the ,,-calculus [15] and the related join-calculus [10, 11].
It is our opinion that the intricacy of this model leaves little hope to obtain
significant mathematical results and/or automated verification tools in a close
future. Moreover this model is probably too sophisticated to be easily used for
the modelling and design of groupware applications.

Self-modifying nets introduced by Valk [18, 19] and their subclass of strati­
fied Petri nets [3] is another extension of Petri nets. Dynamicity is introduced
there via self-modification. More precisely the flow relations between places and
transitions in self-modifying nets are linear functions of the marking. Techniques
of linear algebra used in the study of the structural properties of Petri nets can
be adapted to this extended framework; in particular each transition may be
associated with a matrix and the modification of the marking due to a sequence

- 130 -

of firable transitions can be coded by the corresponding product of matrices.
Even though self-modifying nets constitute a small variation in the Petri net
paradigm, some important properties are lost, e.g. we cannot decide the bound­
edness of self-modifying nets. Moreover even if this class of nets has a clean and
concise definition it is hopeless to describe and design realistic systems directly
in this formalism.

It is our opinion that self-modifying nets is a very reasonable attempt to add
mobility in Petri nets but that they should be used rather as a back-end model.
Reconfigurable nets on the other hand constitute a more direct formalisation of
the manner in which groupware applications are described using a combination
of Petri nets and rewriting rules as in [8J; moreover we describe in this paper a
translation of reconfigurable nets into equivalent self-modifying nets. Therefore
reconfigurable nets can be viewed as a subclass of self-modifying nets for which
boundedness can be decided.

The rest of the paper is organized as follows. Reconfigurable nets are in­
troduced in Section (2) and we indicate how they can be used for modelling
workflow nets with a dynamic structure, the so-called reconfigurable workflow
nets. We show in Section (3) that we can decide whether a reconfigurable net is
bounded by constructing its coverability tree, and that the soundness of a re­
configurable workflow net implies its boundedness and can also be verified using
the coverability tree. We also prove an analogue of a result of [2J showing that
the soundness of a reconfigurable workflow net reduces to the boundedness and
liveness of the reconfigurable net obtained by adding an extra transition con­
necting the output place of the reconfigurable workflow net to its input place.
In Section (4) we show that any reconfigurable net can be simulated by a self­
modifying net. Finally we conclude in Section (5).

2 Reconfigurable Nets

Reconfigurable nets are high level Petri nets supporting dynamic changes within
workflow systems. For instance one can admit local changes in the scheduling of
the tasks required to process a case which is currently flowing in the system. If the
case is ,an order request from a customer the involved tasks may be Order Check,
Inventory Check, Credit Check, Shipping, Billing, and Archiving [8J. A dynamic
change may then enable the parallel execution of two tasks (e.g. Shipping and
Billing) that were previously performed sequentially in some order; it may also
refine some task into more elementary tasks with a prescribed ordering. We
assume however that the set of involved tasks as well as the set of local changes
are known in advance and can be listed. This assumption implies that the set
of tasks instances is finite. This set constitutes the set of transitions of the
reconfigurable net. The switching from one configuration to another one due
to a local change is taken care of by the introduction of a new kind of place
content which denotes whether a place does exist or not in the current state of
the system.

- 131 -

Definition 1 A reconfigurable net is a structure N = (P, T, F, R) where P =
{Pl, ... ,Pm} is a non empty and finite set of places, T = {t" ... , tn} is a non
empty and finite set of transitions disjoint from P (P n T = 0), F: (P x T) U
(T x P) -+ IN is a weighted flow relation, and R = {r" ... , rd is a finite set of
structure modifying rules. A structure modifying rule is a map r : P, -+ P2 whose
domain and codomain are disjoint subsets of places (P

"
P2 <; P and P, nP2 = 0).

A marking of net N is a map M: P -+ INU {a} where a rt IN, when M(p) = a
place p is said not to exist in marking M whereas M(p) = n E IN expresses that
p exists in marking M and has value n. We let M denote the set of markings
of net N. We let E = T U R denote the set of events of the reconfigurable net.
We let M[e > M' denote the fact that event e is enabled in marking M and that
the net reaches marking M' when firing this event. This transition relation is
defined as follows. A transition t E T is enabled in marking M if:

'1pE P M(p)"I a =} M(p) ~ F(p,t)

When transition t is fired in marking M, the resulting marking M[t > M' is such
that '1p E P

M(p) = a =} M'(p) = a
M(p) "I a =} M'(p) = M(p) - F(p, t) + F(t,p)

A structure modifying rule r E R is enabled in marking M if:

'1p E P, M(p)"I a
'1p E P2 M(p) = a

The firing of this enabled rule r produces the new marking M' defined as:

'1pE P,
'1pE P2

'1p E P\(P, U P2)

M'(p) = a
M'(p) = L{M(q) I q E P, f\ r(q) = p}
M'(p) = M(p)

A marked reconfigurable net is a reconfigurable net together with an initial mark­
ing.

The firing policy of transitions is like in the Petri net obtained by discarding the
non existing places. This Petri net is called a configuration of the reconfigurable
net. As long as no structure modifying rule take place, the reconfigurable net
behaves exactly like this Petri net. Structure modifying rules produce a structure
change in the net by removing existing places and creating new ones, thus moving
the system from one configuration to another one. When a place is removed, the
tokens of this place do not disappear, but they are moved to other places of the
net. Hence, the number of tokens remains constant through the application of
structure modifying rules. The rule defines how tokens should be moved in the
net. Places of set P2 which are not in the range of r are places created by the
structure modifying rule and containing initially no token. Roughly speaking
a reconfigurable net can be seen as a bunch of Petri nets (its configurations)
which correspond to the various modes of operation of the system. The structure

- 132 -

modifying rules allow to switch from one mode of operation to another one
while it modifies the current marking accordingly; work cases are not processed
during the firing of a structure modifying rule, therefore there is no creation
nor disappearing of tokens, these tokens are simply displaced from vanishing
places to created ones. Thus a system modelled by a reconfigurable net has the
ability of dynamically change its own structure when certain conditions are met.
For instance if the content of some place becomes too large (there is a large
amount of work cases waiting for being processed) one can duplicate the ouput
transitions of this place, technically we replace this place by a new one having
twice as many output transitions playing the same role as the output transitions
of the original place. Using reconfigurable nets one can also easily implement the
delayed dynamic changes of [8J. These dynamic structural changes also called
synthetic cut-over changes are defined as follows, quoted from [8J.

[in a synthetic cut-over change} both the old and the new change regions
are maintained in the new procedure. This ensures that tokens already
in the old change region will continue their progression as if the change
did not take place immediately (which justifies the attribute delayed).
However tokens evolving in the context of the old change region will never
enter the old change region (but possibly new change region); that is to
say that in view of these tokens the change is immediate.

We can illustrate synthetic cut-over change with the example of Fig. 1. This

: - - - - - - - - - - - - 'P6'" ... - "''4' - -' - -' 'P9' - - - - - _ _ .. : parallel mode

: P2 -rbl...r-'l: region

: j ~ t8: •
• , I = Inventory Check

: P5

c = Credit Check
b = Billing
s = Shipping
a = Archiving

: .equential mode
.......... - _. region

Fig. 1. synthetic cut-over change

reconfigurable net describes how to proceed an order request from a customer,
there are two modes of operation corresponding to distinct regions in the graph­
ical representation of the net, one in which the Billing and Shipping operations
are processed sequentially and the other in which they are processed in paral­
lel. The structure modifying rule r ; {P.;P2} -4 {P3;PS} given by r(p.) = P3
and r(p2) = Ps permits to switch from the sequential mode of operation to the
parallel mode of operation. Conversely the structure modifying rule r- 1 realizes
the switching in the converse direction. Figure 2 represents a fragment of the
marking graph of this reconfigurable net, a place is graphically represented in a

- 133 -

given state if and only if that place exists in the current marking (i.e. its value is
different from a). Observe that when we switch from the sequential mode to the
parallel mode the tokens which are in the old region (sequential mode region)
continue their progression as if the change did not take place but the tokens
in the context (in place p,) will now enter the new region (the parallel mode
region).

17 I, 17

•

Fig. 2. (part of) the marking graph of the reconfigurable net of Fig. 1

The set of places that exists in marking M, let D(M) = {p E PI M(P) 01 a},
is termed the domain of M. Two markings are said to be equivalent when they
have the same domain: MJ = M2 {o> D(MJ) = D(M2). A mode of operation is
an equivalence class for =, it can be identified with a subset D <;; P of places.
Usually, a reconfigurable net is implicitly attached with a fixed subset of modes of
operation. In the above example one has two modes of operation, the sequential
mode and the parallel mode, whose respective domains are P \ {P3;P5} and
P\ {p,; P4}; any marking whose domain is different from these two sets intuitively
should not correspond to any state of the system. Moreover as in [2J we consider
that nets that model workflow systems have two distinctive places, an input place
i which is a source place i.e. a place with no pre-transitions: 1ft E T F(t, i) = 0;
and an ouput place 0 which is a sink place i.e. a place with no post-transitions

- 134 -

'lit E T F(o, t) = O. These places correspond respectively to the beginning and
the termination of the processing of a case. In the example of Fig. 1 the input
place is place PI and the output place is place P13. We end up with the notion of
a reconfigurable workflow net which is an adaptation of van der Aalst's notion
of workflow net [2J.

Definition 2 A reconfigurable workflow net N = (N, 0, i, 0) is a reconfigurable
net N = (P, T, F, R) with an explicit set of modes of operation 0 <;; 2P and two
distinguished places i, 0 E P where i is a source place and 0 is a sink place. Every
mode of operation D E 0 contains places i and 0; moreover the set 0 is strongly
connected in the sense that every D E 0 derives from every other D' E 0 by a
(finite) sequence r" ... ,rn of structure modifying rules, where D derives from
D' by a rule r : P, -+ P, when D = (D' \ P,) UP,. Finally if D and D' are
subsets of places such that D = (D' \ P,) UP, for some structure modifying rule
r :P, -+P" then D E O{} D' E O.

The set of modes of operation of a reconfigurable workflow net is therefore a
connected component of the directed graph whose vertices are the subsets of
places and whose arcs are pairs (D, D') such that D = (D' \ P,) U P, for some
structure modifying rule r : P, -+ P,; and moreover this component is strongly
connected. If D E 0 is a mode of operation, we let in stand for the marking of
domain n with one token in place i and no token elsewhere, and similarly Of}

is the marking of domain D with one token in place 0 and no token elsewhere.
If U <;; E is a subset of events (usually T, R or E itself), we let M[U > M'
if marking M' can be reached from marking M by firing a sequence of events
in U. Because of the strong connectedness we can restore any particular mode
of operation before starting (or after finishing) the processing of a case: i.e.
in[R>in' and on[R>on' for any pair D,D' E 0 of modes of operation.

A token in the input place corresponds to a case entering the system. This
case then flows through the system until a token appearing in the output place
indicates the termination of this case. In the meantime the role played by the
marking is twofold. On the one hand, it accounts for the current (distributed)
state of progress of the case; on the other hand, it encodes the current state of
the system which processes the case. Without loss of generality we can assume
that the state of the system be empty when starting a new case. When the case
terminates the system should have recovered its initial state in order to be ready
to process a new case. The mode of operation may however have changed, but
this is not significant because a case should be unaware of the current mode of
operation of the system. Finally, since such a system is intended to process cases
endlessly it should not have a degraded behaviour: if a transition becomes dead
in some state (i.e. it cannot be fired from this state on), then this transition
might have been discarded in the first place! These requirements are captured
in the following definition which is an adaptation of the similar definition for
workflow nets [2J. We let M ~ M' when M and M' are markings with the same
domain D such that 'lip E D M(P):S M'(P) and we let M denote the set of
markings.

- 135 -

Definition 3 A reconfigurable workflow net is sound if the following conditions
are met.
(i) Every processing of a case can terminate:

11M E M lin E 0 in[E>M =? 3M' E M 3n' E 0 (M[E>M' 1\ On' ~ M')

(ii) Every termination of a case restores the initial state of the system (but
possibly the mode of operation):

11M E M IIn,n' E 0 (in[E>M 1\ on' ~ M) =? M = On'

(iii) There are no dead transitions:

lit E T lin E 0 3M,M' E M in[E>M 1\ M[t>M'

Observe that the processing of a case may not terminate and that a change of
mode of operation may be required in order to reach termination. The above
definition states some properties of the expected behaviour of a workflow system
processing an individual case but it says nothing about that system when several
cases are being processed concurrently. In real applications every case has an
identity, an agent performing a task within a worflow system knows which case he
is currently processing. We may consider therefore that every new case entering
the system is given a colour and that this colour is distinct from the colours of
the other cases currently flowing through the system. The resulting colored Petri
net behaves as follows: in order to fire, a transition is only allowed to pick from
its input places tokens of the same colour, it then produces tokens in its ouput
places of that same colour. This means that the concurrent processing of multiple
cases is represented as the non interfering superimposition of the processings of
the individual cases. Therefore a reconfigurable workflow net is considered only
with respect to an individual case and this justifies the above definition. A weak
form of interference between cases exists however due to the fact that the current
state of the system may have an effect on the decision as to whether an allowed
structure modifying rule should be invoked. For example if the number of tokens
in a certain place exceeds a given threshold one may regulate the flow by invoking
some structure modifying rule, the converse modification may be invoked latter
when the content of that place goes under another threshold; in that sense the
manner in which a case is processed may be influenced by the other cases. Notice
that such thresholds do not appear in our definition of structure modifying rules
which reflect the fact that the decisions concerning the invocation of these rules
are external to the system. Moreover this interference concerns only the modes
of operation which are used when processing a case and our formalism allows the
designer of the system to make sure that the processing of a Case is insensitive
to the dynamic changes occurring within the system. We can if necessary enrich
the description of the net by adding extra places and transitions in order to
ensure that the processing of cases are independent of the dynamic changes.
For instance, one can identify a list of properties that characterize the fact that
the case has been correctly processed. In general such a property corresponds
to the completion of a task. These properties are represented by extra places
Pn+l,." ,Pn+k. Another extra place is introduced as the new output place of the

- 136 -

enriched net. This place is filled by an extra transition whose preconditions are
the places Pn+l, ... , PnH together with the old output place. In that manner a
token in the new output place indicates that the case has been correctly processed
regardless of the dynamic changes that may have occurred.

3 Boundedness of a Reconfigurable Net

The reachability tree of a marked reconfigurable net is the tree whose root is
labelled with the initial marking and such that if V is an arbitrary vertex of
that tree labelled with marking M, the arcs originating in V are in bijective
correspondence with the firings M[e > M' and the arc associated with M[e > M'
is labelled with event e and has its extremity labelled with M'. The reachability
tree is thus the "unfolding" of the marking graph of the marked net. If the net is
unbounded this tree is infinite. Similar to what is done for ordinary Petri nets,
a finite approximation of the reachability tree called the coverability tree can be
constructed. Two properties are at the basis of the algorithm of Karp and Miller
[14]. They correspond to the two following propositions.

Proposition 4 The order relation between markings is a well-ordering.

Proof: We recall (see e.g. [6]) that an order relation (X,:'O) is a well-ordering
if for every infinite sequence (Xi, i E IN) indices i < j can be found such that
Xi :S Xj, equivalently if every infinite sequence in X has an infinite increasing
subsequence. The usual ordering on IN is a well-ordering. Moreover 1 by extract­
ing subsequences iteratively (n times), we notice that if (X,:'O) is a well-ordering,
then xn with the pointwise ordering is also a well-ordering. Finally, D'IU{,,} with
the order X :'0 y ¢'} (x = y = "V [x, y E lN 1\ x :'0 y]) is a well-ordering. Indeed,
if (Xi, i E IN) is a sequence in lNU {,,}, then we can extract a subsequence which
is constantly equal to Q: or an increasing sequence of integers according whether
we respectively have an infinite number of indices i E IN such that Xi = 0, or
Xi E IN. Therefore the order between markings is a well-ordering. •

Proposition:; The firing rule is monotone: 'Ie E E(Ml [e > M, 1\ M, ~
M{) '* 3M~ (Mj[e>M~ 1\ M, ~ M~); moreover IM{I-IM,I = IM~I­
IM2 1. Thus if M[u>M' with M ~ M' then the sequence u E E' of firings can
be reproduced, i.e. 3M[un > M(n) for every n E lN, and then IM(n) I = IMI + kn
where k = IM'I-IMI.

Proof: If e = t E T we have (M, [t > M2 1\ M, ~ MD '* 3M2 (MHt> M2 1\
M2 ~ M~) and M{ - M, = M~ - M2 (the property of constant effect) as these
properties hold for Petri nets. If e = r E R, the first property holds trivially
while the property of constant effect is weaken: as token are moved from some
places to other places we only have conservation of the total number of tokens,
i.e. IM{I-IM,I = IM~I-IM21. •

The key observation for the algorithm of Karp and Miller for Petri nets is that,

- 137 -

because of the property of constant effect, when markings M and M' and a
sequence of firings u E T' can be found such that M[u> M' and M [;; M', one
can deduce M[un > M(n) for every n E IN. Moreover, for every place pEP such
that M(p) < M'(P) one has M(n)(p) = M(P) + nk where k = M'(P) - M(P) >
o and therefore this place is not bounded. Because of the weak form of the
property of constant effect, this observation no longer holds for reconfigurable
nets. However if one is not concerned with the boundedness of any particular
place of the net but with the boundedness of the net itself (i.e. whether there
exists some place in the net that is unbounded), then the above propositions are
sufficient and boundedness can be verified using the following simplified version
of cover ability tree.

Definition 6 The coverability tree of a marked reconfigurable net (N, Mo) is
constructed by the following algorithm:

Initially the tree is reduced to its root labelled Mo and tagged as a "new"
vertex.
While "new" vertices exist, do the following:

• Select a new vertex V, let M be its label.
• For every firing M[e > M' do the following:

* Create a new vertex V' labelled M' and an arc from V to V' labelled
e.

* If there exists some node V" on the path from the root to vertex V
whose label M" is such that M" [;; M' then

. If M" = AI' then tag vertex V' "old" else tag it ffunbounded".
else tag V' "new",

• Withdraw V from the set of "new" vertices.

Proposition 7 The coverability tree of a marked reconfigurable net is finite.

Proof Since the order relation on the set of markings is a well-ordering, the cov­
erability tree of a marked reconfigurable net contains no infinite branch. Since
moreover, each vertex has at most lEI successors we deduce by Konig lemma
that this tree is finite. •

Proposition 8 A marked reconfigurable net is bounded if and only if no vertex
of its coverability tree is tagged "unbounded".

Proof: If the cover ability tree contains no vertex tagged "unbounded" then the
set of labels of its vertices coincides with the set of markings of the reconfigurable
net reachable from the initial state (label of the root), therefore the marked re­
configurable net is bounded. If on the contrary the coverability tree contains
some vertex V' tagged "unbounded". Thus there exists some vertex V on the
path from the root such that Mo[u > M[v > M' where u labels the path from
the root to vertex V, v labels the path from vertex V to vertex V', M [;; M'
and M oft M'. Then by Prop. 5, M[vn>M(n) with IM(n)1 = IMI + kn where
k = IM'I-IMI > O. Since there are finitely many places the net is unbounded .•

- 138 -

Corollary 9 The boundedness of reconfigurable net is decidable.

A reconfigurable workflow net N is said to be bounded if the marked reconfig­
urable net (N, in) for fl E 0 some mode of operation is bounded. This defini­
tion does not depend on the choice of fl E 0 because in[R>in' for every pair
fl, fl' E O.

Proposition 10 A sound reconfigurable workflow net is bounded and we can
decide whether a reconfigurable workflow net is sound.

Proof: If (N, in) is not bounded then as seen in the proof of Prop. (8) there
exists markings M and M' such that in[E>M, M[E>M', M !; M' and
M(p) < M(p') for some place p. Since N is sound one has M[u>on' for some
sequence u E E'. By monotony M'[u > M" with on' !; M" and M" oJ on' which
contradicts the fact that N is sound. Once boundedness has been checked, the
properties i to (iii) of Def. 3 may be checked directly on the coverability tree
which then coincide with the reachability tree. •

However as noted by Hack in [12J "The size of Karp and Miller's construction
in their decision procedure for boundedness and coverability can grow as fast as
Ackermann's function of the size of the Petri nef' which shows the intractability
of the verification of soundness property via the construction of the coverabil­
ity tree. Van der Aalst showed in [2J that soundness of a workflow net reduces
to boundedness and liveness of a Petri net obtained by adding an extra transi­
tion connecting its output place to its input place. Since it is possible to decide
boundedness and liveness of free-choice Petri nets in polynomial time [4], he de­
duced therefrom that soundness of free-choice workflow nets can be decided in
polynomial time. We show that van der Aalst '8 construction can be carried to re­
configurable nets with no significant changes, unfortunately one cannot directly
deduce therefrom a polynomial time algorithm for the decision of soundness
of reconfigurable workflow nets all of whose configurations are free-choice Petri
nets.

Definition 11 If}/ = (N, 0, i, 0) is a reconfigurable workflow net where N =
(P,T,F,R) and fl E 0 is a mode of operation, we let Nn = (N,in) be the
marked reconfigurable net consisting of the reconfigurable net N = (P, '1', F, R)
and initial marking in where '1' = TU {t'} with t' rf. T a new transition and the
extended flow relation F : (P x '1') U ('1' x P) IN is given by

1
F(t'P)if tET and pEP

F t _ -1 if t = t' and p = 0

(,p) - 1 if t=t' and p=i
o otherwise

N is obtained from N by adding a new transition t' which is enabled when a
case has reached termination (there is one token in the output place) and then
removes that case to the system and introduces a new one (by adding one token
in the input place).

- 139 -

Proposition 12 The reconfigurable workflow net N = (N, 0, i, 0) is sound if
and only if the reconfigurable net 1\1 U is live and bounded.

Proof: We first notice that since each initial state in is reachable from any
other initial state by structure modifying rules (in[R>in'), the reconfigurable
net 1\1 n is live and bounded if and only if 1\1 n' is live and bounded for any
n' EO. We first show that if 1\1 n is live and bounded then N is a sound
reconfigurable workflow net. Since 1\1 U is live, transition t' is potentially firable in
every reachable marking, i.e. condition (i) in Def. 3 is satisfied. If n, n' EO, we
let < f1, f1' > denote the set of integers n E IN for which there exists some marking
M such that in[E U {to} >M, iu' !;;: M, and IMI = n + 1. That is to say, by
Prop. 5, that < f1, f1' > records all possible increases of the size of markings along
computations in 1\1 U from some marking greater than iu to some marking greater
than in', Therefore (n E <f1,f1'> 1\ mE <f1',f1"» => n+m E <f1,f1">. Now
< f1, f1' > oj 0. Actually since condition (i) in Def. 3 is satisfied, iu[E> M for
some M such that on" !;;: M for some n" E 0; since aU" [R > on' and by Prop. 5
we deduce M[R > M' with On' !;;: M' and then M'[t' > M" with iu' !;;: M" as
required. Therefore, since 1\1 n is bounded, we deduce that < f1, f1' > = {O} for
all n,n' E 0, and thus (iu[E>M 1\ au'!;;: M) => M = au', i.e. condition (ii)
in Def 3 is satisfied. Condition (iii) in Def 3 follows from the fact that 1\1 u is live
for every n E O.

Conversely, let us assume that N is sound.
First we show that 1\1 u is bounded. Since N is sound, the extended net 1\1

returns to some initial state in when t' fires, it is then enough to check that the
marked reconfigurable net (N, in) is bounded for every n E O. If this is not the
case, then by construction of the coverability tree, we deduce there exist markings
Ml and M, such that iu[E>M1 , M1[E>M" Ml !;;: M" and Ml oj M,. By
soundness of N, we deduce MJ[u > aU' for some u E E', and then by Prop. 5
M,[u>M, with aU' !;;: M, and M, oj au' (because IM,I- 1 = IM,I-IMJ[> 0)
which contradicts soundness of N.

Second we show that 1\1 n is live. Since N is sound, transition t' is potentially
firable in every reachable marking and its firing always leads to some initial state
in, since moreover infR> if}' for arbitrary pair of mode of operations, we deduce
that net 1\1 n is cyclic (every initial state iu and thus any reachable marking is
reachable from any reachable marking). Since moreover there is no dead tran­
sitions in 1\1 u (by condition (iii) in Def. 3 and the fact that t' is not dead) we
deduce that this marked net is live. •

4 Reconfigurable Nets as Self-Modifying Nets

The purpose of this section is to show that reconfigurable nets are self-modifying
nets. Self-modifying nets [18, 19J are generalizations of place/transition nets
where the flow relation between a place and a transition depends on the marking.

- 140 -

Definition 13 A self-modifying net is a structure N = (P, T, F) where P =
{Pl, ... ,Pm} is a non empty and finite set of places, T = {t" ... , tn} is a non
empty and finite set of transitions disjoint from P, and F : (P x T) U (T x P) ~
INP

' is the flow relation where P, = PU { *} and * rf- P. A vector cp E INP' can be
represented by a formal sum cp = AD + E::, Ai . Pi where the constant coefficient
is the entry corresponding to the fictituous place: AD = cp(*) and Ai = cp(p;). A
marking of net N is a map M : P ~ IN. If M E INP is a marking and cp E W' ,
we let cp(M) = AD + E::, Ai . M(P;) denote the evaluation of the affine function
cp in marking M. We let M[t>M' when transition t is enabled in marking M
and leads to marking M'. This transition relation is given by:

M[t>M' <0} '1p E P M(P) ~ F(P, t)(1I1) 1\ M' = 111 - F(P,t)(M) + F(t,p)(1I1)

A marked self-modifying net is a self-modifying net together with an initial mark­
ing.

Proposition 14 A ny marked reconfigurable net can be associated with a marked
self-modifying net with isomorphic marking graph and whose set of transitions
is the set of events of the reconfigurable net.

Proof: The translation of a reconfigurable net into an equivalent self-modifying
net is staightforward: we represent each place p of the reconfigurable net by
three places 3p , ,3p and p. The first two places are complementary 1-bounded
places whose contents indicate whether place p exists in the current marking
and the third place, also denoted p, has the same content than the original
place p when this place exists. Figure 3 gives a sketch of the translation whose
precise definition follows. Any reconfigurable net N = (P, T, F, R) is associated

p '" "
r:Pl4-P2

" PI E PI

"
r{P1 rIp) = P2} p, E P,

q -.3 P1 '" "
Fig. 3. translating a reconfigurable net into an equivalent self-modifying net

with a self-modifying net if = (P, T, F) defined as follows. The set of places
P = 3P U ,3P U P is the disjoint union of three copies of set P whose respective
typical elements are noted 3p , ,3p and p for p ranging in P. The set of transitions
T = T U R consists of the transitions of the original net together with its set
of structure modifying rules, i.e. its set of events. Finally the flow relation F is

- 141 -

given by the following identities where p, t and r : P, ---+ P2 range respectively
in P, Tand R.

F(P t) = {F(P, t) . 3p if P =. pEP
) 0 otherwise

F(t -) = {F(t,P)' 3p if p = pEP
, P 0 otherwise

A marking M of the reconfigurable net N is associated with the marking M of
the self-modifying net N given by

M(3 p) = if M(P) ,..: "then 1 else 0
M(~3p) = if M(P) ,..:" then 0 else 1
M(P) = if M(P) ,..: "then M(p) else 0

The above relations induce a bijective correspondance between the markings
of N and those markings M of N such that Vp E P M(3p),M(~3p) E
{O; I} and M(3p) = 1 ¢} M(~3p) = 0 and M(3p) = 0 =} M(p) = O.
A direct comparison of Def. 1 and Def. 13 shows that an event e E T U R of N
is enabled in a marking M of the reconfigurable net N if and only if as a tran­
sition of the self-modifying net N it is enabled in the associated marking M;
moreover M[e> M' in N if and only if M[e> M' in N. Therefore the mapping
() is an isomorphism between the marking graph of the marked reconfigurable
net (N, M) and the marking graph of the marked self-modifying net (N, M) for
~m~qM~N. •

Boundedness is not decidable for self-modifying nets whereas it is decidable for
reconfigurable nets. In order to better delimit the borderline between those self­
modifying nets for which boundedness can be decided from those for which it
cannot, let us precise some terminology. A pair (p, t) E P x T is termed an input
arc (with respect to transition t) if F(p, t) ,..: O. Similarly a pair (t,p) E T x P
such that F(t,p) ,..: 0 is termed an output arc. An input arc (p, t) is an ordinary
arc if F(p, t) E lN, and it is a reset arc if F(P, t) = p. An output arc (t, p) is an
ordinary arc if F(t,p) E IN. A self-modifying net is a post-self-modifying net (re­
spectively a pre-self-modifying net) [18J if every input arc (resp. ouput arc) is an
ordinary arc; and it is a Reset/Set nets with infinite capacity [13J if every input
arc is either an ordinary arc or a reset arc. Valk proved in [18J that boundedness
of post-self-modifying nets can be decided. The same result has been erroneously
stated for the class of Reset/Set nets with infinite capacity and for the class of
pre-self-modifying nets. Indeed Dufourd [7J has proved recently that bounded­
ness is indecidable for the class of Petri nets with reset arcs, i.e. for the class of
self-modifying nets such that every input arc is either an ordinary arc or a reset
arc and every output arc is an ordinary arc.

- 142 -

5 Conclusion

In this paper we have introduced a class of high level Petri nets, called recon­
figurable nets, that can dynamically modify their own structures by rewriting
some of their components. Boundedness of a reconfigurable net can be decided
by constructing its cover ability tree. Moreover such a net can be simulated by a
self-modifying Petri net. The class of reconfigurable nets thus provide a subclass
of self-modifying Petri nets for which boundedness can be decided. Delayed dy­
namic changes within workflow systems in the sense of [8J can then be handled
in an extension of van der Aalst's workflow nets [2J. For this class (the recon­
figurable workflow nets), a notion of soundness has been defined that can be
verified using the cover ability tree construction.

A reconfigurable net can be seen as a bunch of Petri nets: its configurations.
A configuration of a reconfigurable net gives a description of the system for
some mode of operation. It could be interesting to investigate the properties of
a reconfigurable net in relationship with specific assumptions on its configura­
tions, e.g. according whether they are acyclic, I-safe or free-choice. The workflow
net models of [5J for instance are acyclic, extended free-choice elementary net
systems, whereas the worflow nets of [2J are usually assumed to be free-choice
or almost free-choice. An open question in that direction is whether there ex­
ists a polynomial time algorithm for deciding the soundness property of free­
choice reconfigurable workflow nets. Additional assumptions concerning the set
of structure modifying rules may also be considered. For instance in a forth­
comming paper we shall restrict our attention to the class of reconfigurable nets
whose structure modifying rule r : P, -+ P2 are bijections. Under some extra
assumption such a net can be simulated by a stratified Petri net [3J, that is to
say by a self-modifying Petri net for which a stratification of the set of places
into layers exists so that the flow relations attached to a place involve only the
content of places of lower layers. The self-modifying Petri nets that we have used
to simulate reconfigurable nets were not stratified, and this was essential since
reconfigurable nets unlike stratified Petri nets are in general not reversible in
the sense that we cannot for each firing M[e > M' deduce marking M from the
data of event e and marking M'; reconfigurable nets are reversible however if all
structure modifying rules are assumed to be bijective.

We have assumed, as it is implicitly done in [2J for workflow nets, that the
system can identify, e.g. by using coloured tokens, each of the cases that are
processed. Since a marking accounts at the same time for the current states of
progress of the cases and the state of the system which processes these cases,
this implies that the state of the system itself be multi-coloured, i.e. it is a
vector of states associated with each of the cases currently flowing within the
system. This assumption may be considered indesirable and we may seek for a
non interference condition to be added to the definition of soundness that will
ensure that the behaviour is not changed when colours are forgotten.

Finally, it might be interesting to investigate the notion of a controlled re­
configurable net which stands for a reconfigurable net together with a control
part that regulate the flow in the system. This control would have the marking

- 143 -

of the evolving net as input and for a set of allowed structure modifying rules as
output.

References

[1[ASPERTI, A., and BUSI, N., Mobile Petri Nets. Technical Report UBLCS-96-10,
University of Bologna, Italy (1996).

[2] VAN DER AALST, W.M.P., Verification of Workflow Nets. Proceedings of
ICATPN'97, volume 1248 of Lecture Notes in Computer Science, Springer Verlag
(1997) 407-426.

[3] BADOUEL, E., and DARONDEAU, PH., Stratified Petri Nets. Proceedings of FCT'97,
volume 1279 of Lecture Notes in Computer Science, Springer Verlag (1997) 117-128.

[4] DESEL, J., and ESPARZA, J., Free Choice Petri Nets. Volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (1995).

[5) DE MICHELIS, G., and ELLIS, C.A., Computer Supported Cooperative Work and
Petri Nets. Third Advanced Course on Petri Nets, Dagstuhl Castle, Germany (1996).
To appear in Springer Verlag Lecture Notes in Computer Science.

[6] DIESTEL, R., Graph Theory. volume 173 of Graduate Texts in Mathematics.
Springer Verlag (1996).

[7] DUFOURD, C., FINKEL, A., and SCHNOEBELEN, PH., Reset nets between decidability
and undecidability. To appear in Proceedings of ICALP'98.

[8] ELLIS, C., KEDDARA, K., and ROZENBERG, G., Dynamic Change within Workflow
Systems. Proceedings of the Conference on Organizational Computing Systems, ACM
Press, New York (1995) 10-21.

[9] ELLIS, C.A, and NUTT, G.J., Modeling Enactment of Workflow Systems. Proceed­
ings of ICATPN'93, volume 691 of Lecture Notes in Computer Science, Springer Verlag
(1993) 1-16.

[10] FOURNET, C., and GONTHIER, G., The reflexive chemical abstract machine and the
join-calculus. Proceedings of the 23rd ACM Symposium on Principle of Programming
Languages, (1996).

[11] FOURNET, C., GONTHIER, G., LEVY, J.-J., and REMY, D., A Calculus of Mo­
bile Agents. Proceedings of CONCUR'96, volume 1119 of Lecture Notes in Computer
Science, Springer Verlag (1996) 406-421.

[12] HACK, M.H.T., The recursive equivalence of the reachability problem and the live­
ness problem for Petri nets and vector addition systems. Computation Structures
Group Memo 107. Cambridge, Massachussetts: MIT, Department of Electrical Engi­
neering (1974).

[13[HEINEMANN, B., Subclasses of Self-Modifying Nets. In C. Girault and W. Reisig
(Eds.) First European Workshop on Application and Theory of Petri Nets. Informatik
Fachbericbte, Springer (1982) 187-192.

[14[KARP, R.M., and MILLER, R.E., Parallel program schemata. Journal of Computer
and System Sciences vol. 3 (1969) 147-195.

[15] MILNER, R., PARROW, J., and WALKER, D., A co.lculu.s of mobile Processes, /-/1.
Information and Computation, vol. 100, no 1, (1992) 1-40 and 41-77.

[16] MURATA, T., Petri Nets: Properties, Analysis and Applications. Proceeding of the
IEEE, 77(4) (1989) 541-580.

[17] PETRI, C. A., Kommunikation mit Automaten, Schriften des IIM Nr. 2, Institut
fUr Instrumentelle Mathematik, Bonn (1962). English translation: Technical Report
RADC-TR-65-377, Griffiths Air Force Base, New York, vol. 1, suppl. 1 (1966).

- 144 -

[18J VALK, R., Self-Modifying Nets, a Natural Extension of Petri Nets. Proceedings of
lcalp'78, Lecture Notes in Computer Science vol. 62 (1978) 464-476.

[19] VALK, R., Generalizations of Petri Nets. Proceedings of MFcs'81, Lecture Notes
in Computer Science vol. 118 (1981) 140-155.

This article was processed using the mE;X macro package with LLNCS style

- 145 -

Simple Workflow Models

Alessandra Agostini, Giorgio De Michelis

Cooperation Technologies Laboratory
Information Sciences Dept. University of Milano

(email: (agostini.gdemich}@dsi.unimi.it)

Abstract. Workflow management systems are considered a hot technology but
they do not have up to now the diffusion of productivity tools. e-mail systems
and/or groupware platforms. We think that this is due to the fact that existing
workflows management systems, in general, do not offer all the services needed
by the potential users. In particular, they do not have modeling capabilities
adequately supporting exceptions, multiple views as well as static and dynamic
changes. In this paper we introduce the modeling environment of the workflow
management module of the Milano system -a prototype of a CSCW platform
we are developing at the Cooperation Technology Laboratory of the University
of Milano. The underlying idea of the Milano workflow management module is
that workflow models must be simple and based on a formal theory, so that the
various views, properties, changes can be computed when needed and not
explicitly modeled. The modeling environment of Milano is based on a
subclass of the Elementary Net Systems and on its properties. An example,
derived from a real bank procedure, is discussed throughout the paper.

1. Introduction

Since several years, workflow management systems are announced as the next
best-selling computer application (Koulopoulos, 1995) but up to now they do not
have reached the success of other packages as productivity tools, e-mail systems,
web-browsers and even groupware platforms.

Why do workflow management systems remain in limbo while almost every
observer argues for their utility and so few users really apply them within real
organizations? The question has not a unique simple answer (Abbott, Sarin, 1994),
but it deserves the attention of anyone interested in the development of workflow
technology. Let us recall one issue emerging when we try to understand what
workflow management systems should be to become usable in real work situations;
we do not claim that it is the unique point with respect to the above question, but we
think that its relevance should not be underestimated.

The relevance of workflow technology has grown together with the emergence of
process oriented organizations and the related change management techniques (e.g.,

- 146 -

business process reengineering and continuous process improvement; White, Fischer,
1994). Any workflow management system, therefore, should be oriented to support
changes in the organization and to make it flexible. Moreover, workflow changes
should be as fast as possible in order to react timely to process changes, and they
should be implemented on the fly into already running workflow instances. With
respect to these features, most existing workflow management systems appear to be
inadequate: it is difficult to interrupt them, to exit their normal flow and to reenter
into it, while breakdowns are very frequent (they are the norm in many cases); they
are based on complex and sometimes multiple process models (integrating data
models, normal and exceptional flows, role descriptions), whose changes need careful
and time consuming analysis; they need to be designed by expert programmers,
introducing a time delay between process and workflow changes; they do not support
multiple viewpoints on the process, corresponding to the various actors with the
different objectives and roles they support (the manager, the initiator, the task
executor and, why not, the customer).

Many observers have also argued that most workflow management systems make
business processes too rigid, not allowing their users to react freely to the breakdowns
occurring during their evolution (Bowers et aI., 1995). Some of them seem to charge
the responsibility of this rigidity to their using formal workflow models (formal
models can not fully capture the knowledge people use while acting within a business
process), other to the strict coupling between modeling and executing they introduce
(models should be cognitive artifacts; Norman, 1991; not constraining the behaviour
of the actors; Suchman, 1987; Dourish et aI., 1996). We agree with the above points,
but we are convinced that the rigidity of existing workflow management systems
should not be attributed neither to their using fonnal models nor to their coupling of
modeling and execution, but to the above mentioned weaknesses affecting them.

We argue in this paper that, contrary to what appears common sense, formal,
theory-based models can contribute to the solution of the above problems, if they are
conceived from a different perspective. Good algebra, in fact, offers effective tools
for creating a process modeling environment exhibiting the following properties:
• it allows to simulate the process before its execution;
• it allows formal verification of some workflow properties;
• it supports an unambiguous graphical representation of the workflow;
• it allows to use a minimal input for redundant outputs, through the algorithmic

completion of the model;
• it supports multiple views of the process, through synthesis algorithms and model

conversions;
• it allows the automatic derivation of exceptional paths from the acyclic normal

flow of the process, when needed;
• it enacts automatically model changes on the running instances of a workflow,

protecting them from undesired outcomes.
What is needed in order to get all these services from algebraic theory is to keep

workflow models as simple as possible, i.e., to use a divide et impera approach to the

- 147 -

workflow, treating in a distinct way: the execution of the tasks embedded in the
workflow steps; the data flow, the control flow, the latter being the only issue to be
handled directly by the workflow management system.

In this paper, we present the prototype of the workflow management system we are
developing within the Milano system, a groupware platform supporting its users
while performing concurrently various cooperative processes, discussing how, the
theory it embodies is· providing the above services to its users. An example derived
from a real credit procedure used within an Italian bank is used throughout the paper.

2. The Workflow Management System of Milano

In 1994 at the Cooperation Technology Laboratory the authors -together with
Maria Antonietta Grasso, and several students- started the development of the
prototype of a new CSCW system, called Milano (De Michelis, Grasso, 1994;
Agostini et a!., 1997). Milano is a CSCW platform supporting its users while
performing within cooperative processes (De Michelis, 1995, 1997). Milano is based
on a situated language-action perspective (Suchman, 1987; Winograd, Flores, 1986;
Winograd, 1987) supporting them to keep themselves aware of the history they share
with the actors with whom they cooperate. It offers them a set of tools strictly
integrated with each other to live with them that history; in particular, a multimedia
conversation handler and a workflow management system. Without adding more
details about the other components of Milano (the interested reader can find a more
complete account on it in (Agostini et a!., 1997)), let us spend some more words on
its workflow management system and, in particular on its specification module.

The Milano workflow management system is a new generation workflow
management system (Abbott, Sarin, 1994): its aim is to support not only its users
while performing in accordance with the procedure described in its model, but also
when they either need to follow an exceptional path or when they need to change the
workflow model. The workflow model, therefore, within Milano is not only an
executable code, but also a cognitive artifact. It is, in fact, an important part of the
knowledge its different users (the initiator of a workflow instance, the performer of
an activity within it, the supervisor of the process where it is enacted and, finally, the
designer of the workflow model) share while performing within a cooperative
process.

The model, therefore, must not only support the execution of several workflow
instances, but it must also support the enactment of any model change on all the
ongoing instances (dynamic changes). On the other hand, its cognitive nature requires
that a workflow model supports all its users to understand their situation, to make
decisions, to perform effectively. The workflow model is not merely a program to be
executed and/or simulated by the execution module with a graphical interface to
make it readable by its users. Rather, it is a formal model whose properties allow the

- 148 -

user to get different representations of the workflow, to compute exceptional paths
from the standard behaviour, to verify if a change in the model is correct with respect
to a given criterion and to enact safely a change on the ongoing instances.

For this reason, the specification module of the Milano workflow management
system is based on the theory of Elementary Net Systems (ENS) (Rozenberg, 1987;
Thiagarajan, 1987). In fact ENS has some nice mathematical properties that appear
suitable to provide the above services. For instance, using ENS, it is possible to
compute and classify forward- and backward-rolls linking their states; there is a
synthesis algorithm from Elementary Transition Systems (ETS) to ENS (Nielsen et
aI., 1992); the morphisms in ENS (ETS) preserve some important behavioural
properties. Moreover, since Milano is based on the idea that workflows must be as
simple as possible, its workflow models constitute a small subcategory of ENS,
namely Free-Choice Acyclic Elementary Net Systems, whose main properties are
computable in polynomial time, allowing an efficient realization of the specification
module.

3. A Workflow Example: the Credit Procedure

The selected exarople is the process through which a customer request for a new
credit is managed by a bank. This exarople is extracted from a real case study; for a
more complete description see (Schael, Zeller, 1993; Agostini et aI., 1994).

In the credit procedure the client interacts with the agency director who is
responsible for the whole procedure. After a preliminary informal investigation of
which the director is in charge, where the client motivation is exploited, the
documents the clients provides to support her request are collected and two parallel
processes start: in the first, the information about the client accounts are collected and
the practice is perfected, while in the second, several external data bases are checked
to control if the client has other credits, financial insolvency or any other critical
financial situation. The two processes meet when a report on the credit request is
written. At this point the decision process starts, that follows different paths
depending on the value of the requested credit.

If the credit request is under 50,000,000 Lit. the agency director can write a credit
proposal and submit it to the district coordinator for her approval. Otherwise other
bodies of the bank have to write the credit proposal and/or decide its approval. If the
credit proposal gets the corresponding approval, the client has to sign a copy of the
contract.

The organizational structure of the bank is sketched in Figure I, where only people
or offices taking part in the credit procedure are shown. In the following a brief
description of the organizational roles belonging to the cooperation network is
provided.

- 149 -

HEADQUARTER

Cfedit offlCO director Crad~ o/IiI;o &Yalualor

Crad~ office seaetarial EDPeentre

Riskeonlro Officii in eha olD • .

I ResohAion body I ...
~ """r DISTRICT 1 DISTRICT n I r Dislricl ooonlinator ... rD"""'-l

I "-
BRANCH 1 BRANCH 2 BRANCH n

Agency director Agencydireclor ... Agency director

cradn secretarial hOney eradn secratariat I lieney eredn SllCn!tariat I
Figure I: Organizational Structure of the Bank

The Agency Director -AD in short in the next Figures- is responsible for the
agency's overall performance and for commercial development. According to the
organizational model of the bank. she is the initiator of the credit procedure. In line
with current rules of the bank, her role is characterized by autonomy and full
responsibility in initiating a credit request procedure; her deliberation competence is
limited to loans 2 50,000,000 Lit.

The District Coordinator (DC) has responsibility over the bank budget for credit
operations in her area of competence. She is informed on all credit proposals in order
to explore new business opportunities. Her deliberation competence is limited to
loans 2 80,000,000 Lit.

The Credit Office director (CO) is an experienced manager. She has the
responsibility to assure a check on credit activities in general. Her deliberation
competence is limited to loans 2 200,000,000 Lit.

The Resolution Body (RB) -that is, the Top Management Council of the Bank­
has the deliberation competence on all the loans> 200,000,000 Lit.

In order to take her decision, the agency director asks agency employees (generally
credit andlor EDP experts) for information about the client. This information can be
obtained from several sources, which can be internal or external to the bank.

4. Modeling Workflows in Milano

Let us introduce, in the following, the main definitions and facts about modeling
workflows in Milano and let us illustrate them through the credit procedure example.
To avoid repetitions, we refer, for the main definitions on Elementary Net Systems
and Elementary Transition Systems to (Rozenberg, Thiagarajan, 1986; Nielsen et aI.,
1992; Bernardinello, 1993)

As anticipated above, the specification module offers two different representations
of a workflow model: the first one, called Workflow Net-Model, is based on

- 150 -

Elementary Net Systems, while the second one, called Workflow Sequential-Model,
is based on Elementary Transition Systems.

Definition 1 - Workflow Net Model
A Workflow Net-Model is an Elementary Net System, L=(B,E,F,c,,), such that the
following hold:
a) L is structurally acyclic (there are not cycles in the graph);
b) L is extended Free-Choice (all conflicts are free).

The class of Workflow Net Models is called WNM.

Example 2
In Figure 2 it is presented the Workflow Net Model representing the credit

procedure described in paragraph 3.

hl9
c::::J Exploitation of
--, Client Motivation

"9

~
g~il:~mcnLS

b6

Checkinll
bJ E::::j=J external Credits

Collecting 4 9
Client Information y b7

b4 0 Cf=l Cllttkill8

DC:Evaluatinn
& APl'fllval

=:! f.=--
Wnlmg

"'''''"

n b12

OC:WriUng---"""'-- DC:Seconding _ .• = =R, ... ,
(=<80M) --,--- -.--

hl3Q ~14
Secondin

co =~ <?, Request g

I" bIO
Wnllllg

~ Propoul (>200M)

b17

bl!JO

Figure 2

151

We would like to anticIpate that within Figure 2 -thanks to the capacity of
handling exceptions by jumps see Example 9- we can avoid to specify all possible
cases of withdraw or rejection of the credit procedure. In this particular procedure it is
of paramount importance since rejections and withdraws can occur in almost every
state of the process.

Definition 3· Workflow Sequential Model
A Workflow Sequential Model is an Elementary Transition System A=(S,E,T,s,,),
such that the following hold:
a) A is acyclic (there are not cycles in the graph);
b) A is well structured (all diamonds have no holes and the transitions with the same
name are parallel lines in a diamond).
The class of Workflow Sequential Models is called WSM.

Example 4
Figure 3 presents the Workflow Sequential Model of the credit procedure introduced
in paragraph 3, whose Workflow Net Model is given in Figure 2 .

Oient Motivation .. "m,,"ooo~
Collecting Cbe<;kin Checking
Client Documents extanal tredi\5 Financial FI urtllt<r .

:;>--s?~
rn;OlveOCie IIvcmgauon

CuUecting eel eel CCI
Clienlinformation

C~ CR A

pp pp

DC:Writing
PropoSal DC"Secor'" (=dIO .~~n&

DCi"=~·O ~ CO:Wrltlng CO:iewnding
CO:EViIUaLiooProoposa](=<200M) equest

&:Approval 9
RB;Writing

RB:EvaluaUon Proposal (>200M)
&'Approval ~

4---RB:EV;t)Uation ~
() &Aj>pRw"

Oient:Approval Conditi,
& Slgnatun: 0

Figure 3

- 152 -

While the Workflow Net Model (Figure 2) is a local state representation making
explicit, for example, the independence between the actions of 'Perfecting Practice'
and 'Checking Financial Insolvencies', the Workflow Sequential Model (Figure 3) is
a global state representation, where the path followed during the execution of an
instance is made immediately visible.

It is well known that the sequential behaviour of an ENS can be represented as an
ETS and, conversely, given an ETS it is possible to synthesize an ENS whose
sequential behaviour is equivalent to the source ETS (Nielsen et a!., 1992). It is easy
to show that the above relation between ENS and ETS restricts itself to a relation
between WNM and WSM.

The algorithm to build the ENS corresponding to ETS is based on the computation
of Regions (subsets of S uniformly traversed by action names). While the algorithm
presented in (Nielsen et a!., 1992) generates a saturated ENS, having a place for each
region of the source ETS, Luca Bernardinello (1993) has introduced a synthesis
algorithm generating an ENS having a place for each Minimal Region of the source
ETS, that is not a minimal representation of an ENS having the behaviour described
in the source ETS but has some nice properties (e.g., it is contact-free and state­
machine decomposable) making it very readable and well structured. We have
therefore decided to normalize each WNM to its Minimal Regional representation and
to associate to each WSM its minimal regional representation.

FactS
The sequential behaviour of a WNM can be represented as a WSM and conversely,
given a WSM there is a WNM whose sequential behaviour is equivalent to it.

Proof outline
The proof is based on the fact that the sequential behaviour of an acyclic extended

free-choice Elementary Net System is acyclic and well structured and, conversely, the
(Minimal) Regions of an acyclic well structured Elementary Transition System are
such that the corresponding Elementary Net System is both acyclic and extended free­
choice.

The synthesis algorithm for ENS has been proved to be NP-complete (Badouel et
a!., 1997), making impossible to use it in real applications. The strong constraints
imposed to WNM allow a rather efficient computation of Minimal Regions, so that it
is usable in the specification module of the Milano Workflow Management System.
Let us sketch the algorithm for the computation of the Minimal Regions of a WNM.

- 153 -

Algorithm 6

Let A=(S,E,T, s'o) be a Workflow Sequential Model. The following algorithm
computes the minimal regions of A.

~
C := {(S - (s'o)'(s'o})};
R:=0;
whileC _ 0 do

C := C - (S' ,r) with S' maximal;
Er := (el3s E S', e exits s);
E'r := (el e E Er and 3s E S' - r; e exits s);
ifEr =0

then
R:= R u (r);

else
ifE'r= 0

fi
fi

Example 7

then
R :=Ru (r);
C:= C u (S",r')13e E Er, r' = (sl e enters s)
and S" =(sl s E S' - (r u r') and s reachable from a state of r'};

else
C:= C u (S",r')13e E E'r, r' = r U (sl e exits s}and S" = S' - r');

Figure 4 labels each state of the WSM of Figure 3 with the Minimal Regions
containing it.

It is not diffIcult to see that the WNM of Figure 2 has a place for each of its
Regions (it is therefore the result of the synthesis algorithm applied to the WSM of
Figure 4) and that the WSM of Figure 3 is isomorphic to it.

- 154 -

OC:Wriling
Pro~sa1 DC:Seconding
(=<BOM Request

DC:Evaiuation
&AI'pr<lvaJ ~ ~b14J

i
CO:Wriling CO:SCI;OJIding

CO:Evaluatioll Propusal(=<200M) Request

&'ApproVaJ~ ~b161
~ RB:Wriling

RB:Evaluation Proposal (>2ooM)
&. Approval t{bi7i\

L-R8:EvwUaIiOn ~

~
b181 &: Approval

Cli~nt:Appr<lvai Conditions
"'Signature

@

Figure 4

FactS
The algorithm given above is polynomial in the size of A (of its set of States, S).

Proof outline
The number of elements we can put in C lies between lSI and 2:"ISI. Moreover

each step of the algorithm requires at most one observation of each element of S.

The efficiency of Algorithm 6 grants that the switch between the two
representations of a workflow model (namely WNM and WSM) can be computed
whenever necessary, so that there are no constraints imposing a particular
representation to the user. The problems related to the graphical visualization of the
two representations (e.g., multi-dimensional diamonds will appear as intricate and
difficult to read graphs) are not considered in this context. They are taken into
account within the framework of a system for the visualization of graph-based models
(Bertolazzi et aI., 1995).

The reader may object that the constraints imposed to WNM (WSM) are too strong
so that the actors are forced to follow very rigid prescriptions. This is not true, since
the actors, whenever they can not act in accordance with the model, can jump (either
forward or backward) to another state from which execution can progress again. The

- 155 -

freedom in the choice of the states that may be reached through jumps is not
constrained by the model but can be constrained in accordance with the rules of the
organization where the workflow is modeled. The actors are supported in the choice
of an authorized jump by the possibility of computing and classifying composed
paths in the graph.

Without entering into irrelevant technical details, let us present a simple example
where it is assumed that the organization allows two different classes of jumps:
strongly linear jumps (moving in the WNM only one token) not requiring any type of
authorization and weakly linear jumps (canceling two or more tokens and writing one
token in the WNM) requiring the authorization of the process initiator, i.e. of the
person responsible for the execution of the procedure.

Example 9
Let an instance of the credit procedure presented in Figures 2, 4 be in the state (b4 ,

b,l (Figure 5, a). Then the allowed strongly linear jumps -dashed lines in Figure 5,
b)- can either move the process back to the states (b" b,), or (b" b, I, or (b" b.), or
(b), b,}' or move the process forward to the state (b" b,l. In practice -in the state
(b" b,l- the backward strongly linear jumps allow the bank employees to refine the
investigation on the client. In other words, when an employee needs additional
information, which might have been produced previously in the process, she can
directly jump backward and ask to her collegue responsible for one of the previous
activities.

b19
c::::J E~"loitalion of
-----,- Client Motivation

"9
~:~~=nu

bJ 6 %~.!':!:..J'"
Collcmng , 9 b1
Clicntlnfonnation

b4 c::::J Checking
• .- Financia.llnsolv.:ncics

~g C(b8

" ~!::"~;',"M . "
Writing -" blO

Figure 5 a)

- 156 -

~~:,g pp pp pp 1

~~
@

WrilingRepon

Figure 5 b)

From the same state {b., b,) (Figure 5, a), weakly linear jumps ----<lashed lines in
Figure 6--- may either move the process back to the states {bd or {bz)' or move
forward to all possible states {blO) ... {bl,)'

---------------------------7

~::ng pp pp pp \

~~.F1 bS,b8 FI bS.~_\.\
..... "-:--~./
Wnting~------ ~ ..---.:-::-- /'

~-- ...- --
Figure 6

, ,

As previously aoticipated, within the credit procedure, these jumps allow to handle
all cases of rejection or withdraw of the credit, while leaving its definition as simple
as possible, For instance, every time the experienced managers --e.g., the agency
director, the district coordinator, etc.- intend to reject the request of the credit, it is
sufficient to jump forward at the end of the procedure.

To make an additional simple example of the utility of these jumps, every time a
well known and very important client of the bank asks for a new credit, the agency
director would like to jump directly to the negotiation part of the credit (e.g., the state

, 57 -

(bw)), or even directly to the signature of the credit contract (i.e., the state (b lS)). Of
course, while strongly linear jumps can be applied directly by the employees, weakly
linear jumps (as the ones described above) involve the approval of a responsible
manager like the agency director.

The modeling framework constituted by the couple (WNM, WSM) is therefore
offering various services to its various categories of users. Actors, initiators,
administrators and designers can choose between WNM and WSM to have the most
effective visualization of the workflow model with respect to their current interest;
actors and initiators can analyze the context in which a breakdown occurs choosing
how to solve it.

Administrators and/or designers receive from the above modeling framework also
some relevant services with respect to their responsibility on the model and on its
changes. If we assume that they are free to design the most efficient and/or effective
workflow for executing within some constraints characterizing what, anyhow. the
procedure must do, then they need to check any change with respect to those
constraints. OUf modeling framework provides them with some services supporting
both change design and its verification with respect to the constraints imposed to the
procedure. They can, in fact, define a Minimal Critical Specification (see Defmition
10, below) that must be satisfied by the adopted workflow model and by al1 its
changes, using it as a reference to guide changes. The theory embedded in the
framework (i.e., the properties of the morphisms between WNMs and/or WSMs)
al10ws it to support them with the automatic verification of the correctness of
changes. Moreover, they can enact the change on al1 the already ongoing instances of
the workflow, moving to the new model al1 the instances that are in a safe state while
postponing the enactment of the change in those instances that are in an unsafe state
until they reach a safe one (for the definition of safe and unsafe states see Definition
II, below).

These services are based on the following:
• the class constituted by a minimal critical specification together with an the

workflows that are correct with respect to it is closed under the morphisms
induced by the action-labels;

• the composition of morphisms and inverse morphisms (morphisms always admit
inverse, since they are injective and total).al1ows to distinguish between safe and
unsafe states with respect to a given change.

Let us explain the above claim with some simple examples, assuming that any
workflow model must have the same set of action labels as its minimal critical
specification and that only changes not modifying the set of action labels are al1owed.

Definition 10 - Minimal Critical Specification
A WSM, A = (S, E, T, s,,), is correct with respect to a minimal critical specification
MCS = (S', E, T', s,,') if and only if the morphism induced by E, g:S -> S', is
injective and total.

- 158 -

As its name evokes and its definition grants. a minimal critical specification is less
constraining than any workflow model correct with respect to it, i.e. it admits a larger
class of behaviours. Whenever no minimal critical specification is given. it can be
assumed that the n-dimensional diamond representing the sequential behaviours of
the workflow where all the n actions labels are concurrent is the implicit minimal
critical specification to be taken into account.

Definition 11 - Unsafe states with respect to a change
Let A=(S, E, T, s'o) be a WSM and A'=(S', E, T, s,;) be the a WSM being the

effect of a change on it. Let both, A and A', be correct with respect to the minimal
critical specification, MCS = (S", E, T", s'o"). Let, finally, g: S->S" and g':S'->S"
be, respectively, their morphisms on MCS induced by E: then S - g-l(g'(S')) is the set
of unsafe states of A with respect to the given change. If a state is not unsafe with
respect to a change, then it is safe with respect to it.

S - g-l(g'(S')) contains all the states of A not having an image in S' (the new
changed model); therefore it is impossible to move an instance being in one of them
to the changed model since we can not find univocally the state in which it will be
after the change. Moreover, any choice we do for it, does not allow a correct
completion of the process.

Example 12
Let the WSM of Figure 7 (in the cube only the most external edges are labeled,

since every parallel arc has the same label) be the effect of a change to the WSM of
Figure 4.

Figure 7

This change makes the procedure more efficient allowing to perform concurrently
the activity 'Checking external Credits' and the sequence of activities 'Checking
Financial Insolvencies', 'Funher Investigation'. In this case all states of the original

- 159 -

procedure are safe states with respect to this change; that is, all running instances can
be safely moved in the new model.

Example 13
Let the WSM of Figure 8, b, be the effect of a change of the WSM of Figure 8, a.

In this case, the bank decided that possible 'Financial Insolvencies' of the Client
should be checked as soon as possible in order not to proceed further and wasting
time in 'Checking external Credits' in case of client's insolvency.

Then the three shaded states of the first WSM (Figure 8, a) are its only unsafe
states with respect to this change.

Client MUlivation &"o;",,~ '~
CoUecting Checkin Checking Furth
Client Documents c~!Cmalt:rediL' finanCIal. Inves~rga!ion :? ,~ow' .. oc"
Collecting c? CCI CCI
Client Inf,lIlTlatiml

Perfecting
Practice

Client Motivation

CFI FI

pp

Figure 8 a)

&"''',"00 o~
Collectlng OJet:::kl.ng OJet:::kin Further
CUent Docu. ~'. ts FllWlCiaJ e~~hedi Investigation

~
""" .. oc.

Collectlng CCI CCI CCI
Clienllnfonnation

CFl ceC FI

Figure 8 b)

160 -

Example 14
Figure 9 summarizes the three patterns of change allowed by our theoretical

framework: parallelization, making two sequential action labels concurrent (Figure 9,
a); sequentialization, creating a sequence with two concurrent action labels (Figure 9,
b); swapping, inverting the order of two sequential action labels (Figure 9, c). The
shaded states represent the unsafe states.

'~- SQ.?" " e2 e2 el

---.
,,~ '~

" " --- -j
Swapping

Parallellzation Sequentializalion

a) b) c)

Figure 9

The class of changes introduced above is quite small. An extension of the allowed
changes may be obtained weakening the condition that the minimal critical
specification contains all the action labels of any workflow model correct with respect
to it, to the one imposing only that its action labels are contained in the set of action
labels of any workflow model correct with respect to it.

Finally, a precise definition of action-label refinement within the above theoretical
framework will further extend the class of changes supported by the specification
module of the Milano workflow management system.

Conclusion

The approach we have followed in the development of the modeling capabilities of
the workflow management system of Milano is, for what we know, the first attempt to
use the synthesis of Elementary Net Systems proposed by Nielsen, Rozenberg and
Thiagarajan (Nielsen et aI., 1992) and further developed by Bernardinello (1993) to
the application domain.

The treatment of dynamic changes we propose is strictly related to the one
proposed by Ellis, Rozenberg and Keddara (Ellis et aI., 1995). The main difference
between them is that while Ellis and co-workers move any workflow instance to a
new model, where unsafe states and paths are preserved in order to avoid
inconsistencies, in our approach the move of the instances is delayed until they reach
a safe state.

Solutions for the static change of workflow models have been developed by
several scholars (Abbott, Sarin, 1994; Swenson et aI., 1994; Simone et aI., 1995;
Dourish et aI., 1996; Voorhoeve, van der Aalst, 1997). While some of them have a
different objective, since they allow any change without any request for consistency

- 161 -

between the old and the new model (Swenson et aI., 1994, Dourish et aI., 1996), other
are based, as is our proposal. on transformation rules granting the desired consistency
relation between the two models (Simone et aI., 1995; Voorhoeve, van der Aalst,
1997). Generally they propose larger classes of transformation rules than us, since
they do not take into account the dynarnicity of changes. It is our intention, in any
case, to extend our transformation rules to allow also refinements and/or abstractions.

A part from the full integration of the workflow management system within the
Milano platform and from the new software modules it needs, some further
developments are planned in the Cooperation Technologies Laboratory at the
University of Milano.

As already mentioned above, we plan to extend the transformation rules for
changing a workflow model to allow also refinements and abstractions. This requires
the development of both its theoretical basis and its modeling capabilities.

We want to enrich OUT modeling framework with a recursive capability, allowing
to reduce a part of a workflow model to a single node, if and when it has the required
interfaces with the rest of it.

The graphical interface we need for our workflow management system is rather
complex. since managing changes and exceptions with respect to multiple different
representations requires the automatic generation of a graphical representation on the
basis of a formal model. We are experimenting with a graphical editor developed at
the University of Rome (Bertolazzi et aI., 1995) to evaluate if it fits within our
system.

Acknowledgments

The authors thank the anonymous referees of this paper, who helped to improve its
quality. Moreover special thanks are due to our students, Roberto Tisi, Paolo Bertona,
Pietro Nardella and Mario Manzoli, who greatly contributed to the development of
the workflow management system of Milano.

References

[Abbott, Sarin, 1994] Abbott, K. R., Sarin, S. K. Experiences with Workflow Management:
Issues for The Next Generation. In Proceedings of the Conference on Computer Supported
Cooperative Work, ACM, New York. 1994, pp. 113-120.

[Agostini et aI., 1994] Agostini, A., De Michelis, G., Grasso, M. A., Patriarca, S.
Reengineering a business process with an innovative Workflow Management System: a
Case Study. Collaborative Computing, 1.3, 1994, pp.163-190.

[Agostini et aI., 1997] Agostini, A., De Michelis, G., Grasso, M. A. Rethinking CSCW
systems: the architecture of Milano. In Proceedings of the Fifth European Conference on
Computer Supported Cooperative Work, Kluwer Academic Publisher, Dordrecht, 1997. pp.
33-48.

- 162 -

[Badouel et aI., 1997] Badouel, E., Bemardinello, L., Darondeau, P. The synthesis problem for
elementary net systems is NP-complete. Theoretical Computer Science, 186, pp. 107-134.

[BemardinelIo, 1993J Bernardinello, L. Synthesis of Net Systems. In Application and Theory
of Petri Nets, LNCS 691, Springer Veralg, Berlin, 1993, pp. 89-105.

[Bertolazzi et aI., 1995] Bertoiazzi, P., Di Battista, G., Liotta, G. Parametric Graph Drawing. In
IEEE Transactions on Software Engineering, 21.8,1995.

[Bowers et al., 1995] Bowers. J., Button, G., Sharrock, W. Workflows from within and from
without: technology and cooperative work on the print industry shopfloor. In Proceedings
of the Fourth European Conference on Computer Supported Cooperative Work, Kluwer
Academic Publisher, Dordrecht, 1995, pp. 51-66.

[Brauer et aI., 1987] Brauer, W .• Reisig, W., Rozenberg, G. (Eels.) Petri Nets: Central Models
and Their Properties. LNCS 254, Springer Verlag. Berlin, 1987.

[De Michelis. 1995] De Michelis, G. Computer Support for Cooperative Work: Computers
between Users and Social Complex.ity. In C. Zucchennaglio, S. Bagnara and S. Stucky
(eds.) Organizational Learning and Technological Change (eds.), Springer Verlag, Berlin,
pp.307-330.

[De Michelis, 1997] De Michelis, G. Work Processes, Organizational Structures and
Cooperation Supports: Managing Complexity. Annual Reviews in Control, 21, 1997, pp.
149-157.

[De Michelis, Grasso 1994] De Michelis, G., Grasso, M. A. Situating conversations within the
language/action perspective: the Milan conversation Model. In Proceedings of the
Conference on Computer Supported Cooperative Work, ACM, New York, 1994, pp. 89-
100.

[Ellis et aI., 1995] Ellis, C, Keddara, K., Rozenberg, G. Dynamic Change within Workflow
Systems. In Proceedings of the Conference on Organizational Computing Systems. ACM
Press, New York, 1995, pp. 10-21.

[Koulopoulos, 1995] Koulopoulos, T. M. The Worliflow Imperative. Van Nostrand Reinhold,
New York, 1995.

[Nielsen et aI., 1992] Nielsen, M., Rozenberg, G., Thiagarajan, P.S. Elementary Transition
Systems. Theoretical Computer Science, 96, 1992.

[Nonnan, 1991] Norman, D. A. Cognitive Artifacts. In Carroll J. M. (ed.) Designing
Interaction. Psychology at the Himan computer Interface. Cambridge University Press,
Cambridge, 1993, pp. 17-38.

[Rozenberg, 1987J Rozenberg, G. Behaviour of Elementary Net Systems. In: [Brauer et aI.
1987], pp. 60-94.

[Schae!, Zeller, 1993] Schae!, T., Zeller, B. Workflow Management Systems for Financial
Services. In Proceedings of the Conference on Organizational Computing Systems. ACM,
New York, NY, pp.142-153.

[Simone et aI., 1995] Simone, C., Divitini, M., Schmidt, K. A notation for malleable and
interoperable coordination mechanisms for CSCW systems. In Proceedings of the
Conference on Organizational Computing Systems. ACM Press. New York, 1995. pp. 44-
54.

[Suchman, 1987] Suchman, L. A. Plans and Situated Actions. The Problem of Human­
Machine Communication. Cambridge University Press, Cambridge, 1987.

[Swenson et aI., 1994] Swenson, K. D., Maxwell, R. J., Matsumoto, T., Saghari, B., Irwin, K.
A Business Process Environment Supporting Collaborative Planning. Collaborative
Computing, 1.1, pp. 15-34.

[Thiagarajan, 1987] Thiagarajan, P. S. Elementary Net Systems. In: [Brauer et aI. 1987], pp.
26-59.

- 163 -

[Voorhoeve, van der Aalst, 1997J Voorhoeve, M., van der Aalst, W. Ad-hoc Workflow:
Problems and Solutions. In Proceedings of the 8th International Workshop on Database
and Expert Systems Applications. IEEE Computer Society, California, 1997, pp. 36-41.

[White, Fischer, 1994] White, T, E., Fischer, L. (Eds.) The Worliflow Poradigm, Future
Strategies, Alameda, 1994.

[Winograd, Flores, 1986] Winograd, T., Flores, F. Understanding Computers and Cognition.
Ablex, Norwood, 1986.

[Winograd, 1988] Winograd, T. A Language/Action Perspective on the Design of Cooperative
Work. Human ComputerInteraction, 3.1,1988. pp. 3-30.

[WMC, 1994] Workflow Management Coalition, Coalition Overview. TR-WMC, Brussels,
1994.

- 164 -

The Formal Representation of Call Processing in
Call Centers

Using a Petri Net Approach

Nikolay Anisimoyl.2, Konstantin Kishinski 1
, Alec Miloslayski1

,

IGenesys Telecommunication Laboratories, Inc.
1155 Market Street, San Francisco, CA, USA 94103

E-Mail: \anisimov.kotc.alec}@genesyslab.com

2Institute for Automation & Control Processes,
Russian Academy of Sciences

5 Radio St., Vladivostok, 690041, Russia

Abstract. In this paper we apply a formal approach, based on Petri nets, to design a
logical structure for call centers based on sophisticated computer telephony
integration (CTI) applications. A typical call center consists of a set of operators,
called agents, who process inbound calls from clients. This call processing may
involve the use of computer systems and other devices, such as faxes. as well as
communication with other agents. The treatment of each call being processed is
heavily regulated by a script, which is specially designed for specific kinds of calls
by the experts in telemarketing. However, the design of such scripts can be
problematic. In this· paper, we stress the need for tools supporting a scripting
process. We propose a. formal model intended to serve as a basis for such tools.
Specifically, we introduce formal models called script nets for formal representation
of scripts and of the call center as a whole. We have also introduced various ways to
structure script nets, using a transition hierarchy and macroplaces.

1. Introduction

Over the last few years phone call-center systems have continued to grow at a remarkable
pace. Several manufacturers and service providers are developing and introducing
systems with enhanced functionality, principally through what is known as computer­
telephony integration (CTI) [15]. The general purpose of a call center is to connect
operators called agents with members of the public called clients, i.e., people interested
in using the services of the call center. Typically a call center is based on at least one
telephony switch to which agent stations are connected by extension lines and directory
numbers, and to which incoming and outgoing trunk lines may carry telephone calls
between the switch and the parties who call in. In addition, most modern high-capacity

- 165 -

call centers have agent stations that include computer platforms, often PCs, equipped
with video display units (VDUs). The PCNDU platforms are typically interconnected,
usually by a local area network (LAN). There may also be servers of various sorts (e.g.
data base or fax server) for various purposes on the LAN, and the LAN may also be
connected to a cn server, in turn connected to the central switch through a cn link.

Within a call center, agents process telephone calls from clients and carry out call-related
business.

The typical processing of calls includes using data from computer systems, including
databases; incorporating other devices such as fax and e-mail; and communication with
other agents. The communication of the agent during call processing is heavily directed
by a specific scenario, specially developed for such calls by telemarketing experts. These
scenarios are referred to as scripts. The same agent can work with varying call types,
controlled by different scripts. Thus, a call center is a distributed system, usually built on
top of a local area network that connects agent stations, server computers and telephone
equipment.

It is interesting that concept of workflow management [1,6] can be very useful in
designing call centers. In fact, a call center can be understood as a specific case of a
workflow system, which substitutes telephone calIs for documents circulating in the
system. We should also mention that because office activity very often involves working
with inbound and outbound calls, the processing of such calls should be naturally
incorporated into workflow management systems.

The present paper is devoted to call center management, and is specifically directed
toward scripting for call centers. Usually, scripts are written in a relatively high-level
programming language. The complexity of a call center presents a challenge for any
programming tool. Moreover, as with any other sort of programming, when a bug
appears or a change is made in the purpose or operation either of a call center or a
segment of call center operations, it is often necessary to rewrite a large number of
scripts. This endeavor is no small task, and may take a considerable time. Moreover, such
reprogramming introduces numerous opportunities for errors, both in programming and
in the layout of the script.

Given the nature of call center management, and scripting in particular, it is highly
desirable to reduce the complexity and amount of effort required to direct these activities.
It is especially important to simplify the activities of agents, such as engagement with
clients, and to provide enough flexibility so that changes and adaptations can be easily
and quickly made without fear of error. To handle this issue we need special tools, such
as a visual language, graphical editor, and others. Essentially, the requirement is to build
a platform for a generation of CTl applications of varied types. Such tools for the
generation of cn applications already exist, but for the most part they do not take into
account the distributed nature of call centers and therefore do not allow the production of
scripts with complex communications between agents, hardware and other resources. In
this paper we present the progress we have made in an ongoing project aimed at
designing such a platform.

If we examine scripts of a typical call center, we see that their key features include the
flexible use of resources during call processing; extensive manipulation of calls,
including attached data; allowance for exceptions; complexity of real-world scripts;

- 166 -

parallel call processing; and strict requirements for real-time call processing. It is clear
that scripting tools should be designed according to a formal approach. This paper is
devoted to developing such an approach, using the theory of Petri nets [11,12]. More
specifically, in this paper we build a Petri net-based formal model for representing call
center scripts.

Voice Server

Switch

telephone IIIIIII
network IIIIIII

I

Fax Server

Telephony Server

GTI-link Data Base &
Application Servers

Telephone rn":::=~i'P'il!::'-'" processing boards,
specific equipment

Workstation

Agent workplace

Agents

Figure 1: A call center environment

Structure of a call center

In this section we present an abstract model of a typical call center that will serve as a
subject for the formalization process. From now on, the call center will be referred to as a
"system ".

Typically, a system operates with a set of resources. These are: equipment (e.g. phones,
fax machines, switches, a local area network, etc.), software components (database, text
editor, etc.) and personnel involved in system operation (agents, administration). All
communications of the system is accessed through these resources. A typical Call-Center
environment is shown on Figure 1.

- 167 -

From the point of view of applications, the system can be perceived as a collection of
communicating objects. We will divide all objects of the application level into two types:
resource objects and call objects. The former represents objects corresponding physical
resource of the system while the latter represents objects intended for call processing.

The behavior of each object is regulated by a scenario specification, called a 'script'.
There may be several objects working in accordance with one and the same script. For
example, for a script describing the behavior of a telephone, there may be several objects
corresponding to actual telephones in the system; a script specifying the call processing,
may have several objects processing different calls of the same type.

We will assume that each script is identified by a unique name within the system.
Moreover, we associate with each script a domain of object names, to identify each object
within the script. This addressing scheme allows us to uniquely identify objects within
the whole system.

3. Formal Model

For formal specification of scripts of eTI-applications, we developed a Petri net-based
model called script-net [3] combining some featured from other Petri net models [11,12].
The model consists of the following four (quite orthogonal) constituents:

1. High level and object oriented Petri net model called cooperative nets [14] that
allows to represent complex system as a set of subsystems communicating via the
client server protocol [13];

2. For structured specification of complex scripts, we suggest the concept of
hierarchical transition [8]. Under this concept, a net can be represented as a set of
disjointed subnets with links between hierarchical transitions and subnets forming a
hierarchical structure. Firing any hierarchical transition results in execution of its
internal net. This construction makes script representation modular and allows for
the simple modification and reuse of specifications.

3. For processing exceptions in scripts, such as receipt of unsolicited events, we suggest
a macroplace construction [2].

4. To represent real-time constraints that are very critical for scripts, we incorporate
Merlin's time constructs into our model [10].

In the following we consider some of these constituents in detail and show how they can
be used.

3.1. Basis of script-nets

As a basis of script-net we take an object-oriented model of high level Petri nets known
as cooperative nets [14] that allows us to represent a system as a set of communicating
subnets. In particular, each transition can be associated with the process of
communication (sending or receiving of message) with other script-nets:

• Sending a command: s(scrip/(v).com(v" •.. ,v.)), where scrip/(v) specifies a target
object, and com(vj, ... ,v,J is a command with parameters.

- 168 -

• Receiving a command: r(script(v).com(vb ... ,Vm)), that gives a command with
parameters from the objectscripl(v).

This enables us to specify a communication between a CTI application and a server using
a client-server protocol [13]. Moreover, it is possible to associate a transition with a
creation of new objects for some script-net.

• Creating a new object: c(scripl(V).V/, ... ,vJ, where scripl(v) identifies a creating
object and Vb ••• ,Vn its initial parameters.

Thus each script of a cn application can be described as a corresponding script-net. In
this case the process of call processing can be understood as creating an object (injecting
a token in head place of script net) and moving it through the net. Some examples of
script-nets are presented in [3,4].

We allow multilabeling of net [5], i.e., labeling where each transition may be labeled by a
set of expressions, such as sending and receiving a message, or creating a new object.
This extension can simplify specifications and make them more compact.

By collecting communicating script-nets, we can produce a script system that represents a
call center's logical structure. In this structure we can distinguish application scripts and
system scripts representing system services such as resource management and call
routing.

3.2 Macronels: exception handling

At this point, we should note that scripts describing real scenarios are usually extremely
complicated to work with and therefore require some means of modularization. We will
consider the problem of structural representation of script nets. In this respect, we can
point out two techniques for modularization in Petri net-based models we would like to
employ - hierarchical transitions and macroplaces. The first technique is well elaborated
within the framework of high-level Petri nets, e.g. see [8]. Generally, it consists of
representing a hierarchical net as a set of disjoint subnets with links between transitions
and subnets forming a hierarchical structure. Firing of such a hierarchical transition
causes an execution of its internal net that consists of the firing of a transition (or step)
sequence from initial marking to the terminal one. So using this technique we can
represent script nets as a set of hierarchical organized script subnets.

At the same time, in call processing, we may face situations, which are asynchronous to
normal processing, and a reaction to such events should also be specified. For example,
there may be situations when, during the dialogue between agent and client, the telephone
line is disconnected (e.g. suddenly client puts down a receiver); as well as more
sophisticated situations when the processing of current calls is interrupted and the agent
is forwarded to process new calls with higher priority. Moreover, processing of such
broken calls could be recommenced upon availability of agents. To specify such
situations in script nets, special constructs are needed. To accomplish this, we suggest
using the concept of macronets reported in [2] and generalized on high level Petri nets
[4].

Petri nets with macropiaces. Notions of macronets and macroplaces have been
introduced in [2] for specification of such situations where starting the execution of one
procedure may interrupt execution of another procedure. Syntactically, a macronet is

- 169 -

defined similar to nets with hierarchical transitions, however we use macroplaces instead
of transitions. In other words. a macronet could be perceived as a set of Petri nets
equipped with hierarchical links of the type "place ____ m".

Graphically, a macronet can be represented as a set of included nets, each internal net
being drawn within a circle of corresponding macroplaces. The head place of an internal
net is marked by an incoming extra arc.

The firing rules of macronets are as follows:

• A macroplace is considered to have a token if its internal net also has a token;

• adding a token to a macroplace results in adding a token to the head place of the
internal net~

• removing a token from macroplace results in removing a token from the internal net
no matter what position it is in.

lt is clear that the concept of a macroplace is helpful for representing various situations
where an interruption is involved.

High level macronels. Using standard possibilities of high-level nets we generalize the
notion of macroplaces, allowing us to specify more general constructions. First, we will
be able to build constructions where execution of an internal net can be interrupted only
in specified regions. Second. we can specify a head place of internal nets dynamically.
helping us to inject a token into any desired place.

m (S,)

Figure 2: Macroplace and internal net

Let m be a macroplace and Nm={SnuTnuFm} be its internal subnet. For an internal net we
introduce a data type typem with a domain equal to a set of internal places:
Dom(typem)=Sm={s/o s,}. Let us add to the token internal net an item of type typem• the
value of the item is exactly equal to the place where the token is situated. This can be
easily implemented by assigning to tuples of incoming arcs with corresponding values

- 170 -

from Sm, see Figure 2. Then we add to this a precondition of outgoing transition IE m" aJ

expression of the type V,A= S', where S' s;; Sn. Firing of the transition t results in removing
a token from a place of S'. Note that we can 'remember' the actual place where the token
was before it had been removed. For an arc coming in to the macropJace m, the
corresponding item of the tuple is stated in a suitable manner. For instance, if it is equal
to a place SF Sm the adding of a token to macroplace m will result in injecting a token
into Sj of the internal net. Apart from a constant, we can write a variable of the type typem

that allows us to determine the incoming place dynamically. Specifically, we can replace
taken to its point of origination, see Figure 2. More strict definition of high-level
macronets can be found in [3].

With the aid of a macroplace. one can easily specify the next situation in an agent's
scenario:

• Interruption of a script execution (naturally with an apology to a client) at any stage
with subsequent return to an initial state. In this case the processing of the interrupted
call is cancelled

• Interruption of a script execution only if it is in special regions of the script.

• Interruption of a script execution while noting the place of interruption and possible
current parameters of the call processing. This information can be used for future
recommencing of the processing of the call.

3.3 Time constraints

To represent real-time constraints that are very critical for scripts, we incorporate
Merlin's time constructs [9] into our model. In particular. each transition in a script-net
can be associated with a pair [tmin.tmax] that provides a time interval enabling the
transition. This enables us to specify timeouts in script execution.

~ g~i~;;ge~i --.......... --.

[t,t]

(i) (ii)

Figure 3: Resource capturing

Using this client server scheme of communication and time constraints, we can build a
mechanism of resource capturing!release. On Figure 3 (i) the scheme of agent capturing
within time interval 't is depicted. The capturing is started by sending c command get
(firing of the transition I,) to the script agent that defines the behavior of the agents. If
within the time interval [O,t] a positive reply is received r(ok(x)) (firing I,) then the agent
with that identifier x is considered to be captured. If within time interval nothing happens

- 171 -

then transition t3 fires hence there are no agents available. This construction is called
get_agent(t). If no time interval is specified then the transition 13 will never fire and thus
can be removed, see Figure 3 (ii).

4. Examples

In the section we discuss a methodology of representing scripts according to the model
we are introducing, with the aid of some realistic script examples.

Example 1. On FigA the script corresponding to resource of operators (agents) is
depicted. The agents can be in three states: READY, BUSY, NOT-READY (NR for
short). The transition from READY to BUSY is caused by receiving a command get from
an object X and sending it a reply ok. Note that this transition is labeled by two labels that
correspond to receiving and sending commands. In a BUSY state the agent can return to a
READY state by receiving a command r(X]ree) from the application. Moreover, in a
BUSY state the agent can move to a NOT-READY state (e.g. switching to more urgent
work) informing the application by sending a command notJeady. The place S says that
the operator a can work with script A, the operator b can work with script Band c can
work with both scripts A and B.

AGENT
s

"ready" NR s(noCready)

Figure 4: Script-net of agent.

(x)

r(Z.free)

Example 2. In this example we build a script-net corresponding to a script for the
processing of a retail catalogue sales call center [9]. In this context, many customers call
to inquire about the availability of items in a catalogue, status of their order, delivery
options, and similar routine questions. Such simple calls can be processed automatically
by a voice processing system. Other calls, especially those involving new customers who
need special assistance, must be processed by an operator. In Figure 5, we present a script

- 172 -

net corresponding to processing this type of call. When the system enters a call into a
script (a token appears in a head place so), it plays a greeting and gives a choice of
pressing" 1", "2", or "3" (the transition t/). These choices correspond to calls concerning
availability of items, the status of a current order, or other types of calls, respectively.

MO

Ml

"sorry" ····················gei~ag~~ii8i·:

s(agent.get)

r(disconnect) s(agentfree)

Figure 5: Example of a Script-Net, in Catalogue Sales Context

In the first two cases the call is processed automatically (hierarchical transitions I, and (4).
The third case needs the intervention of an operator, who is captured by the expression
s(agent.get). Here, the agent is the name of the script-net for resources corresponding to
operators, get the name of capturing command. If there is a free operator in the system,
he is captured. At this point the call is transferred and the operator works with the
customer (hierarchical transition tlO)' At the end of the conversation, the operator is
released (111). If there are no free operators (1/2) the system plays a recorded sound file
with appropriate explanations.

In this example, two possibilities for agent capturing within the time interval 't are shown
within dashed boxes. The capturing is initiated by sending a get command to the "agent"

- 173 -

script that defines the behavior of the agents. If a positive reply r(ok) is received within
the time interval represented by [O,t] then the agent with that identifier is considered to
be captured. If within the time interval nothing happens, then transition nok fires,
indicating that no agents are available. This construction is called get_agent(r),

Imagine that an agent involved in call processing presses a "not ready" button on his
telephone and becomes unavailable. This event corresponds to firing the transition t14' At
this point the script tries to find another agent (t15). If another agent is indeed available,
control of the script is returned to the same place where it was interrupted, and call
processing continues. The state where the call processing was interrupted is saved in the
variable v.

Alternatively, imagine that a client suddenly hangs up during a call. This event
corresponds to firing the transition Izo. Firing of this transition disrupts the execution of
the script including the construction defined above, releases its active agent (if any), and
then terminates the call processing.

Figure 6: Graphical script editor

4. Implementation Issues

In this section we briefly sketch some tools for generation call center applications based
on developed formal model. In particular, we developed a programming system for

- 174 -

building scripts for processing both inbound and outbound calls with extensive
intervention of living agents. The system functions in an Intranet environment, is based
on thin-client technology, and uses a graphic language to describe agent work scripts.
More specifically, the system comprises the following components:

• A front-end graphical language for specification scripts with semantics based on
Petri net-based model;

• A graphic script editor that supports the scripting language and allows to build
scripts in a simple and convenient way;

• Form manager for creating a set of forms to be interchanged between application and
agent station during a call processing;

• A script engine that executes scripts upon emerging inbound and outbound calls in
the run-time stage.

The graphical scripting language allows one to represent a script as a graph where each
node depicted by icon corresponds to elementary communication with other objects (e.g.
devise object, agent). Arrows between icons define a causal relation between
communication actions. Among other features of the language, we can mention features
which inherited from the formal model:

• Parallel constructs allowing one to represent multithreading and synchronization
between threads;

• Hierarchical constructs which allow one to build scripts in a modular fashion;

• Exception handling constructs which enable one to specify the reaction of the scripts
on receiving asynchronous and unsolicited events.

On Figure 6, we present the snapshot of the script editor with the fragment of the script
discussed in the example 2.

5. Concluding Remarks

In this paper we have proposed the Petri net-based model for design different distributed
cn applications. This approach enables a designer to represent a logical structure of
complex applications for call centers.

In the nearest future we plan to pay more attention to architectural aspects in the process
of formalization taking into consideration different related architectural approaches [7].

Considering almost all CTI-applications are real time systems, we must take into
consideration time and stochastic aspects of the model under discussion, i.e., it is
desirable to calculate availability of a call center (for specific sort of calls), agent's
loading, optimal configuration of call-center, etc. By extending our model towards
stochastic Petri nets, these issues can be addressed.

Acknowledgements. The authors are grateful to Evgeny Petrovikb and Pavel Postupalski
for they helpful discussions. The first author has also benefit from a grant from the
Russian Fund for Basic Research No. 96-01-00177.

- 175 -

REFERENCES

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management To
appear in the Journal of Circuits, Systems and Computers (1998).

2. N.A.Anisimov. An Algebra of Regular Macronets for Formal Specification of
Communication Protocols. Computers and Artificial Intelligence, Vol.lO, No.1
(1991), pp. 541-560.

3. N.Anisimov, K.Kishinski, A.Miloslavski. Petri Net Based Model for Design of
CTI-applications, in Proc. of the lnt. Conference "Computational Engineering on
Systems Application: CESA'96", July 9-12, 1996, Lille, France.

4. N.A.Anisimov, K.P.Kishinski, A.Miloslavski, P.A. Posupalski, Macroplases in
High Level Petri Nets: Application for Design Inbound Call Centre, In: Proc. Int.
Conference on Information Systems Analysis and Synthesis (ISAS'96), Orlando,
Florida, USA (July 22-26,1996), pp.153-160.

5. N. Anisimov, M. Koutny. On Compositionality and Petri Nets in Protocol
Engineering. In: Protocol Specification, Testing and Verification, XV. Chapman &
Hall, pp.71-86, 1996.

6. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In:
M.Ajmone Marsan (ed.), 14th International Conference on Application and Theory
of Petri Nets 1993, Lecture Notes in Computer Science, Vol. 691, pp.I-16.
Springer-Verlag, Berlin, 1993.

7. Enterprise Computer Telephony Forum, S.100 Revision, Media Services "C"
Language, Application Programming Interface, 1996.

8. KJensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Vol. I: Basic Concepts, EATCS Monograph on Theoretical Computer
Science, Springer Verlag, 1992.

9. E. Margulies. Voice Processing Applications Flatiron Publishing, 1995, ISBN 0-
936648-70-8

10. P.M.Merlin, D.J.Farber. Recoverability of Communication Protocols - Implication
of a Theoretical Study. IEEE Trans. Commun. COM-24 (1976) 1036-1043.

II. J.L.Peterson. Petri Net Theory and the Modelling of Systems, (Prentice-Hall Inc.,
1981)

12. W.Reisig. Petri Nets: An Introduction. EATCS Monograph on Theoretical Computer
Science (Springer-Verlag, 1985).

13. C. Sibertin-Blanc, A Client-Server Protocol for the Composition of Petri Nets .. In:
M.Ajmone Marsan (ed.), 14th International Conference on Application and Theory
of Petri Nets 1993, Lecture Notes in Computer Science, Vol. 691 (1993) pp. 377-
396

- 176 -

14. C. Sibertin-Blanc, Cooperative Nets, In: R. Valette (ed.) 15'h International
Conference on Application and Theory of Petri Nets 1994. Lecture Notes in
Computer Science, Vo1.815, Springer Verlag (1994), pp.471-490

15. R.Walters. Computer Telephone Integration, Artech House (1993)

Appendix A: Basic notions

A net is a tuple N=(S,T,F) where S={SI'S" ... ,s,} is a set of places,

T = (tl,t" ... ,tm) is a set of transitions such that S (") T = 0, F ~ S x Tv Tx S is a

flow relation. For each t E T define its a pre-set of places as °t = (sl(s,1) E F} and a

post-set t" = (sl(l,s) E F}. Analogously, Os = (tl(t,s) E F} and s = (tl(s,!) E F}. A

marking of a net N is a function M: S -'> {0,1,2, ... } . A Petri net is a tuple :E = (N, M 0)
where N is a net and Mo is an initial marking.

- 177 -

Parameterized Petri nets for modelling and
simulating human organisations

in a workflow context

Emmanuel Adam(i,2)', Rene Mandiau (I), Emmanuel Vergison(2)

(I)LAMIH - URA CNRS 1775, Universite de Valenciennes et du Hainaut Cambresis,
Le Mont Houy - B.P.311 - 59304 Valenciennes Cedex - FRANCE

rene.mandiau@univ-valenciennes.fr

0) SOLVAY Research and Technology, SOL V AY SA
Rue de Ransbeek, 310 -1120 Bruxelles - BELGIUM

emmanuel.adam@solvay.com, emmanuel.vergison@solvay.com

Abstract. In the past few years, the demand from large organisations for
computer supported co-operative work systems has increased noticeably.
Moreover, most organisations are so complex that it is hard to offer them off­
the-shelf solutions. In this paper. we suggest a perspective for tackling human
organisation issues based on a requirement analysis coupled to a computerised
modelling process which is defined by Parameterized Petri nets. Our approach
has been thoroughly tested in the Patent Department of a large company.

Keywords. Parameterised Petri nets, Workflow, CSCW, modelling, simulation.

"': PhD studenl wlwse thesis isjointly sponsored by the Nord-Pas de Calais Region (France) lUId SOLVAY SA.

- 178 -

1. Introduction

Today, most companies and organisations are seeking for methodologies and tools
capable of helping them to make appropriate management decisions. In these
organisations, the workforce may vary from a few np to tens of thousands of people
and, the range of skill and knowledge levels is usually quite large. More than ever, co­
operative work turns out to be a compelling way to reach project goals and company
objectives effectively and in due time.

Methods and tools allowing for better co-operative work practices have emerged
recently as for example the CSCW approach ((Scrivener, 1994), (Bowers & Benford,
1991), (Connoly & Edmonds, 1994)), and efficient operational software appeared on
the market (Lotus Notes, Microsoft Exchange, Novell's and Digital's solutions).

Although they seem to be well suited to solve problems where just a few people are
just interacting in a more or less isolated process and workflow issues, they are not
appropriate for large complex systems at least without preliminary, sound and detailed
analysis and modelling steps (Schael, 1997).

The purpose of this paper is to present a way to tackle human organisation
problems based on both an analysis and a modelling exercise. It is based on a real case
study, which will be exposed in detail. We will conclude this paper by discussing
some research perspectives.

2. Requirement analysis in a complex human
organisation: the context

In general, a complex organisation is hierarchical and composed of semi -autonomous
subsystems ((Koestler, 1969), (Adam et aI., 1997)). Our study is focused on the
complex human organisation within a co-operative workplace, where management of
people is a crucial issue.

Moreover, many organisations today strongly expressed a need for optimiSing their
management processes and activities by using appropriate computerised means.

By questioning and interviewing people, we already can already obtain a local but
rather patchy solution. To identify real needs in complex organisations, it is necessary
to analyse them in detail and to define a rigorous method. Human activities and also
human factors characterising co-operative work are to be made explicit. The
representations issued from this modelling exercise will serve as a base for discussion
with the human actors within the different processes; their goals are to define
specifications for new management solutions.

- 179 -

3. Analysis and modelling approach

Our case studies were conducted in an Industrial Patent Department of a large
Company. The workforce in this department is comprised mainly of experts in patents
and trademark issues. Most of these people have no background in computer science.

We initially a quite some time analysing organisational practices. Then, we looked
at a method that helped us to identify its intrinsic structure. For this purpose, we have
analysed representative methods such as MERISE (Tardieu et al., 1991), OMT
(Rumbaugh et al., 1991), OSSAD (Dumas & Charbonnel, 1990), SADT (IGL, 1989),
MKSM (Ermine, 1995). Most of these methods have a data model, an activity model
and a processing model. For our case study, we needed a detailed data modelling (such
as OMT or UML one). We also needed a representation of the actor level in the
organisation (such as in OS SAD), and it was necessary for us to follow data flows
between system actors.

After having shown that no method completely fit with our objectives (Adam et al.,
98), further to this set of methods, we propose one for the modelling and the
simulation of human organisation.

3.1. The analysis phase

The analysis of the organisation and the understanding of its practices are key points in
our approach.

To properly identify its needs, at general levels, it was necessary to perform a
detailed analysis of the human activities within the department. On the other hand, in
order to assess the needs at specific levels, an analysis of the individual tasks was also
necessary; the techniques we used are quite conventional: observations,
questionnaires, interviews, protocol analysis, document analysis". «Diaper, 1989),
(Wilson & Corlett, 1990), (KolSki, 1997».

It is also worth noting that nothing would have been possible without the support
and the agreement of the different actors.

3.2. The modelling phase

The modelling phase started by conSidering and defining the basic <<raw material» of
the Patent Department (the document) and by setting up a data model. We therefore
chose an Object model, which allows a clear representation for the data (especially a
hierarchical link between types of documents). An object model not only allows the
representation of static data (for example paper documents integrated in the
organisation data flow), but also dynamic ones (for example electronic documents).
We opted for the OMT object model (Rumbaugh et al" 1991) because it satisfies our
«readability» criteria. (Fig l(a)).

- 180 -

After the data modelling exercise, we started modelling the data flows on the basis
of the activity analysis which has been described: a global view of working
mechanisms in the organisation has been exploited by using the Actigram model of
SADT (IGL, 1989) (Abed & Angue, 1994). Moreover hierarchical andlor
responsibility concepts had also to be introduced; we drew inspiration from OSSAD
(Dumas & Charbonnel, 1990) and we represented responsibility levels in rows. (Fig
I(b)).

Based on the data and data flow models, we then tackled data processing which
required more detail than activity models. There are few processing models oriented
towards human organisations. OSSAD is one of them, it proposes a model able to
represent both co-operative and hierarchical concepts. (Fig I(c))

~~.

firslnam.,
· account mmber,
· date,
· type,

amount.

ftrslname,
. account nl.nlber,
. date,

",..
amounl.

c d

Fig. I. Four steps for modelling an organisation (example inspired from (Dumas, 1990)

(a) Object model of a paper and electronic application
(b) Activity model of an application for a loan
(e) Process model of an application/or a loan
(d)Dynamic model of an application for a loan: the parameterisedplaces allow us to easy
represent interruptedjob and state change (in the second place, the agent memorises his
job when client interrupts him)

- 181

3.2.1. Modelling the Dynamics: choice of the Petri Net

Three models have been proposed so that most people (including those NOT
conversant with computer science) can easily use them, the first one for modelling
data, the second for modelling data flow and one for modelling data processing.

These models, however, are still not sufficient to model the dynamics of human
organisations, which have to take into account interruptions, parallel work and loops
(Reason, 1990), (lambon, 1996).

Several authors (such as (Abed & Angue, 1994), (lambon, 1996), (Palanque 92))
suggested the Petri net formalism.

We have chosen a parameterised Petri net (Agimont, 1996) (Gracanion et al, 1994),
which allows for interrupt, parallel andlor synchronised data management. (Fig led)
for a better readability, the net is drawn in time)

The four models introduced to date have to be discussed with the staff concerned
(during meeting and brainstorming) in order to identify the critical points within the
processes and to set up new solutions in a collaborative way.

3.2.2. Choice of Parameterised Petri Net

The Petri network has to allow the follow-up of system data flows, as well as actors'
flows; especially those who move from one office to another. This network must also
allow identification of document state and actors' activities. In particular, it has to be
able to represent interrupts, which are inherent in human organisations. Classical Petri
net does not give sufficiently clear representation of these requirements (Fig.2 & 3).

end ~ and ~
"I"-~ 111"'"4'1 <Iffi4lI lnt"'n{II

.---->1 Activity 1

IasIlnI......p -
•

Fig. 2. PN where place represents activities, e.g. the actor going from place to place

- 182 -

acljy~y 1 sloris

lnlea",1 = mgs or comes
and Allorminalod

Fig. 3. PN where actor is represented by a place (his stale is define by token nalure in the
place).

In these examples, representation of interrupts is possible. But the application to an
entire procedure would make understanding (by non-experts) somewhat difficult. We
must bear in mind the fact that modelling will be presented to actors for validation

To simplify the global structure, the parameterised Petri net has been proposed by
several authors. (Agimont, 96).

3.2.2.1. Dermition

A parameterised Petri net is define as follow:

0) RPP = {C,D,Pp,T,I,O}

1) C = ~V; , ... , CV;cl J
2) D = CV; xCV, x ... xCV1CJ

3) PPj is a parameterised place, by definition a D subset

4) D = CV; X CV, X ... X CV1c1 is a parameterisation deSCriptor

Pp

with U Pl~ = D and PE'; n PPj = 0
j=l

5) ptj is a vector transition, pt,: J(pt,) -7 O(pt,) , I(Pt.) is the set of

consummate places, and O(pt
j
), the set of product places.

- 183 -

6) T = {ptl , ••• , PtlTI J is the set of all actions that can be executed by the system.

7) t; = tvt;! , ... , pt;jlj.},;; T is a parameterised transition <;>

Vi,j,k: pt;,ptj E t'PPk E Pp,

II(pt) (j PPkl = II(pt) (j PPkland IO(pt) (j PPkl = IO(pt) (j PPkl

8) The set of all parameterised transition PT is defined by parameterisation
descriptor Pp and by T, the set of vector transition.

9) A parameterisation is a correspondence between a PPN and a set of PPN which
represent all the same system, so that only the Pp descriptor changes.

The next paragraph is an example of a PPN application.

3.2.2.2. Example

Instead of the traditional philosophers' diner example (which have been modelled with
PPN in (Agimont, 96), let us take the following example:

Six computers have to scan and print (i.e. to photocopy) documents and classify
scanned documents. But, there are only three scanners and three printers.

This problem can be classically modelled, but parameterised Petri net allows
simplification of the net.

Let us come back to the definition:

RPP = {C,D,Pp,T,I,O}

c = {CV" CV,} with
CVj = { compO' campi' comP2' comP3' comp., comps' scano• scanj • scanz• impo' imp/.

imp,},
CV, = { manage, copy,free, busy}

We have D = CV; X CV2

Let us define vector transitions (we shall see that there are several definitions of
parameterised places).

There are two rules, for two actions, vector transitions are:

launch photocopy:
[(Pt,) = { (camp), manage), (scan~,_" free), (imp,,,,,,,,,free) }
O(pt,) = { (camp), copy), (scan,." .. ", busy), (imp,,,,,,,,, busy) }

launch management:
[(Pt,) = { (camp), copy), (scan~" .. ", busy), (imp,,,,,,,,, busy) }
O(pt)= { (camp" manage), (scan,,, .. ,,,free), (imp,,,,,,,,,free) }

for i E [0, II J (the I2 objects) etj E [0,6](6 computers)

- 184 -

Fig. 4. Maximum detailed representation

We have T = {PI, , ... , PI'2}
Parameterised places (!'pi), which are included in parameterisation descriptors (!'p),

are not unique. It is possible to obtain the Petrinet (the fig. 3, or the fig. 4), with a
higher abstraction level. The Petrinet illustrated by the Fig. 5 represents the highest
abstraction level, all the system is defined by one place.

- 185 -

.A ~~
C:~~}:bfl

launch photocopy

launch manag.m.nt

a) Re resentation of a middle abstraction b Re resentation with maximum abstraction

Fig. S. Two different representations by PPN

So, parameterisation allows to simplification of a net, but the problem is limiting
the abstraction, to have a net still readable. The Petri net on the fig. 5a is a good
compromise between abstraction and detail. It allows, with rules, to follow system
dynamic.

In our case, parameterisation to interrupt management has been applied.

3.2.3. Use of Parameterised Petri Net

Our net is based on the fig.2. This simplification leads to the building of two
parameterized places building, one for activity representation, and the other for
interrupt representation (fig.6). In actual fact, this two places system describes a
workspace (an office).

r (1) new interrupt

---------~~.I--.((2) activity
'·changing

.. ' .' "interrupt
~~l'I-\ tasks

..
actors

Fig. 6. Interrupt management by PPN

'"
"'(3) end

interrupt

Activities are represented by states of actors which are present in the main place
(this place may also contain used documents too).

Transition 1 is fired by an interruption. Actor state (the current activity, his progress
in this activity) is stored in the second place.

- 186 -

Transition 3 is fIred by the end of interrupt management. Actor returns to his task,
or on the most urgent task.

Transition 2 is fIred at the end of an activity. Actor gets a new state corresponding
to a new activity (related to the documents in the main place).

Let us come back to the defInition for this system:

RPP = {C.D.Pp.T,l.O}

c= (CV, CV,) with

CV; = t~,. W z •...• WI'. __ I • doc,. docz docl"'_"'1 .int,. intz •...• intl"'_"'1 J
Cv: = {actiVity,. activityz activityl",.,"m.,,~ • }

z waiting. processing. interrupted. completed

We have D = CV; X CVz

In this set of two places, there are three rules: to store state, to restore state, to
change state. The vector transitions are defIned by:

Store state

{

J(Pt!) = {(w,., activity.); (docd, processing); (docd., waiting)}

O(pt;) = ~w ,., activity •.); (docd' interrupted); (docd., processing); (intli"l.l' activity.)]

Restore state

{
J(Pt;) = {(w" ,activity •.); (docd ,interrupted);(docd ., processing); (int, ,activity.)}

O(pt;) = {(w" ,activity.); (docd ,processing)}

Change state

{
I(Pt;) = {(w" • activity.); (docd,completed)}

O(pt;) = {(w".activity G'); (doc d'. processing)}

Following example shows an interrupt management:

The actor is reading a patent, the
telephone rings, transition 1 is fIred, (store
state rule is applied).

- 187 -

appel.Gn_traltomon

brovot,eo_attGnte

brevGt.en_traitumen

w1·lirG_breVGt

~~.....\..

Fig. 7. Example of an interrupt management

Activity is interrupted and the actor
answers to the telephone

When the telephone conversation is
closed, state is restored by the third
transition

Interrupting one activity for another is related to an actor. In fact, each
parameterised system represents an office, decision and priority rules on the activities
are different from system to system, i.e, linked to offices or playing roles.

The dynamic of Patent Department procedures has been modelled with these
parameterised systems. An example of an application for a loan is shown in figure I
(the dynamic model of an actual procedure requires two A4 pages). This modelling
dynamiC is only possible with very detailed activity and actor task analyses. Our
dynamic modelling process is a progressive top-down approach, from the activity
model and the processing model.

3,3. The simulating phase

Although Petri nets are less accessible to a non-expert, we think that a Petri net based
on a simulation tool will allow the dynamic simulation of organisational working
practices in a rather didactic way.

A simulator has been built (Gran sac, 1997), and is actually under test. It has been
built in two parts: one for the rule execution and the other for the interface.

The following structure is an abstract of the internal part:

Activity::; {attributes (name. date, associatedJoles, run time, interrupted), preconditions, actions}

Token = {attributes (name). Activities, functions (run,srop)}

Place = {attributes (name, runable), Activities, Tokens ... or •• Tokenscb:wDtaIS' Tokensu-rup,' functions
(add_token, run, supp_token)}

Transition::; {attributes (name, crossable, date), Pl~. Placeo..po... Activities}

Net = { attributes (name, nb_actors, nb_doc), Transitions, functions (add_transtion, add_token, ..)}

Each part of the net has its own activities, i.e. its own preconditions and actions. As
soon as an event appears in a place (document arrival or actor coming), tokens present

- 188 -

in the place check their preconditions. If an actor interrupts the current job for another
one, an interrupt event is raised and the place creates an interrupt.

Transitions have, of course, their own activities too. In our case, transition actions
generally consist of documents passing and actors moving. As these actions take time
so, our transitions are temporised.

The two parameterised place system is programmed in one place. Activities
(preconditions and actions) directly follow from the Petri net used in the dynamic
model. The two-place systems appear only at the screen.

The second part of the simulator is the interface. It has been defined classically or
nearly so (PPN = (Tokens, Two-place System, Transitions, Arc}). Each object drawn
on the screen involves the creation of its twin in the internal part.

The precondition rules are keyed in a window, which show rules in a form close to
natural language. (fig 8)

Fig. 8. Keyboarding of preconditions

The analysis part of the net deals only with the net physical aspect (test if all places
and transitions are linked). The more thorough aspects, the fact that all places could be
reached or that the net does not loop have not yet been programmed. The simulator is
based on a modelling of the reality, so it is the people who have made the dynamic
model who perform this net validation task.

The simulator has a learning goal, some new work organisation (with or without
new tools) can be checked in a didactic way, with loops and jamming appearing
clearly.

This simulator has been built in order to be used by people who are not conversant
with modelling or Petri net. Simulator initialisation does not take too much time, and
first tests allow us to identify 7 elementary activities on documents.

- 189 -

4. First results

As already mentioned, our study case was conducted in a Patent Department involving
about thirty people. This department wanted clearly to set up a computerised solution
for helping document handling, whilst rendering co-operative work easier.

Today, the complete analysis of the Patent Department processes and activities has
been achieved «Carrere, 1996), (Notte, 1996)).

The highest priority procedure has been built as part of a BPR process. The results
are twofold:

• Organisational level: for each procedure, concerned persons have been
confronted with static modelling of data, activity and processing. Some
organisational solutions have been proposed and have been kept.
The simulation allows the antiCipation of future jamming and higher
workload.

• Computer level: data, data flow, data processing modelling has allowed
uS to specify a CSCW solution helping actor systems to communicate
data. PPN initialisation and its firsts usage aims at specifying in a more
detailed way this solution. Rules definitions of parameterised systems,
linked to roles, are a first attempt to specify a helping system for each
role.

To make this modelling exercise eaSier, a CAD Software Workshop has been
established. (Fig 9)

It proposes a set of four pages (one for each model) and a toolbox including the list
of symbols using during the modelling exercise. (Fig 9). It is based on the Visio 3.0
Software.

- 190 -

Fig. 9. Screen copy of the workshop

5. Conclusions and perspectives

The proposed model based approach makes the integration of computerised solutions
in a complex human organisation easier. It is necessary for all people involved in the
exercise to clearly understand their role and their position. The success of co-operative
working practice is entirely dependent upon this process.

For the time being, our approach was restricted to organisation modelling. We are
now planning to extend into the setting up of Intranet and Internet solutions.

As for a better and more systematic use of models, it is important to construct an
easy-to-use computerised system, we believe that emerging CAD software will be of
great help in achieving these goals.

Our tool based on the Petri net is currently in a test phase, which will allow us not
only to simulate the way organisations work but also to check the effectiveness of the
proposed paradigm

Finally, we are planning to «expor\» our methodology into Research Units.

- 191 -

Acknowledgements

The authors thank Joe Galway for considerable assistance in the translation
of this paper, and also Prof. Christophe Kolski for his remarks concerning the fIrst
versions of the paper.

Special thanks to Jerome Gransac whose we owe the simulating phase.

References

Abed M. & Angue J.-C. (1994), A new Method for Conception, Realisation and
Evaluation of Man-Machine Interfaces, Proceedings IEEE , Systems and Cybernetics,
San Antonio 2-5/10

Adam E., Vergison E., Kolski c., Mandiau R, (1997), Holonic User Driven
Methodologies and Tools for Simulating Human Organizations, ESS'97, European
Simulation Symposium, University ofPassau, Passau, Germany, October 19-23.

Agimont G., Le Strugeon E., Mandiau R., Libert G. (1996), Parametrized petri nets
for organizational simulation and systems design. Proceedings of the Second
International Conference on the Design of Cooperative Systems (COOP'96), COOP
Group (Ed.), Juan-les-Pins, France, 12-14 June.

Bowers J.M., Benford S.D. (Eds.), (1991), Studies in CSC\¥, Theory, Practice and
Design, Ed.,Nottingham.

Carrere P., (1996), Production, gestion et diffusion electronique de documents, Re­
ingenierie des processus d'activites d'un depanement de Propriete Industrielle, DEA
Technical Report - University of Compiegne & SOLVAY S.A.

Connoly J.H. and Edmonds E.A. (Eds.), (1994), CSCW and Anificial Intelligence,
Springer-Verlag, London.

Diaper D. (1989). Task analYSis for human-computer interaction. Ellis Horwood
Limited, Chichester, United Kingdom.

Dumas P., Charbonnel G. (1990), La methode OSSAD, pour maitriser les
technologies de I'information. Tome 1 : principes. Les editions d'organisation, Paris.

Ermine J-L. ,(1995) , MKSM, mehlode de gestion des connaissances, CEA
DIST/SMTI.

Gracanion D., Srinivasan P., Valavanis K.P., (1994), Parameterized Petri nets and
their application to planning and coordination in intelligent systems. IEEE
Transactions on Systems, Man and Cybernetics, 24:1483-1497.

Gransac Jerome, (1997), Construction d'un simulateur de Reseau de Petri Oriente
Objet - Contribution il !'etude de systemes administratifs complexes, Memoire de
DESS - Universite de Valenciennes & SOLVAY S.A ..

I.GL. Technology (1989). SADT, un /angage pour communiquer. EyrolIes, Paris.

- 192 -

Jambon Francis, (1996), Erreurs et interruptions du point de vue de l'ingenierie de
l'interaction homme-machine, Ph. D. dissertation, Grenoble University, France,
December 1996

Koestier A. (1969), The Ghost in the Machine, Arkana Books, London.
Kolski C. (1997), Interfaces homme-Machine, application aux systemes industriels

complexes (2'~ edition revue et etendue). Editions HERMES, Paris.
Notte D., (1996), The Patent Depanment: Domain study, (in French), SOLVAY

internal report, Ergodin.
Palanque P., Bastide R., (1995), Specifications formelles pour l'ingenierie des

interfaces homme-machine. Technique et Science Informatiques, avril, 1995.
Palanque Philippe, (1992), Modilisation par objets cooperatifs interactifs

d'interfaces homme machines dirigees par l'utilisateur. These de l'Universite Toulouse
I, Septembre 1992.

Reason James, (1990). Human Error. Cambridge: Cambridge University Press,
1990.

Rumbaugh J., Blaha, Premerlani W., Eddy F., Lorensen W. (1991).Object-oriented
modeling and design. Prentice-Hall.

Shael Thomas, (1997), Theorie et Pratique du Worlg'low, des processus metiers
renouveles, SPRINGER

Tardieu H., Rochfeld 0., Colleti R. La methode Merise, principes et outils, 2eme
edition. Editions dOrganisation (tome I), Paris, (1991).

Scrivener Stephen A.R. (Ed.), (1994), CSCW : The multimedia and networking
paradigm, UNICOM

Wilson LR .. Corlett E.N. (Eds.) (1990). Evaluation of human works:a practical
ergonomics methodology. Taylor and Francis.

- 193 -

Combining abstraction and context: a challenge
in formal approaches to workflow management

S. Donatelli, C. Simone, and D. Trentin

Dipartimento di Informatica,
Universita di Torino
simone@di.unito.it

Abstract. Flexibility in workflow management can be obtained through
an unanticipated interplay between the identification of recurrent pat­
terns of behaviour and a dynamic use of information about the context
where the workflow actors operate. (awareness).
The design of flexible workflow management systems can take advantage
of results in process modelling, that combine abstraction and context
in all phases of its life cycle. A specifical approach, proposed in [5], is
illustrated and interpreted in the light of the above claims. The approach
is taken as a starting point for a research agenda aimed at enlarging the
set of problems that a formal approach to workflow management system
can deal with.

1 Introduction and motivations

The term workflow usually refers to the representation of the part of coordination
which is based on recurrent patterns of behavior based on work practices and
organization rules. According to the terminology proposed by [6J we distinguish
three basic phases in workflow management: definition, enactment and execution.

The theme of Workflow Management (WFM) is common to various domains
that take quite different perspectives on it. First of all, the domain of production
of commercial systems: vendors offer more than 200 WFM systems and have
dedicated a remarkable effort in searching for a standardization [6J to guarantee
interoperability among themselves as well as with the legacy system environ­
ments where they are inserted. Secondly, the domain of research on process
modelling: here Petri net theory played a relevant role since very beginning and
produced results overcoming one of the basic limits of the commercial systems,
namely a very limited support to validation when business processes are defined
and modified, both during their conception and enactment. Third, the domain
of Computer Supported Cooperative Work (CSCW) where the development of
(prototype) systems supporting cooperation, and among them WFM systems, is
enriched with conceptualizations of what cooperative work is. These conceptu­
alizations are often based on field studies aimed at capturing the requirements
of cooperative systems (see, e.g., [3J for the case of WFM systems) by analyzing
work practices in settings where both a supporting technology is adopted or not.

- 194 -

The three domains developed, indeed, with a very loose interaction, For ex­
ample, within CSCW, one of the first attempts to build a system based on net
models [13], showed very soon its weakness in the way the modeled reality was
considered [12]. Among others, the considerations relevant here are the tension
between an understandable language and its expressive power, and the fact that
each procedure instance is treated separately.

On the other hand, in the framework of Petri net theory, the approach to
WFM systems was mainly focused on the definition of tools to support the
design of the business process at hand based on various forms of refinement
or compositional operators [15, 19]. These techniques provide process designers
with useful tools that have, on the other side, the drawback of not supporting
adaptive design: that is to say, design as a continuous action which is situated
in a context and that can last for the all life cycle of the considered business
process.

More recently, both commercial products and theoretical framework propos­
als have devoted much attention to incremental design in order to take into
consideration the contingent aspects of process execution. Again, commercial
products lack support to validation. The problem of modifying the structure of
running instances was the focus of some theoretical work [1, 11]: however, the
proposed solutions are only applicable under some constraints on the net struc­
ture (e.g., input/output places, no cycles, etc.) which make their application
sometimes problematic in real contexts, at least at this present stage.

Adaptation is not the only open issue: recent experiences in empirical studies
and in CSCW system design have increasingly emphasized the role of awareness
in cooperative work and of its impacts on system design (and therefore also on
WFM systems design). Most of this paper is indeed devoted to this problem.

Awareness has become a keyword denoting how the knowledge of the context
of cooperative aCtions plays a relevant role in actors coordination. Awareness can
take different forms and contents: however, it can generally be defined as the mu­
tual perception that actors maintain about their different views on the common
working space. These multiple views are necessarily present in cooperative work
due to its inherent distributed nature [17], and concern the structure and be­
havior of the cooperative business processes in which the cooperating actors are
involved. Formal approaches to business process design privilege instead, in an
attempt to master the complexity of the problem, the view of a process (or any
sub-part of it) as uprooted from its context, both when it is defined and when it
is enacted and activated. Refinement techniques are a representative example of
the approach: all rules we know of can be applied under the basic hypothesis that
the module to be substituted for an event is fully disjoint from the net system
to be refined. Since the goal is the highest degree of context-independence, these
techniques impose severe requirements in order to guarantee a good behavior of
the substitution in any context. The limit of this approach was already put in ev­
idence in [7} where it is observed that resources can hardly be seen as local to an
action since they are normally shared by definition and they are used across the
actions and their refinements. Also the approach proposed in [2], which gives a

- 195 -

small response to the last problem, basically suffers from a limited applicability
due to the many constraints imposed on shared objects.

A similar argumentation holds for the run-time modification of process in­
stances. Its correctness and consistency is sought for, rightly, in relation to the
process functionality but the impacts of this modification on the interacting co­
operative processes are not considered. Apparently, what seems to he relevant
here is a sort of input/output behavior that has been so aptly criticized by R.
Milner [14] in the early 80's when concurrent systems are concerned.

In summary, the current approaches to business process design and enact­
ment consider the process as a "global" entity that contains all the necessary
information, possibly represented at different levels of abstraction. In our view,
this approach induces a bias in the above techniques which, though useful within
their range of application, are limited in dealing with the distributed nature of
cooperative work. On the other hand, the traditional notion of abstraction "as a
black box hiding the implementation details" has been questioned [9] in relation
to the design of user interfaces which guarantee system extendibility and mod­
ularity and at the same time a meaningful information for the user when the
system breaks down. While the black-box approach supports system manage­
ability, software reuse and a modular and reliable software maintenance, it lacks
to provide the connection between the interface and the inner behavior of the
system when the latter is needed by the user to interpret or react to a complex
or unexpected behavior. In Dourish's words [9]: "It does not imply to provide a
set of hooks directly into the implementation . . . Instead, . .. a rationalized model
of the inherent behavior of a system offering its particular functionality".

It is not difficult to transpose this argument from user interface to more gen­
eral interfaces between cooperative business processes. Basically, this is another
way to stress the relevance of that type of information that we formerly denoted
as awareness about processes. Now, the point is to decide if and how the manage­
ment of this type of awareness is hand in gloves with the design of the business
process itself, or if it has to remain off-line, as part of some unconnected design
or user's activity. In our opinion they have to be strongly connected if awareness
information has to be aligned with the current definition and behavior of the
system it refers to. In addition, and unlike Dourish's conclusions, we believe that
the use of formal design techniques can be helpful to avoid leaving all awareness
management up to the users.

The context of a process is the environment in which it is defined and acti­
vated: an abstraction of a set of processes both interacting with the considered
one and evolving in an autonomous way is part of the context. Every modifica­
tion in the context or in the process has to do with the constraints defined by
the other. The already mentioned classical approach to the abstraction, postu­
lating or guaranteeing modifiability in any context, is not an ultimate answer,
since it is too demanding; on the contrary, the possibility to take into account
specific context properties allows for a greater flexibility in the description and
modification of the process at hand.

Moreover, in the case of WFMS, where awareness management is fundamen-

- 196 -

tal, this last approach seems more appropriate, since context management can
serve different purposes at the same time: supporting process design and the
mutual awareness of the involved actors executing it. Then, if one is able to ad­
equately combine abstraction and context in the framework of Petri net theory,
it is possible to enlarge the use of Petri nets in the design of WFM systems, if
not in improving existing techniques to solve well known problems, at least in
enlarging the types of problems that WFM systems can contribute to deal with.

The paper is organized as follows: Section 2 discusses the role of awareness,
Section 3 illustrates an approach proposed in [5] which goes in the direction of the
above requirements as it combines context management with abstraction tech­
niques. The approach originated from a completely different framework, namely
performance evaluation and specifically the management of state explosion. Al­
though quantitative aspects are not considered in this paper, the proposed ap­
proach leaves open the possibility to consider performance evaluation also in the
case of WFM systems. Section 4 discusses how the approach of Section 3 can
be used for WFM to take into consideration awareness. Section 5 illustrates the
basic ideas through a simple example. This proposal is taken as a witness of
a possible research approach and not as a fully satisfactory solution. Section 6
concludes the paper by illustrating a research agenda.

2 Interplay between workflow and awareness III

coordination

The experience derived from the studies on how people achieve coordination in
real work setting shows that coordination is based on a continuous interplay of

(a) recurrent patterns of behavior associated to work practices and organization
rules: those patterns have been aptly called precomputation [16],

(b) ad-hoc forms of behavior to adapt to the needs and constraints of a contin-
gent situation.

The notion of workflow is typically associated to behavior of type (a), but cannot
be separated from the second one if one wants to achieve the flexibility required
by the real work settings.

Flexibility can be achieved through the partial definition of workflows to
be completed, possibly during their execution, through incremental design and
run-time modifications. Even in the most standardized work setting, recurrent
patterns of behavior cannot be fully specified and "the vagueness of plans" is
"ideally suited to the fact that the detail of intention and action must be con­
tingent on circumstantial and interactional particulars of actual situations" [18].
These circumstantial and interactional particulars are exactly what awareness is
about. In fact, the completion and adaptation of a workflow can be performed
in a more effective way if the involved actors are aware of the state of affairs of
the common field of work that is constituted, at least, by the resources and the
cooperating workflows that make possible the successful execution of the work­
flow at hand. The consequence is that a technological support to coordination

- 197 -

should take into account both workflow and awareness management in order to
be suited to handle any possible mix ofrecurrent and ad-hoc behavior and their
inherently dynamic specification. This idea is sketched in Figure 1, where the
point of view of a "distinct workflow" is taken: its environment is made up of
resources and its cooperating workflow. Typically, awareness information can be

o
partially t
''''''fi'''l activity 6

cooperating
WF

ratio
WF

..

awareness to
solve nondeterminism •

awareness for
incremental specification ,

Fig.!. The use of awareness information.

used by the actors involved in the execution of the workflow to select the more
appropriate action, e.g. in solving the non-determinisms inherent in conflicts or
in choosing among alternative ways to complete the workflow specification.

Awareness information can be used also to evaluate the impacts of choices
local to a workflow in relation to the properties of the workflows cooperating
with it. This means that awareness information concerns both the structure and
the behavior of the entities constituting the context of the workflow at hand.
These aspects will be discussed in the next sections in terms of a formal approach
combining abstraction and contexts in workflow management.

3 Combining abstraction and context

The modeling methodology presented by Buchholz in [5] organizes models into
a hierarchy. Leaf nodes are called atomic processes and non leaf ones are called

- 198 -

coupling processes. The innovative feature of the approach is that each node is
made up of two parts: a description of a local behavior and a description of the
environment.

The basic modeling formalism used to specify processes (coupling or atomic
ones) is a class of labelled stochastic automata called PMTS (Parametrised
Multi-labeled Transition System), that can take into account also time, in partic­
ular time as delays associated to activities, but we consider here only its untimed
counterpart. For PMTS an operation of Synchronized Product is defined, that,
despite its name, allows both synchronous and asynchronous communication
among PMTS; we indicate it with the symbol 0. Labels are used to distinguish
state transitions that are local to a PMTS (T label), transitions that require
a synchronous change of state in two or more automata, and transitions that
simply send or receive a message in an asynchronous manner.

father(CP)

Fig.2. Hierarchy definition.

Figure 2 shows a portion of a three level hierarchy. Leaf nodes L 1 , •.. LK are
the atomic processes. Each atomic process is the Synchronized Product of two
PMTS Pi and Ergg

, the first one representing the detailed model of a portion
of the modelled system, and the second one representing an abstract view of the
rest of the system (called environment).

Abstraction is defined through state space aggregation (each state of the
aggregated view represents a set of equivalent states of the detailed model).

A non leaf node CP with f{ children contains J(+ 2 PMTS: an aggregated
representation of each child Li and of the father of CP, and the local behavior of
the coupling activity (denoted by CA in the figure), if any is necessary, describing
the interaction among the J(+ 1 children.

Each node defines therefore, to a certain abstraction level, the full model, but
the details of the model are contained only in the leaves. For a node to be consid-

- 199 -

ered a good representation of the global model, each aggregated PMTS should
be consistent with the corresponding detailed PMTS. The proposal in [5J allows
different levels of consistency which are based on different relations among de­
tailed and aggregated PMTSs obtained by means of different types of partitions
of their state space.

An aggregated view that preserves the interface behavior is said to be com­
pletely consistent: this notion is a form of weak bisimulation and preserves, e.g.)
deadlocks. The state space partition is then obtained by the classical inductive
algorithm. Complete consistency guarantees behavioral properties, but may be
too strict, as the aggregated view may have the same order of states as the
detailed model.

To overcome this problem, a notion of weak consistency has been introduced:
a weakly consistent aggregated view is a pair of PMTS, one describing an almost
consistent view, and the other describing an at least consistent view of detailed
process. The almost consistent view can be constructed by partitioning the state
space according to any equivalence relation, with the only constraint that it is
a refinement of the equivalence induced by the states of the aggregated view
of the environment: state transitions among equivalence classes is such that the
communication language of the detailed view is a subset of the communication
language of the almost consistent view. The at least consistent view can be con­
structed on top of the almost consistent state space aggregation by eliminating
the state transitions of the aggregated view according to the following ideal.

Let sand s' be states of the detailed view, z and z' be states of the aggre­
gated view, and a a communication label: then the state transition z 4 z' is
eliminated if states sand s', belonging to the equivalence classes represented
respectively by z and z', exist such that..., (s ~ s'). In this case the communi­
cation language of the detailed view is a superset of the communication language
of the at least consistent view. To sum up, the three notions of consistency define
the following relations among the languages I:- of the different views:

Lat-Iea"t-con"i"tent ~ Lcomplete-con"i"tent = Ldetailed-view ~ LalmO&t-con"i"tent

In [5] some operations on the static hierarchy are discussed. First of all,
the refinement operation can be applied just to leaf nodes) which contain the
detailed views. In order to keep the desired consistency, either complete or weak,
the original and refined leaf should be indistinguishable from the environment,
i.e., both can be represented by the aggregated view which is completely (weakly)
consistent for both. The contrary operation is aggregation, of which the above
discussed aggregated view is an example preserving behavioral properties. These
operations modify the state space and the state transitions in the affected nodes.
Other operations, called abstraction and reduction, modify the structure of static
hierarchy leaving unchanged the underlying state space: they are not considered
here because they seem to be of little use in the framework of workflow modeling.

1 It is behind the scope of this paper to give all the technical details, specifically
about the problems arising from the presence of synchronous and asynchronous
communication.

- 200 -

4 Applying the approach to WFM

This section gives an intuition of how the above approach could be used for
the modeling of cooperative workflows. To this aim we reconsider the portion
of hierarchy illustrated in Figure 2 in the light of the arguments discussed in
Section 2, that is shown in Figure 3.

Let P and Q be two cooperative workflows of alphabet alP) and a(Q), that
is) workflows that interact by means of a non empty communication alphabet
A(P, Q) = alP) n a(Q). In the atomic processes incorporating them they are
combined with the aggregated view of the environment in which they operate.
The flexible definition of aggregation criteria, in combination with the hierar­
chical description, allows the workflow designer to organize the information in a
way that can help the management of the workflow description complexity.

precomputed interaction awareness

L?!I 0 L?9 0 L;!l!l0 CA

on A(P,Q)

L?i 0 L?./ 0 L;!JJ 0 CA
onA P

...

some consistency

complete consistency

Fig. 3. Hierarchy and workflow.

Let A(P) (A(Q)) be the actions of P (Q) not belonging to A(P,Q). The
portion of the aggregated environment that refers to A(P) (A(Q)) is called
the "local environment" of P (Q), denoted LEp (LEQ). Actions in A(P, Q)
are considered as "potentially possible" both in P and Q) as the constraints
governing them are specified in the coupling process. Before moving to coupling,
let us consider the possibility of an additional leaf node representing a process
Z that does not interact directly with P and Q, but nevertheless belongs to
their environment. In the WFM framework this process can be either a totally
unconneted one or, more interestingly, a process that has to monitor the behavior
of P and Q for some unspecified reasons (e.g., for sake of auditing or for sake of
awareness) .

The construction of the aggregated is what is left to be specified: the consis­
tency criteria can support an articulated methodological approach in relation to

- 201 -

the already discussed interplay of workflow and awareness in coordination, and
to the meaning and use of the contextual information in the two cases. Since
both workflow and awareness mechanisms have to be explicitly designed, their
specification has to appear in the coupling process node: however, they can be
governed by different consistency criteria.

As far as workflows are concerned, the context plays the role of constraint of
refinements/modifications local to the workflow or a role oftrigger of propagation
of changes from a workflow to the workflows cooperating with it. This happens
when the modification violating the constraints represented by the context can­
not be avoided and the latter has to be realigned together with all processes
generating it. In this case, complete consistency has then to be considered the
appropriate criteria: in fact, modifications/refinements are the typical ways to
reduce the complexity of workflow definition where strong behavioral proper­
ties have to be taken into account. Of course, this is not a complete solution of
the problem: that is, providing refinement or modification techniques preserving
good behaviour in relation to a given context. What is provided is a support
to the workflow design in terms of allocation of functionality between context
and process and of "a posteriori" check of the correctness of the realized refine­
ment/modification. Moreover, a reduced representation of the context can make
it easier for the designer to identify the extent to what a modification affects the
cooperating workflows, in a sort of domino effect, and to define accordingly the
appropriate propagation strategy. One has to notice that also in the execution
phase modifications local to an instantiated process (typically, the enforcement
of a transition to a new state) can affect the cooperating workflows. Finally, if a
WFM system is able to keep trace not just of the context structure but also of its
behavior, then the above reasoning can govern the application of the techniques
mentioned in Section 1 for run-time modifications.

On the other hand, weaker notions of consistency can be used for dealing
with awareness mechanisms: in this case, again according to the arguments pro­
posed in [9), the required information can be less precise, in favour of a smaller
representation that users can more easily understand and take advantage of.
Here the problem is to decide what information can be considered as sufficient
to promote the suitable awareness for each specific recipient. This choice is in
charge of the users/designers: however, notions like almost consistency and at
least consistency give examples of different techniques to provide it. This point
will be further illustrated in the next section, where an example is discussed.

Coming back to the construction of the coupling process, we can say that in
the framework of WFM the coupling node can be viewed as consisting of two
parts, represented as separated coupling nodes in Figure 3.

The first part relates to the handling of the "precomputed" interaction of
cooperating workflows, the second to the interaction in terms of awareness. In
the first part, the coupling processes node contains the completely consistent
aggregated views of the atomic process nodes related to P and Q and their
local contexts. In addition it contains the representation of the local coupling
activity defining the constraints on the interaction between P and Q in terms of

- 202 -

the actions belonging to the A(P, Q). In this way, the coupling processes node
contains all the information concerning "precomputed') interaction among the
cooperating workflows.

The second part contains the aggregated views of the atomic process nodes
related to P and Q and their local contexts according to the selected consis­
tency criteria for sake of awareness management. In this case, the local coupling
activity can be omitted by interpreting it as the most flexible way to access
the information contained in the related aggregated views: this local activity
does not need to be explicitly designed as it can be automatically provided by
the engine supporting workflow execution, a standard component of any WFM
system.

It is worthwhile to notice that the presence of a massive use of aggregation
does not lead to any overhead to the users/designers. In fact, the construction of
completely consistent aggregations can be automated when the state aggregation
is based on a notion of equivalence implying complete consistency and for which
an aggregation algorithm exists (e.g., in the case of the largest weak bisimulation,
as proposed in [5]). This is a valuable support in refinement and modification: in
fact, once the refinement/modification is performed on the leaf nodes, the related
aggregation can be dynamically computed. For sake of validation, a check of
isomorphism between the aggregated views of the source and refined processes
(according to the same aggregation criteria) can then be performed, on a possibly
radically reduced representation. The same holds when aggregations are based
on the weaker notion of state space partition: also in this case the check of at
least consistency can be automated.

5 A simple example

In order to show how the above concepts can be applied to the design and en­
actment of a workflow, we discuss a simple example which is adapted from [5].
Consider a business process which serves two types of requests coming from the
outside, distinguished by the (high or low) amount ofresources they require and
indicated by Rh and Rl, respectively. Only a single request belonging to Rh is
allowed to be in the system, at any time, while a finite number (let us denote
it by max) of requests of the second type can be simultaneously present and
satisfaction of low priority requests is not checked by the outside. Service can be
suspended at any time for some internal reasons while its resumption depends
on external conditions: for example, the suspension might concern some asyn­
chronous operation (like an inventory or an auditing process) or more traditional
exceptional situations requiring external interventions.

Now, one could decide to define the service process by incorporating in it
all the above requirements. Let's suppose that we can trust the environment of
being able to control the flow of requests belonging to Rh and in so doing, it
is able to guarantee that no Rh arrives while one is already in. By using the
approach presented in the previous section we give an explicit representation of

- 203 -

both the context (environment) and the process in such a way that the latter
can deal just with the requirements under its responsibility.

For sake of presentation we describe the state space of the business process
by the labelled PIT system generating it, shown in Figure 4 (this is not to say
that we claim that the proposed approach operates at the system level, as it will
be discussed in the concluding section). Label hin (lin) indicates the arrival of
a Rh (Rl) request; hou' indicates the termination of a Rh request (observe that
there is no corresponding IQut since there is no feedback for Rl requests); as/ex
indicates instead the event that causes a diversion from the regular activity.
Internal actions are, as usual, represented by T (tau).

P

~
.7

P3

las/ex

Fig.4. Nets for the generation of the state space.

Transition tl has priority over t2, and this allows to eliminate all requests
that exceed max. Transition t3 represents the end of a Rl request. Observe that
the left portion of the net in Figure 4 represents an unbounded system, while
the net on the right has all places bounded by max.

To complete the atomic process we need to define the context, as seen from
the processes. The context is of course not complete: rather, it mentions just what
is needed for the process at hand to behave according to the above requirements.
The aggregated state space can be described by the labelled state machine of
Figure 5. States Y and N denote the situations in which a high priority request
is present or not, respectively.

In the corresponding state space, each state is described as a triple: (z, nl, nh),
where z is the aggregated context state (Y or N), nl is the number of tokens
in P6, and nh is the sum of tokens in PI and P2. Its structure is quite obvious
from the above labelled net system: we want to recall only that in all states
where the first component equals max, any transition labelled by /;n will leave
these states unmodified. This is modeled in Figure 6 (only the pertinent part of

- 204 -

N
hi"

y

• lin Itout

(].s/ex

Fig. 5. The aggregated context of the process.

the state space is shown) where x denotes any non-negative number.

(max - 1, x) (max, x)

Fig.6. State space border conditions.

Once the workflow is defined, it has to be enacted in order to be executed.
One basic part of the enactment is the assignment of resources to the process
together with their possible constraints. Let us assume that two actors are as­
signed to it in order to answer the various requests. Moreover) as part of the
above mentioned interference with the request handling, the resources can be­
come temporarily unavailable, e.g., employees can be sick Of assigned to other
duties. The enactment of the process can then be performed by enriching the
workflow description in the above atomic process with an additional component
modeling the resources, again described as a net system in Figure 7.

Each state of the enriched atomic process contains an additional component
to represent the number nact of available actors: (z, nact, nl, nh). The resulting
state space, for max = 3, contains 24 states, listed in Table l.

As illustrated at the end of the previous section, the atomic process has
to become part of the context of other atomic processes cooperating with it
(through the coupling process level). This problem can be dealt with both from
the design and enactment perspective. Since the resulting argumentation is quite
similar, we consider the second perspective.

How to construct the aggregated view of the above 24 states? As anticipated,
the selection of the aggregated view depends on its use within the coupling
process node. For what concerns the part of the node related to the precomputed
interaction, the choice is towards completely consistent aggregations. The only
partition that does not lead to a trivial aggregation (i.e., that makes a true
reduction of the state space) and that is completely consistent, is the one based
on the state of the environment and number of actors. This aggregation, shown
in Figure 8, fully maintains the interface behavior of the detailed view.

- 205 -

lex
tau

Fig. 7. Adding resources.

1 (N,a,a,a) 13 (Y, a, a, 1)
2 (N, 1,a, a) 14 (Y, 1, a, 1)
3 (N,2,a,a) 15 (Y, 2, a, 1)
4 (N,a,l,O) 16 (Y, a, 1, 1)
5 (N,l,l,a) 17 (Y,l,l,l)
6 (N, 2, 1, a) 18 (Y, 2, 1, 1)
7 (N,a,2,a) 19 (Y, a, 2,1)
8 (N,1,2,a) 2a (Y, 1, 2,1)
9 (N, 2, 2, a) 21 (Y, 2, 2,1)

10 (N,a,3,a) 22 (Y, a, 3,1)
11 (N,1,3,a) 23 (Y, 1,3,1)
12 (N,2,3,a) 24 (Y, 2, 3,1)

Table 1. State space of the leaf node.

As far as the management of awareness is concerned, there are various pos­
sibilities, that, on the basis of different semantics represented by the selected
partition, and guarantee different levels of consistency. A first choice is to ag­
gregate the states according the states of the environment (that is, the resulting
aggregated state space has just two states corresponding to the value Y and N):
in this case, the aggregation is obviously almost consistent but not completely
consistent with the atomic process since a high priority request can be satisfied
(ho"t can fire) also when no actor is available. This behavior is not possible in
the detailed view. More generically, the choice to focus on the local environment
of a workflow disregards the information about any type of constraint contained
in the workflow description. Consequently, this choice can be considered, again
in general, not satisfactory from the point of view of the workflows cooperating

- 206 -

with the considered one but it can be acceptable from the point of view of other
parts of the organization which can have different purposes, e.g., to have aware­
ness information just on the presence of high level requests for starting some
monitoring activity concerning them. Now, there are different ways to take into
account information about the specific behavior of the workflow. For example,
one may want to get information about all the current requests, irrespective of
their priority: in this case, the aggregation can be based on the state of the
environment to capture high priority requests and the number of low priority
requests. This choice reduces the state space (to 8 states) and leads to an almost
consistent aggregation telling about the dynamics governing the number of the
requests of the two types.

The not completely consistent aggregation based on the existing requests can
be transformed in an at least consistent aggregation by deleting the state transi­
tions labelled by hout . In fact, in this case, the interface behavior is maintained
on a subset of the language of the detailed view. This type of information focuses
just on the arrival of requests and not on their completion.

as/ex U l;" -
1,4,7,10 3,6,9,12

T

) hutd
bin

butd

as/ex -
13,16,19,22 14,17,20,23 15,18,21, 24

T T

Fig. 8. Aggregated state space.

6 Research agenda

The approach shown in the previous sections has not to be considered as con­
clusive, rather as inspiring a new research agenda. In fact, while the basic idea
is quite interesting, the current achievements show severe limitations. First of
all, the approach strongly relies on a behavioral description and not on the net
system level representation. Some results have being obtained for a restricted
class of net system [4]. On the other hand, the emerging synthesis techniques

- 207 -

(rooted in the seminal notion of region [10]) could, to some extent, allow one
to accept this approach. An interesting point could be the combination of syn­
thesis techniques with the hierarchical approaches, e.g. the one presented in this
paper. Secondly, the consistency criteria should be better understood in order
to provide system modeler with aggregation policies that preserve the desired
behavior.

On the other hand, other techniques to get more abstracted representa­
tions [8], while very powerful to check behavioral properties or construct well
behaved models, exhibit the basic drawback of producing abstract representa­
tions of the target system which can be hardly interpretable as such by design­
ers/users for sake of directing their future action (both in system design and
use).

In any case, we foresee an interesting merge of interests in system design,
coming from different application domains and different goals. In fact, the need
of combining abstraction and context is an emerging requirement in the modeling
of real systems, which are "open" by definition, and is a mandatory prerequisite
when performance evaluation is concerned.

References

1. A. Agostini, G. De Michelis, and K. Petruni. Keeping workflow models as simple
as possible. In G. De Michelis, C. Ellis, and G. Memmi, editors, Proc. of the Work­
shop on Computer-Supported Cooperative Work, Petri Nets and related formalisms,
pages 1l~29, Zaragoza, 1994.

2. L. Bernardinello, L. Pomello, and C. Simone. A class of morphisms for the refine­
ment of EN systems. Research report, Dipartimento di Scienze dell'informazione,
Universita di Milano, Italy, 1996. submitted for pubblication.

3. J. Bowers, G. Button, and W. Sharrock. Workflow from within and without: tech­
nology and cooperative work on the print industry shopfloor. In H. Marmolin,
Y. Sundblad, and K. Schimdt, editors, Proc. of the Fourth European Conference
on Computer-Supported Cooperative Work, pages 51~66. Kluwer Academic Pub­
lishers, 1995.

4. P. Buchholz. A hierarchical view of GCSPN's and its impact on qualitative and
quantitative analysis. Journal of Parallel and Distributed Computing, 15(3):207-
224, July 1992.

5. P. Buchholz. A framework for the hierarchical analysis of discrete event dynamic
systems. Habilitationsschrift, Universitaet Dortmund, 1996.

6. Workflow Management Coalition. Workflow reference model. 1994.
7. F. Di Cesare and M. Der Jeng. Synthesis for manifacturing systems integration.

In F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F.B. Vernadat, editors,
Practice of Petri Nets in Manufacturing. Chapman & Hall, London, 1993.

8. F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F.B. Vernadat, editors.
Practice of Petri Nets in Manufacturing. Chapman & Hall, London, 1993.

9. P. Dourish. Accounting for system behaviour: representation, reflection and re­
sourceful action. Technical report, Rank Xerox Research Center, 1995.

10. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures: I and ii. Acta Infor­
matica, 27(4):315-368, 1990.

- 208 -

11. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys­
tems. In Proc. of the 1995 conference on Organizational Computing Systems, pages
10-21, San Jose', CA, 1995.

12. T. Kreifelts, E. Hinrichs, K. H. Klein, P. Seuffert, and G. Woetzel. Experiences
with the DOMINO office procedure system. In L. Bannon, M. Robinson, and
K Schmidt, editors, Proc. of the Second European Conference on Computer­
Supported Cooperative Work, pages 117-130. Kluwer Academic Publishers, 1991.

13. T. Kreifelts and G. Woetzel. Distribution and eITor handling in an office procedure
system. In G. Bracchi and D. Tsichritzis, editors, Proc. of Office Systems: Methods
and Tools, pages 197-208. North-Holland, 1987.

14. R. Milner. A calculus of Communicating systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg, 1980.

15. R. Pareschi, G. De Michelis, and S. Sarin. Proceeedings of the first International
Conference on Practical Aspects of Knowledge Management- Workshop on Adap­
tive Workflow. Basel, 1996.

16. K. Schmidt. Of maps and scripts: the status of formal constructs in cooperative
work. In Proc. of the ACM conference on supporting group work, pages 138-147,
Phoenix', AZ, 1997. ACM Press, NY.

17. C. Simone and K. Schmidt. Taking the distributed nature of cooperative work
seriously. In Proc. of the 6th Euromicro Workshop on Parallel and Distributed
Processing, pages 295-301. IEEE-eS, 1998.

18. L.A. Suchman. Plans and situated actions: the problem of human-machine com­
munication. Cambridg University Press, Cambridge, 1987.

19. W. Van der Aalst. Verification of workflow nets. In P. Azema and G. Balbo,
editors, Proc. of the 18th Intern. Conference on Applications and Theory of Petri
Nets, volume 1248 of Lecture Notes in Computer Science, pages 407-426. Springer­
Verlag, Berlin Heidelberg, 1997.

This article was processed using the 15TEX macro package with LLNCS style

- 209 -

Computing Science Reports

In this series appeared:

96/01 M. Voorhoeve and T. Basten

96/02 P. de Bra and A. Aerts

96/03 W .M.P. van dec Aalst

96/04 S. Mauw

96/05 T. Basten and W.M.P. v.d. Aalst

96/06 W .M.P. van dec Aalst and T. Basten

96/07 M. Voorhoeve

96/08 A.T.M. Aerts, P.M.E. De Bra,
J.T. de Munk

96/09 F. Dignum, H. Weigand, E. Verharen

96/10 R. Bloo, H. Geuvers

96/11 T. Laan

96/12 F. Kamareddine and T. Laan

96/13 T. Borghuis

96/14 S.H.!. Bos and M.A. Reniers

96/15 M.A. Reniers and U. Vereijken

96/17 E. Boiten and P. Hoogendijk

96/18 P.D.V. van dec Stok

96/19 M.A. Reniers

96/20 L. Feijs

96/21 L. Bijlsma and R. Nederpe\t

96122 M.C.A. van de Graaf and GJ. Houben

96/23 W.M.P. van dec Aalst

96124 M. Voorhoeve and W. van dec Aalst

96/25 M. Vaccari and R.e. Backhouse

97/01 B. Knaack and R. Genh

97/02 J. Hooman and O. v. Roosmalen

97/03 J. Blanco and A. v. Deursen

97/04 I.C.M. Baeten and I.A. Bergstra

97/05 I.C.M. Baeten and J.1. Vereijken

97/06 M. Franssen

97107 I.C.M. Baeten and I.A. Bergstra

Department of Mathematics and Computing Science
Eindhoven University of Technology

process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SOL. ..
A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

structura1 Petri Net Equivalence, p. 16.

0008 Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMA TH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism. p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur­
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

A Programming-Language Extension for Distributed Real-Time Systems, p. SO.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time. p. 26.

Discrete-Time Process Algebra with Empty process, p. 5 I.

Tools for the Construction of Correct Programs; an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

! j

97/08 P. Hoogendijk and R.c. Backhouse When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.

97/10

97/11

97/12

97113

97/14

97/15

97/16

97117

97/18

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P,C.N. v. Gorp, EJ. Luit, O.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van der Aalst

W .M.P. van der Aalst

J.F. Groote, F. Monin and
J. $pringintveld

M. Franssen

W.M.P. van der Aalst

M. Vaccari and R.c. Backhouse

Werkgemeenschap Informatiewetenschap
redactie: P.M.E. De Bra

W. Van der Aalst

M. Voorhoeve

J.C.M. Baeten and I.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.1. Dielissen

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p.30.

WOFLAN: A Petri·net·based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p.28

AP~: A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification of Inter·organizational workflows, p. 23

Calculating a Round·Robin Scheduler, p. 23.

Informatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Informatiewetenschap, p. 60.

Formalization and Verification of Event·driven Process Chains, p. 26.

State I Event Net Equivalence.

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of CTL and CTL"': Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union ofIntervals on a Line Revisited, p. 10.

/2

	Preface
	Table of contents
	A Workflow Specification Environment
	Object-Oriented and Net-Based Modelling of Business Processes
	Reuse-oriented Workflow Modelling with Petri Nets
	Finding Errors in the Design of a Workflow Process
	Structural Analysis of Workflow Nets with Shared Resources
	Modeling and Verification of Workflow Nets
	Modeling Workflow Dynamic Changes Using Timed Hybrid Flow Nets
	Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes*
	Simple Workflow Models
	The Formal Representation of Call Processing in Call Centers
	Parameterized Petri nets for modelling and simulation human organisations in a workflow context
	Combining abstraction and context: a challenge in formal approaches to workflow management

