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Sommaire

Les systèmes à compteurs sont des modèles utilisés afin de raisonner sur les sys-
tèmes de divers domaines tels l’analyse de programmes concurrents ou distribués, et
la découverte et la vérification de systèmes d’affaires. Nous étudions des problèmes
bien établis de différentes classes de systèmes à compteurs. Cette thèse se penche sur
trois systèmes particuliers :

— les réseaux de Petri, qui sont un type de modèle pour les systèmes discrets à
événements concurrents et séquentiels ;

— les «réseaux de processus», qui forment une sous-classe des réseaux de Petri
adaptée à la modélisation et au raisonnement des processus d’affaires ;

— les automates continus à un compteur, un nouveau modèle qui combine une
sémantique continue à celles des automates à un compteur.

Pour les réseaux de Petri, nous nous concentrons sur les propriétés d’accessibi-
lité et de couverture. Nous utilisons des algorithmes de parcours de graphes, avec
des relaxations de réseaux de Petri comme heuristiques, afin d’obtenir de nouveaux
algorithmes de semi-décision pour l’accessibilité et la couverture, et nous évaluons
positivement un prototype.

Pour les «réseaux de processus», nous nous concentrons sur le problème de va-
lidité, une notion de correction bien établie pour ces réseaux. Nous caractérisions
précisément la complexité calculatoire jusqu’ici largement ouverte de trois variantes
du problème de validité. En nous basant sur nos résultats, nous développons des tech-
niques pour vérifier la validité en pratique, à l’aide de relaxations d’accessibilité dans
les réseaux de Petri.

Enfin, nous introduisons le nouveau modèle d’automates continus à un compteur.
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Sommaire

Ce modèle est une variante naturelle des automates à un compteur, qui permet de
raisonner de manière hybride en combinant des éléments continus et discrets. Nous
caractérisons la complexité exacte du problème d’accessibilité dans plusieurs variantes
du modèle.

Mots-clés: vérification algorithmique, réseaux de Petri, systèmes à compteurs, théo-
rie de la complexité
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Abstract

Counter systems are popular models used to reason about systems in various
fields such as the analysis of concurrent or distributed programs and the discovery
and verification of business processes. We study well-established problems on various
classes of counter systems. This thesis focusses on three particular systems, namely

— Petri nets, which are a type of model for discrete systems with concurrent and
sequential events,

— workflow nets, which form a subclass of Petri nets that is suited for modelling
and reasoning about business processes, and

— continuous one-counter automata, a novel model that combines continuous se-
mantics with one-counter automata.

For Petri nets, we focus on reachability and coverability properties. We utilize
directed search algorithms, using relaxations of Petri nets as heuristics, to obtain novel
semi-decision algorithms for reachability and coverability, and positively evaluate a
prototype implementation.

For workflow nets, we focus on the problem of soundness, a well-established cor-
rectness notion for such nets. We precisely characterize the previously widely-open
complexity of three variants of soundness. Based on our insights, we develop tech-
niques to verify soundness in practice, based on reachability relaxation of Petri nets.

Lastly, we introduce the novel model of continuous one-counter automata. This
model is a natural variant of one-counter automata, which allows reasoning in a
hybrid manner combining continuous and discrete elements. We characterize the
exact complexity of the reachability problem in several variants of the model.

Keywords: Algorithmic verification, Petri nets, counter systems, complexity
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Introduction

When designing and developing systems, it is crucial to ensure that they are free
from errors 1. We are particularly interested in verifying systems that perform some
computation. We view computation in a broad mathematical sense here, so while
software may include the most prominent examples of computational systems, this
can also include hardware or business processes. Naturally, the problem of ensuring
correctness of such systems has attracted a vast amount of research, see e.g. [10, 48]
for a textbook and a survey respectively. We focus here on algorithmic verification,
that is, using algorithms that analyse a system and, for example, point out errors or
guarantee their absence. This is in contrast to other techniques for the avoidance of
errors such as peer review or testing, which have a more direct link to the system
development process itself.

One important theorem that at first glance seems to make algorithmic verification
a pointless task was given by Rice in his thesis in 1951.

Theorem 1: Rice’s Theorem [92]

All non-trivial, semantic properties of programs are undecidable.

In the context of this theorem, non-trivial means that the property is satisfied
by some programs, but not by others, and semantic means that the property is not
strictly syntactic. For example, "Does the program contain an if-statement?" is a
syntactic property, whereas "Does the program always evaluate the condition of one
particular if-statement to ’true’?" is a semantic property.

While Rice’s theorem seems restrictive, there are two key insights which still allow

1. See https://www5.in.tum.de/~huckle/bugse.html (accessed on February 6th, 2023).
for an archive of various software errors and their impacts.

1
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Introduction

us to approach program verification in an algorithmic manner:

— While Rice’s theorem prohibits us from developing an algorithm that decides
a property on all programs, it does not make claims about the decidability of
properties on restricted subclasses of programs. For example, it may be possible
to decide whether any given loop-free program satisfies a certain property.

— Even if, for a certain class of programs and a given property, we cannot de-
cide whether the property holds for a given program of the class, we may be
able to give a slightly weaker procedure. Such a procedure may return either
"no", in which case the property surely does not hold, or "maybe", in which
case the property may or may not hold. Similarly, we could aim to design
procedures answering either "yes" or "maybe". While such procedures are not
decision algorithms, they can still be very useful in practice - for example, even
if a procedure does not catch all theoretically possible defects, if it detects the
defects that most often occur in practice, using it can still increase confidence
in the verified system.

Two examples of techniques that are successfully applied in the development of
software systems are static analysis and symbolic execution, see for example recent
surveys [11, 50]. These techniques typically operate immediately on the program in
question.

Static analysis makes conclusions about programs without executing the program
itself, for example detecting information leakage by tracing the flow of data. Symbolic
execution executes the program, but uses symbolic instead of concrete values for
variables in order to make assertions about the behaviour of the program for many
input values at once.

A more general category of techniques includes those that are model-based. They
do not operate on the system under investigation, but rather on a model that de-
scribes the functional aspects of the system and, importantly, is mathematically pre-
cise. Then, we can make conclusions about the system by observing the model. For
example, if we can prove that certain behaviour cannot occur in the model, we can
conclude that this behaviour cannot occur in the system itself. Note that this insight
critically relies on two assumptions:

2



Introduction

(1) We are able to model the system in an unambiguous way which preserves the
property under investigation.

(2) For the model we have chosen, it is possible to decide the property under inves-
tigation efficiently.

These two assumptions have contrary requirements. Modelling a system in a
precise manner requires powerful models, but powerful models tend to bring high
computational complexity for many relevant decision problems.

In my work, I aim to enrich existing knowledge about some particularly relevant
models that are powerful enough to represent complex systems. In these models
relevant decision problems tend to be computationally hard, as well as theoretically
interesting. The goal is to approach these decision problems and work towards finding
practically efficient procedures, and further to provide theoretical insights that are
useful to the field at large. A particular focus lies on using problems that are provably
easy as stepping stones to approach computationally hard problems.

For software development in the real world, it may seem like we are by nature
dealing with a class of programs where Rice’s theorem does not apply. After all,
real machines are physically constrained to have only a finite amount of memory.
For example, while there are infinitely many integers in the mathematical sense,
real-world programming languages tend to disagree, where there might only be 232

different integers. This is still an immense number, but it might be manageable in
some contexts. So if there are only finitely many states, then we may simply be able
to check all of them, given sufficient time and resources.

However, even disregarding the practicability of such an approach, a relatively
recent development challenges this point of view. For the past 50 years, Moore’s law
has held, which predicts a doubling of components per integrated circuit every two
years. As this proposed law continued to hold, the capabilities of new processors have
increased exponentially over time. However, experts have recently voiced doubts re-
garding how much longer this will be the case [79]. As increases in processor speeds
become slower, it is predicted that the development will shift from faster processors
to more processors. This development can already be seen in large supercomputers,
which in general do not possess one large, very fast processor, but should instead be
seen as a large cluster of many interconnected processors. It is not unreasonable to

3



Introduction

think that a similar trend will follow in the world of personal computers or embedded
systems. A second trend that incentivizes distributed networks where many proces-
sors work in parallel is the Internet of things. This describes a paradigm shift in which
increasingly, not just humans, but machines, are connected with each other [9, 78].

These developments mean that the analysis of systems is often no longer con-
strained to a fixed number of participating entities. Instead, systems must work
correctly in the presence of an arbitrary number of participants. This shows the
importance of a particular class of models, which we call infinite-state systems. As
the name suggests, infinite-state systems are those models that do not have a finite
state space. For example, we might consider modelling a communication protocol
involving an unspecified number of participants as an infinite-state system. Even if
each participant has a finite set of states, there are infinitely many global states, as
there are infinitely many possibilities for the number of participants.

To give an idea of the different types of models, notable examples of finite-state
models are finite state machines, (finite) control flow graphs, and Turing machines
with a tape restricted to linear size (also called linear bounded automata). For infinite-
state models, notable examples are counter machines (that is, automata enriched
with one or more counters), pushdown automata, and Petri nets. We are particularly
interested in models with counters. More precisely, this thesis places a large focus
on Petri nets, and particularly the subclass of workflow nets. We will define these
models in more detail in Chapter 2.

Let us briefly justify this particular focus. Petri nets are a well-established and
popular model to represent and verify various systems. Among other applications
areas, they have been used for the analysis of concurrent programs [40, 47, 69], as
workflow nets in the area of business process management [6, 72, 102], and have
even found use in computational biology [70] and to model train control systems
for German railways [67]. The advantage of Petri nets is that they allow modelling
complex concurrent and parallel behaviour, while providing a graphical representation
that is comparatively easy to understand. A survey of several applications of Petri
nets can be found in Section 2.2.

This thesis is structured as follows: In Chapter 1, we introduce mathematical
notation and various notable complexity classes. In Chapter 2, we introduce the

4
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model of Petri nets and notable decision problems for them, and survey the state-
of-the-art regarding the complexity of these problems. We also introduce the notion
of reachability relaxations for Petri nets and survey some notable relaxations. In
Chapter 3, we present the results of [21], where we propose a novel semi-decision
procedure for Petri nets based on relaxations.

In Chapter 4, we introduce the model of workflow nets, which are a subclass of
Petri nets with some additional mild restrictions. We also introduce several variants
of a correctness notion called soundness for workflow nets, and give an overview of
the existing literature with respect to these variants of soundness. In Chapter 5, we
present the results of [25], where we determine the exact computational complexities
of the soundness notions introduced in Chapter 4.

In Chapter 4, we introduce the notion of free-choice nets, which are another sub-
class of Petri nets for which some decision problems become easier. We introduce
free-choice workflow nets, which are relevant in practice due to the fact that they are
more amenable to analysis than standard workflow nets, and state some known re-
sults for the complexity of various problems on free-choice nets, where it differs from
the complexity of those problems on Petri nets. In Chapter 6, we present the results
of [27], where we propose practical procedures for verifying soundness of workflow
nets, in particular showing that several notions of soundness collapse on free-choice
workflow nets.

In Chapter 7, we survey the existing literature on applying continuous semantics
to various types of counter systems. In Chapter 7, we present the results of [23],
where we introduce the novel model of continuous one-counter automata, which are
an application of continuous semantics to a certain type of counter system with a
single counter.

Many proofs and details in the thesis are omitted and deferred to an appendix,
which contains preprints of the publications this thesis is based on. When a proof
is moved to the appendix, there will be a link to it in the main text. This is aimed
at making this thesis comparably light to read, while still providing the interested
reader with the full details, albeit outside the main text. Mathematical results by
this author are marked with † to better distinguish them from existing work that is
presented for context.

5



Chapter 1

Preliminaries

In this chapter, we introduce mathematical notation used throughout this thesis.

1.1 Notation

We write N,Z,Q to denote, respectively, the naturals including zero, integers and
rationals. We restrict these sets by writing a subscript, for example, N≥1 denotes
the naturals excluding zero. For a set of numbers N and a finite set S, we write NS

to mean a vector of size |S| with elements from N . Equivalently, this is a mapping
S → N , which we index by elements of S. We denote as 0⃗ the vector containing only
zeros, with the domain being implied by the context. We extend operations such as
subtraction, addition and comparison to vectors by applying them component-wise.
For example, A⃗ ≤ B⃗ means that ai ≤ bi for all i. We differ from the component-wise
interpretation for strict inequalities, and instead define A⃗ < B⃗ to mean that A⃗ ≤ B⃗

and A⃗ ̸= B⃗, and similarly for A⃗ > B⃗.

1.2 Complexity Classes

Next, let us briefly recall several important complexity classes that have connec-
tions to the work presented in this proposal. The classes are presented in ascending
order of complexity. For further reference on computational complexity, see [89, 96].

6



1.2. COMPLEXITY CLASSES

1.2.1 Classes below polynomial time

The smallest complexity class that is of interest to us contains the problems which
can be solved by nondeterministic Turing machines with space logarithmic in the size
of the input. We call that class NL, short for nondeterministic logarithmic space.
Despite its low computational power, this class comprises several classical problems.
For instance 2SAT, that is, satisfiability of a formula given in conjunctive normal
form with two literals per clause is NL-complete. Another NL-complete problem is
reachability between two nodes of a directed graph.

Nick’s Class, or NC for short, is the class of problems that can be solved efficiently
in a parallel manner. More formally, problems in it can be solved by a parallel random-
access Turing machine with polynomially many heads in polylogarithmic time, where
one can view a PRAM as a Turing machine with multiple heads that can move to
arbitrary parts of the tape in each step. Random access means here that the heads of
the Turing machine can make "jumps" on the tape instead of being limited to making
one step left or right. An alternative view is to see NC as the class of problems that
can be decided by a log-space uniform Boolean circuit with polylogarithmic depth
and polynomial width.

We may further divide NC by the order of the power in the polylogarithmic time.
Formally, NCi is the class problems that can be solved by a PRAM with polynomially
many heads in time O(logi(n)). Notably, NC1 ⊆ NL ⊆ NC2.

1.2.2 P and NP

P describes the class of problems that can be decided by a deterministic Turing
machine in a polynomial number of steps. Linear programming (LP), that is, deciding
whether a system of linear equations has a solution over the reals, is a P-complete
problem.

To contrast this, NP describes the class of problems that can be decided in polyno-
mial time by a nondeterministic Turing machine. One of the most fundamental prob-
lems of computer science, the Boolean satisfiability (SAT) problem, is NP-complete.
Another notable problem in NP is integer linear programming (ILP), which is de-
fined as determining whether there exists an integer solution to a system of linear

7



1.2. COMPLEXITY CLASSES

equations.
It is known that NC ⊆ P, but it is open whether NC ⊊ P or NC = P hold. Further,

P ⊆ NP is trivially true, but it is unknown whether P ⊊ NP or P = NP hold.

1.2.3 Classes above nondeterministic polynomial time

PSPACE is the complexity class of problems that can be solved by a deterministic
Turing machine using only a polynomially large section of the tape. It is known that
NP ⊆ PSPACE, but again, whether the inclusion is proper is unknown. However, it
is known that NL ⊊ PSPACE.

EXPSPACE is the class of problems solvable by a deterministic Turing machine
using at most an exponentially large section of the tape. It is known that PSPACE
⊊ EXPSPACE.

Let us define the last two complexity classes we are interested in within this work.
Let F1(n) = 2n, and for k > 1 let

Fk(n) = Fk−1 ◦ · · · ◦ Fk−1(1)⏞ ⏟⏟ ⏞
n times

.

We further define Fω(n) = Fn(n).
The complexity class Fk is the class of problems solvable in at most Fk(g(n)) steps,

where n is the size of the input and g is a function from level Fi with i < k, closed
under composition and primitive recursion.

We call the complexity class F3 TOWER. The name comes from the fact that
F3(n) is a tower of the form 22...2 of height n. We call the complexity class Fω

Ackermann.
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Chapter 2

Petri nets and their Relaxations

When choosing a model to represent a system of interest, there is a trade-off
between expressivity and computational complexity. Suitability of a model depends
not only on the system whose behaviour we wish to model, but also on the types of
questions we wish to ask.

Petri nets are a particularly useful model. As we will see later, they allow mod-
elling business processes and distributed systems. Formally, a Petri net is a tuple
N = (P, T, f) where

— P is a finite set of places,

— T is a finite set of transitions which is disjoint from P , and

— f : (P × T ) ∪ (T × P ) → N is the flow function.

When we represent Petri nets graphically, we draw places as circles ( ), transitions
as boxes ( ), and the flow function as directed edges between places and transitions.
If there is no edge from a place to a transition (or vice versa), we assume the flow
function to have value 0. Otherwise, we will graphically denote the value of the
flow function on the arrow, with the assumption that the value is 1 if the number is
omitted.

We define the size of N as |N | = |P | + |T |, and the norm of N as ∥N∥ = ∥F∥ + 1,
where ∥F∥ = max(a,b)∈(P ×T )∪(T ×P ) f(a, b).

Places can hold any nonnegative number of tokens, drawn as small filled cir-
cles ( ). We formally describe this using a marking M ∈ NP , where M(p) denotes
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the number of tokens in place p.
In the following, let t be a transition. We define some important concepts:

— We denote the pre of t as •t, sometimes also called guard of t. Formally, this is
the vector •t ∈ NP such that •t(p) = f(p, t) for all p ∈ P .

— Similarly, we denote the post of t as t•, where t• ∈ Np is the vector such that
t•(p) = f(t, p) for all p ∈ P .

— We define the effect of t as δδδt = t• − •t.

— A marking M enables t if M ≥ •t.

— If t is enabled in a marking M, then we can fire it in M, which results in
a successor marking M′ where M′ = M + δδδt. We write M t−→ M′ to mean
that M′ is the successor marking resulting from firing t in M. To put it more
formally, M t−→ M′ if and only if M ≥ •t and M′ = M + δδδt.

Intuitively, the guard of a transition determines in which markings it can be fired,
while the effect determines how it will affect the number of tokens in each place. One
can imagine firing a transition to be in two steps: First, the transition removes tokens
from places according to its incoming edges (which make up its guard); then it puts
tokens into places according to its outgoing edges. Importantly, after removing tokens
according to the guard, no place may have a negative number of tokens.

Figure 2.1 shows an example of a Petri net with a marking. The marking has two
tokens in place p1, one token in p2 and no tokens in p3. We write such a marking as
{p1 : 2, p2 : 1, p3 : 0}. For ease of notation, we usually omit specifying places with no
tokens, that is, we equivalently write the marking as {p1 : 2, p2 : 1}.

Since •t3 = {p1 : 2}, it holds that t3 is enabled in {p1 : 2, p2 : 1}, so we may fire it.
This will mean taking two tokens out of p1, and putting one token back. Therefore,
we get that {p1 : 2, p2 : 1} t3−→ {p1 : 1, p2 : 1}.

We can naturally treat t−→ as a relation between markings. Then let us generalize
this relation to not depend on a single transition, that is, we define → := ⋃︁

t∈T
t−→.

Further, we extend this to sequences of transitions, which we call runs for brevity.
Let π = t1t2 . . . tn be a sequence of transitions, then we write M π−→ M′ if there exist
markings M1 . . . Mn−1 such that M t1−→ M1

t2−→ . . .
tn−1−−→ Mn−1

tn−→ M′. For the
special case of the empty sequence ε, we have that M ε−→ M for all M. Similarly,

10



t1
p1 t2

p2

t3 p3
t4

2

Figure 2.1: A Petri net with places p1, p2 and p3 and transitions t1, t2, t3 and t4. The
marking {p1 : 2, p2 : 1, p3 : 0} = {p1 : 2, p2 : 1} is drawn. Transitions t1, t3
and t4 are enabled, while t2 is not.

we can generalize enabledness of transitions to sequences of transitions, where π is
enabled in M if there exists M′ such that M π−→ M′. We write ∗−→ to denote the
reflexive, transitive closure of →. We call → the step relation, and ∗−→ the reachability
relation. When M′ is reachable from M, that is, M ∗−→ M′, by definition of the
reachability relation there must exist some (potentially empty) sequence of markings
M1 . . . Mn−1 such that M → M1 → · · · → Mn−1 → M′. We call the sequence
MM1 . . . Mn−1M′ a witness for reachability between M and M′. Note that when
one wants to prove reachability between two markings, one way is to simply provide
a witness for it.

Coming back to our example, we already observed that when starting in marking
{p1 : 2, p2 : 1}, we can reach the marking {p1 : 1, p2 : 1} by firing t3. It is easy
to see that the sequence t4t2 is then enabled from that marking, and we get that
{p1 : 2, p2 : 1} t3−→ {p1 : 1, p2 : 1} t4t2−−→ {p2 : 1}. In consequence, it holds that from
{p1 : 2, p2 : 1} we can reach {p2 : 1}, and a possible witness is {p1 : 2, p2 : 1}{p1 :
1, p2 : 1}{p1 : 1, p3 : 1}{p2 : 1}.

A Petri net N = (P, T, F ) gives rise to a so-called reachability graph G. Formally,
we define G = (V, E) where V = NP and E = {(M, M′) ∈ NP × NP | M → M′}.
Intuitively, the reachability graph is a graph of all markings, and edges go from a
marking to its successor markings with respect to all transitions of the net. Observe
that the reachability graph can in general be infinite.

The reachability graph for the running Petri net example of Figure 2.1 is given in
Figure 2.2. The witness {p1 : 2, p2 : 1}{p1 : 1, p2 : 1}{p1 : 1, p3 : 1}{p2 : 1} is colored
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2.1. NOTABLE DECISION PROBLEMS

{p1 : 0, p2 : 1}

{p1 : 1, p2 : 1}

{p1 : 2, p2 : 1}

{p1 : 0, p3 : 1}

{p1 : 1, p3 : 1}

{p1 : 2, p3 : 1}

t1

t1

t1

t1t3 t3

t4

t4

t4

t2

t2

Figure 2.2: An excerpt of the reachability graph for the Petri net of Figure 2.1. One
possible witness for reachability from {p1 : 2, p2 : 1} to {p1 : 0, p2 : 1} is
drawn bold and colored in blue.

in the reachability graph, to demonstrate that a witness for reachability in the Petri
net corresponds to a path of the reachability graph.

2.1 Notable Decision Problems

Now that we have introduced what Petri nets are, we aim to give a short overview
over some interesting decision problems.

The first is the reachability problem. This problem is defined as follows:
Definition 1: Reachability Problem for Petri nets [87, Section IV.A]

Given a Petri net N = (P, T, F ) and two markings S, T , does S ∗−→ T hold?

The reachability problem has a long history. It was first shown decidable by
Mayr [80, 81] as early as 1981. The original algorithm was simplified later by
Kosaraju [71] in 1982, and by Lambert [73] in 1992. Up to this point, all algo-
rithms were essentially based on a particular tree decomposition, sometimes called
Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition. A more recent
development occurred in 2012, when Leroux [74] provided another algorithm for the
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reachability problem, the first such algorithm not based on the KLMST decompo-
sition. Since decidability is well-known, the natural next step was to determine an
upper bound of the complexity of the reachability problem. Most recently, Leroux
and Schmitz [76] proved an Ackermannian upper bound.

In terms of lower-bound complexity, in 1976 Lipton [77] proved EXPSPACE-
hardness, which at the time left a large gap, as not even decidability was yet known.
While the next forty years brought improvements to the upper bound, this EX-
PSPACE lower-bound was only improved in 2019, when Czerwiński et al. proved
TOWER-hardness. Most recently, the complexity gap was finally closed in 2021.
Two teams, one consisting of Leroux, the other of Czerwiński and Orlikowski, proved
independently that the problem has an Ackermannian lower bound [37, 75]. Thus,
reachability is Ackermann-complete.

A second well-studied problem for Petri nets is the coverability problem. The
formal definition is as follows:

Definition 2: Coverability Problem for Petri nets [87, Section IV.3]

Given a Petri net N = (P, T, F ) and two markings S, T , does there exist a
marking L such that S ∗−→ L and T ≤ L?

Hence, the coverability problem asks whether we can reach a marking where each
place has at least as many tokens as in the target marking.

In contrast to the Ackermann-hardness of the reachability problem, the coverabil-
ity problem was shown EXPSPACE-complete in the 1970s [34, 91].

It is easy to give a polynomial-time reduction from coverability from S to T to
reachability from S to T in a slightly modified version of the net: For each place p,
add a single transition t which takes one token from p, and adds no tokens anywhere.
Then, we may ask for reachability from S to T in this new net. If, in the original net,
we are able to reach some marking that is greater or equal than T , then we are also
able to reach that marking in the modified net, and afterwards use the newly added
transitions that remove tokens in order to reach T . For the other direction, if we are
able to reach T in the modified net, then in the original net we can, by replaying the
run without the newly added transitions, reach a marking that is greater or equal to
T . Firing the newly added transitions only removes tokens, thus they can never be
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2.1. NOTABLE DECISION PROBLEMS

t1
p1 t2

p2

t3 p3 t4

tp1

tp2

tp3

2

Figure 2.3: The Petri net from Figure 2.1, modified in order to answer coverability
queries via reachability queries. The newly introduced transitions tp1 , tp2 ,
tp3 are drawn in orange.

necessary to execute the run with just the original transitions. An example for the
reduction is shown in Figure 2.3.
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Let us briefly define some additional problems on Petri nets which have been
considered in the literature:

— Quasi-liveness 1 [87, Section IV.C]: We say that a transition t is quasi-live from
marking S if and only if there exists a marking M such that S ∗−→ M and
M enables t. We further say that a net N is quasi-live from a marking S if
all transitions of N are quasi-live from S. Quasi-liveness can be reduced to
coverability.

— Liveness [87, Section IV.C]: A transition t is live from marking S if and only if
t is quasi-live from all markings M such that S ∗−→ M. A net N is live if and
only if all its transitions are live. Liveness is interreducible with the reachability
problem, and thus is Ackermann-complete [62, Theorem 1].

— Boundedness [87, Section IV.B.]: A net N is bounded from a given marking S
if there exists some b ∈ N such that for all M, S ∗−→ M implies M(p) ≤ b for
all p ∈ P . Boundedness is EXPSPACE-complete [77, 91].

The focus of this thesis in the context of Petri nets lies on coverability and reach-
ability problems. To justify this focus, in the following we take an in-depth look at
two applications of coverability and reachability.

2.2 Applications

We explore two applications of Petri nets, one widely mentioned in the literature,
and one more recently introduced. This section is based on the presentation in [20,
Appendix A], which is part of an extended version of [21], a paper authored by the
thesis author and colleagues. A survey of additional classical applications of Petri
nets can be found in [87].

2.2.1 Concurrent Program Analysis

The first application we discuss concerns concurrent program analysis.
Let us consider the short program given in Figure 2.4. If we assume only one thread

at a time executes fun, it is clearly impossible to reach the error state. However,
1. In [87], this property is called L1-liveness.
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def fun()
1 s = 1
2 s = 0
3 if s == 1:
4 raise Err()

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Figure 2.4: An example of how a Petri net can be used to model a program. Top: A
simple program, meant to be executed by many threads simultaneously.
Bottom: A Petri net representing the program. It holds that an error
can occur in the program if and only if from marking {s == 1 : 1} or
{s == 0 : 1} we can cover the marking {Err : 1}. Colors have no
semantic meaning, and only serve to enhance the presentation.

we are interested in the case where s is a shared Boolean variable (with arbitrary
initial value), and arbitrarily many threads may run the program at once, with no
guarantee on the ordering of the execution between the threads. Then it is clear that
even two threads running the program concurrently suffice to produce an error. One
thread may execute Lines 1 and 2 and before it executes Line 3, the other thread may
execute Line 1, which means if the first thread now executes Line 3, the value of s
will be 1 and the thread will reach Line 4.

Our goal is to algorithmically answer the question "Can an error be thrown in the
program?". In 1992, German and Sistla [61] have shown that checking safety proper-
ties for systems in which an unbounded number of non-recursive Boolean programs
are run in parallel reduces to checking coverability in a Petri net. Let us continue our
example and take a look at what the Petri net for the program of Figure 2.4 looks
like.

The Petri net at the bottom of Figure 2.4 models the program, and it is constructed
after the procedure from [61]. The two places s == 1 and s == 0 are used to hold
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the current value of the shared variable. The structure of the net ensures that the
number of tokens among these two places never changes. So if we start with one
token in either of the places, we will always remain with one token among the two
places. In general, one can think of this as a type of one-hot encoding, that is, we
view the possible values for the shared variable as a binary vector, where exactly one
component is set to 1. Then it is easy to see how to handle not only binary variables,
but variables with any finite number of possible values.

Further, there is one place for each line of the program. Intuitively, each token
in such a place corresponds to one thread that is currently waiting to execute the
respective line. As such, when a line reads or writes the value of a variable, there
needs to be one transition per possible value of the variable that models the behaviour
when a thread executes the line. For example, a token in loc1 may move to loc2 by
taking the token for s from its current place and putting it into place s == 1. This
corresponds to executing Line 1 of the program, which sets s to 1. Further, to model
that an arbitrary number of threads may nondeterministically execute the program,
we have the transition fun(), which simply adds a token in the place for Line 1.
This corresponds to a new thread starting its execution of the program. Therefore,
we do not need to a-priori restrict the execution to a particular number of threads.

By construction, it holds that an error may occur in the execution of the program
if and only if from the marking {s == 1 : 1} or {s == 0 : 1} we can cover the
marking {Err : 1}.

2.2.2 Program Synthesis

An application that was introduced relatively recently is the use of Petri nets
for component-based synthesis [57]. In this task, we are given an API composed
of functions and their type signatures, but no insight into the semantics of these
functions. Our goal is to use the functions in the API to synthesize a non-branching
function which satisfies a given target type signature and which should pass a set of
given unit tests.

As a concrete example, let us consider the java.awt.geom library, of which
we show an excerpt in Listing 2.1. Let us consider the target signature Area
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java.awt.geom
new AffineTransformation()
Shape Shape.createTransformedShape(AffineTransformation)
String Point2D.ToString()
double Point2D.getX()
double Point2D.getY()
void AffineTransformation.setToRotation(double, double, double)
void AffineTransformation.invert()
Area Area.createTransformedArea(AffineTransformation)

Listing 2.1: A small sample of methods from the library java.awt.geom.

rotate(Area area, Point2D p, double angle). Naturally, we want our
synthesized function to rotate the area around point p by an angle of angle. An
implementation of the function is shown in Listing 2.2. It makes use only of the
methods in the java.awt.geom library, and it needs no branching or recursion.

1 Area rotate(Area area, Point2D point, double angle) {
2 AffineTransform at = new AffineTransform();
3 double x = point.getX();
4 double y = point.getY();
5 at.setToRotation(angle, x, y);
6 Area result = area.createTransformedArea(at);
7 return result;
8 }

Listing 2.2: One possible implementation of the function Area rotate(Area
area, Point2D point, double angle) using methods from
the java.awt.geom library. Adapted from [57].

AffineTrans

Shapedouble

Point2D AreaString

setToRotation

3

invert

createTransShape

toString

getXgetY createTransArea

new AffineTrans copyAffineTrans

2

copyArea2
copyShape

2

copydouble 2

copyPoint2D

2

copyString

2

Figure 2.5: A Petri net modelling the API of Listing 2.1. Adapted from [57].
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In [57], the authors propose modelling the API as a Petri net, in order to construct
program sketches that type-check. The Petri net corresponding to the excerpt of the
java.awt.geom library in Listing 2.1 is shown in Figure 2.5. Let us describe the
construction in some detail. Each type that occurs in the API is represented by a place
in the Petri net. Methods of the API are modelled as transitions of the net. First,
note that a method of a class can be seen as a function taking one object of that class
as an additional input. For example, the method double Point2D.getX() can
be seen as a function double getX(Point2D). So in words, the function takes
one Point2D as an input, and returns one double. We model this in the Petri
net as a transition consuming one token from Point2D and producing one token in
double. Note that this does not yet accurately model the behaviour in the API,
since the Point2D is in reality not consumed - as seen in Listing 2.2, we may call
getX as well as getY on the same object. We model this by adding copy transitions,
which take one token from any place and put two tokens back into that place.

The initial marking corresponds to the input parameters of the target signature,
so as we want to synthesize a program with the signature Area rotate(Area,

Point2D, double), the initial marking M puts one token each into the places
Area, Point2D and double. Following the same logic, the target marking M′ is
the marking with a single token in Area, since our function returns one object of that
type. Now, witnesses for reachability from M to M′ correspond to program sketches
that typecheck.

Of course, finding typechecking program candidates is only the first step in the
synthesis of programs. Further steps involve determining which variable should be
used as which input, since tokens do not keep identities of any form. For example,
when we have two variables of type Point2D, and the Petri net uses transition GetY,
it is not clear which variable we should apply the function to. Further, program
candidates need to be tested (and discarded if they fail to pass the provided unit
tests). Solving this is out of scope for us, but more detail can be found in [57].
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2.3 Petri Net Relaxations

As pointed out in Section 2.1, the reachability and the coverability problems
both have prohibitive complexity, despite being decidable. This has sparked the
development of so-called relaxations of Petri nets.

Intuitively, reachability and coverability are hard in Petri nets due to two reasons:

1. Markings must be non-negative, that is, we cannot fire transitions that are not
enabled.

2. Transitions must be fired fully, that is, we cannot fire transitions by a fraction.

If we relax either or both of these requirements, we obtain an overapproximation of
reachability. Every marking that is reachable under the normal Petri net semantics is
reachable in the relaxation. This can be useful to quickly rule out reachability/cover-
ability for some cases in practice: If a given target marking is unreachable/uncoverable
under relaxed reachability, it surely is unreachable/uncoverable under the standard
reachability semantics. However, the converse is not true, as the relaxed reachabil-
ity semantics may allow markings to be reachable that are unreachable under the
standard semantics.

Helpfully, the reachability problem in these relaxations is not only decidable, but
has much lower complexity than standard reachability. In the following, let us describe
the various relaxations in more detail.

2.3.1 Continuous Petri Nets

The first relaxation we present is to allow transitions to be fired by fractional
amounts. We simply redefine the step relation →, as well as the domain of markings.
To do so, let us define the domain of markings as QP

≥0, that is, mappings of places
to rational numbers. Further, for a transition t and β ∈ (0, 1], we define continuous
reachability, denoted as →Q≥0 , such that M βt−→Q≥0 M′ holds if and only if M ≥ β · •t

and M′ = M + βδδδt, where M, M′ ∈ QP . Intuitively, when we fire a transition
this allows us to scale it by a factor β ∈ (0, 1], but we still have to ensure that the
token count remains nonnegative after we remove the tokens according to the guard.
Consequently, a continuous run is a sequence β1t1 . . . βntn where βi ∈ (0, 1] and ti is
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p2t1

p1

t2 p3

t3
p4

2

Figure 2.6: An example of a Petri that that behaves different when viewed as a con-
tinuous Petri net. When we view it as a normal Petri net, from initial
marking {p1 : 1} we can fire only either t1 or t2, and the marking {p4 : 1}
is unreachable. However, when we treat it as a continuous Petri net, then
we can reach the marking {p4 : 1} by firing 0.5t1, 0.5t2 and 0.5t3 in this
order.

a transition for all i.
A continuous Petri net is a Petri net where we use the step relation →Q≥0 . An

example of a Petri net which behaves differently when viewed as a continuous Petri
net is shown in Figure 2.6. The initial marking is {p1 : 1}. When we treat the net
as a normal Petri net, then only either t1 or t2 may be fired, but not both. However,
when we treat it as a continuous Petri net, the marking {p4 : 1} is reachable, since

{p1 : 1} 0.5t1−−→Q≥0 {p1 : 0.5, p2 : 0.5} 0.5t2−−→Q≥0 {p2 : 0.5, p3 : 0.5} 0.5t3−−→Q≥0 {p4 : 1}.

The model was first introduced with a slightly different definition by Alla and
David in 1987 [38]. In 2013, Fraca and Haddad [58] provided complexities for many
interesting problems in continuous Petri nets. Reachability and coverability are both
P-complete. However, it is not clear whether the given polynomial-time algorithm is
indeed the best way to approach the problem. In [17], continuous Petri net reach-
ability is efficiently encoded as a logical formula. While the fragment of logic used
cannot be solved in polynomial time, it appears that for practical purposes, it is more
efficient, presumably due to the impressive performance of logic solvers like Z3 [86].
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p2t1 t2
p1 p3

2

Figure 2.7: An example of a Petri which allows different behaviour under the seman-
tics where we allow negative token counts. It holds that {p1 : 1} ∗−→Z {p3 :
1}. However, {p1 : 1} ∗−→ {p3 : 1} does not hold, that is, reachability does
not hold under the standard Petri net step relation.

2.3.2 Marking Equation over N

Here, we allow transitions to be fired even if their guard is not satisfied. Formally,
we define the step relation →Z such that M t−→Z M′ if and only if M′ = M +δδδt. We
also call this relation Z-reachability.

It is easy to see that for this step relation, the order in which transitions are fired
does not matter, only the overall effect of the transitions. This allows characterizing
reachability under this step relation as the existence of an integral solution to a system
of linear equations. For example, let us consider the Petri net from Figure 2.7, with
the depicted initial marking {p1 : 1}. Under the standard step relation, we are stuck,
since transition t1 can only be fired with two tokens in p1, and t2 required one token
in p2. However, under the step relation →Z, we have that {p1 : 1} t1−→Z {p1 : −1, p2 :
1} t2−→Z {p3 : 1}. In words, we can fire t1, which temporarily leaves us with −1 tokens
in p1, and afterwards firing t2 puts one token into p1, which means we end up with 0
tokens in that place.

Proposition 2: Reachability under →Z.

Given a Petri net N = (P, T, F ) and two markings S, T , it holds that S ∗−→Z T
if and only if the following equation with free variable σ⃗ ∈ NT has a solution:

T = S +
∑︂
t∈T

σ⃗(t)δδδt (2.1)
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This follows trivially from the definition of →Z.
We call Equation (2.1) the marking equation over N, which is also the name we

give the relaxation. This equation is a classical tool used to aid analysis of reachability
in Petri nets [52, 87].

Intuitively, we have one free variable per transition, and its value determines how
often we fire the corresponding transition. Since, as we pointed our earlier, the order
in which we fire transitions does not matter, this is all the information we need to
realize reachability over →Z. One important fact to keep in mind is that we choose
σ1 . . . σ|T | ∈ N to be natural numbers. This reflects the fact that we do not, as is the
case for continuous Petri nets, allow transitions to be fired in a fractional manner.

Equation (2.1) can be solved via integer linear programming, which is an NP-
complete problem. While NP-complete problems are sometimes seen as intractable
(since the general worst-case runtime of all known algorithms is exponential), recall
that we use this to approximate standard Petri net reachability, which is known to
be Ackermann-complete, which means there is still an enormous gap in complexity
between the two.

Further, let us define the notion of Z-boundedness, which applies the concept of
Z-reachability in the context of boundedness, as defined in Chapter 2. We say that
N is Z-bounded from a marking M if there exists b ∈ N such that M ∗−→Z M′ implies
that M′(p) ≤ b for any p ∈ P .

In fact, Z-boundedness is independent of the initial marking, as it is equivalent to
any sum of transition effects having at least one positive as well as no negative com-
ponents, regardless of the initial marking. However, for uniformity with boundedness,
we still define it in terms of a specific initial marking.

2.3.3 Marking Equation over Q≥0

The last relaxation is obtained when we allow both negative token counts and
firing transitions in a fractional manner. Essentially, we obtain a combination of the
two previously mentioned relaxations. Formally, we again define a new step relation
→Q: M t−→Q M′ if and only if there exists β ∈ (0, 1] such that M′ = M + βδδδt, and
we define the domain of markings as QP .
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This relaxation behaves almost exactly like the marking equation over N, with the
one difference being that we allow the transition multiplicity variables β1 . . . β|T | to
take on values from Q≥0 instead of from N. More formally, we restate Proposition 2
for this relaxation as follows:

Proposition 3: Reachability under →Q.

Given a Petri net N = (P, T, F ) and two markings S, T , it holds that S ∗−→Q T
if and only if the following equation with free variable β⃗ ∈ QT

≥0 has a solution:

T = S +
∑︂
t∈T

β⃗(t)δδδt (2.2)

Again, a proof is trivial by the definition of →Q.
Now, solving the equation given by the theorem amounts to linear programming,

which is P-complete.
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Chapter 3

Efficient Procedures for
Reachability in Petri nets using
Relaxations

In this chapter, we present the results of [21], a paper that resulted from a collab-
oration with my supervisor and another researcher. The paper was published in the
proceedings of TACAS’21. The main result is a novel approach to semi-decide reach-
ability and coverability in Petri nets, which is based on established directed search
algorithms like A∗. The motivation of moving to semi-decision procedures is that both
reachability and coverability have prohibitive complexity in general, as described in
Section 2.1. Below, we first give a brief introduction to the concept of directed reach-
ability, then we introduce heuristics to guide directed search on Petri nets that are
based on the relaxations of Section 2.3. Lastly, we present an experimental evaluation
of a prototype implementation of the proposed procedure, which was accepted as an
artifact at TACAS’21 [22].

3.1 Directed Reachability

In the literature, overapproximations of reachability have typically been used as
ways to ensure unreachability of a marking:
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Observation 4

If a marking is unreachable in an overapproximation of reachability, then it is
not reachable.

This insight immediately translates to coverability as well. One possible use of
this fact is that it is sometimes immediately possible to show that the target marking
is unreachable from the initial marking. For example, Esparza et al. implemented
this approach in the tool Petrinizer [52] to perform coverability analysis (but the
approach can be extended in a straightforward manner to handle reachability). With-
out further modification, this approach can however only decide negative coverability
instances, that is, those where the target marking cannot be covered.

One possible modification to mitigate this issue is to use the reachability over-
approximation as an oracle for pruning in the so-called backward algorithm. This
algorithm was introduced in 1996 by Abdulla et al. in their seminal paper on infinite-
state systems [7]. It can only be used to decide coverability, not reachability. The
backward algorithm relies on the fact that the set of target markings is upward-
closed, which means it is sufficient to store a set of minimal representatives (called
base) such that the union of the upward-closures of these representatives yields the set
of all markings that can cover the target marking. The upward closure of a marking
M is the set of all M′ with M ≤ M′. Intuitively, the algorithm has as an invariant
that in the i-th iteration, its set of representatives are the smallest markings from
which one can cover the target marking in at most i steps. By monotonicity of cov-
erability, all markings larger than any of the representatives can also cover the target
marking.

One problem of the backward algorithm is that the set of representatives can
grow doubly exponentially large [31]. To mitigate this, reachability overapproxima-
tions can be used as a powerful tool to ensure that the set of representatives is as
small as possible: If a representative cannot be covered by the initial marking in the
overapproximation, then it cannot be covered in the standard semantics, so we may
discard it. This approach was initially proposed in the thesis of Strazny [99]. However,
there only what we call static overapproximations are considered. These overapprox-
imations are typically fast to compute, but provide rather low accuracy. In 2016,
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3.1. DIRECTED REACHABILITY

Blondin et al. independently discovered this approach of combining the backwards
algorithm with pruning arising from overapproximations [17, 18], and it was later
refined by Geffroy et al. [60]. However, the authors use continuous Petri nets instead
of static overapproximations, which yields a more accurate heuristic with appreciable
complexity.

The existing approaches have two downsides. Because they use the backward
algorithm, they can only be used to decide coverability and are unable to decide
reachability. Further, they are tailored towards deciding negative coverability in-
stances, as pointed out in [17]. This leaves a large gap: overapproximations have
been shown to be useful for deciding coverability, but similar procedures are lacking
for reachability.

The work presented in the rest of this section aims to close this gap. Let us
introduce more formally how we define weighted graphs for the purpose of this section.

Formally, a labelled, weighted, directed graph is a tuple G = (V, A, E, µ) where

— V is a possibly infinite set of vertices,

— A is a finite set of actions that are used to label edges,

— E ⊆ V × A × V is the set of edges, and

— µ : E → Q>0 is the weight function mapping edges to their (positive) weights.

For technical reasons, we assume that the weight function has a minimum weight. A
path π of the graph is a sequence of nodes v1 · · · vn and actions a1 · · · an−1 such that
(vi, ai, vi+1) ∈ E for all i. Further, π is a path from v to w if v = v1 and w = vn. We
also define infinite paths: π is an infinite path if it is an infinite sequence of nodes
v1 · · · and actions a1 · · · where all finite subsequences are paths. We say that a (finite
or infinite) path is simple if it contains no node twice. In some graphs, the actions of
a path can be uniquely determined by its nodes or similarly, its nodes can be uniquely
determined by the initial node and the sequence of actions. If that is the case, we
may omit the redundant information, that is, we only list the nodes of the path or the
initial node and the actions of the path. We say the label of π is a1 . . . an−1. Further,
its weight is the sum of the weights of its edges, that is, µ(π) = ∑︁

1≤i<n µ(vi, ai, vi+1).
As an example, consider Figure 3.1. It shows a graph that models a maze with

walls. These walls are drawn as black lines, and serve only to illustrate the structure of
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Figure 3.1: A maze which serves as an example of a graph. Thick black lines serve
only to illustrate the structure of the maze, and do not belong to the
graph. Vertices are drawn in solid black, with vertice names in white.
The actions associated with edges are shown in colours: up in brown,
right in green, down in blue, and left in purple. Edge weights are drawn
next to the respective arrows, where we assume the weight is 1 if it is
omitted in the graph.

the graph, that is, they do not belong to the graph. The set of nodes is {0, . . . , 15} \
{1, 14}. There are four actions: up (colored brown), right (colored green), down
(colored blue), and left (colored purple). Each edge is labelled with an action, and
drawn in the corresponding color. We draw no number next to edges if their weight
is 1, otherwise we draw the respective number. To give an example of the definitions
of paths introduced above, the path π with nodes 0, 2, 6, 5, 9, 10, 11, 7, 3 and actions
right, down, left, down, right,right, up,up is a path from 0 to 3. Its weight is 2 + 1 +
1 + 1 + 1 + 1 + 1 + 1 = 9.

We define the distance distG(v, w) between two nodes v, w ∈ V of the graph G as
the weight of a shortest path from v to w, or distG(v, w) = ∞ if there is no such path.
In our example graph, distG(0, 3) = 7, since there exists a path with less weight than
the one we examined before, namely the path with nodes 0, 4, 8, 9, 10, 11, 7, 3.
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Computing the distance between two given nodes is an interesting problem on
graphs, with applications in artificial intelligence, logistics, network routing, and many
more [93]. Formally, we define the problem as follows:

Definition 3: Shortest path problem for graphs

Given a graph G = (V, A, E, µ), and nodes s and t, compute distG(s, t).

We are particularly interested in tackling the problem on infinite graphs, because
in general, Petri net reachability graphs can in general be infinite. Let us explain the
general algorithmic scheme for directed search, which is shared by all directed search
algorithms we investigate in this section.

In Algorithm 1, we show a sketch of a directed search algorithm. The algorithm
takes as an input a selection function S, whose purpose we will explain later, as well
as a graph G = (V, E), and start and target nodes s and t. It uses two auxiliary data
structures:

— A map g : V → Q≥0 ∪ {∞} which stores for each node the known shortest
distance from the start. Note that initially, we have only information about the
starting node s (which has distance 0 to itself), while we assume all other nodes
are unreachable, signified by assigning them distance ∞. As the algorithm
proceeds, more nodes will be found to be reachable, and their g-values will be
updated.

— A set F , also called frontier, which stores a set of candidate nodes that we wish
to expand next. Initially, s is the only candidate.

In each iteration, one node is chosen from the frontier in order to be expanded
next. How this is done is determined by the selection strategy. For instance, the
selection strategy might always choose the node most recently added to the frontier,
or the node with the shortest known distance from the start. Once a node v is
chosen to be expanded, the algorithm checks whether it is the target node. If not,
the algorithm then iterates over all the successors of v. A successor w is only added
to the frontier if its distance is improved by reaching it via v. Note that the first time
some node w is encountered, this is trivially true, since initially we define g(w) = ∞
for w ̸= s. One may wonder why we need to add nodes we have seen before to the
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3.1. DIRECTED REACHABILITY

Input: Selection function S, graph G = (V, E, A, µ), initial node s,
target node t

// map of nodes to the best currently known
distance from s

1 g := [s ↦→ 0, v ↦→ ∞ : v ̸= s]
// current frontier or workset of nodes

2 F := {s}
3 while F ̸= ∅ do

// choose the next node according to the
selection function

4 v := arg minw∈F S(g, w)
5 if v = t then return g(t)
6 for (v, a, w) ∈ E do

// expand v: go over all successors w of v
7 if g(v) + µ(v, a, w) < g(w) then

// we found a better way to go to w (via
v)
// → update the distance for w and add
it to the frontier

8 g(w) := g(v) + µ(v, a, w)
9 F := F ∪ {w}

// remove v from the frontier
10 F := F \ {v}

// frontier became empty without finding target
→ unreachable

11 return ∞
Algorithm 1: Directed search algorithm.
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frontier again. Intuitively, the first time we encounter a node, we may not do so via a
shortest path from the start. Thus, we may need to add a node to the frontier again
if we have found a better path to reach it since it was last expanded.

One important note is that whether the directed search algorithm is guaranteed
to compute a shortest path from start to target depends on the utilized selection
strategy. Let us survey some classical selection strategies from the literature.

Dijkstra’s Selection Strategy. If we choose our selection strategy such that it
picks the node with lowest g-value, that is, S(g, w) = g(w), we obtain Dijkstra’s
algorithm, introduced by Edsger W. Dijkstra in a short note [45]. Dijkstra’s algorithm
is guaranteed to find shortest paths. However, it is easy to see that it will expand all
nodes with distance strictly smaller than the target node.

For example, consider applying Dijkstra’s algorithm to the graph of Figure 3.1,
where the initial node is 0 and the target node is 3. In the first step, the frontier only
contains 0. The node will be expanded and its two successors 2, 4 are added to the
frontier. Further, g(2) = 2 and g(4) = 1. In the next step, the algorithm will choose
to expand node 4, since it has the lower g-value. Running Dijkstra’s algorithm will
output distance 7, stemming from the path 0, 4, 8, 9, 10, 11, 7, 3. However, all nodes
14 of the graph will need to be explored.

Greedy Best-First Strategy. Instead of choosing the node with the lowest known
distance from the start, we can choose the node with the lowest distance to the target.
This is called the greedy best-first strategy, which results in the Greedy Best-First
Search algorithm, or GBFS for short. Naturally, we do not know the distance to
the target accurately, but for many problem domains, we are able to estimate it.
We formally require a heuristic function h : V → Q≥0 which maps vertices to their
estimated distance to the target, and take S(g, w) = h(w).

One possible heuristic for the maze example from Figure 3.1 would be to use the
distance to the target node, assuming there are no walls. This can be computed
simply by summing the vertical and horizontal distance of the two nodes. In the
literature, this type of heuristic is sometimes called the Manhattan distance 1.

1. Named for the gridlike arrangement of streets in Manhattan.
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Figure 3.2: The graph of Figure 3.1 annotated with heuristic values. We draw the
Manhattan distance of nodes to the target node 3 in red in the top-left
corner of each node. For example, node 0 has estimated distance 3.

As an example, let us consider again the maze from Figure 3.1. In Figure 3.2, we
show the same maze, but where the Manhattan distance to node 3 has been annotated
in red in the top-left corner of each node. If we take s = 0 and t = 3, that is, we
start at s and want to go to t, the frontier after the first step will contain nodes 1
and 4. Since we estimate that the distance from node 2 to node 3 is 1, compared to
the estimation of 4 from node 4. So we will expand node 2. Running GBFS with
the Manhattan distance as heuristic will output distance 9, with the underlying path
being 0, 2, 6, 5, 9, 10, 11, 7, 3. It is easy to see that this is not a shortest path from the
start to the target. However, only 10 nodes will be explored (all but nodes 8, 12, 13
and 15).

A∗ Selection Strategy. The A∗ selection strategy again needs a heuristic function
h, defined in the same way as for GBFS. If we run the directed search algorithm with
this strategy, we call the resulting algorithm the A∗ algorithm.

The algorithm combines the advantages of Dijkstra’s algorithm with those of
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3.2. APPLYING DIRECTED SEARCH TO PETRI NETS

GBFS. It tends to need to explore few nodes, and if the heuristic function we choose
fulfills some simple criteria, it is also guaranteed to compute the optimal distance.
This selection strategy is defined as follows: We select the node v from the frontier
that minimizes g(v) + h(v), that is, we minimize the sum of the known distance from
the start to the node plus the estimated distance from the node to the target. For A∗

to be guaranteed to compute the optimal distance, it is required that for all v ∈ V ,
it holds that h(v) ≤ distG(v, t). Intuitively, we simply require the heuristic to never
overestimate the cost to the target. This is a rather natural condition, since many
heuristics are derived by removing or simplifying away obstacles. Recall the maze
example, where one natural heuristic is to take as an estimation the distance if we
assume there are no walls in the maze.

If a second mild condition holds, then it can even be shown that A∗ is guaranteed
to expand the fewest nodes out of a class of A∗-like algorithms [39]. This condition is
called consistency: For all (v, a, w) ∈ E, it holds that h(v) ≤ µ(v, a, w) + h(w).

As an example, let us again take the frontier after one iteration of the algorithm
when we start at node 0 and want to reach node 3. The two nodes in the frontier
will be 2 and 4, where g(2) + h(2) = 2 + 1 = 3 and g(4) + h(4) = 1 + 4 = 5. So the
A∗ algorithm will choose to explore node 2.

The A∗ algorithm has a long history of use, particularly in the field of artificial
intelligence. It was originally introduced by Hart, Nilsson and Raphael in 1968 [63]
in a seminal paper that has been cited in over 10,000 works. Since then, it has been
applied to robotic movement planning, logistics and network routing, among other
areas [93].

3.2 Applying Directed Search to Petri Nets

Next, let us show how directed search algorithms can be used to tackle the reach-
ability problem (and by extension the coverability problem) for Petri nets. Recall
that in this problem, we are given a Petri net N and two markings S, T , and the
goal is to determine whether S ∗−→ T . Recall further that we defined the reachability
graph of a Petri net as a graph where nodes are markings and where edges in the
graph correspond to reachability in one step in the Petri net. Then it is clear that
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the reachability problem for Petri nets can be reduced to the reachability problem in
the underlying reachability graph.

This insight has frequently been applied in the literature in order to approach the
reachability problem. One notable example is LoLA [95], where depth-first search is
used to solve reachability queries. Notably, this does not require a heuristic, and is
not guaranteed to terminate even if the target is reachable (recall that the reachability
graph is infinite in general). It has also been suggested in [100] to use A∗ to tackle
the reachability problem. However, they propose heuristics with which A∗ is not
guaranteed to compute an optimal distance. Similarly related, [41] suggests utilizing
the marking equation over Q to help find witnesses for reachability. However, it is
suggested to use an ad-hoc algorithm that is not guaranteed to return shortest paths.

In hindsight, this is an obvious gap in the literature which we close by system-
atically instantiating directed reachability algorithms with heuristics derived from
reachability overapproximations. In [21], we make the following key observation which
extends on Observation 4:

Observation 5

If a marking M is reachable from an initial marking in an overapproximation,
then the length of a shortest witnessing path in the overapproximation lower
bounds the length of a shortest path reaching M.

Essentially, this ensures that the distance in an overapproximation must be at most
the distance in the Petri net itself. The intuition behind the proof is that overap-
proximations only allow more behaviour, never less, so a path witnessing reachability
in the Petri net also witnesses it in the overapproximation. Note that this means we
can immediately derive a heuristic from a reachability overapproximation.

Let us define a distance under-approximation of a Petri net N as a function d :
NP × NP → Q≥0 ∪ {∞} such that for all markings M, M′, M′′ ∈ NP it holds that

— d(M, M′) ≤ distN(M, M′) and

— d(M, M′′) ≤ d(M, M′) + d(M′, M′′).

Then let us define the heuristic h(M) = d(M, T ), where T is the target marking.
Proving that h satisfies consistency, and thus guarantees optimality when used with
A∗, is straightforward.
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Proposition 6: [21, Reformulation of Proposition 1] †

The heuristic h is consistent.

Proof: Appendix A, Page 8

One natural next question is whether for our particular class of heuristics arising
from reachability overapproximations, we can make any guarantee about the perfor-
mance of greedy best-first search. Unlike Dijkstra’s algorithm and A∗, GBFS does not
guarantee termination when run on infinite graphs where the target is reachable. In
reality, our setting is such that termination is guaranteed. To show this, we introduce
the novel notion of an unbounded heuristic.

We say that a heuristic h is unbounded (for a given graph G) if for any infinite
simple path v1v2 . . . of G and for any bound b ∈ Q≥0, there is some index j such that
h(vj) ≥ b.

Theorem 7: [21, Theorem 1] †

Greedy best-first search always terminates when run with an unbounded heuris-
tic on a locally-finite graph in which the target is reachable.

Proof: Appendix A, Page 7

Intuitively, on any infinite path, an unbounded heuristic must reach arbitrarily
high values. If the target is reachable, it must be reachable via a finite path, on
which each node may have some arbitrarily large but fixed heuristic value. Thus, the
heuristic on any infinite path will at some point become larger than the heuristic for
the next node on the path to the target, thus we will eventually explore the path
to the target. Note that this intuitive argument relies on a subtle yet important
assumption: That the graph is locally finite, that is, each node has finitely many
incoming and outgoing edges. This assumption holds in our setting, since Petri nets
have finitely many transitions.

So GBFS is ensured to terminate for reachable targets, even on infinite graphs.
Now, all that is left is to show that for any Petri net, the heuristics arising from
reachability overapproximations are distance underapproximations, and that they are
unbounded.
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For G ∈ {Z,Q,Q≥0}, and a Petri net N = (P, T, F ), let us define the function
distG : NP × NP →G Q≥0 such that

distG(M, M′) = min

{︄
n∑︂

i=1
βiδδδi | β1t1 . . . βntn is a sequence s.t. M β1t1...βntn−−−−−−→G M′

}︄
.

For example, distZ is the distance in the reachability overapproximation over Z. We
claim that distG is a distance underapproximation.

Theorem 8: [21, Theorem 2] †

Let N be a Petri net and T the target marking. For G ∈ {Z,Q,Q≥0}, it holds
that distG is a distance underapproximation. Further, the heuristic hG(M) =
distG(M, T ) is unbounded.

Proof: Appendix A, Page 9, continued on Page 25

Proving the first part, that is, that distG is a distance underapproximation, is
straightforward. The proof of the second part is more technically challenging and
makes use of the fact that markings are elements of NP , thus well-quasi-ordered.
By well-quasi-orderedness, any infinite sequence of markings must contain an infinite
increasing subsequence, which, intuitively, corresponds to markings that must have
greater and greater heuristic distance from the target, which yields unboundedness
of the heuristic.

3.3 Experimental Evaluation

For the procedure presented in the previous section, a prototype implementa-
tion was developed in C#, with additional benchmarking infrastructure written in
python. The tool is called FastForward, and the artifact used for the evalua-
tion is publicly available [22]. The directed search algorithm, three different selection
strategies (Dijkstra’s Algorithm, GBFS and A∗) and three reachability overapproxi-
mations (Continuous Petri nets, marking equation over N, marking equation over Q)
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are implemented in it. We use the tool Gurobi 2 to compute both marking equa-
tions, since it is a state-of-the-art solver for (integer) linear programming that offers
an academic license. To decide reachability in continuous Petri nets, we use the Z3
SMT solver [86], a well-known state-of-the-art solver used across related fields [15].
FastForward also implements some minor technical optimizations, whose details
we omit here.

The rest of this section is structured as follows. First will be an overview of the
benchmark instances we evaluate our approach on. Second, we discuss the other tools
we compare with FastForward. Lastly, we show the results of our evaluation.

3.3.1 Benchmarks

For benchmarks, we used benchmarks from three different suites. The first suite,
called coverability, is collected from five different classical benchmark suites from
the literature [13, 47, 59, 68, 69] that have been used to evaluate many tools in the
past [19, 53, 60]. Since the novel aspects of our approach are tailored towards deciding
positive instances, we only use positive instances and omit the negative ones. As the
complexity of the Petri net reachability problem is so high, focussing on positive
instances like this is a reasonable restriction, as the approach may be run in parallel
with one specializing on negative instances.

A second suite originates from queries used in program synthesis with Petri
nets [57]. This suite contains instances with very high branching factors, that is, high
average out-degree of the nodes in the expanded region of the reachability graph.
Each instance has between 23 and 187 unguarded transitions. These can all natu-
rally always be fired, so each corresponds to one outgoing edge from all markings.
Further, markings tend to enable some unguarded transitions too. For example, the
initial markings have out-degrees ranging from 30 to 300. To put these numbers into
perspective, Chess and Go have similar branching factors. These are two games that
have in the past been viewed as major challenges for artificial intelligence due to their
large search spaces. For Chess, the average branching factor is roughly 35, while for

2. Gurobi can be found at http://www.gurobi.com (accessed on February 6th, 2023). For
this work, we utilized Gurobi version 9.0.2, released in April of 2020, which was the most recent
version at the time.
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Go it is around 350 [93].
Lastly, the third suite consists of reachability instances derived from the cover-

ability instances in the first suite. This was done in order to lay a greater focus
on the reachability problem, as our approach is one of the few to handle not only
coverability, but also reachability queries. To obtain somewhat realistic reachability
instances which are as close as possible to queries that might be interesting in prac-
tice, we used a simple procedure. For each of the five suites forming the whole of our
coverability instances, we picked the largest quarter of nets and performed random
walks of lengths 20, 25, 30, 35, 40, 50, 60, 75, 90 and 100. Each time, the resulting
marking was saved as the target, so we generated ten reachability instances for each
of the coverability instances. Afterwards, we removed all instances where any tool
reported a shortest path of length 20 or less. This was done because even with long
random walks, the distance to the target tends to be small, and many of the instances
turned out to be trivial. By removing those instances with very short witnesses, we
can ensure that we end up with a benchmark suite of the most challenging instances.

The following table summarizes the three benchmark suites:

Suite Size
Number of places Number of transitions

min. med. mean max. min. med. mean max.

coverability 61 16 87 226 2826 14 181 1519 27370

sypet 30 65 251 320 1199 537 2307 2646 8340

random walks 127 52 306 531 2826 60 3137 5885 27370

3.3.2 Tool Overview

On reachability instances, there are two possible competitors. The first is
LoLA [95]. This is a tool that has been in development for over 20 years, and
continues to compete with great success in the Model Checking Competition, with
the category most relevant for our comparison being the reachability category. In that
category, LoLA has achieved second place in each of the past three years 3. The sec-
ond tool is KReach [46], a recent implementation of Kosaraju’s classical algorithm

3. The results of the Model Checking Competition can be found at https://mcc.lip6.fr/
2022/ (accessed on February 6th, 2023)
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for Petri net reachability. As the algorithm is complete, it has impractical worst-case
runtime, and in our evaluation, KReach could not solve a single instance. Therefore,
we omit it from the results here.

For coverability instances, there is more tool support. We compare our implemen-
tation to four tools that implement algorithms tailored towards coverability:

— LoLA [95], which uses a dedicated coverability algorithm when run on cover-
ability instances;

— BFC [69], a tool implementing an approach based on so-called widening;

— ICover [60], a tool using the backward algorithm for well-structured transition
systems together with pruning based on continuous Petri net reachability;

— mist [59], where we choose to run its backward algorithm (which itself is based
on [7]).

For FastForward, our preliminary evaluation suggested the heuristic with the
best trade-off between computational effort and accuracy to be the marking equation
over Q, that is, the marking equation over the rationals. Therefore, we decided to
include three instantiations of FastForward:

— FF(A∗, Q≥0) denotes FastForward with the A∗ selection strategy and reach-
ability over Q as heuristic;

— FF(GBFS, Q≥0) denotes FastForward with the greedy best-first selection
strategy and reachability over Q as heuristic; and

— FF(Dijkstra) denotes FastForward with Dijkstra’s selection strategy.

3.3.3 Results

Figure 3.3 shows the results on the coverability suite. The x-axis shows the
time t, while the y-axis shows the number of instances decided after time t. Let us
discuss the plot in some detail. Firstly, FastForward needs several hundred mil-
liseconds to decide even trivial instances. This is regardless of the selection strategy,
and holds true even for Dijkstra’s. This could point towards a lack of optimization in
parsing the nets, which can even take a majority of the time for very small examples.
However, disregarding the first 0.5 seconds, we can clearly see that FastForward
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performs well. At the end of the one-minute timeout, FF(A∗, Q≥0) has solved the
most instances, totalling two more than Bfc, the next closest competitor. No other
tool comes close to either of these two. As one might expect, Dijkstra’s selection
strategy has troubles finding targets that are trivial for FF(A∗, Q≥0) and FF(GBFS,
Q≥0) to find. However, Dijkstra’s selection strategy decides more instances than
FF(GBFS, Q≥0) after one minute. One possible reason for this behaviour is that
GBFS might get mislead for many iterations if the heuristic is particularly far off
on one net, but for many nets where the heuristic is good, it can find a path very
fast. One very encouraging fact is that even though FastForward is not using an
algorithm specifically tailored towards coverability instances, which the other tools
do, it still manages to obtain very competitive performance on these instances.

Figure 3.4 shows the results on the sypet suite. Here, LoLA is the only com-
petitor (as KReach was excluded), but it is immediately clear that its performance
on this particular suite cannot match even that of Dijkstra’s algorithm. We see again
that FF(A∗, Q≥0) decides the most instances. The difference to FF(GBFS, Q≥0) is
small, however.

Figure 3.5 shows the behaviour on the random walks benchmark suite. Note
that for this plot, both axes are in log-scale. Here, the approach with the best
performance is FF(GBFS, Q≥0), with no other approach deciding even one tenth
as many instances. LoLA again decides the fewest instances. One explanation for
the particularly good performance of FF(GBFS, Q≥0) might be that this benchmark
suite was specifically engineered to have long shortest paths (recall that we discarded
instances where a shortest path is known to have length 20 or less). Such long paths
are less typical for the other benchmark suites.

Lastly, let us conclude by discussing the relationship between the tool used and
the optimality of the witness that is returned. Figure 3.6 shows the length of the
returned witness, compared to the actual shortest witness. Naturally, we omit tools
that guarantee shortest witnesses (among the tools we benchmarked, those are FF(A∗,
Q≥0), FF(Dijkstra), and mist). ICover is left out because it does not return a
witness nor its length, instead returning only true or false, depending on whether
the target is coverable. So the only three tools that return witnesses, but are not
guaranteed to return shortest ones by design are FF(GBFS, Q≥0), LoLA and Bfc.
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One minor caveat is that Bfc uses a different format which introduces additional
transitions and which might lead to it returning witnesses that are optimal in its
translated setting, but suboptimal in the actual Petri net.

In the figure, a value at y = 0 means that the returned witness was optimal, while
high values mean that it was much longer. The figure shows that while all tools,
FF(GBFS, Q≥0) in particular, occasionally return shortest paths, this is far from
guaranteed. The largest difference between the length of the returned witness and a
shortest one is for a witness returned by LoLA, where LoLA returned a witness that
is 53 transitions longer than an optimal one. For a different perspective, LoLA was
able to return a shortest witness on 28 out of 43 instances, while FF(GBFS, Q≥0)
returned a shortest witness on 60 out of 83 instances. Note that the number of total
instances differs between the two as we only count instances where a shortest witness
is known, that is, where an approach terminated that guarantees a shortest witness.
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Chapter 4

Workflow Nets and Soundness

Aside from verifying and synthesizing software, one of the most impactful appli-
cations of Petri nets is in modelling and verifying business processes, sometimes also
called workflows. An example of a workflow could be the process used by a company
to deal with incoming applications. Once an application is received, in parallel the
legal department checks whether the applicant fulfils the legal requirements to be
employed by the company, and the hiring manager checks whether the applicant is
a suitable candidate. Once both the legal department and the hiring manager have
done their checks, a decision is made: The candidate is either accepted, rejected,
or no clear decision can be made, and the application undergoes another round of
review.

The importance of these processes is illustrated by the wide variety of lan-
guages that exist to model them: among others, workflows can be modelled using
YAWL [103], BPMN [44], EPC [94], and UML activity diagrams [49]. Apart from be-
ing manually generated by human process designers, such models are also generated
automatically, for example by taking so-called event logs and deriving a workflow
model for them using process mining [101]. While different modelling languages have
different levels of expressiveness, they all essentially focus on being able to express
concurrent and sequential execution of tasks.

Many formalisms for modelling workflows can be translated into a special type of
Petri nets called workflow nets, which very naturally capture many of the primitives
available in the modelling languages mentioned earlier [43, 44, 72]. Consequently,
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Recheck
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Figure 4.1: An example of a workflow net that represents an application process.
When an application is received, first the legal requirements to employ the
candidate, and the suitability of the candidate are checked in any order.
Then, a decision is made, which can be to either accept the candidate,
reject the candidate, or to check the application again.

Petri net-based techniques are ubiquitous in many tools for the modelling and analysis
of business processes and workflows [14, 104, 105].

Formally, a workflow net N = (P, T, f) is a Petri net that additionally satisfies
the following conditions:

— There exists an initial place i ∈ P such that f(t, i) = 0 for all t ∈ T ,

— there exists a final place f ∈ P such that f(f, t) = 0 for all t ∈ T ,

— in the graph (V, E) with vertices V = P ∪ T and edges E{(u, v) | f(u, v) > 0},
any vertex lies on a path from i to f.

Intuitively, i signifies the start of the process, and f signifies the end.
A workflow net for the example of a company processing job applications, as de-

scribed above, is shown in Figure 4.1. The transitions are labelled with the names of
tasks they represent. When starting the process, thus from marking {i : 1}, one pos-
sible behaviour would be firing tReceive application, tCheck legal, tCheck suitability, and tAccept,
which ends in marking {f : 1}.

However, not all workflow nets are well-behaved. For example, consider the
net shown in Figure 4.2. From marking {i : 1}, it enables firing the transition
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Figure 4.2: A slightly altered version of the net in Figure 4.1 which had one of the
outgoing arcs of transition tRecheck removed. This net is not k-sound for
any k ∈ N, and thus neither generalised sound nor structurally sound.

sequence tReceive application, tCheck legal, tCheck suitability, tRecheck, tCheck legal, which leads to
marking {p1 : 1}. From that marking, no more transitions are enabled. This seems
like defective behaviour: The process can never end correctly, since it is impossible
to reach the marking {f : 1}, which corresponds to the end of the process. To avoid
such defective behaviour, we introduce here a correctness condition for workflow nets
called k-soundness, which was originally defined by van Hee et al. in [64].

Definition 4: The k-soundness Problem for workflow nets [64, Defini-
tion 3]

A workflow net is k-sound if and only if for any M such that {i : k} ∗−→ M, it
holds that M ∗−→ {f : k}.

A slight variation of 1-soundness, named here classical soundness, is also presented
in the literature. It is satisfied for a workflow net N = (P, T, f) if and only if N is
1-sound, and that further each transition is quasi-live from {i : 1}.

It turns out that 1-soundness reduces to classical soundness by an exponential-
time procedure. For each transition t of net N , we can check whether the marking
•t is coverable from {i : 1}. This is equivalent to checking whether a marking which
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Figure 4.3: A workflow net N ′ which is k-sound if and only if the net N , shown in
color, is 1-sound.

enables t is reachable from {i : 1}, thus checking quasi-liveness of t. Then we can
remove transitions for which this is not the case, since they are never enabled in any
marking from the initial marking, and thus we are left with a net where classical
soundness holds if and only if 1-soundness holds.

Let us also briefly argue why k-soundness can be reduced to 1-soundness. Given a
workflow net N for which we want to check k-soundness, we can construct a workflow
net N ′ that is 1-sound if and only if N is k-sound by adding two places i′ and f′

and two transitions ti and tf. We further adjust f by adding f(i′, ti) = f(tf, f′) = k

and f(ti, i) = f(f, tf) = 1. Note that for N ′, the initial and final place are i′ and
f′. Then note that {i′ : 1} ti−→ {i : k} and {f : k} tf−→ {f : 1}. Figure 4.3 illustrates the
construction.

We can similarly reduce 1-soundness to k-soundness by reusing the same construc-
tion, but having instead f(i′, ti) = f(tf, f′) = k and f(ti, i) = f(f, tf) = 1, thus the
problems are interreducible.

The parameterized nature of k-soundness immediately gives rise to two related
properties, called generalised soundness and structural soundness.

Definition 5: The generalised soundness problem for workflow nets
[64, Definition 3]

A workflow net is generalised sound if and only if it is k-sound for all k ≥ 1.

Definition 6: The strucural soundness problem for workflow nets [36]

A workflow net is structurally sound if and only if there exists a k ≥ 1 such
that it is k-sound.
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Figure 4.4: A workflow net modelling the distribution of a single task among two out
of three resources. The net is 1-sound, but not k-sound for any other k.
Thus, it is structurally sound, but not generalised sound.
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Let us demonstrate soundness on a few examples. The net in Figure 4.1 is k-sound
for all k, thus both generalised sound and structurally sound. Next, let us look at the
net in Figure 4.2 and show that it is not k-sound for any k. Recall we demonstrated
that {i : 1} ∗−→ {p1 : 1}, which is a deadlock and thus {p1 : 1} ̸ ∗−→ {f : 1}. Observe that
it follows that for any k, {i : k} ∗−→ {p1 : k}, which is also a deadlock. So {p1 : k} ̸ ∗−→
{f : 1}, thus the net is not k-sound for any k. So the net is neither generalised sound
nor structurally sound. Lastly, we take a look at the net in Figure 4.4. Observe that
the net is 1-sound: From the initial marking {i : 1}, the three transitions s1, s2 and s3

are enabled. If we fire si for some i, then afterwards only transition ei is enabled, and
firing it leads to the correct target marking {f : 1}. However, the net is not 2-sound.
Notice that

{i : 2} s1se−−→ {Assistant 1 : 1, Assistant 2 : 2, Assistant 3 : 1} e2−→ {Assistant 2 : 2, f : 1}.

Note that the final marking along this run is a deadlock, thus from that marking, we
cannot reach {f : 2}. So the net is not 2-sound, thus also not generalised sound.

All three soundness problems have received attention in the literature. The orig-
inal variant of soundness is classical soundness. The notion was first defined by van
der Aalst in [3], and already a characterization was given, which shows that classical
soundness is equivalent to boundedness and liveness of the so-called short-circuited
net. Given a workflow net N = (P, T, f), the short-circuited net Nsc is defined as
Nsc = (P, T ′, f ′), where T ′ = T ∪ {tsc}, and f ′(a, b) = f(a, b) for all a, b ∈ P ∪ T , and
additionally f ′(f, tsc) = f ′(tsc, i) = 1. Intuitively, the short-circuited net simply adds
a single transition, which consumes one token from the final place and puts one token
into the initial place. Note that the short-circuited net is not a workflow net, since
transition tsc violates the requirements that no transition consumes from f, and that
no transition produces in i.

Theorem 9: Characterization of classical soundness [3, Theorem 11]

A workflow net N is classically sound if and only if Nsc is live and bounded
from {i : 1}.

Let us give some rough intuition behind the result. If N is classically sound,
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then from any marking reachable from {i : 1}, we can reach {f : 1}. Then tsc can
be fired in Nsc, and we are back to the initial marking. So Nsc is live. Additionally,
assume for contradiction Nsc is not bounded from {i : 1}, but N is classically sound.
Because Petri nets have a finite number of places, unboundedness of Nsc from {i : 1}
is equivalent to having {i : 1} π−→ M π′

−→ M + M′ in Nsc, with M′ > 0⃗ and some runs
π and π′. Take the first time we fire tsc among the whole run ππ′. We either fire tsc

from {f : 1} to {i : 1}, in which case we can shorten the run to omit behaviour up to
that point since we are back to the initial marking, or we fire it from {f : 1}+N with
N > 0. In the latter case, we have {i : 1} ∗−→ {f : 1} + N in N , since we fired only
transitions that are also in N . However, f has no outgoing arcs by definition, and all
transitions need to be on a path from i to f, so in particular all transitions need to
have an outgoing arc. So intuitively, from {f : 1} + N , we cannot reach {f : 1}, thus
N is unsound. In case tsc does not appear in π and π′, all transitions of the run are
also available in N , thus we have {i : 1} π−→ M π′

−→ M + M′ in N . Since we assume
N to be classically sound, it must hold that M ρ−→ {f : 1} in N for some run ρ. It
follows that M + M′ ρ−→ {f : 1} + M′, and we can repeat the argument from above
to show that N is not sound, since in N from {f : 1} + M′ we cannot reach {f : 1}.

For the other direction, assume that for Nsc it holds that tsc is live and the net is
bounded from {i : 1}. By liveness of tsc, from any marking reachable from {i : 1} in
Nsc, we can reach a marking {f : 1} + M for some M ≥ 0⃗, since that is the only way
to enable tsc. We can then fire tsc to get back to {i : 1} + M. By repeating the run,
we get {i : 1} + M ∗−→ {i : 1} + 2M ∗−→ {i : 1} + 3M/cdots. The only way this does
not violate boundedness is to have M = 0⃗. Thus, from any marking reachable from
{i : 1} in Nsc, we can reach {f : 1}, which means N is classically sound.

The characterization shows decidability, since boundedness can be decided in EX-
PSPACE, and liveness is Ackermann-complete. However, the exact complexity of
the problem was left open, but suggested to be EXPSPACE-hard, though no proof
appears to the best of our knowledge. For example, in [6], it is mentioned that
“[...] soundness is decidable but also EXPSPACE-hard ([1])”, yet [1] merely states
that "it may be intractable to decide soundness. (For arbitrary [workflow]-nets live-
ness and boundedness are decidable but also EXPSPACE-hard [...])". Naively, one
could even expect the problem to inherit the Ackermann-hardness from liveness, but
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note that this is not necessarily the case. For example, for the subclass of free-choice
nets, testing liveness is coNP-complete [42, Theorem 4.28] and testing boundedness is
EXPSPACE-hard, but testing simultaneously liveness and boundedness can be done
in polynomial time [42, Corollary 6.18].

Generalised soundness was defined several years later by van Hee et al. in [64].
They were motivated by their observation that k-soundness is not compositional.
Observe that one can replace a transition in a workflow net by another workflow net,
and the result will again be a workflow net. However, even if both inputs are k-sound,
this does not necessarily result in a k-sound workflow net; thus k-soundness is not
compositional. Consider that in a k-sound net, it may be possible to fire a transition
twice in succession, which would input 2k tokens into the workflow net that replaces
the transition. Even if that net is k-sound, it may not be 2k-sound, so may be able to
get stuck and not reach the final marking. Thus, k-soundness is not compositional.
However, if both inputs are generalised sound, the result will be generalised sound
as well, thus generalised soundness is compositional in this regard. Decidability of
the problem was established in [65], but the paper does not give any bound on the
complexity.

For structural soundness, the situation is similar. The problem was first defined
in [12], and later shown decidable in [36], but no other complexity bounds are known.
In [36], the problem is motivated by noting that generalised soundness is a very
restricting requirement, and structural soundness can serve as a more permissive
variant. To summarize:

Observation 10

In the literature, it was shown that classical, generalised and structural sound-
ness have an Ackermannian upper-bound on their complexity, but no lower
bounds have been proven, leaving the complexity of all three problems widely
open.

Let us briefly introduce the notion of nonredundancy. We say a workflow net N is
nonredundant if for each transition t, there exists k ∈ N such that t is quasi-live from
{i : k}. This can be checked by using reachability over Z, and transitions for which
this does not hold can never be fired, no matter the initial number of tokens, so we
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Figure 4.5: An illustration of the free-choice property in Petri nets. Left, in red: A
Petri net that is not free-choice. Right, in green: A free-choice Petri net.

may simply remove them. We usually assume that workflow nets are nonredundant.
The high complexities associated with many decision problems on Petri nets have

sparked the search for subclasses that are expressive enough to model interesting and
complex systems, yet are easier to analyse than standard Petri nets. A particularly
notable subclass are free-choice Petri nets [42]. Intuitively, this subclass aims to
separate concurrency (cases where multiple transitions can occur in any order) from
choice (cases where only one of a set of transitions may occur).

Formally, a free-choice Petri net (P, T, f) is a Petri net where f(a, b) ∈ {0, 1} for
all a, b ∈ P ∪ T , and such that further for all pairs of transitions t1, t2 ∈ T it holds
that if there exists p such that •t1(p) = •t2(p) = 1, then •t1 = •t2. In words, the flow
function can only have values 0 or 1, and if two transitions both consume a token
from the same place, then their guards need to be identical.

Figure 4.5 illustrates the concept. The Petri net on the left-hand side is not
free-choice, as •u1(n1) = •u2(n1) = 1, but •u1(n2) ̸= •u2(n2). The Petri net on the
right-hand side is free-choice, since •v1 = •v2.

Free-choice Petri nets turn out to be far easier to analyse than standard Petri
nets for some properties: For example, in standard Petri nets, the liveness problem
is equivalent to the reachability problem [62, Theorem 1], thus Ackermann-hard [37],
but the same problem is coNP-complete in free-choice nets [42, Theorem 4.28]. It
turns out that reachability, however, remains as hard as in standard Petri nets, thus
Ackermann-hard.

Notably, soundness is known to be decidable in polynomial time for workflow nets
that are free-choice [3, Theorem 12]. This has led to intense study of free-choice
workflow nets, see for example [4, 51].
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Chapter 5

The Complexity of Soundness in
Workflow Nets

This section presents results from [25], a paper that resulted from joint work with
my two supervisors, and which was published in the proceedings of LICS’22.

There, we consider the three variants of soundness in workflow nets as defined in
Chapter 4, namely k-soundness, generalised soundness, and structural soundness. As
stated in Observation 10, the exact complexities of all three problems were left widely
open in the previous literature. Our three main results are that:

— k-soundness is EXPSPACE-complete,

— generalised soundness is PSPACE-complete, and

— structural soundness is EXPSPACE-complete.

As a corollary to the EXPSPACE-completeness of k-soundness, we obtain the same
complexity for classical soundness. We further show how to compute a representation
of the set of numbers for which a given net is sound in exponential time.

5.1 k-Soundness

We will focus on 1-soundness and classical soundness in this section, since k-
soundness can be reduced to 1-soundness, as demonstrated in Figure 4.3.
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Recall Theorem 9, which characterizes classical soundness in terms of liveness
and boundedness of the short-circuited net. Unfortunately, liveness is equivalent to
reachability in Petri nets, thus Ackermann-hard [37, 62].

Thus, we look to replace liveness with conditions that are easier to decide. We
make a simple observation relating classical soundness to quasi-liveness, boundedness
and cyclicity.

Let us briefly introduce the latter property. Cyclicity asks whether from a given
marking S, it is the case that from any marking M such that S ∗−→ M, it holds
that M ∗−→ S. The problem is EXPSPACE-complete. Membership was shown by
Bouziane and Finkel in 1997 [30], while EXPSPACE-hardness is folklore.

Lemma 11: [25, Corollary 3.4] †

A workflow net N is classically sound if and only if Nsc is bounded and cyclic,
and all transitions are quasi-live from {i : 1}.

Proof: Appendix B, Page 4

Proving the characterization is straightforward. The proof goes along the lines
of the intuition we outlined for Theorem 9, but the simple observation that liveness
can be replaced by quasi-liveness and cyclicity in this characterization is valuable:
Quasi-liveness and cyclicity are in EXPSPACE [30, 91]. For an intuition of why we
can replace liveness by cyclicity and quasi-liveness, it is the case that boundedness
together with liveness of tsc already imply cyclicity, and liveness on its own clearly
implies quasi-liveness.

The characterization extends to 1-soundness, up to a technical detail. A net N is
1-sound if and only if Nsc is cyclic and bounded and some transition of N consumes
exactly one token from i.

Lemma 12: [25, Lemma 3.3] †

A workflow net N is 1-sound if and only if Nsc is bounded and cyclic from
{i : 1}, and some transition t ∈ T satisfies •t = {i : 1}.

Proof: Appendix B, Page 4

Thus, we obtain the following result:
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Theorem 13: [25, Theorem 3.5] †

The 1-soundness and classical soundness problems are in EXPSPACE.

Proof: Appendix B, Page 4

Next, we turn to the lower bound. For hardness, we give the following result:
Theorem 14: [25, Theorem 3.10] †

The 1-soundness and classical soundness problems are EXPSPACE-hard.

Proof: Appendix B, Page 5, continued on Page 14

Let us give a very rough sketch of the proof strategy. We will give the intuition
behind the hardness of 1-soundness in the following, and later explain what needs to
be added to the reduction for classical soundness.

The reduction is from reachability in reversible Petri nets. A reversible Petri net
is a Petri nets such that for each transition t, there exists a transition treverse such that
•treverse = t• and t•

reverse = •t. Reachability in reversible Petri nets is EXPSPACE-
complete [34, 82].

In the following, let N = (P, T, f) be a reversible Petri net and let S, T be
markings. Our goal is to construct a workflow net N ′ such that N ′ is 1-sound if and
only if in N , S ∗−→ T . For now, let us start by taking N ′ = N , and in the following,
we are gradually going to describe the additions we make to N ′.

From the upper bound for reachability in reversible Petri nets, we extract a useful
lemma which places a bound on the number of tokens needed in markings along runs
to reach T .

Lemma 15: [82, Lemma 3]

Let n := size(N, S, T ). There exists cn ∈ 22O(n) such that if S ∗−→ T , then there
exists a cn-bounded run ρ such that S ρ−→ T .

Intuitively, a cn-bounded run is a run which has at most cn tokens per place in
each marking along the run. This simple statement allows a useful construction: For
each place p, let us add a "budget place" p′, where the number of tokens in p′ is how
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many more tokens can be present in p in a cn-bounded run. For ease of notation, let
us collectively refer to the set of budget places as P ′.

Defining the behaviour of P ′ more formally, we ensure that except during some
setup and final steps, for any reachable marking M the invariant M(p)+M(p′) = cn

holds. We achieve this as follows: initially, p′ = cn for p′ ∈ P ′. Further, for any
transition t ∈ T , we set f(p′, t) = f(t, p) and f(t, p′) = f(p, t). Thus, whenever a
token is added to p, one token is removed from p′. Similarly, whenever a token is
consumed from p, a token is added to p′.

For a marking M of N , let us denote as CM the marking of N ′ where for each
place p ∈ P , CM(p) = M(p), and CM(p′) = cn − M(p). Note that for any markings
M, M′ and any run π, M π−→ M′ in N if and only if CM

π−→ C ′
M in N ′.

We can have a transition that is enabled if and only if the current marking in P is
exactly T by having it consume CT . Then it is easy to imagine how we can continue
to construct N ′. We add two places i and f and two transitions ti and tf. Transition
ti consumes a token from i and produces the marking CS , and tf consumes CT and
produces a token in f. It holds that if S π−→ T in N , then {i : 1} ti−→ CS

π−→ CT
tf−→ {f : 1}

in N ′. Let us briefly argue why reversibility is important, and consequently why this
reduction does not work starting from an arbitrary Petri net. Assume that for some
marking M of N , it holds that S ∗−→ M and S ∗−→ T but M ̸ ∗−→ T . Then CS

∗−→ CM

and CM ̸ ∗−→ T . This would mean N ′ is unsound, even though S ∗−→ T in N . However,
note that the assumption is impossible by reversibility, since S ∗−→ M implies M ∗−→ S.
So if S ∗−→ T , then M ∗−→ T .

The construction is sketched in Figure 5.1. Note that we skip over one of the
main technical challenges here: We cannot simply write cn on arcs, as it is doubly-
exponential in the size of N , thus even when encoding arc weights in binary, this
would result in an exponential blow-up in the size of N ′ compared to N . Thus, we
need to construct a small gadget which produces cn, and further the gadget should
not automatically make N ′ violate soundness, which would for example be the case
if the gadget had a way to get stuck if transitions are fired incorrectly. Such a gadget
can be extracted from [82, Lemmas 6 and 8]. Very roughly, the idea is to use a set of
places to keep a state, meaning only one of multiple places has a token at the same
time, and to use other places to store a counter. Switching from one state to the next
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i f

p1

p′
1

p2

p′
2

ti

cn − S(p1)
cn − S(p2)

S(p1)
S(p2)

tf

T (p1)

T (p2)

cn − T (p1)

cn − T (p2)

Figure 5.1: A sketch of the reduction from reachability in reversible Petri nets to
1-soundness in workflow nets. We sketch a workflow net N ′ which is 1-
sound if and only if S → S ′ in the reversible Petri net N = (P, T, F ). In
the example, P = {p1, p2}. The original places are blue, their copies are
green, and other new places are red. We omit the transitions in T1 that
originated from T (recall that these transitions are modified to consume
and produce tokens also in green places). We only provide a rough sketch
by writing the intuitive meaning of the gadgets that add/remove cn tokens,
here drawn as orange arcs.

causes the number of tokens in the counter places to be multiplied, and switching back
is only possible when at the same time decreasing the number of tokens in the counter
places accordingly. Then, reaching the final state corresponds to having multiplied
the counter by the right number cn.

Finally, to adapt the construction to show hardness of classical soundness instead
of 1-soundness, we need to ensure that all transitions of N ′ are quasi-live if S ∗−→ T in
N . Let B be the maximal number of tokens consumed by any transition in T . Then
we ensure quasi-liveness by adding an alternative execution path consisting of two
transitions, tsimple and tsimple2. First, tsimple consumes a token from i and saturates
each place among P and P ′ with B tokens, thus enabling all transitions in T , and
then tsimple2 consumes B tokens from places in P and P ′ and produces a token in f.
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5.2 Generalised Soundness

Recall that for generalised soundness, we claim that it is PSPACE-complete. Let
us first show the membership result.

Theorem 16: [25, Theorem 5.1] †

Generalised soundness is in PSPACE.

Proof: Appendix B, Page 8

In the following, let N = (P, T, f) be a workflow net with initial place i and final
place f.

Recall the notion of Z-boundedness as defined in Section 2.3.2, which we will
use in the following. We are ready to outline our proof for PSPACE-membership of
generalised soundness, which proceeds in three steps.

We show that:

1. There exists a bound b ∈ N at most exponential in ∥N∥ such that if N is not
generalised sound, it holds that N is k-unsound for some k ≤ b [25, Lemmas
5.6 and 5.8].

2. For all k ∈ N, if N is Z-unbounded from {i : k}, then N is not generalised
sound [25, Lemma 5.9].

3. For all k ∈ N there exists a bound bk ∈ N at most polynomial in k + ∥N∥
such that if N is Z-bounded from {i : k}, then for any marking M such that
{i : k} ∗−→ M, it holds that ∥M∥ ≤ bk [25, Lemma 5.10].

Let us outline how the three points give us a polynomial-space algorithm for
deciding generalised soundness. Notice that by the first point, generalised soundness
is equivalent to k-soundness for all 1 ≤ k ≤ b. Thus, let us iterate over all such k and
check k-soundness for each. Note that as b is exponentially large, we can write it in
polynomial space by a binary encoding.

One might be temped to use the procedure for k-soundness as a black-box, but
recall that the problem is EXPSPACE-hard. Thus, we cannot use the existing proce-
dure, but we instead use some additional restrictions from the second and third point
to check k-soundness. Note that if any marking reachable from {i : k} has more than
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bk tokens in any place, then N is Z-unbounded from {i : k} by the third point, and
thus not generalised sound by the second point. Thus, we can iterate through all
reachable markings from {i : k}; if any are too big and have more than bk tokens
in any place, we know that N is not generalised sound. We have that bk is at most
polynomial in k+∥N∥+ |N | by the second point, and k is at most exponential in ∥N∥
by the third point. Thus, all reachable configurations can be stored in polynomial
space, and we get PSPACE membership.

Let us give the brief ideas behind the proofs of the three points:

Proof of 1.) The idea is to relate reachability with many tokens to reachability over Z [65,
Lemma 12], to relate reachability over Z to solutions of an integer linear pro-
gram [25, Claim 5.7], and lastly to use known results on the size of minimal
solutions to integer linear programs [25, Lemma 4.3].

Proof of 2.) If N is Z-unbounded from {i : k}, it is easy to show that under the mild technical
assumption of nonredundancy, this translates to unboundedness from {i : k+ℓ}
for some ℓ ∈ N. Intuitively, with enough initial budget, we can saturate the net
and transform a run that witnesses Z-unboundedness into one that witnesses
unboundedness. We can use Lemma 12 and the reduction from k-soundness to
1-soundness of Figure 5.4 to show that N is then not (k + ℓ)-sound, thus not
generalised sound.

Proof of 3.) The proof makes use of Steinitz Lemma [98]. We refer to [25, Lemma 4.5] for
the formal statement, and instead restrict ourselves to giving the intuition. A
graphical representation of the lemma can be seen in Figure 5.2. Intuitively, let
z be a point. Let x0, . . . , xn ∈ Zd be vectors such that ∑︁n

i=0 xi = z. Equivalently,
we can think that the vectors form a path from 0 to z. This is the initial situation
shown on the left-hand side of Figure 5.2. Then the vectors can be reordered
such that x0 remains the first vector, and further no intermediate point along
the path lies outside a band around the straight-line from 0 to z. Note that
after reordering, the vectors will still be a path from 0 to z, since reordering
does not change their sum. The width of the band depends polynomially on the
dimension d and the size of vectors xi, but crucially, neither on z nor n. Then
the idea is as follows: If {i : k} t1t2...tn−−−−→ M with ∥M∥ > bk, then the vectors
{i : k}, t1, t2, . . . , tn form a path from 0 to M. Intuitively, as M is large, many
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transitions must be used to reach it, so n must be big. Thus, there must be
many points on the path. However, we can reorder the vectors so that all points
are in a band of polynomial width around the straight line from 0 to M. With
enough points along the path, thus in the band, we will necessarily have two
points such that one is greater than the other, since the band itself has a positive
slope and is of limited width. Then the path of vectors between these two points
witnesses Z-unboundedness, since their sum is nonnegative on all components
and positive on at least one component. In the picture, after reordering, the
path that would witness unboundedness consists only of the vector x2, since it
is the first vector that causes a strict increase.

zx0

x1
x2

x3
x4 x5

x6
x7

x8

zx0

x5
x8

x7 x2

x3
x4 x6 x1

Figure 5.2: A visualization of Steinitz Lemma in dimension d = 2. The vectors
x0, . . . , xn ∈ Zd form a path from point 0 to point z. The colored back-
ground highlights points that are within some bounded distance from the
line 0 to z (the bound depends on d and xi, but not on z). In the right
picture, the vectors are reordered so that they all fit within the bound.
The additional constraints are that the first vector x0 remains first; and,
in some way, the points are getting closer to z.

Next, let us tackle PSPACE-hardness.
Theorem 17: [25, Theorem 5.11] †

Generalised soundness is PSPACE-hard.

Proof: Appendix B, Page 11, continued on Page 16

Here, we reduce from reachability in conservative Petri nets. We say that a Petri
net N = (P, T, f) is conservative if all transitions preserve the number of tokens in
the net. Formally, we require that for any pair of marking M, M′, if M ∗−→ M′,
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then ∑︁
p∈P M(p) = ∑︁

p∈P M′(p). Reachability in conservative Petri nets is PSPACE-
complete [83].

In the following, let us assume that N = (P, T, f) is a conservative Petri net, and
S, T are given markings. Then we will construct a Petri net N ′ = (P ′, T ′, f ′) such
that S ∗−→ T in N if and only if N ′ is generalised sound. Observe that it is easy to
rule out reachability when ∑︁

p∈P S(p) = ∑︁
p∈P T (p), as conservativeness of N means

that reachability does not hold. Thus, we can assume the markings have the same
number of tokens. For ease of notation, let us write c = ∑︁

p∈P S(p).
The intuition behind our construction of N ′ is that it is easy to reset N , since we

know that at any point in time, there are exactly c tokens. Thus, resetting means
collecting c tokens in a new auxiliary place, then consuming them and producing
again S.

i r f

p2p1 p3

ti
c

tS
c

tT

tp1tp2tp3

Figure 5.3: A sketch of the reduction from reachability in conservative Petri nets to
generalised soundness of workflow nets. We draw a workflow net N ′ which
is generalised sound iff S → T in the conservative Petri net N = (P, T, F ).
Here, P = {p1, p2, p3}, S = {p1 : 1, p2 : 1}, T = {p2 : 1, p3 : 1} and thus
c = 2. The original places are blue and the new places are red. We omit
the original transitions (from T ) in the picture.

Figure 5.3 shows a sketch of the construction. Let us give the idea behind it.
Transition tS consumes c tokens from place r and produces the initial marking S in
places from P , while transition tT consumes T from P and produces a single token in
f. It is easy to see that N ′ is 1-sound if and only if S → T in N , since the reset gadget
consisting of transitions tp1 , tp2 and tp3 can "clear out" N ′ if it reaches a configuration
from which T is not reachable, and put back S via transition tS . Thus, if S ̸→ T ,
then N ′ is surely not generalised sound, as it is not even 1-sound. On the other hand,
if S π−→ T for some π, then for k larger than 1, we can essentially play run π in N ′
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k times, and by a similar argument as for 1-soundness reset the net if we reach a
marking that cannot cover T .

5.3 Structural Soundness

We show that structural soundness is EXPSPACE-complete.
Theorem 18: [25, Theorem 6.1] †

Structural soundness is in EXPSPACE.

Proof: Appendix B, Page 11

The proof reuses some ideas from the upper bound for generalised soundness.
We establish a connection between Z-reachability and integer linear programs which
allows us to bound the size of the smallest number for which a net N is sound, if
there are any. That bound b is exponential in ∥N∥, thus we can write it in polynomial
space. Thus, it suffices to check k-soundness for all k ≤ b. Here, we invoke as a black-
box our previous result of EXPSPACE-membership of k-soundness, see Theorem 13.
If N is k-sound for any such k, it is structurally sound, otherwise it is not.

Theorem 19: [25, Theorem 6.4] †

Structural soundness is EXPSPACE-hard.

Proof: Appendix B, Page 12

We reduce from 1-soundness, which we have previously shown EXPSPACE-hard,
see Theorem 13. The idea of the reduction is straightforward. Take a net N for which
we want to check 1-soundness. We construct N ′ as a copy of N , and slightly modify it
to ensure it is not sound for any k ≥ 2; while not impacting 1-soundness. Then N ′ is
structurally sound if and only if N is 1-sound. The reduction is shown in Figure 5.4.

5.4 Characterizing the set of sound numbers

The final contribution to this chapter is to characterize the set of sound numbers.
For a workflow net N , we define SoundN = {k | N is k-sound}. We expand on an
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i f

N

tspoil

2

Figure 5.4: A sketch of the reduction from structural soundness to 1-soundness. We
show a workflow net N ′ which is 1-sound if and only if the net N , shown
in color, is 1-sound. However, N ′ is not k-sound for any k ̸= 1, regardless
of whether N is k-sound.

observation made in [36, Lemmas 2.2 and 2.3], and show that SoundN is closed under
subtraction with positive results, that is, for all a, b ∈ N with a > b, if N is a-sound
and b-sound, then it is (a − b)-sound.

As a corollary, we can give a characterization of SoundN .
Corollary 20: [25, Corollary 7.2] †

If SoundN ̸= ∅, there exist e ∈ N>0, ℓ ∈ N>0 ∪ {∞} such that SoundN=
{i · f | 1 ≤ i < k}.

We reuse ideas from the upper bounds for structural soundness generalised sound-
ness to give bounds exponential in ∥N∥ on the size of e and ℓ, respectively, and
compute them in exponential space by trying all possible candidates, due to the
EXPSPACE-membership of k-soundness.
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Chapter 6

Verifying Generalised and
Structural Soundness

We established exact complexity bounds for generalised and structural soundness
in Chapter 5, namely we have shown that generalised soundness is PSPACE-complete
and structural soundness is EXPSPACE-complete. As a consequence of the high
complexity of both problems, our upper bounds do not seem to yield practically
relevant decision procedures. Thus, the goal of this chapter is to develop semi-decision
procedures for generalised and structural soundness that are efficient in practice.

We present results from [27], which is a paper that resulted from joint work with
my two supervisors, and which was published in the proceedings of CAV’22. The
main contributions of the work are novel semi-decision procedures for generalised
and structural soundness, which are based on the Petri net relaxations introduced in
Section 2.3. We introduce a novel notion called continuous soundness which is a nec-
essary requirement for generalised soundness. We show that continuous soundness is
coNP-complete. For structural soundness, our main contribution is to relate a known
necessary requirement called structural quasi-soundness to reachability in continuous
Petri nets. Another major result of this work is that we show an equivalence of the
different soundness notions on free-choice nets. There, the notions of {k-, generalised,
structural, continuous} soundness are equivalent. Lastly, we evaluate a prototype im-
plementation of our approaches against existing tools for workflow nets, on a large
set of existing benchmarks and on new families of synthetic benchmark instances pro-
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posed by us. The prototype is an extension of this author’s tool FastForward and
was accepted as an artifact at CAV’22 [88].

6.1 Generalised Soundness

We state two necessary conditions for generalised soundness. One is Z-
boundedness, as defined in Section 2.3.2, and which we already showed to be a nec-
essary condition for generalised soundness in Section 5.2. Our contribution here is
to give a polynomial-time algorithm for checking whether for a net N , it holds that
there exists k ∈ N>0 such that N is Z-unbounded from {i : k}.

The second necessary condition we define is called continuous soundness, which
relates to continuous Petri nets as presented in Section 2.3.1. We show that continuous
soundness is coNP-complete.

6.1.1 Z-Boundedness

We have already shown that Z-boundedness is a necessary condition in Section 5.2.
It remains to establish the complexity of testing Z-boundedness. We make the
straightforward observation that Z-boundedness is independent of the initial marking.

Proposition 21: [27, Proposition 4] †

A Petri net N is Z-unbounded from a marking M if and only if there exists
M′ > 0⃗ such that 0⃗ ∗−→Z M′.

Proof: Appendix C, Page 8

It is easy to relate the fact that 0⃗ ∗−→Z M′ > 0⃗ to feasibility of an integer linear
program as done in Proposition 2. However, this yields an NP-procedure, as integer
linear programming is well-known to be NP-complete. We instead observe that we
can translate the condition into a linear program. Intuitively, we show that there
exists M′ > 0⃗ such that 0⃗ ∗−→Z M′ if and only if there exists M′′ > 0⃗ such that
0⃗ ∗−→Q≥0 M′′ [27, Proposition 5]. Recall that −→Q≥0 is reachability with negative
token counts and fractional transition firings as defined in Section 2.3.3. Reachability
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under −→Q≥0 can be formulated as a linear program by Proposition 3. Thus, Z-
unboundedness can be decided in polynomial time.

6.1.2 Continuous Soundness

We introduce a continuous variant of 1-soundness based on continuous reachability.
Definition 7: Continuous Soundness †

A workflow net N is continuously sound if for all markings M such that
{i : 1} →Q≥0 M, it holds that M →Q≥0 {f : 1}.

The formulation of continuous soundness looks slightly deceiving. One might
think that continuous soundness is related to 1-soundness, because it reasons about
markings {i : 1} and {f : 1}. Unfortunately, such a relation does not hold in general.
It is easy to construct a net that is 1-sound but not continuously sound, and likewise
a net that is continuously sound, but not 1-sound. However, continuous soundness is
a necessary condition for generalised soundness.

Theorem 22: [27, Theorem 1] †

If a workflow net N is continuously unsound, then it is also generalised unsound.

Proof: Appendix C, Page 8

A proof of the statement is straightforward. It relies on the fact that, given
markings M, M′, it holds that M ∗−→Q≥0 M′ if and only if there exists b ∈ N>0 such
that b · M ∗−→ b · M′.

Next, we establish the complexity of continuous soundness.
Theorem 23: [27, Theorem 2] †

Continuous soundness is coNP-complete.

Proof: Appendix C, Page 9, continued on Page 26

Membership in coNP is established by reducing continuous soundness to checking
inclusion in continuous Petri nets, which is known to be coNP-complete [18, Propo-
sition 4.6]. Intuitively, we check whether the set {M | {i : 1} ∗−→Q≥0 M in N} is
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included in the set {M | {f : 1} ∗−→Q≥0 M in N ′}. Here, N ′ is N where we flip the
direction of all arcs in the flow function, that is, f ′(a, b) = f(b, a).

Hardness is shown by a reduction from checking whether a Boolean formula given
in disjunctive normal form with three variables per clause (3-DNF) is a tautology,
which is a canonical coNP-complete problem. The reduction is adapted from [109,
Corollary 1], where it is used to show that deciding 1-soundness in acyclic and bounded
workflow nets is coNP-complete. We modify the reduction slightly to work for contin-
uous soundness. Thus, given a formula φ in 3-DNF, we aim to construct a workflow
net Nφ that is continuously sound if and only if φ is a tautology. The proof is similar
to the proof of the original reduction, but requires a more careful analysis of Nφ.
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Figure 6.1: A sketch of the reduction from tautology of 3-DNF formulas to continuous
soundness in Petri nets. We show a workflow net Nφ such that Nφ is
continuously sound iff φ = (x1 ∧ x2 ∧ ¬x4) ∨ (x1 ∧ x3 ∧ x4) is a tautology.
Places and transitions contain their names. Arcs corresponding to the first
and second clauses are respectively dotted and dashed. Transitions colored
green are responsible for guessing assignments; transitions in shades of
blue are responsible for checking whether the formula is satisfied; and
transitions colored red are responsible for cleaning up the net.

A sketch of the construction is shown in Figure 6.1. The idea of behind it is as
follows. Let us focus on the case where transitions are only fired fully, that is, with
weight 1, as it allows understanding the reduction more easily. Then, we can view
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runs in Nφ as proceeding in three phases:

— The run guesses an assignment to the variables of φ.

— The run checks whether any clause of φ is satisfied by the assignment, thus
whether the formula is satisfied.

— The run cleans up the net and reaches the correct final marking.

These phases are distinguished by distinct colors in Figure 6.1. Let us focus on
the case where transitions are always fired with weight 1 first. The green transitions
serve to guess an assignment for each variable, putting a token in pj,1 if variable xj

is assigned true, and a token in pj,0 if it is assigned false. Then, the blue transitions
serve to check whether a clause of φ is enabled. Each transition cj corresponds to one
clause cj, and consumes tokens from places according to the literals in cj. Thus, if no
clause is satisfied, and φ is not a tautology, we can reach a deadlock by guessing an
assignment that satisfies no clause, thus enables no transition cj. If some cj is enabled,
after firing it, the assignment places pi,?, pi,1 and pi,0 will be emptied and place ri will
carry a token for each variable xi occurring in cj, For each variable xi′ which does
not appear in cj, the assignment places corresponding to xi′ will still collectively hold
one token. No matter what assignment we guess for xi′ , we can move the token to
place ri′ by firing transition v′

i′,1 or v′
i′,0. Finally, we reach a marking that marks all

places ri, and fire tfin to reach {f : 1}. Showing that the reduction is correct even
when we allow firing transitions partially is more technical. It involves showing that
in any run, for each variable xi certain invariants hold on the numbers of tokens in
the places corresponding to xi.

Next, we show that not only is Z-boundedness necessary for generalised soundness,
it is also necessary for continuous soundness.

Proposition 24: [27, Proposition 7] †

Let N be a nonredundant workflow net and M be a marking. If N is Z-
unbounded from M, then N is not continuously sound.

Proof: Appendix C, Page 10

Conversely, continuous soundness is not necessary for Z-boundedness. Thus, we
can order our two necessary conditions by coarseness: Z-unboundedness is necessary
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for continuous soundness, which in turn is necessary for generalised soundness.

6.2 Structural Soundness

For structural soundness, helpful insights were presented in [36]. A straightforward
necessary condition stated there is structural quasi-soundness. We say that a workflow
net N is k-quasi-sound if {i : k} ∗−→ {f : k}. Further, N is structurally quasi-sound
if there exists a k ∈ N>0 such that N is k-quasi-sound. Clearly, k-quasi-soundness
is a necessary condition for k-soundness, and thus structural quasi-soundness is a
necessary condition for structural soundness [27, Proposition 8]. Our second obser-
vation is less straightforward. Let us define kN as the smallest number such that N

is k-quasi-sound or ∞ if N is not structurally quasi-sound. Then we observe that
structural soundness requires kN -soundness [36, Theorem 2.1].

In [36, Lemma 2.1], the problem of deciding structural quasi-soundness and com-
puting kN is reduced to Petri net reachability [36, Lemma 2.1]. We make the key
observation that it is not necessary to invoke Petri net reachability, but that we can
instead use continuous reachability to decide structural quasi-soundness.

Proposition 25: [27, Reformulation of Proposition 9] †

Let N be a workflow net. N is structurally quasi-sound if and only if
{i : 1} ∗−→Q≥0 {f : 1}.

Proof: Appendix C, Page 11

Further, it is not only possible to decide structural quasi-soundness via continuous
reachability, but we can use reachability relaxations to obtain lower bounds on the
size of kN . Using Z-reachability, let us define kN,Z as the smallest k ∈ N such that
{i : k} ∗−→Z {f : k}, or ∞ if there is no such k.

We similarly want to define kN,Q≥0 by making use of continuous reachability. How-
ever, we need an additional constraint on the run from {i : k} to {f : k}, since other-
wise if there exists a run π for k > 1, then scaling π with 1/k would yield a run from
{i : 1} to {f : 1}. To address this issue, we define kN,Q≥0 as the smallest k ∈ N such
that there exists a run π = β1t1 . . . βntn with {i : k} π−→Q≥0 {f : k} and such that for
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each t ∈ T ,
(︂∑︁

i∈{x∈1,...,n|tx=t} βi

)︂
∈ N. Intuitively, π can still fire transitions partially,

but we require that the total amount by which each transition is fired is a natural
number. We can show that kN,Z ≤ kN,Q≥0 ≤ kN , and similar to our approximations
for generalised soundness, we get a hierarchy of approximations for kN . Further, we
show that it is possible to compute kN,Z by solving an integer linear program, and
kN,Q≥0 by solving an existential mixed linear arithmetic formula [27, Proposition 10].

6.3 Free-Choice Workflow Nets

Recall that free-choice Petri nets, as introduced in Chapter 4, form a subclass of
Petri nets that is more amenable to analysis for some problems such as boundedness
and liveness. The restrictions of workflow nets can be naturally applied to free-choice
nets, and we end up with the class of free-choice workflow nets. It turns out that
many processes in practice can be modelled naturally as free-choice workflow nets [2],
thus avoiding the extensive computational complexity of checking soundness in the
general case, as shown in Chapter 5. It is known that classical soundness (as well
as 1-soundness) in free-choice workflow nets can be checked in polynomial time [3,
Theorem 12]. Further, it is known that 1-soundness implies generalised soundness [90,
Corollary 4.3]. As generalised soundness also trivially implies 1-soundness, the two
notions are thus equivalent for free-choice nets. However, no such equivalence is
known for structural soundness. We show that indeed all four notions of soundness
we work with in this thesis are equivalent.

Theorem 26: [27, Theorem 3] †

Let N be a free-choice workflow net. The following are equivalent:

— N is 1-sound,

— N is generalised sound,

— N is structurally sound,

— N is continuously sound.

Proof: Appendix C, Page 12
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The proof is technical and crucially relies on the free-choice property. We reason
about the sets of transitions that are live and quasi-live from certain markings, and
show that 1) from any marking M, it is possible to reach a marking M′ such that
all transitions that are quasi-live are also live, and 2) that the same transitions are
quasi-live and live from multiples of M′. Roughly, this allows us to argue that
witnesses to 1-unsoundness are equivalently witnesses for k-unsoundness for any k

and for continuous unsoundness, and vice versa.
It is thus the case that for free-choice nets, one can use any procedure for any of

the four types to decide soundness.

6.4 Experimental Evaluation

We implemented our approaches for generalised and structural soundness in C#,
as an extension to our tool FastForward [21]. To semi-decide generalised sound-
ness, we implemented procedures for checking Z-boundedness and continuous sound-
ness, utilizing the SMT solver Z3 [86]. For structural soundness, we implemented a
procedure for computing kN,Q≥0 and deciding structural quasi-soundness, also utilizing
Z3. We evaluate our prototype implementations on multiple benchmark suites. All
experiments were run on the same machine, equipped with an 8-Core Intel® Core™ i7-
7700 CPU @ 3.60GHz with Ubuntu 18.04. We limited memory to ∼8GB, and time
to 120s for each instance.

6.4.1 Free-Choice Nets

Our first benchmark suite is based on a standard benchmark suite containing
1386 free-choice Petri nets. It was originally proposed in [54], and has been used to
evaluate various procedures on workflow nets since then [33, 55, 84]. We utilize the
benchmark suite as a basis to generate larger, chained instances by combining nets
from the original suite. The resulting nets are still free-choice, and a chained instance
is sound if and only if the original instances it was built from were sound. This allows
us to evaluate our approach for scalability on large instances. We are interested
in checking 1-soundness on these instances. As they are free-choice, note that this
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Figure 6.2: The results of experiments on chained free-choice instances. The x-value
denotes the number N of chained nets. Dark thick lines denote the mean,
and light thin lines of the same color denote the minimum and maximum,
respectively. For Woflan, the minimum line is slightly below the line of
this work. For this work, the minimum and maximum lines are very close
to the mean. Left: The y-value denotes time for checking soundness of
the 20 nets for each N . Marks on the gray line at 120s denote timeouts.
Right: The y-value denotes the size of generated nets, that is, the number
of places and transitions.

is equivalent to checking either of structural soundness, generalised soundness or
continuous soundness.

We compare three approaches for deciding soundness of free-choice nets: Our
approach for deciding continuous soundness via SMT solving, the established Petri
net model checker LoLA [106] and the workflow analysis tool Woflan [104]. Both
Woflan and LoLA can directly check 1-soundness.

The results are shown in Figure 6.2. On the left-hand side, the y-axis shows the
analysis time, and the x-axis shows the number N of chained nets. We use instances
with N ∈ {1, 21, 41, . . . , 401}, and have 20 instances for each N , for a total of 420
instances.

One can think of N as a size parameter, and to put this number in context, we
show the size of the resulting nets on the right-hand side of Figure 6.2, where the size
is the number of transitions plus the number of places.

For small instances (N = 1 and N = 21), all tools perform well. For larger in-
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Figure 6.3: The synthetic families of workflow net instances used in our experiments.
Top: A workflow net Nc that is c-unsound and k-sound for all k ∈ [1..c−1].
Bottom: Three families of instances. Bottom left: Nsound-c is quasi-sound
and ℓc-sound for all ℓ ∈ N>0. Bottom center: N¬quasi-c is not structurally
quasi-sound. Bottom right: N¬sound-c is ℓc-quasi-sound for all ℓ ∈ N>0, but
not structurally sound.

stances, Woflan times out frequently. On moderately sized instances, LoLA performs
best, and is faster than our approach for N ≤ 101. However, it seems that our ap-
proach scales better, and for N = 401, our approach takes a mean of 2.28s, compared
to over 30s for LoLA. Thus, we conclude that for large free-choice nets, deciding
soundness via continuous soundness can outperform existing approaches based on
deciding 1-soundess via state-space exploration.

6.4.2 Synthetic Instances

We were interested in having a wider variety of instances, in particular non-free-
choice instances, where the different notions of soundness do not collapse. We in-
troduce four families of synthetic instances, one on which generalised soundness is
interesting, and three on which structural soundness is interesting. The families are
purposely simple to understand, but have large state spaces, and are thus difficult to
analyse with state-space exploration. All families are parameterized by a size parame-
ter c. The description of the families uses arcs with weights, but to create challenging
instances, we replace weighted arcs with larger subnets [27, A.5], while preserving
(quasi-)soundness.

75



6.4. EXPERIMENTAL EVALUATION

1 10 20 30 40
0

50

100
120

c

m
ea

n
an

al
ys

is
tim

e
(s

)

FastForward LoLA Woflan

Figure 6.4: Results of our experiments for generalised soundness. We show the time
to check generalised soundness of Nc for different values of c. Marks on
the gray line at 120s denote timeouts.

Generalised Soundness. For generalised soundness, we introduce the family
shown at the top of Figure 6.3. For each c ∈ N>0, Nc is k-sound for k ≤ c − 1,
and c-unsound. Thus, for large parameter values, this family makes it challenging
to decide generalised soundness using the naive approach of iteratively checking 1-
soundness, 2-soundness, . . . . We compare this approach, using LoLA and Woflan to
perform state-space exploration to check soundness in each iteration step, with our
proposed approach of checking continuous soundness. Notice that Nc is continuously
unsound, thus our approach of continuous soundness is precise on this family, and
proves generalised unsoundness. Figure 6.4 shows the result of the comparison. For
small parameter values, state-space exploration works well, but quickly becomes in-
tractable for larger c. For c ≥ 14, Woflan cannot even check 1-soundness in the time
limit, while LoLA can check 1- and 2-soundness up to c ≤ 28, but cannot check
2-soundness for larger c. However, continuous soundness remains easy to verify even
for c = 40 and beyond. At most 1s is needed on 34 out of 40 instances, with a mean
of 0.6s.

Structural Soundness. Recall that our decision procedure for structural sound-
ness consists of deciding structural quasi-soundness and computing kN,Q≥0 via continu-
ous reachability. We want to test our procedure both on instances that are structurally
quasi-sound and on instances that are not. We introduce three families of instances
for which structural soundness appears challenging. The families are shown at the
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Figure 6.5: Results of our experiments for quasi-soundness. We show the time taken
vs parameter c for checking structural quasi-soundness using the reduction
to reachability, and utilizing our approach to compute kN,Q≥0 , for each of
the three families at the bottom of Figure 6.3: Nsound-c (left),N¬quasi-c
(center), N¬sound-c (right). Note that the axis ranges differ. Marks on the
gray line at 120s denote timeouts.

bottom of Figure 6.3, and cover different cases of quasi-soundness and soundness. We
compare our approach to LoLA, which we use to decide structural quasi-soundness
using a reduction Petri net reachability given in [36, Lemma 2.1]. Since Woflan does
not support quasi-soundness directly, we leave it out of the comparison here. The
results of the comparison are shown in Figure 6.5. For small instances, LoLA per-
forms well on many instances, but does not scale as well as our approach for larger
instances. In particular, for nets that are not structurally quasi-sound, LoLA gen-
erally times out, as it tries to explore an infinite state-space. On the other hand,
continuous reachability performs well even for large c, and for N¬quasi−c, we can check
structural quasi-soundness in under 2s even for c = 20 000 000. Further, we found
that for all instances of all families, kN,Q≥0 = kN , that is, our approximation is exact.
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Chapter 7

Continuous One-Counter
Automata

While Petri nets have large expressive power and are convenient for modelling
many systems, we are interested in looking at some other variations of counter sys-
tems. These are models that combine some number of counters, each containing a
number, with a control state. To motivate our forthcoming work on continuous one-
counter automata, let us introduce in the following the models of (continuous) vector
addition systems with states and counter automata.

A model that is equivalent to Petri nets is that of Vector Addition Systems, or
VAS for short. Essentially, a VAS of dimension d is a set of transition vectors, each
of dimension d. Dimensions correspond to places, and transition vectors correspond
to Petri net transitions. Extending the model further, we can introduce states to
VAS, thus obtaining the model of vector addition systems with states, or VASS for
short. In that model, transitions have an effect, and additionally specify a source and
target state. Like VAS, VASS are equivalent in modelling power to Petri nets [62, 66].
This equivalence does not, however, hold when we consider the continuous semantics.
Continuous VASS, or CVASS for short, are VASS where we allow transition firings to
scale the effect by a non-zero rational between zero and one, similar to the continuous
semantics we defined for Petri nets in Section 2.3. While reachability in continuous
Petri nets is P-complete [58], the same problem is NP-complete in CVASS [19]. The
question is also interesting when we restrict the number of dimensions. For 2-VASS,
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that is, VASS with 2 dimensions, reachability is PSPACE-complete [16, Theorem
2]. For CVASS with fixed dimension, the NP-hardness from the case with arbitrary
dimension remains firm above 1 dimension, where the problem can be solved in poly-
nomial time [8].

Another angle of applying continuous semantics to models similar to Petri nets
is starting from so-called counter automata. A counter automaton is specified as a
dimension d, a set of states and a set of transitions, almost identical to the model
of VASS. A configuration contains a state, and d numbers that indicate the counter
values. What differentiates the models is that in counter automata, we allow also tests
on the counter values. For instance, a transition might be restricted to be only enabled
if the first counter is equal to zero. This power makes many questions on this model
undecidable [85]. In the literature, it is therefore common to study counter automata
with restrictions. One can think of VASS as a restriction of counter automata that
disallows tests on counter values. Another interesting restriction is to focus on the
case with only a single counter, called One-Counter Automata, or OCA for short.

One-counter automata have found practical usage, for example in the verification
of programs with lists [29] or the validation of XML streams [35]. The complexity of
many problems has also been studied in the literature. It is known that reachability is
PSPACE-complete when counter updates are encoded in binary [56], that is, when we
have a succinct encoding for counter updates that takes only log(n) space to store a
counter update of size n. Thus, it is natural to search for relaxations for the problem,
such as applying continuous semantics to the model of OCA.

This chapter presents results from [24]. The paper resulted from joint work with
my supervisors, which was merged with the work of a team independently investigat-
ing the same problem. The paper was published in the proceedings of LICS’21, and
an extended version containing proofs missing from the conference publication was
published in the TOCL journal [23]. Our contributions are to define the novel model
of continuous one counter automata, or COCA for short, which approximates OCA.
The model allows guarding states by upper and lower bound tests on the counter
value. We show that

— reachability in COCA is in NC2 when we only have the same global lower and
upper bound test for each state, even when we additionally allow equality tests;
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7.1. CONTINUOUS ONE-COUNTER AUTOMATA (COCA)

— in the general case, the problem is in polynomial time;

— for parametric counter updates and bound tests, reachability is NP-complete.

In the following, we first formally introduce the model. We then present the main
ideas for our results on COCA with global bound tests with equality tests, and on
parametric COCA. Afterwards, we give a short primer on continuous automata with
more than one counter.

We do not dive into the second result of P-membership of reachability in the gen-
eral case, as this result was chiefly the contribution of coauthors, but we will require
a black box result that follows from the proof for the polynomial time algorithm.

7.1 Continuous One-Counter Automata (COCA)

Let us write I to mean the set of all intervals (closed or open) over Q, where we
allow endpoints to come from Q ∪ {∞, −∞}. For example, (5, 8] ∈ I, and it denotes
the set of numbers {v ∈ Q | 5 < v ≤ 8}. We also allow unbounded intervals, for
example [2, ∞) denotes the set {v ∈ Q | 2 ≤ v}. Importantly, the empty interval ∅
is allowed, and we can represent it, for example, as (8, 4] or [3, 3). We also naturally
allow intervals with a single element, for example [5, 5] = {5}. Further, let us write S

to denote the interval closure (or closure for short) of a set S. Formally, we define this
as the interval [inf S, sup S]. For example, (3, 4) = [3, 4] and [3, 5) ∪ (5, 6) = [3, 6].

A continuous one-counter automaton (or COCA for short) is a triple C = (Q, T, τ),
where

— Q is a finite set of (control) states,

— T ⊆ Q × Z × Q is a finite set of transitions, and

— τ ∈ I denotes the global guard of the COCA.

For a transition t = (p, w, q), we denote as src(t) = p the source of t, as δδδt = w the
effect of t, and as dest(t) = q the destination of t. Let us define a path of C as a path
of the graph underlying C, defined naturally with states as vertices and transitions
as edges between them.

A configuration of C is a pair (p, v), where p ∈ Q and v ∈ Z. For ease of notation,
we write p(v) to mean a configuration (p, v). We define the step relation for a single
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transition t = (p, w, q) ∈ T as t−→. For two configurations (p, v) and (q, v′), it holds
that (p, v) t−→ (q, v′) if and only if

— v, v′ ∈ τ , and

— there exists α ∈ (0, 1] such that v′ = v + αw.

We naturally extend from the step relation for a single transition to the step relation
over all transitions, which we denote by −→ = ⋃︁

t∈T
t−→. We further generalize it to

sequences of transitions, that is, we define t1t2−−→ such that p(a) t1t2−−→ q(b) if and only
if there exists p′(a′) such that p(a) t1−→ p′(a′) t2−→ q(b). Lastly, we denote as ∗−→ the
reachability relation. We define it such that p(a) ∗−→ q(b) if and only if there exists a
transition sequence t1t2 · · · tn such that p(a) t1t2···tn−−−−→ q(b).

We say that a run σ from a configuration p(v) to a configuration q(v′) is a sequence
α1t1 . . . αntn, where for all i, αi ∈ (0, 1] and ti ∈ T and such that there exists a
sequence of configurations q0(v0), q1(v1), . . . , qn−1(vn−1), qn(vn), where

— q0(v0) = p(v),

— qn(vn) = q(v′),

— for all 0 < i ≤ n, src(ti) = qi−1, dest(ti) = qi, and vi−1 + αiδδδti
= vi.

Furthermore, we say that σ is admissible if v0, v1, . . . , vn−1, vn ∈ τ . COCA are equiv-
alent to 1-CVASS when we set τ = [0, ∞).

Next, we extend COCA where instead of one global guard, we allow different
guards in different states. Formally, we define a guarded COCA as a triple C =
(Q, T, τ), where Q and T are defined as for COCA, and τ : Q → I assigns an interval
to each state. Configurations and runs are defined as for COCA; however, the criterion
for admissibility of a run is different. We say that a run σ is admissible if and only
if each of its configurations p(v) satisfies τ , that is, v ∈ τ(q). It is easy to see that
guarded COCA indeed generalize COCA. We can view a COCA as a guarded COCA
where τ has the same value for each state.

Now, we are ready to introduce our last model, where we extend guarded COCA
with parameters. For a set X we define the set IX of parameterised intervals over
X as the set of intervals where endpoints belong to Q ∪ {−∞, ∞} ∪ X. Note that
elements of X are not numbers, but instead symbolic variables. A parametric, guarded
COCA (or just parametric COCA for short) is a tuple C = (Q, T, τ, X), where
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— Q, as for COCA, is a finite set of states,
— X is a finite set of parameters,
— T ⊆ Q × (Z ∪ X) × Q is a finite set of transitions, and
— τ : Q → IX .

A valuation of X is a mapping µ : X → Q. We write Cµ = (Q, T µ, τµ) to denote the
guarded COCA we obtain when replacing each occurrence of a parameter with its
value assigned by µ. Then we say that there is a run from p(v) to q(v′) in C if there
exists a valuation µ such that there is a run from p(v) to q(v′) in Cµ.

We similarly allow intervals to be further specified by valuations: For an interval
I ∈ IX , we denote by Iµ the interval where each occurrence of a parameter x from
X in I is replaced by its value assigned by µ, that is, µ(x).

For all types of COCA, we define the post set of a value a with respect to a path
π. Formally, we write

Postπ(a) = {b | src(π)(a) π−→ dest(π)(b)}.

We also define the post set of a set of paths S with common source and destination
states as the union of the post sets of the paths in S, that is,

PostS(a) =
⋃︂

π∈S

Postπ(a).

For ease of notation, we write Postp,q(a) to mean the post set of a with respect to all
paths between two states p and q, which we denote as

Pathsp,q = {π | π is a path from p to q}.

Formally, Postp,q(a) = PostPathsp,q(a).
Further, we define the enabledness set of a path π as the set

enab(π) = {a ∈ Q | Postsrc(π),dest(π)(a) ̸= ∅}.

We extend the definition of the enabledness set to sets of paths by taking the union
of the individual enabledness sets. More formally, for a set S of paths, we have that
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enab(S) = ⋃︁
s∈S enab(s).

To conclude the formal definitions, let us give a brief recap of the models we have
introduced. A COCA is a 1-CVASS, that is, CVASS with one dimension, where we
may additionally have global lower and upper bounds. A guarded COCA is a COCA
where, instead of global lower and upper bounds, we may have a different lower and
upper bound in each state. Lastly, a parametric, guarded COCA is a guarded COCA
where we allow guards and transitions to depend on a set of parameters.

7.2 Reachability in COCA is in NC2

In this section, let us characterize the complexity of the reachability problem for
COCA.

Definition 8: The Reachability Problem for COCA †

Given a COCA C = (Q, T, τ) and two configurations p(v) and q(v′), does there
exist an admissible run from p(v) to q(v′)?

We will show the following theorem:
Theorem 27: [23, Theorem 18] †

Reachability for COCA is in NC2.

Our aim is, essentially, to derive a procedure that computes a succinct represen-
tation of Postp,q(v) for any given p, q and v. Then, to answer a reachability query, we
simply need to compute the representation of the post set and check for membership
of the target value in it.

We are going to show the result in 4 steps. We show

1. that it is possible to check in NC2 whether Postp,q(v) is empty;

2. that if Postp,q(v) is nonempty, then Postp,q(v) is equal to Postp,q(v), except they
may differ in the three points inf Postp,q(v), v and sup Postp,q(v);

3. how to compute Postp,q(v) in NC2; and lastly

4. how to check membership of the three remaining points, that is, how to check
whether inf Postp,q(v), v, sup Postp,q(v) ∈ Postp,q(v).
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7.2.1 Checking Postp,q(v) for emptiness

We give a sufficient and necessary condition for a ∈ enab(π) to hold. In the
following, let first(π) denote the index of the first nonnegative rule on π, and let
last(π) denote the same for the last nonnegative rule on π. Further, for an index
i ≤ |π|, we denote as πi the i-th transition on π.

Lemma 28: [23, Lemma 3] †

Let a ∈ Q and π ∈ Pathsp,q. It holds that a ∈ enab(π) if and only if a ∈ τ and
any of the following conditions hold:

(a) a /∈ {inf τ, sup τ};

(b) a = inf τ = sup τ, first(π) = ∞;

(c) a = inf τ < sup τ , first(π) ̸= ∞ ⇒ δδδπfirst(π) > 0;

(d) a = sup τ > inf τ , first(π) ̸= ∞ ⇒ δδδπfirst(π) < 0.

Proof: Appendix D, Page 7

The proof is straightforward by careful analysis of the definition of enab(π).
Importantly, the conditions of the prior lemma are easy to check by looking at the

path of π in the underlying graph. In NC2, we can also reason about all short paths
of the underlying graph, which is enough to obtain the following corollary:

Corollary 29: [23, Corollary 4] †

Given a ∈ Z and p, q ∈ Q, deciding whether a ∈ enab(Pathsp,q), or equivalently
Postp,q(a) = ∅, is in NC2.

Proof: Appendix D, Page 8

7.2.2 Characterizing Postp,q(v) in relation to Postp,q(v)

In this section, let us point out the relation between the post-set and its closure.
We will prove that the two differ only in very few points.

The following short observation is straightforward by the fact that transition fir-
ings can be scaled.
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Lemma 30: [23, Lemma 6] †

Let b ∈ Postp,q(a). It holds that (a, b) ⊆ Postp,q(a) and (b, a) ⊆ Postp,q(a).

Proof: Appendix D, Page 8

For a brief intuition behind the result, consider that when going from p(a) to q(b),
we can scale down all transitions in the run to make its effect smaller, and thus also
go to any value between a and b.

From this, we obtain a characterization of Postp,q(a) with respect to its closure:
Corollary 31: [23, Corollary 7] †

The set Postp,q(a) is a closed interval. Moreover, Postp,q(a) \ Postp,q(a) ⊆
{inf Postp,q(a), a, sup Postp,q(a)}.

Proof: Appendix D, Page 8

Thus, to compute the post-set, we need to compute its closure by find-
ing the supremum and infimum, then decide membership of the three points
{inf Postp,q(a), a, sup Postp,q(a)}.

7.2.3 Identifying inf Postp,q(a) and sup Postp,q(a)

Let us focus in the following on finding the supremum, as finding the infimum is
symmetrical.

There are two cases, depending on whether from configuration p(a), some cycle
containing a transition with positive effect is admissible. Identifying whether this is
the case can be done in NC2, as we can, in parallel, check for each state p′ whether
(a) it is reachable from state p, (b) it has a cycle to itself that contains a positive
transition, (c) it can reach state q.

(1) No cycle with positive effect is admissible: Then the supremum can be found
by considering only enabled simple paths, which can be done in NC2. Intuitively, we
maximize the positive effect among paths, while ignoring the negative effects, since
we can choose the scaling for transitions with negative effect arbitrarily small.
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(2) A cycle with positive effect is admissible: Then the supremum is the supremum
of the guard τ , since we can take the cycle until we hit the "ceiling" sup τ , and rescale
so that we get arbitrarily close to it.

Finally, we obtain the following result:
Proposition 32: [23, Proposition 12] †

Computing inf Postp,q(a) and sup Postp,q(a) can be done in NC2.

Proof: Appendix D, Page 11

7.2.4 Testing membership of a and the endpoints of Postp,q(a)

Let us recall that we have shown that Postp,q(a) \
{a, inf Postp,q(a), sup Postp,q(a)} = Postp,q(a) \ {a, inf Postp,q(a), sup Postp,q(a)},
and that we can compute a representation of Postp,q(a) in NC2 by finding its
endpoints, that is, supremum and infimum. Hence, towards our goal of computing
a representation of Postp,q(a), it remains to check membership of the three points
a, inf Postp,q(a), sup Postp,q(a).

To check whether a ∈ Postp,q(a), we show there are two cases of how a could be
included in Postp,q(a). The first case is that there is a path from p to q containing
only transitions with effect zero; and the second case is that there exists a path
containing both positive and negative transitions. The second case involves some
additional technical requirements, as we need to make sure that the path is enabled,
which might not be the case if a sits on the border of the global guard.

Checking whether sup Postp,q(a) ∈ Postp,q(a) and inf Postp,q(a) ∈ Postp,q(a) is in
principle similar but more technical, and the characterizations are less straightfor-
ward.

We obtain the following result:
Proposition 33: [23, Proposition 15] †

Computing Postp,q(a) ∩ {inf Postp,q(a), a, sup Postp,q(a)} can be done in NC2.

Proof: Appendix D, Page 13
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Finally, we are ready to state the main result, that is, that reachability in COCA
is in NC2.

Theorem 34: [23, Theorem 16] †

Given a, a′ ∈ Z and p, q ∈ Q, the following can be done in NC2: obtaining a
representation of Postp,q(a) and testing whether a′ ∈ Postp,q(a).

Proof: Appendix D, Page 14

7.2.5 Extending results to equality tests

This section is dedicated to introducing an interesting extension of COCA, for
which our NC2 decision procedure can be adapted. Our extension will be to allow
equality tests on states. In terms of expressiveness, this extension fits between COCA
and guarded COCA.

Formally, a COCA with equality tests C = (Q, T, τ) is a guarded COCA where
we require τ to be the same for each state, except for states where the guard interval
contains only a single number. Formally, we require that there exists an interval
ϕ ∈ I such that for each state q ∈ Q with |τ(q)| ≠ 1, it must hold that τ(q) = ϕ.

Theorem 35: [23, Theorem 18] †

Reachability for COCA with equality tests is in NC2.

Proof: Appendix D, Page 18

The intuition is that we construct a graph with one node per equality test of the
COCA, as well as two additional nodes, one for the input configuration and one for
the output configuration. Edges in this graph then correspond to reachability between
two configurations, in a slightly adjusted copy of the input COCA where we disallow
equality tests. Since the structure of the graph simulates equality tests, it holds that
reachability in the graph corresponds to reachability in the COCA with equality tests.
To determine whether an edge is present, it suffices to make one COCA-reachability
query. This graph has at most |Q| + 2 nodes, so at most (|Q| + 2)2 edges. Hence,
to construct it, we need to make at most quadratically many reachability queries.
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As these can all be made in parallel, and NC2 allows us to have polynomially many
processors running in parallel, this graph can be constructed in NC2. Then, it remains
to simply check for reachability from the node of the initial configuration to the node
of the final configuration, which can be checked in NL ⊆ NC2.

7.3 Reachability in parametric COCA is NP-
complete

In this section, we show that reachability in parametric COCAs is NP-complete.
We show hardness holds already for the special case where the underlying control
structure is acyclic, and regardless of whether parameters can occur in guards, up-
dates, or both.

Lemma 36: [23, Theorem 46] †

Reachability for parametric COCA is NP-hard, regardless of whether parame-
ters occur only on guards, updates, or both. Additionally, the problem is still
NP-hard if the control structure is acyclic.

Proof. We give a reduction from 3-SAT, that is, deciding satisfiability of a Boolean
formula in conjunctive normal form with 3 literals per clause.

Let X = {x1 . . . xn} be a set of variables and φ = ⋀︁
i≤j≤m Cj a formula over X.

We give two acyclic parametric COCAs P and P ′, both with parameters X. Each
one will

(i) guess an assignment to X, and

(ii) check whether the assignment satisfies φ.

Further, P uses parameters only on guards and P ′ uses them only on updates.
Part (i) is achieved by composing n copies of the gadget in Figure 7.1. P uses

the gadget on the top, P ′ uses the gadget on the bottom. Both function analogously:
(1) state pi is entered with counter value 0; (2) the counter is set to xi; (3) membership
of the counter value in {0, 1} is checked; and (4) the counter is reset to zero upon
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pi

[0, 0] [−1, −1] [xi, xi] [0, 1]

[1, 1]

qi

[0, 0]
−1 2

−1

pi

[0, 0] [0, 1]

[1, 1]

qi

[0, 0]

xi

−1

Figure 7.1: Gadgets of the reduction from 3-SAT, for guessing an assignment of vari-
able xi. Top: parameters are only used on guards. Bottom: parameters
are only used on updates.

leaving to qi. The only way to traverse the chain of n such gadgets from p1 to qn is
to have xi ∈ {0, 1} for each xi ∈ X.

Part (ii) is achieved by chaining one gadget per clause. Each gadget is similar to
the one depicted in Figure 7.2 for Cj = (x1 ∨ x2 ∨ ¬x4). Again, P uses the gadget on
the top, while P ′ uses the gadget on the bottom.

Altogether, these statements are equivalent: (1) formula φ is satisfiable; (2) there
exists a valuation µ : X → Q such that p1(0) ∗−→ sm(0) holds in Pµ; and (3) there
exists a valuation µ′ : X → Q such that p1(0) ∗−→ sm(0) holds in P ′µ′ .

Lemma 37: [23, Theorem 43] †

Reachability for parametric COCA is in NP.

Proof: Appendix D, Page 27

Let us sketch the proof strategy here.
We reduce reachability in parametric COCA to feasibility of an existential
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rj

[0, 0] [1, 1]
sj

[0, 0]

[x1, x1] [x2, x2] [x4, x4]

−1

+1 +1 +1

rj

[0, 0] [1, 1]
sj

[0, 0]

[1, 1] [1, 1] [0, 0]

−1

x1 x2 x4 +1

Figure 7.2: Gadgets of the reduction from 3-SAT, for checking whether clause Cj =
(x1 ∨ x2 ∨ ¬x4) is satisfied. Top: parameters are only used on guards.
Bottom: parameters are only used on updates.

FO(Q, +, <) sentence. By FO(Q, +, <), we mean the existential fragment of first-
order logic over the rationals with addition and comparison. Atomic propositions of
this fragment are of the form a⃗T · x⃗ ∼ b, where x⃗ is a vector of first order variables,
a⃗ ∈ Qn and b ∈ Q, and ∼ ∈ {<, ≤, =}. Formulas can use Boolean combinations
of such atomic propositions, as well as (non-negated) existential quantification over
variables. Deciding whether such a formula is feasible can be done in NP [97].

We first show that if reachability holds, then there exists a witnessing path which
is from a "small" linear path scheme, that is, a short series of alternation between
short paths and short cycles. In the following, let C be a parametric COCA.

Lemma 38: [23, Lemma 32]

Let p(a), q(b) be configurations and let µ be a valuation. If b ∈ Postp,q(a) in
Cµ, then there exists a path π such that p(a) π−→ q(b) in Cµ where π belongs to
a linear path scheme ρ0θ

∗
0ρ1θ

∗
1 · · · ρk such that k ∈ |Q|O(1), |ρi| ≤ |Q|O(1) for all

0 ≤ i ≤ k, and finally |θj| ≤ |Q|O(1) for all 0 ≤ j < k.
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Proof: Appendix D, Page 23

The result follows in a straightforward manner from techniques developed in [23,
Section 4].

While this Theorem implies that reachability can be witnessed by a path from a
linear path scheme, this depends on the valuation µ, which there are infinitely many
of, so this is on its own not yet enough to obtain NP-membership.

Accordingly, we focus on giving small formulas that describe the reachable config-
urations for paths (ρ), and for cycles (θ∗). Intuitively, combining formulas for these
components will allow us to give such formulas for whole linear path schemes.

7.3.1 Encoding paths

We obtain the following result:
Lemma 39: [23, Lemma 36] †

Let ρ be a path from state p to state q. There exists a FO(Q, +, <) formula
ϕ

p(a)
ρ−→q(b)

with free variables a, b, µ which is satisfied if and only if b ∈ Postp,q(a)
in Cµ.

Proof: Appendix D, Page 24, Section 5.1

The result is built up from simple ingredients: It is easy to write a formula
ϕa∈Iµ(a, µ) for a fixed interval I ∈ IX that is satisfied if and only a ∈ Iµ. From
this, it is straightforward to write a formula ϕ

p(a)
t−→q(b)

(a, b, µ) for a fixed transition t

from state p to state q which is satisfied if and only if p(a) t−→ q(b) in Cµ.
By combining several such formulas, we can obtain the desired formula ϕ

p(a)
ρ−→q(b)

for paths. The size of the formula grows linearly in the length of ρ, since it uses one
subformula for each transition in ρ.

7.3.2 Encoding cycles

Encoding cycles is more intricate than in the case for paths. Roughly, we proceed
by splitting into three cases: We iterate the cycle zero times, one time, or two or more
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times. The first two cases are easy to handle, since they reduce to checking whether
a = b in the first case, or reusing the formula for a simple path in the second case.
The third case is more challenging. Intuitively, we show that if we can iterate a cycle
twice, then we can "accelerate" and iterate the cycle until some configuration on the
cycle hits a guard. We obtain the following result:

Corollary 40: [23, Corollary 41] †

There exists a formula φθ∗(a, b, µ) which is satisfied iff b ∈ Post(θ∗)µ(a) and
which has linear size in the length of θ and the value of nonparametric updates
and endpoints on θ.

Proof: Appendix D, Page 25, Section 5.2

7.3.3 Combining paths and cycles

Putting together the formulas for paths and simple cycles, we obtain formulas
for linear path schemes in a straightforward manner. Given a linear path scheme
L = ρ0θ

∗
0ρ1θ

∗
1 · · · ρk, we invoke the results from the last two sections to obtain formulas

φρ0 , φθ∗
0
, . . . , and define

φL(a, b, µ) = ∃a0, a′
0, . . . , ak, a′

k : (a0 = a) ∧ (a′
k = b)

∧ φρ0(a0, a′
0, µ) ∧ φθ∗

0
(a′

0, a1, µ) ∧ · · · ∧ φρk
(ak, a′

k, µ) [23, Lemma 42].

Again per the results from previous sections, the size of φL is polynomial in the
size of L.

Thus, we obtain NP membership for reachability in parametric COCAs. To check
whether p(a) ∗−→ q(b), we (1) guess a linear path scheme L, (2) construct φL, and (3)
check whether ∃µ : φL(a, b, µ) holds. This is an existential linear formula, which can
be checked in NP [19], thus we are done.
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Theorem 41: [23, Theorem 43] †

The existential reachability problem for parametric COCAs is in NP.

Proof: Appendix D, Page 27

7.4 Continuous Semantics of Automata with more
Counters

A gap in our work is the treatment of continuous automata with more than one
counter.

It is known that reachability in CVASS with zero-tests, that is, testing for equality
with zero, is undecidable in 4 dimensions [19]. The proof works via a reduction from
reachability in 2-VASS with tests for equality with zero. This problem is known to be
undecidable [85]. Two of the four counters of the CVASS are used to store auxiliary
information, and this information allows the two remaining counters to be forced to
behave in a discrete manner.

One relatively unsurprising result, which to the knowledge of the author has not
been proven in the literature, is that the reduction can be adapted to work for 3-
CVASS with equality tests. Note that, in contrast to the case of 4-CVASS, where
zero-tests suffice, this reduction needs tests for equality with two distinct numbers.

Theorem 42 †

Reachability for 3-CVASS with equality tests is undecidable.

Proof. We reduce from reachability in 2-VASS with zero tests. Let V be a 2-VASS
with equality tests, and let p(a1, a2) and q(b1, b2) be configurations. Then we give
a 3-CVASS with equality tests V ′ such that p(a1, a2) ∗−→ q(b1, b2) in V if and only if
p(a1, a2, 0) ∗−→ q(b1, b2, 0) in V ′.

First, let us simply expand V with one new counter c3. Zero-tests of V are kept
as-is, since V ′ also allows zero-tests. Other transitions are transformed, as depicted
in Figure 7.3. Intuitively, there are two possibilities for taking the transition: either
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p q
(z1, z2) →

p

t1

b1

t2

b2

qc 3
=

0?

c3 =
1?

(z1, z2, +1)

(z1, z2, −1)

c3 =
1?

c 3
=

0?

Figure 7.3: A gadget for transforming a two-counter machine with zero tests to a
3-CVASS with tests for equality with 0 and 1.

c3 is currently 0, then the transition adds 1 to it and afterwards, checks for equality
with 1; or c3 is currently 1, then the transition subtracts 1 and subsequently checks
for equality with 0.

Lastly, since this procedure means c3 will alternate between 0 and 1 after each
transition, we add a transition to each state (except for the auxiliary ones introduced
when transforming transitions) which simply decrements c3 by 1. Then p(a1, a2) ∗−→
q(b1, b2) in V if and only if p(a1, a2, 0) ∗−→ q(b1, b2, 0) or p(a1, a2, 0) ∗−→ q(b1, b2, 1) in V ′,
and we are done.

It remains an open question whether, when only zero-tests are available, the reach-
ability problem is undecidable for 3-CVASS. Both decidability and undecidability
seem possible for this problem. Essentially, it is clear that 3-CVASS with zero-tests
can be used to simulate a counter machine with one counter and zero tests, by using
two counters to store auxiliary information. However, there may be a way to use the
two auxiliary counters of this construction in a more concise way, in order to simulate
a counter machine with zero tests and "1 1/2" counters.

A sketch of one interesting construction that highlights the expressiveness of 3-
CVASS with zero-tests is shown in Figure 7.4. As an example, it shows how we can
achieve multiplication of counter c1 with a constant, in this example 3. The con-
struction uses only two counters, which is crucial, as, for example, the reduction from
[19] uses the invariant that one auxiliary counter always holds a known value to force
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p a1 a2 q

(−1, +3, 0)

c1 = 0?

(+1, −1, 0)

c2 = 0?

Figure 7.4: A gadget that moves from state p to state q and multiplies the first counter
by 3 while preserving the value stored in the third counter.

transitions to be applied in a discrete manner. Similarly, for 3-CVASS, this means
multiplication can be achieved without losing this known, auxiliary value. Decidabil-
ity for this problem is thus open, and proving decidability or undecidability could
lead to interesting techniques that yield insights into continuous counter automata.
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In this thesis we have studied several problems relating to the algorithmic verifi-
cation of counter systems.

We have given an efficient, practical algorithm for reachability and coverability
problems in Petri nets. It is based on guided search and uses various notions of relaxed
reachability in Petri nets to obtain heuristics. We have implemented the algorithm
in a novel tool called FastForward, and have evaluated it positively against state-
of-the-art approaches for reachability and coverability.

For workflow nets, our focus is on verifying the correctness notion of soundness,
and in particular three variants called k-soundness, generalised soundness and struc-
tural soundness. We establish the exact complexities of all three problems. It turns
out that k-soundness and structural soundness are EXPSPACE-complete, while gen-
eralised soundness is surprisingly PSPACE-complete, thus computationally easier.

We also provide algorithms designed to verify generalised and structural soundness
in practice. Previously proposed algorithms for the two problems work by reductions
to reachability in Petri nets. Our proposed algorithms are instead based on insights
from the study of reachability relaxations. For generalised soundness, our approach
is a semi-procedure in general, but it is precise on the widely used class of free-choice
workflow nets. It is based on the novel notion of continuous soundness, a variant of
soundness that we prove coNP-complete in general. We further show that continuous
soundness is equivalent to generalised and structural soundness on free-choice nets.
For structural soundness, our algorithm is based on continuous reachability. We
extend our tool FastForward with our algorithms, and positively evaluate them
against existing tools for the analysis of workflow nets.

Lastly, we study the continuous semantics in the case of a system with states and
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a single counter. For this novel model, called continuous one-counter automata, we
establish complexity bounds for reachability in several interesting variants. These
variants differ based on the type of restrictions we place on the counter value. Reach-
ability is in NC2 when we place global lower and upper bounds on the counter value.
It is instead NP-complete when we allow separate individual lower and upper bounds
for each state, and additionally allow parameters on guards or updates.

Future work. Our algorithm for reachability in Petri nets, as presented in Sec-
tion 3.1, is limited to standard Petri nets. It might be interesting to extend it to the
case of transfer Petri nets or reset Petri nets, which are extensions to Petri nets that
allow transitions to move all, instead of a fixed number of, tokens from one place. In
the case of transfer nets, those tokens are put into another place. For reset nets, they
are simply removed. Extending our algorithm to these extensions seems promising,
as there exist rational and integral overapproximations for them. These overapprox-
imations might allow constructing useful heuristics similar to the work presented in
this section. However, the amount of benchmarks that make use of these extensions
is fairly limited, and we suspect that the heuristics may turn out to be less useful in
practice than for standard Petri nets, since the nonlinear nature of resets and trans-
fers cause executions to be very sensitive to changes in the order in which transitions
are fired even when we disregard whether transitions are enabled or not.

Another related direction for future research is to find better heuristics. In prac-
tice, it turns out that the calculation of the heuristic value for encountered nodes
takes up a significant percentage of the total time. One way to speed this up would
be to use heuristics that can precompute some values once to speed up the many calls
to the heuristic. For example, in [99] the so-called syntactic distance is proposed,
which computes for each place locally a value, and the heuristic value for a marking
is derived in a certain way from the local values for places that are marked. This
means that the heuristic precomputes the local place values only once, and can then
reuse them and compute the heuristic values for markings relatively fast. The existing
heuristics that are local like this are crude, but there seems to be potential for finding
more accurate heuristics that are fast to evaluate by taking advantage of some form
of precomputation.
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For our complexity analysis of soundness in workflow nets in Chapter 5, one avenue
for future research is to take into account extensions of workflow nets. Some concepts
like OR-joins or cancellation regions do not map to standard workflow nets, but can
be modelled by extensions such as reset, transfer or inhibitor nets [107, 108]. The
variants of soundness are known to be undecidable in many variants of workflow nets,
for example 1-soundness is undecidable in workflow nets with reset arcs or inhibitor
arcs [5, Corollary 6.3], and generalised soundness is undecidable in workflow nets
with inhibitor arcs [5, Proposition 6.2]. One open question is whether generalised
soundness is decidable in workflow nets with reset arcs. It seems plausible that it
could be, as generalised soundness is easier than soundness for standard workflow
nets. However, the techniques we employed in our proof for the upper bound of
generalised soundness in standard Petri nets seem hard to adjust. We made use of
the fact that reachability from large initial k has connections to reachability over Z,
but this relationship seems much harder to establish with reset arcs, as runs in reset
nets are more "sensitive" to changes in the order of transition firings. This is contrary
to what happens in standard nets, where reordering the transitions of a run might
make it only fireable over Z, not N, but does not change the marking that the run
results in.

An interesting direction for future research related to our practical algorithms for
generalised and structural soundness in Chapter 6 is to find other classes of workflow
nets where soundness may be easier to decide. Some attempts in this direction already
exist in the literature. For example, the question of k-soundness for acyclic workflow
nets is co-NP-complete [109]. One promising idea along those lines seems to be to
extend the notion of termination complexity, as defined for a related but slightly
different model in [32], to workflow nets. One can define the class of terminating
workflow nets, which are nets where the length of all runs is bounded by a function
on the size of the target marking. In particular, this disallows the existence of infinite
runs, and thus circumvents the PSPACE lower bound of generalised soundness, and
the EXPSPACE lower bound of k-soundness. Thus, one may find more efficient
procedures for this subclass. Currently, I am working on a submission exploring this
research direction with one of my supervisors and another colleague.

Promising future research also seems possible in the investigation of continuous
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systems with a small, fixed number of counters, for example continuous automata
with two or three counters. For three counters, recall that we show in Section 7.4
that reachability is undecidable with equality tests, but it is unknown whether this
holds when only zero tests are available, and solving this open problem could lead to
interesting new techniques for continuous automata in general.

Another interesting question is whether we can find efficient practical procedures
for parametric COCA. Recall that we solve the problem by checking a formula from
FO(Q, +, <). However, we need to guess the formula, since it corresponds to one of
many possible linear path schemes. It appears that this causes the problem to be
hard to tackle in practice. Finding other approaches for the problem that appear
more promising to implement in practice could be a direction for future research.
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Appendix A

Directed Reachability for
Infinite-State Systems

This paper was published as a peer-reviewed conference article. A full version
with an appendix containing missing proofs omitted from the conference paper due
to space constraints was uploaded to arXiv at the URL https://arxiv.org/

abs/2010.07912, see [20].
Cite as: M. Blondin, C. Haase, and P. Offtermatt. Directed reachability for

infinite-state systems. In J. F. Groote and K. G. Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 3–23, Cham, 2021.
Springer International Publishing.

Summary We propose a novel approach for semi-deciding reachability in Petri
nets. It is based on using efficiently computable approximations as distance oracles in
directed graph exploration algorithms such as A∗and greedy best-first search. We show
that relaxations of reachability in Petri net can be used to construct heuristic functions
that satisfy certain properties which are useful for directed search algorithms. Thus,
using A∗or greedy best-first search with these heuristic functions gives guarantees on
optimality and termination. We present a prototype implementation of the approach.
On a set of about 200 instances from program synthesis and verification of concurrent
programs, it is competitive against state-of-the-art tools for Petri nets.
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Contribution of this author This author took on sole responsibility for the im-
plementation and experimental evaluation of the approach. This includes the creation
of the artifact for the conference submission. It also involved contributing to discus-
sions regarding algorithmic design and the choice of which directed search algorithms
and heuristics to consider. Further, the author contributed to the development of the
manuscript, particularly taking a leading role in the writing of Section 5.
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Abstract. Numerous tasks in program analysis and synthesis reduce to
deciding reachability in possibly infinite graphs such as those induced by
Petri nets. However, the Petri net reachability problem has recently been
shown to require non-elementary time, which raises questions about the
practical applicability of Petri nets as target models. In this paper, we
introduce a novel approach for efficiently semi-deciding the reachability
problem for Petri nets in practice. Our key insight is that computa-
tionally lightweight over-approximations of Petri nets can be used as
distance oracles in classical graph exploration algorithms such as A∗ and
greedy best-first search. We provide and evaluate a prototype implemen-
tation of our approach that outperforms existing state-of-the-art tools,
sometimes by orders of magnitude, and which is also competitive with
domain-specific tools on benchmarks coming from program synthesis and
concurrent program analysis.

Keywords: Petri nets · reachability · shortest paths · model checking

1 Introduction

Many problems in program analysis, synthesis and verification reduce to decid-
ing reachability of a vertex or a set of vertices in infinite graphs, e.g., when
reasoning about concurrent programs with an unbounded number of threads,
or when arbitrarily many components can be used in a synthesis task. For au-
tomated reasoning tasks, those infinite graphs are finitely represented by some
mathematical model. Finding the right such model requires a trade-off between
the two conflicting goals of maximal expressive power and computational feasi-
bility of the relevant decision problems. Petri nets are a ubiquitous mathemati-
cal model that provides a good compromise between those two goals. They are
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expressive enough to find a plethora of applications in computer science, in par-
ticular in the analysis of concurrent processes, yet the reachability problem for
Petri nets is decidable [50,43,44,46]. Counter abstraction has evolved as a generic
abstraction paradigm that reduces a variety of program analysis tasks to prob-
lems in Petri nets or variants thereof such as well-structured transition systems,
see e.g. [32,42,64,5]. Due to their generality and versatility, Petri nets and their
extensions find numerous applications also in other areas, including the design
and analysis of protocols [22], business processes [60], biological systems [36,10]
and chemical systems [2]. The goal of this paper is to introduce and evaluate
an efficient generic approach to deciding the Petri net reachability problem on
instances arising from applications in program verification and synthesis.

A Petri net comprises a finite set of places with a finite number of transitions.
Places carry a finite yet unbounded number of tokens and transitions can remove
and add tokens to places. A marking specifies how many tokens each place
carries. An example of a Petri net is given on the left-hand side of Figure 1,
where the two places {p1, p2} are depicted as circles and transitions {t1, t2, t3}
as squares. Places carry tokens depicted as filled circles; thus p1 carries one token
and p2 carries none. We write this as [p1 : 1, p2 : 0], or (1, 0) if there is a clear
ordering on the places. Transition t1 can add a single token to place p1 at any
moment. As soon as a token is present in p1, it can be consumed by transition
t2, which then adds a token to place p2 and puts back one token to place p1.
Finally, transition t3 consumes tokens from p1 without any adding token at all.

t1
p1 t2

p2

t3

(0, 0)(1, 0)

(2, 0) (1, 1)

(3, 0) (2, 1) (0, 1) (1, 2)

1

2

3

1

4 2

0

∞

t1

t3
t1

t3
t2

t1

t3

t2 t1

t3
t3 t1

t2

Fig. 1. Left: A Petri net N . Right: Search of the forthcoming Algorithm 1 over the
graph GN(N ) from (0, 0) to (0, 1), where (x, y) denotes [p1 : x, p2 : y] and each number
in a box next to a marking is its heuristic value. Only the blue region is expanded.

A Petri net induces a possibly infinite directed graph whose vertices are
markings, and whose edges are determined by the transitions of the Petri net,
cf. the right side of Figure 1. Given two markings, the reachability problem asks
whether they are connected in this graph. In Figure 1, the marking (0, 1) is

reachable from (0, 0), e.g., via paths of lengths 3 and 5: (0, 0)
t1−→ (1, 0)

t2−→
(1, 1)

t3−→ (0, 1) and (0, 0)
t1−→ (1, 0)

t1−→ (2, 0)
t2−→ (2, 1)

t3−→ (1, 1)
t3−→ (0, 1).

In practice, the Petri net reachability problem is a challenging decision prob-
lem due to its horrendous worst-case complexity: an exponential-space lower
bound was established in the 1970s [48], and a non-elementary time lower bound
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has only recently been established [12]. One may thus question whether a prob-
lem with such high worst-case complexity is of any practical relevance, and
whether reducing program analysis tasks to Petri net reachability is anything
else than merely an intellectual exercise. We debunk those concerns and present
a technique which decides most reachability instances appearing in the wild.
When evaluated on large-scale instances involving Petri nets with thousands of
places and tens of thousands of transitions, our prototype implementation is
most of the time faster, even up to several orders of magnitude on large-scale
instances, and solves more instances than existing state-of-the-art tools. Our im-
plementation is also competitive with specialized domain-specific tools. One of
the biggest advantages of our approach is that it is extremely simple to describe
and implement, and it readily generalizes to many extensions of Petri nets. In
fact, it was surprising to us that our approach has not yet been discovered. We
now describe the main observations and techniques underlying our approach.

Ever since the early days of research in Petri nets, state-space over-approxi-
mations have been studied to attenuate the high computational complexity of
their decision problems. One such over-approximation is, informally speaking,
to allow places to carry a negative numbers of tokens. Deciding reachability
then reduces to solving the so-called state equation, a system of linear equations
associated to a Petri net. Another over-approximation are continuous Petri nets,
a variant where places carry fractional tokens and “fractions of transitions”
can be applied [13]. The benefit is that deciding reachability drops down to
polynomial time [26]. While those approximations have been applied for pruning
search spaces, see e.g. [23,4,8,31], we make the following simple key observation:

If a marking m is reachable from an initial marking in an over-
approximation, then the length of a shortest witnessing path in the over-
approximation lower bounds the length of a shortest path reaching m.

The availability of an oracle providing lower bounds on the length of shortest
paths between markings enables us to appeal to classical graph traversal algo-
rithms which have been highly successful in artificial intelligence and require such
oracles, namely A∗ and greedy best-first search, see e.g. [55]. In particular, deter-
mining the length of shortest paths in the over-approximations described above
can be phrased as optimization problems in (integer) linear programming and
optimization modulo theories, for which efficient off-the-shelf solvers are avail-
able [35,7]. Thus, oracle calls can be made at comparably modest computational
cost, which is crucial for the applicability of those algorithms. As a result, a
large class of existing state-space over-approximations can be applied to obtain
a highly efficient forward-analysis semi-decision procedure for the reachability
problem. For example, in Figure 1, using the state equation as distance oracle,
A∗ only explores the four vertices in the blue region and directly reaches the
target vertex, whereas a breadth-first search may need to explore all vertices of
the figure and a depth-first search may even not terminate.

In theory, our approach could be turned into a decision procedure by ap-
plying bounds on the length of shortest paths in Petri nets [47]. However, such
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lengths can grow non-elementarily in the number of places [12], and just com-
puting the cut-off length will already be infeasible for any Petri net of practical
relevance. It is worth mentioning that, in practice, it has been observed that the
over-approximations we employ also often witness non-reachability though, see
e.g. [23]. Still, when dealing with finite state spaces, our procedure is complete.

A noteworthy benefit of our approach is that it enables finding shortest paths
when A∗ is used as the underlying algorithm. In program analysis, paths usually
correspond to traces reaching an erroneous configuration. In this setting, shorter
error traces are preferred as they help understanding why a certain error occurs.
Furthermore, in program synthesis, paths correspond to synthesis plans. Again,
shorter paths are preferred as they yield shorter synthesized programs. In fact,
we develop our algorithmic framework for weighted Petri nets in which transi-
tions are weighted with positive integers. Classical Petri nets correspond to the
special instance where all weights are equal to one. Weighted Petri nets are useful
to reflect cost or preferences in synthesis tasks. For example, there are program
synthesis approaches where software projects are mined to determine how often
API methods are called to guide a procedure by preferring more frequent meth-
ods [28,27,49]. Similarity metrics can also be used to obtain costs estimating the
relevance of invoking methods [25]. It has further been argued that weighted
Petri nets are a good model for synthesis tasks of chemical reactions as they can
reflect costs of various chemical compounds [61]. Finally, weights can be viewed
as representing an amount of time it takes to fire a transition, see e.g. [53].

Related work. Our approach falls under the umbrella term directed model check-
ing coined in the early 2000s, which refers to a set of techniques to tackle the
state-explosion problem via guided state-space exploration. It primarily targets
disproving safety properties by quickly finding a path to an error state without
the need to explicitly construct the whole state space. As such, directed model
checking is useful for bug-finding since, in the words of Yang and Dill [63], in
practice, model checkers are most useful when they find bugs, not when they prove
a property. The survey paper [20] gives an overview over various directed model
checking techniques for finite-state systems.

For Petri nets, directed reachability algorithms based on over-approximations
as developed in this work have not been described. In [59], it is argued that ex-
ploration heuristics, like A∗, can be useful for Petri nets, but they do not consider
over-approximations for the underlying heuristic functions. The authors of [39]
use Petri nets for scheduling problems and employ the state equation, viewed as
a system of linear equations over Q, in order to explore and prune reachability
graphs. This approach is, however, not guaranteed to discover shortest paths.
There has been further work on using A∗ for exploring the reachability graph of
Petri nets for scheduling problems, see, e.g., [45,51] and the references therein.

2 Preliminaries

Let N := {0, 1, . . .}. For all D ⊆ Q and � ∈ {≥, >}, let D�0 := {a ∈ D : a � 0},
and for every set X, let DX denote the set of vectors DX := {v | v : X → D}.
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We naturally extend operations componentwise. In particular, (u + v)(x) :=
u(x) + v(x) for every x ∈ X, and u ≥ v iff u(x) ≥ v(x) for every x ∈ X.

Graphs. A (labeled directed) graph is a triple G = (V,E,A), where V is a set of
nodes, A is a finite set of elements called actions, and E ⊆ V × A × V is the
set of edges labeled by actions. We say that G has finite out-degree if the set of
outgoing edges {(w, a,w′) ∈ E : w = v} is finite for every v ∈ V . Similarly, it has
finite in-degree if the set of ingoing edges is finite for every v ∈ V . If G has both
finite out- and in-degree, then we say that G is locally finite. A path π is a finite
sequence of nodes (vi)1≤i≤n and actions (ai)1≤i<n such that (vi, ai, vi+1) ∈ E
for all 1 ≤ i < n. We say that π is a path from v to w (or a v-w path) if v = v1

and w = vn, and its label is a1a2 · · · an−1, where ε denotes the empty sequence.
A weighted graph is a tuple G = (V,E,A, µ) where (V,E,A) is a graph

with a weight function µ : E → Q>0. The weight of path π is the weight of its
edges, i.e. µ(π) :=

∑
1≤i<n µ(vi, ai, vi+1). A shortest path from v to w is a v-w

path π minimizing µ(π). We define distG : V × V → Q≥0 ∪ {∞} as the distance
function where distG(v, w) is the weight of a shortest path from v to w, with
distG(v, w) :=∞ if there is none. We assume throughout the paper that weighted
graphs have a minimal weight, i.e. that min{µ(e) : e ∈ E} exists. For graphs
with finite out-degree, this ensures that if a path exists between two nodes, then
a shortest one exists.4 This mild assumption always holds in our setting.

Petri nets. A weighted Petri net is a tuple N = (P, T, f, λ) where

– P is a finite set whose elements are called places,
– T is a finite set, disjoint from P , whose elements are called transitions,
– f : (P × T ) ∪ (T × P ) → N is the flow function assigning multiplicities to

arcs connecting places and transitions, and
– λ : T → Q>0 is the weight function assigning weights to transitions.

A marking is a vectorm ∈ NP which indicates that place p holdsm(p) tokens. A
weighted Petri net with λ(t) = 1 for each t ∈ T is called a Petri net. For example,
Figure 1 depicts a Petri net N with P = {p1, p2}, T = {t1, t2, t3}, f(p1, t3) =
f(p1, t2) = f(t1, p1) = f(t2, p1) = f(t2, p2) = 1 (multiplicity omitted on arcs)
and f(−,−) = 0 elsewhere (no arc). Moreover, N is marked with [p1 : 1, p2 : 0].

The guard and effect of a transition t ∈ T are vectors gt ∈ Np and ∆t ∈ Zp
where gt(p) := f(p, t) and ∆t(p) := f(t, p) − f(p, t). We say that t is firable
from marking m if m ≥ gt. If t is firable from m, then it may be fired, which

leads to marking m′ := m + ∆t. We write this as m
t−→N m′. These notions

naturally extend to sequences of transitions, i.e.
ε−→N denotes the identity relation

over NP , ∆ε := 0, λ(ε) := 0, and for every t1, t2, . . . , tk ∈ T : ∆t1t2···tk :=
∆t1 +∆t2 + · · ·+∆tk , λ(t1t2 · · · tk) := λ(t1) + λ(t2) + · · ·+ λ(tk), and

t1t2···tk−−−−−→N :=
tk−→N ◦ · · · ◦ t2−→N ◦ t1−→N,

4 Otherwise, there could be increasingly better paths, e.g. of weights 1, 1/2, 1/4, . . ..
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We say that −→N:= ∪t∈T t−→N and
∗−→N:= ∪σ∈T∗ σ−→N are the step and reachability

relations. Note that the latter is the reflexive transitive closure of −→N.

For example, m
t2t3−−→N m′ and m

t1t2t3t3−−−−−→N m′ in Figure 1, where m :=
[p1 : 1, p2 : 0] and m′ := [p1 : 0, p2 : 1]. Moreover, t2 is not firable in m′.

Given a sequence σ ∈ T ∗, denote by |σ|t ∈ N the number of times transition
t occurs in T . The Parikh image of σ is the vector σ ∈ NT that captures the
number of occurrences of transitions appearing in σ, i.e. σ(t) := |σ|t for all t ∈ T .

Each weighted Petri net N = (P, T, f, λ) induces a locally finite weighted
graph GN(N ) := (V,E, T, µ), called its reachability graph, where V := NP , E :=

{(m, t,m′) : m
t−→N m′} and µ(m, t,m′) := λ(t) for each (m, t,m′) ∈ E. An

example of a reachability graph is given on the right of Figure 1. We write distN
to denote distGN(N ). We have distN (m,m′) 6=∞ iff m

σ−→N m′ for some σ ∈ T ∗,
and if the latter holds, then distN (m,m′) is the minimal weight among such
firing sequences σ. Moreover, for (unweighted) Petri nets, distN (m,m′) is the
minimal number of transitions to fire to reach m′ from m.

3 Directed search algorithms

Our approach relies on classical pathfinding procedures guided by node selection
strategies. Their generic scheme is described in Algorithm 1. Its termination with
a value d 6=∞ indicates that the weighted graphG = (V,E,A, µ) has a path from
s to t of weight d, whereas termination with d =∞ signals that distG(s, t) =∞.

1 g := [s 7→ 0, v 7→ ∞ : v 6= s]
2 C := {s}
3 while C 6= ∅ do
4 v := arg minv∈C S(g, v)
5 if v = t then return g(t)
6 for (v, a, w) ∈ E do
7 if g(v) + µ(v, a, w) < g(w) then
8 g(w) := g(v) + µ(v, a, w)
9 C := C ∪ {w}

10 C := C \ {v}
11 return ∞
Algorithm 1: Directed search algorithm.

Algorithm 1 maintains a set of
frontier nodes C and a map-
ping g : V → Q≥0 ∪{∞} such
that g(w) is the weight of the
best known path from s to w.
In Line 4, a selection strategy
S determines which node v
to expand next. Starting from
Line 6, a successor w of v is
added to the frontier if its dis-
tance improves.

Let h : V → Q≥0 ∪ {∞}
estimate the distance from all
nodes to a target t ∈ V . The

selection strategies sending (g, v) respectively to g(v), g(v) + h(v) or h(v) yield
the classical Dijkstra’s, A∗ and greedy best-first search (GBFS ) algorithms.

When instantiating S with Dijkstra’s selection strategy, a return value d 6=∞
is guaranteed to equal distG(s, t). This is not true for A∗ and GBFS. However,
if h fulfills the following consistency properties, then A∗ also has this guarantee:
h(t) = 0 and h(v) ≤ µ(v, a, w) + h(w) for every (v, a, w) ∈ E (see, e.g., [55]).

In the setting of infinite graphs, unlike GBFS, A∗ and Dijkstra’s selection
strategies guarantee termination if distG(s, t) 6=∞. Yet, we introduce unbounded
heuristics for which termination is also guaranteed for GBFS. Note that these
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guarantees would vanish in the presence of zero weights. An infinite path π is a
sequence of nodes (vi)i∈N and actions (ai)i∈N such that (vi, ai, vi+1) ∈ E for all
i ∈ N. We say that π is bounded w.r.t. h if its nodes are pairwise distinct and
there exists b ∈ Q≥0 with h(vi) ≤ b for all i ≥ 0. We say that h is unbounded if
it admits no bounded sequence. The following technical lemma enables to prove
termination of GFBS in the presence of unbounded heuristics.

Lemma 1. If G is locally finite and h is unbounded, then the following holds:

1. The set of paths of weight at most c ∈ Q≥0 starting from node s is finite.
2. Let W ⊆ V . The set distG(W, t) := {distG(w, t) : w ∈W} has a minimum.
3. No node is expanded infinitely often by Algorithm 1.

Theorem 1. Algorithm 1 with the greedy best-first search selection strategy al-
ways finds reachable targets for locally finite graphs and unbounded heuristics.

Proof. First observe that Algorithm 1 satisfies this invariant:

if g(v) 6=∞, then g(v) is the weight of a path from s to v in G
whose nodes were all expanded, except possibly v. (∗)

Assume distG(s, t) 6= ∞. For the sake of contradiction, suppose t is never
expanded. Let Ki be the subgraph of G induced by nodes expanded at least
once within the first i iterations of the while loop. In particular, K1 is the
graph made only of node s. Let K = K1 ∪K2 ∪ · · · . By Lemma 1 (3), no node is
expanded infinitely often, hence K is infinite. Moreover, K has finite out-degree,
and each node of K is reachable from s in K by (∗). Thus, by König’s lemma,
K contains an infinite path v0, v1, . . . ∈ V of pairwise distinct nodes.

Let w be a node ofK minimizing distG(w, t). It is well-defined by Lemma 1 (2).
We have distG(w, t) 6= ∞ as t is reachable from s and the latter belongs to
K1 ⊆ K. By minimality of w 6= t, there exists an edge (w, a,w′) of G such that
distG(w′, t) < distG(w, t) and w′ does not appear in K. Note that w′ is added to
C at some point, but is never expanded as it would otherwise belong to K. Let
i be the smallest index such that w belongs to Ki. Since h is unbounded, there
exists j such that h(vj) > h(w′) and vj is expanded after iteration i of the while
loop. This is a contradiction as w′ would have been expanded instead of vj . ut

4 Directed reachability

In this section, we explain how to instantiate Algorithm 1 for finding short(est)
firing sequences witnessing reachability in weighted Petri nets. Since Dijkstra’s
selection strategy does not require any heuristic, we focus on A∗ and greedy best-
first search which require consistent and unbounded heuristics. More precisely,
we introduce distance under-approximations (Section 4.1); present relevant con-
crete distance under-approximations (Section 4.2); and put everything together
into our framework (Section 4.3).
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4.1 Distance under-approximations

A distance under-approximation of a weighted Petri net N = (P, T, f, λ) is a
function d : NP × NP → Q≥0 ∪ {∞} such that for all m,m′,m′′ ∈ NP :

– d(m,m′) ≤ distN (m,m′),
– d(m,m′′) ≤ d(m,m′) + d(m′,m′′) (triangle inequality), and
– d is effective, i.e. there is an algorithm that evaluates d on all inputs.

We naturally obtain a heuristic from d for a directed search towards marking
mtarget. Indeed, let h : NP → Q≥0 ∪ {∞} be defined by h(m) := d(m,mtarget).
The following proposition shows that h is a suitable heuristic for A∗:

Proposition 1. Mapping h is a consistent heuristic.

Proof. Let m,m′ ∈ NP and t ∈ T be such that m
t−→N m′. We have:

h(m) = d(m,mtarget) (by def. of h)

≤ d(m,m′) + d(m′,mtarget) (by the triangle inequality)

≤ distN (m,m′) + d(m′,mtarget) (by distance under-approximation)

≤ λ(t) + d(m′,mtarget) (since m
t−→N m

′)

= λ(t) + h(m′) (by def. of h).

Moreover, h(mtarget) = d(mtarget,mtarget) ≤ distN (mtarget,mtarget) = 0, where
the last equality follows from the fact that weights are positive. ut

4.2 From Petri net relaxations to distance under-approximations

We now introduce classical relaxations of Petri nets which over-approximate
reachability and consequently give rise to distance under-approximations. The
main source of hardness of the reachability problem stems from the fact that
places are required to hold a non-negative number of tokens. If we relax this re-
quirement and allow negative numbers of tokens, we obtain a more tractable re-

lation. More precisely, we writem
t−→Z m′ iffm′ = m+∆t. Note that transitions

are always firable under this semantics. Moreover, they may lead to “markings”
with negative components.

Another source of hardness comes from the fact that markings are discrete.
Hence, we can further relax −→Z into −→Q where transitions may be scaled down:

m
t−→Q m

′ ⇐⇒ m′ = m+ δ ·∆t for some 0 < δ ≤ 1.

One gets a less crude relaxation from considering nonnegative “markings” only:

m
t−→Q≥0

m′ ⇐⇒ (m ≥ δ · gt) and (m′ = m+ δ ·∆t) for some 0 < δ ≤ 1.

Under these, we obtain “markings” from QP and QP≥0 respectively. Petri nets
equipped with relation −→Q≥0

are known as continuous Petri nets [13,14].
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To unify all three relaxations, we sometimes write m
δt−→G m′ to emphasize

the scaling factor δ, where δ = 1 whenever G = Z. Let dG : NP×NP → Q≥0∪{∞}
be defined as dG(m,m′) :=∞ if m 6 ∗−→G m′, and otherwise:

dG(m,m′) := min

{
n∑

i=1

δi · λ(ti) : m
δ1t1···δntn−−−−−−−→G m

′
}
.

In words, dG(m,m′) is the weight of a shortest path from m to m′ in the graph
induced by the relaxed step relation −→G, where weights are scaled accordingly.

We now show that any dG, which we call the G-distance, is a distance under-
approximation, and first show effectiveness of all dG. It is well-known and readily
seen that reachability over G ∈ {Z,Q} is characterized by the following state
equation, since transitions are always firable due to the absence of guards:

m
∗−→G m

′ ⇐⇒ ∃σ ∈ GT≥0 : m′ = m+
∑

t∈T
σ(t) ·∆t.

Here, σ can be seen as the Parikh image of a sequence σ leading from m to m′.

Proposition 2. The functions dZ, dQ, dQ≥0
are effective.

Proof. By the state equation, we have:

dG(m,m′) = min

{∑

t∈T
λ(t) · σ(t) : σ ∈ GT≥0,m

′ = m+
∑

t∈T
σ(t) ·∆t

}
.

Therefore, dQ(m,m′) (resp. dZ(m,m′)) are computable by (resp. integer) linear
programming, which is is complete for P (resp. NP), in its variant where one must
check whether the minimal solution is at most some bound.

For dQ≥0
, note that the reachability relation of a continuous Petri net can

be expressed in the existential fragment of linear real arithmetic [8]. Hence,
effectiveness follows from the decidability of linear real arithmetic. ut

Altogether, we conclude that dG is a distance under-approximation. Further-
more, we can show that dG yields unbounded heuristics, which, by Theorem 1,
ensure termination of GBFS on reachable instances:

Theorem 2. Let G ∈ {Z,Q,Q≥0}, then dG is a distance under-approximation.
Moreover, the heuristics arising from it are unbounded.

Proof. Let N = (P, T, f, λ) be a weighted Petri net. Effectiveness of dG follows

from Proposition 2. By definitions and a simple induction,
σ−→N ⊆ σ−→G for any

sequence σ ∈ T ∗, with weights left unchanged for unscaled transitions. This
implies that dG(m,m′) ≤ distN (m,m′) for every m,m′ ∈ GP . Moreover, the
triangle inequality holds since for every m,m′,m′′ ∈ GP and sequences σ, σ′:

m
σ−→G m

′ σ′−→G m
′′ implies m

σσ′−−→G m
′′.
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Let us sketch the proof of the second part. Let mtarget be a marking and let
hG be the heuristic obtained from dG for mtarget. Since hQ(m) ≤ hG(m) for all
m and G ∈ {Z,Q≥0}, it suffices to prove that dQ is unbounded. Suppose it is
not. There exist b ∈ Q≥0 and pairwise distinct markings m0,m1, . . . each with
hQ(mi) ≤ b. Let xi be a solution to the state equation that gives hQ(mi). By
well-quasi-ordering and pairwise distinctness, there is a subsequence such that
mi0(p) < mi1(p) < · · · for some p ∈ P . Thus, limj→∞mtarget(p) −mij (p) =
−∞, and hence limj→∞ xij (s) =∞ for some s ∈ T with ∆s(p) < 0. This means
that b ≥ hQ(mij ) =

∑
t∈T λ(t) · xij (t) > b for a sufficiently large j. ut

4.3 Directed reachability based on distance under-approximations

We have all the ingredients to use Algorithm 1 for answering reachability queries.
A distance under-approximation scheme is a mapping D that associates a dis-

tance under-approximationD(N ) to each weighted Petri netN . Let hD(N ),mtarget

be the heuristic obtained from D(N ) for marking mtarget. By instantiating Al-
gorithm 1 with this heuristic, we can search for a short(est) firing sequence wit-
nessing that mtarget is reachable. Of course, constructing the reachability graph
of N would be at least as difficult as answering this query, or impossible if it is
infinite. Hence, we provide GN(N ) symbolically through N and let Algorithm 1
explore it on-the-fly by progressively firing its transitions.

For each G ∈ {Z,Q,Q≥0}, the function DG mapping a weighted Petri net N
to its G-distance dG is a distance under-approximation scheme with consistent
and unbounded heuristics by Proposition 1, Theorem 1 and Theorem 2. Although
Algorithm 1 is geared towards finding paths, it can prove non-reachability even
for infinite reachability graphs. Indeed, at some point, every candidate marking
m ∈ C may be such that hD(N ),mtarget

(m) = ∞, which halts with ∞. There is
no guarantee that this happens, but, as reported e.g. by [23,8], the G-distance for
domains G ∈ {Z,Q,Q≥0} does well for witnessing non-reachability in practice,
often from the very first marking minit.

An example. We illustrate our approach with a toy example and DQ (the scheme
based on the state equation over QT≥0). Consider the Petri net N illustrated on
the left of Figure 1, but marked with minit := [p1 : 0, p2 : 0]. Suppose we wish to
determine whether minit can reach marking mtarget := [p1 : 0, p2 : 1] in N .

We consider the case where Algorithm 1 follows a greedy best-first search,
but the markings would be expanded in the same way with A∗. Let us abbreviate
a marking [p1 : x, p2 : y] as (x, y). Since ∆t2 = (0, 1), the heuristic considers that
minit can reach mtarget in a single step using transition t2 (it is unaware of the
guard). Marking (1, 0) is expanded and its heuristic value increases to 2 as the
state equation considers that both t2 and t3 must be fired (in some unknown
order). Markings (2, 0) and (1, 1) are both discovered with respective heuristic
values 3 and 1. The latter is more promising, so it is expanded and target (0, 1)
is discovered. Since its heuristic value is 0, it is immediately expanded and the
correct distance distN (minit,mtarget) = 3 is returned. Note that, in this example,
the only markings expanded are precisely those occurring on the shortest path.
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Handling multiple targets. Algorithm 1 can be adapted to search for some mark-
ing from a given target set X ⊆ NP . The idea consists simply in using a heuristic
hX : NP → Q≥0 ∪ {∞} estimating the weight of a shortest path to any target:

hX(m) := min{hD(N ),mtarget
(m) : mtarget ∈ X}.

This is convenient for partial reachability instances occurring in practice, i.e.

X :=
{
mtarget ∈ NP : mtarget(p) ∼p c(p)

}
where c ∈ NP and each ∼p∈ {=,≥}.

5 Experimental results

We implemented Algorithm 1 in a prototype, called FastForward, which sup-
ports all selection strategies and distance under-approximations presented in the
paper. We evaluate FastForward empirically with three main goals in mind.
First, we show that our approach is competitive with established tools and can
even vastly outperform them, and we also give insights on its performance w.r.t.
its parameterizations. Second, we compare the length of the witnesses reported
by the different tools. Third, we briefly discuss the quality of the heuristics.

Technical details. Our tool is written in C# and uses Gurobi [35], a state-
of-the-art MILP solver, for distance under-approximations. We performed our
benchmarks on a machine with an 8-Core Intel® Core™ i7-7700 CPU @ 3.60GHz
running on Ubuntu 18.04 with memory constrained to ∼8GB. We used a timeout
of 60 seconds per instance, and all tools were invoked from a Python script using
the time module for time measurements.

A minor challenge arises from the fact that many instances specify an upward-
closed set of initial markings rather than a single one. For example, minit(p) ≥
1 to specify, e.g., an arbitrary number of threads. We handle this by setting
minit(p) = 1 and adding a transition tp producing a token into p.

As a preprocessing step, we implemented sign analysis [31]. It is a general
pruning technique that has been shown beneficial for reducing the size of the
state-space of Petri nets. Initially, places that carry tokens are viewed as marked.
For each transition whose input places are marked, the output places also become
marked. When a fixpoint is reached, places left unmarked cannot carry tokens
in any reachable marking, so they are discarded.

Benchmarks. Due to the lack of tools handling reachability for unbounded
state spaces, benchmarks arising in the literature are primarily coverability in-
stances5, i.e. reachability towards an upward closed set of target markings. We
gathered 61 positive and 115 negative coverability instances originating from
five suites [42,29,6,38,18] previously used for benchmarking [23,8,31]. They arise
from the analysis of multi-threaded C programs with shared-memory; mutual

5 The Model Checking Contest focuses on reachability for finite state spaces.
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exclusion algorithms; communication protocols; provenance analysis in the con-
text of a medical messaging and a bug-tracking system; and the verification of
Erlang concurrent programs. We further extracted the sypet suite made of 30
positive (standard) reachability instances arising from queries encountered in
type-directed program synthesis [25]. The overall goal of this work is to enable
a vast range of untapped applications requiring reachability over unbounded
state-spaces, rather than just coverability. To obtain further (positive) instances
of the Petri net reachability problem, we performed random walks on the Petri
nets from the aforementioned coverability benchmarks. To this end, we used the
largest quarter of distinct Petri nets from each coverability suite, for a total of
33. We performed one random walk each of lengths 20, 25, 30, 35, 40, 50, 60,
75, 90 and 100, and we saved the resulting marking as the target. For nets with
an upward-closed initial marking, we randomly chose to start with a number of
tokens between 1 and 20% of the length of the walk. It is important to note that
even with long random walks, instances can (and in fact tend to) have short
witnesses. To remove trivial instances and only keep the most challenging ones,
we removed those instances where FastForward or LoLA reported a witness
of length at most 20, disregarding the transitions used to generate the initial
marking. This leaves us with 127 challenging instances on which the shortest
witness is either unknown or has length more than 20. Moreover, this yields
real-world Petri nets with no bias towards any specific kind of targets.

This table summarizes the characteristics of the various benchmarks:

Suite Size
Number of places Number of transitions

min. med. mean max. min. med. mean max.

coverability 61 16 87 226 2826 14 181 1519 27370

sypet 30 65 251 320 1199 537 2307 2646 8340

random walks 127 52 306 531 2826 60 3137 5885 27370

Tool comparison. To evaluate our approach on reachability instances, we com-
pare FastForward to LoLA [56], a tool developed for two decades that wins
several categories of the Model Checking Contest every year. LoLA is geared to-
wards model checking of finite state spaces, but it implements semi-decision pro-
cedures for the unbounded case. We further compare the three selection strate-
gies of Algorithm 1: A∗, GBFS and Dijkstra; the two first with the distance
under-approximation scheme DQ, which provides the best trade-off between es-
timate quality and efficiency. We also considered comparing with KReach [17],
a tool showcased at TACAS’20 that implements an exact non-elementary algo-
rithm. However, it timed out on all instances, even with larger time limits.

Figure 2 depicts the number of reachability instances decided by the tools
within the time limit. As shown, all approaches outperform LoLA, with GBFS
as the clear winner on the random-walk suite and A∗ slightly better on the
sypet suite. Note that Dijkstra’s selection strategy sometimes competes due
to its locally very cheap computational cost (no heuristic evaluation), but its
performance generally decreases as the distance increases.
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Fig. 2. Cumulative number of reachability instances decided over time. Left : sypet
suite (semi-log scale). Right : random-walk suite (log scale).

To demonstrate the versatility of our approach, we also benchmarked Fast-
Forward on the original coverability instances. Recall that coverability is an
EXPSPACE-complete problem that reduces to reachability in linear time [48,54].
While its complexity exceeds the PSPACE-completeness of reachability for finite
state-spaces [41,21], it is much more tame than the non-elementary complexity of
(unbounded) reachability. We compare FastForward to four tools implement-
ing algorithms tailored specifically to the coverability problem: LoLA, Bfc [42],
ICover [31] and the backward algorithm (based on [1]) of mist [29]. We did not
test Petrinizer [23] since it only handles negative instances, while we focus on
positive ones; likewise for QCover [8] since it is superseded by ICover.
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Fig. 3. Cumulative number of (positive) coverability instances decided over time. Left :
Evaluation on the original instances. Right : Evaluation on the pre-pruned instances.

Figure 3 illustrates the number of coverability instances decided within the
time limit. The left side corresponds to an evaluation on the original instances
where FastForward performs pruning (included in its runtime). On the right
hand right side the pruned instances are the input for all tools, and the time
for this pruning is not included for any tool. As a caveat, ICover performs its
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own preprocessing which includes pruning among techniques specific to cover-
ability. This preprocessing is enabled (and its time is included) even when prun-
ing is already done. Using FastForward(A∗, DQ), we decide more instances
than all tools on unpruned Petri nets, and one less than Bfc for pre-pruned in-
stances. It is worth mentioning that with a time limit of 10 minutes per instance,
FastForward(A∗, DQ) is the only tool to decide all 61 instances.
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Fig. 4. Runtime comparison against FF(A∗, DQ) (left) and FF(GBFS, DQ) (right), in
seconds, for individual instances without pre-pruning. Tools on the first column of each
side include coverability and reachability instances, while those on the second column
of each side include coverability only. Marks on the gray lines denote timeouts (60 s).

We also compared the running time of A∗ and GBFS with DQ to the other
tools and approaches. For each tool, we considered the type of instances it can
handle: either reachability and coverability, or coverability only. Figure 4 depicts
this comparison, where the base approach is faster for data points that lie in the
upper-left half of the graph. The axes start at 0.1 second to avoid a comparison
based on technical aspects such as the programming language. Yet, LoLA, Bfc
and mist regularly solve instances faster than this, which speaks to their level
of optimization. We can see that FastForward outperforms ICover, LoLA
and mist overall. We cannot compete with Bfc in execution time as it is a
highly optimized tool specifically tailored to only the coverability problem that
can employ optimization techniques such as Karp-Miller trees that do not work
for reachability queries.

Length of the witnesses. Since our approach is also geared towards the iden-
tification of short(est) reachability witnesses, we compared the different tools
with respect to length of the reported one, depicted in Figure 5. Positive values
on the y-axis mean the witness was not minimal, while y = 0 means it was.
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Note that the points for Bfc must be taken with a grain of salt: it uses a differ-
ent file format, and its translation utility can introduce additional transitions.
This means that even if Bfc found a shortest witness, it could be longer than a
shortest one of the original instance.
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Fig. 5. Length of the returned witness, per tool, compared to the length of a shortest
witness. ICover is left out as it does not return witnesses. FF(A∗, DQ), FF(Dijkstra)
and mist are left out as they are guaranteed to return shortest witnesses.

Still, the graph shows that reported witnesses can be far from minimal. For
example, on one instance LoLA returns a witness that is 53 transitions longer
than the one of FastForward(A∗, DQ). Still, LoLA returns a shortest witness
on 28 out of 43 instances. Similarly, FastForward(GBFS, DQ) finds a shortest
path on 60 out of 83 instances6. In contrast, mist finds a shortest witness on
all instances since its backward algorithm is guaranteed to do so on unweighted
Petri nets, which constitute all of our instances. Again, this approach is tailored
to coverability and cannot be lifted to reachability.

Heuristics and pruning. We briefly discuss the quality of the heuristics and
the impact of pruning. The left-hand side of Figure 6 compares the exact dis-
tance to the estimated distance from the initial marking.7 It shows that it is
incredibly accurate for all G-distances, but even more so for G = Q≥0. We ex-
perimented with this distance using the logical translation of [8] and Z3 [52] as
the optimization modulo theories solver. At present, it appears that the gain in
estimate quality does not compensate for the extra computational cost.

As depicted on the right-hand side of Figure 6, pruning can make some in-
stances trivial, but in general, many challenging instances remain so. On average,
around 50% of places and 40% of transitions were pruned.

6 These numbers disregard instances where the tool did not finish or where a shortest
witness is not known, i.e. no method guaranteeing one finished in time.

7 Z3 reported two non optimal solutions which explains the two points above the line.
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Fig. 6. Left : initial distance estimation compared to the exact distance (points closer
to the diagonal are better). Right : number of instances per percentage of places (left)
and transitions (right) removed by pruning (rounded to nearest multiple of 10).

6 Conclusion

We presented an efficient approach to the Petri net reachability problem that
uses state-space over-approximations as distance oracles in the classical graph
traversal algorithms A∗ and greedy best-first search. Our experiments have shown
that using the state equation over QT≥0 provides the best trade-off between com-
putational feasibility and the accuracy of the oracle. However, we expect that
further advances in optimization modulo theories solvers may enable employing
stronger over-approximations such as continuous Petri nets in the future.

Moreover, non-algebraic distance under-approximations also fit naturally in
our framework, e.g. the syntactic distance of [58] and “α-graphs” of [25]. These
are crude approximations with low computational cost. Our preliminary tests
show that, although they could not compete with our distances, they can provide
early speed-ups on instances with large branching factors. An interesting line of
research consists in identifying cheap approximations with better estimates.

We wish to emphasize that our approach to the reachability problem has the
potential to also be naturally used for semi-deciding reachabiltiy in extensions of
Petri nets with a recursively enumerable reachability problem, such as Petri nets
with resets and transfers [3,19] as well as colored Petri nets [40]. These extensions
have, for instance, been used for the generation of program loop invariants [57],
the validation of business processes [62] and the verification of multi-threaded
C and Java program skeletons with communication primitives [15,42]. Linear
rational and integer arithmetic over-approximations for such extended Petri nets
exist [11,9,37,34] and could smoothly be used inside our framework.
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A A primer on applications of Petri net reachability

This section provides two representative examples from the literature that il-
lustrate the important role of Petri net reachability. They allow us to underpin
our claim that it is desirable to find shortest paths witnessing reachability. Our
examples come from program synthesis and concurrent program analysis. We
conclude this section with a brief discussion on further applications.

Program synthesis. The authors of [25] and [33] have recently employed the Petri
net reachability problem for automated program synthesis. In their setting, one
is given an API containing hundreds or thousands of functions, together with a
type signature and a number of test cases. The goal is to automatically synthesize
a loop-free program using functions from the API that respects the specified type
signature and satisfies the given test cases.

java.awt.geom

new AffineTransformation()

Shape Shape.createTransformedShape(AffineTransformation)

String Point2D.ToString()

double Point2D.getX()

double Point2D.getY()

void AffineTransformation.setToRotation(double, double, double)

void AffineTransformation.invert()

Area Area.createTransformedArea(AffineTransformation)

Fig. 7. A small sample of methods from library java.awt.geom.

Let us illustrate the approach with an example from [25]. Suppose we have
access to library java.awt.geom, and we wish to synthesize a function rotate

with type signature

Area rotate(Area object, Point2D point, double angle).

Naturally, the function should rotate the supplied Area around point by angle

degrees. We assume the java.awt.geom library is sufficient for this task in that
it contains the functions needed to synthesize the method. Figure 7 presents an
excerpt of functions contained in the API.

The authors of [25] suggest to view an API as a Petri net whose places cor-
respond to types and transitions correspond to API functions which, informally
speaking, consume input types and produce an output type. Figure 8 illustrates
the Petri net corresponding to the excerpt of API functions listed in Figure 7.
To synthesize the rotate function above, we start with tokens in the places cor-
responding to the input parameters of our function. Thus, in Figure 8 we have
one token in each of the places corresponding to Area, Point2D and double. The
goal is then to reach a marking with a single token in the place corresponding to
the return type. In our example, we aim for one token in Area, and no token in
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any other place. This corresponds to invoking a sequence of functions that “use
up” all input parameters, and finally return the correct type. To allow reuse
of variables, additional “copy” transitions are introduced for each place; they
take one token from a place and put two tokens back. If the target marking is
reachable, then the witnessing path corresponds to a partial sketch of a program.

For example, the path

copyPoint2D → GetY→ GetX→ new AffineTransformation→
copyAffineTransformation → setToRotation→ createTransformedArea

tells us which functions to apply, and in which order to apply them. Since Petri
nets do not store information about the identity of tokens, when we have multiple
objects of the same type, we do not know which to supply as an argument to
which function. This can be figured out by a separate process involving SAT
solving (see [25] for more details).

As discussed in [25], finding short paths of the Petri net is a natural goal.
Indeed, since short programs are easier to test, there are fewer possibilities for
the arguments of each function, and it is easier for humans to verify that the
synthesized program has the desired functionality.

AffineTrans

Shapedouble

Point2D AreaString

setToRotation
3

invert

createTransShape

ToString

GetXGetY createTransArea

new AffineTrans copyAffineTrans

2

copyArea2
copyShape

2

copydouble 2

copyPoint2D

2

copyString

2

Fig. 8. A Petri net modelling the API of Figure 7.

Concurrent program analysis. Perhaps most prominently, Petri nets have been
used in order to model and analyze concurrent processes. Let us begin with a
simple example illustrating how the Petri net reachability problem can be used
in order to detect race conditions in concurrent programs. Consider function
fun() of Figure 9 in which s is a global shared Boolean variable. If there is a
single thread running fun(), then the condition of the if-statement in Line 3
never evaluates to true and an error cannot occur. However, if there are two
independently interleaved threads running fun(), it is possible that one thread
reaches Line 3 whilst s is set to 1, which means an error could occur.

In more technical terms, we consider non-recursive Boolean programs in
which an unbounded number of identical programs run in parallel. The authors
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0 def fun():

1 s = 1

2 s = 0

3 if s == 1: raise Err()

Fig. 9. Simple program with a potential race condition.

of [32] showed that verifying safety properties of such concurrent programs can
be reduced to the coverability problem for Petri nets using a technique called
counter abstraction. The coverability problem is a weaker version of the reach-
ability problem. Given a target marking, the coverability problem asks whether
it is possible to reach a marking in which every place carries at least as many
tokens as specified by the target marking. The Petri net obtained by applying
the approach of [32] to the program from Figure 9 is depicted in Figure 10. The
places on the top of the Petri net correspond to the program locations of Fig-
ure 9. Tokens in each of the places on the top count the number of threads which
are currently at the respective program location, which is a form of counter ab-
straction. At any time, transition fun() can add tokens to loc1, reflecting that
a new thread executing fun() can be spawned at any point in time arbitrarily
often. The two places on the bottom encode the state of the Boolean variable s

which is updated whenever a transition moves tokens from loc1 to loc2, or from
loc2 to loc3. Determining whether an error can occur then reduces to deciding
whether the marking [Err : 1] is coverable, i.e., whether there is an interleaving
in which at least one thread produces an error.

loc1 loc2 loc3 Errfun()

s == 1 s == 0

Fig. 10. The Petri net modeling the program of Figure 9. A token in place loci repre-
sents a thread at program location i, and a token in place s == b indicates that variable
s has value b. Transition fun() spawns threads. A bidirectional arc p↔ t abbreviates
two arcs: p→ t and t→ p. Colors are only meant to help readability.

In stark contrast to the reachability problem, it was shown in [54] that the
coverability problem belongs to EXPSPACE. There is a natural reduction from
the coverability problem to the reachability problem: by introducing additional
transitions that can non-deterministically remove tokens from every place corre-
sponding to program lines, a target marking in the original Petri net is coverable
iff it is reachable in the Petri net with the additional transitions. Alternatively,
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deciding coverability can be rephrased as the problem of determining whether
an upward-closed set of markings is reachable in the directed graph induced by
a given Petri net, which is the approach that we take.

Further applications The authors of [24] show how proofs involving counting
arguments, which can, for instance, naturally prove properties of concurrent
programs with recursive procedures, can automatically be synthesized by a re-
duction to the Petri net reachability problem. The authors of [30] propose a
model for reasoning about finite-data asynchronous programs. They show that
proving liveness properties of such programs in their model is inter-reducible
with the Petri net reachability problem. In a broader context, it was shown that
various verification problems for population protocols, a formal model of sensor
networks, reduce to the Petri net reachability problem [22]. The authors of [16]
develop a method that allows for verifying rich models of data-driven workflows
by a reduction to the coverability problem for Petri nets. See also survey [53] for
further classical application areas of Petri nets and their extensions.

B Missing proofs of Section 3

Recall the following invariant satisfied by Algorithm 1:

if g(v) 6=∞, then g(v) is the weight of a path from s to v in G
whose nodes were all expanded, except possibly v. (∗)

We prove this lemma from the main text:

Lemma 1. If G is locally finite and h is unbounded, then the following holds:

1. The set of paths of weight at most c ∈ Q≥0 starting from node s is finite.
2. Let W ⊆ V . The set distG(W, t) := {distG(w, t) : w ∈W} has a minimum.
3. No node is expanded infinitely often by Algorithm 1.

Proof. Let d := min{µ(e) : e ∈ E}.
1. Any path of weight at most c traverses at most k := dc/de edges. Since the

graph has finite out-degree, the number of paths from s using at most k
edges is finite.

2. Suppose the claim false. We have distG(v0, t) > distG(v1, t) > · · · for some
v0, v1, . . . ∈ W . Let k := ddistG(v0, t)/de. Let V≤k be the set of nodes that
can reach t by traversing at most k edges. Since G has finite in-degree, V≤k
is finite. Moreover, any node v ∈ V \ V≤k is such that distG(v, t) > k · d ≥
distG(v0, t). Hence, {v0, v1, . . .} ⊆ V≤k is finite, which is a contradiction.

3. For the sake of contradiction, assume a node v is expanded infinitely often.
Each time node v is expanded, it is removed from C. Hence, it is reinserted in-
finitely often in C. Moreover, each time this happens, value g(v) is decreased.
Let q0, q1, . . . ∈ Q≥0 denote these increasingly smaller values. By (∗), there
is a path πi from s to v of weight qi in G. By (1), {πi : i ∈ N} is finite as
the weight of these paths is at most q0. This contradicts q0 > q1 > · · · . ut
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C Missing proofs of Section 4.2

Proposition 2. The functions dZ, dQ, dQ≥0
are effective.

Proof. Let us prove the case of dQ≥0
which was only sketched in the main text.

The reachability relation of a continuous Petri net can be expressed in the exis-
tential fragment of linear real arithmetic, i.e. FO〈Q,+, <〉, the first-order theory
of the rationals with addition and order [8]. More precisely, there exists a linear-
time computable formula ψ ∈ ∃FO〈Q,+, <〉 such that ψ(m,x,m′) holds iff

there exists a sequence σ ∈ ((0, 1]× T )∗ s.t. m
σ−→Q≥0

m′ and σ = x.

Let Φ(m,m′, `) := ∃x ∈ QT≥0 : ψ(m,x,m′) ∧ ` =
∑
t∈T λ(t) · x(t). Formula

Φ ∈ ∃FO〈Q,+, <〉 can be constructed in linear time and is such that Φ(m,m′, `)
holds for m,m′ ∈ QP≥0 and ` ∈ Q≥0 iff ` = dQ≥0

(m,m′). Thus, dQ≥0
is com-

putable as an instance of a decidable optimization modulo theories problem. ut

Theorem 2. Let G ∈ {Z,Q,Q≥0}, then dG is a distance under-approximation.
Moreover, the heuristics arising from it are unbounded.

Proof. The first was part of the statement was fully shown in the main text. Let
us prove the second part more formally. Let N = (P, T, f, λ) be a weighted Petri
net, let mtarget be a target marking, and let hG be the heuristic obtained from
dG for mtarget. Observe that hQ(m) ≤ hG(m) for every marking m and every
G ∈ {Z,Q,Q≥0}. Hence, if hQ is unbounded, so are all three heuristics. Thus, it
suffices to prove the case G = Q.

For the sake of contradiction, suppose hQ is not unbounded. There exists
b ∈ Q≥0 and an infinite sequence of pairwise distinct markings m0,m1, . . . ∈ NP
with hQ(mi) ≤ b for every i ≥ 0. Let xi ∈ QT≥0 be a solution to the state
equation over Q≥0 that yields hQ(mi), i.e. such that hQ(mi) =

∑
t∈T λ(t) ·xi(t)

is minimized subject to

mtarget = mi +
∑

t∈T
xi(t) ·∆t. (1)

Since NP is well-quasi-ordered, there exist indices i0 < i1 < · · · such that
mi0 ≤ mi1 ≤ · · · . Since these markings are pairwise distinct, we may assume
w.l.o.g. the existence of a place p ∈ P such that mi0(p) <mi1(p) < · · · (other-
wise, we could extract such a subsequence).

Let us define the following constants:

c := min {λ(t) : t ∈ T} and d :=
b · |T | ·max {|∆t(p)| : t ∈ T}

c
.

Let j ≥ 0 be such that mtarget(p) −mij (p) < −d. Such an index j exists as p
takes arbitrarily large values along our infinite sequence. By (1), we have:

∑

t∈T
xij (t) ·∆t(p) = mtarget(p)−mij (p) < −d.
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Thus, there exists s ∈ T such that ∆s(p) < 0 and xij (s) > b/c. Indeed, if it was
not the case, it would be impossible to obtain a negative value smaller than −d.

We are done since we obtain the following contradiction:

hQ(mij ) =
∑

t∈T
λ(t) · xij (t) (by definition)

≥ λ(s) · xij (s) (by λ(t) > 0 and xij (t) ≥ 0 for each t ∈ T )

> λ(s) · (b/c) (by λ(s) > 0 and xij (s) > b/c)

≥ λ(s) · (b/λ(s)) (by λ(s) ≥ c)
= b

≥ hQ(mij ) (by boundedness). ut

D Experimental results

Figure 11 depicts an evaluation on reachability instances where all tools were
given the pruned Petri nets (preprocessing time not included for any tool). The
results are essentially the same as those of Figure 2.
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Fig. 11. Cumulative number of reachability instances decided over time (on pre-pruned
instances). Left : sypet suite (semi-log scale). Right : random-walk suite (log scale).

E Structural distance

All three G-distances presented in the main text have an algebraic flavor. While
their complexity is significantly lower than the non-elementary time complexity
of Petri net reachability, they involve solving optimization problems. An alter-
native avenue, mentioned in the conclusion, consists in constructing less precise
but more efficient distance under-approximation based on structural properties.

We describe such a distance under-approximation adapted from the syntactic
distance of [58] and related to the “α-graphs” used by [25]. Let N = (P, T, f, λ)
be a weighted Petri net. The structural abstraction of N is a weighted graph
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Gstruct(N ) with places as nodes with an edge (p, t, q) iff transition t consumes
tokens from p and produces tokens into q. Since some transitions may consume
or produce no token, we imagine these as consuming from, or producing to, an
artificial “sink place” ⊥. Intuitively, if m can reach m′, then each token of m
must either make its way to m′ or disappear. Of course, tokens cannot move
independently and freely in N . However, paths in Gstruct(N ) yield a lower bound
on an actual path from m to m′. A structural abstraction is given in Figure 12.

p1 p2 p3

p1 p2 p3 ⊥

Fig. 12. Left: A Petri net N . Right: Its structural abstraction Gstruct(N ).

Formally, let in(t) := {p ∈ P : f(p, t) > 0} be the set of input places of t if it
is nonempty, and in(t) := {⊥} otherwise; and let out(t) := {p ∈ P : f(t, p) > 0}
be the set of output places of t if it is nonempty, and out(t) := {⊥} otherwise.
We define Gstruct(N ) := (V,E, T, µ) with V := P ∪ {⊥}, µ(p, t, q) := λ(t) and

E := {(p, t, q) : p 6= q, t ∈ T, p ∈ in(t) and out(t) 3 q} .

We obtain the structural distance dstruct : NP × NP → Q≥0 ∪ {∞} defined
as follows. For every marking m, let JmK := {p ∈ P : m(p) > 0} ∪ {⊥} be the
places marked in m together with ⊥ (considered permanently marked). Let:

dstruct(m,m′) := max {κm′(p) : p ∈ JmK} , where

κm′(p) := min {distGstruct
(p, q) : q ∈ Jm′K} .

Informally, κm′(p) is the distance required to freely move a token from place p
to a place marked inm′, or to destroy it. Since every token ofmmust achieve this
task, dstruct maximizes κm′(p) among all places marked in m. Consider the Petri
net of Figure 12 with m := [p1 : 0, p2 : 1, p3 : 1] and m′ := [p1 : 1, p2 : 0, p3 : 0].
We have dstruct(m,m′) = 2 since κm′(p2) = 2 and κm′(p3) = 1.

We show that dstruct is an under-approximation by first proving a lemma:

Lemma 2. If m
σ−→N m′, then for every p ∈ JmK there exists a path of weight

at most λ(σ) from p to some q ∈ Jm′K in Gstruct(N ).

Proof. We proceed by induction on |σ|. If |σ| = 0, then the claim follows imme-
diately with the empty path. Assume σ = tτ with t ∈ T and τ ∈ T ∗. There is

some marking m′′ such that m
t−→N m′′

τ−→N m′. By induction hypothesis, for
every r ∈ Jm′′K, there exists a path πr of weight at most λ(τ) from r to some
q ∈ Jm′K in Gstruct(N ). Let p ∈ JmK. We must exhibit a path from p.

If p ∈ Jm′′K, then we are done as path πp satisfies µ(πp) ≤ λ(τ) ≤ λ(σ).
So, assume p 6∈ Jm′′K. By definition of E, we have e := (p, t, r) ∈ E for some
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r ∈ Jm′′K. Thus, path π := eπr satisfies the claim since λ(π) = λ(t) + µ(πr) ≤
λ(t) + λ(τ) = λ(σ). ut

Proposition 3. It is the case that dstruct is a distance under-approximation.

Proof. Letm,m′,m′′ ∈ NP be markings. We prove admissibility by establishing
each property.

Distance under-approximation. We must show that dstruct(m,m′) ≤ distN (m,m′).
Assume the latter differs from ∞, as we are otherwise done. Let σ ∈ T ∗ be a
shortest firing sequence such that

m
σ−→N m

′.

Let p ∈ JmK maximize κm′(p). By Lemma 2, Gstruct(N ) has a path π of weight
at most λ(σ) from p to some q ∈ Jm′K. Thus, dstruct(m,m′) = κm′(p) ≤
distGstruct(N )(p, q) ≤ µ(π) ≤ λ(σ) = distN (m,m′).

Triangle inequality. We show dstruct(m,m′′) ≤ dstruct(m,m′)+dstruct(m
′,m′′).

Assume that the right-hand side does not equal∞ as we are otherwise done. Let
p, p′ ∈ JmK and q ∈ Jm′K respectively maximize κm′(p), κm′′(p

′) and κm′′(q).
Let q′ ∈ Jm′K and r ∈ Jm′′K be such that κm′(p

′) = distGstruct(p
′, q′) and

κm′′(q
′) = distGstruct(q

′, r). Note that they are well-defined by κm′(p) 6=∞ and
κm′′(q) 6=∞.

We have:

dstruct(m,m′′)

= κm′′(p
′) (by def. of dstruct)

≤ distGstruct
(p′, r) (by r ∈ Jm′′K and min. of κm′′(p

′))

≤ distGstruct
(p′, q′) + distGstruct

(q′, r) (by the triangle inequality)

= κm′(p
′) + κm′′(q

′)

≤ κm′(p
′) + κm′′(q) (by q′ ∈ Jm′K and max. of q)

≤ κm′(p) + κm′′(q) (by p′ ∈ JmK and max. of p)

= dstruct(m,m′) + dstruct(m
′,m′′) (by def. of dstruct).

Effectiveness. The structural abstraction Gstruct(N ) can be precomputed in lin-
ear time from N , and distGstruct(N )(p, q) can then be precomputed in polynomial
time using e.g. Dijkstra’s algorithm. After these steps, dstruct(m,m′) can be eval-
uated in time O(|JmK| · |Jm′K|). ut

Let us stress that dstruct(m,m′) yields a crude estimation of distN (m,m′).
Indeed, its value is always upper bounded by |P | · max{λ(t) : t ∈ T}, while
the actual distance could be arbitrarily large in m and m′. Nevertheless, it is
lightweight since it enables pre-computations. This makes it useful in particular
for reachability graphs with short paths but large branching factors.

For example, instances from the sypet suite have a large branching factor.
They have between 23 and 187 unguarded transitions. Most markings tend to
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enable some guarded transitions as well, so the average branching factor is larger.
In particular, the branching factor of initial markings ranges from 30 to 300.8
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Fig. 13. Results on the sypet suite with a time limit of 600 seconds. Left: Cumulative
number of instances shown reachable. Right: Performance comparison per instance of
FastFoward with two different schemes. Marks on the gray lines denote timeouts.

Let Dstruct be distance under-approximation scheme obtained from the struc-
tural distance. This scheme is not unbounded, but can still be used with GBFS
without termination guarantee. Figure 13 compares the performance of Fast-
Forward using A∗ with DQ and using GBFS with Dstruct on a time limit of 600
seconds. The former is faster on most instances, but it is vastly outperformed
by A∗ on a few instances. An explanation is provided by the large branching
factor and short paths, and how these emphasize the characteristics of the dif-
ferent approaches. Note that the structural abstraction can be precomputed. On
the other hand, A∗ requires computing the heuristic on each successor before the
next node is chosen for expansion. It thus is at a slight disadvantage on instances
where a shortest witness is so short that it is found rather quickly even with the
coarse structural distance. Its advantage is on the instances where the length
of a shortest witness is at the upper end of the range. There, the large branch-
ing factor fully comes into play and a search algorithm must more aggressively
discard parts of the search space.

8 Chess and Go respectively have an average branching factor of ∼35 and ∼350 [55].
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The Complexity of Soundness in
Workflow Nets

This paper was published as a peer-reviewed conference article. A full version
with an appendix containing missing proofs omitted from the conference paper due
to space constraints was uploaded to arXiv at the URL https://arxiv.org/

abs/2201.05588, see [26].
Cite as: M. Blondin, F. Mazowiecki, and P. Offtermatt. The Complexity of Sound-

ness in Workflow Nets. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), New York, NY, USA, 2022.

Summary We investigate three related problems in workflow nets: Classical sound-
ness, generalised soundness, and structural soundness. The complexity of all three
problems has been investigated previously, yet for all three, only decidability was
firmly known [3, 36, 65], though the literature also suggested that classical sound-
ness is EXPSPACE-hard. We close the widely open gaps in the existing literature
and show three main results, namely that 1) classical soundness is EXPSPACE-
complete, 2) generalised soundness is PSPACE-complete, and 3) structural soundness
is EXPSPACE-complete.

Contribution of this author The author was chiefly responsible for obtaining the
results of the paper, contributing first drafts of all results and proofs. Notably, the

145

https://arxiv.org/abs/2201.05588
https://arxiv.org/abs/2201.05588


hardness results in Section 3.2, Section 5.5. and Section 6.3, and the characterization
in Section 7 were the sole contribution of the author. The remaining results were
obtained in joint discussions, in which the author took a leading role. The contribution
further includes taking a leading role in the overall composition and development of
the manuscript.
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Abstract
Workflow nets are a popular variant of Petri nets that allow
for algorithmic formal analysis of business processes. The
central decision problems concerning workflow nets deal
with soundness, where the initial and final configurations are
specified. Intuitively, soundness states that from every reach-
able configuration one can reach the final configuration. We
settle the widely open complexity of the three main variants
of soundness: classical, structural and generalised soundness.
The first two are EXPSPACE-complete, and, surprisingly, the
latter is PSPACE-complete, thus computationally simpler.

Keywords: Workflow nets, Petri nets, soundness, generalised
soundness, structural soundness, complexity
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Michael Blondin, Filip Mazowiecki, and Philip Offtermatt. . The
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1 Introduction
Workflow nets are a formalism that allows for the modeling
of business processes. Specifically, they allow to formally
represent workflow procedures in Workflow Management
Systems (WFMSs) (see e.g. [23, Section 4], where Figure 6
shows a workflow net for the processing of complaints; and
[22, Section 3] for details on modeling procedures). Such a
mathematical representation enables the algorithmic formal
analysis of their behaviour. This is particularly relevant for
large organisations that seek to manage the workflow of com-
plex business processes. Such challenges have received, and
continue to receive, intense academic attention, e.g. through
the foundations track of the Business Process Management
Conference (BPM), and via a discipline coined as process
mining and pioneered prolifically by Wil van der Aalst1. In
particular, many tools, such as those integrated in the ProM
framework [27], can extract events from logs, e.g. of enter-
prise resource planning (ERP) systems, from which they
synthesize workflow nets (and other models) to be formally
analyzed (see [24] for a book on the topic).

More formally, workflow nets form a subset of (standard)
Petri nets. They consist of places that can contain resources
1See http://www.processmining.org.

, ,
.

(called tokens) which can be consumed and produced via
transitions in a nondeterministic and concurrent fashion.
Two designated places, namely the initial place i and the final
place f , respectively model the initialisation and termination
of a business process. No token can be produced in the initial
place, and no token can be consumed from the final place.

A central property studied since the inception of workflow
nets is 1-soundness [22, 23]. Informally, quoting [22], it states
that “For any case, the procedure will terminate eventually [...]”.
More formally, from the configuration with a single token in
the initial place i, every reachable configuration can reach
the configuration with a single token in the final place f .
For readers familiar with computation temporal logic (CTL),
1-soundness can be loosely rephrased as i |= ∀G∃F f . More
generally, 𝑘-soundness states the same but for 𝑘 tokens, i.e.
(𝑘 · i) |= ∀G∃F (𝑘 · f).

Classical soundness. Several variants of soundness have
been considered in the literature (see [25] for a survey). The
best-known is classical soundness. It states that a workflow
net is 1-sound and that each transition is meaningful, i.e.
each transition can be fired in at least one execution (often
called quasi-liveness). It is well-known that deciding classi-
cal soundness amounts to checking boundedness and live-
ness of a slightly modified net. In particular, this means that
classical soundness is decidable since boundedness and live-
ness are decidable problems. However, to the best of our
knowledge, the (exact) complexity of classical soundness
remains widely open. It has been suggested that classical
soundness is EXPSPACE-hard. For example, the author of [9]
mentions that “IO-soundness is decidable but also EXPSPACE-
hard ([26])”, yet [26] merely states the following:

[I]t may be intractable to decide soundness. (For
arbitrary [workflow]-nets liveness and bounded-
ness are decidable but also EXPSPACE-hard [...]).

Furthermore, [23, p. 38] claims that EXPSPACE-hardness
follows from the fact that “deciding liveness and boundedness
is EXPSPACE-hard”, which is attributed to [5]. However, [5]
only mentions liveness to be EXPSPACE-hard (which was
known prior to [5]).

The confusion arises from the fact that boundedness and
liveness are independently EXPSPACE-hard problems, which
suggests that classical soundness must naturally be at least
as hard. However, this needs not be the case. For example, for
a well-studied subclass of Petri nets, called free-choice nets,
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testing simultaneously boundedness and liveness has lower
complexity than testing both properties independently2 [10].
Moreover, since liveness is equivalent to the Petri net reacha-
bility problem [14], the only (implicitly) known upper bound
is not even primitive recursive [16]. As a first contribution,
we show that classical soundness and 𝑘-soundness are in
fact both EXPSPACE-hard and in EXPSPACE, and hence
EXPSPACE-complete. The upper bound is derived with a
fortiori surprisingly little effort by invoking known results
on coverability and so-called cyclicity. The hardness result is
obtained by a careful reduction from the reachability prob-
lem for reversible Petri nets [4, 18]. There, we exploit subtle
known results in a technically challenging way.

Generalised and structural soundness. Among the vari-
ants of soundness catalogued by the survey of van der Aalst
et al. [25], generalised soundness [29, Def. 3] is the only fun-
damentally distinct property (in particular, see [25, Fig. 7]). It
asks whether a given workflow net is 𝑘-sound for all 𝑘 ≥ 1.
Generalised soundness, unlike classical soundness, preserves
nice properties like composition [29]. The existential coun-
terpart of generalised soundness, where “for all” is replaced
by “for some”, is known as structural soundness [1].

It is a priori not clear whether generalised and structural
soundness are decidable, as the approach for deciding other
types of soundness reasons about 𝑘-soundness for a given
or fixed number 𝑘 . Nonetheless, both problems have been
shown decidable [7, 30]. The two algorithms, and a subse-
quent one [28], rely on Petri net reachability, which has very
recently been shown Ackermann-complete [8, 15, 16].

As for classical soundness, the computational complexity
of generalised and structural soundness remains open. In
fact, we are not aware of any complexity result. In this work,
we prove that generalised and structural soundness have
much lower complexity than Petri net reachability: they are
respectively PSPACE-complete and EXPSPACE-complete. In
particular, the fact that generalised soundness is simpler
than classical soundness is arguably surprising: positive in-
stances of both problems require the given workflow net to
be bounded, but for generalised soundness, one can avoid
explicitly checking this EXPSPACE-complete property.

To derive the PSPACE membership, we introduce the no-
tion of strong soundness which is (partly) defined in terms
of a relaxed reachability relation (sometimes known as Z-
reachability or pseudo-reachability, e.g., see [2]). Through
results on integer linear programming and bounded vectors
reordering, we prove that 𝑘-unsoundness of a workflow net
must occur for a “small” number 𝑘 . Furthermore, we show
that it suffices to witness such a 𝑘 for so-called Z-bounded

2For free-choice nets: Boundedness is EXPSPACE-complete since any Petri
net can trivially be made free-choice while preserving its reachability set
up to projection; liveness is coNP-complete [10, Thm. 4.28]; and testing
liveness and boundedness can be done in polynomial time [10, Cor. 6.18].

nonredundant nets, a more restrictive property than (stan-
dard) boundedness. By building upon these results, we es-
tablish the EXPSPACE membership of structural soundness,
and, in fact, effectively characterise the set of sound numbers
of workflow nets, which settles the open problem of [7].

The hardness for PSPACE and EXPSPACE are respectively
obtained via reductions from the reachability problem for
conservative Petri nets [19], and from 1-soundness.

Contribution and organisation. In summary, we settle,
after around two decades, the exact computational complex-
ity of the central decision problems for workflow nets. This
is achieved in the rest of this work, organised as follows. In
Section 2, we introduce general notation, Petri nets, work-
flow nets and soundness. In Section 3, we prove that classical
soundness is EXPSPACE-complete. In Section 4, we provide
bounds on vector reachability, which in turn allows us to
prove PSPACE-completeness of generalised soundness (Sec-
tion 5), and EXPSPACE-completeness of structural soundness
(Section 6). In Section 7, we leverage the previous results to
give a characterisation of numbers 𝑘 for which a workflow
net is 𝑘-sound. Finally, we conclude in Section 8. Due to
space constraints, some proofs are deferred to an appendix.

2 Preliminaries
We denote naturals and integers with the usual font: 𝑛 ∈ N
and 𝑧 ∈ Z. Given 𝑖, 𝑗 ∈ Z, we write [𝑖 .. 𝑗] for {𝑖, 𝑖 + 1, . . . , 𝑗}.
We use the bold font for vectors and matrices, e.g. 𝒂 =
(𝑎1, . . . , 𝑎𝑛) ∈ Z𝑛 and A ∈ Z𝑚×𝑛 . Given 𝑛 ∈ N, we write
𝒏𝑑 = (𝑛, . . . , 𝑛) ∈ N𝑑 . We omit the dimension 𝑑 when it is
clear from the context, e.g. 0 denotes the null vector. We write
𝒂 [𝑖] = 𝑎𝑖 and A[𝑖, 𝑗] for matrix entries where 𝑖 ∈ [1..𝑚]
and 𝑗 ∈ [1..𝑛]. We write 𝒙 ≤ 𝒚 if 𝒙 [𝑖] ≤ 𝒚[𝑖] holds for
all 𝑖 ∈ [1..𝑛]. We write 𝒙 < 𝒚 if at least one inequality
is strict. Given a vector 𝒂 ∈ Z𝑛 or a matrix A ∈ Z𝑚×𝑛 ,
we define the norms ∥𝒂∥ B max1≤𝑖≤𝑛 |𝒂 [𝑖] | and ∥A∥ B
max1≤ 𝑗≤𝑚,1≤𝑖≤𝑛 |A[ 𝑗, 𝑖] |.
2.1 Petri nets
A Petri net is a triple N = (𝑃,𝑇 , 𝐹 ) such that:
• 𝑃 and 𝑇 are disjoint finite sets whose elements are

respectively called places and transitions,
• 𝐹 : ((𝑃 ×𝑇 ) ∪ (𝑇 × 𝑃)) → N is the flow function.

A marking is a vector 𝒎 : 𝑃 → N where 𝒎[𝑝] indicates
how many tokens are contained in place 𝑝 . We say that a
transition 𝑡 ∈ 𝑇 is enabled in 𝒎 if 𝒎[𝑝] ≥ 𝐹 [𝑝, 𝑡]. Informally,
𝐹 [𝑝, 𝑡] and 𝐹 [𝑡, 𝑝] respectively correspond to the amount
of tokens to be consumed from and produced in place 𝑝 .
Let •𝑡, 𝑡• ∈ N𝑝 respectively denote the vectors such that
•𝑡 [𝑝] B 𝐹 [𝑝, 𝑡] and 𝑡• [𝑝] B 𝐹 [𝑡, 𝑝]. Let Δ(𝑡) B 𝑡• − •𝑡
denote the effect of 𝑡 . If transition 𝑡 is enabled in 𝒎, then 𝑡
may be fired, which leads to the marking 𝒎′ B 𝒎 + Δ(𝑡).
The latter is denoted by 𝒎 −→𝑡 𝒎′, or simply by 𝒎 −→ 𝒎′

whenever we do not care about the transition that led to 𝒎′.
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Figure 1. Three workflow nets, each marked with {i : 1}.

We use a standard notation for markings, listing only nonzero
values, e.g. if 𝑃 = {𝑝1, 𝑝2}, 𝒎[𝑝1] = 2 and 𝒎[𝑝2] = 0, then
𝒎 = {𝑝1 : 2}.

A run is a sequence of transitions 𝜌 = 𝑡1 · · · 𝑡𝑛 ∈ 𝑇 ∗. A
run is enabled in 𝒎0 if there is a sequence of markings
𝒎1, . . . ,𝒎𝑛 such that 𝒎𝑖 −→𝑡𝑖 𝒎𝑖+1 for all 0 ≤ 𝑖 < 𝑛. If it
is the case, then we denote this by 𝒎0 −→𝜌 𝒎𝑛 , or 𝒎0 −→∗ 𝒎𝑛

if 𝜌 is not important. Given ℓ ∈ N, we say that 𝜌 is ℓ-bounded
if ∥𝒎𝑖 ∥ ≤ ℓ for all 0 ≤ 𝑖 ≤ 𝑛. The support of a run is the set of
transitions occurring in it, denoted supp(𝜌) B {𝑡1, . . . , 𝑡𝑛}.

We introduce a semantics where transitions can always
be fired, and hence where markings may become negative.
Formally, a Z-marking is a vector 𝒎 : 𝑃 → Z. We write
𝒎 −→𝑡

Z 𝒎′ (or simply 𝒎 −→Z 𝒎′) if 𝒎′ = 𝒎 + Δ(𝑡). Given a
run 𝜌 , we define in the obvious way −→𝜌

Z and −→∗Z. Note that
markings are Z-markings (with the domain restricted to N).
The definition of Z-markings is mostly needed to use −→∗Z.

We define the absolute value and norm of a Petri net N =
(𝑃,𝑇 , 𝐹 ) by |N | B |𝑃 | + |𝑇 | and ∥N ∥ B ∥𝐹 ∥ + 1, where
𝐹 is seen as a vector over (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃). The size of
a Petri net is defined as size(N) B |N | · (1 + log∥N ∥).
For some complexity problems, we will be given a Petri net
and some markings, e.g. 𝒎 and 𝒎′. By the size of the input,
we understand size(N ,𝒎,𝒎′) B size(N) + log(∥𝒎∥ + 1) +
log(∥𝒎′∥ + 1).

A transition 𝑡 is said to be quasi-live from marking 𝒎
if there exists a marking 𝒎′ such that 𝒎 −→∗ 𝒎′ and 𝑡 is
enabled in 𝒎′. A transition 𝑡 is said to be live from 𝒎 if 𝑡 is
quasi-live from all 𝒎′ such that 𝒎 −→∗ 𝒎′. We say that a Petri
net N is quasi-live (resp. live) from 𝒎 if each transition 𝑡 of
N is quasi-live (resp. live) from 𝒎. Informally, quasi-liveness
states that no transition is useless, and liveness states that
transitions can always eventually be fired.

Example 2.1. Consider the Petri net Nmiddle = (𝑃,𝑇 , 𝐹 )
illustrated in the middle of Figure 1. Places 𝑃 = {i, 𝑞1, 𝑞2, f}
and transitions𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} are depicted respectively as
circles and squares. The flow function 𝐹 is depicted by arcs,
where unit weights are omitted, and where arcs with weight
zero are not drawn, e.g. 𝐹 (i, 𝑡1) = 1, 𝐹 (𝑡1, i) = 0, 𝐹 (𝑡4, f) = 2
and 𝐹 (f, 𝑡4) = 0. In particular, transitions 𝑡1, 𝑡2 and 𝑡3 are

quasi-live from marking {i : 1} since

{i : 1} −→𝑡1 {𝑞1 : 1} −→𝑡2 {𝑞2 : 1} −→𝑡3 {𝑞1 : 1}.
However, as no other marking is reachable, transition 𝑡4 is
not quasi-live. Note that 𝑡2 and 𝑡3 are both live from {i : 1},
while 𝑡1 is not live since it can only be fired once.

2.2 Workflow nets and soundness
A workflow net N is a Petri net that satisfies the following:
• there is a dedicated initial place i with •𝑡 [i] = 0 for

every transition 𝑡 (cannot produce tokens in i);
• there is a dedicated final place f ≠ i with 𝑡• [f] = 0 for

every transition 𝑡 (cannot consume tokens from f);
• each place and transition lies on at least one path from

i to f in the underlying graph ofN , i.e. the graph (𝑉 , 𝐸)
where 𝑉 B 𝑃 ∪𝑇 and (𝑢, 𝑣) ∈ 𝐸 iff 𝐹 [𝑢, 𝑣] > 0.

Given 𝑘 ∈ N, we say that N is 𝑘-sound iff {i : 𝑘} −→∗ 𝒎
implies 𝒎 −→∗ {f : 𝑘}, i.e. starting from 𝑘 tokens in the initial
place, it is always possible to move the 𝑘 tokens into the final
place. We say that N is:
• classically sound iff N is 1-sound and quasi-live from
{i : 1};
• generalised sound iff N is 𝑘-sound for all 𝑘 > 0;
• structurally sound iff N is 𝑘-sound for some 𝑘 > 0.

Example 2.2. Consider the workflow netsNleft,Nmiddle and
Nright depicted respectively in Figure 1.

Workflow netsNleft andNmiddle are not 1-sound since their
only transition that can mark place f is not quasi-live from
{i : 1}, namely 𝑠2 and 𝑡4. In particular, this means that both
workflow nets are neither classically sound, nor generalized
sound. Workflow netNright is 1-sound, and in fact classically
sound, as shown by the reachability graph of Figure 2.

In particular, this means that Nright is structurally sound.
Workflow netNleft is not structurally sound as no matter the
marking {i : 𝑘} from which it starts, there is no way to empty
place 𝑝1 once it is marked. Workflow net Nmiddle is 2-sound,
and hence structurally sound. Indeed, from {i : 2}, the two
tokens must enter {𝑞1, 𝑞2} from which they can escape via
{𝑞1 : 1, 𝑞2 : 1} by firing 𝑡4, reaching marking {f : 2}.
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{i : 1}
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𝑢1 𝑢2𝑢3

𝑢5 𝑢6
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Figure 2. Markings reachable from {i : 1} in Nright.
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Figure 3. Left: Short-circuit net of the rightmost workflow
net from Figure 1. Right: Its markings reachable from {i : 1}.

Workflow net Nright is not 2-sound, and hence not gener-
alised sound. Indeed, we have {i : 2} −→𝑢1𝑢2𝑢4 {𝑟2 : 2, f : 1}
and no transition is enabled in the latter marking.

3 Classical soundness
As mentioned in the introduction, classical soundness is
decidable, but its complexity has not yet been established.
Let us recall why decidability holds. We say that a Petri net
N is bounded from marking 𝒎 if there exists 𝑏 ∈ N such
that 𝒎 −→∗ 𝒎′ implies 𝒎′ ≤ 𝒃 . Otherwise, N is unbounded
from 𝒎. It is well-known that unboundedness holds iff there
exist markings 𝒎′ < 𝒎′′ such that 𝒎 −→∗ 𝒎′ −→∗ 𝒎′′. The
short-circuit net N𝑠𝑐 of a workflow netN isN extended with
a transition 𝑡𝑠𝑐 such that 𝐹 [f, 𝑡𝑠𝑐 ] = 𝐹 [𝑡𝑠𝑐 , i] = 1 (and 0 for
other entries relating to 𝑡𝑠𝑐 ). Informally, the short-circuit net
allows to restore the system upon completion, i.e. by moving
a token from f to i.

For example, the left side of Figure 3 illustrates a short-
circuit net N𝑠𝑐 . By inspecting the graph of markings reach-
able from {i : 1} in N𝑠𝑐 , we see that N𝑠𝑐 is live and bounded,
i.e. it is always possible to (re)fire any transition, and each
place is bounded by 𝑏 B 1 token. It turns out that liveness
and boundedness characterize classical soundness:

Proposition 3.1 ([22, Lemma 8]). A workflow net N is clas-
sically sound iff N𝑠𝑐 is live and bounded from {i : 1}.

Decidability of classical soundness follows from Proposi-
tion 3.1. Indeed, boundedness can be tested in EXPSPACE [20],
and liveness is decidable since it reduces to reachability [14,

Thm 5.1] which is decidable [17]. However, the liveness prob-
lem is hard for the reachability problem [14, Thm 5.2], which
was recently shown Ackermann-complete [8, 15, 16]. In this
section, we first give a slightly different characterization
not involving liveness which yields EXPSPACE membership.
Then, we show that classical soundness is EXPSPACE-hard,
and hence EXPSPACE-complete, via a reduction from the
reachability problem for so-called reversible Petri nets.

3.1 EXPSPACE membership
Let us reformulate the characterization of Proposition 3.1
so that it deals with another property than liveness, namely
“cyclicity”. We say that a Petri net is cyclic from a marking 𝒎
if 𝒎 −→∗ 𝒎′ implies 𝒎′ −→∗ 𝒎, i.e. it is always possible to go
back to 𝒎. For example, the short-circuit net N𝑠𝑐 , illustrated
on the left of Figure 3, is cyclic since each marking reachable
from {i : 1} can reach {f : 1}, which in turn can reach {i : 1}.

Rather than directly considering classical soundness, we
first consider 1-soundness. The characterization of Proposi-
tion 3.1 can be adapted to this problem as follows:
Proposition 3.2. A workflow net N is 1-sound iff N𝑠𝑐 is
bounded and transition 𝑡𝑠𝑐 is live from {i : 1}.

From the previous proposition, we prove the following.
Lemma 3.3. A workflow netN = (𝑃,𝑇 , 𝐹 ) is 1-sound iffN𝑠𝑐

is bounded and cyclic from {i : 1}, and some transition 𝑡 ∈ 𝑇
satisfies •𝑡 = {i : 1}.
Proof. ⇒) Let N be 1-sound. Since {i : 1} −→∗ {f : 1} and
i ≠ f , some 𝑡 ∈ 𝑇 satisfies •𝑡 = {i : 1}. By Proposition 3.2,
from {i : 1},N𝑠𝑐 is bounded and 𝑡𝑠𝑐 is live. It remains to show
that N𝑠𝑐 is cyclic. Let {i : 1} −→∗ 𝒎. By liveness of 𝑡𝑠𝑐 , there
is a marking 𝒎′ such that 𝒎 −→∗ 𝒎′ and 𝒎′ enables 𝑡𝑠𝑐 . Note
that •𝑡𝑠𝑐 = {f : 1}. If𝒎′ > {f : 1}, that is,𝒎′ = {f : 1}+𝒏 with
𝒏 > 0, then we obtain {i : 1} −→∗ {f : 1} + 𝒏 −→𝑡𝑠𝑐 {i : 1} + 𝒏,
and hence boundedness is violated. Thus, by boundedness
and liveness of 𝑡𝑠𝑐 , 𝒎 −→∗ 𝒎′ = {f : 1} −→𝑡𝑠𝑐 {i : 1}, which
proves cyclicity.
⇐) Assume N𝑠𝑐 is bounded and cyclic from {i : 1}, and

that some 𝑡 ∈ 𝑇 is as described. By Proposition 3.2, it suffices
to show that 𝑡𝑠𝑐 is live from {i : 1}. Let 𝒎 ∈ N𝑃 be such that
{i : 1} −→∗ 𝒎 in N𝑠𝑐 . We either have 𝒎 = {i : 1} or 𝒎[i] = 0,
as otherwise N𝑠𝑐 is unbounded. If 𝒎 = {i : 1}, we can fire 𝑡
and obtain a marking where i is empty. Thus, assume w.l.o.g.
that 𝒎[i] = 0. By cyclicity, we have 𝒎 −→𝜋 {i : 1} for some 𝜋 .
Since 𝑡𝑠𝑐 is the only transition that produces tokens in place
i, transition 𝑡𝑠𝑐 must appear in 𝜋 . Hence, 𝑡𝑠𝑐 is live. □

Since classical soundness amounts to quasi-liveness and
1-soundness, we obtain the following corollary.
Corollary 3.4. A workflow netN is classically sound iffN𝑠𝑐

is quasi-live, bounded and cyclic from {i : 1}.
Theorem 3.5. Both 1-soundness and classical soundness are
in EXPSPACE.
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Proof. Checking whether a transition 𝑡 satisfies •𝑡 = {i : 1}
can be carried in polynomial time. The other properties of
Lemma 3.3 for 1-soundness, namely boundedness and cyclic-
ity, belong to EXPSPACE [3, 20].

For quasi-liveness, we proceed as follows. The coverability
problem asks whether given a Petri net and two markings
𝒎,𝒎′, there exists a marking 𝒎′′ ≥ 𝒎′ such that 𝒎 −→∗ 𝒎′′.
This problem belongs to EXPSPACE [20]. Recall that quasi-
liveness asks whether for each transition 𝑡 ∈ 𝑇∪{𝑡𝑠𝑐 }, it is the
case that {i : 1} −→∗ 𝒎 for some some marking 𝒎 that enables
𝑡 , i.e. such that 𝒎 ≥ •𝑡 . The latter is a coverability question.
Hence, quasi-liveness amounts to |𝑇 | +1 coverability queries,
which can be checked in EXPSPACE. □

We further show that the previous result can be extended
to 𝑘-soundness through the following lemma.
Lemma 3.6. Given a workflow net N and 𝑘 > 0, one can
compute, in polynomial time, a workflow netN ′ with ∥N ′∥ =
∥N ∥ + log(𝑘) such that, for all 𝑐 > 0, N is 𝑐𝑘-sound iff N ′ is
𝑐-sound.

Proof. Let N = (𝑃,𝑇 , 𝐹 ). We define N ′ B (𝑃 ′,𝑇 ′, 𝐹 ′) that
rescales everything by 𝑘 . Formally, we add two new places
that are the new initial and final places 𝑃 ′ B 𝑃 ∪ {i′, f ′}. We
denote by i and f the previous initial and final places. We
add two new transitions 𝑡i and 𝑡f defined by:

•𝑡i [i′] = 1 and •𝑡i [𝑝] = 0 for 𝑝 ≠ i′,

𝑡•i [i] = 𝑘 and 𝑡•i [𝑝] = 0 for 𝑝 ≠ i,
•𝑡f [f] = 𝑘 and •𝑡f [𝑝] = 0 for 𝑝 ≠ f,

𝑡•f [f ′] = 1 and 𝑡•f [𝑝] = 0 for 𝑝 ≠ f ′.

It is straightforward that N ′ satisfies the lemma. □

Corollary 3.7. The 𝑘-soundness problem is in EXPSPACE.

Proof. It suffices to invoke Lemma 3.6 with 𝑐 = 1, and test 1-
soundness of the resulting workflow net via Theorem 3.5. □

3.2 EXPSPACE-hardness
Let us now establish EXPSPACE-hardness of classical sound-
ness. We will need the forthcoming lemma that essentially
states that so-called reversible Petri nets can count up to (or
down from) a doubly exponential number. Formally, we say
that a Petri net N = (𝑃,𝑇 , 𝐹 ) is reversible if each transition
of N has an inverse, i.e. for every 𝑡 ∈ 𝑇 , there exists 𝑡−1 ∈ 𝑇
such that • (𝑡−1) = 𝑡• and (𝑡−1)• = •𝑡 . Note that for reversible
Petri nets, it is the case that 𝒎 −→∗ 𝒎′ if and only if 𝒎′ −→∗ 𝒎.
To emphasise this, we will sometimes write 𝒎 ←→∗ 𝒎′.
Lemma 3.8 ([18, Lemma 3]). Let N be a reversible Petri net
and let 𝒎 and 𝒎′ be two markings. Let 𝑛 B size(N ,𝒎,𝒎′).
There exists 𝑐𝑛 ∈ 22O(𝑛) such that if 𝒎 −→∗ 𝒎′ then 𝒎 −→𝜌 𝒎′

for a 𝑐𝑛-bounded run 𝜌 .

Lemma 3.9 ([18, reformulation of Lemma 6 and Lemma 8]).
Let 𝑛 ∈ N and 𝑐𝑛 ∈ 22O(𝑛) . There exists a reversible Petri net

N𝑛 = (𝑃𝑛,𝑇𝑛, 𝐹𝑛) with four distinguished places 𝑠, 𝑐, 𝑓 , 𝑏 ∈
𝑃𝑛 . Given the two markings 𝒎𝑛 B {𝑠 : 1, 𝑐 : 1} and 𝒎′𝑛 B
{𝑓 : 1, 𝑐 : 1, 𝑏 : 𝑐𝑛}, the following holds for all 𝒎:

1. 𝒎𝑛 ←→∗ 𝒎′𝑛 ;
2. 𝒎𝑛 ←→∗ 𝒎 and 𝒎[𝑓 ] > 0 implies 𝒎 = 𝒎′𝑛 ;
3. 𝒎 ←→∗ 𝒎′𝑛 and 𝒎[𝑠] > 0 implies 𝒎 = 𝒎𝑛 ;
4. if 𝒎 < 𝒎′𝑛 and 𝒎[𝑓 ] = 0 then no transition can be fired

from 𝒎;
5. for all 𝑝 ∈ 𝑃𝑛 there exists 𝒎𝑛 ←→∗ 𝒎 s.t. 𝒎[𝑝] > 0.

Furthermore, N𝑛 is: of polynomial size in 𝑛; constructible in
polynomial time in 𝑛; and quasi-live both from 𝒎𝑛 and 𝒎′𝑛 .

Theorem 3.10. The classical soundness and 1-soundness prob-
lems are EXPSPACE-hard.

Proof. We give a reduction from the reachability problem for
reversible Petri nets. This problem is known to be EXPSPACE-
complete [4, 18]. Let N = (𝑃,𝑇 , 𝐹 ) be a reversible Petri net,
and let 𝒎,𝒎′ be two markings for which we would like to
know whether 𝒎 −→∗ 𝒎′ in N .

Let 𝑛 B size(N ,𝒎,𝒎′). Let 𝑐𝑛 be the value given by
Lemma 3.8 for 𝑛. Let N𝑛 = (𝑃𝑛,𝑇𝑛, 𝐹𝑛) be the Petri net given
by Lemma 3.9 for 𝑐𝑛 .

We construct a workflow net N ′ = (𝑃 ′,𝑇 ′, 𝐹 ′) such that
N ′ is classically sound if and only if 𝒎 −→∗ 𝒎′ inN . To avoid
any confusion, we will denote markings in N ′ by 𝒏, 𝒏′, etc.

The construction will ensure that
𝒎 −→∗ 𝒎′ in N iff N ′ is classically sound. (1)

Moreover, 1-soundness of N ′ will imply 𝒎 −→∗ 𝒎′, which
will prove that both classical soundness and 1-soundness are
EXPSPACE-hard.

Formally, the set of places 𝑃 ′ consists of: 𝑃 ; its disjoint
copy 𝑃 B {𝑝 | 𝑝 ∈ 𝑃}; seven extra places

{i, f, 𝑝start, 𝑝inProgress, 𝑝cover, 𝑝simple, 𝑝canFire};
two disjoint copies of 𝑃𝑛 (from Lemma 3.9), with one copy
of 𝑏 removed. One of the copies will be marked with ♥ to
avoid any confusion, thus we write e.g. 𝑝♥ ∈ 𝑃♥𝑛 . The two
places 𝑏 and 𝑏♥ are merged into a single place denoted 𝑏.

Before presenting the transitions, we would like to empha-
sise that, intuitively, place 𝑝 ∈ 𝑃 will contain a “budget” of
tokens that is an upper bound on how many more tokens can
be present in 𝑝 . Most of the time, for every marking 𝒎 and
place 𝑝 ∈ 𝑃 , we will keep 𝒎[𝑝] +𝒎[𝑝] = 𝑐𝑛 as an invariant.

In Figure 4, we present the most relevant parts of N ′.
Formally, the set of transitions is divided into four subsets
𝑇 ′ = 𝑇1 ∪ 𝑇2 ∪ 𝑇3 ∪ 𝑇4. Transitions will be defined by giv-
ing •𝑡 ′[𝑝] and 𝑡 ′• [𝑝]. The values are zero on unmentioned
places.

First, for every transition 𝑡 ∈ 𝑇 , we define 𝑡 ′ ∈ 𝑇1 by:
• •𝑡 ′[𝑝] B •𝑡 [𝑝] and 𝑡 ′• [𝑝] B 𝑡• [𝑝] for all 𝑝 ∈ 𝑃 ;
• •𝑡 ′[𝑝] B 𝑡• [𝑝] and 𝑡 ′• [𝑝] B •𝑡 [𝑝] for all 𝑝 ∈ 𝑃 ;
• •𝑡 ′[𝑝canFire] = 𝑡 ′• [𝑝canFire] B 1.
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Figure 4. A workflow net N ′ which is classically sound iff 𝒎 −→∗ 𝒎′ in the reversible Petri net N = (𝑃,𝑇 ). In the example,
𝑃 = {𝑝1, 𝑝2}, 𝒎 = (1, 0) and 𝒎′ = (0, 1). The original places are blue, their copies are green, and other new places are red. We
omit the transitions in 𝑇1 that originated from 𝑇 (recall that these transitions are modified to consume and produce tokens
also in green places), and we omit the place 𝑝canFire (used only to allow transitions in 𝑇1 to fire). We only sketch transitions
in 𝑇2 and 𝑇3 (and some other transitions), by writing the intuitive meaning of the gadgets that add/remove 𝑐𝑛 tokens (these
“transitions” are marked with a different color). The transition 𝑡hard initiates the bottom part of N ′ (by filling the green places
with 𝑐𝑛 tokens) that checks 𝒎 −→∗ 𝒎′. The transition 𝑡simple initiates the top part of N ′. We denote transitions in the top part
with dotted gray color. This part is rather trivial and its only purpose is to ensure quasi-liveness of transitions in 𝑇1 (by filling
blue and green places with ∥N ∥ tokens).

It is easy to see that since N is a reversible Petri net, for
every transition in 𝑇1, its reverse is also in 𝑇1. We will say
that 𝑇1 is reversible. Notice that, for all 𝑡 ′ ∈ 𝑇1 and 𝑝 ∈ 𝑃 ,
the sum of tokens in 𝑝 and 𝑝 does not change under 𝑡 ′.

Second, for every 𝑡 ∈ 𝑇𝑛 , we add 𝑡 ′ ∈ 𝑇2 such that:
• •𝑡 ′[𝑝] B •𝑡 [𝑝] and 𝑡 ′• [𝑝] B 𝑡• [𝑝] for all 𝑝 ∈ 𝑃𝑛 ;
• •𝑡 ′[𝑝] B •𝑡 [𝑏] and 𝑡 ′• [𝑝] B 𝑡• [𝑏] for all 𝑝 ∈ 𝑃 .

Intuitively, places in 𝑃 behave as 𝑏 to initialise the budget of
𝑐𝑛 tokens. Similarly, for every 𝑡♥ ∈ 𝑇 ♥𝑛 , we add 𝑡 ′ ∈ 𝑇3 such
that:
• •𝑡 ′[𝑝♥] B •𝑡 [𝑝♥] and 𝑡 ′• [𝑝♥] B 𝑡• [𝑝♥] for all 𝑝♥ ∈
𝑃♥𝑛 ;
• •𝑡 ′[𝑝] B •𝑡 [𝑏] and 𝑡 ′• [𝑝] B 𝑡• [𝑏] for all 𝑝 ∈ 𝑃 .

Note that sinceN𝑛 is reversible, both𝑇2 and𝑇3 are reversible.
The set 𝑇4 consists of the ten remaining transitions

{𝑡hard, 𝑡start, 𝑡𝒎, 𝑡𝒎′, 𝑡−1𝒎′ , 𝑡isEmpty, 𝑡reach, 𝑡
−1
reach, 𝑡simple, 𝑡simple2}.

Intuitively, the first two are needed to initialise places in 𝑃
with 𝑐𝑛 tokens; the next three transitions respectively add 𝒎,
𝒎′ and −𝒎′ to 𝑃 ; the next three transitions transfer tokens
towards the final places; and the last two transitions are
needed for quasi-liveness. Formally,

• •𝑡hard [i] = 𝑡•hard [𝑠] = 𝑡•hard [𝑐] B 1;
• •𝑡start [𝑓 ] = •𝑡start [𝑐] = 𝑡•start [𝑝start] B 1;
• 𝑡•𝒎 [𝑝] = •𝑡𝒎 [𝑝] B 𝒎[𝑝] for all 𝑝 ∈ 𝑃 ; and •𝑡𝒎 [𝑝start] =
𝑡•𝒎 [𝑝inProgress] = 𝑡•𝒎 [𝑝canFire] B 1;
• •𝑡𝒎′ [𝑝] = 𝑡•𝒎′ [𝑝] B 𝒎′[𝑝] for all 𝑝 ∈ 𝑃 ; •𝑡𝒎′ [𝑝inProgress] =
•𝑡𝒎 [𝑝canFire] = 𝑡•𝒎′ [𝑝cover] B 1; and 𝑡−1𝒎′ is its reverse
transition;
• •𝑡reach [𝑝cover] = 𝑡•reach [𝑓 ♥] = 𝑡•reach [𝑐♥] B 1; and
𝑡−1reach is its reverse transition;
• •𝑡end [𝑠♥] = •𝑡end [𝑐♥] = 𝑡•end [f] B 1;
• •𝑡simple [i] = 𝑡•simple [𝑝simple] = 𝑡•simple [𝑝canFire] B 1;

and 𝑡•simple [𝑝] = 𝑡•simple [𝑝] B ∥N ∥ for all 𝑝 ∈ 𝑃 ;
• •𝑡simple2 [𝑝] = •𝑡simple2 [𝑝] B ∥N ∥ for all 𝑝 ∈ 𝑃 ; and
•𝑡simple2 [𝑝simple] = •𝑡simple2 [𝑝canFire] = 𝑡•simple2 [f] B
1.

Recall that 𝑃 ⊆ 𝑃 ′ and that 𝒎 is a marking on 𝑃 . To ease
the notation, we will assume that 𝒎 is a marking on 𝑃 ′ (with
0 tokens in places from 𝑃 ′ \ 𝑃 ).

We are ready to prove Equation (1). Notice that for every
reachable configuration {i : 1} −→𝜌 𝒏 the value 𝒏[𝑝canFire]
is always equal to 𝒏[𝑝simple] or 𝒏[𝑝inProgress] (depending
on whether the first transitions of 𝜌 is 𝑡simple or 𝑡hard). For
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readability, we omit the value of 𝑝canFire in the markings of
N ′.
⇐) Suppose that N ′ is 1-sound (we will not rely on N ′

being quasi-live). By Lemma 3.9 (1), we know that

{i : 1} −→𝑡hard {𝑠 : 1, 𝑐 : 1} −→∗ {𝑓 : 1, 𝑐 : 1, 𝑏 : 𝑐𝑛}+
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛}.

Let us denote the last marking by 𝒏. Notice that

𝒏 −→𝑡start𝑡𝒎 {𝑝inProgress : 1, 𝑏 : 𝑐𝑛} +𝒎 +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛 −𝒎[𝑝]}.

We denote the latter marking by 𝒏′. Since N ′ is 1-sound,
𝒏′ −→𝜌 {f : 1} for some run 𝜌 . This is possible if 𝑡reach was
fired at least once in 𝜌 . Let 𝒏1 −→𝑡reach 𝒏2 be the last time
𝑡reach was fired in 𝜌 . We claim that 𝒏2 = {𝑓 ♥ : 1, 𝑐♥ : 1, 𝑏 : 𝑐𝑛}+∑

𝑝 {𝑝 : 𝑐𝑛}. Indeed, it has to be that

𝒏2 −→𝜌′ {𝑠♥ : 1, 𝑐♥ : 1} −→𝑡end {f : 1},
where 𝜌 ′ uses transition only from𝑇3. By Lemma 3.9 (4), this
is possible only if 𝒏2 is as claimed. Let 𝜌 ′′ be the prefix of
the run 𝜌 from 𝒏′ such that it ends in 𝒏1. Finally, 𝜌 ′′, when
restricted to 𝑃 , witnesses reachability for 𝒎 −→∗ 𝒎′.
⇒) Suppose that 𝒎 −→∗ 𝒎′. The proof of 1-soundness is

very technical and can be found in the appendix. In a nutshell,
recall that𝑇1,𝑇2 and𝑇3 are reversible, and for 𝑡𝒎′, 𝑡reach ∈ 𝑇4
we include their reverse transitions. This allows us to revert
any configuration to a configuration from which it is easy
to define a run to {f : 1}.

To conclude this implication, we need to prove that N ′ is
quasi-live. Indeed, from the proof of 1-soundness it is easy
to see that 𝒎 −→∗ 𝒎′ implies that all transitions are fireable,
with the possible exception of transitions from 𝑇1. However,

{i : 1} −→𝑡simple {𝑝simple : 1} +
∑︁
𝑝∈𝑃
{𝑝 : ∥N ∥, 𝑝 : ∥N ∥}.

From the latter configuration, any transition of 𝑇1 is fireable.
Finally, observe that N ′ is a workflow net. Indeed, by

taking 𝑡simple we put tokens in 𝑃 , and by taking 𝑡simple2 we
can put tokens in 𝑃 . Each place from copies in N𝑛 is on a
path from i to f by Lemma 3.9 (5). The remaining places are
clearly on such a path by definition (see Figure 4). □

4 Bounds on vector reachability
In this section, we present technical results that will be help-
ful to establish complexity bounds in the forthcoming sec-
tions. It is well-known that Petri nets are complex due to
their nonnegativity constraints. Namely, markings are over
N (not Z), which blocks transitions from being fired when-
ever the amount of tokens would drop below zero. By lifting
this restriction, i.e. allowing markings over Z, transitions
cannot be blocked and we obtain a provably simpler model
(e.g. see [13]). We recall known results that provide bounds
on reachability problems for vectors over Z. Based on these
results, we will derive useful bounds for the next sections.

4.1 Integer linear programs
Given positive natural numbers 𝑛,𝑚 > 0, let A ∈ Z𝑚×𝑛
be an integer matrix, 𝒃 ∈ Z𝑚 an integer vector and 𝒙 =
(𝑥1, . . . , 𝑥𝑛)T a vector of variables. We say that𝐺 B A·𝒙 ≥ 𝒃
is an (𝑚 × 𝑛)-ILP, that is, an integer linear program (ILP)
with𝑚 inequalities and 𝑛 variables. The set of solutions of
𝐺 is

J𝐺K B {𝝁 ∈ Z𝑛 | A · 𝝁 ≥ 𝒃},
and the set of natural solutions is J𝐺K≥0 B J𝐺K ∩ N𝑛 . We
will only be interested in the natural solutions J𝐺K≥0 but
sometimes we will need to refer to J𝐺K. We shall assume that
these sets are equal, by implicitly adding a new inequality
for each variable specifying that it is greater or equal to 0.

Often it is convenient to write an equality constraint, e.g.
𝑥 − 𝑦 = 0. This can be simulated by two inequalities, so we
will allow to define 𝐺 both with equalities and inequalities.

We introduce some notation about semi-linear sets from [6]
to obtain bounds on the sizes of solutions to ILPs. A set of
vectors is called linear if it is of the form 𝐿(𝒃, 𝑃) = {𝒃 +
_1𝒑1 + . . . +_𝑘𝒑𝑘 | _1, . . . , _𝑘 ∈ N}, where 𝒃 ∈ Z𝑛 is a vector
and 𝑃 = {𝒑1, . . . ,𝒑𝑘 } ⊆ Z𝑛 is a finite set of vectors. A set is
called hybrid linear if it is of the form 𝐿(𝐵, 𝑃) = ⋃

𝒃∈𝐵 𝐿(𝒃, 𝑃)
for a finite set of vectors 𝐵 = {𝒃1 . . . , 𝒃ℓ } ⊆ Z𝑛 .

The size of a finite set of vectors 𝐵 and of an (𝑚 × 𝑛)-
ILP 𝐺 are defined respectively as ∥𝐵∥ B max𝒃∈𝐵 ∥𝒃 ∥ and
∥𝐺 ∥ B ∥A∥ + ∥𝒃 ∥ +𝑚 + 𝑛.

Lemma 4.1 ([31], presentation adapted from [6, Prop. 3]).
Let𝐺 be an (𝑚×𝑛)-ILP. It is the case that J𝐺K = ⋃

𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ),
where𝑚𝑎𝑥𝑖∈𝐼 ∥𝐵𝑖 ∥ ≤ ∥𝐺 ∥O(𝑛 log𝑛) .

For the forthcoming lemmas, recall that 𝒄 = (𝑐, . . . , 𝑐).
Lemma 4.2. Let 𝐺 be an (𝑚 × 𝑛)-ILP. There exists a number
𝑐 ≤ ∥𝐺 ∥O(𝑛 log𝑛) such that for all 𝝁 ∈ J𝐺K≥0, there is some
𝝁 ′ ∈ J𝐺K≥0 such that 𝝁 ′ ≤ 𝝁 and 𝝁 ′ ≤ 𝒄 .

Proof. Recall that we can assume J𝐺K = J𝐺K≥0. By Lemma 4.1,
J𝐺K = ⋃

𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ). We set 𝑐 B max𝑖∈𝐼 ∥𝐵𝑖 ∥. Let 𝝁 ∈ J𝐺K≥0.
There exist 𝑖 ∈ 𝐼 and 𝒃 ∈ 𝐵𝑖 such that 𝝁 ∈ 𝐿(𝒃, 𝑃𝑖 ). Note that
𝒑 ≥ 0 for all 𝒑 ∈ 𝑃𝑖 . Hence, we have 𝒃 ∈ J𝐺K≥0, 𝒃 ≤ 𝝁 and
𝒃 ≤ 𝒄 . Thus, we can set 𝝁 ′ B 𝒃 . □

Lemma 4.3. Let 𝐺 = A · 𝒙 ≥ 𝒃 be an (𝑚 × 𝑛)-ILP, where
𝒃 ≥ 0. There exists 𝑐 ≤ ∥𝐺 ∥O( (𝑚+𝑛) log(𝑚+𝑛)) such that the
following holds. For every 𝝁 ∈ J𝐺K≥0, there exists 𝝂 ∈ J𝐺K≥0
such that 𝝂 ≤ 𝝁, 𝝂 ≤ 𝒄 , and A · 𝝂 ≤ A · 𝝁.

4.2 Steinitz Lemma
Let us recall the Steinitz Lemma [21] based on the presenta-
tion of [11].

Lemma 4.4. Let 𝒙1, . . . , 𝒙𝑛 ∈ R𝑑 be such that
∑𝑛

𝑖=1 𝒙𝑖 = 0
and ∥𝒙𝑖 ∥ ≤ 1 for all 𝑖 . There exists a permutation 𝜋 on [1..𝑛]
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𝒛𝒙0

𝒙1
𝒙2

𝒙3
𝒙4 𝒙5

𝒙6
𝒙7

𝒙8

𝒛𝒙0

𝒙5
𝒙8

𝒙7 𝒙2

𝒙3
𝒙4 𝒙6 𝒙1

Figure 5. An example of Lemma 4.5 in dimension 𝑑 = 2. The vectors 𝒙0, . . . , 𝒙𝑛 form a path from 0 to 𝒛. The colored background
highlights points that are within some bounded distance from the line 0 to 𝒛 (the bound depends on 𝑑 and 𝒙𝑖 , but not on 𝒛). In
the right picture, the vectors are reordered so that they all fit within the bound. The additional constraints are that: the first
vector 𝒙0 remains first (𝜋 (0) = 0); and, intuitively, that the points are getting closer to 𝒛 (0 ≤ 𝑐0 ≤ 𝑐1 ≤ . . . ≤ 𝑐𝑛).

such that
𝑖∑︁

𝑗=1

𝒙𝜋 ( 𝑗)

 ≤ 𝑑 for all 𝑖 ∈ [1..𝑛] .

The following formulation of the lemma, which is depicted
graphically in Figure 5, will be more convenient for us.

Lemma 4.5. Let 𝒙0, 𝒙1, . . . , 𝒙𝑛 ∈ Z𝑑 , 𝑏 B max𝑛𝑗=0
𝒙 𝑗

, and
𝒛 B

∑𝑛
𝑗=0 𝒙 𝑗 . There exists a permutation 𝜋 of [0..𝑛] such that:

𝜋 (0) = 0; and there exist 0 ≤ 𝑐0 ≤ 𝑐1 ≤ . . . ≤ 𝑐𝑛 , where
𝑖∑︁

𝑗=0

𝒙𝜋 ( 𝑗) − 𝑐𝑖 · 𝒛
 ≤ 𝑏 (𝑑 + 2) for all 𝑖 ∈ [0..𝑛] .

5 Generalised soundness
A Petri netN is Z-bounded from a marking 𝒎 if there exists
𝑏 ∈ N such that𝒎 −→∗Z 𝒎′ ≥ 0 implies𝒎′ ≤ 𝒃 (i.e. we replace
−→∗ with −→∗Z in the definition of boudedness). Otherwise, we
say that N is Z-unbounded. Observe that being Z-bounded
does not mean that the set of reachable markings is bounded
by below, but only from above.

Let 𝑘 ≥ 0. We say that N is strongly 𝑘-sound if for every
𝒎 ∈ N𝑃 such that {i : 𝑘} −→∗Z 𝒎, it holds that 𝒎 −→∗ {f : 𝑘}.
Note that every strongly 𝑘-sound net is also 𝑘-sound.

The aim of the next three subsections is to prove the fol-
lowing theorem.

Theorem 5.1. Generalised soundness is in PSPACE.

The proof has two parts. First, we prove that if there is a 𝑘
for which the net is not 𝑘-sound, then there is also such a 𝑘
bounded exponentially. Second, we prove that 𝑘-soundness
for exponentially bounded 𝑘 can be verified in PSPACE.

5.1 Nonredundant workflow nets
Fix a workflow net N = (𝑃,𝑇 , 𝐹 ). We say that a place 𝑝 ∈ 𝑃
is nonredundant if there exists 𝑘 ∈ N such that {i : 𝑘} −→∗ 𝒎
and 𝒎[𝑝] > 0. By removing a redundant place 𝑝 from N ,
we mean removing 𝑝 from 𝑃 and all transitions 𝑡 ∈ 𝑇 such
that (•𝑡) [𝑝] > 0. With the remaining transitions restricted

to the domain 𝑃 \ {𝑝}, we obtain a new workflow net N ′ B
(𝑃 \ {𝑝},𝑇 ′). It is clear that N is 𝑘-sound if and only if N ′
is 𝑘-sound for all 𝑘 ∈ N. Thus, in particular, this procedure
preserves generalised soundness.

It will be convenient to assume that all places in the stud-
ied workflow nets are nonredundant. At first, it might seem
that this requires coverability checks for every place. How-
ever, since the number of initial tokens is arbitrary, finding
redundant places amounts to a simple polynomial-time satu-
ration procedure. More details can be found in [30, Thm. 8,
Def. 10, Sect. 3.2] (and in the appendix). We will call work-
flow nets without redundant places nonredundant workflow
nets3. To summarise we conclude the following.

Proposition 5.2. Given a workflow net N , one can identify
and remove all redundant places from it in polynomial time.
The resulting workflow net N ′ is nonredundant. Moreover, N
is 𝑘-sound if and only if N ′ is 𝑘-sound for all 𝑘 ∈ N.

In the following lemma, intuitively, we show that the ini-
tial budget is small for nonredundant workflow nets.

Lemma 5.3. Let N = (𝑃,𝑇 , 𝐹 ) be a nonredundant workflow
net and let 𝑝 ∈ 𝑃 be a place. There exists 𝑘 < (∥𝑇 ∥ + 2) |𝑇 |
such that {i : 𝑘} −→∗ 𝒎 and 𝒎[𝑝] > 0.

Proof. A transition 𝑡 increases a place 𝑝 ′ if Δ(𝑡) [𝑝 ′] > 0. We
say that a run 𝜌 increases 𝑝 ′ if there exists 𝑡 ∈ supp(𝜌) that
increases 𝑝 ′. For the proof of the lemma, we assume that
𝑝 ≠ i, as otherwise it suffices to define 𝑘 = 1.

We prove that for all run {i : 𝑘 ′} −→𝜌 𝒎′, there is a run 𝜋
such that: supp(𝜋) = supp(𝜌), and {i : 𝑘} −→𝜋 𝒎 for some
𝑘 < (∥𝑇 ∥ + 2)𝑛 and 𝒎, where 𝒎[𝑝 ′] ≥ 1 for all places
𝑝 ′ increased by 𝜌 . Note that, since N is a nonredundant
workflow net, if we exhibit such a run then we are done as
there exists 𝜌 that increases 𝑝 .

Let {i : 𝑘 ′} −→𝜌 𝒎′. The proof is by induction on 𝑛, where
supp(𝜌) = {𝑡1, . . . , 𝑡𝑛}. Assume 𝑛 = 1. The only transition

3The results in [30] deal with batch workflow nets, which are in particular
nonredundant workflow nets.
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used by 𝜌 is 𝑡1, which increases 𝑝 . Recall that ∥𝑇 ∥ is the max-
imal number occurring on any arc ofN . Since workflow nets
start with tokens only in place i, we must have {i : ∥𝑇 ∥} ≥ •𝜋 .
It suffices to define 𝜋 B 𝑡1 and 𝑘 B ∥𝑇 ∥ < (∥𝑇 ∥ + 2).

For the induction step, assume 𝑛 > 1 and that the lemma
holds for 𝑛 − 1. Let 𝜌𝑛−1 be the longest prefix of 𝜌 such that
supp(𝜌𝑛−1) = {𝑡1, . . . , 𝑡𝑛−1}. The induction hypothesis for
𝜌𝑛−1 yields𝑘𝑛−1 < (∥𝑇 ∥+2)𝑛−1, and 𝜋𝑛−1 with supp(𝜋𝑛−1) =
{𝑡1, . . . , 𝑡𝑛−1}. Let {i : 𝑘𝑛−1} −→𝜋𝑛−1 𝒎𝑛−1. Note that supp(•𝑡𝑛)
⊆ supp(𝜋•𝑛−1) ∪ {𝑖} since 𝜌 is a run, where 𝑡𝑛 is fired. By
repeating ∥𝑇 ∥ + 1 times the run 𝜋𝑛−1, we get
{i : (𝑘𝑛−1 +1) · (∥𝑇 ∥ +1)} −→∗ {i : ∥𝑇 ∥ +1}+ (∥𝑇 ∥ +1) ·𝒎𝑛−1.

To ease the notation, let 𝒏 B {i : ∥𝑇 ∥ + 1} + (∥𝑇 ∥ + 1) ·𝒎𝑛 .
By definition of 𝒎𝑛−1, it holds that 𝒏[𝑝 ′] ≥ ∥𝑇 ∥ + 1 for all
𝑝 ′ ∈ 𝜋•. Furthermore, we can fire 𝑡𝑛 from 𝒏. Let 𝒏 −→𝑡𝑛 𝒎. To
conclude, consider a place 𝑝 ′ increased by 𝜌 . If it is increased
by one of the transitions 𝑡1, . . . , 𝑡𝑛−1, then after firing 𝑡𝑛 at
least one token was left in 𝑝 ′. Otherwise, 𝑝 ′ is increased by
𝑡𝑛 . In both cases, we have 𝒎[𝑝] ≥ 1. It remains to observe
that 𝑘 = (𝑘𝑛−1 + 1) · (∥𝑇 ∥ + 1) < (∥𝑇 ∥ + 2)𝑛 . □

5.2 Unsoundness occurs for small numbers
Recall a result by van Hee et al. that establishes a connection
between reachability relations −→∗Z and −→∗.
Lemma 5.4 (adaptation of [30, Lemma 12]). Let N be a
nonredundant workflow net, and let 𝒎 be a marking for which
there exists 𝑘 ≥ 0 satisfying {i : 𝑘} −→∗Z 𝒎. There exists ℓ ≥ 0
such that {i : 𝑘 + ℓ} −→∗ 𝒎 + {f : ℓ}.

Note that Lemma 5.4 is an easy consequence of the defini-
tion of nonredundancy. Namely, it suffices to put “enough
budget” in each place so that the run under −→∗Z becomes a
run under −→∗. We restate the result to give a bound on ℓ .

Lemma 5.5. Let N = (𝑃,𝑇 , 𝐹 ) be a nonredundant workflow
net. Let 𝑘 and 𝒎 ∈ N𝑃 be such that {i : 𝑘} −→∗Z 𝒎. There exist
ℓ ≤ (∥𝑇 ∥ + 2) |𝑇 | · max(∥𝑇 ∥, 𝑘) · |𝑃 | ( |𝑃 | + 2) and 𝒎′ ∈ N𝑃

such that {i : ℓ} −→∗ 𝒎′ and {i : ℓ + 𝑘} −→∗ 𝒎 +𝒎′.
Proof. Let 𝜌 = 𝑡1𝑡2 · · · 𝑡𝑛 be such that {i : 𝑘} −→𝜌

Z 𝒎. Let us
define 𝒙0 B {i : 𝑘} and 𝒙 𝑗 B Δ(𝑡 𝑗 ) for all 𝑗 ∈ [1..𝑛]. By
Lemma 4.5, we can assume that the transitions 𝑡 𝑗 are ordered
so that there exist 𝑐0, . . . , 𝑐𝑛 ≥ 0 where{i : 𝑘} +

𝑖∑︁
𝑗=1

Δ(𝑡 𝑗 ) − 𝑐𝑖𝒎
 ≤ max(∥𝑇 ∥, 𝑘) · ( |𝑃 | + 2),

for all 𝑖 ∈ [0..𝑛]. Since 𝒎 ≥ 0, we get for all 𝑝 ∈ 𝑃 :(
{i : 𝑘} +

𝑖∑︁
𝑗=1

Δ(𝑡 𝑗 )
)
[𝑝] ≥ −max(∥𝑇 ∥, 𝑘) · ( |𝑃 | + 2). (2)

By Lemma 5.3, there exists ℓ ≤ (∥𝑇 ∥ + 2) |𝑇 | such that for
every place 𝑝 there is a run {i : ℓ} −→𝜋𝑝 𝒎𝑝 with 𝒎𝑝 [𝑝] > 0.
Thus, to put max(∥𝑇 ∥, 𝑘) · ( |𝑃 | + 2) tokens in all places, it

suffices to repeat max(∥𝑇 ∥, 𝑘) · ( |𝑃 | +2) times the run 𝜋𝑝 for
every 𝑝 ∈ 𝑃 . This requires ℓ ≤ (∥𝑇 ∥ + 2) |𝑇 | ·max(∥𝑇 ∥, 𝑘) ·
|𝑃 | ( |𝑃 | + 2) tokens. Let 𝒎′ be the marking obtained after-
wards. By (2), 𝒎′ allows to fire 𝜌 . Therefore, we obtain
{i : ℓ} −→∗ 𝒎′ and {i : ℓ + 𝑘} −→∗ 𝒎 +𝒎′ as required. □

This lemma allows us to focus on −→∗Z instead of −→∗.

Lemma 5.6. Let N = (𝑃,𝑇 , 𝐹 ) be a nonredundant workflow
net. It is the case that N is generalised sound iff it is strongly
𝑘-sound for all 𝑘 ≥ 0. Moreover, if N is not strongly 𝑘-sound,
then there exists𝑘 ′ ≤ 𝑘+(∥𝑇 ∥+2) |𝑇 | ·max(∥𝑇 ∥, 𝑘) · |𝑃 | ( |𝑃 |+2)
such that N is not 𝑘 ′-sound.

Proof. The “if” implication is trivial. Indeed, if N is not 𝑘-
sound then it cannot be strongly 𝑘-sound.

To prove the “only if” implication, assume that N is not
strongly 𝑘-sound. We show that there exists 𝑘 ′ such that
N is not 𝑘 ′-sound. We will also prove the promised bound
on 𝑘 ′. Since N is not strongly 𝑘-sound, there must be some
𝒎 ∈ N𝑃 and 𝜋 such that {i : 𝑘} −→𝜋

Z 𝒎 and 𝒎 ̸−→∗ {f : 𝑘}.
By Lemma 5.5, there exists ℓ ≤ (∥𝑇 ∥ + 2) |𝑇 | ·max(∥𝑇 ∥, 𝑘) ·
|𝑃 | ( |𝑃 | + 2) and 𝒎′ such that {i : ℓ} −→∗ 𝒎′ and {i : ℓ +𝑘} −→∗
𝒎 + 𝒎′. If N is not ℓ-sound, then we are done. Otherwise,
if N is ℓ-sound, then it must hold that 𝒎′ −→∗ {f : ℓ}. So,
{i : ℓ +𝑘} −→∗ 𝒎+𝒎′ −→∗ 𝒎+{f : ℓ}. Recall that 𝒎 ̸−→∗ {f : 𝑘}.
Thus, 𝒎+{f : ℓ} ̸−→∗ {f : ℓ +𝑘}. We are done since this means
that N is not (ℓ + 𝑘)-sound. □

In the remainder of this section, we will show that if there
exists some 𝑘 such that N is not strongly 𝑘-sound, then 𝑘 is
at most exponential in |N |. We define an ILP which is closely
related to the markings reachable from at least one initial
number of tokens in N . Essentially, the ILP will encode that
there exists 𝑘 > 0 and 𝒎 ≥ 0 such that {i : 𝑘} −→∗Z 𝒎. This
can be done since only “firing counts” matter, i.e. 𝒎 −→𝜋

Z 𝒎′

implies 𝒎 −→𝜋 ′
Z 𝒎′ for any permutation 𝜋 ′ of 𝜋 .

Let N = (𝑃,𝑇 , 𝐹 ) be a workflow net. We define ILPN B
A · 𝒙 ≥ 0 as an ILP with |𝑃 | + |𝑇 | + 1 inequalities and |𝑇 | + 1
variables. The variables of ILP N are 𝒙 B (^, 𝜏1, . . . , 𝜏 |𝑇 |).
For ease of notation, we write 𝝉 = (𝜏1, . . . , 𝜏 |𝑇 |). We assume
an implicit bijection between 𝑇 and [1..|𝑇 |], i.e. for every
𝑡 ∈ 𝑇 there is a unique 𝑖 such that: 𝝉 [𝑡] = 𝜏𝑖 . The matrix A
is defined by the following inequalities:

1. ^ +∑
𝑡 ∈𝑇 𝝉 [𝑡] · Δ(𝑡) [i] ≥ 0,

2. ^ ≥ 1,
3.

∑
𝑡 ∈𝑇 𝝉 [𝑡] · Δ(𝑡) [𝑝] ≥ 0 for all 𝑝 ∈ 𝑃 \ {i},

4. 𝜏𝑖 ≥ 0 for all 𝑖 ∈ [1..|𝑇 |].
The first two inequalities concern the initial “budget” 𝑘 of

tokens in i which is represented by ^. Intuitively, ^ ≥ 1 has
to be at least as much as 𝝉 consumes from the initial place.
The last two inequalities guarantee that we obtain a marking
over N𝑃 and that the “firing count” is over N𝑇 .
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Let 𝝁 : 𝒙 → N be a solution to ILPN . We define

marking(𝝁) B {i : ` (^)} +
|𝑇 |∑︁
𝑡 ∈𝑇

` (𝜏 𝑗 ) · Δ(𝑡 𝑗 ).

The following claim follows by definition of ILPN and −→∗Z.

Claim 5.7. Let 𝒎 ∈ N𝑃 and 𝑘 > 0. It holds that {i : 𝑘} −→∗Z 𝒎
iff there exists a solution 𝝁 to ILPN such that marking(𝝁) = 𝒎
and 𝝁 [^] = 𝑘 .

We conclude this part with the following bound.

Lemma 5.8. Let N be a nonredundant workflow net. If N is
strongly 𝑖-sound for all 1 ≤ 𝑖 < 𝑘 , and not strongly 𝑘-sound,
then 𝑘 ≤ 𝑐 , where 𝑐 is the bound from Lemma 4.3 for ILPN .

Proof. For the sake of contradiction, assume that 𝑘 > 𝑐 is as
in the statement. SinceN is not strongly𝑘-sound, there exists
a marking 𝒎 ∈ N𝑃 such that {i : 𝑘} −→∗Z 𝒎 and 𝒎 ̸−→∗ {f : 𝑘}.
By Claim 5.7, there exists a solution 𝝁 to ILPN such that
marking(𝝁) = 𝒎 and 𝝁 [^] = 𝑘 . By Lemma 4.3, there exists
a solution 𝝁 ′ ≤ 𝝁 to ILPN such that 𝝁 ′[^] ≤ 𝑐 < 𝑘 = 𝝁 [^]
and A𝝁 ′ ≤ A𝝁, where A is the underlying matrix of ILPN .
The latter inequality implies marking(𝝁 ′) ≤ marking(𝝁).

Consider the vector 𝝅 B 𝝁 − 𝝁 ′. We prove that 𝝅 is a so-
lution to ILPN . Since 𝝁 ′ ≤ 𝝁 we know that 𝝅 is nonnegative.
The inequalities of A are satisfied since A𝝅 ≥ 0 ≡ A𝝁 ≥
A𝝁 ′ and 𝝁 ′[^] ≤ 𝑐 < 𝝁 [^]. Thus, 𝝅 is a solution to ILPN .

By Claim 5.7, {i : 𝝁 ′[^]} −→∗Z marking(𝝁 ′) and {i : 𝝅 [^]} −→∗Z
marking(𝝅). Recall that 𝝁 ′[^], 𝝅 [^] < 𝝁 [^] = 𝑘 . By assump-
tion, N is strongly 𝝁 ′[^]-sound and strongly 𝝅 [^]-sound.
Therefore, marking(𝝁 ′) −→∗ {f : 𝝁 ′[^]} and marking(𝝅) −→∗
{f : 𝝅 [^]}. Since the function marking(·) is linear, we get

𝒎 = marking(𝝁) = marking(𝝁 ′) +marking(𝝅).
This implies 𝒎 −→∗ {f : 𝝁 ′[^]} + {f : 𝝅 [^]} = {f : 𝑘}, which
is a contradiction. □

5.3 Reachability in Z-bounded nets is in PSPACE
Note that {i : 0} = {f : 0} = 0. We will use these notations
interchangeably depending on the emphasis.

Lemma 5.9. Let N = (𝑃,𝑇 , 𝐹 ) be a nonredundant workflow
net and 𝑘 > 0. If N is Z-unbounded from {i : 𝑘}, then N is
not generalised sound.

Proof. SinceN isZ-unbounded from {i : 𝑘}, there exist𝒎,𝒎′

and 𝜋 such that 𝒎 < 𝒎′ and {i : 𝑘} −→∗Z 𝒎 −→𝜋
Z 𝒎′. Thus,

{i : 0} −→𝜋
Z 𝒎′−𝒎 > 0. For the sake of contradiction, assume

that N is generalised sound. It is strongly 𝑘-sound in partic-
ular for 𝑘 = 0 by Lemma 5.6, so we have 𝒎′ −𝒎 −→∗ {f : 0},
which contradicts the fact that 𝑡• ≠ 0 for all 𝑡 ∈ 𝑇 . □

Lemma 5.10. Let N = (𝑃,𝑇 , 𝐹 ) be a workflow net. Let 𝒎 ∈
N𝑃 be a marking such that ∥𝒎∥ > max(∥𝑇 ∥, 𝑘)2 · ( |𝑃 |+2) · |𝑃 |.
If {i : 𝑘} −→∗Z 𝒎 then N is Z-unbounded.

Proof. Let {i : 𝑘} −→𝜎
Z 𝒎 for some 𝜎 = 𝑡1𝑡2 · · · 𝑡𝑛 . We use the

notation H·I for multisets, e.g. H𝑎, 𝑎, 𝑏I contains two occur-
rences of 𝑎 and one of 𝑏. Without loss of generality, assume
that no submultiset of H𝑡1, 𝑡2, . . . , 𝑡𝑛I sums to 0. Otherwise,
we can shorten 𝜎 by removing such a submultiset.

By Lemma 4.5, we can assume that 𝑡1, 𝑡2, . . . , 𝑡𝑛 are ordered
so that there exist 0 ≤ 𝑐0 ≤ 𝑐1 ≤ . . . ≤ 𝑐𝑛 , where{i : 𝑘} +

𝑖∑︁
𝑗=1

Δ(𝑡 𝑗 ) − 𝑐𝑖𝒎
 ≤ max(∥𝑇 ∥, 𝑘) · ( |𝑃 | + 2),

for all 𝑖 ∈ [0..𝑛]. Since ∥𝒎∥ > max(∥𝑇 ∥, 𝑘)2 · ( |𝑃 |+2) · |𝑃 |, we
know that 𝑛 > max(∥𝑇 ∥, 𝑘) · ( |𝑃 | +2) · |𝑃 |. By the pigeonhole
principle, there must be 0 ≤ 𝑖1 < 𝑖2 ≤ 𝑛 such that

{i : 𝑘} +
𝑖1∑︁
𝑗=1

Δ(𝑡 𝑗 ) − 𝑐𝑖1𝒎 = {i : 𝑘} +
𝑖2∑︁
𝑗=1

Δ(𝑡 𝑗 ) − 𝑐𝑖2𝒎.

This is equivalent to
𝑖2∑︁

𝑗=𝑖1+1
Δ(𝑡 𝑗 ) = (𝑐𝑖2 − 𝑐𝑖1 )𝒎.

We have (𝑐𝑖2−𝑐𝑖1 )𝒎 ≥ 0 and, since no subset of H𝑡1, 𝑡2, . . . , 𝑡𝑛I
sums to 0, we have a strict inequality. Let 𝒛 B

∑𝑖2
𝑗=𝑖1+1 Δ(𝑡 𝑗 ).

We proved that {i : 0} −→∗Z 𝒛 > 0, so N is Z-unbounded. □

We are ready to prove the PSPACE membership of gener-
alised soundness.

Proof of Theorem 5.1. Consider a workflow netN = (𝑃,𝑇 , 𝐹 ).
By Proposition 5.2, we can assume thatN is a nonredundant
workflow net. By Lemma 5.6 and Lemma 5.8, to prove gener-
alised soundness it suffices to prove that it is 𝑘-sound for all
𝑘 ≤ ∥N∥poly( |N |) .

By Lemma 5.9 and Lemma 5.10, if {i : 𝑘} −→∗ 𝒎 and ∥𝒎∥ ≥
𝐶𝑘 for some𝐶𝑘 = (∥N ∥+𝑘)poly( |N |) , then the net is unsound.
Since we need to consider only 𝑘 ≤ ∥N∥poly( |N |) , all con-
stants 𝐶𝑘 are bounded exponentially and can be written in
polynomial space.

Thus, to verify 𝑘-soundness we proceed as follows. First,
we check if a configuration 𝒎 such that ∥𝒎∥ ≥ 𝐶𝑘 can
be reached. This can be easily performed in NPSPACE =
PSPACE as such a run would be witnessed by a sequence of
configurations, such that each configuration can be stored
in polynomial space. If such a configuration can be reached,
then the algorithm outputs no. Otherwise, for every 𝒎 ∈ N𝑃

such that ∥𝒎∥ < 𝐶𝑘 one needs to verify whether {i : 𝑘} −→∗
𝒎 implies 𝒎 −→∗ {f : 𝑘}. This can be done in coNPSPACE =
coPSPACE = PSPACE. □

5.4 PSPACE-hardness
A conservative Petri net is a Petri net N = (𝑃,𝑇 , 𝐹 ) such that
transitions preserve the number of tokens. That is, for all
𝒎,𝒎′ ∈ N𝑃 , it is the case that 𝒎 −→ 𝒎′ implies

∑
𝑝∈𝑃 𝒎[𝑝] =∑

𝑝∈𝑃 𝒎′[𝑝]. The reachability problem for conservatrice Petri
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nets asks whether 𝒎 −→∗ 𝒎′, given N , a source marking 𝒎
and a target marking 𝒎′.

Theorem 5.11. Generalised soundness is PSPACE-hard.

Proof. We give a reduction from reachability in conservative
Petri nets, which is known to be PSPACE-complete [19].

LetN = (𝑃,𝑇 , 𝐹 ) be a conservative Petri net, and let 𝒎,𝒎′

be the source and target markings. We define the constant
𝑐 B

∑
𝑝∈𝑃 𝒎[𝑝] =

∑
𝑝∈𝑃 𝒎′[𝑝].

We construct a workflow net N ′ = (𝑃 ′,𝑇 ′, 𝐹 ′) such that
N ′ is generalised sound if and only if 𝒎 −→∗ 𝒎′ in N . To
do so, we extend N with three new places 𝑃 ′ B 𝑃 ∪ {i, f, 𝑟 }.
Places i and f serve as decidated initial and final places, re-
spectively. Place 𝑟 will be used to reset configurations. It
could be merged with i, if not for the restriction that, in a
workflow net, place i cannot have any incoming arc.

We define 𝑇 ′ ⊇ 𝑇 by keeping the existing transitions and
adding 3 + |𝑃 | new transitions. Namely:

1. transition 𝑡i defined by •𝑡i B {i : 1}, and 𝑡•i B {𝑟 : 𝑐},
2. transition 𝑡𝒎 defined by •𝑡𝒎 B {𝑟 : 𝑐}, and 𝑡•𝒎 B 𝒎,
3. transition 𝑡𝒎′ defined by •𝑡𝒎′ B 𝒎′, and 𝑡•𝒎′ B {f : 1},
4. transition 𝑡𝑝 defined by •𝑡𝑝 B {𝑝 : 1}, and 𝑡•𝑝 B {𝑟 : 1}.

The first two transitions move a token from i and create
the marking 𝒎. The third transition consumes 𝒎′ and puts
a token into f . Transitions from the fourth group allow to
move tokens from any place in the original Petri net 𝑃 to 𝑟 .
See Figure 6 for a graphical presentation.

i 𝑟 f

𝑝2𝑝1 𝑝3

𝑡𝑖
𝑐

𝑡𝒎
𝑐

𝑡𝒎′
𝑐

𝑡𝑝1
𝑡𝑝2

𝑡𝑝3

Figure 6. A workflow net N ′ which is generalised sound iff
𝑚 −→∗ 𝑚′ in the conservative Petri net N = (𝑃,𝑇 , 𝐹 ). Here,
𝑃 = {𝑝1, 𝑝2, 𝑝3}, 𝒎 = {𝑝1 : 1, 𝑝2 : 1}, 𝒎′ = {𝑝2 : 1, 𝑝3 : 1}
and 𝑐 = 2. The original places are blue and the new places
are red. We omit the original transitions (from 𝑇 ) in the
picture.

It remains to show that N ′ is correct. Suppose N ′ is gen-
eralised sound. It must also be 1-sound and in particular
{i : 1} −→∗ {f : 1}. Since N is conservative, it is easy to see
that 𝑡𝒎 can be fired only if there are no tokens in 𝑃 . More-
over, a token can be transferred to f only using 𝑡𝒎′ , which
consumes 𝒎′. Thus, we have 𝒎 −→∗ 𝒎′ in N .

The converse implication is shown in the appendix. □

6 Structural soundness
In this section, we establish the EXPSPACE-completeness
of structural soundness. Recall that the latter asks whether,
given a workflow net, 𝑘-soundness holds for some 𝑘 ≥ 1.

6.1 EXPSPACE membership
Theorem 6.1. Structural soundness is in EXPSPACE.

Let N = (𝑃,𝑇 , 𝐹 ) be a workflow net. We define an (|𝑇 | +
2|𝑃 | + 1) × (|𝑇 | + 1)-ILP, called ILP𝑠N . The variables are the
same as for ILPN in Section 5.2: (^, 𝜏1, . . . , 𝜏𝑛), with the intu-
ition that ^ denotes the number of initial tokens and 𝜏𝑖 the
number of times the transitions are used. We will keep the
notation 𝝉 = (𝜏1, . . . , 𝜏𝑛) and the notation 𝝉 [𝑡] for 𝑡 ∈ 𝑇 . The
inequalities are defined as follows:

1. {i : ^} +∑𝑡 ∈𝑇 𝝉 [𝑡] ·Δ(𝑡) = {f : ^} (expressed with 2|𝑃 |
inequalities);

2. 𝝉 ≥ 0 (|𝑇 | inequalities);
3. and ^ > 0.

The first set of inequalities expresses that the effect of the
transitions yields the final marking. The second type ensures
that each transition is fired a nonnegative number of times.
Finally the last one ensures that the initial marking has at
least one token. The following is immediate.

Claim 6.2. There exists 𝑘 > 0 such that {i : 𝑘} −→∗Z {f : 𝑘} if
and only if there exists a solution 𝝁 to ILP𝑠N such that 𝝁 [^] = 𝑘 .

Lemma 6.3. Let N = (𝑃,𝑇 , 𝐹 ) be a nonredundant workflow
net that is 𝑘-sound, and 𝑖-unsound for all 1 ≤ 𝑖 < 𝑘 . It is the
case that 𝑘 ≤ 𝑐 + (∥𝑇 ∥ + 2) |𝑇 | · max(∥𝑇 ∥, 𝑐) · |𝑃 | ( |𝑃 | + 2),
where 𝑐 is the bound given by Lemma 4.3 for ILP𝑠N .

Proof. Towards a contradiction, suppose that 𝑘 > 𝑐 + (∥𝑇 ∥ +
2) |𝑇 | ·max(∥𝑇 ∥, 𝑐) · |𝑃 | ( |𝑃 | + 2). Consider ILP𝑠N . Since N is
𝑘-sound, there is a run {i : 𝑘} −→∗Z {f : 𝑘} and thus ILP𝑠 has a
solution 𝝁. By Lemma 4.3, we can assume that 𝝁 ≤ 𝒄 .

By Claim 6.2, {i : 𝝁 [^]} −→∗Z {f : 𝝁 [^]}. By Lemma 5.5,
there exist ℓ ≤ (∥𝑇 ∥ + 2) |𝑇 | ·max(∥𝑇 ∥, 𝝁 [^]) · |𝑃 | ( |𝑃 | + 2)
and 𝒎 ∈ N𝑃 such that {i : ℓ} −→∗ 𝒎 and {i : ℓ +𝝁 [^]} −→∗ 𝒎+
{f : 𝝁 [^]}. Note that ℓ +𝝁 [^] < 𝑘 . Let 𝑔 B 𝑘−(ℓ +𝝁 [^]) > 0.
We have {i : 𝑘} = {i : ℓ +𝝁 [^] +𝑔} −→∗ {i : 𝑔}+𝒎+{f : 𝝁 [^]}.
Since N is 𝑘-sound, we have

{i : 𝑔} +𝒎 + {f : 𝝁 [^]} −→∗ {f : ℓ + 𝝁 [^] + 𝑔}.
Thus, {i : 𝑔} +𝒎 −→∗ {f : ℓ + 𝑔}. We obtain

{i : ℓ + 𝝁 [^] + 𝑔} −→∗ {i : 𝝁 [^] + 𝑔} +𝒎
−→∗ {i : 𝝁 [^]} + {f : ℓ + 𝑔}.

Therefore, sinceN is 𝑘-sound, it must be 𝝁 [^]-sound (recall
that tokens in f are never consumed). This contradicts the
fact that N is 𝑖-unsound for all 1 ≤ 𝑖 < 𝑘 . □

We may now prove Theorem 6.1.
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Proof of Theorem 6.1. By Proposition 5.2, we can assume that
the inputN is a nonredundant workflow net. By Lemma 6.3,
it suffices to check ifN is 𝑘-sound for some value 𝑘 bounded
exponentially in ∥N ∥. First, we guess𝑘 , which can be written
with polynomially many bits. Then, we test 𝑘-soundness in
EXPSPACE via Corollary 3.7. □

6.2 EXPSPACE-hardness
Theorem 6.4. Structural soundness is EXPSPACE-hard.

Proof. Let N be a workflow net. We construct a workflow
net N ′ which is structurally sound iff N is 1-sound. We
simply add a single new transition 𝑡 to N with •𝑡 B {i : 2}
and 𝑡• B {f : 1}. We show that N ′ is 𝑘-unsound for every
𝑘 ≥ 2. Towards a contradiction, suppose it is 𝑘-sound for
some 𝑘 ≥ 2.

Notice that𝑘 cannot be even because {i : 𝑘} −→𝑡𝑘/2 {f : 𝑘/2}
and f has no outgoing arcs, and hence {f : 𝑘/2} ̸−→∗ {f : 𝑘}.
Thus, it is the case that 𝑘 ≥ 3 is odd and {i : 𝑘} −→𝑡∗ {i : 1} +
{f : ⌊𝑘/2⌋}. Since N is 𝑘-sound, {i : 1} −→∗ {f : ⌈𝑘/2⌉}. But
that implies {i : 𝑘} −→∗ {f : 𝑘 · ⌈𝑘/2⌉}. Note that 𝑘 · ⌈𝑘/2⌉ > 𝑘
as𝑘 ≥ 3, which yields a contradiction since f has no outgoing
arcs to get rid of the extra tokens.

To conclude, we observe that if the initial configuration in
N ′ is {i : 1}, then it behaves likeN would, since 𝑡 will never
be enabled, i.e. it is not quasi-live. Thus, N ′ is structurally
sound if and only if N is 1-sound, and EXPSPACE-hardness
follows from Theorem 3.10. □

7 Characterizing the set of sound numbers
Given a workflow net N , we define the set Sound(N) B
{𝑘 ≥ 1 | N is 𝑘-sound}. That is, Sound(N) contains all the
numbers for which N is sound (except 0 which is trivial as
any workflow net is 0-sound). This section is dedicated to
providing and computing a representation of Sound(N).

First, let us state a simple fact about Sound(N).4

Lemma 7.1. The set Sound(N) is closed under subtraction
with positive results.

Proof. Let𝑔, 𝑘 ∈ Sound(N) be such that𝑔 > 𝑘 . We show that
𝑔 − 𝑘 ∈ Sound(N). Since 𝑘 ∈ Sound(N), we have {i : 𝑔} =
{i : 𝑘 + (𝑔 − 𝑘)} −→∗ {f : 𝑘} + {i : 𝑔 − 𝑘}. Since 𝑁 is 𝑔-sound,
it must also be (𝑔 − 𝑘)-sound. So, 𝑔 − 𝑘 ∈ Sound(N). □

Corollary 7.2. There exist 𝑝 > 0 and 𝑘 ∈ N ∪ {+∞} such
that Sound(N) = {𝑖 · 𝑝 | 1 ≤ 𝑖 < 𝑘}.

By the above, Sound(N) is characterized by 𝑝 and 𝑘 . We
thus say that a net is (𝑘, 𝑝)-sound if and only if Sound(N) =
{𝑖 · 𝑝 | 1 ≤ 𝑖 < 𝑘}. Note that 𝑘 = 0 implies Sound(N) = ∅.
Further, 𝑘 = +∞ if and only if Sound(N) is infinite. Finally,
a workflow net is generalised sound iff it is (1, +∞)-sound;
and it is structurally sound iff there exist 𝑝, 𝑘 ≥ 1 such that
4A similar observation was made, but not explicitly stated, in [7, Lemma
2.2 and 2.3].

it is (𝑘, 𝑝)-sound. We show that 𝑘 and 𝑝 can be computed.
This will rely on insights from the prior sections about the
smallest numbers for which a net is unsound or sound.

Theorem 7.3. Given a workflow netN , the numbers 𝑝 and 𝑘
that characterize Sound(N) are bounded by ∥N ∥poly O( |N |) ,
and hence can be represented with polynomially many bits.
Given N , 𝑝 ′ and 𝑘 ′, the problem of deciding whether N is
(𝑘 ′, 𝑝 ′)-sound is in EXPSPACE. Moreover, the algorithm com-
putes 𝑝 and 𝑘 such that N is (𝑘, 𝑝)-sound.

Proof. Consider a workflow net N . By Proposition 5.2, we
can assume that N is nonredundant. We will compute for
which 𝑝 and 𝑘 the net N is (𝑘, 𝑝)-sound. By Lemma 6.3, if
Sound(N) ≠ ∅, then there exists 𝐺 ≤ ∥N∥poly O( |N |) such
thatN is ℓ-sound for some ℓ ≤ 𝐺 . By Corollary 3.7, it is pos-
sible to check 1-soundness, 2-soundness, . . . ,𝐺-soundness in
EXPSPACE. Thus, in EXPSPACE, we can identify the smallest
𝑝 such that N is 𝑝-sound.

It remains to compute 𝑘 . Using Lemma 3.6, we construct
a net N ′ which is 𝑐-sound if and only if N is 𝑐𝑝-sound for
all 𝑐 > 0. Thus, the smallest number 𝑐 for which N ′ is not
𝑐-sound is the smallest 𝑐 such that N is not 𝑐𝑝-sound. By
Lemma 5.8, if Sound(N ′) ≠ N \ {0} then there exists 𝐺 ′ ≤
∥N∥poly O( |N |) such that N ′ is 𝑐-unsound for some 𝑐 ≤ 𝐺 ′.
Thus, it suffices to check 1-soundness, 2-soundness, . . . , 𝐺 ′-
soundness to identify whether 𝑘 = +∞, or to compute the
largest 𝑘 ∈ N such that N is 𝑝𝑘-sound. By Corollary 3.7, 𝑘
can be computed in EXPSPACE. □

8 Conclusion
In this work, we settled, after around two decades, the com-
plexity of the main decision problems concerning workflow
nets: 𝑘-soundness, classical soundness, generalised sound-
ness and structural soundness. The first three are EXPSPACE-
complete, while the latter is PSPACE-complete and hence
surprisingly simpler. We have further characterised the set
of sound numbers of workflow nets: they have a specific
shape that can be computed with exponential space.

As further work, we intend to study extensions of these
problems in the context of Petri nets. For example, a natural
extension of generalised soundness asks, given markings 𝒎
and 𝒎′, whether for every 𝑘 ∈ N, every marking reachable
from 𝑘 ·𝒎 may lead to 𝑘 ·𝒎′. Contrary to workflow nets, a
Petri net that satisfies this property needs not to be bounded.
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Appendix
Missing proofs of Section 3
Proposition 3.2. A workflow net N is 1-sound iff N𝑠𝑐 is
bounded and transition 𝑡𝑠𝑐 is live from {i : 1}.
Proof. Let N = (𝑃,𝑇 , 𝐹 ).
⇒) For the sake of contradiction, suppose that N𝑠𝑐 is un-

bounded. There exist markings 𝒎 < 𝒎′ such that {i : 𝑖} −→𝜋

𝒎 −→𝜋 ′ 𝒎′ in N𝑠𝑐 . Let us assume, without loss of generality,
that no marking repeats along the run. There are two cases
to consider: either 𝜋𝜋 ′ contains 𝑡𝑠𝑐 , or not.

Let us argue that the first case cannot hold. For the sake of
contradiction, assume it does. Let 𝜎𝑡𝑠𝑐 be the shortest prefix
of 𝜋𝜋 ′ such that {i : 1} −→𝜎 {f : 1}+𝒏 −→𝑡𝑠𝑐 {i : 1}+𝒏 inN . If
𝒏 = 0, then we obtain a contradiction as no marking repeats.
Otherwise, by 1-soundness, we must have 𝒏 −→∗ 0, which is
a contradiction as 𝑡• ≠ 0 for every 𝑡 ∈ 𝑇 .

Thus, 𝜋𝜋 ′ only contains transitions from 𝑇 , which means
we can reason about N (rather than N𝑠𝑐 ). By 1-soundness,
we have {i : 1} −→∗ 𝒎 −→∗ {f : 1} in N . Since {i : 1} −→∗ 𝒎′
in N , altogether this yields
{i : 1} −→∗ 𝒎′ = 𝒎 + (𝒎′ −𝒎) −→∗ {f : 1} + (𝒎′ −𝒎).

By 1-soundness, this means that (𝒎′ − 𝒎) −→∗ 0, which is
impossible. Consequently, N𝑠𝑐 is bounded from {i : 1}.

It remains to argue that 𝑡𝑠𝑐 is live from {i : 1}. Let {i : 1} −→𝜌

𝒎 in N𝑠𝑐 , where no marking repeats. We can assume that
𝑡𝑠𝑐 does not appear in 𝜌 as it would mean that {i : 1} is re-
peated. Hence, {i : 1} −→𝜌 𝒎 in N . By 1-soundness, we have
𝒎 −→∗ {f : 1}, from which 𝑡𝑠𝑐 is enabled as desired.
⇐) Let {i : 1} −→∗ 𝒎 in N (and so in N𝑠𝑐 ). Since 𝑡𝑠𝑐 is live

from {i : 1}, we have 𝒎 −→∗ {f : 1} + 𝒏 for some 𝒏 ∈ N𝑃 . If
𝒏 > 0, then we obtain {i : 1} −→∗ {f : 1} + 𝒏 −→𝑡𝑠𝑐 {i : 1} + 𝒏
which violates boundedness. Thus, 𝒏 = 0, and hence 𝒎 −→∗
{f : 1} as desired. □

Theorem 3.10. The classical soundness and 1-soundness prob-
lems are EXPSPACE-hard.

Proof. Recall that in the proof within the main text, we have
shown the implication from right to left of Equation (1). It
remains to prove the other direction.
⇒) Suppose that 𝒎 −→∗ 𝒎′. First, we prove that N ′ is

1-sound. Consider a configuration {i : 1} −→𝜌 𝒏 for some run
𝜌 . We consider cases depending on 𝜌 and 𝒏.

Case 0: suppose that 𝑡hard does not occur in 𝜌 . If 𝒏 = {i : 1}
then 𝒏 −→𝑡simple𝑡simple2 {f : 1}. Otherwise, either 𝒏 = {f : 1}
or

𝒏′ = {𝑝simple : 1} +
∑︁
𝑝∈𝑃
{𝑝 : ∥N ∥, 𝑝 : ∥N ∥} −→𝜌′ 𝒏,

where 𝜌 ′ ∈ 𝑇 ∗1 . Since 𝑇1 is reversible, we also have 𝒏 −→∗ 𝒏′.
This concludes this case as 𝒏′ −→𝑡simple2 {f : 1}. Notice that in
the remaining cases the transitions 𝑡simple and 𝑡simple2 can
never be fired.

Case 1: suppose that 𝑡hard occurs in 𝜌 but 𝑡start does not.
It is easy to see that 𝜌 ∈ 𝑡hard𝑇 ∗2 . Since 𝑇2 is reversible and
by Lemma 3.9 (1) , it is the case that

𝒏 −→∗ {𝑠 : 1, 𝑐 : 1} −→∗ {𝑓 : 1, 𝑐 : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛}.

Note that 𝑡start is fireable from the latter configuration, and
thus we can extend 𝜌 with that transition. We will discuss
how to proceed from there in the next case.

Case 2: suppose that 𝑡start occurs in 𝜌 , but 𝑡end does not.
We have 𝜌 ∈ 𝑡hard𝑇 ∗2 𝑡start (𝑇1 ∪ {𝑡𝒎, 𝑡𝒎′, 𝑡−1𝒎′ , 𝑡reach, 𝑡−1reach})∗.
By Lemma 3.9 (2), the transition 𝑡start in 𝜌 is fired between
the configurations

{𝑓 : 1, 𝑐 : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛} −→𝑡start

{𝑝start : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛}.

If 𝒏 is the latter configuration, then only 𝑡𝒎 can be fired.
Otherwise, the transition 𝑡𝒎 is never available again. In any
case, since the transitions 𝑇1 ∪ {𝑡𝒎′, 𝑡−1𝒎′ , 𝑡reach, 𝑡−1reach} are
reversible, 𝒏 −→∗ {𝑝inProgress : 1, 𝑏 : 𝑐𝑛} +𝒎 +

∑
𝑝∈𝑃 {𝑝 : 𝑐𝑛 −

𝒎[𝑝]}.
Since 𝒎 −→∗ 𝒎′, and by Lemma 3.8, we know that

{𝑝inProgress : 1, 𝑏 : 𝑐𝑛} +𝒎 +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛 −𝒎[𝑝]} −→∗

{𝑝inProgress : 1, 𝑏 : 𝑐𝑛} +𝒎′ +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛 −𝒎′[𝑝]} −→𝑡𝒎′

{𝑝cover : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛} −→𝑡reach

{𝑓 ♥ : 1, 𝑐♥ : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛}.

By Lemma 3.9 (1), we get

{𝑓 ♥ : 1, 𝑐♥ : 1, 𝑏 : 𝑐𝑛} +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛} −→∗ {𝑠♥ : 1, 𝑐♥ : 1}.

Then, by firing 𝑡end, we reach {f : 1} as required.
Case 3: suppose that 𝑡end occurs in 𝜌 . We divide the run

into the fragments where 𝑡start and 𝑡end were used for the
first time. It is the case that 𝜌 = 𝜌1𝑡start𝑡𝒎𝜌2𝑡end𝜌3, where

{i : 1} −→𝜌1𝑡start𝑡𝒎

{𝑝inProgress : 1, 𝑏 : 𝑐𝑛} +𝒎 +
∑︁
𝑝∈𝑃
{𝑝 : 𝑐𝑛 −𝒎[𝑝]} = 𝒏1,

and 𝜌2 consists only of transitions in
𝑇1 ∪𝑇3 ∪ {𝑡𝒎′, 𝑡−1𝒎′ , 𝑡reach, 𝑡−1reach}.

From Lemma 3.9 (2) and definition of transitions in 𝑇 ′ for
every reachable configuration {i : 1} −→∗ 𝒏′ in N ′

𝒏′[𝑓 ] + 𝒏′[𝑝inProgress] + 𝒏′[𝑝cover] = 1. (3)
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In other words, there can be a token only in one of the three
places. Recall that transitions in 𝑇1 ∪ {𝑡𝒎} can be fired only
if 𝒏′[𝑝inProgress] = 1 (as 𝒏′[𝑝inProgress] = 𝒏′[𝑝canFire]); and
transitions in {𝑡−1𝒎′ , 𝑡reach} only if 𝒏′[𝑝cover] = 1.

Consider the Petri net N ′′ = (𝑃 ′′,𝑇 ′′, 𝐹 ′′), which is as
(𝑃 ′,𝑇 ′, 𝐹 ′) but with places reduced to 𝑃 ′′ B 𝑃♥ (recall that
𝑏 = 𝑏♥) and transitions𝑇 ′′ the same as𝑇 ′ projected onto 𝑃 ′′.
Notice that among transitions used in 𝜌2 only transitions in
𝑇3 ∪ {𝑡reach, 𝑡−1reach} have impact on 𝑃 ′′. Slightly abusing the
notation, we keep the names of transitions inN ′′ (fromN ′);
and similarly for configurations. Since 𝒏1 −→𝜌2 𝒗 such that
𝒗 ≥ {𝑠♥ : 1, 𝑐♥ : 1} (as 𝑡end can be fired afterwards), we get
in N ′′:

{𝑏 : 𝑐𝑛} −→𝜌2 𝒗 .

Thus by Lemma 3.9 (4) and Eq. (3) we get that
𝜌2 ∈ 𝑇 ∗1+𝑡reach𝑇 ∗3

(
𝑡−1reach𝑇

∗
1+𝑡reach𝑇

∗
3

)∗
.

where 𝑇1+ = 𝑇1 ∪ {𝑡𝒎 ∪ 𝑡−1𝒎 }. Consider the configurations in
N ′′ after firing transitions in 𝜌2 starting from 𝒏1. We claim
that every time after 𝑡reach was fired the configuration is
𝒗 ′ = {𝑏 : 𝑐𝑛, 𝑓 ♥ : 1, 𝑐♥ : 1}. Indeed, after the first time this
is because {𝑏 : 𝑐𝑛} −→𝑡reach 𝒗 ′ (recall that transitions in 𝑇1+
have no impact onN ′′). For the remaining cases, notice that
between 𝑡reach and 𝑡−1reach only transitions from 𝑇3 are fired.
By Lemma 3.9 (1 and 2) after firing 𝑡−1reach the configuration
has to be {𝑏 : 𝑐𝑛}. Since transitions in𝑇1+ have no impact on
N ′′ we are ready to conclude the proof.

Let 𝜌2 = 𝜌𝑝𝑟𝑒𝑡reach𝜌𝑠𝑢𝑓 such that 𝜌𝑠𝑢𝑓 does not contain
𝑡reach. We know that

𝒏1 −→𝜌𝑝𝑟𝑒 {𝑏 : 𝑐𝑛} −→𝑡reach 𝒗 ′ −→𝜌𝑠𝑢𝑓 𝒗

in N ′′, and recall that 𝒗 ≥ {𝑠♥ : 1, 𝑐♥ : 1}. By Lemma 3.9 (3),
we get 𝒗 = {𝑠♥ : 1, 𝑐♥ : 1} in N ′′.

Let us analyse the vector 𝒗 inN ′. By Eq. (3) we know that
𝒗 [𝑝inProgress] = 𝒗 [𝑝cover] = 0. Note that

𝒗 [𝑏] = 𝒗 [𝑝] + 𝒗 [𝑝], (4)
for all 𝑝 ∈ 𝑃 . This is easy to see since every transition pre-
serves this equality for all reachable configuration. Thus
𝒗 [𝑝] = 𝒗 [𝑝] = 0 for all 𝑝 ∈ 𝑃 . Notice that this concludes
the proof as 𝒗 −→𝑡end {f : 1} and thus 𝜌3 is an empty run and
𝒏 = {f : 1}. □

Missing proofs of Section 4
Lemma 4.3. Let 𝐺 = A · 𝒙 ≥ 𝒃 be an (𝑚 × 𝑛)-ILP, where
𝒃 ≥ 0. There exists 𝑐 ≤ ∥𝐺 ∥O( (𝑚+𝑛) log(𝑚+𝑛)) such that the
following holds. For every 𝝁 ∈ J𝐺K≥0, there exists 𝝂 ∈ J𝐺K≥0
such that 𝝂 ≤ 𝝁, 𝝂 ≤ 𝒄 , and A · 𝝂 ≤ A · 𝝁.

Proof. Let 𝑥1, . . . , 𝑥𝑛 be the variables of𝐺 . We define a (3𝑚×
(𝑚+𝑛))-ILP𝐺 ′ by slightly modifying𝐺 . For every inequality
in the original ILP 𝐺 , we add one fresh variable. We denote
them 𝑦1, . . . , 𝑦𝑚 . Now, recall that the inequalities in 𝐺 are of
the form:

∑𝑛
𝑖=1 A[ 𝑗, 𝑖] · 𝑥𝑖 ≥ 𝒃 [ 𝑗] for 𝑗 ∈ [1..𝑚]. The ILP 𝐺 ′

is defined with the same inequalities, plus 𝑚 new equalities
(recall that this requires 2𝑚 inequalities):

∑𝑛
𝑖=1 A[ 𝑗, 𝑖] · 𝑥𝑖 −

𝑦 𝑗 = 0 for 𝑗 ∈ [1..𝑚].
Notice that, in solutions for𝐺 ′, the variables𝑦 𝑗 are uniquely

determined by the valuation of 𝑥1, . . . , 𝑥𝑛 . For convenience,
we will write 𝝁 [𝑥𝑖 ], 𝝁 ′[𝑦 𝑗 ] when referring to the compo-
nents of solutions. For every 𝝁 ∈ J𝐺K≥0, there is a unique
𝝁 ′ ∈ J𝐺 ′K such that 𝝁 ′[𝑥𝑖 ] = 𝝁 [𝑥𝑖 ] for all 𝑖 ∈ [1..𝑛]. Thus,
since 𝒃 ≥ 0, we have J𝐺 ′K≥0 = {𝝁 ′ | 𝝁 ∈ J𝐺K}.

We define 𝑐 as the constant from Lemma 4.2 for 𝐺 ′. Now,
let 𝝁 ∈ J𝐺K≥0 and let 𝝁 ′ ∈ J𝐺 ′K≥0 be its corresponding so-
lution. By Lemma 4.2, there exists 𝝂 ′ ∈ J𝐺 ′K≥0 such that
𝝂 ′ ≤ 𝝁 ′ and 𝝂 ′ ≤ 𝒄 . We define 𝝂 ∈ J𝐺K≥0 as the solu-
tion corresponding to 𝝂 ′. It is clear that 𝝂 ≤ 𝝁 and 𝝂 ≤ 𝒄 .
For the remaining part, fix 𝑗 ∈ [1..𝑚]. Recall that 𝝂 ′[𝑦 𝑗 ] =∑𝑛

𝑖=1 A[ 𝑗, 𝑖] ·𝝂 ′[𝑥𝑖 ] and 𝝁 ′[𝑦 𝑗 ] =
∑𝑛

𝑖=1 A[ 𝑗, 𝑖] · 𝝁 ′[𝑥𝑖 ]. Thus,
𝑛∑︁
𝑖=1

A[ 𝑗, 𝑖] · 𝝂 [𝑥𝑖 ] ≤
𝑛∑︁
𝑖=1

A[ 𝑗, 𝑖] · 𝝁 [𝑥𝑖 ],

which concludes the proof. □

Lemma 4.5. Let 𝒙0, 𝒙1, . . . , 𝒙𝑛 ∈ Z𝑑 , 𝑏 B max𝑛𝑗=0
𝒙 𝑗

, and
𝒛 B

∑𝑛
𝑗=0 𝒙 𝑗 . There exists a permutation 𝜋 of [0..𝑛] such that:

𝜋 (0) = 0; and there exist 0 ≤ 𝑐0 ≤ 𝑐1 ≤ . . . ≤ 𝑐𝑛 , where
𝑖∑︁

𝑗=0

𝒙𝜋 ( 𝑗) − 𝑐𝑖 · 𝒛
 ≤ 𝑏 (𝑑 + 2) for all 𝑖 ∈ [0..𝑛] .

Proof. Let 𝑐 B ∥𝒛∥. We can assume that 𝑏, 𝑐 > 0, as other-
wise the proof follows immediately from Lemma 4.4. We use
the notation H·I for multisets, e.g. H𝑎, 𝑎, 𝑏I contains two oc-
currences of 𝑎 and one occurrence of 𝑏. Let𝑉 B H𝒙0, . . . , 𝒙𝑛I
and let𝑊 B H−𝒛/𝑐, . . . ,−𝒛/𝑐I be 𝑐 copies of the same vector.
Clearly,

∑
𝒙∈𝑉∪𝑊 𝒙 = 0 and ∥𝒙 ∥ ≤ 𝑏 for all 𝒙 ∈ 𝑉 ′.

Consider the multiset of vectors 𝑋 B H𝒙/𝑏 | 𝒙 ∈ 𝑉 ∪𝑊 I,
i.e. rescaled vectors from𝑉 ∪𝑊 . By Lemma 4.4 we can order
the vectors in 𝑋 : 𝒂′0, . . . , 𝒂′𝑛+𝑐 , so that

𝑖∑︁
𝑗=0

𝒂′𝑗

 ≤ 𝑑 for all 𝑖 ∈ [0..𝑛 + 𝑐] .

By scaling the vectors back, we get an order 𝒂0, . . . , 𝒂𝑛+𝑐 on
vectors in 𝑉 ∪𝑊 such that

𝑖∑︁
𝑗=0

𝒂 𝑗

 ≤ 𝑏𝑑 for all 𝑖 ∈ [0..𝑛 + 𝑐] . (5)

Let 0 ≤ 𝑠0 < 𝑠1 < . . . < 𝑠𝑛 ≤ 𝑛 + 𝑐 be indices such that
𝑉 = H𝒂𝑠0 , . . . , 𝒂𝑠𝑛I. Fix some 𝑖 ∈ [0..𝑛]. Note that the number
of remaining vectors is��H𝒂 𝑗 | 𝑗 ∉ {𝑠0, . . . , 𝑠𝑛}, 𝑗 ≤ 𝑖I

�� = 𝑠𝑖 − 𝑖
for all 𝑖 ∈ [0..𝑛]. By (5),

𝑖∑︁
𝑗=0

𝒂𝑠 𝑗 −
𝑠𝑖 − 𝑖
𝑐

𝒛

 =


𝑠𝑖∑︁
𝑗=0

𝒂 𝑗

 ≤ 𝑏𝑑. (6)
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Thus, by defining 𝑐𝑖 B
𝑠𝑖−𝑖
𝑐 , we get 0 ≤ 𝑐0 ≤ 𝑐1 ≤ . . . ≤ 𝑐𝑛 .

To conclude the lemma, it remains to show that we can
reorder 𝒂𝑠0 , . . . , 𝒂𝑠𝑛 so that 𝒂𝑠0 = 𝒙0. Indeed, suppose that
ℓ ∈ [0..𝑛] is an index such that 𝒂𝑠ℓ = 𝒙0. By (6) and the
triangle inequality

𝑖∑︁
𝑗=0

𝒂𝑠 𝑗 −
𝑠𝑖 − 𝑖
𝑐

𝒛 + 𝒂𝑠ℓ − 𝒂𝑠0
 ≤ 𝑏 (𝑑 + 2).

Therefore, by swapping 𝒂𝑠ℓ and 𝒂𝑠0 we obtain the desired
permutation. □

Missing proofs of Section 5
Proposition 5.2. Given a workflow net N , one can identify
and remove all redundant places from it in polynomial time.
The resulting workflow net N ′ is nonredundant. Moreover, N
is 𝑘-sound if and only if N ′ is 𝑘-sound for all 𝑘 ∈ N.

Proof. Redundancy can be checked with a saturation algo-
rithm. We give a short proof that relies on the decidability
of continuous Petri nets (which internally uses such a proce-
dure).

Let N = (𝑃,𝑇 , 𝐹 ). The continuous semantics of N allows
to scale transitions by nonnegative coefficients, and for mark-
ings to hold nonnegative rational values. More formally, in
this context, a marking is a vector 𝒎 ∈ Q𝑃

≥0. Given _ ∈ Q≥0
and 𝑡 ∈ 𝑇 , we say that _𝑡 is enabled in𝒎 if𝒎−_•𝑡 ≥ 0. If _𝑡 is
enabled, then firing it leads to𝒎′ B 𝒎−_•𝑡+_𝑡• = 𝒎+_Δ(𝑡),
which is denoted by 𝒎 −→_𝑡

Q≥0
𝒎′, or simply 𝒎 −→

Q≥0
𝒎′.

We write 𝒎 −→∗
Q≥0

𝒎′ if 𝒎′ can be reached in zero, one or
several such steps from 𝒎.

Deciding continuous coverability (and, in fact, continuous
reachability) can be done in polynomial time [12]. Thus, one
can test the following in polynomial time, where 𝑝 ∈ 𝑃 :

∃𝒎′ ∈ Q𝑃
≥0 : 𝒎 −→∗Q≥0 𝒎′ ∧𝒎′[𝑝] > 0. (7)

As 𝒎 −→∗
Q≥0

𝒎′ holds iff 𝑘𝒎 −→∗ 𝑘𝒎′ holds for some 𝑘 > 0,
(7) is equivalent to

∃𝑘 > 0,𝒎′ ∈ N𝑃 : 𝑘𝒎 −→∗ 𝒎′ ∧𝒎′[𝑝] > 0. (8)
Hence, to test whether a place 𝑝 is nonredundant, it suffices
to check (8) in polynomial time with 𝒎 B {i : 1}. □

Theorem 5.11. Generalised soundness is PSPACE-hard.

Proof. Recall the workflow net N ′ constructed in the proof
within the main text. We must show that N ′ is generalised
sound if and only if 𝒎 −→∗ 𝒎′ in N . The implication from
left to right has already been proven in the main text.

For the converse implication, suppose that 𝒎 −→∗ 𝒎′. Fix
some 𝑘 and suppose {i : 𝑘} −→∗ 𝒗. Notice that the transitions
are defined in such a way that for every reachable configura-
tion 𝒗, the invariant 𝑐𝑘 = 𝒗 [i] · 𝑐 +∑

𝑝∈𝑃∪{𝑟 } 𝒗 [𝑝] + 𝒗 [f] · 𝑐
holds. Thus, by repeatedly firing transitions 𝑡i and 𝑡𝑝 , all
tokens but those in f can be moved to 𝑟 , i.e.

𝒗 −→∗ {𝑟 : (𝑘 − 𝒗 [f]) · 𝑐} + {f : 𝒗 [f]}.
From there, to reach {f : 𝑘}, it suffices to repeat (𝑘 − 𝒗 [f])
times the following: fire 𝑡𝒎 ; fire the run that witnesses 𝒎 −→∗
𝒎′; and fire 𝑡𝒎′ . □



Appendix C

Verifying Generalised and
Structural Soundness of Workflow
Nets via Relaxations

This paper was published as a peer-reviewed conference article. A full version
with an appendix containing missing proofs omitted from the conference paper due
to space constraints was uploaded to arXiv at the URL https://arxiv.org/

abs/2206.02606, see [28].
Cite as: M. Blondin, F. Mazowiecki, and P. Offtermatt. Verifying generalised and

structural soundness of workflow nets via relaxations. In S. Shoham and Y. Vizel,
editors, Computer Aided Verification (CAV), pages 468–489, Cham, 2022. Springer
International Publishing.

Summary In [25], we show that classical soundness, generalised soundness and
structural soundness have high theoretical complexity. Even so, there exist tools
for deciding soundness, though most focus on classical soundness. In this paper,
we propose novel scalable algorithms for semi-deciding structural and generalised
soundness, based on reachability relaxations of Petri nets. We further show that on
the important case of free-choice workflow nets, the three notions of soundness are
equivalent, and our semi-decision algorithm for generalised soundness is complete,
thus decides the problem.
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Verifying generalised and structural soundness

of workflow nets via relaxations

Michael Blondin1[0000−0003−2914−2734], Filip Mazowiecki2[0000−0002−4535−6508],
and Philip Offtermatt1,2[0000−0001−8477−2849]

1 Université de Sherbrooke, Sherbrooke, Canada
2 Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract. Workflow nets are a well-established mathematical formal-
ism for the analysis of business processes arising from either modeling
tools or process mining. The central decision problems for workflow nets
are k-soundness, generalised soundness and structural soundness. Most
existing tools focus on k-soundness. In this work, we propose novel scal-
able semi-procedures for generalised and structural soundness. This is
achieved via integral and continuous Petri net reachability relaxations.
We show that our approach is competitive against state-of-the-art tools.

1 Introduction

Workflow nets are a well-established mathematical formalism for the descrip-
tion of business processes arising from software modelers and process mining
(e.g., see [2,3]), and further notations such as UML activity diagrams [4]. More
precisely, a workflow net consists of places that contain resources, and transi-
tions that can consume, create and move resources concurrently. Two designated
places, denoted i and f, respectively model the initialization and completion of a
process. Workflow nets, which form a subclass of Petri nets, enable the automatic
formal verification of business processes. For example, 1-soundness states that
from the initial configuration {i : 1}, every reachable configuration can reach the
final configuration {f : 1}. Informally, this means that given any partial execution
of a business process, it is possible to complete it properly.

Soundness. The main decision problems concerning workflow nets revolve around
soundness properties. The generalisation of 1-soundness to several resources is k-
soundness. It asks whether from {i : k}, every reachable configuration can reach
{f : k} (here, {p : k} indicates that place p contains k resources). Generalised
soundness asks whether k-soundness holds for all k ≥ 1. Unlike k-soundness,
generalised soundness preserves desirable properties like composition [23]. Struc-
tural soundness is the existential counterpart of generalised soundness, i.e. it
asks whether k-soundness holds for some k ≥ 1. These problems are all de-
cidable [1,24,36], but with high complexity: either PSPACE- or EXPSPACE-
complete [10]. Most of the (software) tools focus on k-soundness, with an em-
phasis on k = 1. Existing algorithms for generalised and structural soundness
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rely on Petri net reachability [24,36,22], which was recently shown Ackermann-
complete [28,27,14], so not primitive recursive. In this work, we describe novel
scalable semi-procedures for generalised and structural soundness.

We focus on “negative instances”, i.e. where soundness does not hold. Let
us motivate this. It is known that given a workflow net N , one can iteratively
apply simple reduction rules to N . The resulting workflow net N ′ is sound iff N
is as well [11,25]. In practice, one infers that N is sound from the fact that N ′

has been reduced to a trivial workflow net where only i and f remain. However,
if N is not sound, one obtains some nontrivial N ′ that must be verified via some
other approach such as model checking. In this work, we provide algorithmic
building blocks for this case, where state-space exploration is prohibitive.

Relaxations. This is achieved by considering two reachability relaxations, namely
integer reachability and continuous reachability. As their name suggests, these
two notions relax some forbidden behaviour of workflow nets. Informally, integer
reachability allows for the amount of resources to become temporarily negative,
while continuous reachability allows the fragmentation of resources into pieces.
Such relaxations possibly introduce spurious behaviour, but enjoy significantly
better algorithmic properties (e.g., see [7]). For example, they have been success-
fully employed for the verification of multi-threaded program skeletons [17,5,8].

Generalised soundness. Based on these relaxations, we provide two necessary
conditions for generalised soundness: integer boundedness and continuous sound-
ness. The former states that the state-space of a given workflow net is bounded
(from above) even under integer reachability. The latter states that a given
workflow net is 1-sound under continuous reachability. We show the following
for integer boundedness and continuous soundness:

– Well-established classical reduction rules preserve both properties;
– Integer boundedness is testable in polynomial time, and continuous sound-

ness is coNP-complete;
– From a practical viewpoint, they are respectively translatable into instances

of linear programming and linear arithmetic (which can be solved efficiently
by dedicated tools such as SMT solvers);

– Under a mild computational assumption, continuous soundness implies in-
teger boundedness.

Thus, altogether, in order to check whether a workflow net N is generalised
unsound, one may first use classical reduction rules to obtain a smaller workflow
net N ′; test integer unboundedness in polynomial time; and, if needed, move
onto testing continuous unsoundness.

The fact that continuous reachability can be used to semi-decide generalised
soundness is arguably surprising. Using the notation of computation temporal
logic (CTL), k-soundness can be rephrased as {i : k} |= ∀G∃F {f : k}. Some other
well-studied properties have a similar structure, e.g. liveness and home-stateness
amount to “minit |=

∧
t∈T ∀G∃F (t is enabled)” and “minit |= ∀G∃Fmhome”. It
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is known that liveness, home-stateness, and other properties such as bounded-
ness and inclusion, cannot be approximated continuously [9, Sect. 4]. Yet, gener-
alised soundness quantifies k-soundness universally, and this enables a continuous
over-approximation. Consequently, we provide a novel application of continuous
relaxations for the efficient verification of properties beyond reachability.

Structural soundness. The authors of [36] have observed that a property called
structural quasi-soundness is a necessary condition for structural soundness. The
former states that {i : k} can reach {f : k} for some k ≥ 1. In [36], structural
quasi-soundness is reduced to Petri net reachability, which has non primitive
recursive complexity. In this work, we show that structural quasi-soundness can
be rephrased as continuous reachability. Since the latter can be tested in poly-
nomial time [20], or alternatively via SMT solving [8], this vastly improves the
practicability of structural quasi-soundness. We further show that this approach
can be adapted so that it provides a lower bound on the first k such that {i : k}
can reach {i : f}. From a practical point of view, this is useful as it can vastly
reduce the number of reachability queries to decide structural soundness.

Free-choice nets. Many real-world workflow nets have a specific structure where
concurrency is restricted. Such nets are known as free-choice workflow nets (e.g.,
see [15] for a book). In particular, free-choice workflow nets allow for the model-
ing of many features present in common workflow management systems [2]. Gen-
eralised soundness is equivalent to 1-soundness for free-choice workflow nets [32].
In this work, we prove that continuous soundness is equivalent to generalised
soundness. As a byproduct of our proof, we show that structural soundness is also
equivalent to continuous soundness. Altogether, the notions of {1-, generalised,
structural, continuous} soundness all coincide for free-choice nets. In particular,
this means that the continuous relaxation is exact and can serve as an efficient
addition to the existing algorithmic toolkit.

Experimental results. To demonstrate the viability of our approach, we have im-
plemented and experimentally evaluated a prototype. As part of our evaluation,
we propose several new synthetic instances for generalised and structural sound-
ness, which are hard to decide with naive approaches. Some of these instances
involve the composition of workflow nets arising from the modeling of business
processes in the IBM WebSphere Business Modeler. Our prototype is competi-
tive against both a state-of-the-art Petri net model checker, and a workflow net
analyzer. In particular, our approach exhibits better signs of scalability.

Organization. The paper follows the structure of this introduction. Section 2
introduces notation, workflow nets and some properties. Section 3 defines inte-
ger and continuous relaxations, and further shows that they are preserved under
reduction rules. Sections 4 to 6 present the aforementioned results on generalised
soundness, structural soundness and free-choice nets. Section 7 provides experi-
mental results. Section 8 concludes. Some proofs are deferred to an appendix.
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2 Preliminaries

We use Z, N, Q and Q≥0 to respectively denote the integers, the naturals (includ-
ing 0), the rationals and the nonnegative rationals (including 0). Let x,y ∈ QS

be vectors over a finite set S. We write x ≤ y if x[s] ≤ y[s] for all s ∈ S. We
write x < y if x ≤ y and x[s] < y[s] for some s ∈ S. We extend addition and
subtraction to vectors, i.e. (x+ y)[s] := x[s] + y[s] and (x− y)[s] := x[s]− y[s]
for all s ∈ S. We define supp(x) = {s ∈ S | x[s] 6= 0}. Given c ∈ Q, c ∈ QS

denotes the vector such that c[s] = c for all s ∈ S.

2.1 Petri nets

A Petri net N is a triple (P, T, F ), where P is a finite set of places ; T is a finite
set of transitions, such that T ∩ P = ∅; and F : ((P × T ) ∪ (T × P )) → {0, 1}
is a set of arcs. For readers familiar with Petri nets, note that arc weights are
not allowed, i.e. the weights are always 1. A marking is a vector m ∈ NP such
that m[p] denotes the number of tokens in place p. We denote markings listing
nonzero values, e.g. m = {p1 : 1} means m[p1] = 1 and m[p] = 0 for p 6= p1.

Let t ∈ T . We define the pre-vector of t as •t ∈ NP , where •t[p] := F (p, t).
We define its post-vector symmetrically with t•[p] := F (t, p). The effect of t is
denoted as ∆(t) := t•− •t. We say that a transition t is enabled at a marking m
if m ≥ •t. If this is the case, then t can be fired at m, which results in a marking
m′ such that m′ := m+∆(t). We write m −→t to denote that t is enabled at m,
and we write m −→t m′ whenever we care about the marking m′ resulting from
the firing. We further write m −→ m′ to denote that m −→t m′ for some t ∈ T .

We say that a sequence of transitions π = t1 · · · tn is a run. We extend the no-
tion of effect, enabledness and firing from transitions to runs in a straightforward
way. The effect of a run is defined as the sum of the effects of its transitions, that
is, ∆(π) := ∆(t1)+ . . .+∆(tn). The run π is enabled at m, denoted as m −→π , if
m −→t1 m1 −→t2 m2 · · · −→tn−1 mn−1 −→tn for some markingsm1,m2, . . . ,mn−1.
Furthermore, firing π from m leads to m′, denoted as m −→π m′, if m −→π and
m′ = m+∆(π). We denote the reflexive and transitive closure of −→ by −→∗.

A pair (N ,m), where N is a Petri net and m is a marking of N , is called a
marked Petri net. We write Reach(N ,m) := {m′ | m −→∗ m′} to denote the set
of markings reachable from m in N .

A marked Petri net (N ,m) is bounded if there exists b ∈ N such that m′ ∈
Reach(N ,m) implies m′[p] ≤ b for all p ∈ P . It is further safe if b = 1. We say
unbounded and unsafe for “not bounded” and “not safe”.

Sometimes, we argue about transformations on Petri nets which take as an
input a Petri netN and output a Petri netN ′. We say that such a transformation
preserves some property if N satisfies that property iff N ′ satisfies it.

Example 1. The left-hand side of Figure 1 illustrates a Petri net Nleft = (P, T, F )
where P := {i, p1, p2, q1, q2, f}, T := {s, t1, t2, u}, and F is depicted by arcs, e.g.
F [i, s] = 1 and F [s, i] = 0. The Petri net is marked by {i : 1}, i.e. with one token
in place i. We have {i : 1} −→s {p1 : 1, p2 : 1} −→t1t2 {q1 : 1, q2 : 1} −→u {f : 1}. ⊳
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t1

t2

q1

q2

u f i t f

Fig. 1. Example of two Petri nets: respectively Nleft and Nright.

2.2 Workflow nets

A workflow net N is a Petri net [1] such that:

– there is a designated initial place i such that t•[i] = 0 for all t ∈ T ;
– there is a designated final place f 6= i such that •t[f] = 0 for all t ∈ T ; and
– each place and transition lies on at least one path from i to f in the underlying

graph of N , i.e. (V,E) where V := P ∪ T and (u, v) ∈ E iff F (u, v) 6= 0.

We say that N is:

– k-sound if for all m ∈ Reach(N , {i : k}) it is the case that m −→∗ {f : k} [1];
– generalised sound if N is k-sound for all k ∈ N≥1 [23, Def. 3],
– structurally sound if N is k-sound for some k ∈ N≥1 [6].

Example 2. Figure 1 depicts two workflow nets: Nleft and Nright. The former is
generalised sound, but the latter is not. Indeed, from {i : 1}, transition t can-
not be enabled (as transitions preserve the sum of all tokens). Both workflow
nets are structurally sound. Indeed, Nright is 2-sound as it is always possible to
redistribute the two tokens so that t can be fired in order to reach {f : 2}. ⊳

3 Reachability relaxations

Fix a Petri net N = (P, T, F ). We describe the two aforementioned relaxations.

Integer reachability. An integral marking is a vector m ∈ ZP . Any transition
t ∈ T is enabled in m ∈ ZP , and firing t leads tom′ := m+∆(t), denoted m −→t

Z
m′. We define m −→Z m′ and m −→∗

Z m′ analogously to the standard setting but
w.r.t. −→t

Z rather than −→t. Similarly, Z-Reach(N ,m) := {m′ ∈ ZP | m −→∗
Z m′}.

As transitions are always enabled, the order of a firing sequence is irrelevant. In
particular,m −→∗

Z m′ iff there exists x ∈ NT such thatm′ = m+
∑

t∈T x[t]·∆(t).
Thus, integer reachability amounts to integer linear programming. Moreover, it
is NP-complete [21,13].

Continuous reachability. A continuous marking is a vector m ∈ QP
≥0. Let λ ∈

(0, 1]. We say that λt is enabled in m, denoted m −→λt
Q≥0

, if m ≥ λ · •t. In this

context, λ is called the scaling factor. Furthermore, we denote by m −→λt
Q≥0

m′
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that λt is enabled in m, and that its firing results in m′ := m + λ · ∆(t). A
sequence of pairs of scaling factors and transitions is called a continuous run.

The notations m −→Q≥0
m′ and m −→∗

Q≥0
m′ are defined analogously to the

discrete case but with respect to −→λt
Q≥0

rather than −→t (the internal factors λ

can differ). Similarly, Q≥0-Reach(N ,m) := {m′ | m −→∗
Q≥0

m′} denotes the

markings continuously reachable from m. For example, for Nleft from Figure 1
and π := 1

2s
1
4 t1, we have {i : 1} −→π

Q≥0
{i : 1/2, p1 : 1/4, p2 : 1/2, q1 : 1/4}. It is

known that continuous reachability, namely determining whether m −→∗
Q≥0

m′,

given m,m′ ∈ QP
≥0, can be checked in polynomial time [20].

Let us establish the following helpful lemma similar to [20, Lemma 12(1)].

Lemma 1. Let m, m′ be continuous markings. It is the case that m −→∗
Q≥0

m′

iff there exists b ∈ N≥1 such that b ·m −→∗ b ·m′.

3.1 Preservation under reduction rules

In [11], the authors present six reduction rules, denoted R1, . . . , R6, that gen-
eralize the existing reduction rules of [31]. In the following, we show that these
reduction rules preserve natural properties for the two reachability relaxations.
This means we will be able to check these properties on a reduced workflow net
and get the same results as on the original one.

Formally, the rules simplify a given workflow netN = (P, T, F ). In particular,
the places of the resulting workflow net N ′ = (P ′, T, F ′) form a subset of P . Let
us fix a domain D ∈ {N,Z,Q≥0} and let P ′ ⊆ P . For ease of notation, we we write
P ′′ = P \ P ′ to denote the (possibly empty) set of removed places. Rules never
remove the initial and output places, i.e. i, f ∈ P ′. We denote by π : DP → DP ′

the obvious projection function, and by π0 : DP ′ → DP the “reverse projection”
which fills new places with 0. Formally, π0(m)[p′] := m[p′] for all p′ ∈ P ′ and
π0(m)[p′′] := 0 for all p′′ ∈ P ′′.

In [11], the authors prove that the rules preserve generalised soundness. This
of course implies that they preserve k-soundness for all k. The technical propo-
sition below will be helpful in the forthcoming sections to show the preservation
of useful properties based on reachability relaxations.

Proposition 1. Let N = (P, T, F ) be a workflow net, and let D ∈ {N,Z,Q≥0}.
Let N ′ = (P ′, T ′, F ′) be a workflow net obtained by applying a reduction rule Ri

to N , where P = P ′ ∪ P ′′. The following holds.

– Rule R1. We have P ′′ = {p}. There exists a nonempty set R′ ⊆ P ′ such that
if {i : 1} −→∗

D m in N , then m[p] =
∑

r∈R′ m[r′]. Moreover, m −→∗
D n in N

iff π(m) −→∗
D π(n) in N ′.

– Rules R2 and R3. We have P ′′ = ∅ and m −→∗
D n in N iff m −→∗

D n in N ′.
– Rules R4 and R5. We have P ′′ = {p}. For all m′ and n′, m′ −→∗

D n′ in
N ′ iff π0(m

′) −→∗
D π0(n

′) in N . Further, for all t ∈ T and p′ ∈ P ′: either
•t[p] = 1 implies •t[p′] = 0; or t•[p] = 1 implies t•[p′] = 0. Also, for D 6= Z,
if ∃m : {i : 1} −→∗

D m 6−→∗
D {f : 1} holds in N , then ∃m′ : {i : 1} −→∗

D m′ 6−→∗
D

{f : 1} holds in N ′.
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– Rule R6. We have P ′′ = {p2, . . . , pk}. There exists p1 ∈ P ′ such that for all

n ∈ PD, if
∑k

i=1 m[pi] =
∑k

i=1 n[pi] and n[p′] = m[p′] for p′ ∈ P ′ \ {p1},
then m −→∗

D n. Moreover, if m[pi] = n[pi] = 0 for i > 1, then m −→∗
D n in

N iff π(m) −→∗
D π(n) in N ′.

4 Using relaxations for generalised soundness

In this section, we explain how reachability relaxations can be leveraged in order
to semi-decide generalised soundness of workflow nets. More precisely, we state
two necessary conditions for a workflow net to be generalised sound: one phrased
in terms of integer reachability, and one in terms of continuous reachability.
Furthermore, for each condition we: (1) show that it is preserved under reduction
rules, and (2) establish its computational complexity. Overall, this means that
to conclude that a given workflow net N is not generalised sound, one may first
reduce N , and then efficiently test for one of these two necessary conditions.

For integer boundedness, we need the mild assumption of nonredundancy. Let
N = (P, T, F ) be a workflow net. We say that a place p ∈ P is nonredundant3

if there exist k ∈ N≥1 and m ∈ NP such that {i : k} −→∗ m and m[p] ≥ 1. It is
known (and simple to see) that redundant places can be removed from a workflow
net without changing whether it is generalised sound. Moreover, testing whether
a place is nonredundant can be done in polynomial time. Indeed, by Lemma 1, it
amounts to testing for the existence of some m ∈ QP

≥0 such that {i : 1} −→∗
Q≥0

m

and m[p] > 0. The latter is known as a coverability query and it can be checked
in polynomial time [20]. Thus, in order to test whether a given workflow net is
generalised sound, one can first remove its redundant places. We call a workflow
net without redundant places a nonredundant workflow net.

4.1 Integer unboundedness

Recall that a marked Petri net (N ,m) is bounded if there exists b ∈ N such that
m′ ∈ Reach(N ,m) implies m′ ≤ b. It is well-known that any 1-sound workflow
net must be bounded from {i : 1} [1]. In particular, this means that boundedness
is a necessary condition for generalised soundness. However, testing boundedness
has extensive computational cost as it is EXPSPACE-complete [12,33]. Consider
the relaxed property of integer boundedness. It is defined as boundedness, but
where “m′ ∈ Reach(N ,m)” is replaced with “m′ ∈ Z-Reach(N ,m) ∩NP ”.

Proposition 2 ([10, Lemma 5.9]). Let N be a nonredundant workflow net.
If (N , {i : 1}) is integer unbounded, then N is not generalised sound.

Proposition 3. The reduction rules from [11] preserve integer unboundedness.

3 This notion is adapted from batch workflow nets considered in [24].
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Next, we establish the complexity of integer unboundedness in two steps.
The first step, in the next proposition, shows that testing integer boundedness
amounts to a simple condition, independent of the initial marking. The second
step shows the condition can be translated into a linear program over Q, rather
than N. As a corollary, integer unboundedness is testable in polynomial time.

Proposition 4. A marked Petri net (N ,m) is integer unbounded iff there exists
a marking m′ > 0 such that 0 −→∗

Z m′ (independent of m).

Proof. Let N = (P, F, T ) be a Petri net and let m ∈ NP .

⇒) By assumption, there exist m0,m1, . . . ∈ Z-Reach(N ,m) ∩ NP such
that, for every i ∈ N, it is the case that mi 6≤ i. Since (NP ,≤) is well-quasi-
ordered, there exist indices i0, i1, . . . such that mij ≤ mik for all j < k. Without
loss of generality, we can assume that mij < mik for all j < k, as we could
otherwise extract such a subsequence. Recall that each miℓ ∈ Z-Reach(N ,m).
Let πℓ ∈ T ∗ be such that m −→πℓ

Z miℓ . Let xℓ ∈ NT be the vector such that
xℓ(t) indicates the number of occurrences of transition t in πℓ. Since (NT ,≤) is
well-quasi-ordered, there exist j < k such that xj ≤ xk. Let m′ := mik −mij

and π :=
∏

t∈T t
(xk[t]−xℓ[t]). We have 0 −→π

Z m′ > 0 as desired since:

m′ = mik −mij = (m+∆(πk))− (m+∆(πℓ)) = ∆(πk)−∆(πℓ)

=
∑

t∈T

xk[t] ·∆(t)−
∑

t∈T

xℓ[t] ·∆(t) =
∑

t∈T

(xk − xℓ)[t] ·∆(t) = ∆(π).

⇐) By assumption 0 −→π
Z m′ > 0. In particular, this means that m −→π

Z
m+m′ −→π

Z m+ 2m′ −→Z · · · . Therefore, (N ,m) is not integer bounded. ⊓⊔

Proposition 5. A marked Petri net (N ,m), where N = (P, T, F ), is integer
unbounded iff this system has a solution: ∃x ∈ QT

≥0 :
∑

t∈T x[t] · ∆(t) > 0. In
particular, given a workflow net N , testing integer boundedness of (N , {i : 1})
can be done in polynomial time.

4.2 Continuous soundness

Let us now introduce a continuous variant of 1-soundness based on continuous
reachability. We prove that this variant, which we call continuous soundness, is a
necessary condition for generalised soundness, and preserved by reduction rules.
Moreover, we show that continuous soundness is coNP-complete, and relates to
integer boundedness.

We say that a workflow net N is continuously sound if for all continuous
markings m ∈ Q≥0-Reach(N , {i : 1}) it is the case that m −→∗

Q≥0
{f : 1}.

Theorem 1. Continuous unsoundness implies generalised unsoundness.
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Proof. Let N = (P, T, F ) be a workflow net that is not continuously sound. By
definition of continuous soundness, there exists some continuous marking m ∈
QP

≥0 such that {i : 1} −→∗
Q≥0

m and m 6−→∗
Q≥0

{f : 1}. By Lemma 1, there exists

b ∈ N≥1 such that {i : b} −→∗ b ·m. Furthermore, by Lemma 1, b ·m 6−→∗ {f : b}.
This means that N is not b-sound, and consequently not generalised sound. ⊓⊔

Proposition 6. The reduction rules from [11] preserve continuous soundness.

Theorem 2. Continuous soundness is coNP-complete. Moreover, coNP-hardness
holds even if the underlying graph of the given workflow net is acyclic.

Proof (of membership in coNP). The inclusion problem consists in determining
whether, given Petri nets N and N ′ over a common set of places, and markings
m and m′, it is the case that Q≥0-Reach(N ,m) ⊆ Q≥0-Reach(N ′,m′). The
inclusion problem is known to be coNP-complete [8, Prop. 4.6].

Let N = (P, T ) be a workflow net. Let N−1 = (P, T−1) be defined as N but
with its transitions reversed, i.e. where T−1 := {t−1 | t ∈ T } with •(t−1) := t•

and (t−1)• := •t. It is the case that m −→∗
Q≥0

m′ in N iff m′ −→∗
Q≥0

m in N−1.

Observe that N is continuously sound iff the following holds for all m:

m ∈ Q≥0-Reach(N , {i : 1}) =⇒ {f : 1} ∈ Q≥0-Reach(N ,m).

So, as {f : 1} ∈ Q≥0-Reach(N ,m) is equivalent tom ∈ Q≥0-Reach(N−1, {f : 1}),
continuous soundness holds iffQ≥0-Reach(N , {i : 1}) ⊆ Q≥0-Reach(N−1, {f : 1}).
As inclusion can be tested in coNP, membership follows. ⊓⊔

Proof (of coNP-hardness). We give a reduction from the problem of determining
whether a Boolean formula in disjunctive normal form (DNF) is a tautology. We
adapt a construction from [35] used to show that soundness in acyclic workflow
nets is coNP-hard. The proof is more challenging under the continuous semantics
as several variable valuations and clauses can be simultaneously used.

The reduction is depicted in Figure 2 for ϕ = (x1∧x2∧¬x4)∨(¬x1∧x3∧x4).
In general, let ϕ =

∨
j∈[1..k] Cj be a Boolean formula in DNF with k clauses over

variables x1, . . . , xm. We define a workflow net Nϕ = (P, T, F ).
Definition. The places are defined as P := {i, pcl, f} ∪ Pvar ∪ Pclean, where

Pvar :=
⋃

i∈[1..m]{pi,?, pi,1, pi,0} and Pclean :=
⋃

i∈[1..m]{qi, ri}. The transitions

are defined as T := {tinit, tfin} ∪ Tvar ∪ Tclauses ∪ Tvar, where

Tvar :=
⋃

i∈[1..m]

{vi,1, vi,0}, Tclauses := {ci | i ∈ [1..k]} and Tvar :=
⋃

i∈[1..m]

{vi,1, vi,0}.

Let us explain howNϕ is intended to work. Transition tinit enables the initial-
ization of variables and the selection of a clause that satisfies ϕ, i.e. •tinit := {i : 1}
and t•init := {pi,? : 1 | i ∈ [1..m]} + {pcl : 1}. A token in place pi,b indicates that
variable xi has been assigned value b (where “?” indicates “none”). Consequently,
we have •vi,b := pi,? and v•i,b := pi,b for each i ∈ [1..m] and b ∈ {0, 1}.
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i tinit

p2,?

p1,?

p3,?

p4,?

pcl

c1 c2

v1,1

v1,0
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p1,0

v2,1
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Fig. 2. A workflow net Nϕ such that Nϕ is continuously sound iff ϕ = (x1∧x2∧¬x4)∨
(x1 ∧ x3 ∧ x4) is a tautology. Places and transitions contain their names (not values).
Arcs corresponding to the first and second clauses are respectively dotted and dashed.

Transition cj consumes a token associated to each literal of clause Cj , i.e.
•cj := {vi,1 | xi ∈ Cj} + {vi,0 | ¬xi ∈ Cj}. A token in place qi indicates that
variable xi is not needed anymore (due to some satisfied clause). A token in
place ri indicates that variable xi has been discarded. Therefore, transition cj
produces these tokens: c•j := {qi | xi /∈ Cj∧¬xi /∈ Cj}+{ri | xi ∈ Cj∨¬xi ∈ Cj}.

Transition vi,b discards variable xi, i.e.
•vi,b := {pi,b, qi} and •vi,b := {qi}.

Once each variable is discarded, transition tfin terminates the execution, i.e.
•tfin := {ri | i ∈ [1..m]} and t•fin := {f : 1}.

Correctness. Note that under −→∗
Q≥0

, the workflow net needs not to proceed as

described. Indeed, it could, e.g., assign half a token to pi,0 and half a token to pi,1.
Similarly, several clauses can be used, with distinct scaling factors. Nonetheless,
Nϕ is continuously sound iff ϕ is a tautology.

⇒) Let b1, . . . , bm ∈ {0, 1}. Let π := tinitv1,b1 · · · vm,bm . We have: {i : 1} −→π
Q≥0

{vi,bi : 1 | i ∈ [1..m]}+ {pcl : 1}. Since Nϕ is continuously sound by assumption,
there must exists some j ∈ [1..k] such that cj is enabled. This implies that clause
Cj is satisfied by the assignment. Hence, ϕ is a tautology.

⇐) The proof is technical and involves several invariants (see appendix). ⊓⊔

We may now prove that any nonredundant workflow net that is integer un-
bounded is also continuously unsound (the reverse is not necessarily true). There-
fore, integer unboundedness relates to continuous soundness much like continu-
ous unsoundness relates to generalised soundness.

Proposition 7. Let N be a nonredundant workflow net and m ∈ NP . If (N ,m)
is integer unbounded, then N is not continuously sound.
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Proof. Let N = (P, T, F ) and m ∈ NP be such that (N ,m) is not integer
bounded. By Proposition 4, there exists m′ > 0 such that 0 −→∗

Z m′. By nonre-
dundancy, there exist λ ∈ N≥1 and m′′ ∈ NP such that {i : λ} −→∗ {f : 1}+m′′.

In [24, Lemma 12], it is shown that {i : k} −→∗
Z n implies the existence of

some ℓ ∈ N such that {i : k + ℓ} −→∗ {f : ℓ} + n. By invoking this lemma with
k := 0 and n := m′, we obtain {i : ℓ} −→∗ {f : ℓ}+m′ for some ℓ ∈ N.

Altogether, {i : λ+ ℓ} −→∗ {f : λ+ ℓ}+m′ +m′′. Since λ + ℓ ≥ 1, Lemma 1
yields {i : 1} −→∗

Q≥0
{f : 1}+m′′′ where m′′′ := (1/(λ+ℓ))m′. As every transition

of a workflow net produces at least one token, this contradicts the fact that N
is continuously sound. Indeed, it is impossible to fully get rid of m′′′ > 0. ⊓⊔

5 Using relaxations for structural soundness

A workflow net N is k-quasi-sound if {i : k} −→∗ {f : k}. Furthermore, N is
structurally quasi-sound if it is k-quasi-sound for some k ∈ N≥1.

As observed in [36], structural quasi-soundness is a necessary condition for
structural soundness. The notion of structural quasi-soundness is naturally gen-
eralised to an arbitrary Petri net N = (P, T, F ). Given markings m,m′ ∈ NP ,
we say that m structurally reaches m′ in N if k ·m −→∗ k ·m′ for some k ∈ N≥1.
A workflow net is structurally quasi-sound iff m := {i : 1} structurally reaches
m′ := {f : 1}. So, the observation of [36] can be rephrased as follows.

Proposition 8. Let N be a workflow net. If {i : 1} does not structurally reach
{f : 1} in N , then N is not structurally sound.

The problem of structural quasi-soundness can be reduced to an instance
of the Petri net reachability problem [36, Lemma 2.1]. Intuitively, the reduc-
tion produces a Petri net that nondeterministically chooses multiples of {i : 1}
and {f : 1} for which to check reachability. Such an approach has a prohibitive
computational cost as Petri net reachability is Ackermann-complete. However,
we observe that structural reachability, and hence structural quasi-soundness, is
equivalent to continuous reachability by Lemma 1.

Proposition 9. Let N = (P, T, F ) be a Petri net, and let m,m′ ∈ NP be
markings. It is the case that m structurally reaches m′ iff m −→∗

Q≥0
m′.

For a workflow netN = (P, T, F ), let kN ∈ N≥1∪{∞} be the smallest number
for which N is kN -quasi-sound. Then N is structurally sound iff kN 6= ∞ and N
is kN -sound [36, Thm 2.1]. By Proposition 9, kN 6= ∞ can be checked in polyno-
mial time via a continuous reachability query. Moreover, a lower bound on kN can
be obtained by computing kN ,Z ∈ N≥1∪{∞}, defined as the smallest value such
that {i : k} −→∗

Z {f : k}. We obtain a better bound by defining kN ,Q≥0
∈ N≥1∪{∞}

as the smallest value for which there is a continuous run π = λ1t1 · · ·λntn such
that {i : k} −→π

Q≥0
{f : k} and π ∈ NT , where π[t] :=

∑
i∈[1..n]:ti=t λi. Values

kN ,Z and kN ,Q≥0
can respectively be computed by a translation to integer linear

programming, and a decidable optimization modulo theory.
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Proposition 10. Let N be a workflow net. It is the case that kN ,Z ≤ kN ,Q≥0
≤

kN . Moreover, kN ,Z can be computed from an integer linear program P; kN ,Q≥0

can be obtained by computing min k ∈ N≥1 : ϕ(k) where ϕ is a formula from the
existential fragment of mixed linear arithmetic ϕ, i.e. ∃FO(Q,Z, <,+); and both
P and ϕ are constructible in polynomial time from N .

6 Free-choice workflow nets

Let N = (P, T, F ) be a Petri net. We say that N is free-choice if for any s, t ∈ T ,
it is the case that either supp(•s)∩supp(•t) = ∅ or •s = •t. For example, the nets
Nleft and Nright from Figure 1 are respectively free-choice and not free-choice.

It is known that generalised soundness is equivalent to 1-soundness in free-
choice workflow nets [32]. We will show that the same holds for structural sound-
ness, and that, surprisingly, for continuous soundness as well. This means that
notions of soundness collapse for free-choice nets. This is proven in the forth-
coming Lemma 2 and Theorem 3, which form one of the main theoretical con-
tributions of this work.

Let (N ,m) be a marked Petri net. We say that a transition t is quasi-live
in (N ,m) if there exists m′ such that m −→∗ m′ −→t. Similarly, we say that
a transition t is live in (N ,m) if for all m′ such that m −→∗ m′, t is quasi-
live in (N ,m′). In words, quasi-liveness states that there is at least one way to
enable t, and liveness states that t can always be re-enabled. The set of quasi-
live and live transitions of (N ,m) are defined respectively as F (m) := {t ∈ T |
t is quasi-live in (N ,m)} and L(m) := {t ∈ T | t is live in (N ,m)}.

Lemma 2. Let N = (P, T, F ) be a free-choice Petri net, let c ∈ N≥1, and let
m ∈ NP . The following statements hold.

1. There exists a marking m′ such that m −→∗ m′ and L(m′) = F (m′).
2. If L(m) = F (m), then L(c ·m) = F (c ·m) = F (m).
3. If L(c · m) = F (c · m), c · m −→∗ {f : c} and (N , c · m) is bounded, then

m = {f : 1}.

Lemma 3. Let N be a workflow net. If N is continuously sound, then (N , {i : k})
is bounded for all k ∈ N≥1.

Theorem 3. Let N be a free-choice workflow net. These statements are equiva-
lent: (1) N is 1-sound, (2) N is generalised sound, (3) N is structurally sound,
and (4) N is continuously sound.

Proof. (1) ⇒ (2). This was shown in [32].
(2) ⇒ (3). By definition, if N is k-sound for all k, then it is for some k.
(2) ⇒ (4). By Theorem 1.
(3) ⇒ (1). Let k ∈ N≥1 be such that N is k-sound. Let m ∈ NP be such that

{i : 1} −→∗ m. By Lemma 2(1), there is a marking m′ ∈ NP such that m −→∗ m′

and F (m′) = L(m′). By Lemma 2(2), we have L(k ·m′) = F (k ·m′) = F (m′).
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By k-soundness, (N , {i : k}) must be bounded [10, Proposition 3.2 and Lemma 3.6].
Thus, since {i : k} −→∗ k · m −→∗ k · m′, it is also the case that (N , k · m′) is
bounded. By k-soundness, k·m′ −→∗ {f : k}. By invoking Lemma 2(3) with c := k,
we conclude thatm′ = {f : 1}. So,N is 1-sound as {i : 1} −→∗ m −→∗ m′ = {f : 1}.

(4) ⇒ (1). Assume that N is continuously sound. Let m ∈ NP be a marking
such that {i : 1} −→∗ m. By Lemma 2(1), there exists m′ ∈ NP such that m −→∗

m′ and L(m′) = F (m′). Clearly, {i : 1} −→∗
Q≥0

m′ and by continuous soundness

m′ −→∗
Q≥0

{f : 1}. By Lemma 1, there exists b ∈ N≥1 such that b ·m′ −→∗ {f : b}.
By Lemma 3, continuous soundness of N implies that (N , b ·m′) is bounded,

as {i : b} −→∗ b · m′. Since L(m′) = F (m′), it follows from Lemma 2(2) that
L(b·m′) = F (b·m′). By invoking Lemma 2(3) with c := b, we derivem′ = {f : 1}.
Therefore, N is 1-sound as {i : 1} −→∗ m −→∗ m′ = {f : 1}. ⊓⊔

7 Experimental evaluation

We implemented our approaches for generalised and structural soundness in
C#.4 We test continuous soundness via SMT solving. More precisely, we use
an existential ψN formula of linear arithmetic, i.e. FO(Q, <,+), from [8]. This
formula is such that ψ(m,m′) holds iff m −→∗

Q≥0
m′ in N . Continuous sound-

ness amounts to the ∃∀-formula ψN ({i : 1},m)∧¬ψN (m, {f : 1}). To solve such
formulas, we use Z3 [30]. We further use Z3 to decide structural quasi-soundness
and compute kN ,Q≥0

(see Proposition 10), again via the formulas of [8].
We evaluated our prototype implementation on a standard benchmark suite

used regularly in the literature, and a novel suite of synthetic instances where
generalised or structural soundness are hard to decide with a naive approach.

We compared with two established tools for soundness: LoLA (v2.0) [40],
and Woflan [38].5 The latter can only decide classical soundness (1-soundness +
quasi-liveness). Nonetheless, we use quasi-live instances, so for which 1-soundness
and classical soundness are equivalent. We further use a transformation to reduce
the verification of k-soundness to the one of 1-soundness [10, Lemma 3.6]. On
the other hand, LoLA can directly decide k-soundness. To do so, we start from
{i : k} and check a CTL formula of the form ∀G∃F ((m[f] = k)∧∧

p6=f m[p] = 0).
Experiments were run on an 8-Core Intel® Core™ i7-7700 CPU @ 3.60GHz

with Ubuntu 18.04. We limited memory to ∼8GB, and time to 120s for each
instance. Tools were called from a Python script. For LoLA and our implemen-
tation, we used the time module to measure time. Running Woflan involves some
overhead, so we instead take the total verification time reported by Woflan itself.

7.1 Free-choice benchmark suite

The benchmark suite encompasses 1386 free-choice Petri nets that represent busi-
ness processes modeled in the IBM WebSphere Business Modeler. It was origi-

4 In the case of acceptance, we will submit an artifact to the artifact evaluation.
5 A version of Woflan suitable for running without user interaction was provided, via
personal communication, by its maintainer.
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nally presented in [18], and has been studied frequently in the literature [11,19].
These nets are not workflow nets by our definition, but can be transformed us-
ing a known procedure [26]. Intuitively, the nets are workflow nets with multiple
final places, and the procedure adds a dedicated output place and ensures that
the resulting workflow net represents the desired behaviour. However, roughly
1% of the nets are not workflow nets by our definition even after the procedure,
as they contain nodes that are not on a path from i to f. We removed these nets.

We further checked each net for safety using LoLA and dropped unsafe nets.
Recall that (N , {i : 1}) is sound if each reachable marking has at most one token
per place. Unsafe instances can be dropped as unsafety implies 1-unsoundness
in free-choice nets [39, Thm. 4.2 and 4.4], and as existing methods for checking
safety, e.g. via state-space exploration with partial order reductions, are very
efficient (here needing a mean of 3ms). Thus, we considered safe instances only.
Among the 1386 instances, 1382 are workflow nets, and 977 are further safe.

We also invoked an implementation of the reduction rules of [11] to reduce the
size of all instances.6 As discussed in the introduction, the rules can reduce some
instances to trivially sound nets. However, even the size of nontrivial reduced
instances tends to be small, with an average number of places and transitions of
roughly 14, while three quarters of nets have at most 18 places and transitions.
This is small enough that a complete state-splace enumeration is often feasible,
in particular as the nets are safe and especially LoLA utilizes powerful partial
order reductions for such nets. As we want to focus on scalability, we chained
instances to produce challenging synthetic nets based on real-world instances.
This is a natural way of constructing workflow nets, intuitively, the final process
can be composed of many subtasks. It can be seen as a special case of refinement
operations, studied in the context of generalised soundness [23].

The chaining procedure merges two workflow nets N = (P, T, F ) and N ′ =
(P ′, T ′, F ′) into N ′′ := (P ′′, T ′′, F ′′) where P ′′ := P ∪ P ′, T ′′ := T ∪ T ′ ∪ {taux}
with F ′′ as F ′ + F ′′ extended with •taux[f] := 1, t•aux[i

′] := 1, and •taux[p] =
t•aux[p

′] := 0 for other entries. It is readily seen that this construction (1) produces
a free-choice net if both N and N ′ are free-choice; and (2) preserves safety.

This way, we generated large instances by using ℓ ∈ {1, 21, 41, . . . , 401} ran-
domly chosen unreduced safe instances from the benchmark suite as inputs to
be chained into one instance, then reduced that instance. For each number ℓ, we
produced 20 combined nets, with a fresh random choice each time, in order to
have a more representative collection of nets for ℓ. This resulted in 420 instances,
of which 405 are nontrivial after applying reduction rules.

A caveat is that such large nets may seem unlikely to arise in practice. It
seems a human designer would avoid designing highly complex processes corre-
sponding to Petri nets with thousands of places. However, process models are not
only explicitly written by humans, but also machine-generated, e.g. by mining
event logs (see [37] for a book on the topic). In particular, being free-choice is

6 At time of writing, an implementation is available at
https://github.com/LoW12/Hadara-AdSimul.
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preserved by chaining, so a large free-choice net may “hide” and combine several
less complex processes, which might necessitate analyzing large workflow nets.

Results. We checked the safe free-choice instances obtained as explained above
for 1-soundness using LoLA, Woflan and our implementation of continuous
soundness. The results are shown on the left of Figure 3. The right-hand side of
the figure provides an overview over the sizes of the nets. In each case, N refers
to the number of original instances that were chained to create each instance.
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Fig. 3. Experiments on chained free-choice instances. The x-value denotes the number
N of chained nets. Dark thick lines denote the mean, and light thin lines of the same
color denote the minimum and maximum, respectively. For Woflan, the minimum line
is slightly below the line of this work. For this work, the minimum and maximum lines
are very close to the mean. Left: The y-value denotes time for checking soundness of
the 20 nets for each N . Marks on the gray line at 120s denote timeouts. Right: The
y-value denotes the size of generated nets.

The results show that state-space exploration via LoLA is very fast for moder-
ate sizes, but does not scale as well. Continuous soundness is in fact outperformed
by LoLA for N ≤ 100, but scales much better, showing essentially linear growth
in the given data range. For instance, continuous soundness takes a mean of
0.25s for N = 1, a mean of 1.07s for N = 201, and a mean of 2.28s for N = 401.

Woflan performs very well on the original instances, but times out frequently
for larger instances. Woflan checks so-called S-coverability [39]. This is fast on
many instances, even large ones, but starts running into the exponential-time
worst case when instances get larger. For N = 1 and N = 21, Woflan does not
ever time out, while it times out for roughly half of the instances in the range from
N = 201 to N = 401. Overall, we infer that for large free-choice workflow nets,
deciding soundness by checking continuous soundness can outperform existing
techniques, while the procedure is still competitive on moderate instances.
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7.2 Synthetic instances

In the previously discussed benchmark suite, nets are free-choice. So structural
and generalised soundness are equivalent by Theorem 3. We considered including
a second suite of 590 non-free-choice Petri nets that represent processes of the
SAP reference model [29]. However, all of them turn out to be 1-quasi-sound but
not 1-sound, so they represent trivial cases for generalised and structural sound-
ness: simply checking 1-soundness, or 1-quasi-soundness and then 1-soundness,
decides all instances. In order to have a wider variety of challenging instances,
we introduce several families of synthetic workflow nets. The nets are simple to
understand, but have large numbers of reachable marking, so are challenging for
approaches relying on state-space exploration, e.g. model checking.

Encoding arc weights. To simplify the presentation, we describe synthetic in-
stances utilizing arcs with weights. For benchmarking, we removed the arc weights
and instead input equivalent weightless nets. To do so, we used an encoding
that simulates exponentially large weights by polynomially many transitions
and places (the encoding is explained in Appendix A.5). It preserves (quasi-
)soundness, but significantly increases the number of reachable markings. In-
deed, our synthetic instances are mostly trivial to solve by enumerating reach-
able markings when arcs have weights, but become much harder to decide when
the encoding is used.7 While much of the literature on workflow nets does not
consider nets with arc weights, implicit structural encodings can occur in prac-
tice.

Generalised soundness

Benchmark instances. We introduce a synthetic family of nets where generalised
soundness appears to be challenging. The family {Nc}c∈N≥1

is defined at the top
of Figure 4. Parameter c ∈ N≥1 is the smallest value for which Nc is c-unsound.
From {i : c}, the sequence tci tc+1

r can be fired, which leads to the deadlock {r : c+
1}. Yet, when starting with k < c tokens in i, and firing tki , transitions tr and tf
can only be fired exactly k times, and {f : k} will be reached.

The naive approach to decide generalised soundness is to check k-soundness
for all k until a counterexample is found or a bound is exceeded. It is known
that if a counterexample exists, then there also is one of size at most exponen-
tial [10, Lemma 5.6 and 5.8]. The approach we chose for semi-deciding generalised
soundness is to check continuous soundness. Recall that continuous soundness is
a necessary (albeit not sufficient) condition, as shown in Theorem 1.

In our evaluation, we used Woflan and LoLA to check generalised soundness
of the family for different c by checking 1-sound, . . . , c-soundness, and compared
the result to the time needed for testing continuous soundness. Our main goal is
to evaluate whether checking continuous soundness is efficient enough to serve as
an inexpensive way to witness generalised unsoundness for nontrivial instances.

7 It is deliberately used to make instances challenging, not to ensure compatibility
with LoLA or Woflan, as both support arc weights.
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Fig. 4. Top: A workflow net Nc that is c-unsound and k-sound for all k ∈ [1..c − 1].
Bottom: Three families of instances. Bottom left: Nsound-c is quasi-sound and ℓc-sound
for all ℓ ∈ N≥1. Bottom center: N¬quasi-c is not structurally quasi-sound. Bottom right:
N¬sound-c is ℓc-quasi-sound for all ℓ ∈ N≥1, but not structurally sound.
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Fig. 5. Time to check generalised soundness of Nc for different values of c. Marks on
the gray line at 120s denote timeouts.

Results. Figure 5 depicts the results. Woflan and LoLA show good performance
for small values of c, but do not scale well to larger values. They respectively time
out for c ≥ 5 and c ≥ 8. The instances are not free-choice, so LoLA and Woflan
need to explore the state-space for each k ≤ c, which becomes infeasible. For
c ≥ 14, Woflan cannot even check 1-soundness within the time limit. LoLA can
check 1- and 2-soundness for c ≤ 28, but cannot handle 2-soundness for larger c.
Continuous soundness is efficiently verifiable even for c = 40. In particular, we
need less than 5s on all instances. The greatest time is at c = 33. Further, at
most 1s is needed on 34 out of 40 instances (mean of 0.6s).

Structural soundness

Benchmark instances. For structural soundness, recall that our decision proce-
dure is based on checking structural quasi-soundness and obtaining some lower
bound for the smallest number for which the net is quasi-sound. Thus, we want
to test on both benchmark instances that are structurally quasi-sound and those
that are not. We introduce three families of non-free-choice nets for which struc-
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tural soundness appears challenging. These instances are defined at the bottom
of Figure 4. We respectively denote them Nsound-c (left), N¬quasi-c (center) and
N¬sound-c (right). We claim that: Nsound-c is ℓc-sound for all ℓ ∈ N≥1; N¬quasi-c

is not structurally quasi-sound; N¬sound-c is ℓc-quasi-sound for all ℓ ∈ N≥1, not
k-quasi-sound for any other number k ∈ N≥1, and not structurally sound.

For the experiments, our goal is twofold. First, we want to evaluate whether
utilizing continuous reachability to decide structural quasi-soundness is more effi-
cient than using the known reduction to reachability described in [36, Lemma 2.1].
Woflan does not directly support checking reachability, so we only compare with
LoLA. Second, we want to evaluate whether the lower bound for the smallest
number for which the net is quasi-sound, which we dubbed kN ,Q≥0

towards the
end of Section 5, is close to the actual smallest number, dubbed kN .

A caveat of this evaluation is that we evaluate only on our synthetic instances,
and that computing kN ,Q≥0

is only one step in deciding structural soundness.
However, we think that the evaluation on these hard synthetic instances can give
insights into the applicability on nontrivial real-world instances.

Results. Figure 6 compares the time needed to verify structural reachability for
LoLA and our prototype. For small instances, LoLA sometimes performs very
well, but we scale better for large values. Of particular note is that in the absence
of quasi-soundness, LoLA will generate an infinite state-space, so will generally
run out of time or memory. In particular, LoLA times out for all c on N¬quasi-c. It
also times out for c ≥ 32 on N¬sound-c. On the other hand, continuous soundness
never times out for the given values of c. In fact, when we tested continuous
soundness for much larger values of c, we found that our implementation of
continuous reachability decides structural quasi-soundness for N¬quasi-c in under
2s for c = 20 000 000.

We further found that for all instances, kN ,Q≥0
= kN , that is, our lower

bound exactly matches the smallest number for which the net is quasi-sound.
Thus, it only remains to decide kN ,Q≥0

-quasi-soundness and kN ,Q≥0
-soundness

in order to decide structural soundness. This is in contrast to the naive approach,
which starts at k = 1 and checks k-quasi-soundness for each value up to kN ,Q≥0

.

8 Conclusion

In this work, we have shown how reachability relaxations allow to efficiently semi-
decide generalised and structural soundness. Our approach combines nicely with
reduction rules, as they all preserve relaxations. In particular, we have introduced
continuous soundness as an approximation of generalised soundness, and shown
that it coincides with other types of soundness for free-choice nets.

As part of future work, we plan to migrate our prototype into the process
mining framework ProM, to make the algorithms available to practitioners.
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Fig. 6. Time taken vs parameter c for checking structural quasi-soundness using the
reduction to reachability, and utilizing our approach to compute kN ,Q≥0

, for each of the
three families at the bottom of Figure 4: Nsound-c (left),N¬quasi-c (center), N¬sound-c

(right). Note that the axis ranges differ. Marks on the gray line at 120s denote timeouts.
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A Appendix

A.1 Missing proofs of Section 3

Lemma 1. Let m, m′ be continuous markings. It is the case that m −→∗
Q≥0

m′

iff there exists b ∈ N≥1 such that b ·m −→∗ b ·m′.

Proof. ⇐) Let b ·m −→π b ·m′. Let β := 1/b. Let us prove that m −→β·π m′. To

do so, we show that b ·m −→π[1:n] mn implies m −→π[1:n]
Q≥0

β ·mn. Let us proceed

by induction on n. Assume that

b ·m −→π[1:n] mn −→tn+1 mn+1 where tn+1 := π[n+ 1].

By induction hypothesis, we have m −→π[1:n]
Q≥0

β ·mn. Note that mn+1 = mn +

∆(tn+1). So, β ·mn + β ·∆(tn+1) = β ·mn+1. Thus, β · tn+1 has the right effect
to lead from mn to mn+1. It only remains to show that β · tn+1 is enabled at
mn. Note that tn+1 is enabled at mn, hence by definition, mn[p] ≥ •tn+1[p] for
all p ∈ P . It follows that β ·mn[p] > β · •tn+1[p], so β · tn+1 is enabled in mn.

⇒) Letm −→π
Q≥0

m′. Let β be the product of the scaling factors denominators

along π. Let us show that b ·m −→π′
b ·m′. We establish the following for all n:

if m −→π[1:n]
Q≥0

mn, then there exists π′
n such that b ·m −→π′

n b ·mn.

Assume this holds for some n. Let α · tn+1 = π[n]. We show the following:

if mn −→αtn+1

Q≥0
mn+1, then b ·mn −→(tn+1)

b·α
b ·mn+1.

First, let us argue that b · α is an integer. Note that by the fact that scaling
factors are chosen from (0, 1], it follows that α can be written as u/d for some
u, d ∈ N where d 6= 0. Further, note that b was chosen as the product of all
denominators of scaling factors along π. In particular, d is a factor of b, so we
have b = d · b′ for some b′ ∈ N, and thus b · α = d · b′ · u/d = b′ · u. Next,
let us argue that (tn+1)

b·α has the right effect to lead from b ·mn to b ·mn+1.
Note that mn+1 = mn + α · ∆(tn+1). So, b · mn+1 = b · mn + b · α∆(tn+1) =
b ·mn +∆((tn+1)

b·α). It remains to argue that (tn+1)
b·α is fireable from b ·mn.

By mn −→αtn+1

Q≥0
mn+1, it follows that mn[p] ≥ α•tn+1[p] for all p ∈ P . Since

b ∈ N, it is the case that b ·mn[p] ≥ b · α•tn+1[p], and hence we are done. ⊓⊔

Proposition 1. Let N = (P, T, F ) be a workflow net, and let D ∈ {N,Z,Q≥0}.
Let N ′ = (P ′, T ′, F ′) be a workflow net obtained by applying a reduction rule Ri

to N , where P = P ′ ∪ P ′′. The following holds.

– Rule R1. We have P ′′ = {p}. There exists a nonempty set R′ ⊆ P ′ such that
if {i : 1} −→∗

D m in N , then m[p] =
∑

r∈R′ m[r′]. Moreover, m −→∗
D n in N

iff π(m) −→∗
D π(n) in N ′.

– Rules R2 and R3. We have P ′′ = ∅ and m −→∗
D n in N iff m −→∗

D n in N ′.
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– Rules R4 and R5. We have P ′′ = {p}. For all m′ and n′, m′ −→∗
D n′ in

N ′ iff π0(m
′) −→∗

D π0(n
′) in N . Further, for all t ∈ T and p′ ∈ P ′: either

•t[p] = 1 implies •t[p′] = 0; or t•[p] = 1 implies t•[p′] = 0. Also, for D 6= Z,
if ∃m : {i : 1} −→∗

D m 6−→∗
D {f : 1} holds in N , then ∃m′ : {i : 1} −→∗

D m′ 6−→∗
D

{f : 1} holds in N ′.
– Rule R6. We have P ′′ = {p2, . . . , pk}. There exists p1 ∈ P ′ such that for all

n ∈ PD, if
∑k

i=1 m[pi] =
∑k

i=1 n[pi] and n[p′] = m[p′] for p′ ∈ P ′ \ {p1},
then m −→∗

D n. Moreover, if m[pi] = n[pi] = 0 for i > 1, then m −→∗
D n in

N iff π(m) −→∗
D π(n) in N ′.

Proof. We will informally present the rules by the properties they preserve. For a
formal definition of the rules, we refer to [11, Sect. 4.2]. Most arguments apply to
all D ∈ {N,Z,Q≥0} in the same way, thus usually we will not make a cumbersome
case analysis.

Rule R1 (place removal). This rule removes a place p ∈ P . Thus, P ′ = P \ {p}.
It is guaranteed that there exist places {g1, . . . , gn} ⊆ P ′ such that the number
of tokens in p is the sum of tokens in those places. Hence, it suffices to define
R′ := {g1, . . . , gn}.
Rules R2 (transition removal) and R3 (loop removal). For these rules, no place
is removed and the reachability relation is preserved.

Rules R4 (transition-place removal) and R5 (place-transition removal). These
rules remove a place p and its only input (for R4) or output (for R5) tran-
sition t. Transition t is merged with the output (for R4) or input (for R5)
transitions. Thus, intuitively, the new transitions in N ′ immediately consume
a token whenever it was put in p. This clearly proves that m′ −→∗

D n′ in N ′ iff
π0(m

′) −→∗
D π0(n

′) in N . Moreover, the requirements on when the rule can be
applied imply either •t[p] = 1 =⇒ •t[p′] = 0; or t•[p] = 1 =⇒ t•[p′] = 0.

It remains to prove the final part when D 6= Z. Suppose there exists m
such that {i : 1} −→∗

D m 6−→∗
D {f : 1} in N . Suppose first, that there exists n such

that m −→∗
D n and n[p] = 0. By the previous case, we have π(n) 6−→∗

D {f : 1}, as
otherwise we reach the contradictionm −→∗

D n −→∗
D {f : 1}. We define m′ := π(n).

In the second case, we can assume that for all n, m −→∗
D n implies n[p] > 0

(here we use D 6= Z). In particular, m[p] > 0. Let Tp := {t ∈ T | t•[p] = 1}. We
conclude from the additional constraints on R4 and R5 (see [11]). These imply
that in our case for every t ∈ Tp and for all r ∈ P :

1. if r 6= p, then t•[r] = 0;
2. if •t[r] = 1 and t′ 6= t, then •t′[r] = 0.

Let ρ be the run witnessing {i : 1} −→∗
D m. Let ρ′ be the subrun of transitions in

Tp that occur in ρ (it is nonempty since m[p] > 0). By Item 1 we can remove
(or downscale if D = Q≥0) a suffix of m[p] transitions in ρ′ (because it removes
tokens only from p). We obtain a markingm1 such that: m1[p] = 0; the tokens in
m1[r] for all removed t ∈ Tp such that •t[r] = 1 have increased accordingly; and
m1[p

′] = m[p] otherwise. We claim that m′ = π(m1) satisfies the proposition.
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Indeed, if there is a run π(m1) −→∗
D {f : 1} in N ′ then by Item 2 we can extract

from this a run m −→∗
D {f : 1} in N , which would be a contradiction.

R6 (ring removal). This rule merges a set of places {p1, . . . , pk} ⊆ P into a single
place p1

8. Thus, P ′ = P \{p2, . . . , pk}. The conditions are that the tokens can be
transferred arbitrarily between the places p1, . . . , pk, which is enough to prove
the proposition. ⊓⊔

A.2 Missing proofs of Section 4

Proposition 3. The reduction rules from [11] preserve integer unboundedness.

Proof. We will need to invoke Proposition 4 which is stated after Proposition 3
in the main text. Note that this ordering is simply for the sake of presentation,
there is no circular dependency, the proof of Proposition 4 is self-contained.

By Proposition 4, being integer unbounded is equivalent to the existence of
v > 0 such that 0 −→∗

Z v. Let N and N ′ be the workflow nets before and after
the reduction. We invoke Proposition 1 depending on the applied reduction rule,
and show that N is integer unbounded iff N ′ is integer unbounded.

– Rule R1. Suppose 0 −→∗
Z v > 0 in N . We have π(v) > 0, since v[p] =∑

r∈R′ v[r]. Thus, π(v)[r] > 0 for at least one r ∈ R′. The converse implica-
tion is trivial.

– Rules R2 and R3. This is trivial because −→∗
Z is preserved.

– Rules R4 and R5. We have m′ −→∗
Z n′ in N ′ iff π0(m

′) −→∗
Z π0(n

′) in N .
Thus, if 0 −→∗

Z v′ > 0 in N ′, then 0 −→∗
Z π0(v

′) > 0 in N . Conversely,
suppose that 0 −→ρ

Z v > 0 in N . If v[p] = 0, then we are done. Otherwise,
by Proposition 1 for all t ∈ T and p′ ∈ P ′: either •t[p] = 1 =⇒ •t[p′] = 0;
or t•[p] = 1 =⇒ t•[p′] = 0. Let us assume the former and let Tp := {t ∈ T |
•t[p] = 1}. By removing v[p] transitions from Tp in ρ, we get 0 −→∗

Z v′ > 0
and v′[p] = 0. Thus, 0 −→∗

Z π(v
′) > 0 in N ′ as required. In the latter case, we

proceed similarly, but one need to add some transitions to ρ that will move
the tokens from p to other places.

– Rule R6. In this case, if m[pi] = n[pi] = 0 for i > 1, then m −→∗
Z n in N iff

π(m) −→∗
Z π(n) in N ′. Thus, 0 −→∗

Z v′ > 0 in N ′ clearly implies 0 −→∗
Z v > 0

in N . Conversely, if 0 −→∗
Z v > 0 in N , then we know that v −→∗

Z v1 where

v1[p1] =
∑k

i=1 v1[pi] and v1[pi] = 0 for i > 1. So, 0 −→∗
Z π(v1) > 0 in N ′. ⊓⊔

Proposition 5. A marked Petri net (N ,m), where N = (P, T, F ), is integer
unbounded iff this system has a solution: ∃x ∈ QT

≥0 :
∑

t∈T x[t] · ∆(t) > 0. In
particular, given a workflow net N , testing integer boundedness of (N , {i : 1})
can be done in polynomial time.

Proof. Let N = (P, F, T ) be a Petri net. By Proposition 4, (N ,m) is integer
bounded iff there exists m′ > 0 such that 0 −→∗

Z m′. The latter amounts to the

8 In [11], p1 is also removed and a new place p is added, but this is trivially equivalent.
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existence of π ∈ T ∗ such that ∆(π) > 0. So, this is equivalent to this system:
∃x ∈ NT :

∑
t∈T x[t] ·∆(t) > 0. It is readily seen that this system is equivalent

to the one where x ∈ QT
≥0. Indeed, by homogeneity (0 on the right-hand side),

a rational solution can be scaled so that it becomes an integral solution.
The polynomial time decidability of integer boundedness follows immediately

from the fact that linear programming can be solved in polynomial time (e.g.,
see [34]). ⊓⊔

Proposition 6. The reduction rules from [11] preserve continuous soundness.

Proof. Let N and N ′ be the workflow nets before and after the reduction. We
invoke Proposition 1 depending on the applied reduction rule and show that N
is continuous sound iff N ′ is continuous sound.

– Rule R1. Suppose {i : 1} −→∗
Q≥0

m′ 6−→∗
Q≥0

{f : 1} in N ′. Let m be such that

π(m) = m′ and m[p] =
∑

r∈R′ m[r′]. Then {i : 1} −→∗
Q≥0

m and m −→∗
Q≥0

{f : 1} would imply m′ −→∗
Q≥0

{f : 1}, which is a contradiction. The converse

implication is trivial.
– Rules R2 and R3. This is trivial because −→∗

Q≥0
is preserved.

– Rules R4 and R5. Suppose {i : 1} −→∗
Q≥0

m′ 6−→∗
Q≥0

{f : 1} in N ′. We have

{i : 1} −→∗
Q≥0

π0(m
′). If π0(m′) −→∗

Q≥0
{f : 1} in N then, since {f : 1}[p] =

0, we obtain m′ −→∗
Q≥0

{f : 1} in N ′, which is a contradiction. The other

implication is explicitly written in Proposition 1.
– Rule R6. Suppose {i : 1} −→∗

Q≥0
m 6−→∗

Q≥0
{f : 1} in N . We have m −→∗

Z m1

wherem1[p1] =
∑k

i=1 v1[pi] andm1[pi] = 0 for i > 1. If π(m1) −→∗
Q≥0

{f : 1},
then m1 −→∗

Q≥0
{f : 1}, which is a contradiction. The other implication is

trivial. ⊓⊔

Theorem 2. Continuous soundness is coNP-complete. Moreover, coNP-hardness
holds even if the underlying graph of the given workflow net is acyclic.

Proof (of coNP-hardness). Recall that, in the main text, we have defined a
workflow net Nϕ from a formula in DNF, and claimed that Nϕ is continuously
sound iff ϕ is a tautology. It remains to show the implication from right to left.

⇒) Suppose ϕ is a tautology. Let us first make an observation. Consider some
sequence b1, . . . , bm ∈ {0, 1}, and the marking m = {pi,bi : 1 | i ∈ [1..m]}. Since
ϕ is a tautology, there exists a clause Cj that satisfies the assignment xi := bi.
Let i1, . . . , iℓ be the indices of variables not occurring in Cj . It is easy to see that

{i : i} −→tinitv1,b1 ···vm,bm m −→cjvi1,bi1
···viℓ,biℓ {ri : 1 | i ∈ [1..m]} −→tfin {f : 1}.

By [20, Lemma 12(1)], we rescale the continuous run, i.e. for all α ∈ (0, 1]:

{i : α} −→∗
Q≥0

αm −→∗
Q≥0

m∑

i=1

{ri : α} −→∗
Q≥0

{f : α}. (1)
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Let us establish some invariants. Let Ai := {i, pi,?, pi,1, pi,0, ri, f} and Bi :=
{i, pcl, qi, ri, f}. First, for all transition t ∈ T and all index i ∈ [1..m], we have

∑

p∈Ai

•t[p] =
∑

Ai

t•[p], and
∑

p∈Bi

•t[p] =
∑

p∈Bi

t•[p].

We say that a marking n is reachable if {i : 1} −→∗
Q≥0

n. From the above invari-

ants, it follows that every reachable marking n satisfies

∑

p∈Ai

n[p] = 1 and
∑

p∈Bi

n[p] = 1. (2)

Note that, from Equation (2), every reachable marking n satisfies

n[pi,?] + n[pi,1] + n[pi,0] = n[pcl] + n[qi]. (3)

We further have this remaining invariant for all t ∈ T and i, j ∈ [1..m]:

•t[qi] +
•t[ri] + t•[qi] + t•[ri] =

•t[qj ] +
•t[rj ] + t•[qj ] + t•[rj ].

Since all places qi and ri are empty in {i : 1}, every reachable marking n satisfies:

n[qi] + n[ri] = n[qj ] + n[rj ]. (4)

We are ready to prove continuous soundness. Let n be a reachable marking.
By Equation (1), we can assume w.l.o.g. that n[i] = 0, as we can move α remain-
ing token to f. Similarly, we can assume w.l.o.g. that n[pi,?] = 0 for all i ∈ [1..m]
as otherwise we can fire transition vi,1 or vi,0 properly scaled (the choice is irrele-
vant). Consequently, by Equation (3), we have n[pi,1]+n[pi,0] ≥ n[qi]. Therefore,
by firing transitions vi,0 and vi,1, scaled appropriately, we obtain n −→∗

Q≥0
n′ with

n′[qi] = 0 for all i ∈ [1..m]. By Equation (4), n′[ri] = n′[rj ] for all i, j ∈ [1..m].
Hence, by firing tfin scaled by n′[r1], we get n′ −→∗

Q≥0
n′′ where n′′ has zero

token in each place, except possibly places P ′
var := {pi,b | i ∈ [1..m], b ∈ {0, 1}},

place pcl and place f.
Let us explain how to empty P ′

var ∪ {pcl}, if this is not already the case. For
each i ∈ [1..m], among places pi,1 and pi,0, we write pi,max and pi,min so that
n′′[pi,max] ≥ n′′[pi,min] (if they are equal, then the choice is not important). Let
S := {pi,min | i ∈ [1..m],n′′[pi,min] > 0}. We consider two cases.

Case 1: S = ∅. By the left part of Equation (2), and by Equation (3), the
following holds for all i, j ∈ [1..m]:

n′′[pi,1] + n′′[pi,0] = n′′[pj,1] + n′′[pj,0] = n′′[pcl]. (5)

Thus, there exist α ∈ (0, 1] and b1, . . . , bm ∈ {0, 1} such that n′′[pcl] = n′′[pi,bi ] =
α and n′′[pi,¬bi ] = 0 for all i ∈ [1..m]. Since ϕ is a tautology, we can fire some
transition cj scaled by α, which empties place pcl, and consequently P ′

var as well
by Equation (5).
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Case 2: S 6= ∅. Let i ∈ [1..m] be such that n′′[pi,min] > 0 is minimal, and let
α := n′′[pi,min]. Let n′′′ := {pcl : α, pi,min : α} + {pj,max : α | j 6= i}. Note that
n′′′ ≤ n′′. We can apply Equation (1) and obtain

n′′ = (n′′ − n′′′) + n′′′ −→∗
Q≥0

(n′′ − n′′′) + {f : α}.

Performing this operation decreases the size of S. Hence, it can be repeated at
most m times until S becomes empty, which has been handled in case 1. ⊓⊔

A.3 Missing proofs of Section 5

Proposition 10. Let N be a workflow net. It is the case that kN ,Z ≤ kN ,Q≥0
≤

kN . Moreover, kN ,Z can be computed from an integer linear program P; kN ,Q≥0

can be obtained by computing min k ∈ N≥1 : ϕ(k) where ϕ is a formula from the
existential fragment of mixed linear arithmetic ϕ, i.e. ∃FO(Q,Z, <,+); and both
P and ϕ are constructible in polynomial time from N .

Proof. LetN = (P, T, F ) be a workflow net. Let us first establish kN ,Z ≤ kN ,Q≥0
.

Let π = λ1t1 · · ·λntn be a continuous run such that {i : k} −→π
Q≥0

{f : k} and

π ∈ NT . In particular, we have

{f : k} = {i : k}+
∑

i∈[1..n]

λi ·∆(ti)

= {i : k}+
∑

t∈T

∑

i∈[1..n]:ti=t

λi ·∆(t)

= {i : k}+
∑

t∈T

π[t] ·∆(t).

As π ∈ NT , we obtain {i : k} −→π
Z {f : k}. Consequently, kN ,Z ≤ kN ,Q≥0

.
The inequality kN ,Q≥0

≤ kN follows immediately from the fact that {i : k} −→π

{f : k} implies {i : k} −→π
Q≥0

{f : k} (with all scaling factors set to 1).

It remains to argue that kN ,Z and kN ,Q≥0
can be obtained as described. By

definition of integer reachability, kN ,Z is the value obtained from this program:

min k subject to k ∈ N≥1,x ∈ NT and {i : k}+
∑

t∈T

x[t] ·∆(t) = {f : k}.

For kN ,Q≥0
, we use the fact that there is polynomial-time constructible formula

ψN from existential linear arithmetic such that ψ(m,m′,x) holds iff there is a
continuous run π that satisfies m −→π

Q≥0
m′ and x = π [8]. So, it suffices to take

ϕ(k) := ∃x ∈ NT : ψ({i : k}, {f : k},x). ⊓⊔

A.4 Missing proofs of Section 6

Recall the following unproven lemma from the main text.
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Lemma 2. Let N = (P, T, F ) be a free-choice Petri net, let c ∈ N≥1, and let
m ∈ NP . The following statements hold.

1. There exists a marking m′ such that m −→∗ m′ and L(m′) = F (m′).
2. If L(m) = F (m), then L(c ·m) = F (c ·m) = F (m).
3. If L(c · m) = F (c · m), c · m −→∗ {f : c} and (N , c · m) is bounded, then

m = {f : 1}.
For the sake of readability, we prove each item of Lemma 2 as its own lemma.

Lemma 4. Let N = (P, T, F ) be a free-choice Petri net, and let m ∈ NP . It is
the case that m −→∗ m′ for some marking m′ such that L(m′) = F (m′).

Proof. If F (m) = L(m) holds, then we are done by taking m′ := m. Otherwise,
let t ∈ F (m)\L(m). Since t is not live in (N ,m), there exists a markingm′ ∈ NP

that satisfies m −→∗ m′ and t /∈ F (m′). Therefore, we have F (m′) ⊆ F (m)\{t}.
This means that |F (m′)| < |F (m). Since L(m′) ⊆ F (m′), we can repeat this
argument (up to |T | times) until obtaining L(m′) = F (m′). ⊓⊔

For a run σ, let us define σ : T → N, where for each t ∈ T , σ[t] is the number
of times t occurs in σ.

Lemma 5. Let N be a free-choice workflow net, let c ∈ N≥1, and let m ∈ NP

be such that L(m) = F (m). It is the case that L(c ·m) = F (c ·m) = F (m).

Proof. We first show that F (c ·m) = F (m), and then that L(c ·m) = F (c ·m).
We trivially have F (c ·m) ⊇ F (m). For the sake of contradiction, suppose

there exists a transition t ∈ F (c ·m) such that t /∈ F (m). Let σ1 be a run such
that c · m −→σ1t. Without loss of generality, we may assume that σ1 ⊆ F (m).
Indeed, if there is some t′ ∈ σ1 such that t′ /∈ F (m), then we can shorten σ1
and take the shortened run which enables t′ instead.

Let σ1 = t1t2 · · · tn. Recall that ti ∈ L(m) = F (m) for each ti, that is,
from any marking reachable from m, we can reach a marking that enables ti.
Therefore, we can define a run σ2 := φ1t1φ2t2 · · ·φntn, where φi is a run from
m+∆(φ1t1 · · ·φi−1ti−1) that enables ti.

If there exists a transition s in the run σ2 such that supp(•s)∩ supp(•t) 6= ∅,
then •s = •t as N is free-choice. Hence, since s ∈ F (m), we obtain t ∈ F (m),
which is a contradiction. Thus no transition in σ2 can consume tokens from
places in supp(•t). Since c ·m −→σ1t, we know that

supp(•t) ⊆ supp(c ·m) ∪
n⋃

i=1

supp(t•i ) = supp(m) ∪
n⋃

i=1

supp(t•i ).

Altogether, this means that the transitions ti put enough tokens such that all
places in supp(•t) are marked, and that σ2 cannot consume any of these tokens.
Therefore, m −→σ2t, which is a contradiction.

It remains to prove that L(c ·m) = F (c ·m). We have L(m) ⊆ L(c ·m) ⊆
F (c ·m). Since L(m) = F (m) = F (c ·m), these inclusions are in fact equalities,
and we are done. ⊓⊔
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Lemma 6. Let N = (P, F, T ) be a free-choice workflow net, let c ∈ N≥1 and let
m ∈ NP be such that L(c ·m) = F (c ·m). If c ·m −→∗ {f : c} and (N , c ·m) is
bounded, then m = {f : 1}.

Proof. Recall that no transition of a workflow net consumes from f, i.e. •t[f] = 0
for all t ∈ T . Thus, we either have m[f] = 0 or m[f] = 1.

If m[f] = 0, then there is some transition t ∈ F (c ·m) such that f ∈ t•[f] > 0.
Since t ∈ L(c·m), it follows that from c·m, we can reachm′ withm′[f] abritrarily
large, as t puts a token into f and can be fired arbitrarily often from c ·m. This
contradicts the fact that (N , c·m) is bounded. Hence, m[f] = 1. We can write m
as m = {f : 1}+m′ where m′[f] = 0. We have c ·m = {f : c}+ c ·m′. If m′ = 0,
then we are done. Otherwise, we obtain a contradiction. Indeed, it cannot be
the case that {f : c} + c · m′ −→∗ {f : c}, as every transition of a workflow net
produces at least one token (and none consumes from f). ⊓⊔

Lemma 3. Let N be a workflow net. If N is continuously sound, then (N , {i : k})
is bounded for all k ∈ N≥1.

Proof. Assume for contradiction that there exists k ∈ N≥1 such that (N , {i : k})
is unbounded, but N is continuously sound. There exist markingm and m′ >m
such that {i : k} −→∗ m −→∗ m′. By Lemma 1, we have {i : 1} −→∗

Q≥0
n −→∗

Q≥0
n′,

where n := (1/k) ·m and n′ := (1/k) ·m′. As N is continuously sound, it must
hold that n −→∗

Q≥0
{f : 1}. It follows that

n′ = n+ (n′ − n) −→∗
Q≥0

{f : 1}+ (n′ − n).

This contradicts the assumption that N is continuously sound, as each transition
of a workflow net produces at least one token, and none consumes from f. ⊓⊔

A.5 Missing definition of the arc weight encoding of Section 7

Recall that under our definition, Petri nets do not have arc weights as F : ((P ×
T ) ∪ (T × P )) → {0, 1}. Petri nets with arc weights are defined exactly as Petri
nets but with F : ((P×T )∪(T×P )) → N. An example of the arc weight encoding
described in the main text is shown in Figure 7.

In this section, we will use t−1 to denote the reverse transition of transition
t, as done in the coNP membership proof of Theorem 2.

Formally, to simulate a transition t, we add places Pp,t and transitions Tp,t
for each place p with b := •t[p] > 1, and places P ′

p,t and transitions T ′
p,t for each

place p with b′ := t•[p] > 1.
From now on, when we define a transition t, we assume that •t[p′] = 0

and t•[p′] = 0 for each place p′ except those given explicitly. We define Pp,t

as follows. We denote by b1, b2, . . . , bn the binary representation of b, that is,
b =

∑n
i=1 bi · 2i−1, and similarly b′1, b

′
2, . . . , b

′
n′ for b′. The set Pp,t consists of

2n − 1 places. For every i ∈ [1..n − 1], we add two places li and ri; and an
additional place rn. The set Tp,t contains the following transitions:
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Fig. 7. Top left (in blue): A Petri net N with arc weights. Center: A Petri net Nenc

without arc weights that simulates behaviour of N . For each transition colored in red,
the reverse transition is also part ofNenc, and is merely not drawn to avoid overcrowding
the figure. For ease of presentation, places and transitions of Nenc contain their names
(not values).

– tp, where
•tp[p] = t•p[l1] := 1;

– tr, as well as its reverse t
−1
r , where •tr[l1] = t•r [r1] := 1;

– for each i ∈ [2..n − 1] the transitions ti,l, ti,r and their reverses t−1
i,l , t

−1
i,r ,

where •ti,l[ri−1] =
•ti,l[li−1] := 1, •ti,r = •ti,l, and t•i,l[li] = t•i,r[ri] := 1,

– the transition tn,r and its reverse t−1
n,r, where

•tn,r[ln−1] =
•tn,r[rn−1] := 1

and t•n,r[rn] := 1.

We further redefine t to have •t[p] := 0 and •t[ri] := 1 for all i such that bi = 1.
The set P ′

p,t consists of 2n
′−1 places. We have di and hi for each i ∈ [1..n′−1],

and an additional place d′n. The set T ′
p,t contains the following transitions:

– tp, where
•tp[h1] = t•p[p] := 1,

– t1,h, where
•t1,h[d1] = t•1,h[h1] := 1,

– for each i ∈ [2..n−1], the transitions ti,d and ti,h, where
•ti,d[di] = •ti,h[hi] :=

1, t•i,d[di−1] = t•i,d[hi−1] := 1, and t•i,h := t•i,d.

We further redefine t to have t•[p] := 0 and t•[di] := 1 for each i such that b′i = 1.
Given a Petri net N = (P, T, F ), let us denote by Nenc = (P ′, T ′, F ′) the

transformed N where all transitions with arc weights are modified by the gadget
defined above. To avoid any confusion, we denote markings in N as m and m′,
and markings in Nenc as n and n′. As Nenc does not remove (but only adds)
places, we may treat markings on N as markings on Nenc, where all places in
P ′ \ P are marked with zero token.

Recall that σ is a vector mapping each transition t to the number of times t
is used in run σ. In the following, let p ∈ P and t ∈ T be such that •t[p] = b ≥ 1.
Let b1, . . . , bn be the binary representation of b. Furthermore, let Pp,t and Tp,t
be defined as above.

We are ready to state some helpful lemmas.

Lemma 7. Let i ∈ [1..n]. We have {p : 2i−1} −→σ {ri : 1} in Nenc with supp(σ) ⊆
Tp,t. Further, if i < n, then {p : 2i−1} −→σ′ {li : 1} in Nenc with supp(σ′) ⊆ Tp,t.
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Proof. We proceed by induction. For i = 1, we have

{p : 21−1} = {p : 1} −→tp {l1 : 1} −→tr {r1 : 1}.

For i > 1, we have {p : 2i−1} = {p : 2i−2 +2i−2} −→∗ {ri−1 : 1, li−1 : 1} by the
induction hypothesis. Thus, we have {ri−1 : 1, li−1 : 1} −→ti,r {ri : 1}. If i < n,
then we additionally have {ri−1 : 1, li−1 : 1} −→ti,l {li : 1}. We conclude the proof
by pointing out that for all i, tp, tr, ti,r, ti,l ∈ Tp,t. ⊓⊔

The proof of the lemma below follows by the fact that all transitions of Tp,t
are reversible.

Lemma 8. Let i ∈ [1..n]. We have {ri : 1} −→σ {p : 2i−1} in Nenc with supp(σ) ⊆
Tp,t. Further, if i < n, then {li : 1} −→σ′ {p : 2i−1} in Nenc with supp(σ′) ⊆ Tp,t.

For the next lemma, let p ∈ P and t ∈ T be such that t•[p] = b ≥ 1. Let
b1, . . . , bn be the binary representation of b. Let P ′

p,t and T
′
p,t be as defined above.

Lemma 9. Let i ∈ [1..m]. We have {di : 1} −→σ {p : 2i−1} in Nenc with supp(σ) ⊆
T ′
p,t. Further, if i < n, then {hi : 1} −→σ′ {p : 2i−1} in Nenc with supp(σ′) ⊆ T ′

p,t.

Proof. We proceed by induction on i. If i = 1, then we have 2i−1 = 1 and hence
{d1 : 1} −→th {h1 : 1} −→tp {p : 1}.

For i > 1, we have {di : 1} −→ti,d {di−1 : 1, hi−1 : 1}. If i < n, then we ad-
ditionally have {hi : 1} −→ti,h {di−1 : 1, hi−1 : 1}. It follows from the induction
hypothesis that {di−1 : 1, hi−1 : 1} −→σσ′ {p : 2i−2 + 2i−2} = {p : 2i−1}. We con-
clude by pointing out that, for all i, we have tp, th, ti,d, ti,h ∈ T ′

p,t. ⊓⊔

Definition 1. Let U ⊆ T . A vector x : P → Q is a place invariant over U if
the following holds for all t ∈ U :

∑

p∈P

•t[p] · x[p] =
∑

p∈P

t•[p] · x[p]. (6)

Proposition 11 (adapted from [16, Prop. 2.27]). Let U ⊆ T and let x be
a place invariant over U . If m −→σ m′ with supp(σ) ⊆ U , then x ·m = x ·m′.

Let us define the vector Ip,t with Ip,t[p] := 1, Ip,t[ri] := 2i−1 and Ip,t[li] :=
2i−1, where ri and li are the places previously defined in Pp,t. It is easy to see
that Ip,t is a place invariant of Tp,t.

Let R := {t ∈ T | •t[p] ≥ 2} and S := {t ∈ T | t•[p] ≥ 2}. We further define
the vector Ip : {p} ∪

⋃
t∈R Pp,t ∪

⋃
t∈S P

′
p,t → Q, where Pp,t = ∅ if •t[p] ≤ 1 and

P ′
p,t = ∅ if t•[p] ≤ 1. We define Ip[p] := 1 and Ip[p

′] := 2i−1 if p′ ∈ {ri, li, di, hi}
for some i. Note that this is well-defined by our choice of domain of Ip. It is easy
to convince oneself that Ip is a place invariant of T ′ \ T .

We introduce some notation. For a transition t ∈ T , let G := {p ∈ P | •t[p] ≥
2} and H := {p ∈ P | t•[p] ≥ 2}. For a place p ∈ G, we write b(p) := •t[p]. For
i ∈ N, we write n(i) to denote the number of bits in the binary representation of
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i. Let b1(p), . . . , bn(b(p))(p) denote the bits of the binary representation of b(p).
Let ri(p) denote the place ri in Pp,t. Similarly, given p ∈ H , we write c(p) := t•[p],
we let c1(p), . . . , cn(c(p))(p) be the bits of the binary representation of c(p), and
we further write di(p) to denote the place di of P

′
p,t. In the following, we denote

by t the transition in N , and by t′ the corresponding transition in Nenc.

Lemma 10. Let t ∈ T and let m,m′ be markings of N with m′ = m+∆(t). It
holds that m −→t m′ in N iff m −→πt′π′

m′ in Nenc, where supp(π) ⊆ ⋃
p∈G Tp,t

and supp(π′) ⊆ ⋃
p∈H T ′

p,t.

Proof. ⇒) By definition of Nenc, m[p] ≥ •t′[p] for all p ∈ P \ G. By definition
of Nenc, it holds that

•t′[ri(p)] = bi(p) for all i ∈ [1..n(b(p))]. Note that m[p] ≥
b(p) =

∑n(b(p))
i=1 2i−1 · bi(p). Thus, it follows from Lemma 7 that {p : b(p)} −→σ

∑n(b(p))
i=1 {ri(p) : bi(p)}. So, in particular,

m[p] −→σ m− {p : b(p)}+
n(b(p))∑

i=1

{ri(p) : bi(p)}.

Since the transitions in σ do not have an effect on places other than Pp,t∪{p},
we can invoke Lemma 7 individually for each p ∈ G, and thus obtain

m −→σ1···σ|G| m+
∑

p∈G

n(b(p))∑

i=1

{ri(p) : bi(p)} − {p : b(p)},

where supp(σ1), . . . , supp(σ|G|) ⊆
⋃

p∈G Tp,t. By definition, t′ is enabled in this
marking and its firing leads to

m−
∑

p∈G

{p : b(p)}−
∑

p∈P\G
{p : •t[p]}+

∑

p∈P\H
{p : t•[p]}+

∑

p∈H

n(c(p))∑

i=1

{di(p) : ci(p)}

= m− •t+
∑

p∈P\H
{p : t•[p]}+

∑

p∈H

n(c(p))∑

i=1

{di(p) : ci(p)}.

Let us denote the latter marking as m′. By invoking Lemma 9 individually on
each di(p), it follows that for each p ∈ H :

m′ −→σ′
1···σ′

|H| m− •t+
∑

p∈P\H
{p : t•[p]}+

∑

p∈H

n(c(p))∑

i=1

{p : 2i−1ci(p)} =

m− •t+
∑

p∈P\H
{p : t•[p]}+

∑

p∈H

{p : t•[p]} =

m− •t+ t• = m+∆(t).

We conclude this direction by noting that supp(σ1), . . . , supp(σ|H|) ⊆
⋃

p∈H T ′
p,t

by Lemma 9.
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⇐) We have m −→σt′σ′
m′. Let us denote by m1 the marking such that

m −→σ m1. It must be the case that

m1 ≥ •t′ =
∑

p∈P\G

•t[m] +
∑

p∈G

∑

i∈n(b(p))

{ri(p) : bi(p)}.

Recall that for each p ∈ G, Ip,t is a place invariant of Tp,t. In particular, among
transitions from T ′\T , places in {p}∪Pp,t are only affected by transitions in Tp,t.
So, Ip,t ·m = Ip,t ·m1 by Proposition 11. Since m1 ≥ ∑

i∈n(b(p)){ri(p) : bi(p)}, we
have Ip,t ·m1 ≥ ∑

i∈n(b(p)) 2
i−1bi(p). Thus, the same must hold for Ip,t ·m. But

among places in {p}∪Pp,t, m marks only p, as it is (by projection) a marking of
N . Since Ip,t[p] = 1, it must hold that m[p] ≥ ∑

i∈n(b(p)) 2
i−1bi(p) = b(p), where

the last equality follows from the fact that b1(p), . . . , bn(b(p))(p) is the binary
representation of b(p). So, m[p] ≥ •t[p] holds by definition of b(p). Therefore, m
enables t, and consequently m −→t m+∆(t) = m′, and we are done. ⊓⊔

Lemma 11. Let m,m′ be markings of N . If m −→σ m′ in Nenc and supp(σ) ⊆
T ′ \ T , then m = m′.

Proof. We argue for each place p ∈ P individually that m[p] = m′[p].
Recall that Ip is a place invariant over T ′ \ T . Therefore, Ip · m = Ip · m′

by Proposition 11. Note also that in the domain of Ip, the only place in P is p.
Since m and m′ are markings of N , and consequently all places in the domain
of Ip other than p must be unmarked, it follows that Ip[p] ·m[p] = Ip[p] ·m′[p].
Thus, m[p] = m′[p]. ⊓⊔

Lemma 12. Let m,m′ be markings of N . If m −→∗ m′ in Nenc, then m −→∗ m′

in N .

Proof. Let m −→π m′. If supp(π) ⊆ T ′ \ T , then m = m′ by Lemma 11, and
we are done. So, assume that t ∈ T for some t ∈ π. We factor run π so that
π = σ1t1σ

′
1 · · ·σntnσ′

n with t1, . . . , tn ∈ T and

supp(σ1), supp(σ
′
1), . . . , supp(σn), supp(σ

′
n) ⊆ T \ T ′.

It follows from Lemma 10 that {i : 1} −→t1···tn {f : k}. ⊓⊔

Proposition 12. For any workflow net N and any k ∈ N≥1, N is k-quasi-sound
iff Nenc is k-quasi-sound.

Proof. This follows immediately from Lemmas 10 and 12. ⊓⊔

Proposition 13. For any workflow net N and any k ∈ N≥1, N is k-sound iff
Nenc is k-sound.

Proof. ⇒) AssumeN is k-sound. Letm be a marking ofNenc such that {i : k} −→∗

m in Nenc. If m is also a marking of N , then {i : k} −→∗ m in N by Lemma 12.
Thus, m −→∗ {f : k} in N by k-soundness, and m −→∗ {f : k} in Nenc by
Lemma 10. If m is not a marking on N , then, for each place p ∈ P ′ \ P ,
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we can invoke Lemmas 8 and 9 in order to obtain a marking m′ which marks
only places in P . So, we have {i : k} −→∗ m −→∗ m′ in Nenc, and it follows by
Lemma 12 that {i : k} −→∗ m′ in N . Thus, m′ −→∗ {f : k} in N by k-soundness,
and m′ −→∗ {f : k} in Nenc by Lemma 10, which shows that Nenc is k-sound.

⇐) AssumeNenc is k-sound. Letm be a marking ofN such that {i : k} −→∗ m
in N . If follows from Lemma 10 that {i : k} −→∗ m in Nenc. By k-soundness of
Nenc, we have m −→∗ {f : k} in Nenc. Thus, m −→∗ {f : k} in N by Lemma 12. ⊓⊔

A.6 Missing proofs of Section 7

Let us prove the properties claimed about the instances of Figure 4.

Proposition 14. It is the case that

1. Nc is c-unsound and k-sound for all k ∈ [1..c− 1].
2. Nsound-c is kc-sound for all k ∈ N≥1,
3. N¬quasi-c is not structurally quasi-sound, and
4. N¬sound-c is (mc)-quasi-sound for all m ∈ N≥1, not k-quasi-sound for any

other number k ∈ N≥1, and not structurally sound.

Proof. Items 2 and 3. They follow from the definitions of the unique transition.

Item 1. We first focus on k-soundness. Let k ∈ [1..c− 1] and let m be a marking
such that {i : k} −→∗ m. We must show that m −→∗ {f : k}.

Recall the definition of a place invariant from Definition 1.
Let x[i] := c+ 1, x[p] := 1, x[r] := c and x[f] := c+ 1. It is readily seen that

x is a place invariant. Recall Proposition 11: for any two markings n and n′, if
n −→∗ n′, then x ·n = x ·n′. Since {i : k} −→∗ m, we have x · {i : k} = (c+1) ·k =
x ·m.

From markingm, transition ti can be firedm[i] times, which leads to marking

m1 := {p : m[p] + (c+ 1) ·m[i], r : m[r], f : m[f]}.
From m1, transition tr can be fired m1[i]÷ c times, which leads to marking

m2 := {p : m1[p] mod c, r : m1[r] +m1[p]÷ c, f : m1[f]}.
Recall that from place invariant x, we have

(c+ 1) · k = (c+ 1) ·m[i] +m[p] + c ·m[r] + (c+ 1) ·m[f].

By reorganizing this equation, we obtain

m[p] +m[i] = (c+ 1)(k −m[f])− c · (m[i] +m[r]). (7)

This means that

m2[p] = m1[p] mod c (by def. of m2)

= (m[p] + (c+ 1) ·m[i]) mod c (by def. of m1)

= (m[p] +m[i]) mod c

= k −m[f] (by (7)). (8)
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Since {i : k} −→∗ m2, from place invariant x, we obtain

(c+ 1) · k = (c+ 1) ·m2[i] +m2[p] + c ·m2[r] + (c+ 1) ·m2[f].

By reorganizing this equation, we obtain

c ·m2[r] = (c+ 1) · (k −m2[i]−m2[f])−m2[p]. (9)

This means that

c ·m2[r] = (c+ 1) · (k −m2[i]−m2[f])−m2[p] (by (9))

= (c+ 1) · (k −m1[f])− (k −m[f]) (by def. of m2 and (8))

= (c+ 1) · (k −m[f])− (k −m[f]) (by def. of m1)

= c · (k −m[f]).

Altogether, we have m2[r] = (k−m[f]) = m2[p]. Thus, from m2, transition
tf can be fired k −m[f] times, which leads to marking

{f : m1[f] + (k −m[f])} = {f : m[f] + k −m[f]} = {f : k}.
This concludes the proof of k-soundness as m −→∗ m1 −→∗ m2 −→∗ {f : k}.

It remains to consider the case where k = c. We have

{i : c} −→tci {p : (c+ 1) · c} −→tc+1
r {r : (c+ 1)}.

No transition is enabled in the latter marking. So, we have {r : (c+1)} 6−→∗ {f : c}
and hence c-unsoundness follows. We are done proving this item.

Item 4. Let k ∈ N≥1 be a number that is not a multiple of c. Let us first show
that {i : k} 6−→∗ {f : k}. For the sake of contradiction, assume there exists a run
ρ such that {i : k} −→ρ {f : k}. Note that ρ needs to fire ti exactly k times, since
no other transition consumes from i. Without loss of generality, let us reorder ρ
into a run ρ′ such that any firing of ti happens at the beginning. Let us write

ρ′ = tki σ, where σ does not contain ti. We have that {i : 1} −→tki {u : k, d : k}.
The only transition consuming from u is tu. Since k is not a multiple of c,
and since tu consumes c tokens from u, place u can never be emptied. Thus
{u : k, d : k} 6−→∗ {f : 1}.

Next, let us show that {i : mc} −→∗ {f : mc} for any m ∈ N≥1. It follows from

{i : mc} −→tmc
i {u : mc, d : mc} −→t

m(c−1)
d {u : mc, d : m, f : m(c− 1)}

−→tmu {f : mc}.
Finally, we show that N¬sound is not structurally sound. It suffices to show

that it is mc-unsound for all m ∈ N≥1. Note that

{i : mc} −→tmc
i {u : mc, d : mc} −→tmu {d : (m− 1)c, f : m}

−→t
((m−1)c)−1
d {d : 1, f : mc− 1}.

No transition is enabled in the latter marking, so mc-unsoundness follows. ⊓⊔
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Summary We propose the novel model of continuous one-counter automata
(COCA). These are automata with one counter where the effects of a transition
that is fired can be non-deterministically scaled down by a nonzero factor between
zero and one. Further, states are guarded by upper and lower bounds on the counter
value. We additionally propose two variants of the model. Globally-guarded COCA
(GG-COCA) have the same upper and lower bound on each state, while paramet-
ric COCA are allowed to have parameters on updates and tests. We show that the
reachability problem 1) is in NC2in GG-COCA (even when in addition to the global
bound, states can additionally place equality constraints on the counter), 2) is in
polynomial time in COCA, and 3) is NP-complete in parametric COCA.
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guard transitions [11, 17–19]. One-counter automata are yet another well-studied model [6, 12, 13],
in this case arising from the restriction to a single counter, hence the name.

We consider one-counter automata that can use tests of the form “≤ c” and “≥ d”—where c and
d are constants—to guard their transitions. As a natural extension of finite-state automata, one-
counter automata allow for better conservative approximations of classical static-analysis prob-
lems like instruction reachability (see, e.g., program graphs as defined in [3]). They also enable the
verification of programs with lists [7] and XML-stream validation [10]. Furthermore, their reach-
ability problem seems intrinsically connected to that of timed automata (TA). The reachability
problem for two-clock TA is known to be logspace-equivalent to the same problem for succinct
one-counter automata (SOCA), that is, where constants used in counter updates and tests are
encoded in binary [14]. An analog of this connection holds when SOCA are enriched with param-
eters that can be used on updates: reachability for two-parametric-clock TA reduces to the (exis-
tential) reachability problem for parametric one-counter automata [9]. Interestingly, Alur et al. [1]
observe that the former subsumes a long-standing open problem of Ibarra et al. [15] concerning
“simple programs.”

All of the above connections from interesting problems to reachability for SOCA and parametric
SOCA indicate that efficient algorithms for the problem are very much desirable. Unfortunately, it
is known that reachability for SOCA (with upper- and lower-bound tests) is PSPACE-complete [12].
For parametric SOCA, the situation is even worse as the general problem is not even known to
be decidable. In this work, we study continuous relaxations of these problems and show that their
complexities belong in tractable complexity classes. We thus give the first efficient conservative
approximation for the reachability problem for SOCA and parametric SOCA.

The continuous relaxations. We observe that the model considered by Fearnley and Jurdz-
iński [12] is not precisely our SOCA; rather, they consider bounded 1-dimensional VASS. In such
VASS, the counter is not allowed to take negative values. Additionally, it is not allowed to take
values greater than some global upper bound. Note that inequality tests against constants can be
added to such VASS as “syntactic sugar” since these can be implemented making use of the upper
and lower bounds. These observations allow us to adapt Blondin and Haase’s definition of contin-
uous VASS [4] to introduce globally guarded continuous one-counter automata (GG-COCA)
that have global upper- and lower-bound tests: Transitions are allowed to be “partially taken” in
the sense that the respective counter updates can be scaled by some factor α ∈ (0, 1].

In contrast to the situation in the discrete world, because of the continuous semantics, adding
arbitrary upper- and lower-bound tests to COCA does result in the more expressive model of lo-
cally guarded COCA, or simply COCA for short. Importantly, COCA are a “tighter” relaxation of
SOCA than GG-COCA (via the translation to bounded 1-VASS). Finally, we also study the reach-
ability problem for parametric COCA. These are COCA where counter updates can be variables
x ∈ X whose values range over the rationals; bound tests can also be against variables from X .
The resulting model can be seen as a continuous relaxation of Ibarra’s simple programs [9, 15].

Contributions. Our main contributions are threefold (see Theorem 1). First, we show that the
reachability problem for GG-COCA is in NC2. This closes a complexity gap for continuous VASS,
where reachability is known to be NP-hard when at least two counters are available [4, Lemma
4.13]. Thus, our result shows that an improvement of this lower bound to the case of one counter
is unlikely. Second, we give a polynomial-time algorithm for the same problem for COCA. Finally,
we show that the reachability problem for parametric COCA is NP-complete. The last upper bound
improves on the conference version of this work [5], where we showed that the reachability prob-
lem for parametric COCA lies in the polynomial hierarchy.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 3. Publication date: January 2023.



Continuous One-counter Automata 3:3

On the way, we prove that the reachability problem for GG-COCA enriched with equality tests
is in NC2, and that the reachability problem for parametric COCA where only counter updates are
allowed to be parametric is equivalent to the integer-valuation restriction of the problem.

Other related work. To complete a full circle of connections between timed and counter automata,
we note that the closest model to ours is that of one-clock TA. The value of the clock in such
automata evolves (continuously) at a fixed positive rate and can be reset by some transitions. COCA
can simulate clock delays using +1 self-loops and resets using −1 self-loops and bound tests “≤0”
and “≥0.” Our model thus generalizes one-clock TA.

The reachability problem for (non-parametric) one-clock TA is NL-complete [16]. The NL mem-
bership proof from [16] relies on the fact that clock delays can always occur and do so without
changing the state. This allows partitioning the counter values into regions. Only the current re-
gion is important, not the precise clock value, as the next region can always be reached by letting
time pass. This does not hold in the more general framework of COCA. Here, we need to know how
far away the next region is, since the counter value in COCA cannot necessarily be incremented
at will in every state. Hence, the proof does not directly extend to COCA.

The reachability problem for parametric one-clock TA with integer-valued parameters is known
to lie in NEXP [9]. Since non-parametric clocks can be removed at the cost of an exponential blow-
up [1], it is also argued in [9] that the problem belongs to N2EXP if an arbitrary number of non-
parametric clocks is allowed [9]. For the latter problem, the authors also prove that it is NEXP-hard.
Our NP upper bound for update-parametric COCA with integer-valued parameters improves the
latter two bounds.

Organization. In Section 2 we introduce the basic notation and models. Then, in Sections 3, 4,
and 5 we prove membership in NC2, membership in polynomial time, and NP-completeness for
reachability of GG-COCA, COCA, and parametric COCA, respectively. Finally, we conclude in
Section 6.

2 PRELIMINARIES
We write Q≥0 for the set of non-negative rationals, and Q>0 for the set of positive rationals. We
use symbols “[” and “]” for closed intervals, and “(” and “)” for open intervals of rational numbers.
For example, [a,b) denotes {q ∈ Q | a ≤ q < b}. Intervals do not have to be bounded; e.g., we allow
[3,+∞). We denote the set of all intervals over Q by Γ. We write X ⊆ Q to denote the closure of a
set X ⊆ Q, i.e., X enlarged with its limit points. For example, (3, 5) = [3, 5], [1, 4) ∪ (4, 5] = [1, 5],
and [2, 3) ∪ (4, 5) = [2, 3]∪ [4, 5]. Note that (−∞,+∞) remains (−∞,+∞). Throughout the article,
numbers are encoded in binary and we assume intervals to be encoded as pairs of endpoints,
together with binary flags indicating whether the endpoints are contained or not. We present
rational numbers as quotients of integers. We assume the sizes of formulas to be the number of
symbols needed to write them when numbers are encoded in binary.

2.1 One-counter Automata
A GG-COCA is a triple V = (Q,T ,τ ), where Q and T ⊆ Q × Q × Q are finite sets of states and
transitions, and τ ∈ Γ. A configuration ofV is a pair (q,a) ∈ Q ×Q, denoted q(a). A run from p (a)
to q(b) inV is a sequence α1t1 · · ·αntn , where αi ∈ (0, 1] and ti = (qi−1, zi ,qi ) ∈ T , for which there
exist configurations q0 (a0), . . . ,qn (an ) such that q0 (a0) = p (a), qn (an ) = q(b) and ai = ai−1+αi ·zi
for all i ∈ {1, . . . ,n}. We say that such a run is admissible if a0, . . . ,an ∈ τ . For readers familiar with
one-counter automata, note that the model of one-counter nets is obtained by setting τ = [0,+∞)
and αi = 1 for all i .
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A (locally guarded) COCA is a triple W = (Q,T ,τ ), where (Q,T ) is as for a GG-COCA and
τ : Q → Γ assigns intervals to states. Configurations and runs ofW are defined as for a GG-COCA.
A run is admissible if each of its configurations qi (ai ) satisfies ai ∈ τ (qi ). Hence, a GG-COCA can
be seen as a COCA where τ (q) is the same for all q ∈ Q .

The set ΓX of parameterized intervals over a set X is the set of intervals whose endpoints belong
either to Q ∪ {−∞,+∞} or X . A parametric COCA is a tuple P = (Q,T ,τ ,X ), where Q , X , and
T ⊆ Q × (Q ∪X ) ×Q are finite sets of states, parameters, and transitions, and where τ : Q → ΓX . A
valuation of X is a function μ : X → Q. We write Pμ = (Q,T μ ,τ μ ) to denote the COCA obtained
from P by replacing each parameter x ∈ X , occurring in T or τ , with μ (x ). We say that there is a
run from p (a) to q(b) in P if there exists a valuation μ such that Pμ has a run from p (a) to q(b). In
particular, P is a COCA ifX = ∅. Otherwise, the notion of a run only makes sense w.r.t. a valuation
μ, i.e., in the COCA Pμ .

In summary, we deal with three increasingly richer models: GG-COCA ⊆ COCA ⊆ parametric
COCA. In all variants, the size of the automaton is ( |Q | + |T |) · s , where s is the maximal number
of bits required to encode a number in T or τ .

2.2 Runs, Paths, Cycles, and Linear Path Schemes
LetW = (Q,T ,τ ) be a COCA. We write Pathsp,q ⊆ T ∗ to denote the set of paths from state p ∈ Q
to state q ∈ Q in the graph induced byT . Let π = t1 · · · tn ∈ T ∗ be a path. We write πi = ti to denote
the ith element of π . Let ρ = α1t1 · · ·αntn be a run where each ti = (qi−1, zi ,qi ). The underlying
path of ρ is path(ρ) � t1 · · · tn ∈ Pathsq0,qn . We further define ρ[i ..j] � αiti · · ·α jtj , ρi � ρ[i ..i],
in(ρ) � q0, out(ρ) � qn , and Δ(ρ) �

∑n
i=1 αizi . By convention, ρ[i ..j] � ε if j < i , and Δ(ε ) � 0.

We write p (a) →ρ q(b) to denote the fact that ρ is admissible from p (a) to q(b). Since states p and
q are determined by ρ, we may omit them and simply write a →ρ b. For every β ∈ (0, 1], we define
βρ � (βα1)t1 · · · (βαn )tn . Note that βρ is a run, but it is not necessarily admissible, even if ρ is.
For a path π = t1 · · · tn , we denote as |π | � n the length of π .

Let π = t1 · · · tn ∈ Pathsp,q be such that each ti = (qi−1, zi ,qi ). We say that π is a cycle if p = q,
and simple if π does not repeat any state. Let Δ(π ) � z1 + . . . + zn , Δ+ (π ) �

∑n
i=1 max(0, zi ) and

Δ− (π ) �
∑n

i=1 min(0, zi ), with Δ(ε ) = Δ+ (ε ) = Δ− (ε ) � 0. In particular, Δ− (π ) ≤ 0 ≤ Δ+ (π ).
Moreover, scaling the positive or negative transitions of a path π arbitrarily close to zero yields a
run of effect arbitrarily close to Δ− (π ) or Δ+ (π ).

We say that a linear path scheme is a regular expression of the form

L = σ0θ
∗
0σ1θ

∗
1 · · ·σk−1θ

∗
k−1σk ,

where eachσi is a path, each θ j is a cycle, and σ0θ0σ1θ1 · · ·σk−1θk−1σk is a path. For ease of notation,
we denote by a regular expression L also the language described by L. The size of L is defined as
|L| � |σ0θ0σ1θ1 · · ·σk−1θk−1σk |, that is, the length of the underlying path of L.

We write p (a) →π q(b) to denote the existence of a run ρ such that p (a) →ρ q(b) and path(ρ) =
π . As for runs, we may omit states and simply write a →π b. The reachability function given by π
is defined as Postπ (a) � {b ∈ Q | p (a) →π q(b)}. We generalize this notion to sets of paths and
numbers:

PostS (A) �
⋃

π ∈S

⋃

a∈A
Postπ (a).

Note that linear path schemes express sets of paths, so this notion also naturally extends to them.
If S = Pathsp,q , then we write Postp,q (a) and Postp,q (A). For example, for the COCA of Figure 1,
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Fig. 1. A COCA; each state s is labeled with the interval τ (s ).

the following holds:

Postp,q (a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10, 18) ∪ [19, 100) if a = 15,
(a − 5,a + 3) if a ∈ [−5, 15),

∅ otherwise.

Finally, we define the set of starting points as enab(π ) � {a ∈ Q | Postπ (a) � ∅} and enab(S ) �⋃
π ∈S enab(π ).

2.3 Our Contribution
In this work, we study the reachability problem that asks the following question: given a GG-COCA
or a COCAW with configurations p (a) and q(b), is there an admissible run from p (a) to q(b)? In
other words, by abbreviating “Pathsp,q” with “∗,” the problem asks whether p (a) →∗ q(b) holds.
For parametric COCAs, the (existential) reachability problem asks whether p (a) →∗ q(b) for some
parameter valuation.

We will establish the following complexity results:

Theorem 1. The reachability problem is

(1) in NC2 for GG-COCAs;
(2) in P for COCAs; and
(3) NP-complete for parametric COCAs.

Recall that NC is the class of problems solvable in polylogarithmic parallel time, i.e., NC =⋃
i≥0 NCi , where NCi is the class of problems decidable by logspace-uniform families of circuits

of polynomial size, depth O (logi n), and bounded fan-in (e.g., see [2, 22] for a thorough definition).
It is well known that NL ⊆ NC2 ⊆ P. We also refer to the functional variant of NCi as NCi .

The two first results of Theorem 1 are obtained by characterizing reachability functions and by
showing how to efficiently compute a representation in terms of a small number of intervals. More
precisely, we show that for every a ∈ Q:

(1) ifW is a GG-COCA, then Postp,q (a) consists of at most two intervals whose representations
are computable in NC2 (Corollary 7);

(2) if W is a COCA, then Postp,q (a) is made of |W|O (1) intervals, and a representation of
Postp,q (a) is computable in polynomial time (Lemma 21).

To derive the third result, i.e., NP-completeness, we need to look more carefully at the second re-
sult. It turns out that the reachability question for COCA can be reduced to linear path schemes
(Lemma 32). This allows us to reduce reachability of parametric COCA to determining the satisfi-
ability of an existential linear arithmetic formula.
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3 GLOBALLY GUARDED COCA REACHABILITY
In this section, we prove that the reachability problem for GG-COCAs belongs in NC2 by showing
how to compute a representation of Postp,q (a) from some a. As a first step, we describe how to
utilize graph reachability to check whether Postp,q (a) is nonempty in Section 3.1. In Section 3.2, we
observe that due to the fact that COCAs allow continuous scaling factors when firing transitions,
the closure Postp,q (a) is an interval [b, c] that differs from Postp,q (a) in at most the three points
a,b, and c . We utilize results on computing shortest and longest paths in graphs to identify the
endpoints b and c in Section 3.3. In Section 3.4, we reduce checks for membership of a,b, and c in
Postp,q (a) to graph reachability queries, using similar techniques as in Section 3.1, and thus obtain
an NC2 algorithm for deciding reachabilitxy in GG-COCAs. Finally, we generalize the achieved
results to GG-COCAs with equality tests in Section 3.5 by using the fact that equality tests are
passed by a single configuration to construct a graph where nodes represent equality tests and
edges correspond to reachability in the GG-COCA.

In the remainder, we fix a GG-COCAV = (Q,T ,τ ) where T and τ use numbers from Z rather
thanQ. This assumption merely simplifies the presentation. Indeed, for any λ ∈ Q≥0, p (a) →∗ q(b)
holds in V iff p (λa) →∗ q(λb) holds after all numbers are multiplied by λ. Hence, λ could be
precomputed in NC2 as the product of all denominators of fractions occurring within T and τ .

3.1 Testing Emptiness
We first aim to show that deciding whether Postp,q (a) � ∅ can be checked in NC2. To this end, we
first state some simple graph properties checkable in NC2. For a path π , let us write first(π ) (resp.
last(π )) to denote the first (resp. last) index such that Δ(πi ) � 0 if there are any, and first(π ) =
last(π ) � ∞ if none exist.

This lemma follows from standard results on NC2:
Lemma 2. LetV = (Q,E,τ ) be a COCA whose weights are encoded in binary, and let p,q ∈ Q be

nodes. Deciding whether S = ∅ is in NC2, where S is the set of paths π ∈ Pathsp,q that satisfy a fixed
subset of these conditions1:

(a) Δ+ (π ) � 0 (resp. Δ− (π ) � 0);
(b) Δ+ (π ) = 0 (resp. Δ− (π ) = 0);
(c) Δ(first(π )) < 0 (resp. Δ(first(π ) > 0));
(d) Δ(last(π )) < 0 (resp. Δ(last(π ) > 0)).

Furthermore, for any such set S , the following value can be computed in NC2: opt{w (π ) | π ∈
S and |π | ≤ |Q |)}, where opt ∈ {min,max} and w ∈ {Δ+,Δ−}.

Proof. For each condition, we focus only on one of the two stated cases, while the other case
will follow similarly. Each time, we will give a graph H such that reachability from p to q in the
multi-graph G = (Q,E) via a path that satisfies the condition is equivalent to graph reachability
between two fixed nodes of H , which can be decided in NL ⊆ NC2.
(a) Let us define H as joining G with a modified copy G that remains in G with nonpositive edges
and moves intoG with positive edges. More formally, letH � (Q ′,E ′), whereQ ′ � Q∪{q | q ∈ Q }.
Further, E ′ � E ∪ {(p, z,q) | (p, z,q) ∈ E, z ≤ 0} ∪ {(p, z,q) | (p, z,q) ∈ E, z > 0}. It is easy to see
that any path π from p to q in H corresponds to a path π from p to q in G such that Δ+ (π ) � 0.
(b) We set H � (Q,E ′), where E ′ � {(p ′, z,q′) ∈ E | z ≤ 0}. Clearly, reachability from p to q in H
is equivalent to reachability from p to q in G via a path π with Δ+ (π ) = 0.

1The set of conditions may be empty, in which case S = Pathsp,q .
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(c) We again define H as joining G with a modified copy G. In G, we omit all positive edges, while
edges with weight zero remain inG and negative edges lead toG. Formally, letH � (Q ′,E ′), where
Q ′ � Q ∪ {q | q ∈ Q } and E ′ � E ∪ {(p, 0,q) | (p, 0,q) ∈ E} ∪ {(p, z,q) | (p, z,q) ∈ E ∧ z < 0}. A
path π from p to q in H corresponds to a path π from p to q in G such that Δ(first(π )) < 0.

(d) We again joinG with a modified copyG. Now,G omits all positive edges, and for each negative
edge inG, we add a copy that leads fromG toG. We defineH � (Q ′,E ′) withQ ′ � Q∪{q | q ∈ Q }
and E ′ � E ∪ {(p, z,q) | (p, z,q) ∈ E ∧ z < 0} ∪ {(p, z,q) | (p, z,q) ∈ E ∧ z ≤ 0}. A path π from p
to q in H corresponds to a path π from p to q in G such that Δ(last(π )) < 0.

Note that for each condition, we construct a graph H from a given input graph G. To require
many conditions at once, we simply apply the transformations for each condition sequentially and
obtain a graph H ′ such that paths of H ′ satisfy all imposed conditions and correspond to paths in
the original graph G. Observe that H ′ is of polynomial size.

Finally, let us argue that the following value can be computed in NC2: opt{w (π ) | π ∈
S and |π | ≤ |Q |)}, where opt ∈ {min,max} and w ∈ {Δ+,Δ−}. Let us first deal with w = Δ+,
for which it suffices to treat edges with negative weight as having zero weight.

The problem of finding a shortest weighted path in a graph with edges of nonnegative weights
is in NC2 (e.g., see [8, Example 12.4]). The procedure relies on the fact that there must be an
acyclic shortest path, and hence that it suffices to consider paths of length at most |Q |. We can
easily adapt the standard procedure for maximization: instead of successively minimizing among
weighted paths of length 1, 2, 4, 8, . . . , |Q |, one maximizes among those paths.2 It follows that the
claim holds for opt ∈ {min,max}. The case of Δ− can be handled similarly by flipping the signs of
weights and the optimization type (max/min). �

Now, let us give necessary and sufficient conditions for enabledness of a path from a value.
Intuitively, these conditions stem from the observation that effects may be scaled arbitrarily small,
yet it is still impossible to apply a transition with negative effect when starting at inf τ , and similar
for transitions with positive effect when starting at supτ .

Lemma 3. Let a ∈ Z, p,q ∈ Q , and π ∈ Pathsp,q . We have a ∈ enab(π ) iff a ∈ τ and any of these
conditions hold:

(a) a � {inf τ , supτ };
(b) a = inf τ = supτ , first(π ) = ∞;
(c) a = inf τ < supτ , first(π ) � ∞ =⇒ Δ(πfirst(π ) ) > 0;
(d) a = supτ > inf τ , first(π ) � ∞ =⇒ Δ(πfirst(π ) ) < 0.

Proof. Having a ∈ τ is obviously necessary, so we assume it holds throughout the proof.
⇐) We proceed by induction on |π |. If |π | = 0, then the claim is trivial as the empty path is

admissible from a. Assume |π | = n > 0 and π satisfies a condition. Let t � π1 and σ � π [2..n].
If (a) holds, then a →βt a′ for some a′ ∈ τ \ {inf τ , supτ } and sufficiently small β ∈ (0, 1]. If (b)
holds, then a →t a′ = a as Δ(t ) = 0. If (c) or (d) holds, then either a →t a′ = a if Δ(t ) = 0, or
a →βt a

′ for some a′ ∈ τ \ {inf τ , supτ } and sufficiently small β ∈ (0, 1] otherwise. In all cases, σ
satisfies one of the conditions w.r.t. value a′. Thus, were are done by the induction hypothesis.
⇒) Toward a contradiction, let us assume that a ∈ enab(π ) and that no condition is satisfied.

If a = inf τ = supτ and first(π ) � ∞, then there is obviously a contradiction. Otherwise, either
(i) a = inf τ and Δ(πfirst(π ) ) < 0 or (ii) a = supτ and Δ(πfirst(π ) ) > 0. We only consider (ii)
as (i) is symmetric. Let a →π [1..first(π )−1] a′. We have a′ = a by definition of first(·). Moreover,

2Note that finding a maximal simple path is NP-complete, but this is not a problem since we allow non-simple paths.
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a′ + β · Δ(πfirst(π ) ) > a′ = a = supτ for any β ∈ (0, 1]. Since exceeding supτ is forbidden, we
obtain the contradiction a � enab(π [1..first(π )]) ⊇ enab(π ). �

Corollary 4. Given a ∈ Z and p,q ∈ Q , deciding whether a ∈ enab(Pathsp,q ), or equivalently
Postp,q (a) � ∅, is in NC2.

Proof. We report “empty” if a � τ . Otherwise, let
S0 � {π ∈ Pathsp,q | Δ+ (π ) = Δ− (π ) = 0},
S+ � {π ∈ Pathsp,q | first(π ) � ∞ =⇒ Δ(πfirst(π ) ) > 0},
S− � {π ∈ Pathsp,q | first(π ) � ∞ =⇒ Δ(πfirst(π ) ) < 0}.

By Lemma 3, it suffices if one of the following holds:
(a) a � {inf τ , supτ } and Pathsp,q � ∅;
(b) a = inf τ = supτ and S0 � ∅;
(c) a = inf τ < supτ and S+ � ∅;
(d) a = supτ > supτ and S− � ∅.

All of the above can be checked in NC2 by Lemma 2. �

3.2 Characterization of Reachability Sets
As a step toward computing a representation of Postp,q (a), we characterize Postp,q (a) in terms of
its closure. To this end, we note that admissible runs remain admissible whenever they are scaled
down. Consequently, Postp,q (a) is a closed interval that differs from Postp,q (a) in at most three
points.

Proposition 5 (Adapted from [4, Lemma 4.2(c)]). Let β ∈ (0, 1] and let ρ be an admissible run
from configuration p (a). It is the case that run βρ is also admissible from p (a).

Proof. We will show that for all i ∈ {0, . . . , |ρ |}, either a ≤ a + Δ(βρ[1..i]) ≤ a + Δ(ρ[1..i]) or
a ≥ a + Δ(βρ[1..i]) ≥ a + Δ(ρ[1..i]). Since a + Δ(ρ[1..i]) ∈ τ holds by the admissibility of ρ from
a, it follows that a + Δ(βρ[1..i]) ∈ τ , and so that βρ is admissible.

By definition, we have a + Δ(βρ[1..i]) = a + βΔ(ρ[1..i]). Additionally, β ∈ (0, 1]. Hence, if
Δ(ρ[1..i]) ≥ 0, then we have a + Δ(ρ[1..i]) ≥ a + Δ(βρ[1..i]) ≥ a. If Δ(ρ[1..i]) < 0, then a +
Δ(ρ[1..i]) ≤ a + Δ(βρ[1..i]) < a, so we are done. �

Lemma 6. For every b ∈ Postp,q (a), it is the case that (a,b) ⊆ Postp,q (a) and (b,a) ⊆ Postp,q (a).

Proof. We only prove (a,b) ⊆ Postp,q (a) as the other inclusion is symmetric. We assume that
a < b as we are otherwise done. Let c ∈ (a,b). Since b ∈ Postp,q (a), there exists b ′ ∈ Postp,q (a)
such that b ′ ∈ [c,b]. Let ρ be an admissible run from p (a) to q(b ′). By definition, Δ(ρ) = b ′ −a. Let
β � (c − a)/(b ′ − a) ∈ (0, 1]. By Proposition 5, βρ is admissible from p (a). Since Δ(βρ) = c − a,
this concludes the proof of the main claim. �

Corollary 7. Set Postp,q (a) is a closed interval. Moreover,

Postp,q (a) \ Postp,q (a) ⊆ {inf Postp,q (a),a, sup Postp,q (a)}.
Proof. Let b � inf Postp,q (a) and c � sup Postp,q (a). For the sake of contradiction, suppose

there is some v ∈ Postp,q (a) \ Postp,q (a) such that v � {b,a, c}. By Lemma 6, we have (a,b) ∪
(a, c ) ∪ (b,a) ∪ (c,a) ⊆ Postp,q (a) ⊆ Postp,q (a). Since v ∈ (b, c ) \ {a}, we obtain v ∈ Postp,q (a),
which is a contradiction. �
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3.3 Identifying the Endpoints

We now show that a representation of the interval Postp,q (a) can be obtained by identifying its
endpoints in NC2. Some simple observations follow from Proposition 5 and Lemma 6:

Proposition 8. The following statements hold:

(a) If inf τ � {−∞,∞} and Postp,q (inf τ ) � ∅, then inf Postp,q (inf τ ) = inf τ .
(b) If supτ � {−∞,∞} and Postp,q (supτ ) � ∅, then sup Postp,q (supτ ) = supτ .
(c) Let v ∈ τ \ {inf τ , supτ } and let ρ be a run. There exists ε ∈ (0, 1] such that for all β ∈ (0, ε]

there exists vβ > 0 such that v →β ρ vβ . Moreover, limβ→0vβ = v .

Proof.
(a) Let a � inf τ and c � sup Postp,q (a). By Lemma 6, we have (a, c ) ⊆ Postp,q (a). Since the

latter is closed by definition, we have inf Postp,q (a) = inf τ .
(b) The proof is symmetric to (a).
(c) Sincev � {inf τ , supτ }, there is a small enough ε ∈ (0, 1] such thatv+ |ε ·Δ(ρ[1..i]) | ∈ τ for all

i ∈ {1, . . . , |ρ |}. By definition, ερ is admissible fromv . Letvβ � v+β ·Δ(ρ). By Proposition 5,
v →β ρ vβ is admissible for all β ∈ (0, ε]. Moreover, limβ→0vβ = limβ→0v+β ·Δ(ρ) = v . �

The two forthcoming lemmas characterize the endpoints of Postp,q (a) through so-called admis-
sible cycles. We say that a cycle θ is (a,p,q)-admissible if its first transition t satisfies Δ(t ) � 0,
a ∈ enab(Pathsp, in(t ) ), and Pathsin(t ),q � ∅. We say that such an admissible cycle is positive if
Δ(t ) > 0, and negative if Δ(t ) < 0. Such cycles can be iterated to approach the endpoints of τ , by
scaling all transitions but t arbitrarily close to zero.

Lemma 9. If Postp,q (a) � ∅ andV has an (a,p,q)-admissible cycle θ , then the following holds:

(a) inf Postp,q (a) = inf τ , if θ is negative;
(b) sup Postp,q (a) = supτ , if θ is positive.

Proof. Let θ = tπ , where t is the first transition of θ and π is the remaining path. Let r � in(t ).
Since a ∈ enab(Pathsp,r ), there is an admissible run ρ1 from p (a) that ends in state r . Similarly,
since Pathsr,q � ∅, there is a run ρ3 from r to q.

We only show (b) as (a) is symmetric. We assume that a < supτ , as otherwise we are done by
Proposition 8(b). We make a case distinction on whether supτ = ∞.

Case supτ � ∞. We must show that we can reach values arbitrarily close to supτ , i.e., that for
every ε ∈ (0, 1], there exists a value b ∈ [supτ − ε, supτ ) and a run p (a) →ρ q(b).

By Proposition 5 and a < supτ , we have p (a) →(1/2)ρ1 r (a′) for some a′ < supτ . Let

m �
|π |∑

i=1
|Δ(πi ) |,αt �

ε

4|Δ(t ) | and απ �
ε

4m + 1 .

Let ρ2 � αt t αππ . By definition, we have Δ(αt t ) = ε/4 and |Δ(αππ [1..i]) | < ε/4 for all i ∈
{1, . . . , |π |}. Consequently, it is the case that Δ(ρ2[1..i]) ∈ (0, ε/2) for all i ∈ {2, . . . , |ρ2 |}.

Hence, there exists k ≥ 0 such that ρk
2 is admissible from a′ and supτ −ε/2 ≤ a′+Δ(ρk

2 ) < supτ .
Therefore, we have

r (a′) →ρk
2
r (b ′) where b ′ ∈ [supτ − ε/2, supτ ).

By Proposition 8(c), we can scale the run ρ3 so that it is admissible from r (b ′) and reaches a value
arbitrarily close to b ′ in state q. More formally, there exists β ∈ (0, 1] such that

r (b ′) →β ρ3 q(b) where b ∈ [b ′ − ε/2, supτ ).
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We are done since p (a) →(1/2)ρ1 r (a′) →ρk
2
r (b ′) →β ρ3 q(b) and b ∈ [supτ − ε, supτ ).

Case supτ = ∞. We must show that we can reach arbitrarily large values. Let b ≥ a. For all
� ≥ 0, the run ρ ′

�
� (1/2)ρ1 ρ

�
2 is admissible from a, and such that Δ(ρ ′

�
) > 0. Thus, there exists

� ≥ 0 such that Δ(ρ ′
�
) ≥ (b − a) + Δ− (ρ3). We are done since

a →ρ′
�
b ′ →ρ3 b

′′, where b ′ ≥ b + Δ− (ρ3) and b ′′ ≥ b . �

Lemma 10. Let Postp,q (a) � ∅, b � inf Postp,q (a) and c � sup Postp,q (a). If V has no (a,p,q)-
admissible cycle that is

(a) negative, then b � −∞ and b = max(inf τ ,a +min{Δ− (π ) | π ∈ Pathsp,q ,a ∈ enab(π )});
(b) positive, then c � +∞ and c = min(supτ ,a +max{Δ+ (π ) | π ∈ Pathsp,q ,a ∈ enab(π )}).
Proof. We only prove (b) as (a) is symmetric. Assume V has no positive (a,p,q)-admissible

cycle. Let D+ � {Δ+ (π ) | π ∈ Pathsp,q ,a ∈ enab(π )}. We show that maxD+ is well defined. For
the sake of contradiction, suppose that D+ is infinite. By a pigeonhole argument, we obtain a run ρ
admissible from a and such that ρ contains at least two occurrences of a transition t with Δ(t ) > 0.
Let path(ρ) = πtπ ′tπ ′′, where π ,π ′,π ′′ are paths. The cycle θ � tπ ′ is a positive admissible cycle,
which yields a contradiction.

Note that c ≤ min(supτ ,a + maxD+), so c � +∞. It remains to show that c = min(supτ ,a +
maxD+). Let π ∈ Pathsp,q be such that a ∈ enab(π ) and Δ+ (π ) = maxD+. By definition, there
exists a run ρ = α1t1 · · ·αntn admissible from p (a) and such that path(ρ) = π . Since a ∈ τ ,
there exists λ ∈ (0, 1] such that a + λ · maxD+ = min(supτ ,a + maxD+). For all ε ∈ (0, 1),
let ρε � α ′1t1 · · ·α ′ntn be the run such that

α ′i �
⎧⎪⎨⎪⎩

(1 − ε ) · λ if Δ(ti ) ≥ 0,
ε · (1/|Δ(ti ) |) · (1/n) otherwise.

Informally, if we were allowed to scale transitions by 0, then we would be done by using ρ0 from
a, as it would never decrease and reach exactly a + λ ·maxD+ = min(supτ ,a +maxD+).

Formally, we choose a small ε ∈ (0, 1] as follows. If a > inf τ , then we pick ε so that a−ε ≥ inf τ .
Otherwise, we pick ε so that (1− ε ) ·λ ≥ ε . We claim that the run ρδ is admissible from a for every
δ ∈ (0, ε]. First note that the top guard is never exceeded since a+Δ+ (ρδ ) = a+ (1−δ ) ·λ ·maxD+ ≤
a + λ ·maxD+ ≤ supτ . Let us now consider the bottom guard.

If a > inf τ , then a + Δ− (ρδ ) ≥ a − δ ≥ a − ε ≥ inf τ . Otherwise, if a = inf τ , then either
Δ− (ρδ ) = Δ+ (ρδ ) = 0, in which case admissibility is trivial, or the first transition ti such that
Δ(ti ) � 0 is such that Δ(ti ) ≥ 1. In that case, the following holds for every j ≥ i:

a + Δ(ρδ [1..j]) ≥ a + (1 − δ ) · λ · Δ(ti ) + Δ− (ρδ [i + 1..j])

≥ a + (1 − ε ) · λ + Δ− (ρδ [i + 1..j])

≥ a + (1 − ε ) · λ − ε ≥ a = inf τ .

This shows the admissibility of ρδ . Thus, for all δ ∈ (0, ε], we have a →ρδ aδ , where aδ ≥
min(supτ ,a+maxD+)−δ ·λ ·maxD+. We are done since limδ→0 aδ = min(supτ ,a+maxD+). �

In the forthcoming propositions, we show how the previous characterizations can be turned
into NC2 procedures.

Lemma 11. On input a ∈ Z and p,q ∈ Q , deciding if V has a positive or negative (a,p,q)-
admissible cycle is in NC2.
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Proof. We consider the positive case; the negative one is symmetric. Testing whether there is
a positive (a,p,q)-admissible cycle beginning with a transition t with Δ(t ) > 0 amounts to testing
whether (i) a ∈ enab(Pathsp, in(t ) ), (ii) Pathsin(t ),q � ∅, and (iii) Pathsout(t ), in(t ) � ∅. Condition (i)
can be checked in NC2 by Corollary 4. Conditions (ii) and (iii) are graph reachability queries, which
can be tested in NL ⊆ NC2. There are at most |T | transitions with positive effect, so the conditions
can be tested in parallel for each t ∈ T . �

Proposition 12. On input a ∈ Z and states p,q, the values inf Postp,q (a) and sup Postp,q (a) can
be computed in NC2.

Proof. We explain how to compute c � sup Postp,q (a) in NC2. The procedure for inf Postp,q (a)
is symmetric. By Corollary 4, testing whether Postp,q (a) = ∅ is in NC2. If it holds, then trivially
c = −∞. Otherwise, assume that Postp,q (a) � ∅, and hence a ∈ τ . Additionally, if a = supτ , then
c = supτ by Proposition 8(b). So, we assume a < supτ .

By Lemma 11, it can be decided in NC2 whether there exists a positive (a,p,q)-admissible
cycle. If such a cycle exists, then c = supτ by Lemma 9. Otherwise, by Lemma 10, we have
c = min(supτ ,a +maxD+), where D+ � {Δ+ (π ) | π ∈ Pathsp,q ,a ∈ enab(π )}.

Consider a path π ∈ Pathsp,q that satisfies a ∈ enab(π ) and which can be decomposed as
π = σθσ ′, where θ is a cycle. As θ is (a,p,q)-admissible by definition, it cannot contain a positive
transition. Otherwise,V would admit a positive (a,p,q)-admissible cycle, which is a contradiction.
Hence, Δ+ (π ) = Δ+ (σσ ′). Recall that a � supτ . Then a ∈ enab(σσ ′) follows from Lemma 3(a) or
(c).

The above shows that there is a simple path πmax such that maxD+ = Δ+ (πmax ) and a ∈
enab(πmax ). Therefore, to obtain maxD+, it is sufficient to compute maxE+, where E+ � {Δ+ (π ) |
π ∈ Pathsp,q ,a ∈ enab(π ), |π | ≤ |Q |}.

Now, let us make a case distinction based on whether a = inf τ . Assume this is true. By Lemma 3,
max E+ = max({Δ+ (π ) | π ∈ Pathsp,q ,first(π ) = ∞, |π | ≤ |Q |} ∪

{Δ+ (π ) | π ∈ Pathsp,q ,Δ(πfirst(π ) ) > 0, |π | ≤ |Q |}).
By Lemma 2, the two sets that are joined in the expression can be computed in NC2. If a � inf τ ,
then we have a ∈ τ \ {inf τ , supτ }, so by Lemma 3(a) all paths are admissible from a, and hence
maxE+ = max{Δ+ (π ) | π ∈ Pathsp,q ∧ |π | ≤ |Q |}. This value can be computed in NC2 by
Lemma 2. �

3.4 Computing the Representation
To obtain a representation of Postp,q (a), it remains to explain how to check in NC2 which of
the three limit elements inf Postp,q (a), sup Postp,q (a), and a belong to Postp,q (a). Intuitively, for
each of these three elements, membership is equivalent to the existence of paths satisfying some
conditions.

Proposition 13. Let Postp,q (a) � ∅. It is the case that a ∈ Postp,q (a) iff at least one of these
conditions holds:

(a) there exists a path π ∈ Pathsp,q whose transitions are all zero, i.e., Δ(π ) = Δ+ (π ) = Δ− (π ) = 0;
(b) there exist π ∈ Pathsp,q and indices i, j such that Δ(πi ) > 0 and Δ(πj ) < 0. If a = inf τ , then

we also require that Δ(πk ) = 0 for all k < i and k > j. Similarly, if a = supτ , then we also
require Δ(πk ) = 0 for all k < j and k > i .

Proof. ⇐) If (a) holds, then trivially a ∈ Postp,q (a). Assume (b) holds. Let ρ � 1t1 . . . 1tn , where
π = t1 . . . tn . Suppose a � {inf τ , supτ }. By Proposition 8(c), for all β small enough, it is the case
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that a →β ρ aβ , where |a − aβ | < 1/2. Let p (a) = q0 (a0), . . . ,qn (an ) = q(aβ ) be the sequence of
configurations witnessing a →β ρ aβ . Since n is fixed, we can choose β < 1/2 small enough so that
|ai−a | < 1/2 for all i . Ifaβ > a, then we enlarge the coefficient of tj toα j > β so that (α j−β ) ·Δ(tj ) =
a−aβ . By the choice of β , we get an admissible run ρ ′ � βt1 . . . βtj−1α jtjβtj+1 . . . βtn that satisfies
a →ρ′ a. If aβ < a, then we proceed analogously with index i .

It remains to prove the case where a = inf τ ; the case where a = supτ is symmetric. By assump-
tion, we have Δ(tk ) = 0 for all k < i and k > j. For the sake of simplicity, assume Δ(t1) > 0 and
Δ(tn ) < 0. Let α1 ∈ (0, 1) be such that α1 · Δ(t1) < 1/2. Let ρ1 � 1t2 . . . 1tn−1. By Proposition 8(c),
there exists β ∈ (0, 1] such that inf τ →α1t1β ρ1 δ , where δ < 1. Since Δ(tn ) < 0, there exists
αn ∈ (0, 1) such that αn · Δ(tn ) = −δ . Thus, we have p (inf τ ) →α1t1β ρ1αn tn q(inf τ ).
⇒) Letp (a) →ρ q(a) and π � path(ρ). Suppose (a) does not hold. If all transitions of π were pos-

itive, then we would obtain the contradiction p (a) →ρ q(a′) with a′ > a. Similarly, all transitions
cannot be negative. For the specific case where a = inf τ , observe that if the first nonzero transition
is negative, then ρ cannot be admissible. Similarly, if the last nonzero transition is positive, then
p (inf τ ) →ρ q(δ ) for some δ > inf τ . The reasoning for the case a = supτ is symmetric. �

It is easy to see that both conditions of the prior proposition can be checked in NC2 by Lemma 2.
We introduce and prove a similar characterization of “sup Postp,q (a) ∈ Postp,q (a)”:

Proposition 14. Let Postp,q (a) � ∅, b � inf Postp,q (a) and c � sup Postp,q (a). If b < a < c
and c ∈ τ , then c ∈ Postp,q (a) iff there is a state r and a path σ ∈ Pathsr,q that satisfy Δ+ (σ ) > 0,
Δ− (σ ) = 0, and either of the following:

(i) there exists a path σ ′ ∈ Pathsp,r such that |σ |, |σ ′ | ≤ |Q |, Δ− (σ ′) = 0 and Δ+ (π ) ≥ c − a,
where π � σ ′σ ;

(ii) there exists a path σ ′ ∈ Pathsp,r such that |σ |, |σ ′ | ≤ |Q | and Δ+ (π ) > c − a, where π � σ ′σ ;
(iii) there is a positive (a,p, r )-admissible cycle θ .

Proof. ⇒) Assume c ∈ Postp,q (a). There is a run ρ such that p (a) →ρ q(c ). Let ρ ′ be the run
obtained from ρ by repeatedly removing a cycle θ with Δ+ (θ ) = 0, until no further possible. Let
π � path(ρ ′). We have Δ+ (π ) ≥ Δ(ρ ′) ≥ Δ(ρ) = c − a. Since c > a, there is a maximal index i
such that Δ(πi ) > 0. Let r � in(πi ), σ ′ � π [1..i − 1] and σ � π [i ..|π |]. Note that σ ′ ∈ Pathsp,r
and σ ∈ Pathsr,q . Moreover, Δ+ (σ ) > 0 holds by maximality of i . It must also be the case that
Δ− (σ ) = 0. Indeed, otherwise the last nonzero transition t of σ , and consequently of ρ, would be
negative. Hence, this would contradict c = sup Postp,r (a) as we could reach values arbitrarily close
to c + ε for some ε > 0 by scaling t arbitrarily close to zero. Observe that if Δ+ (π ) = c − a, then
Δ(ρ) = Δ+ (π ) = c − a, which implies Δ− (ρ) = Δ− (π ) = 0. Therefore, if |σ |, |σ ′ | ≤ |Q |, we have
shown (i) or (ii).

Otherwise, π is a nonsimple path. So, by our past cycle elimination, π contains a cycle θ with
Δ+ (θ ) > 0. Let us reorder θ into θ ′ so that the first transition t of θ ′ satisfies Δ(t ) > 0. We have
a ∈ enab(Pathsp, in(t ) ) as state in(t ) occurs on the original run ρ that leads to state q. Moreover,
Pathsin(t ),r � ∅ holds by maximality of i . Thus, θ ′ is a positive (a,p, r )-admissible cycle. Hence, we
have shown that (iii) holds.
⇐) If (i) holds, then Δ+ (π ) = c−a or Δ+ (π ) > c−a. The latter case is subsumed by (ii), and in the

former case we are done as a →π c due to Δ− (π ) = 0. If (iii) holds, then since θ is a positive (a,p, r )-
admissible cycle—and hence (a,p,q)-admissible—Lemma 9(b) yields sup Postp,r (a) = c = supτ .
Thus, there exists ε ∈ [0, 1] such that c − ε ∈ Postp,r (a). Note that Δ+ (σ ) > 0 implies Δ+ (σ ) ≥ 1,
since we assume transition effects to be integral. By Δ+ (σ ) ≥ 1 and Δ− (σ ) = 0, we have

p (a) →∗ r (c − ε ) →βσ q(c ) where β � ε/Δ+ (σ ).
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If (ii) holds, then we proceed as follows. Recall that b < a < c . Therefore, a � {inf τ , supτ }, since
inf τ ≤ b and c ≤ supτ by definition of b and c . Due to a � {inf τ , supτ }, we can scale the negative
transitions of σ ′ arbitrarily close to zero and scale its positive transitions so that either a+Δ+ (σ ′)−
ε ∈ Postp,r (a) or supτ − ε ∈ Postp,r (a) for some ε ∈ (0, 1]. Since Δ+ (σ ) ≥ c − a − Δ+ (σ ′) + 1,
Δ+ (σ ) ≥ 1, and Δ− (σ ) = 0, we can derive either c ∈ Postr,q (a) or supτ ∈ Postr,q (a). As the latter
implies c = supτ , we are done proving the claim. �

Finally, these characterizations allow us to conclude our first major result.

Proposition 15. On input a ∈ Z and p,q ∈ Q , computing Postp,q (a) ∩
{inf Postp,q (a), sup Postp,q (a),a} is in NC2.

Proof. By Corollary 4, Postp,q (a) � ∅ can be tested in NC2. Thus, we assume that it is nonempty.
By Proposition 13, it holds that a ∈ Postp,q (a) iff at least one of these conditions holds:

(a) there exists a path π ∈ Pathsp,q whose transitions are all zero, i.e., Δ(π ) = Δ+ (π ) =
Δ− (π ) = 0;

(b) there exist π ∈ Pathsp,q and i, j such that Δ(πi ) > 0 and Δ(πj ) < 0. If a = inf τ , then we
also require Δ(πk ) = 0 for all k < i and k > j. Similarly, if a = supτ , then we also require
Δ(πk ) = 0 for all k < j and k > i .

Note that (b) is trivially unsatisfiable if a = inf τ = supτ .
It remains to argue that both conditions can be checked in NC2. We can check condition (a) in

NC2 via Lemma 2(b). If a � {inf τ , supτ }, then condition (b) can be checked in NC2 via Lemma 2(a).
If a ∈ {inf τ , supτ }, then condition (b) can be checked in NC2 via Lemma 2(d) and Lemma 2(c).

Letb � inf Postp,q (a) and c � sup Postp,q (a), which can be computed in NC2 by Proposition 12.
We check whether b = c . If it is, we return {b, c} since Postp,q (a) � ∅. Otherwise, we explain how
to check whether c ∈ Postp,q (a); the case of b can be handled symmetrically. We assume that
b < a < c , as the first half of the proof handles the case a ∈ {b, c} when checking membership
of a.

If c � τ , then c � Postp,q (a). Otherwise, by Proposition 14, it holds that c ∈ Postp,q (a) iff there is
a state r ∈ Q and a path σ ∈ Pathsr,q that satisfy Δ+ (σ ) > 0, Δ− (σ ) = 0 and either of the following
holds:

(i) there exists a path σ ′ ∈ Pathsp,r such that |σ |, |σ ′ | ≤ |Q |, Δ− (σ ′) = 0 and Δ+ (π ) ≥ c − a,
where π � σ ′σ ;

(ii) there exists a path σ ′ ∈ Pathsp,r such that |σ |, |σ ′ | ≤ |Q | and Δ+ (π ) > c −a,where π � σ ′σ ;
(iii) there is a positive (a,p, r )-admissible cycle θ .
It remains to show that the conditions can be tested in NC2. There are |Q | choices for state

r , so we can test the conditions for all choices in parallel. Let S � {σ ∈ Pathsr,q | Δ+ (σ ) >
0 and Δ− (σ ) = 0}. We first check whether S � ∅, which can be done in NC2 by Lemma 2(a)–(b).
Moreover, condition (iii) can be checked in NC2 by Lemma 11. We proceed as follows to check (i).
Let

W � {Δ+ (σ ) | σ ∈ S, |σ | ≤ |Q |},
W ′ � {Δ+ (σ ′) | σ ′ ∈ Pathsp,r , |σ ′ | ≤ |Q |,Δ− (σ ′) = 0}.

By Lemma 2, we can computem � maxW +maxW ′ in NC2 and check thatm ≥ c − a. Lastly, we
defineW ′′ � {Δ+ (σ ′) | σ ′ ∈ Pathsp,r , |σ ′ | ≤ |Q |} and test whether maxW + maxW ′′ > c − a to
verify condition (ii). �
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Theorem 16. Given a,a′ ∈ Z and p,q ∈ Q , the following can be done in NC2: obtaining a repre-
sentation of Postp,q (a) and testing whether a′ ∈ Postp,q (a).

Proof. By Proposition 12, we can compute b � inf Postp,q (a) and c � sup Postp,q (a) in NC2.
By Corollary 7 and Proposition 15, the set S � Postp,q (a) \ Postp,q (a), of size at most three, can
be computed in NC2. By Corollary 7, this yields the representation Postp,q (a) = [b, c] \ S . Thus,
a′ ∈ Postp,q (a) iff b ≤ a′ ≤ c and a′ � S . �

3.5 Equality Tests
A GG-COCA with equality tests is a tuple V = (Q,T ,τ ,ϕ), where (Q,T ,τ ) is a GG-COCA and
ϕ : Q → {[z, z] | z ∈ Q} ∪ {(−∞,∞)}. We say that a run ofV is admissible if each of its configura-
tions q(a) satisfies a ∈ τ ∩ ϕ (q).

Using the previous results, we can extend the NC2 membership of the reachability problem
p (a) →∗ q(b) to GG-COCA with equality tests. The proof relies on the fact that each equality
test is passed by exactly one configuration. For this reason, we can construct a reachability graph
between equality tests using a quadratic number of GG-COCA reachability queries.

Let us assume that p has no incoming edges; if it does, we can simply add a new initial state p ′
and a single transition (p ′, 0,p). Similarly, we can assume q has no outgoing edges.

We will reason about reachability in V, where we avoid all equality tests. For every pair of
states p ′,q′ ∈ Q , let us define the GG-COCA Vp′,q′ � (Qp′,q′,Tp′,q′ ), where Qp′,q′ � {s ∈ Q |
ϕ (s ) = Q} ∪ {p ′,q′}. We treat p ′ as a dedicated input state, and q′ as a dedicated output state. That
is,

Tp′,q′ � {t ∈ T | in(t ) ∈ Qp′,q′ \ {q′}, out(t ) ∈ Qp′,q′ \ {p ′}}.
Let us define a graph G � (V ,E), where V � {p (a),q(b)} ∪ {r (z) | r ∈ Q,ϕ (r ) = [z, z], z ∈ τ }.

If a � τ ∩ ϕ (p) or b � τ ∩ ϕ (q), then we trivially conclude that p (a) cannot reach q(b). Hence,
|V | ≤ |Q | holds. Intuitively, the nodes of G correspond to the initial and final configurations plus,
for each equality test, the configuration that passes this test. Let us define E � {(p ′(x ),q′(y)) |
p ′(x ) →∗ q′(y) inVp′,q′ }.

Lemma 17. It is the case that p (a) →∗ q(b) inV if and only if there is a path from p (a) to q(b) in
G.

Proof. We show the “if” direction first. Assume that p (a) →ρ q(b) for some run ρ. Without loss
of generality, we assume that no configuration repeats when starting at p (a) with ρ; otherwise,
we can simply shorten ρ. Let σ1σ2 · · ·σn be the unique maximal decomposition of ρ into runs
such that ϕ (out(σi )) � Q for all 1 ≤ i < n. For ease of notation, let qi � out(σi ). It holds that
p (a) →σ1 q1 (a1) →σ2 q2 (a2) · · · →σn q(b), where ϕ (qi ) = [ai ,ai ] for all i . Since σ1σ2 · · ·σn is the
maximal decomposition, ϕ (out((σi ) j )) = Q holds for all j < |σi |.

Additionally, recall that p has no incoming edges and q has no outgoing edges. Hence, the fol-
lowing holds:

p (a) →σ1 q1 (a1) inVp,q1 ,

qi−1 (ai−1) →σi qi (ai ) inVqi−1,qi for all 1 < i < n,

qn−1 (an−1) →σn q(b) inVqn−1,q .

We are done as p (a)q1 (a1) · · ·qn−1 (an−1)q(b) is a path of G.
It remains to show the “only if” direction. Suppose there is a path p (a)q1 (a1) · · ·qn−1 (an−1)q(b)

in G. Note that if p ′(a′) →∗ q′(b ′) inVp′,q′ , then by definition we also have p ′(a′) →∗ q′(b ′) inV .
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So we have
p (a) →∗ q1 (a1) →∗ · · · →∗ qn−1 (an−1) →∗ q(b) inV . �

Theorem 18. The reachability problem for GG-COCA with equality tests is in NC2.

Proof. Let us first argue that the graphG can be constructed in NC2. There are at most |Q | nodes
in G, and hence at most |Q |2 edges. Note that an edge (p ′(x ),q′(y)) is present iff p ′(x ) →∗ q′(y)
inVp′,q′ , which can be decided in NC2 by Theorem 16, asVp′,q′ is a GG-COCA. By running these
|Q |2 queries in parallel, it follows that G can be obtained in NC2.

Once the graph G has been constructed, by Lemma 17, it suffices to test reachability from p (a)
to q(b) in G. Since graph reachability is in NL ⊆ NC2, we are done. �

4 COCA REACHABILITY
We now turn to the reachability problem p (a) →∗ q(b) for a COCAW = (Q,T ,τ ). In contrast to
GG-COCA, the set Postp,q (a) does not necessarily admit a decomposition into a constant number
of intervals. Nevertheless, we show that it can always be decomposed into a polynomial number of
intervals with respect to the number of states (see Section 4.1). Then, we present a formalization
of the natural forward computation one would employ to obtain under-approximations of the
reachability function (see Section 4.2), which can be efficiently stored due to the aforementioned
fact. Finally, in an approach reminiscent of the Bellman-Ford algorithm, we introduce a way of
“accelerating” our forward computation of under-approximations so as to reach a fixed point in
finite time. Concretely, in Section 4.3, we give sufficient (and efficient-to-check) conditions for the
existence of certain cycles. We then propose an acceleration scheme based on those cycles. Our
polynomial-time algorithm is summarized in Section 4.4.

Throughout this section, we write I (R) to denote the unique decomposition of a set R ⊆ Q into
maximal disjoint nonempty intervals. For example, I ([3, 4] ∪ (4, 5) ∪ (5,+∞)) = {[3, 5), (5,+∞)}
and I (∅) = ∅.

4.1 Controlling the Number of Intervals
We will prove that for every k the set {b ∈ Q | p (a) →ρ q(b), |ρ | = k } decomposes into at
most |Q |O (1) intervals. (Note that the bound is independent of k .) To do so, we will bound the
size of the decomposition of sets obtained by updating A = [a,a] with operations that suffice to
implement continuous counter updates and guard tests. More precisely, these are Minkowski sums,
intersections (with elements of L = {τ (q) | q ∈ Q }), and unions (with sets constructed similarly).
For technical reasons, we also consider a fourth operation.

Let us fix a bounded intervalA ∈ Γ andL ⊆ Γ. We write PL � {inf I , sup I | I ∈ L} to denote the
set of endpoints withinL. Further, for two sets B,B′ ⊆ Q, we write B+B′ = {b+b ′ | b ∈ B,b ′ ∈ B′}
to mean the Minkowski sum of B and B′. We define the MIUN-closure (short for Minkowski sum,
Intersection, Union, and New), of interval A w.r.t. L, as the smallest collection C ⊆ 2Q such that
A ∈ C and
• M: if B ∈ C and z ∈ Q>0, then B + (0, z],B + [−z, 0) ∈ C;
• I: if B ∈ C and L ∈ L, then B ∩ L ∈ C;
• U: if B,B′ ∈ C, then B ∪ B′ ∈ C;
• N: if B ∈ C and I ∈ Γ s.t. I ∩ PL � ∅, then B ∪ I ∈ C.

The forthcoming lemma forms the basis of our bound. It is based on so-called indicator functions
that give us, for every interval I , the set of endpoints of L and A that belong to the closure of
I . As we will see later, the set of endpoints needed to analyze COCA is small. Furthermore, all
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MIUN-operations are such that sets of C decompose into intervals whose closure contains at least
one such endpoint.

More formally, for all B ∈ C, let ϕB : I (B) → 2PL∪PA be the function defined as ϕB (I ) �
I ∩ (PL ∪ PA), where PA = {inf A, supA}.

Lemma 19. We have ϕB (I ) � ∅ for all B ∈ C and I ∈ I (B).

Proof. We proceed by induction on the definition of MIUN-closures. We define C0 � {A} and
Ci+1 as Ci extended with all sets obtained by applying the MIUN-operations applied to any B,B′ ∈
Ci . We will show that the lemma holds for all Ci , which will conclude the proof since C = ⋃i ∈N Ci .

We have I (A) = {A} and the claim holds since PA ⊆ ϕA (A). For the induction step, we suppose
the claim holds for Ci . We have to prove that for allC ∈ Ci+1 and all I ∈ I (C ) it holds thatϕC (I ) � ∅.
Notice that this is trivial if C is obtained from B ∈ Ci by application of the New operation.

First, we consider the Minkowski sum. Consider some B ∈ Ci with the function ϕB and let
I ∈ {(0, z], [−z, 0)} for some z ∈ Q>0. Let C � B + I . For all J ∈ I (C ) there exists KB ∈ I (B) such
that KB ⊆ J . Thus, ϕB (KB ) ⊆ ϕC (J ) and the claim holds by the inductive hypothesis for ϕB .

Second, we consider intersections. We only deal with intervals of the form [�,+∞), (�,+∞),
(−∞, �), or (−∞, �], since intersection with any interval can be expressed by at most two consecu-
tive intersections with intervals of this form. Let B ∈ Ci and L ∈ L. Suppose that L = [�,+∞) and
let C � B ∩ L. Recall that � ∈ PL . Observe that I (B) contains at most two intervals I such that
� ∈ I . If such an I exists, then � ∈ ϕC (I ∩ L). For all other intervals J ∈ I (B), we have that J ∩ L is
either J or ∅. If the intersection is nonempty, then ϕC (J ) = ϕB (J ) and the claim holds by inductive
hypothesis. If L is instead of the form (−∞, �], then we proceed similarly.

Finally, we consider unions. Let B,B′ ∈ Ci and I ∈ I (B ∪ B′). By definition, there exists J ∈
I (B) ∪I (B′) with J ⊆ I . Therefore, either ϕB (J ) or ϕB′ (J ) is nonempty and contained in ϕB∪B′ (I ).

�

Lemma 20. For every set B ⊆ Q and every pairwise distinct interval I1, I2, I3 ∈ I (B), it is the case
that I1 ∩ I2 ∩ I3 = ∅.

A point can belong to at most one interval among disjoint intervals. Moreover, a point can belong
to at most two closures; e.g., consider [0, 1) and (1, 2]. This is no longer possible for three intervals
due to maximality of intervals in I (B). Thus, the proof of Lemma 20 follows from a simple case
analysis.

Now, we show that ifL is finite, and then there is a polynomial bound on the number of intervals
within the decomposition of any set from the MIUN-closure C. More formally:

Lemma 21. If L is finite, then I (B) consists of at most 4( |L| + 1) intervals, for every B ∈ C.
Proof. By Lemma 20, there are at most two pairwise disjoint intervals that share a point in their

closure. By Lemma 19, the indicator function guarantees that J ∩ (PL ∪ PA) � ∅ for all J ∈ I (B).
Thus, I (B) has at most 2(2|L| + 2) intervals. Otherwise, by the pigeonhole principle, a point of
PL ∪ PA would belong to at least three closures of intervals from I (B). �

4.2 Approximations of the Reachability Function
It will be convenient to manipulate mappings from states to (under-approximations of) their reach-
ability functions. We consider the mappings RQ � {S : Q → 2Q}. An example of such a mapping is
Reachp (a) , defined as Reachp (a) (q) � Postp,q (a). Given S, S ′ ∈ RQ , we write S � S ′ iff S (q) ⊆ S ′(q)
for all q ∈ Q . We seek to define a sequence of mappings S0 � S1 � · · · such that Sn = Reachp (a)

for some n ∈ N.
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For all states q ∈ Q , we define the successor mapping-update function Succq : RQ → 2Q as
follows:

Succq (S ) � S (q)

∪
⋃
{(S (r ) + (0, z]) ∩ τ (q) | (r , z,q) ∈ T , z > 0}

∪
⋃
{(S (r ) + [z, 0)) ∩ τ (q) | (r , z,q) ∈ T , z < 0}

∪
⋃
{S (r ) ∩ τ (q) | (r , 0,q) ∈ T }.

Let Succ : RQ → RQ be defined as Succ(S ) (q) � Succq (S ). Below, we state the key property
enjoyed by Succ. In words, its i-fold composition coincides with the set of configurations reachable
via runs of length at most i . It can easily be proven by induction on the definition of Succ.

Lemma 22. Let S0 ∈ RQ and Si � Succ(Si−1) for all i ≥ 1. The following holds:

Si (q) =
⋃

p∈Q
{b ∈ Q | a ∈ S0 (p),p (a) →ρ q(b) and |ρ | ≤ i}.

Now we can state a proposition that shows how the previous section relates to these definitions.
Let us fix a configuration p (a). We will focus on the MIUN-closure C of A � [a,a] with respect to
L � {τ (q) | q ∈ Q }. We say that a mapping S ∈ RQ is C-valid if S (q) ∈ C for all q ∈ Q .

Proposition 23. Let S ∈ RQ be a C-valid mapping. We have S � Succ(S ), and Succ(S ) is a
C-valid mapping. Moreover, for every q ∈ Q, if b ∈ Succ(S ) (q) \ S (q), then there exists r (c ) such that
c ∈ S (r ) and r (c ) →t q(b) for some transition t .

Proof. From the definition of Succ, we have that the following holds for all q ∈ Q . If b ∈
Succ(S ) (q) \ S (q), then there exists r (c ) such that c ∈ S (r ) and r (c ) →t q(b) for some transition
t . Hence, S � Succ(S ) follows directly from the definition of Succ. To prove that Succ(S ) (q) ∈ C,
it suffices to observe that Succq (S ) is defined using Minkowski sums, intersections, and unions,
which are building blocks of MIUN-closures. �

4.3 Accelerations
Unfortunately, applying Succ might not give us Reachp (a) in a small or even finite number of steps,
e.g., if Reachp (a) (q) is unbounded for some q ∈ Q . We introduce another operation on mappings
to resolve this. We start by defining some special form of cycles.

Let us fix a mapping S0 ∈ RQ and let Si+1 � Succ(Si ) for every i ≥ 0. We say that a run ρ =
α1t1 · · ·αntn is a positively expanding cycle from S0 if it is admissible and there exist configurations
p0 (a0),p1 (a1), . . . ,pn (an ) such that

(1) p0 = pn and Δ(ρ) > 0;
(2) a0 ∈ S0 (p0) and p0 (a0) →ρ[..i] pi (ai ) for all i ≥ 1; and
(3) ai ∈ Si (pi ) \ Si−1 (pi ) for all i ≥ 1.

Moreover, letting I0, . . . , In be the sequence of intervals such that ai ∈ Ii ∈ I (Si (pi )) for all
i ∈ {0, . . . ,n}, we require

(4) I0 ⊆ In ;
(5) for all i ≥ 1, there is a unique interval I ′i ∈ I (Si−1 (pi )) such that I ′i ⊆ Ii ; and
(6) ai ≥ sup(I ′i ) for every i ≥ 1.

Intuitively, the third condition states that each ai is a “new” value, and the fifth and sixth conditions
state that ai expands some interval toward the top.
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Fig. 2. Left: A set B such that I (B) = {(−∞, 3], [4, 5)}. Right: Example of the three possible types of progress-
ing extensions of B. Dashed lines denote open interval borders; �1 = 4, �2 = 5, and �3 = 6 denote values in
PL ∪ PA.

For example, consider a state q ∈ Q with guard τ (q) = [0,∞), a self-loop ρ = (q, 1,q), and a
mapping S0 s.t. S0 (q) = {0}. The sequence of configurations we get from following ρ is q(0)q(1).
By applying Succ, we get that S1 (q) = [0, 1]. It is easy to see that the first two conditions are met.
For the third condition, we have that 1 ∈ [0, 1] \ {0}. According to our definition, we let I0 = [0, 0]
and I1 = [0, 1]. Since I0 ⊆ I1, conditions four and five are met, where I ′1 = I0. Finally, we have that
1 > sup(I0). Thus, ρ is a positively expanding cycle.

Similarly, we say that ρ is a negatively expanding cycle from S0 if in the first item we replace
Δ(ρ) > 0 with Δ(ρ) < 0, and in the last item we replace ai ≥ sup(I ′i ) with ai ≤ inf (I ′i ).

The following property follows from the definitions:

Lemma 24. It holds that a0,an ∈ In ⊆ Reachp0 (a0 ) (p0).

It transpires that the Succ function always yields expanding cycles after a polynomial number
of applications. The proof of this claim relies on our bounds for interval decompositions of sets
from the MIUN-closure. We will also need to define a measure on the mappings from states to
interval decompositions, which progresses with an increasing number applications of Succ, and
finally leads us to find an expanding cycle.

Let C be the MIUN-closure of A w.r.t. L, and let B,B′ ∈ C be such that B ⊆ B′. We say that B′
is a progressing extension of B if

(1) there is I ′ ∈ I (B′) such that B ∩ I ′ = ∅;
or if there are I ∈ I (B) and I ′ ∈ I (B′) such that I ⊆ I ′ and at least one of the following holds:

(2) either ϕB′ (I
′) \ ϕB (I ) � ∅, or

(3) there exists � ∈ ϕB (I ) such that � � I and � ∈ I ′.
See Figure 2 for a pictorial description of progressing extensions. Observe that in case (3) we
necessarily have that � ∈ I .

Let us prove a bound on the number of progressing extensions in any ⊆-increasing sequence.

Lemma 25. Let B0,B1,B2, . . . ∈ C be a sequence such that Bi ⊆ Bi+1 for all i ∈ N. The set of i ∈ N
such that Bi+1 is a progressing extension of Bi has cardinality at most |L|O (1) .

Proof. Let P � PL ∪PA. First, observe that (3) can happen only if there exists some � ∈ P such
that � ∈ Bi+1 \ Bi , and thus at most |P | times.

LetϕBi (I (Bi )) ⊆ P be the image of all intervals ofI (Bi ). Note thatϕBi (I (Bi )) ⊆ ϕBi+1 (I (Bi+1)).
A strict inclusion can happen at most |P | times. Thus, we can assume that ϕBi (I (Bi )) =
ϕBi+1 (I (Bi+1)). Note that (1) can happen at most |P | times due to Lemma 20 and becauseϕBi+1 (I ′) �
∅ for all I ′ ∈ I (Bi+1). Indeed, for all � ∈ P , Lemma 20 tells us there are no pairwise distinct intervals
I1, I2, I3 ∈ I (Bi+1) such that � ∈ ϕBi+1 (I1), � ∈ ϕBi+1 (I2), and � ∈ ϕBi+1 (I3).
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Now, assume that (1) and (3) are not the case and that ϕBi (I (Bi )) = ϕBi+1 (I (Bi+1)). Since (1)
does not hold, we have |I (Bi+1) | ≤ |I (Bi ) |. Note that a strict inequality can happen at most |P |
times, so we can assume that |I (Bi+1) | = |I (Bi ) |. We define a function f : I (Bi ) → I (Bi+1). Recall
that Bi ⊆ Bi+1. So, for every I ∈ I (Bi ) there exists a unique f (I ) ∈ I (Bi+1) such that I ⊆ f (I ).
Uniqueness follows from maximality of intervals within I (Bi+1). Then, we have that I ⊆ f (I )

and therefore I ∩ P ⊆ f (I ) ∩ P . It follows that ϕBi (I ) ⊆ ϕBi+1 ( f (I )). Since (1) does not hold, the
function f is a surjection. Moreover, ϕBi (I ) = ϕBi+1 ( f (I )). Thus, (2) can happen at most |P | times
by Lemma 20. �

Now, let us show an interesting property of extensions that are not progressing:

Lemma 26. Let B,B′ ∈ C be such that B ⊆ B′, where B′ is not a progressing extension of B. There
is a bijection f : I (B) → I (B′) s.t. ϕB (I ) = ϕB′ ( f (I )) for all I ∈ I (B).

Proof. Since B ⊆ B′, for all I ∈ I (B) there is a unique f (I ) ∈ I (B′) such that I ⊆ f (I ). We
show that if f is not a bijection, then it will contradict that B ⊆ B′ is not a progressing extension.

First, we prove that f is an injection. Suppose this is not the case and that f (I ) = f (J ) for some
I , J ∈ I (B). Then ϕB (I ) ∪ ϕB (J ) ⊆ ϕB′ ( f (I )). If there exists � ∈ ϕB (I ) ∩ ϕB (J ), then it must be the
case that � � I , � � J , and � ∈ f (I ). This is a contradiction because the extension is progressing
due to (3). Otherwise, there is � ∈ ϕB (I ) \ ϕB (J ). Since ϕB (I ) ⊆ ϕB (I ) ∪ ϕB (J ) ⊆ ϕB′ ( f (I )), we get
a contradiction because the extension is progressing due to (2).

Now, we prove that f is a surjection. If we suppose this does not hold, then there is an interval
I ′ ∈ I (B′) such that f −1 (I ′) = ∅. Thus, I ′ ∩ B = ∅, which is a contradiction because this would
mean the extension is progressing due to (1).

To conclude, we note that for all I ∈ I (B), since I ⊆ f (I ), we have that I ⊆ f (I ). It follows
that I ∩ (PL ∪ PA) ⊆ f (I ) ∩ (PL ∪ PA). Hence, by definition of the indicator functions, we have
that ϕB (I ) ⊆ ϕB′ ( f (I )). If the inclusion is strict for some I , then we get a contradiction because the
extension is progressing due to (2). �

Now, we are able to prove the following proposition. The computational part is a simple back-
ward construction of a run containing a cycle.

Proposition 27. Let S0 ∈ RQ let Si+1 � Succ(Si ) for all i ∈ N. For some n polynomially bounded
in |Q |, at least one of the following holds:

• Sn = Sn+1,
• there is a positively expanding cycle ρ from Sn , or
• there is a negatively expanding cycle ρ from Sn .

Moreover, it can be determined in time |Q |O (1) whether the second or third case hold, and then ρ and
its witnessing configurations can be computed in time |Q |O (1) .

Proof. The value of the polynomially bounded number n will be determined by the proof. By
definition, we have Si � Si+1 for all i ∈ N. By Lemma 25, there is a polynomial number of indices
i (w.r.t. |Q |) such that Si (q) ⊆ Si+1 (q) is a progressing extension for some q ∈ Q . Thus, there exists
an index j polynomial in |Q | such that the extensions Si (q) ⊆ Si+1 (q) are not progressing for all
j ≤ i ≤ j + k , where k is sufficiently large (but polynomially bounded in |Q |). To simplify the
notation we will assume that j = 0 and consider S0 � S1 � · · · � Sk .

By Lemma 26, there is a bijection fi : I (Si (q)) → I (Si+1 (q)) for every q ∈ Q and 0 ≤ i < k .
Thus, for every q ∈ Q , the sets I (S1 (q)), . . ., I (Sk (q)) have the same number mq of intervals.
By Lemma 21,mq is polynomially bounded in |Q |. Let us denote the intervals Iq,i

1 , . . . , I
q,i
mq , where
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fi (I
q,i
j ) = I

q,i+1
j for all 0 ≤ i < k , q ∈ Q and 1 ≤ j ≤ mq . By Lemma 26,ϕSi (q ) (I

q,i
j ) = ϕSi+1 (q ) (I

q,i+1
j ).

Since Si � Si+1, we conclude that Iq,1
j ⊆ I

q,2
j ⊆ · · · ⊆ I

q,k
j for all q ∈ Q and 1 ≤ j ≤ mq .

Recall that T is the set of transitions of the guarded COCA. Let active(q, i, j ) � {t ∈ T | Iq,i
j ∩

enab(t ) � ∅}. Since I
q,i
j ⊆ I

q,i+1
j , we have active(q, i, j ) ⊆ active(q, i + 1, j ), and a strict inclusion

can occur at most |T | times. Since it is polynomially bounded in |Q | and |T |, we can assume that
active(q, i, j ) = active(q, i + 1, j ) for all q ∈ Q , 0 ≤ i < k , and 1 ≤ j ≤ mq . Suppose Si � Si+1
for every 0 ≤ i < k . Then, we prove that there is a positively or negatively expanding cycle
from S0. Since Si � Si+1, there exists vk ∈ Sk (qk ) for some qk ∈ Q such that vk � Sk−1 (qk ).
Moreover, because Sk = Succ(Sk−1), we have that there exist qk−1 ∈ Q and vk−1 ∈ Sk−1 (qk−1)
such that qk−1 (vk−1) →t qk (vk ) holds for some t ∈ T . Now, since vk � Sk−1 (qk ), we necessarily
have that vk−1 � Sk−2 (qk−1). Tracing back in this fashion, we can find a sequence of transitions
t1, . . . , tk , scalars α1, . . . ,αk ∈ (0, 1], and configurations q0 (v0), . . . ,qk (vk ) such that vi ∈ Si (qi ),
vi � Si−1 (qi ), and qi−1 (vi−1) →αi ti qi (vi ) for all 0 < i ≤ k . We show that an infix of this sequence
defines a positively or negatively expanding cycle.

Let jk be the unique index with vk ∈ I
qk ,k
jk

. By definition, we have vk � I
qk ,k−1
jk

. If vk ≥
sup(I

qk ,k−1
jk

), then we construct a positively expanding cycle, and otherwise we construct a nega-
tively expanding one. We will prove only the former case; the latter case follows the same steps.
We claim the following holds:

vi ≥ sup
(
I

qi ,i−1
ji

)
for all 0 < i ≤ k . (1)

Let us argue that Equation (1) allows us to conclude. For a large enough k , we can find an infix
ρ � qa (va ), . . . ,qb (vb ) such that a < b, qa = qb , and ja = jb . The following inequalities thus hold:

vb ≥ sup
(
I

qb ,b−1
jb

)
≥ sup

(
I

qa,a
ja

)
≥ va .

Since va ∈ I
qa,a
ja

and vb � I
qa,a
ja

, we obtain Δ(ρ) > 0. The remaining conditions of the positively
expanding cycle follow directly from the definition.

It remains to prove Equation (1). We proceed by induction, going from i = k down to i = 1.
The base case follows by assumption. For the inductive step, toward a contradiction, suppose that
vi < sup(I

qi ,i−1
ji

). Observe that, by construction, vi � I
qi ,i−1
ji

. Hence, it must also be the case that
vi ≤ inf (I

qi ,i−1
ji

). Recall that active(qi , i−1, ji ) = active(qi , i, ji ). Sincevi →αi+1ti+1 vi+1, there exists
v ∈ Iqi ,i−1

ji
and β ∈ (0, 1] such that v →βti+1 w for some w ∈ Si (qi+1).

We show that vi+1 < w holds for all choices of β . Note that if there exists some β such that
vi+1 = w , then vi+1 ∈ Si (qi+1) and we get a contradiction with the definition of vi+1. It follows
that either vi+1 > w for all choices of β or vi+1 < w for all choices of β . Let ti+1 = (qi , zi+1,qi+1).
Since vi ≤ inf (I

qi ,i−1
ji

) and v ∈ Iqi ,i−1
ji

, we have that

vi+1 = vi + αi+1zi+1 ≤ v + αi+1zi+1.

Thus, it must be the case that vi+1 < w for all choices of β .
We now prove that w ∈ I

qi+1,i+1
ji+1

. Recall that vi ,v ∈ I
qi ,i
ji

and thus [vi ,v] ⊆ I
qi ,i
ji

. Also, [vi +

αi+1zi+1,v + βzi+1] = [vi+1,w]. Hence, for every vi+1 ≤ w ′ ≤ w there exists vi ≤ v ′ ≤ v and
γ ∈ (0, 1] such that v ′ →γ ti+1 w ′. Thus, w and vi+1 belong to the same interval in Si+1 (qi+1) as
required.

Sincew ∈ Iqi+1,i+1
ji+1

andw ∈ Si (qi+1), we havew ∈ Iqi+1,i
ji+1

. We have reached a contradiction, since
by the inductive hypothesis we have

vi+1 ≥ sup
(
I

qi+1,i
ji+1

)
.
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Observe that since Succ is easily computable in polynomial time, one can also find
q0 (v0), . . . ,qk (vk ) and their corresponding intervals in polynomial time. �

We are ready to define the acceleration operation. Let ρ be a positively or negatively expanding
cycle from S ∈ RQ and let p0 (a0),p1 (a1), . . . ,pn (an ) be the configurations witnessing the run. Let
I0, . . . , In be the intervals given by the definition of expanding cycles. If ρ is positively expanding,
then we define δ+i � supτ (pi ) − ai for all i ∈ {1, . . . ,n}. If ρ is a negatively expanding cycle, then
we define δ−i � ai − inf τ (pi ). Let j ∈ {1, . . . ,n} be such that

δ+j = min{δ+i | 1 ≤ i ≤ n} or δ−j = min{δ−i | 1 ≤ i ≤ n}.
We define Acc so that, given ρ and the mapping S , it outputs a new mapping Acc(S, ρ) = S ′. If ρ is
positively expanding from S, then S ′(q) � S (q) for all q � pj and

S ′(pj ) � S (pj ) ∪ Ij ∪
(
τ (pj ) ∩ [aj ,+∞)

)
︸������������������������︷︷������������������������︸

=K ⊆Q

.

Recall that aj ∈ Ij , and aj ∈ τ (pj ) since a0 →ρ[1..j] aj , so K is an interval. Also, since ρ is positively
expanding and j ≥ 1, we have aj � S (pj ) and S ′(pj ) \ S (pj ) � ∅. Similarly, if ρ is negatively
expanding, then S ′(q) � S (q) for all q � pj and

S ′(pj ) � S (pj ) ∪ Ij ∪
(
(−∞,aj ] ∩ τ (pj )

)
.

Lemma 28. Let S ∈ RQ be a C-valid mapping such that S � Reachp (a) , and let ρ be a positively
or negatively expanding cycle from S . If S ′ = Acc(S, ρ), then S � S ′, S ′ is a C-valid mapping, and
S ′ � Reachp (a) . Moreover, for every q ∈ Q, if b ∈ Acc(S, ρ) (q) \ S (q), then there exists r (c ) such that
c ∈ S (r ) and r (c ) →π q(b), where π ∈ ρ∗.

Proof. We have S � S ′ directly from the definition of Acc. Similarly, S ′ is C-valid because the
operation to define S ′(pj ) is the “New” operation since the closure of the added interval always
contains one of the endpoints from τ (pj ). It remains to prove that S ′ � Reachp (a) .

We assume that Δ(ρ) > 0; the proof is similar for the other case. Let ρ = α1t1 · · ·αntn . Let
p0 (a0),p1 (a1), . . . ,pn (an ) and I0, . . . , In be the configurations and intervals given by the definition
of positively expanding cycles. Let j be an index minimizing δ+j . We must prove that S ′(pj ) �
Reachp (a) . Since S � Reachp (a) and a0 ∈ S (p0) by definition of positively expanding cycles, it
suffices to show that for every b ∈ S ′(pj ) \ S (pj ) there is an admissible run from p0 (a0) to pj (b).

If δ+j = +∞, then supτ (pi ) = +∞ for all i ∈ {1, . . . ,n}. Since Δ(ρ) > 0, for all α , β ∈ (0, 1] and
m ∈ N the run ρ ′ � (βρ)mαρ[1..j] is admissible from any pn (a′) with a′ ≥ an to statepj . Note that
Δ(ρ ′) = mβΔ(ρ) + αΔ(ρ[1..j]), which can be any positive rational number by properly choosing
α , β, andm. Thus, b ∈ Reachp (a) (pj ) for every b > an .

It remains to consider the case aj ≤ an to prove the claim for every b ∈ [aj ,an]. Let ε ∈
(0,an − a0]. Since a0 < a0 + ε ≤ an , we have a0 + ε ∈ In ⊆ Reachp (a) (p0), where the latter follows
from Lemma 24. Note that ρ is admissible from all pn (a′) with a′ ≥ an , and hence from an + ε .
Thus, p (a) →∗ p0 (a0 + ε ) →ρ pn (an + ε ), and p0 (a0 + ε ) →ρ[1..j] pj (aj + ε ). This shows that
b ∈ Reachp (a) (pj ) for all b ∈ [aj ,an].

Now, suppose δ+j < +∞. If aj = supτ (pj ), then we are done because aj ∈ Ij ⊆ Reachp (a) (pj ).
Otherwise, let b ∈ [aj ,+∞) ∩ τ (pj ). We need to prove that b ∈ Reachp (a) (pj ). Note that, by defini-
tion, we have 0 ≤ b − aj ≤ δ+j .

Let m ∈ N and c ∈ Q≥0 be the unique numbers that satisfy b − aj = mΔ(ρ) + c and c < Δ(ρ).
Since a0 ≤ a0 + c ≤ a0 + Δ(ρ) = an , then by Lemma 24 we conclude that a0 + c ∈ Reachp (a) (p0).
Notice that aj + c +mΔ(ρ) = b. It thus remains to prove that p0 (a0 + c ) →ρm ρ[1..j] pj (b). We prove
something stronger, namely that p0 (a0 + c ) →ρm+1 pn (an +b − aj ). Since Δ(ρ) > 0, for the bottom
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guards it suffices to check whether the configurations are large enough when ρ is applied the first
time. Indeed, since ρ is admissible from p0 (a0), we get ai + c + Δ(ρi ) ≥ ai + Δ(ρi ) ≥ inf τ (qi ).
Similarly, for the top guards, it suffices to check whether the configurations are small enough
when ρ is applied last.

Indeed, since b − aj ≤ δ+j , we have ai + c +mΔ(ρ) = ai +b − aj ≤ ai + δ
+
j ≤ ai + δ

+
i = supτ (pi ).

If supτ (pj ) � τ (pj ), then b − aj < δ+j and the previous inequalities are strict. �

4.4 Polynomial Time Algorithm
We summarize how to obtain the polynomial time algorithm for deciding p (a) →∗ q(b). We begin
with the mapping R0 ∈ RQ defined as R0 (p) � [a,a] and R0 (r ) � ∅ for every r � p. Clearly,
R0 � Reachp (a) . The next mappings R1,R2, . . . are defined as follows. Suppose we have defined
R0, . . . ,Ri . Let S i

0 � Ri and S i
j+1 � Succ(S i

j ) for all j ≥ 0.
By Proposition 27, we will either find an expanding cycle ρ from some S i

n , where n is bounded
polynomially, or we will find some S i

n = S i
n+1, again for n bounded polynomially. If there is an

expanding cycle—a fact that, by Proposition 27, we can check in polynomial time—then we define
Ri+j � S i

j for 1 ≤ j < n and Ri+n � Acc(Ri+n−1, ρ). Otherwise, we define Ri+j � S i
j for j ∈

{1, . . . ,n} and the algorithm returns Ri+n . By Lemmas 22 and 28, we have Ri � Reachp (a) for all
defined Ri . Hence, if the algorithm terminates, then by Lemma 22 it returns Reachp (a) .

The rest of this section is devoted to proving that the above-described algorithm has a polyno-
mial worst-case running time. It suffices to argue that expanding cycles can only be found some
polynomial number of times.

Proposition 29. The algorithm computes a representation of Reachp (a) in time |Q |O (1) .

By Proposition 27, it suffices to show that Acc can be applied at most polynomially many times.
We show that accelerating leads to a progressing extension.

Lemma 30. Let ρ be an expanding cycle from R and let R′ � Acc(R, ρ). There is some state pj such
that R (pj ) ⊆ R′(pj ) is a progressing extension.

Proof. Let pj ∈ Q be such that R′(pj ) = R (pj )∪ Ij ∪ J for some interval J . In the proof, we write
αiti , pi (ai ), and Ii , as in the definition of expanding cycles. We will assume that ρ is positively
expanding; the other case is similar. Thus, J ∈ {[aj ,д], [aj ,д), [aj ,+∞)}, where д � supτ (pj ).
Recall that by definition, aj � R (pj ) and aj ∈ Ij ∈ I (Succk (R) (pj )) for some k . Thus, Ij ∪ J is an
interval.

If (Ij ∪ J ) ∩ R (pj ) = ∅, then R′(pj ) is a progressing extension due to (1). For the remaining case,
let b ∈ (Ij ∪ J ) ∩ R (pj ) and K ∈ I (R (pj )) be such that b ∈ K . Note that K ∪ Ij ∪ J is an interval. If
b < aj , then, because aj � R (pj ), eitherд � K orK has an upper bound if J = [aj ,+∞). Thus, R′(pj )
is a progressing extension due to (2) or (3). Finally, suppose that b > aj . By definition of ρ, there is
a unique interval I ′j ∈ I (Succk−1 (R) (pj )) such that I ′j ⊆ Ij . Moreover, aj � I ′j and aj ≥ sup I ′j . Thus,
K ∩ I ′j is empty and д � I ′j or I ′j has an upper bound if J = [aj ,+∞). Since K ∪ Ij ∪ J ∈ Γ, R′(pj ) is
a progressing extension due to (2) or (3). �

5 PARAMETRIC COCA REACHABILITY
This section is dedicated to characterizing the complexity of existential reachability in parametric
COCAs. We will show the following result:

Theorem 31. The existential reachability problem for parametric COCAs is NP-complete.

NP-membership will be based on results from Section 4 and heavily rely on the fact that
reachability in COCAs can be expressed as reachability in one of many linear path schemes (see
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Lemma 32), and that the reachability relation of such path schemes can be expressed as a small
existential linear formula. In Section 5.1, we describe a straightforward formula for describing the
reachability relation in simple paths. In Section 5.2, we similarly give a formula for the reachability
relation of simple cycles, which requires a more careful analysis of the behavior of cycles in CO-
CAs (see particularly Lemma 38). We conclude the proof of NP-membership in Section 5.3, where
the full formula is assembled. We briefly switch to the setting where only updates can be param-
eterized in Section 5.4. We show that in this setting, any rational valuation of the parameters can
be turned into an integral valuation of the parameters while maintaining reachability. Finally, we
conclude the proof of NP-completeness in Section 5.5 by showing that existential reachability in
parametric COCA is NP-hard, even when they are acyclic and parameters occur only on updates
or only on guards. To do so, we give a reduction from 3-SAT.

For the rest of this section, let V = (Q,T ,τ ,X ) be a parametric COCA, and let a,b ∈ Z. We
will show that existential reachability from p (a) to q(b) can be witnessed by an existential linear
formula φ of polynomial size. Membership in NP will follow from the fact that we can both guess φ
and check satisfiability of φ in NP. This formula will be obtained based on the following corollary,
which can be derived from the last section:

Lemma 32. If b ∈ Postp,q (a), then there exists a path π from some linear path scheme
σ0θ
∗
0σ1θ

∗
1 · · ·σk such that p (a) →π q(b), where

• k ≤ |Q |O (1) ,
• |σi | ≤ |Q |O (1) for each 0 ≤ i ≤ k , and
• |θ j | ≤ |Q |O (1) for each 0 ≤ j < k .

Proof. The proof is by induction on the definition of the sequence of Ri s. We argue that, for all
q ∈ Q , if b ∈ Ri (q), then there is a path π of the claimed form such that p (a) →π q(b). Note that
this is sufficient in view of Proposition 29.

For the induction, let us first focus on the last two items from the claim. The base case is trivial
and the inductive step is a straightforward application of Proposition 23 and Lemma 28 (with Propo-
sition 27 giving us the required polynomial bounds). Finally, we still need to argue that k is also
polynomial. However, this follows from our induction on the sequence of Ri s together with the
polynomial bound on the length of the sequence established in Lemmas 30 and 25. �

In order to exploit Lemma 32, we will further need the forthcoming technical lemmas.
Lemma 33. Let t ∈ T , α , β ∈ (0, 1] and a,a′,b,b ′ ∈ Q be such that a′ = a + αΔ(t ) and b ′ =

b + βΔ(t ). If a ≤ b and a′ ≥ b ′, then b ′ = a + α ′Δ(t ) and a′ = b + β ′Δ(t ) for some α ′, β ′ ∈ (0, 1].

Proof. The claim is trivial whenever a = b or a′ = b ′; hence assume a < b and a′ > b ′. Note
that Δ(t ) � 0, as we would otherwise derive the contradiction a < b = b ′ < a′ = a. Let

α ′ �
b ′ − a
Δ(t )

and β ′ �
a′ − b
Δ(t )

.

We have a + α ′Δ(t ) = b ′ and b + β ′Δ(t ) = a′ as desired. It remains to show that α ′, β ′ ∈ (0, 1].
From a′ > b ′, we have

α ′ = (b ′ − a)/Δ(t ) < (a′ − a)/Δ(t ) = α ≤ 1,
β ′ = (a′ − b)/Δ(t ) > (b ′ − b)/Δ(t ) = β > 0.

From a < b, we symmetrically derive α ′ > 0 and β ′ ≤ 1. �

Corollary 34. Let a,a′,b,b ′ ∈ Q, and let π = t1 . . . tn be a path such that a →π a′ and b →π b ′.
If a ≤ b and a′ ≥ b ′, then a →π b ′ and b →π a′.
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Proof. Let σ1, σ2 be runs such that a →σ1 a
′ and b →σ2 b

′. Let us define ai � a + Δ(σ1[1..i])
and bi � b + Δ(σ2[1..i]). In particular, a0 = a, b0 = b, an = a′, and bn = b ′. By assumption, it is
the case that a0 ≤ b0 and an ≥ bn . Clearly, if a0 = b0, then a0 →σ2 b

′ and we are done. So we can
make the stronger assumption that a0 < b0.

Let i be the first index such that ai ≥ bi . We have i > 0, as a0 < b0. By minimality of i , it holds
that ai−1 < bi−1. Thus, by Lemma 33, it holds that ai−1 →ti bi and bi−1 →ti ai . Hence, we are done
since a →σ1[1..i−1] ai−1 →ti bi →σ2[i+1..n] b

′ and b →σ2[1..i−1] bi−1 →ti ai →σ1[i+1..n] a
′. �

Lemma 35. Let π = t1 · · · tn be a path, and let a,b,a′,b ′ ∈ Q be such that b ≤ a < b ′ ≤ a′. If
a →π a′ and b →π b ′, then a →π b ′.

Proof. If b ′ = a′, we are done. So assume b ′ < a′. Let σ1,σ2 be runs with path(σ1) = path(σ2) =
π such that a →σ1 a

′ and b →σ2 b
′. Let us define β � (b ′ − a)/(a′ − a). As b ′ > a′, it holds that

β ∈ (0, 1]. So we can define a new run σ ′1 � βσ1. Clearly, σ ′1 has the right effect to go from a to b ′:

a + Δ(σ ′1 ) = a +
b ′ − a
a′ − aΔ(σ1) = a +

b ′ − a
a′ − a (a′ − a) = b ′.

It remains to show that σ ′1 is an admissible run from a. Let ai � a+Δ(σ1[1..i]), a′i � a+Δ(σ ′1[1..i])
and bi � b + Δ(σ2[1..i]). If there exists i such that a′i ≤ bi , then by Lemma 33, it follows that
a →π [1..i] bi →σ2[i+1..n] b

′, and so we are done. Thus, let us assume that a′i > bi for all i . By the
definition of σ ′1, it is the case that ai ≥ a′i . So, for all i , we have ai ≥ a′i ≥ bi . Since σ1 and σ2
are respectively admissible runs from a and b, it follows that σ ′1 is an admissible run from a. Thus,
a →σ ′1 b

′, and hence we are done. �

For completeness, we note that we can also state and prove an equivalent formulation of the
lemma when b ≥ a > b ′ ≥ a′.

5.1 Formula for σ
Let I ∈ ΓX , let a be a number, and let μ be a valuation of X . Recall that ΓX is the set of all intervals
with endpoints from Q ∪ {−∞,+∞} ∪ X . We write I μ to mean I where each parameter x ∈ X is
replaced with μ (x ). We define a formula ϕ∈I (a, μ ) that is satisfied if and only if a ∈ I under μ:

ϕ∈I (a, μ ) � (inf I μ ≺inf a ≺sup sup I μ ),

where ≺inf � < if the lower end of I is open, and ≺inf � ≤ otherwise. Similarly, we de-
fine ≺sup � < if the upper end of I is open, and ≺sup � ≤ otherwise. For example, we have
ϕ∈[4,9) (a, μ ) = 4 ≤ a < 9. Note that this also generalizes to the presence of parameters in the end-
points of I . For example, if x ,y ∈ X are parameters, then ϕ∈(x,y] (a, μ ) = μ (x ) < a ≤ μ (y).

Let t = (q0, z,q1) ∈ T be a transition. We give a formula ϕt (a,b, μ ) that is satisfied iff b ∈
Postt μ (a):

ϕt (a,b, μ ) � [ϕ∈τ (q0 ) (a, μ )] ∧ [zμ = 0→ a = b]∧
[zμ < 0→ (a + zμ ≤ b < a)] ∧ [zμ > 0→ (a + zμ ≥ b > a)] ∧ ϕ∈τ (q1 ) (b, μ ).

Clearly, we can generalize the formula ϕt (a,b, μ ) to work for paths instead of transitions. Let
π = t1t2 · · · tn . We give a formula ϕπ (a,b, μ ) as follows:

ϕπ (a,b, μ ) � ∃a0,a1, . . . ,an : (a0 = a) ∧ (an = b) ∧
∧

1≤i≤n

ϕti (ai−1,ai , μ ).

The following is straightforward:
Lemma 36. It is the case that ϕπ (a,b, μ ) holds iff b ∈ Postπ μ (a). Furthermore, the size of ϕπ is

linear in |π | and the sum of non-parametric endpoints and updates along π .
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5.2 Formula for θ ∗

We define a formula ϕθ ∗ (a,b, μ ) as follows:

ϕθ ∗ (a,b, μ ) � (a = b) ∨ ϕθ+ (a,b, μ ).

Intuitively, we differentiate two cases: To reach b from a, we iterate θ
• zero times: a = b,
• one or more times: ϕθ+ (a,b, μ ).

It remains to give a formula for the case where we take θ one or more times. Formulaϕθ+ (a,b, μ )
is split into two cases, based on whether a < b or b < a. Note that we do not need to handle the
case a = b, as this is trivially included in the case where we iterate zero times. So, we define

ϕθ+ (a,b, μ ) � [a � b] ∧ [a < b → ϕ+θ+ (a,b, μ )] ∧ [a > b → ϕ−θ+ (a,b, μ )].

Formally, we require that if a < b, then ϕ+θ+ (a,b, μ ) is satisfied iff b ∈ Postθθ+ (a)∪Postθ (a). The
requirement for ϕ−θθ+ (a,b, μ ), assuming a > b, is symmetric.

Let us give a necessary and sufficient condition for the membership of a value b ′ in
Postθ μ (θ μ )+ (a) \ Postθ μ (a). We first proceed to give a series of technical lemmas.

Lemma 37. Let a < b. If a →(θ μ )+ b, then there exists n ≥ 1 and values a0, . . . ,an such that
a0 →θ μ a1 →θ μ · · · →θ μ an and ai < b for all i .

Proof. Let π ∈ θ+ be a path such that a →π b. Let n be the number of times π iterates θ , that is,
n = |π |/|θ |. By definition of π , n is a natural number. Let ai = a +Δ(π [1..(i · |θ |)]). We can assume
that ai � b for all i; otherwise we can easily shorten π .

For the sake of contradiction, assume there exists some i such that ai > b. Clearly, if such an i
does not exist, we are done. So let i be the smallest such index. Note that 0 < i < n, since a < b.
By definition, ai−1 →θ ai . Further, by minimality of i , it holds that ai−1 < b. Recall that we have
an−1 →θ b. In the following, we show that ai−1 →θ μ b, which finishes the proof by minimality of
i .

We distinguish three cases based on the order of an−1 and ai−1. First, if an−1 = ai−1, then we
are clearly done. If an−1 < ai−1, then together with the fact that b < a, we invoke Lemma 35 to
derive that ai−1 →θ μ b. Lastly, if an−1 > ai−1, then together with the fact that b < ai , it follows by
Corollary 34 that ai−1 →θ μ b. �

Now, we can prove a useful lemma that allows us to assume that iterations of the cycle behave
in a monotonic manner:

Lemma 38. Let a < b. If a →(θ μ )+ b, then there exists n ≥ 1 and values a0, . . . ,an such that
a0 →θ μ a1 →θ μ · · · →θ μ an and a = a0 < a1 < · · · < an = b.

Proof. Let π ∈ (θ μ )+ such that a →π b. Let n be the number of times π iterates θ . Note that
n ≥ 1, since π iterates θ at least once by membership in (θ μ )+. Let a0 � a, an � b and let ai be
the value reached after the ith iteration of θ when following π . We have ai →π [1.. |θ |] ai+1 for all
0 ≤ i < n. By Lemma 37, we can assume that ai ≤ b for all i . Note that we can assume that ai � aj
for all i, j; otherwise we can trivially shorten π .

If a0 < a1 < · · · < an , then we are done. So assume there exists i such that ai > ai+1. Let i be the
smallest such index. Note that i < n−1, as we assume ai < b = an for all i . Let j > i be the smallest
index such that aj > ai . Note that such an index must exist, since an > ai . Recall that ai →θ μ ai+1
and aj−1 →θ μ aj . Further, by minimality of our choice of j, aj−1 < ai and aj > ai > ai+1. Then, we
can invoke Corollary 34, from which it follows that ai →θ μ aj . Thus, we can shorten π by going
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Fig. 3. Illustration depicting how a reaches b ′ in the different cases.

directly from ai to aj . Note that ai < aj . It is easy to see that we can iteratively repeat this process
to remove all occurrences where ai > ai+1. Thus, the statement follows. �

Now, we are ready to state the necessary and sufficient condition:

Lemma 39. Let b ′ > a. It is the case that b ′ ∈ Postθ μ (θ μ )+ (a) ∪ Postθ μ (a) if and only if a →θ μ b ′
or

(1) there exists a′ > a such that a →θ μ θ μ a′, and
(2) there exists b < b ′ such that b →θ μ θ μ b ′.

Proof. ⇐) If a →θ μ b ′, then we are done. So assume a �→ θ μb and that (1) and (2) both hold.
That is, a →σ1σ2 a′ and b →σ ′1σ ′2 b ′ with a < a′,b < b ′, and path(σ1) = path(σ2) = path(σ ′1 ) =
path(σ ′2 ) = θ . Let σ � σ1σ2 and σ ′ � σ ′1σ

′
2. We define ai � a+Δ(σ [1..i]) and bi � b +Δ(σ ′[1..i])

as the counter values along runs a →σ a′ and b →σ ′ b
′, respectively. In particular, a0 = a and

b0 = b. Further, a2n = a′ and b2n = b
′. We differentiate cases based on the order of a and b.

Case b < a: Assume there exists i such that bi ≥ ai . By Corollary 34, it follows that
a →path(σ [1..i]) bi . By definition of σ ′, we have bi →σ ′[i+1..2n] b ′. Thus, a →θ μ θ μ b ′, and we
are done. So it remains to handle the case where bi < ai for all i . Recall that we assume b ′ > a.
Thus, we have b ′ > a, b ≤ a, and b ′ ≤ a′. So, we can invoke Lemma 35, from which it follows that
a →θ μ θ μ b ′ as desired. See Figures 3(a) and 3(b) for illustrations of both subcases.

Case b > a: This is similar to the previous case. If there exists i such that bi ≤ ai , then we derive
a →θ μ θ μ b ′ from Corollary 34. Thus, assume that bi > ai for all i . Intuitively, we now iterate σ to
obtain larger and larger configurations, until we find a configuration that exceeds the respective
configuration on the run from b. See Figure 3(c) for a sketch of this case.

Formally, let aj,0 � a0 + j · Δ(σ ), and aj,i � aj,0 + Δ(σ [1..i]). Recall that bi = b + Δ(σ ′[1..i]).
Let j be the first index such that there exists i such that aj,i ≥ bi , and let i be the smallest value
for which this holds for that choice of j. Note that such a j must exist, since Δ(σ ) > 0, as a < an .
Furthermore, note that by minimality of j, it follows that i > 0, as aj,0 = aj−1,n .

We argue that σ jσ [1..i − 1] is an admissible run from a to aj,i−1. We first show that for all j ′, i ′
that a0,i′ ≤ aj′,i′ . It is clear that aj′,i′ = j ′ · Δ(σ ) + Δ(σ [1..i ′]) = j ′ · Δ(σ ) + a0,i′ > a0,i′ because
Δ(σ ) > 0. Further, for j ′ < j and for all i ′, it holds that aj′,i′ < bi′ by minimality of j. In a similar
manner, aj,i′ < bi′ holds for all i ′ < i by minimality of j and i . Therefore, we have

a0,i′ < aj′,i′ < bi′ for all j ′ < j and i ′,
a0,i′ < aj,i′ < bi′ for all i ′ < i .
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Note the subtle difference between the statements, as the latter statement is concerned with the
part of the run from aj,0 to aj,i , and the former statement is concerned with the parts of the run
from a0,0 to a0,n , from a1,0 to a1,n , and so on.

Recall that run σ from a gives rise to values a0,i , and that run σ ′ from b gives rise to values bi .
Thus, admissibility of σ jσ [1..i − 1] from a follows from admissibility of σ from a and of σ ′ from
b. So we have a →σ j σ [1..i−1] aj,i−1. We further have aj,i ≥ bi and aj,i−1 < bi−1 by choice of j, i . By
definition of aj,i and bi , there exist α , β such that aj,i = aj,i−1 + αΔ(ti ) and bi = bi−1 + βΔ(ti ). By
Lemma 33, there thus exists α ′ such that aj,i−1 + α

′Δ(ti ) = bi . So we derive that aj,i−1 →ti bi .
Thus, we finally derive that

a →σ j σ [1..i−1] aj,i−1 →ti bi →σ [i+1..2n] b
′.

Hence, a →path(σ ) j+1 b ′, and by definition of σ , a →θ 2(j+1) b. So b ∈ Postθ μ (θ μ )+ (a). By assumption,
a �→ θ μb, so b ∈ Postθ μ (θ μ )+ (a) \ Postθ μ (a).
⇒) It holds that b ′ ∈ Postθ μ (θ μ )+ (a) ∪ Postθ μ (a). Thus, a →θ μ (θ μ )+ b

′ or a →θ μ b ′. If a →θ μ b ′,
then clearly we are done. So assume a �→ θ μb ′. By Lemma 38, there exist values a0, . . . ,an such
that a0 →θ μ a1 →θ μ · · · →θ μ an and a = a0 < a1 < · · · < an = b ′. Note that because a �→ θ μb ′,
the sequence must contain at least three elements. So take the first three elements a0,a1,a2. Since
a0 < a1 < a2 and a = a0 →θ μ a1 →θ μ a2, we have a →θ μ θ μ a2, and so (1) is satisfied. By a similar
argument, an−2 < an−1 < an and an−2 →θ μ an−1 →θ μ an = b, and hence (2) is satisfied. �

Now we are ready to define and prove the correctness of ϕ+θ+ (a,b, μ ). Let

ϕ+θ+ (a,b, μ ) � (a > b) ∧ [ϕθ (a,b, μ ) ∨ ∃a′ > a,∃b ′ < b : ϕθθ (a,a′, μ ) ∧ ϕθθ (b ′,b, μ )].

Lemma 40. It is the case that ϕ+θ+ (a,b, μ ) is satisfied iff a < b and b ∈ Postθ μ (θ μ )+ (a) ∪ Postθ μ (a).

Proof. It follows immediately from the sufficient and necessary condition of Lemma 39. �

Corollary 41. It is the case that ϕθ ∗ (a,b, μ ) is satisfied iff b ∈ Post(θ ∗ )μ (a). Furthermore, the size
of ϕθ ∗ is linear in the length of θ and nonparametric updates and endpoints on θ .

5.3 Formula for a Linear Path Scheme
Lemma 42. For every linear path scheme L = σ0θ

∗
0σ1θ

∗
1 . . .σk , there exists a formula of existential

linear arithmetic ϕL such that ϕL (a,b, μ ) holds iff b ∈ PostLμ (a), and ϕL has size polynomial in |L|.

Proof. We define the following formula whose correctness follows Lemma 36 and Corollary 41:

ϕL (a,b, μ ) � ∃a0,a
′
0, . . . ,ak ,a

′
k : (a0 = a) ∧ (a′k = b) ∧

∧

0≤i≤k

ϕσi (ai ,a
′
i , μ ) ∧

∧

0≤i<k

ϕθ ∗i (a′i ,ai+1, μ ).

�

Theorem 43. The existential reachability problem for parametric COCAs is in NP.

Proof. By Lemma 32, b ∈ Postp,q (a) iff there exists a linear path scheme L = σ0θ
∗
0σ1θ

∗
1 · · ·σk

of polynomial size such that b ∈ PostL (a). By Lemma 42, from any linear path scheme L, we
can construct, in polynomial time, an existential linear formula ϕL such that ϕL (a,b, μ ) holds iff
b ∈ PostLμ (a). By quantifying existentially over μ, we obtain a formula ϕ∃L (a,b) � ∃μ : ϕL (a,b, μ ),
which is satisfied iff b ∈ PostL (a).

Thus, to determine whether p (a) →∗ q(b), we (1) guess a linear path scheme L, (2) construct ϕ∃L ,
and (3) check whether ϕ∃L (a,b) holds. Since (3) can be achieved in NP [23], we are done. �
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5.4 Integer Valuations
We briefly consider parametric COCAs where only updates can be parameterized. In this setting,
a rational valuation that witnesses reachability can be turned into an integer valuation witnessing
reachability. This follows by rescaling the factors of the witnessing run so that it remains
admissible.

Lemma 44. Let μ be a valuation under which p (a) →∗ q(b). For any valuation μ ′ such that μ ′(x ) =
λμ (x ) with λ ∈ N≥1, it is the case that p (a) →∗ q(b) under μ ′.

Proof. Let λ ∈ N≥1 and let μ ′ be defined w.r.t. μ and λ. Let s (v ) →αt s ′(v ′) be consecutive
configurations from the run ρ witnessing p (a) →ρ q(b) under valuation μ. If Δ(t ) ∈ Q, then no
rescaling is needed as the update of t is nonparametric. Otherwise, we have v ′ − v = α · μ (Δ(t )).
Let β � α/λ. Since α ∈ (0, 1] and λ ≥ 1, we have β ∈ (0, 1]. Therefore, we have s (v ) →βt s ′(v ′).
Hence, by rescaling each transition, we obtain a run ρ ′ such that p (a) →ρ′ q(b) under μ ′. �

Now, consider a rational valuation μ witnessingp (a) →∗ q(b). Since μ is rational, each parameter
value μ (x ) can be represented as a fraction ax/bx . By Lemma 44, we know that valuation μ ′(x ) =
λμ (x ), where λ � ∏x ∈X bx , also witnesses reachability. Moreover, it is integral, hence:

Corollary 45. The (existential) reachability problem for parametric COCAs, where valuations
must be integral, is equivalent to the rational variant if guards are nonparametric.

5.5 Hardness
To conclude our treatment of parametric COCAs, we establish NP-hardness of the reachability
problem, even for the special case of acyclic COCAs.

Theorem 46. The reachability problem for acyclic parametric COCAs is NP-hard, even when pa-
rameters occur only on updates or only on guards.

Proof. The reductions for the case where parameters are only on updates and only on guards
are very similar, differing only in the construction of certain gadgets that otherwise have the same
purpose, so we present these two reductions in parallel.

We give a reduction from 3-SAT. Let φ = ∧1≤j≤m Cj be a 3-CNF formula over variables X =
{x1, . . . ,xn }.

Let us give two acyclic parametric COCAs P and P′, both with parameters X . Each one will
guess an assignment to X and check whether it satisfies φ. Additionally, P uses parameters only
on guards; P′, only on updates. We sketch the constructions in the following.

The first part is done by sequentially composing n copies of the gadget depicted at the top of
Figure 4, for P on the left-hand side, and for P′ on the right-hand side. The gadgets function as
follows: (1) state pi is entered with counter value 0, (2) the counter is set to xi , (3) membership of
the counter value in {0, 1} is checked, and (4) the counter is reset to zero upon leaving to qi . The
only way to traverse the chain of n such gadgets from p1 to qn is to have xi ∈ {0, 1} for each xi ∈ X .

The second part is achieved by chaining a gadget for each clause similar to the one depicted on
the bottom of Figure 4 for Cj = (x1 ∨ x2 ∨ ¬x4). The left-hand side depicts the gadget for P, and
the right-hand side depicts it for P′. In words, it (1) enters state r j with the counter value set to
0, (2) nondeterministically picks a variable xi of some literal of Cj and increments the counter by
xi , (3) checks whether the counter holds the right value w.r.t. the literal polarity, and (4) resets the
counter to zero upon leaving to state sj . Thus, the chain of gadgets can be traversed from r1 to sm
iff φ is satisfied by the assignment.
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Fig. 4. Gadgets of the reduction from 3-SAT, where parameters occur only on guards (left) or updates (right),
for variable xi (top) and clause Cj = (x1 ∨ x2 ∨ ¬x4) (bottom).

Altogether, these statements are equivalent: (1) formula φ is satisfiable, (2) there exists a valua-
tion μ : X → Q such that p1 (0) →∗ sm (0) holds in Pμ , and (3) there exists a valuation μ ′ : X → Q
such that p1 (0) →∗ sm (0) holds in P′μ′ . �

Thus, together with Theorem 43, NP-completeness of the existential reachability problem in
parametric COCAs follows.

6 CONCLUSION
In this work, we have introduced globally guarded COCA and COCA as over-approximations
of SOCA, and we have given efficient algorithms for their reachability problems. For both
models, the only hardness result we are aware of is the NL-hardness that follows trivially from
the directed-graph reachability problem. Giving tighter hardness results for the complexity of
reachability in GG-COCA and COCA seems desirable yet challenging. In particular, one goal
could be to show an equivalence with other problems known to be in NC2 or P-hard. However,
it seems necessary to encode information in the counter that, intuitively, encodes more precise
information than that the counter value is in a certain range. If only information of this sort
is available, then the problem is equivalent to reachability in one-clock timed automata, which
is in NL [16]. However, the continuous semantics seem to make encoding more precise infor-
mation nontrivial. Consequently, it remains open whether our algorithms are computationally
optimal.

For parametric COCA, we have shown that the reachability problem is NP-complete when num-
bers are encoded in binary. Our construction for establishing NP-hardness works regardless of
whether numbers are encoded in unary or in binary, but it works only when there is an arbitrary
number of parameters. For a fixed number of parameters, including no parameters at all, the only
hardness result is the trivial NL-hardness bound derived from graph reachability. The complexity
results are summarized in Table 1.
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Table 1. Overview of the Complexity for COCA
Reachability, Depending on Whether There Are

Zero, a Fixed Number, or an Arbitrary Number of
Parameters, and Whether Numbers Are Encoded

in Unary or in Binary

Unary Binary

None NL-complete ∈ P
Fixed NL-complete ∈ NP

Arbitrary NP-complete NP-complete
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