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Abstract

In the first part of the thesis, we prove the decidability (and PSPACE-completeness) of

the universal safety property on a timed extension of Petri Nets, called Timed Petri Nets.

Every token has a real-valued clock (a.k.a. age), and transition firing is constrained by

the clock values that have integer bounds (using strict and non-strict inequalities). The

newly created tokens can either inherit the age from an input token of the transition or

it can be reset to zero.

In the second part of the thesis, we refer to systems with controlled behaviour that

are probabilistic extensions of VASS and One-Counter Automata. Firstly, we consider

infinite state Markov Decision Processes (MDPs) that are induced by probabilistic

extensions of VASS, called VASS-MDPs. We show that most of the qualitative problems

for general VASS-MDPs are undecidable, and consider a monotone subclass in which

only the controller can change the counter values, called 1-VASS-MDPs. In particular,

we show that limit-sure control state reachability for 1-VASS-MDPs is decidable, i.e.,

checking whether one can reach a set of control states with probability arbitrarily close

to 1. Unlike for finite state MDPs, the control state reachability property may hold limit

surely (i.e. using an infinite family of strategies, each of which achieving the objective

with probability ≥ 1−ε, for every ε > 0), but not almost surely (i.e. with probability 1).

Secondly, we consider infinite state MDPs that are induced by probabilistic extensions of

One-Counter Automata, called One-Counter Markov Decision Processes (OC-MDPs).

We show that the almost-sure {1,2,3}-Parity problem for OC-MDPs is at least as hard

as the limit-sure selective termination problem for OC-MDPs, in which one would

like to reach a particular set of control states and counter value zero with probability

arbitrarily close to 1.
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Lay Summary

This thesis studies theoretical questions related to formal verification. Formal verifi-

cation consists in proving (or disproving) the correctness of an algorithm underlying

a system with respect to a certain mathematical property. In theoretical computer

science, a system is a mathematical object which can take many forms. The algorithmic

problems that we study in this thesis are related to two different kinds of systems: timed

and probabilistic. Some of the most important systems that exist in the theoretical

computer science literature are the Petri nets. These are a formal model for concurrent

computation. What we study here is a more extended variant, called Timed Petri nets.

We allow tokens to have an age (or clock value), and of course, these can become

older when time passes. A safety property requires that nothing bad happens during an

execution of the system. We establish the computational complexity of, and develop an

algorithm for checking safety properties on Timed Petri nets.

We introduce a probabilistic extension of Petri nets, called VASS-MDPs, which are

a model for concurrent computations with uncertainty. We show that, under certain

restrictions (and unlike in the general case), there exists an algorithm for checking

whether a target state can be reached with probability arbitrarily close to 1.

We also study properties on probabilistic one-counter systems, which are called

One-counter Markov Decision Processes (OC-MDPs). These systems are similar to

VASS-MDPs, with the mention that in this framework, there is only one counter, which

can be tested for zero. We study two different computational problems and show a

connection between almost-sure (a single strategy attains probability 1) and limit-sure

(a family of strategies arbitrarily closely approximates 1) checking problems.

ii



Acknowledgements

First of all, I would like to thank my supervisors Dr Richard Mayr and Dr Kousha

Etessami for their continuous support and encouragement. They introduced me to a

very interesting area of research, provided feedback on my progress and work, much

of which is based on their earlier contributions. I gratefully acknowledge Dr Richard

Mayr for guiding me through an unknown and rewarding road.

I am especially grateful to Patrick Totzke for numerous and very fruitful discussions

and feedback, for long hours spent together tackling hard problems, for his wise advice,

and for being a good friend.

I thank everyone at the LFCS for creating a very welcoming and friendly envi-

ronment. In particular, I thank my fellow PhD student Ricardo Almeida for inviting

me to social events, taught me about Portuguese culture and for being a good friend.

Obrigado!

I thank Dr Parosh Abdulla and his research lab for having the chance to visit Uppsala

and for many interesting and useful discussions.

I gratefully acknowledge financial support from EPSRC and LFCS who funded my

stay in Edinburgh as well as conferences I attended.

I am very grateful to my family, especially to my parents and grandmother, for their

love, support and for believing in me when I did not.

I am very grateful to Mihaela for her trust, her long wait and for being my person.

iii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Radu Ciobanu)

iv



Table of Contents

1 Introduction 1
1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Introduction to (Timed) Petri Nets . . . . . . . . . . . . . . . . . . . 7

1.3.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Timed Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Existential Coverability Problem . . . . . . . . . . . . . . . . 11

1.3.4 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Introduction to Probabilistic Systems . . . . . . . . . . . . . . . . . 12

1.4.1 Markov Chains (MCs) and Markov Decision Processes (MDPs) 12

1.4.2 Objectives on Probabilistic Systems . . . . . . . . . . . . . . 14

1.4.3 Types of Objective Analysis on MDPs/MCs . . . . . . . . . 15

1.4.4 Why Finite State Methods do not Work for Infinite-State Systems 16

1.4.5 VASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.6 PVASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.7 VASS-MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.8 One-Counter Markov Decision Processes (OCMDPs) . . . . 19

1.4.9 Solvency Games . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.10 Recursive Markov Chains (RMCs) and Recursive Markov De-

cision Processes (RMDPs) . . . . . . . . . . . . . . . . . . . 19

1.4.11 One-Counter Simple Stochastic Games (OC-SSGs) . . . . . . 20

1.4.12 Limitation of Our Models . . . . . . . . . . . . . . . . . . . 20

2 Timed Petri Nets 21
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Decidability questions for Petri Nets . . . . . . . . . . . . . . 23

v



2.3 Timed Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Timed Networks . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Timed Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Priced Timed Petri Nets . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Timed-Arc Petri Nets . . . . . . . . . . . . . . . . . . . . . . 30

2.4.6 Petri Nets with Data . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Existential Coverability Problem for TPNs . . . . . . . . . . . . . . . 31

2.6 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.2 Non-consuming TPNs . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 Region Abstraction . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.4 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Probabilistic Infinite-State Systems 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Types of strategies . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.3 Types of analysis for problems on MCs and MDPs . . . . . . 60

3.1.4 Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.5 Objectives on Countable MDPs . . . . . . . . . . . . . . . . 63

3.1.6 Countable state MDPs . . . . . . . . . . . . . . . . . . . . . 65

3.1.7 Finite state MDPs with Rewards . . . . . . . . . . . . . . . . 67

3.1.8 Infinite state MCs . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 VASS-MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Qualitative Analysis of VASS-Induced MDPs . . . . . . . . . 69

3.2.2 Verification Problems for VASS-MDPs . . . . . . . . . . . . 70

3.2.3 Undecidability in the General Case . . . . . . . . . . . . . . 72

3.2.4 Probabilistic Vector Addition Systems with States (PVASS) . 73

3.3 Limit-Sure Control State Reachability for 1-VASS-MDP . . . . . . . 74

3.4 One-Counter Markov Decision Processes (OC-MDPs) . . . . . . . . 83

3.4.1 Objectives for OC-MDPs . . . . . . . . . . . . . . . . . . . . 86

vi



3.4.2 OC-MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.3 Solvency Games . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.4 Recursive Markov Chains (RMCs) and Recursive Markov De-

cision Processes (RMDPs) . . . . . . . . . . . . . . . . . . . 89

3.4.5 One-Counter Simple Stochastic Games (OC-SSGs) . . . . . . 90

3.4.6 One-Counter Nets (OCNs) . . . . . . . . . . . . . . . . . . . 91

3.4.7 Limit-Sure Selective Termination for OC-MDPs . . . . . . . 91

4 Conclusion and Outlook 99

Bibliography 102

vii



Chapter 1

Introduction

The subject of this thesis is to study algorithmic problems on certain classes of finitely

representable systems whose underlying structure induce infinite state transition systems

with timed or stochastic behaviour.

The motivation of this project comes from the need of developing mathematical

models and techniques for verification problems that may occur in the outside world.

Recall the case of verifying nuclear power management systems or aircraft sensors.

For example, one would like to know whether a certain bad scenario might occur, and

under which conditions. Doing an empirical analysis via trial-and-error could be time

consuming, incomplete, and unreliable. Therefore, constructing a reliable system and

reasoning about its behaviour is a very important topic in both theoretical and applied

research. Property checking, also known as model checking [16], is based on verifying

whether an abstract model of a system that is given as input meets a certain specification.

Several tools have been developed to verify hardware properties, such as PRISM [62]

and UPPAAL [18]. In order to perform this analysis algorithmically, one needs to define

the problem in a clear mathematical language 1 .

In finite-state verification, a system is represented as a graph with a finite number

of nodes which model the states of the program that we want to verify, whereas edges

denote a transition relation between them. Under certain conditions, it may be the

case that the transition system is infinite. Therefore, techniques from the finite-state

systems framework may not be applicable. We recall the case of systems that have

timing constraints [11], infinite state probabilistic systems, or systems with variables

that range over infinite domains [63]. Hence, one would like to develop new verification

techniques for verifying properties for an infinite-state framework.

1Note that some properties may not be verified algorithmically, due to undecidability constraints.
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In the first part of the thesis, we study a decision problem on a timed extension

of Petri nets framework, also known as Timed Petri Nets (TPNs). Every token has a

real-valued clock (a.k.a. age), and transition firing is constrained by the clock values

that have integer bounds (using strict and non-strict inequalities). The newly created

tokens can either inherit the age from an input token of the transition or it can be reset

to zero.

In the second part of the thesis, we refer to systems with both probabilistic and

controlled behaviour. We study decision problems on countably infinite and finitely

branching Markov Decision Processes (MDPs) that are derived from finitely represented

transition systems, such as probabilistic extensions of Vector Addition Systems with

States (VASS-MDPs [1]) and One-Counter Markov Decision Processes (OC-MDPs

[28]).

The study of finite state systems with probabilistic behaviour is not new. Generally,

these systems are modelled as Markov Chains (MCs), if their behaviour is purely

probabilistic, or as Markov Decision Processes (MDPs) [76], if the systems exhibit both

probabilistic and controlled behaviour.

In general, the mathematical techniques required to solve problems on finite state

MDPs would not work in an infinite state environment, hence the need for new ap-

proaches 2. A large number of finitely-representable infinite state MDPs has been

already useful in modelling problems in various fields, such as queuing theory (Quasi-

Birth-Death Processes) [41], [52], [17], model checking [16], natural language pro-

cessing (Stochastic Context-Free Grammars) [56], systems biology [36], population

dynamics and behaviour [86], etc.

All classes of systems that we are going to study in this project, such as Timed Petri

Nets (TPNs), VASS-MDPs and OC-MDPs are related in the sense that they are finitely

representable and their underlying structure induce infinite state transition systems.

Note that VASS and Petri nets are mathematically equivalent [15]. However, they

present certain unique characteristics. In OC-MDPs, each control state allows a test for

the case where the counter value is zero, a property which is not valid for VASS-like

systems. Therefore, every control state has two types of transitions, depending whether

the counter value is strictly positive, or not. Also, in TPNs, there is no probabilistic

behaviour, along with the fact that there exist two types of transitions, allowing for the

time to pass and increase the age of tokens, and going from one state of the system to

another, respectively.

2A simple example can be encountered in Section 1.4.4
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1.1 Main Results

There are three main results that have been achieved during this project.

1. We show that the existential Coverability problem for TPNs is decidable and

PSPACE-complete. The Existential Coverability problem asks, for a given place

p and transition t, whether there exists a number m such that the marking M(m)
def
=

m · {(p,0)} ultimately enables t. Here, M(m) contains exactly m tokens on place

p with all clocks set to zero and no other tokens. This problem corresponds to

checking safety properties in distributed networks of arbitrarily many (namely m)

initially identical timed processes that communicate by handshake. A negative

answer certifies that the ‘bad event’ of transition t can never happen regardless

of the number m of processes, i.e., the network is safe for any size. Thus by

checking existential coverability, one solves the dual problem of Universal Safety.

2. We study decidability questions on infinite state MDPs which are derived from

a particular class of (finitely representable) probabilistic extension of Vector

Addition Systems with States (VASS). This probabilistic extension of VASS is

called VASS-MDP and has been introduced and studied in [1]. We show that

a lot of qualitative problems are undecidable even for this variant. Hence, we

focus on some particular monotone subclasses of VASS-MDPs, which are called

single sided, depending whether if only the controller (1-VASS-MDPs) or the

probabilistic player (P-VASS-MDPs) can change the counter values. We show

that the limit sure (control state) reachability problem for 1-VASS-MDPs is

decidable.

3. We study qualitative problems on infinite state MDPs which are derived from a

probabilistic extension of One-Counter Automata, called One-Counter Markov

Decision processes (OC-MDPs). We show that in order to achieve limit-sure

selective termination on OC-MDPs, it is sufficient to play using a memoryless-

deterministic strategy. We show that the almost-sure {1,2,3}-parity problem for

OC-MDPs is at least as hard as the limit-sure selective termination problem for

OC-MDPs.

The first result has been published in [5], where the author of this thesis played a

significant role in the development of key ideas as well as proving formally results, such

as:
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• construction of the Timed Petri Nets model

• proving that the existential coverability problem for Timed Petri Nets is PSPACE-

hard (lower bound)

• establishing relationship in terms of existential coverability problem between a

general Timed Petri Net and a non-consuming Timed Petri Net (Lemma 2.7.1)

• construction of the region abstraction for markings of a Timed Petri Net

• proving lemmas regarding timed steps (Lemma 2.7.7, Lemma 2.7.8) as well as

key idea in discrete step lemma Lemma 2.7.4

• construction of the acceleration procedure as well as proof of termination and key

ideas and formal arguments about correctness of Algorithm 1

The second result has been published in [1], where the author of this thesis played a

primary role in showing that the limit-sure control state reachability for single-sided

VASS-MDPs where only the controller can change counter values (i.e., 1-VASS-MDPs)

is decidable. The primary (and original) contribution of this result is based on the

procedure of reducing the dimension of a 1-VASS-MDP (Algorithm 2), along with its

termination and correctness. The third result has been published on its own, where

the author of this project has provided the construction as well as the main result

(Theorem 3.4.7), along with different lemmas that are directly linked to it.

1.2 Outline of the Thesis

The main goal of this thesis is to study decidability and complexity problems on certain

classes of finitely representable systems whose underlying structure induce infinite state

transition systems with stochastic or timed behaviour. In Chapter 1 we present a short

introduction about these systems and types of problems that we study, along with a

review with some well known results from this field.

In Chapter 2, we study the Existential Coverability problem on Timed Petri Nets

(TPNs). These systems are a (timed) extension of classical Petri nets where every token

has a real-valued clock (also known as age), whereas transition firing is constrained

by the clock values that have integer bounds (using strict or non-strict inequalities).

There exist several models, depending on what happens to the clock values of the newly
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created tokens. We consider the general case, in which a newly created token can either

inherit the age from an input token of the transition, or it can be reset to zero.

We will introduce the preliminaries required to understand the mathematical frame-

work of Timed Petri Nets, along with the details regarding the problem that we are

solving, as well as how does the model that we study relates to other models, such

as Timed Networks, Timed Automata, or Priced Timed Petri Nets. A timed network

consists of an arbitrary number of initially identical 1-clock Timed Automata, which

interact via handshake communication. Hence, a Timed Petri Net is equivalent to a

distributed (timed) network without a central controller, since initially there does not

exist any tokens on other places that may be used to simulate one. Among the most

well studied decision problems are Reachability and Coverability. The Reachability

problem asks whether given a starting marking, it is possible to reach a certain marking.

The Coverability problem asks whether given an initial marking, it is possible to reach a

marking that enables a certain transition. It has been shown that the reachability problem

is undecidable for Timed Petri Nets and all of its variants [83], whereas Coverability

is decidable using a well-quasi-ordering approach as in [10], and complete for the

complexity class F
ωωω . We show that the Existential Coverability problem for a Timed

Petri Net is decidable and PSPACE-complete. Our main motivation for studying this

problem lies in the fact that it corresponds to checking safety properties in distributed

networks of arbitrarily many initially identical timed processes that communicate by

handshake. A negative answer of the Existential Coverability problem certifies that a

bad event of enabling a certain transition can never happen. Note that this is the dual

problem of the universal safety problem, which asks whether from a starting marking it

will always produce a good outcome. The full mathematical model will be provided in

Chapter 2.

Chapter 3 is split between two related (but nevertheless different in terms of com-

putation) probabilistic systems. We start by providing some preliminaries required to

understand the rest of the chapter, in particular MDPs/MCs and perform an analysis

on the types of problems on them, such as qualitative and quantitative ones. We then

perform a review on probabilistic systems, such as Probabilistic Vector Addition with

States (PVASS) along with several decision problems that have been recently studied.

The first model that we study is a (probabilistic) extension of the VASS model, which

we will call VASS-MDPs. There exists an extensive literature of algorithmic problems

for VASS; however, one would like to study problems such as reachability on this

probabilistic variant. For general VASS-MDPs, we show that even the simplest of the
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probability-1 qualitative problems such as (almost)-sure reachability, is undecidable.

Hence, we consider two monotone subclasses of VASS-MDPs, which are called sin-

gle sided VASS-MDPs, in which either the controller, or the probabilistic entity can

unilaterally change the counter values, but not both. We show that limit-sure control

state reachability for single-sided VASS-MDPs where only the controller can change

the counter values is decidable. We construct an algorithm and prove its correctness,

where at each iteration the algorithm reduces the dimension of the VASS, while at the

same time preserving the limit sure reachability properties.

We study an algorithmic problem called the limit-sure selective termination problem

on One-Counter Markov Decision Processes (OC-MDPs), a probabilistic model that

extends finite state MDPs with an unbounded counter. In a OC-MDP, the counter may

be incremented, decremented, or left unchanged depending on the current control state

or whether the counter is zero or not. Note that this model is equivalent to a controlled

extension of discrete time Quasi-Birth-Death (QBDs) processes, a system that is studied

in queueing theory. Also, OC-MDPs are mathematically equivalent to a probabilistic

extension of One-Counter Automata (OCAs), and subsume a particular class of MDP

models called solvency games [20], a model in which a controller (also known as

gambler) would like in the long run behaviour to never become bankrupt. In a OC-MDP,

the limit-sure selective termination problem asks whether starting from an initial control

state with counter value 1 it is possible to reach a set of states (a.k.a. targets) with

counter value zero via an infinite family of strategies with probability arbitrarily close

to 1.

Our motivation for studying this problem comes from [28], where it has been left

open. The limit-sure case is different from its corresponding almost-sure case, since

more complicated behaviours in the structure of strategies may occur. In general,

termination problems for OC-MDPs (i.e., reaching counter value zero) are not only

interesting for the theoretical aspect, but they might be applied to real-world scenarios

such as checking battery life and energy levels of hardware components, or financial

models. However, the limit-sure case of selective termination does not have directly

applications. Nevertheless, it is still a hard problem and this thesis establishes a

connection with a subcase of the parity problem, called the {1,2,3}-parity problem.

In order to define the {1,2,3}-parity problem for an OC-MDP, one all control states

of the system are colored, i.e., they are labelled by a natural number. The almost-sure

{1,2,3}-parity problem asks whether with probability 1 the maximal color which is

visited infinitely often is 2.
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One does not claim that specifically the {1,2,3}-parity can be directly applied to

real-world scenarios. Note that {1,2,3}-parity is just a small subcase of general parity,

but already very hard (unlike simpler subcases of parity in the Mostowski hierarchy;

see [61]).

1.3 Introduction to (Timed) Petri Nets

In this section we are going to introduce a timed extended class of Petri Nets, also

known as Timed Petri Nets, along with its decision problem that we are going to study,

namely the Existential Coverability problem. We give a brief overview of different

models that are present in the literature, such as classical Petri Nets, Timed Networks,

Petri Nets with Time and Cost (a.k.a. Price Timed Petri Nets) and Timed Automata.

First we will introduce the concept of (classical) Petri Nets, a well studied model

that gave many fruitful research results.

1.3.1 Petri Nets

Petri nets were firstly introduced by Carl Adam Petri in 1962 in his PhD thesis [75],

having been applied to a wide variety of areas, such as distributed systems [82], systems

biology [36], networking [81], etc.

A Petri net (PN) provides a mathematical model for the description and representa-

tion of distributed systems. It is represented as a directed (bipartite) graph - the set of

nodes being partitioned into places and transitions, whereas the set of (directed) edges

are called arcs, connecting places and transitions. The directed arcs represent which

places are preconditions or postconditions for which transitions. A directed arc may

connect a place with a transition or vice-versa, and it cannot connect two places or two

transitions. A place from which an arc points to a transition is called an input place.

Conversely, a place to which the arc points from a transition is called an output place.

Each place may contain a (discrete) number of tokens. A marking is a distribution of

tokens over the corresponding places of the Petri Net. A transition is said to be enabled

if there exists sufficiently many tokens on the input places. When firing a transition,

some tokens are consumed from the input places and new tokens may be created on the

output places. See Example 1.3.1.

There exist multiple subclasses of Petri nets, such as conflict-free, one-safe, cyclic,

persistent, etc. A complete review of their properties and their decision problems can
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be found in [39]. A marking M is said to be reachable from an initial marking M0 if

there exists a sequence of transition steps which start at M0 and end up in M. There

exist multiple decision problems that have been studied in the literature, among which

we recall:

• The Reachability problem: Given a Petri Net N and 2 markings M0 and M f , one

would like to know whether there exists a sequence of transition steps which start

at M0 and permit us to reach M f .

• The Coverability problem: Given a Petri Net N and 2 markings M0 and M, one

would like to reach from M0 a marking M′ which covers M (M′ is larger than M,

with M′ ≥M ).

• The Boundedness problem: Given a Petri Net N , one would like to know whether

the set of reachable markings is finite. N is said to be k-bounded if places never

hold more than k tokens. Moreover, N is called safe if places hold at most one

token.

• The Liveness problem: Given a Petri Net N , one would like to know whether

for every reachable marking M and every transition t, there exists a sequence of

transitions from M to M′, such that M′ enables t.

Another decision problems studied in the literature are the deadlock-freedom problem,

the home state problem, the promptness and strong promptness problem, as seen in the

complete literature review from [39].

Example 1.3.1. The picture below shows a Petri net representation with three places

p,q,r and one transition t.

tp

q
r

Now, by firing transition t, the Petri Net becomes

tp

q
r

The transition t consumes one token from place p, and one token from place q, producing

a new token on place r.



Chapter 1. Introduction 9

Now we will extend the Petri Net model by introducing time, and equip tokens with

(real) clock values. This new model is called a Timed Petri Net.

1.3.2 Timed Petri Nets

Our model of a Timed Petri net is a Petri net in which every token has a real-valued

clock This information is also known as token age. There exists two types of transitions,

such as discrete and timed. In firing a discrete transition, the tokens which are removed

from the input places must have clock values in the interval of its corresponding (input)

arc. Similarly, the tokens which are newly produced on the output places will have clock

values either reset to zero or can inherit the clock values of some tokens from the input

places. Note that this is a restriction that we will preserve for our decision problem.

In general, this model can also be extended by allowing newly created tokens to have

any clock value in a specified interval. We assume a lazy behaviour of the Timed Petri

net, where firing of the transitions may be delayed, even if that will imply that certain

transitions may become disabled due to the fact that the tokens on the corresponding

input places are too old. Every discrete transition has a transition guard, which models

an interval that clock values may take in order to fire the transition. In order to do this,

we use transition variables that map to concrete clock values. See Example 1.3.2 for a

concrete example.

In a timed transition, all clock values of the tokens are incremented by the same real

amount.

Example 1.3.2. The picture below shows a representation of a Timed Petri Net with

four places p,q,r,s and one transition t, with transition variables x and y. Consider

variable x maps to 0.5 and variable y maps to 1.4.

The way we interpret the discrete transition firing is the following. Transition t

consumes two tokens (from place p) whose clock value is mapped to x (i.e. 0.5) and one

token (from place q) whose clock value is mapped to y (i.e. 1.4). The transition may fire

(i.e is enabled) only if there are sufficiently many tokens on the input places, and they

satisfy the transition constraint guards. Namely, since 0 ≤ 0.5 ≤ 5 and 1 < 1.4 ≤ 2,

then the transition will be enabled.
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0≤ x≤ 5

1 < y≤ 2

t

0.5 0.5p

1.4 1.9q

r

s

2x

y

2y

0

After firing t, we will obtain

0≤ x≤ 5

1 < y≤ 2

t

p

1.9q

1.4 1.4 r

0 s

2x

y

2y

0

A timed transition is represented in Example 1.3.3.

Example 1.3.3. The picture below shows a representation of a Timed Petri Net with

four places p,q,r,s and one transition t, with transition variables x and y. Consider

variable x maps to 0.5 and variable y maps to 1.4.

0≤ x≤ 5

1 < y≤ 2

t

0.5 0.5p

1.4 1.9q

3.4 r

4.1 s

2x

y

2y

0

Let us consider that all clocks will age by 0.2. Hence, we have that

0≤ x≤ 5

1 < y≤ 2

t

0.7 0.7p

1.6 2.1q

3.6 r

4.3 s

2x

y

2y

0
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As in the Petri net model, a marking represents a distribution of tokens (along with

their clock values) in the corresponding places.

The Reachability, Coverability, Boundedness, Liveness problems are defined simi-

larly as for classical Petri nets.

Now we introduce our decision problem that we are going to solve, namely the

Existential Coverability problem.

1.3.3 Existential Coverability Problem

Given a Timed Petri Net N , a place p of N and a transition t, the existential coverability

problem asks whether there exists a number m ∈ N of tokens such that starting with m

tokens of age 0 on place p (with all other places being empty), transition t is eventually

enabled. I.e., whether there exists a finite sequence of transitions towards a marking

that allows transition t to be fired. We recall that in the TPN framework a transition is

enabled if there are sufficiently many tokens in the corresponding input places, along

with satisfying the time constraints referring to their clock values.

We will show in Chapter 2 that this problem is decidable and PSPACE-complete.

1.3.4 Related Models

We recall time based systems which are related to the model of Timed Petri Nets, such

as

• Timed Networks [6] - A Timed network (TN) represents a family of infinitely

many systems, where each system is made of a controller and an arbitrary number

of same timed processes. The controller is made by a finite state, whereas each

process is a Timed Automaton. In each process, every clock value increases

continuously at the same rate. Further details can be found in Section 2.4.2.

• Timed Automata [12] - A Timed Automaton is a finite automaton which is equipped

with a finite set of real-valued clock variables, also known as clocks. Along a run

of a timed automaton, clock values increase all at the same speed, and transitions

may be enabled or disabled according to clock guards. Equivalently, they are also

known as clock constraints. During a run, clocks can be inspected or reset to zero.

Further details can be found in Section 2.4.1.

• Price Timed Petri Nets [4] - A Price Timed Petri Net is a Timed Petri Net equipped

with a cost function among transitions.
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• Petri nets with Data [63] - A Data Net is a generalisation of Petri nets where

tokens have data from linearly-ordered infinite domains that also support whole-

place operations, like resets and transfers.

1.4 Introduction to Probabilistic Systems

In this section, we will provide a basic introduction to probabilistic systems along with

their corresponding related work and results that are relevant to our models, in particular

VASS and OC-MDPs. We do not provide a mathematical framework here, since this

will be presented in Chapter 3. However, we would like to present the intuition behind

what we have achieved and how these results fit according to other models.

1.4.1 Markov Chains (MCs) and Markov Decision Processes (MDPs)

The main building blocks for our algorithmic analysis that we are going to study are the

Markov Chains (MCs) and Markov Decision Processes (MDPs).

As in [73], MCs are processes used to model systems that evolve in time under

uncertainty. In other words, it is a mathematical system in which it can experience

transitions from one state to another based on stochastic rules. The core property of a

Markov chain lies in the fact that it does not matter how the system arrived in the present

state (i.e its history), and the possible future states are fixed. Hence, the probability of

going to any particular state is dependent only on the current state and time elapsed. In

the literature, this is known as the Markov property. Markov chains occur in a variety

of fields that deal with uncertainty, such as game theory [72], economics and finance

[66]. If the probability of any state transition is independent of time, the Markov chain

is time-homogeneous. This process can be represented as a labelled directed graph, for

which the sum of the labels of any vertex’s outgoing transitions is 1.

Example 1.4.1. Given a Markov chain with 2 states p,q, with the probabilities listed on

its transitions/edges as in Figure 1.1, one would like to determine what is the probability

of a process starting at p will be at q after 2 moves. Clearly, in order to transition from

p to q, the system may either in the first move loop back to p and go to q in the second

move, or move to q in the first move and stay there, i.e loop back to q. Hence, from

basic probability arithmetic, we have that the probability of a process starting at p will

be at q after 2 moves is in fact 0.4×0.6+0.6×0.3 = 0.42.
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p q
0.6

0.7

0.4 0.3

Figure 1.1: A time-homogeneous (finite) Markov Chain

In what follows, we will refer to systems on discrete time. For completeness, we

will summarize some basic properties of Markov Chains as stated in [73].

• The period k of a state p is the greatest common denominator of all integers n≥ 0

for which the probability of starting in p and return in p after n states is strictly

positive. In the case where k = 1, p is called aperiodic, whereas if k > 1, p is

called periodic. A Markov chain is aperiodic if all of its states are aperiodic.

• A Markov chain is said to be irreducible if there exists a sequence of steps

between any two states that has strictly positive probability.

• A state q is said to be absorbing if the probability of going from p to p in one

step is 1.

• A state p is said to be recurrent if starting from p the probability of visiting p in

the long run is 1. A recurrent state is called positive recurrent if the expected time

to return to state p is finite. Conversely, if the expected time to return to state p

is infinite, p is said to be null recurrent. Otherwise, if the probability of never

returning to p is stricty positive, the p is called transient.

• We call a state p ergodic if it is aperiodic and positive recurrent. Hence, a Markov

chain in which all of its states are ergodic is called ergodic.

A Markov Decision Process (MDP) is a directed graph made of a countable set of

vertices (also known as states), equipped with a set of edges (also known as transitions).

The set of states is partitioned into two disjoint sets - one that specifies which states

belong to a controller (or non-deterministic player) and one which denotes the states

where stochastic behaviour is exhibited (also known as probabilistic states). Moreover,

the set of transitions refer to the type of states described, and greatly influence the

way transitions are chosen. If a state is controlled, then any outgoing transition can

be chosen non-deterministically. Conversely, if a state is probabilistic, there exists

a rational probability distribution over the set of outgoing transitions. Intuitively, a
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strategy is a recipe for the controller to choose what transitions to take at states that

he controls. In this terminology, a play is a path (which may be finite or infinite)

which is produced via states and transitions that occur according to a strategy and the

probabilistic behaviour. An infinite play is called a run. MDPs are also called 11
2-

player game, since the non-deterministic player would like to play against a stochastic

environment (or nature) in order to achieve a certain objective.

1.4.2 Objectives on Probabilistic Systems

Given a MDP or MC M, an objective denotes a property on the set of plays of M, which

can take several forms. Here, we mention some of the most encountered objectives that

occur in the literature. Given a subset T of states of M, we call T to be a target set. We

say that T is reached if there exists a play that visits at least one state in T .

• The reachability objective is made of the set of plays that end up in some state/set

of states (a.k.a. target set) which is given a priori. It is one of the most frequently

studied objective, which can occur in combination with other properties.

• The repeated reachability objective is made of the set of plays that visit some

given target set infinitely often. This objective is also known as the Büchi objective.

• The parity objective is made of the set of infinite plays that satisfy the parity

condition. On MDP/MC M, one would define a color (also known as priority)

function, which labels every state of M with a natural number. A play satisfies the

parity condition if and only if the minimal color (represented as a natural number)

that is visited infinitely often among the states of M is even. Note that the Büchi

objective (a.k.a. repeated reachability) is a special class of parity objective, where

the states of M are labelled with numbers in {1,2}. Conversely, the co-Büchi

objective is a special class of a parity objective, where the states of M are labelled

with number in {0,1}.

• The energy objective and the mean-payoff objective are defined on a finite MDPs

with a reward function where transitions are labelled with an integer. In an

energy condition, the goal for the controller is to forever keep the value of the

accumulated reward non-negative (never drop below zero). The mean-payoff

condition requires that the limit-average of the accumulated reward to be within a

threshold (usually strictly positive).
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In a similar manner, one can define objectives on a non-stochastic transition system

as well.

Given an MDP M, and a state c of M, we define the value at state c w.r.t. objective

Obj by considering all probabilities of satisfying Obj using each possible strategy

starting from state c and taking the supremum of them. A strategy σ is said to be

optimal starting at a given state c if using the moves of σ the objective Obj is satisfied

with probability equal to the value at state c w.r.t. Obj. Further details will be provided

in Chapter 3.

1.4.3 Types of Objective Analysis on MDPs/MCs

W.l.o.g., let us consider M to be a countably infinite state MDP 3, and let us consider

an arbitrary objective E. An analysis of an objective can be classified into two distinct

classes, such as qualitative and quantitative. Qualitative properties can be split into

several subclasses, such as sure, almost-sure, and limit-sure.

1. Qualitative:

• the objective is satisfied surely: all runs induced by every strategy σ of M

satisfy the objective.

• the objective is satisfied almost surely: there exists a strategy σ on M such

that the probability of achieving the objective using σ is 1.

• the objective is satisfied limit surely: there exists an infinite family of

strategies that satisfy the objective with probability arbitrarily close to 1.

2. Quantitative:

• Exact: one would like to find a strategy σ, compute the probability p using

σ of achieving a certain objective Obj and decide exact questions, such as

whether p⊕α, where α is a constant and ⊕ def
= {<,>}.

• ε-approximation: one would like to ε-approximate the value of a given

starting state v w.r.t. objective Obj, denoted as Val(v). I.e., one would like

to compute p′ such that p′ ≤ Val(v)≤ p′+ ε. Typically, each inequality is

witnessed by some strategy (and we might sometimes only approximate the

attainment of some of the witnessing strategies, as found in [40]-[45]).
3Note that a MC is an MDP whose set of controlled states is empty
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1.4.4 Why Finite State Methods do not Work for Infinite-State Sys-

tems

It is important to note from the beginning that many techniques that apply to solving

or optimizing certain objectives on finite state MDPs do not carry over to infinite state

MDPs. In the case of a finite state MDP, there always exists a minimal value different

from zero. However, for infinite state MDPs, this may not be case. For example,

consider the reachability objective, and an infinite state MC as in Example 1.4.2, that

represents the classical gambler’s ruin problem (as stated in [73]).

Example 1.4.2. The gambler’s ruin problem is a very well known problem in random

walk theory. Informally, a gambler will start with an initial wealth of 1 dollar and

then onwards, on each successive gamble it can either win 1 dollar or lose 1 dollar

independent of the past, with fixed probability p and q = 1− p, respectively. Once the

gambler has gone bankrupt, i.e., has reached 0 dollars, he cannot do anything. This

problem can be modelled as a Markov Chain M with infinite state space where the

vertices are represented by numbers which denote gambler’s wealth. The edges are

labelled by the fixed probabilities p and q, representing a win or a loss, accordingly.

0 1 2 3 · · ·
q

1
p

q

p

q

p

q

Figure 1.2: Gambler’s ruin problem

In the biased gambler’s ruin problem with unfair coin toss in gambler’s (player’s)

favor, let the probability of winning 1 dollar is p > 1
2 . Since in this model every state

of M is transient apart from the ruin state itself, it holds that the probability of ruin, i.e

reach state 0, is > 0, for every vertex. Moreover, for every other state different from 0,

the probability of ruin is < 1.

Also, another reason why standard techniques for solving/deciding problems on

finite state MDPs are not suitable for solving problems on infinite state MDPs is the fact

that optimal strategies may not exist, even for qualitative objectives such as reachability

or parity. Hence, even if there exists a state whose value is 1, it may not be the case that

there is a unique strategy that achieves value 1. However, there may exist an infinite

family of strategies which are ε-optimal, for every ε > 0. In our work, we focus on
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countably infinite MDPs that are finitely branching, where each state has a finite number

of successor states.

The main textbook for studying general techniques which includes a very compre-

hensive mathematical framework on finite state MDPs is [76]. Recently, several classes

of infinite state systems has been considered as well. For example, there exist studies

of infinite state MDPs and stochastic games induced by finitely representable systems,

such as one-counter systems (OC-MDPs [28] and OC-SSGs [26]).

1.4.5 VASS

Introduced in 1969 by Karp and Miller in [60], a VAS (Vector Addition System)

provides a mathematical model for distributed systems. A Vector Addition System with

States (VASS) is a generalized model of vector addition systems (VAS), which was

introduced by John Hopcroft and Jean-Jacques Pansiot in 1979 [58].

Informally, a VASS is a directed graph made by a finite set of control states , which

operate on a n-dimensional vector of counters. A counter can have a natural number

value. The edges are labelled by n-dimensional integer vectors, also known as counter

operations or transitions. The condition imposed on the counter values consists in

the fact that they cannot drop below zero. Hence, some transitions may be disabled.

Note that VASS are non stochastic models, since every available transition can be

chosen deterministically. However, they provide a framework for the models that are

probabilistic, such as VASS-MDPs.

q0start q1

(−1,−1)

(−2,0)

(+2,+2) (0,+2)

Figure 1.3: An example of a VASS with control states q0 and q1, with the counter

operation listed on its edges.

In Figure 1.3, note that starting from control state q0 and vector of counter values

(0,0), one can reach control state q1 by first performing the loop transition towards q0,

and then move to q1. At q1 the vector of counter values is (1,1).

There exists several decision problems that has been studied. For instance, in [77] it

is shown that control state reachability for VASS is EXPSPACE-complete, reachability
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in VASS is decidable [67], using a non-primitive recursive algorithm, whereas repeated

control state reachability in VASS is shown to be EXPSPACE-complete ([53]). Note

that VASS and Petri nets are mathematically equivalent [80].

1.4.6 PVASS

Probabilistic Vector Addition with States (PVASS) are stochastic extensions on VASS,

where the control states possess probabilistic behaviour only. In [7], it has been

shown that most quantitative objectives in PVASS are undecidable, or the solution not

constructible in Presburger arithmetic. Moreover, the qualitative (almost sure) repeated

reachability problem is shown to be decidable, provided that the set of target control

state is upward-closed. The case where one can reach infinitely many times a set of

target states with probability 0 has still been left open. Further details can be found in

Chapter 3.

1.4.7 VASS-MDPs

VASS-MDPs are extensions of PVASS with non-deterministic choices that are made by

a controller, as was firstly introduced in [1]. For general VASS-MDPs, we show that

even the simplest of these problems, such as (almost)-sure reachability, is undecidable

(Section 3.2.3). These systems subsume two monotone subclasses, such as 1-VASS-

MDPs and P-VASS-MDPs, which are called single sided. In 1-VASS-MDPs, only

the controller may change the counter values. In other words, on all control states

owned by the random player the outgoing transitions leave the counter unchanged. In

P-VASS-MDPs, this behaviour is swapped, namely that only the stochastic player may

change the counter values.

For P-VASS-MDPs, all sure/almost sure/limit sure (repeated) reachability are unde-

cidable. In the absence of deadlocks (i.e., paths that do not continue any further), the sure

reachability/ repeated reachability become decidable. However, for 1-VASS-MDPs,

the sure/almost sure/limit-sure reachability problem and sure/almost sure repeated

reachability problem are decidable [1].

In particular, we show that the limit-sure control state reachability for 1-VASS-

MDPs is decidable (Theorem 3.3.5).
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1.4.8 One-Counter Markov Decision Processes (OCMDPs)

OC-MDPs are probabilistic variants of One-counter Automata, which in turn are exten-

sions of finite state automata with an unbounded counter. An OC-MDP is made by a

finite set of control states, that are partitioned into stochastic and controlled. On each

transition, the counter can be decreased/increased by 1 unit or leaved unchanged.

The main motivation of studying this models comes from the work of [28], which

study objectives such as termination and selective termination. Informally, a termination

objective requires to reach counter value zero in any control state, whereas the selective

termination is more stringent, since it requires to reach counter value zero while at the

same time being in a set of control states which is given a priori (target states).

For a given OC-MDP, the limit-sure selective termination problem requires that

starting from a given control state with counter value 1, one would like to reach counter

value 0 in a given target set with probability arbitrarily close to 1.

In a {1,2,3}-parity problem, every state is colored with a natural number in {1,2,3}.
The almost-sure {1,2,3}-parity problem asks whether there exists a strategy such that

the highest color that is visited infinitely often is even.

We will show that almost sure {1,2,3}-parity problem for OC-MDPs is at least as

hard as the limit-sure selective termination problem for OC-MDPs. Further details will

be provided in Section 3.4.7.

1.4.9 Solvency Games

Solvency games (studied in [20]) model a risk-averse gambler (also known as investor).

They are a subclass of OC-MDPs, since they have a single control state, but there may

exist several actions that can modify the counter value (also known as bankroll). Further

details can be found in Section 3.4.2.

1.4.10 Recursive Markov Chains (RMCs) and Recursive Markov De-

cision Processes (RMDPs)

Recursive Markov Chains (RMCs) denote a class of countably infinite MCs that are con-

structed by adding a natural recursion feature to finite state MCs. It has been shown in

[45] that adding recursion to stochastic systems provides an abstract model to represent

probabilistic procedural programs. Further details can be found in Section 3.4.3.
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1.4.11 One-Counter Simple Stochastic Games (OC-SSGs)

OC-SSGs are a subclass of 2 player zero-sum stochastic games played on transition

graphs of one-counter automata. Further details can be found in Chapter 3.

1.4.12 Limitation of Our Models

The infinite state (finitely branching) MDPs that we study in this thesis are induced by

VASS-MDPs and OC-MDPs, respectively, which are finitely representable probabilistic

systems. In this sense, our model is somewhat restricted to a particular class of systems,

but nevertheless they have their own interesting problems, a lot of them being still open.
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Timed Petri Nets

In this chapter we define a mathematical formalism for representing Petri Nets where

every token has a single real-valued clock, also known as age. This model is called a

Timed Petri Net.

We introduce the model of Petri Nets, a model which has been researched since

the ’60s, along with the most frequently studied decision problems. We will present

the mathematical formalism of Timed Petri Nets, perform a background survey about

related (timed models), along with their decision results. We then present our main

contribution, namely that the Existential Coverability problem for Timed Petri Nets is

decidable and PSPACE-complete.

A safety property requires that nothing bad happens during the execution of a system.

Usually, one can study safety properties by first characterizing states/configurations/-

markings that we do not want to occur, considered to be bad. In the Petri net framework,

safety properties can be modelled by checking whether from an initial marking one can

fire a sequence of transitions to a (set of) bad markings.

2.1 Notation

We use N and R≥0 to denote the sets of nonnegative integers and reals, respectively.

For n ∈ N we write [n] for the set {0, . . . ,n}.
For a set A, we use A∗ to denote the set of words, i.e. finite sequences, over A, and

write ε for the empty word. If R is a regular expression over A then L (R)⊆ A∗ denotes

its language.

A multiset over a set X is a function M : X → N. The set X⊕ of all (finitely

supported) multisets over X is partially ordered pointwise (by ≤). The multiset union

21
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of M,M′ ∈ X⊕ is (M⊕M′) ∈ X⊕ with (M⊕M′)(α) def
= M(α)+M′(α) for all α ∈ X . If

M≥M′ then the multiset difference (M	M′) is the unique M′′ ∈X⊕ with M =M′⊕M′′.

We will use an additive representation and write for example (α+3β) for the multiset

(α 7→ 1,β 7→ 3). For a multiset M and a number m ∈ N we let m ·M denote the m-fold

multiset sum of M. We further lift this to sets of numbers and multisets on the obvious

fashion, so that in particular N ·S def
= {n ·M | n ∈ N,M ∈ S}.

Definition 2.1.1. A pre-order (A,�) is made of a set A and a reflexive and transitive

relation � on A. If � is also symmetric, then � is an equivalence relation. A set U ⊆ A

is called upward-closed w.r.t. � if c ∈U and c� c′ implies that c′ ∈U . For a ∈ A, we

define ↑ a def
= {b | a� b}, i.e., ↑ a is the upward closure of a w.r.t. �. For a set B⊆ A, we

define ↑ B def
=

⋃
a∈B ↑ a. One can define downward-closed sets and downward closures

in the similar way. A well-quasi-ordering (WQO) is any pre-order � over set A such

that for any infinite sequence a0,a1, ... in A, it is the case that there exist indexes i < j

such that ai � a j.

2.2 Petri Nets

Definition 2.2.1. A Petri Net is a tuple N = 〈P,T, In,Out〉, where P is a finite set of

places, T is a finite set of transitions (with P∪T 6= ∅ and P∩T = ∅), In is a finite

multiset over P×T , Out is a finite multiset over T ×P.

A marking M of a Petri Net N is an assignment of tokens to the places of a Petri

Net, i.e., it is a finite multiset over the set of places P. Intuitively, it represents the

number of tokens in each place. A place p is marked by a marking M if M(p)> 0. We

define the null/empty marking as the marking which maps every place to 0.

A transition t is said to be enabled if every input place p of t contains at least the

number of tokens equal to the weight of the (directed) arc which connects p to t, namely

that M(p)≥ In(p, t), for all p ∈ P.

An enabled marking can be fired. The firing of an enabled transition t removes from

every input place p a number of tokens equal to the weight of the (directed) arc which

connects p to t and produce in every output place p the number of tokens which is equal

to the weight of the (directed) arc that connects t to p.

Given two markings M and M′ of Petri Net N = 〈P,T, In,Out〉, we have that

M −−→M′ if there exists a transition t ∈ T such that

• M(p)≥ In(p, t), for every p ∈ P
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• M′(p) = M(p)− In(p, t)+Out(t, p), for every p ∈ P

We define −→∗ to be the reflexive and transitive closure of −→.

A transition system induced by the Petri Net N is defined by the set of markings of

N along with the transition relation on those.

We will illustrate some of the most frequently studied decidability questions for

Petri Nets.

2.2.1 Decidability questions for Petri Nets

1. Reachability problem: Given a Petri Net N , an initial marking M0, and a marking

M f , one would like to decide whether M0 −→∗ M f . Intuitively, given an initial

marking M0 and a final Petri Net marking M f we would like to know whether

there exists a sequence of transition steps which start at M0 and permit us to reach

M f . It has been shown to be decidable in [67].

2. Coverability problem: Given a Petri Net N , and markings M0, M, one would

like to check whether there exists a sequence of transitions such that M0
∗−−→M′,

with M ≤M′. In other words, one would like to decide whether starting from

initial marking M0 one can reach via a sequence of Petri Net transitions a marking

M’ with M′ ≥M. In this way, we say that marking M is covered by M′. Hence,

due to its structure, the Coverability problem is equivalent to the problem of

Reachability of an upward closed set of Petri Net markings. It has been shown to

be decidable in [77].

3. Boundedness problem: Given a Petri Net N , one would like to check whether

its set of reachable markings is finite. This problem is decidable, using what is

called the coverability tree method [60], by identifying places and tokens (i.e.,

token generators) from which the size of the Petri Net can become unbounded.

The construction of the coverability tree is however inefficient, by requiring

non-primitive recursive space. The work by Rackoff [77] gives an exponential

space algorithm.

4. Liveness problem: Given a Petri Net N = 〈P,T,F〉, for every reachable marking

M and for every transition t, there exists a sequence of transitions such that

M ∗−−→M′, where M′ enables t. This problem has been shown to be decidable

[54].
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A complete description of Petri Nets along with their subclasses and decision processes

can be found in [39].

2.3 Timed Petri Nets

Timed Petri nets are place/transition nets where each token carries a real value, some-

times called its clock value or age. Transition firing depends on there being suffi-

ciently many tokens whose value is in a specified interval. Timed-arc Petri nets (TPN)

[10, 85, 8, 24, 59] are an extension of Petri nets where each token carries one real-valued

clock and transitions are guarded by inequality constraints where the clock values are

compared to integer bounds (via strict or non-strict inequalities). The known models

differ slightly in what clock values newly created tokens can have, i.e., whether newly

created tokens can inherit the clock value of some input token of the transition, or

whether newly created tokens always have clock value zero. We consider the former,

more general, case.

All tokens produced by a transition either have age 0, or inherit the age of an

input-token of the transition. To model time passing, all token ages can advance

simultaneously by the same (real-valued) amount.

There exist several mathematical formalisms, such as [78], [69], [10] for represent-

ing TPNs whose tokens have clock values and transition constraints.

Timed Petri Nets (TPNs) can be classified into two classes, according to the domain

of the clock values of tokens. If the clock values are defined on a (non-negative)

countable domain, then the net is called discrete Timed Petri Net. In other words, time

is being incremented in discrete steps. On the other hand, if the clock values are defined

on (non-negative) real numbers, then the net is called dense Timed Petri Net, where

time is interpreted as continuous.

In our analysis, we consider the latter case, namely the model of dense Timed Petri

Nets, since every token has a real value age. Moreover, the model of Timed Petri

Nets we employ, which is similar to [10] , uses the fact that the system is unbounded,

where the number of tokens that is situated on places of the net can grow indefinetely.

Moreover, our transition firing rules employ a lazy semantics, namely that once a

transition is enabled, it is not the case that it must fire. Hence, it might happen that as

time passes (and tokens will age) that transition becomes disabled (due to transition

constraint guards). Conversely, another semantics (which we will not use in our model)
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is the eager firing transition semantics, in which transitions, once they are enabled, they

have to be fired.

The TPN model corresponds to a controller-less Timed Network [6] of initially

identical 1-clock Timed Automata which interact via handshake communication. Note

that the techniques and properties for Timed Automata do not directly apply for TPN

model, since on timed automata, the number of clocks is finite, whereas in our model

there can be an unbounded number of clock values.

Definition 2.3.1 (TPN). A timed Petri net (TPN) N = (P,T,Var,G,Pre,Post) con-

sists of finite sets of places P, transitions T and variables Var, as well as functions

G,Pre,Post defining transition guards, pre– and postconditions, as follows.

For every transition t ∈ T , the guard G(t) maps variables to (open, half-open or

closed) intervals with endpoints in N∪{∞}, restricting which values variables may

take. The precondition Pre(t) is a finite multiset over (P×Var). Let Var(t)⊆ Var be

the subset of variables appearing positively in Pre(t). The postcondition Post(t) is then

a finite multiset over (P× ({0}∪Var(t))), specifying the locations and clock values of

produced tokens. Here, the symbolic clock value is either 0 (demanding a reset to age

0), or a variable that appeared already in the precondition.

A marking for a TPN N is a finite multiset over P×R≥0.

Example 2.3.1. The picture below shows a place/transition representation of an TPN

with four places and one transition. Var(t) = {x,y}, Pre(t) = 2(p,x)+(q,y), G(t)(x) =

[0,5], G(t)(y) = ]1,2] and Post(t) = 3(r,y)+(s,0).

0≤ x≤ 5

1 < y≤ 2

tp

q

r

s

2x

y

3y

0

The transition t consumes two tokens from place p, both of which have the same clock

value x (where 0 ≤ x ≤ 5) and one token from place q with clock value y (where

1 < y ≤ 2). It produces three tokens on place r who all have the same clock value y

(where y comes from the clock value of the token read from q), and another token with

value 0 on place s.

There are two different binary step relations on markings: discrete steps −→t which

fire a transition t as specified by the relations G,Pre, and Post, and time passing steps

−→d for durations d ∈ R≥0, which simply increment all clocks by d. We will define

the discrete steps first, as in Definition 2.3.2.
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Definition 2.3.2 (Discrete Steps). For a transition t ∈ T and a variable evaluation

π : Var→ R≥0, we say that π satisfies G(t) if π(x) ∈ G(t)(x) holds for all x ∈ Var. By

lifting π to multisets over (P×Var) (respectively, to multisets over (P× ({0}∪Var))

with π(0) = 0) in the canonical way, such an evaluation translates preconditions Pre(t)

and Post(t) into markings π(Pre(t)) and π(Post(t)), where for all p ∈ P and c ∈ R≥0,

π(Pre(t))(p,c) def
= ∑

π(v)=c
Pre(t)(p,v) and π(Post(t))(p,c) def

= ∑
π(v)=c

Post(t)(p,v).

Intuitively, the discrete firing transition relation is defined using a variable evaluation

which ultimately maps preconditions and postconditions (represented as finite multisets

over (P×Var) and (P× ({0}∪Var)), respectively) to finite multisets over P×R≥0.

An intuitive example can be found in Example 2.3.1.

Definition 2.3.3 (Enabled transition). A transition t ∈ T is called enabled in marking

M, if there exists an evaluation π that satisfies G(t) and such that π(Pre(t)) ≤ M.

In this case, there is a discrete step M −→t M′ from marking M to M′, defined as

M′ = M	π(Pre(t))⊕π(Post(t)).

In order to illustrate the firing of discrete transition t from Example 2.3.1, let us

consider π(x) = 0.5 and π(y) = 0.6. In other words, the variables x and y will be

mapped to (concrete) clock values 0.5 and 0.6, respectively. Hence, we have that

• π(Pre(t))(p,0.5) = Pre(t)(p,x) = 2

• π(Pre(t))(q,0.6) = Pre(t)(q,y) = 1

• π(Post(t))(p,0.5) = π(Post(t))(q,0.6) = 0

• π(Post(t))(r,0) = Post(t)(r,y) = 3

• π(Post(t))(s,0) = 0

Now we will define the timed transition relation for TPNs.

Definition 2.3.4 (Time Steps). Let M be a marking and d ∈ R≥0. There is a time step

M −→d M′ to the marking M′ with M′(p,c) def
= M(p,c−d) for c≥ d, and M′(p,c) def

= 0,

otherwise. We also refer to M′ as (M+d).

We write −−→T for the union of all timed steps, −−→Disc for the union of all discrete

steps and simply −−→ for −−→Disc ∪ −→Time . The transitive and reflexive closure of

−−→ is ∗−−→. Cover (M) denotes the set of markings M′ for which there is an M′′ ≥M′

with M ∗−−→M′′, i.e.,

Cover (M)
def
= {M′ | ∃M′′ ≥M′.M ∗−−→M′′}
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2.4 Related Work

2.4.1 Timed Automata

A Timed Automaton (TA) is a finite state automaton, namely a graph with finite set of

nodes and edges that is equipped with a finite set of real-valued clocks. Along the edges

(a.k.a transitions) of the automaton, clock values can be compared to integer values,

forming clock constraints, which are called transition guards. These constraints can

enable or disable transitions, hence modifying its behaviour. A TA can perform two

types of transitions, such as discrete and timed. In a timed transition, all clock values

are incremented by the same real valued amount. A configuration of a TA captures

information about the control states and clock values. The Control State Reachability

problem for Timed Automata is decidable and PSPACE-complete [12]. Other decision

problems on Timed Automata found in [12] beyond the scope of this project include the

Emptiness problem (decidable and PSPACE-complete), the Language equivalence and

language inclusion problems (undecidable), the Universality problem (undecidable). A

complete survey on Timed Automata can be found in [13].

We recall the technique of finite partitioning, a method developed in [12] for Timed

Automata. Essentially, from the infinite state transition system induced by a Timed

automata, one can derive an abstract finite state system using an equivalence relation

on the set of states, where each new state in the abstract system is the representative

of one equivalence class. Transitions between two states in this newly constructed

system are defined in terms of transitions between two corresponding equivalence

classes. The region abstraction technique can be interpreted as an instance of the finite

partitioning method. In a region, one can ignore the exact value of the clocks, and store

information about their integral parts only and the ordering of their fractional parts.

This allows a more compact representation of infinite sets of configurations. Hence,

numerous algorithms for solving questions on Timed Automata use regions as symbolic

representations rather than using concrete configurations, since they are easier to design.

Other variants for this method include zones, where each zone refers to several regions,

providing a more efficient representation.

2.4.2 Timed Networks

A Timed network (TN) represents a family of infinitely many systems, where each

system is made of a finite state controller along with finitely many timed processes.
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Each timed process represents a Timed Automaton, hence it uses a finite number of

local real clock values. The values of every clock increase continuously at the same

rate. A configuration of a Timed Network with k clock stores information about the

controller, finitely many timed processes, and about clock values. The configuration of

the network can be changed according to a finite number of rules. Every rule represents

a set of transitions where the controller and a fixed number of processes synchronize

and change their states at the same time. A rule can have conditions on the local state of

the controller as well as local states and the clock values of the timed processes. Once

the conditions for a rule are satisfied, a transition can be performed. Then, the controller

and every participating process will change its state. When performing a transition, a

timed process may reset some of its clocks to 0.

Note that the techniques used for solving decidability questions for Timed Automata

may not be applied directly for solving corresponding problems for Timed Network.

The reason why this is the case lies in the fact that a Timed Network operates on an

unbounded number of clocks, whereas for Timed Automata it is not the case. The

behaviour for these models is therefore different.

In the case where each timed process has a single clock, the Control State Reacha-

bility problem for Timed Networks has been shown to be decidable [3]. The importance

of this result relies on the fact that numerous classes of safety properties can be reduced

to this problem. For multi-clock Timed Networks, it has been shown that even for the

case where each timed process has only 2 clocks, the Control State Reachability is

undecidable [6] (using a reduction from 2-Counter Minsky machines).

2.4.3 Timed Petri Nets

There exists an extensive literature on Timed Petri Nets, for both dense and discrete

Timed Petri Nets. For the scope of our project, we will focus on the case of dense Timed

Petri Nets. Several decision problems regarding (dense) Timed Petri Nets have been

studied, such as:

1. The Reachability problem: As in the standard Reachability problem for classical

Petri Nets, we have that for a given TPN N , an initial marking M0, and a marking

M, one would like to check whether M is reachable via a sequence of (both timed

and discrete) transition steps. It has been shown to be undecidable [37].

2. The Coverability problem: Given a TPN, and an initial marking M0 and a marking

M, the problem asks whether there exists a sequence of (discrete and timed)
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transitions via a marking which covers M. It has been shown in [10] to be

decidable using a backward reachability algorithm analysis, by using a symbolic

representation (such as existential zones) for defining upward closed sets of

markings. Moreover, the Coverability problem for TPNs is complete for the

hyper-Ackermannian complexity class F
ωωω [55]. With respect to Coverability,

TPNs are equivalent [21] to (linearly ordered) data nets [63].

3. The Zenoness problem: Given a TPN N , and a marking M0, one would like to

check whether there exists an infinite sequence of transitions from M0 with a finite

duration only. It has been shown to be decidable [7] by using techniques from a

subclass of transfer Petri nets , also known as simultaneous disjoint transfer nets

[47].

4. The Universal Zenoness problem: Given a TPN N and a marking M, one would

like to decide whether every infinite sequence of transitions takes only a finite

amount of time. It has been shown [7] to be undecidable, by using a reduction

from lossy counter machines.

5. Token liveness - Given a TPN N and marking M, one would like to check

whether the token is not dead. A token is called dead if it can not be used in

future computations. In [7] this problem has been shown to be decidable, by

reducing it to the Coverability problem for TPNs.

6. Boundedness - Given a TPN N and marking M0, one would like to check whether

the size of reachable markings is finite. There exists two different decidability

questions in terms of whether tokens which are not alive (i.e. dead) are taken

into account. If dead tokens are taken as part of the size of the marking, then the

problem is called syntactic boundedness. Conversely, if dead token are not taken

as part of the size of the marking, the problem is called semantic boundedness.

The syntactic boundedness problem has been shown in [7] to be decidable, using a

modified Karp Miller algorithm where each node denotes a region (as opposed to

a single marking as in the classical version). However, the semantic boundedness

problem has been shown in [7] to be undecidable.

The region abstraction technique for TPNs is very similar to the region construction

method for timed automata [12], where clocks are abstracted into finite regions, ac-

cording to fractional clock values. Hence, one would store information about the clock
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value of tokens in terms of fractional value and integral parts, separately. It extracts

information about tokens whose fractional part is zero, tokens that have non-zero frac-

tional part, and tokens which have the largest fractional value. Other variants include

existential zones [10].

2.4.4 Priced Timed Petri Nets

A Priced-Timed Petri Net is a timed extension of Petri Nets in which every token has

a real valued clock, and transition arcs are labelled with time intervals. Furthermore,

tokens that are present on places have storage costs per unit of time, and transitions

have firing costs. This model subsumes the TPN model as in [10], or Priced Timed

Automata [19]. We recall that

• The Reachability problem with Minimal Costs is shown to be decidable (Theorem

13, [4])

• The Coverability problem with Minimal Costs is shown to be decidable, but it

becomes undecidable if negative costs are allowed [4].

2.4.5 Timed-Arc Petri Nets

Timed-arc Petri nets are a (timed) extension of standard Petri nets, where time is

continuous. Tokens in a timed-arc Petri Net will carry a clock value (age). This system

has arcs between places and transitions which are labelled by intervals that restrict

transition firing w.r.t. the age of tokens. A timed-arc Petri Nets can be simple, by having

ordinary arcs, or can have other features, such as transport arcs or age-invariants [85].

Among the most important decidability questions for timed-arc Petri Nets, we recall the

fact that

• The Reachability problem is undecidable [85] for even simple Timed-arc Petri

Nets

• The Coverability and Boundedness problem are decidable for simple and Petri

Nets with transport arcs. For other timed-arc Petri Net models, these problems

are undecidable [37].
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2.4.6 Petri Nets with Data

Data Nets offer a more generalized framework of Petri Nets where tokens have data

from linearly-ordered infinite domains and in which whole-place operations are possible.

Many classes of infinite-state models are subsumed by this framework, such as multiset

rewriting systems, or polymorphic systems with arrays. In [63] it is shown that the

coverability and the termination (i.e., whether all computations are finite) problems for

arbitrary Data Nets are decidable. Moreover, it is shown that the boundedness problem

is decidable for Data Nets where whole-place operations are restricted to transfers.

Hence, related to our TPN, one can encode information about the real-valued clock

ages, by allowing tokens to carry data from infinite domains.

2.5 Existential Coverability Problem for TPNs

We are interested in the Existential Coverability problem for TPNs (∃COVER for

short), as follows. The existential Coverability asks, for a given place p and transition t,

whether there exists a number m such that the marking M(m)
def
= m · {(p,0)} ultimately

enables t. Here, M(m) contains exactly m tokens on place p with all clocks set to

zero and no other tokens. This problem corresponds to checking safety properties in

timed distributed networks of arbitrarily many (namely m) identical timed processes

that communicate by handshake. A negative answer certifies that the ‘bad event’ of

transition t can never happen regardless of the number m of processes, i.e., the network

is safe for any size. Thus by checking existential coverability, one solves the dual

problem of Universal Safety.

The corresponding problem for Timed Networks studied in [6] does not allow the

dynamic creation of new timed processes (unlike the TPN model which can increase

the number of timed tokens), but considers multiple clocks per process (unlike our TPN

with one clock per token).

The TPN model above corresponds to a distributed network without a central con-

troller, since initially there are no tokens on other places that could be used to simulate

one. Adding a central controller would make Existential Coverability polynomially

inter-reducible with normal Coverability and thus complete for F
ωωω [55] (and even

undecidable for > 1 clocks per token [6]).

We recall that in the TPN framework a transition t is enabled in a marking M if there

are sufficiently many tokens in the corresponding input places, along with satisfying
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the time constraints. Formally, these two conditions are stated in Definition 2.3.3. Now

we formally define our decision problem that we are going to solve, i.e., the Existential

Coverability problem (denoted as ∃COVER for short) for TPNs.

Existential Coverability problem for Timed Petri Networks

Input: A TPN N , an initial place p and a transition t.

Question: Does there exist M ∈ Cover (N · {(p,0)}) such that t is enabled in M?

Our main result lies in the fact that we show that ∃COVER is decidable and PSPACE-

complete. Both lower and upper bound will be shown (w.l.o.g., see Lemma 2.7.1) for

the syntactic subclass of non-consuming TPN, defined as follows.

Definition 2.5.1. A timed Petri net (P,T,Var,G,Pre,Post) is non-consuming if for all

t ∈ T , p ∈ P and x ∈ Var it holds that both 1) Pre(t)(p,x)≤ 1, and 2) Pre(t)≤ Post(t).

In a non-consuming TPN, token multiplicities are irrelevant for discrete transitions.

Intuitively, having one token (p,c) is equivalent to having an inexhaustible supply of

such tokens.

The first condition is merely syntactic convenience. It asks that each transition takes

at most one token from each place. The second condition in Definition 2.5.1 implies

that for each discrete step M −→t M′ we have M′ ≥M. Therefore, once a token (p,c)

is present on a place p, it will stay there unchanged (unless time passes), and it will

enable transitions with (p,c) in their precondition.

Wherever possible, we will from now on therefore allow ourselves to use the set

notation for markings, that is simply treat markings M ∈ (P×R≥0)
⊕ as sets M ⊆

(P×R≥0).

2.6 Lower Bound

PSPACE-hardness of ∃COVER does not follow directly from the PSPACE-completeness

of the reachability problem in timed automata of [12]. The reason why this happens

is the fact that in our model we may allow an unbounded number of clocks, whereas

timed automata operate on a finite amount of clocks only. Hence, the non-consuming

property of our TPN makes it impossible to fully implement the control-state of a timed

automaton. Instead our proof uses multiple timed tokens and a reduction from the

iterated monotone Boolean circuit problem [49].
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Figure 2.1: The transitions i.B, i.R and i.L that simulate the update of bit i according to

constraint i′ = j∧ k. All transitions demand that incoming tokens are of age exactly 1

and only tokens of age 0 are produced.

Definition 2.6.1. A depth-1 monotone Boolean circuit is a function F : {0,1}n →
{0,1}n represented by n constraints: For every 0 ≤ i < n there is a constraint of the

form i′ = j⊗k, where 0≤ j,k < n and⊗∈ {∧,∨}, which expresses how the next value

of bit i depends on the current values of bits j and k. For every bitvector v ∈ {0,1}n,

the function F then satisfies F(v)[i] def
= v[ j]⊗ v[k].

Theorem 2.6.1. [49] Given a vector v ∈ {0,1}n, a depth-1 monotone Boolean circuit

F, the problem of checking whether there exists a number m ∈N such that Fm(v)[0] = 1

is PSPACE-complete.

Towards a lower bound for ∃COVER (Theorem 2.6.3) we construct a non-consuming

TPN as follows, for a given circuit. The main idea is to simulate circuit constraints

by transitions that reset tokens of age 1 (encoding v) to fresh ones of age 0 (encoding

F(v)), and let time pass by one unit to enter the next round.

For every bit 0 ≤ i < n, the net contains two places Truei and Falsei. A marking

Mv ≤ P×R≥0 is an encoding of a vector v ∈ {0,1}n if for every 0≤ i < n the following

hold.

1. (Truei,0) ∈Mv ⇐⇒ v[i] = 1.

2. (Falsei,0) ∈Mv ⇐⇒ v[i] = 0.

3. If (p,c) ∈Mv then c = 0 or c≥ 1.

Note that in particular one cannot have both (Truei,0) and (Falsei,0) in Mv. For
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every constraint i′ = j∧ k we introduce three transitions, i.L, i.R, and i.B, where

Pre(i.B) def
= (True j,x)+(Truek,y) Post(i.B) def

= Pre(i.B)+(Truei,0)

Pre(i.L) def
= (False j,x) Post(i.L) def

= Pre(i.L)+(Falsei,0)

Pre(i.R) def
= (Falsek,x) Post(i.R) def

= Pre(i.R)+(Falsei,0)

and the guard for all transitions is G(x) = G(y) = 1. See Figure 2.1 for an illustration.

For disjunctions i′ = j∨ k the transitions are defined analogously, with True and False

inverted. The correctness proof of our construction rests on the following simple

observation.

Lemma 2.6.2. If F(v)= v′ then for every encoding Mv of v, there exists an encoding Mv′

of v′ such that Mv −→1
∗−−→Disc Mv′ . Conversely, if Mv −→1

∗−−→Disc Mv′ for encodings

Mv and Mv′ of v and v′ respectively, then F(v) = v′.

Proof. For the first part, we construct a sequence M0 −−→Disc M1 −−→Disc . . .−→D Mn−1

where M0
def
= (Mv +1) and every step Mi−1 −−→Disc Mi adds tokens simulating the ith

constraint of F . Since the TPN is non-consuming, we will have that Mi ≥ (Mv +1), for

all i < n. Consider now constraint i′, and assume w.l.o.g. that i′ = j∧ k (the other case

is analogous). There are two cases depending on v′[i].

1. Case v′[i] = 1. By our assumption that F(v) = v′ we know that v[ j] = 1 and v[k] =

1. So (True j,1) ∈ (Mv +1) ≤Mi−1 and (Truek,1) ∈ (Mv +1) ≤Mi−1. By con-

struction of the net, there is a transition i.B with Pre(i.B) = (True j,1)+(Truek,1)

and Post(i.B) =Pre(i.B)+(Truei,0). This justifies step Mi−1−→i.B Mi and there-

fore that (Truei,0)∈Mi ≤Mn−1. Also notice that no marking reachable from M0

using only discrete steps can contain the token (Falsei,0). This is because these

can only be produced by transitions requiring either (False j,1) or (Falsek,1),

which are not contained in M0 by assumption that Mv encodes v. Therefore

(Falsei,0) /∈Mn−1.

2. Case v′[i] = 0. W.l.o.g., v[ j] = 0. Therefore, (False j,1) ∈ (Mv +1)≤Mi−1. By

construction of the net, there exists transition i.L with Pre(i.L) = (False j,1) and

Post(i.L) = Pre(i.L)+ (Falsei,0). This justifies the step Mi−1 −→i.L Mi, with

(Falsei,0) ∈Mi ≤Mn−1. Notice again that no marking reachable from M0 using

only discrete steps can contain the token (Truei,0). This is because these can

only be produced by transitions i.B, requiring both (True j,1),(Truek,1) ∈M0,

contradicting our assumptions. Hence, (Truei,0) /∈Mn−1.
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We conclude that the constructed marking Mn−1 is an encoding of v′.

For the other part of the claim, assume that there exist markings Mv and Mv′ which

are encodings of vectors v and v′, respectively, with Mv −→1
∗−−→Disc Mv′ . We will show

that F(v) = v′. Recall that F(v)[i] def
= v[ j]⊗v[k], where 0≤ j,k < n and⊗∈ {∧,∨}. We

will show for each i < n that v′[i] = v[ j]⊗ v[k]. Again, consider the constraint i′, and

assume w.l.o.g. that i′ = j∧ k (the other case is analogous). There are two cases.

1. Case v′[i] = 1. By definition of a marking encoding, we have that (Truei,0) ∈Mv.

By construction, there is a transition i.B with Pre(i.B) = (True j,1)+(Truek,1)

and Post(i.B)=Pre(i.B)+(Truei,0). By assumption, it holds that (Mv+1) ∗−−→Disc

M′v, where Mv −→1 (Mv +1). Note that (True j,1) ∈ (Mv +1) and (Truek,1) ∈
(Mv +1). Hence, we have that v[ j] = 1 and v[k] = 1, and therefore that F(v)[i] =

v′[i] = v[ j]∧ v[k].

2. Case v′[i] = 0. Then (Falsei,0) ∈Mv and, since this token can only be produced

by transitions i.L or i.R, either (False j,1) ∈ (Mv +1) or (Falsek,1) ∈ (Mv +1).

Therefore (False j,0)∈ (Mv) or (Falsek,0)∈ (Mv) and because Mv is an encoding

of v, this means that either v[ j] = 0 or v[k] = 0. Therefore, F(v′)[i] = v[ j]∧v[k] =

0.

Theorem 2.6.3. ∃COVER is PSPACE-hard for non-consuming TPN.

Proof. For a given monotone Boolean circuit, define a non-consuming TPN as above.

By induction on m ∈ N using Lemma 2.6.2, we derive that there exists m ∈ N with

Fm(v) = v′ and v′[0] = 1 if, and only if, there exists encodings Mv of v and Mv′ of v′, with

Mv
∗−−→Mv′ . Moreover, if there is a marking M such that Mv

∗−−→M and 0 ∈ frac(M),

where M contains a token of age 0, then M ≤Mv′ for some encoding Mv′ of a vector

v′ = Fm(v). This means that it suffices to add one transition t with Pre(t) = (True0,0)

whose enabledness witnesses the existence of a reachable encoding Mv′ containing

a token (True0,0). By the properties above, there exists m ∈ N with Fm(v) = v′ and

v′[0] = 1 iff Mv
∗−−→Mv′

t−−→.

This lower bound holds even for discrete time TPN, e.g. [37], because the proof

uses only timed steps with duration d = 1.
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2.7 Upper Bound

We will first present a summary of our techniques that we use in order to show the upper

bound for ∃COVER for TPNs. Then, we present our formal construction along with

explanations and intuitions throughout.

2.7.1 Summary

Without loss of generality, we can restrict ourselves to a TPN which is non-consuming

(Definition 2.5.1). Intuitively, since we start with an arbitrarily high number of tokens

anyway, it does not matter how many tokens are consumed by transitions during the

computation, since some of them will always remain. This is illustrated in Lemma 2.7.1,

which justifies a logarithmic space reduction from the existential coverability problem

for a TPN to the existential coverability problem for a non-consuming TPN. In other

words, if one can solve the existential coverability problem for a non-consuming TPN,

then one can also solve the existential coverability for a (general) TPN.

In Section 2.7.3, we perform an abstraction of the real-valued clocks, similar to the

one used in [8]. In other words, clock values are split into integer parts and fractional

parts, as shown in Definition 2.7.1. The integer parts of the clocks can be abstracted into

a finite domain, since the transition guards cannot distinguish between values above

the maximal constant that appears in the system. The fractional parts of the clock

values that occur in a marking are ordered sequentially. Hence, every marking can be

abstracted into a string where all the tokens with the i-th fractional clock value are

encoded in the i-th symbol in the string. Since token multiplicities do not matter for

existential coverability, the alphabet from which these strings are built is finite.

In order to solve existential coverability (for non-consuming TPN), in Section 2.7.4

we come up with an acceleration procedure (Algorithm 1) that computes a symbolic

representation of the set of reachable strings (i.e., marking abstractions), in terms of

finitely many regular expressions. We use regular expressions instead of strings only

due to the fact that by firing discrete and timed transitions, the space of these strings is

still infinite.

Furthermore, to justify the termination of Algorithm 1 (Lemma 2.7.12), we show in

Lemma 2.7.11 that the length of the regular expressions that are present in the procedure

cannot be more than 4. This is achieved by producing a sequence of transitions via

alternating between discrete and timed steps, along with the claim that some symbols

can be discarded. Note that without this property, termination of the procedure would
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not have been possible. Correctness of Algorithm 1 is shown in Lemma 2.7.13.

Finally, we can check existential coverability for a non-consuming TPN by using

this symbolic representation, as in Section 2.7.5. Due to Corollary 2.7.15, the existential

coverability problem for TPNs is PSPACE-complete.

2.7.2 Non-consuming TPNs

We show in Lemma 2.7.1 that in terms of existential coverability, one can focus on

a non-consuming TPN, i.e., no tokens are consumed during transition firing. More

specifically, one can reduce the existential coverability problem for general TPNs to

the existential coverability problem for non-consuming TPNs. This is realized using

Claim 2.7.1.1.

Lemma 2.7.1. The ∃COVER problem for TPN logspace-reduces to the ∃COVER

problem for non-consuming TPN. That is, for every TPN N and for every place p

and transition t of N , one can construct, using logarithmic space, a non-consumimg

TPN N ′ together with a place p′ and transition t ′ of N ′, so that there exists M ∈
CoverN (N · {(p,0)}) enabling t in N if and only if there exists M′ ∈CoverN ′ (N · {(p′,0)})
that enables t ′ in N ′.

Proof. First notice that the first condition in Definition 2.5.1, that asks that every

transition takes at most one token each place, is merely a syntactic convenience. A

net satisfying this condition can be constructed by adding a few extra places and

intermediate transitions to first distribute tokens to those extra places for the original

transition to consume.

So let’s assume w.l.o.g., that N satisfies this condition and let N ′ be the non-

consuming variant derived from N where for all transitions T , PostN ′(t)
def
= PostN (t)⊕

PreN (t). Notice that then, for every discrete step M −→t M′ we have that M ≤M′. We

prove the following claim.

Claim 2.7.1.1. For every place p and transition t of N there exists M ∈ CoverN (N ·
{(p,0}) enabling t in N if, and only if there exists M′ ∈ CoverN ′(N · {(p,0)}) that

enables t in N ′.

The “N →N ′” direction follows from the observation that the pointwise ordering

≤ on markings, is a simulation: If M −−→ N and M′ ≥M then there exists an N′ ≥ N

with M′ −−→ N′. For the other direction, suppose there exists a witnessing path

m · {(p,0)} = M0 −−→M1 −−→M2 −−→ ·· · −−→Mk
t−−→
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of length k in N ′. We can inductively derive a witnessing path in N backwards, again

using the fact that ≤ is a simulation. First note that if M′ enables t, then every m′ ·M′

with m′ > 0 enables t, (in both nets). Suppose Mi
ρ−−→ is a path of length (k− i) that

ends in a t-transition. By the simulation property, there is such a path from every m ·Mi,

m > 0. Further, there must exist markings M′i−1 ∈ ↓(N ·Mi−1) and M′i ∈ ↓(N ·Mi) such

that M′i−1 −−→ M′i . It suffices to pick M′i−1
def
= B ·Mi−1, where B ∈ N is the maximal

cardinality of any multiset Pre(t) (This number is itself bounded by |P| · |Var| by our

assumption on Pre(t)). We conclude that in N there is a path ending in a t-transition

and starting in marking (B · k) ·M0, which is in N · {(p,0)}.

2.7.3 Region Abstraction

We recall a constraint system called regions defined for timed automata [12]. The

version for TPN used here is similar to the one in [8].

Consider a fixed, nonconsuming TPN N = (P,T,Var,G,Pre,Post). In order to state

formally what an abstraction of a marking is (Definition 2.7.1), we split the clock values

of tokens into an integral part and a fractional part. Note that since the transition guard

constraint system cannot distinguish between clock values above the maximal constant

that appears in N , the integer parts can be abstracted into a finite domain, i.e., 0 up to a

maximal integer value that appears in the transition guards G, called cmax. We order the

fractional parts of clock values of tokens in a sequential order. We recall that a marking

is an assignment of tokens to places of a TPN. In the non-consuming TPN framework,

we interpret markings as sets (since token multiplicities do not matter). Due to the fact

that every token has a clock value, an abstraction of a marking consists of a string whose

i-th symbol is made of a place p and the integral part of a clock value, whose token is

present on p and have i-th fractional part. An example is given in Example 2.7.2. To be

more specific, an abstraction of a marking is considered as the shortest S-abstraction,

where an S-abstraction is made of a superset of all fractional parts of clock values.

More formally, let cmax be the largest finite value appearing in transition guards G.

Since different tokens with age > cmax cannot be distinguished by transition guards,

we consider only token ages below or equal to cmax and treat the integer parts of older

tokens as equal to cmax +1. Let int(c) def
= min{cmax +1,bcc} and frac(c) def

= c−bcc for

a real value c ∈ R≥0. We will work with an abstraction of TPN markings as words over

the alphabet Σ
def
= 2P×[cmax+1]. Each symbol X ∈ Σ represents the places and integer ages

of tokens for a particular fractional value.



Chapter 2. Timed Petri Nets 39

Definition 2.7.1. Let M ⊆ P×R≥0 be a marking and let frac(M)
def
= {frac(c) | (p,c) ∈

M} be the set of fractional clock values that appear in M.

Let S ⊂ [0,1[ be a finite set of real numbers with 0 ∈ S and frac(M) ⊆ S and let

f0, f1, . . . , fn, be an enumeration of S so that fi−1 < fi for all i≤ n. The S-abstraction

of M is

absS(M)
def
= x0x1 . . .xn ∈ Σ

∗

where xi
def
= {(p, int(c)) | (p,c)∈M∧ frac(c) = fi} for all i≤ n. We simply write abs(M)

for the shortest abstraction, i.e. with respect to S = {0}∪ frac(M).

Example 2.7.2. The abstraction of marking M = {(p,2.1),(q,2.2),(p,5.1),(q,5.1)}
is abs(M) = /0 {(p,2),(p,5),(q,5)} {(q,2)}. The first symbol is /0, because M contains

no token with an integer age (i.e., no token whose age has fractional part 0). The

second and third symbols represent sets of tokens with fractional values 0.1 and 0.2,

respectively.

Note that clocks with integer values play a special role in the behavior of TPN,

because the constants in the transition guards are integers. Thus we always include the

fractional part 0 in the set S in Definition 2.7.1.

We use a special kind of regular expressions over Σ to represent coverable sets of

TPN markings as follows. Informally, the denotation of a regular expression E over

alphabet Σ
def
= 2P×[cmax+1] is made of the set of markings which are covered (i.e., smaller

with respect to ≤) by another marking whose abstraction belongs to the language of

regular expression E. Definition 2.7.2 will be particularly useful when reasoning about

the correctness of the acceleration procedure.

Definition 2.7.2. A regular expression E over Σ represents the downward-closed set of

TPN markings covered by one that has an abstraction in the language of E:

[[E]] def
= {N | ∃M∃S. M ≥ N∧absS(M) ∈ L (E)}.

An expression is simple if it is of the form E = x0x1 . . .xk where for all i≤ k either

xi ∈ Σ or xi = yi
∗ for some yi ∈ Σ. In the latter case we say that xi carries a star. That

is, a simple expression is free of Boolean combinators and uses only concatenation and

Kleene star. We will write x̂i to denote the symbol in Σ at position i: it is xi if xi ∈ Σ and

yi otherwise.

Remark 2.7.3. Notice that for all simple expressions α,β so that |α|> 0, we have that

[[α/0β]] = [[αβ]]. However, unless α has length 0 or is of the form α = /0α′, we have
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[[ /0α]] 6= [[α]]. This is because a marking M that contains a token (p,c) with frac(c) = 0

has the property that all abstractions absS(M) = x0 . . .xk of M have x0 6= /0.

The following lemmas express the effect of TPN transitions at the level of the region

abstraction. Lemmas 2.7.5 and 2.7.6 state that maximally firing of discrete transitions

(the relation ∗−→D) is computable and monotone. Lemmas 2.7.7 and 2.7.8 state how to

represent timed-step successor markings.

The main idea of Lemma 2.7.5 is essentially due to the monotonicity of discrete

transition firing in TPN and the fact that iteratively firing transitions must saturate due

to the nonconsuming semantics. We first prove it only for star-free expressions E in

condition 3 (Lemma 2.7.4), and then generalize to all simple expressions by induction.

Informally, Lemma 2.7.4 refers to simple expressions without any starred symbols.

For every non-consuming TPN, one can compute 2 functions f and g that carry 3

symbols as arguments in the following way. Function f is used to establish what

happens to the zero symbol of the marking abstraction when the discrete transition

is fired in the TPN, keeping in mind the current abstraction and producing a new

symbol. Function g does exactly the same thing, but refers to symbols that correspond

to non-zero fractional parts. Note that the α argument refers to the first symbol of the

expression (the one which refers to the zero fractional part), whereas the β argument

refers to the rest of the symbols (corresponding to non-zero fractional parts). The third

argument refers to the current symbol that is taken into account. Note that by firing

discrete transitions, the new symbols that are produced are larger w.r.t. subset ordering

to the corresponding previous ones, before firing. Hence, point 1 and 2 refer to this

property, whereas point 3 justifies the mechanism of discrete transition steps, i.e., the

fact that the newly simple expression produced represent exactly those markings that

are obtained by using discrete steps.

Lemma 2.7.4. For every non-consuming TPN N there are polynomial time computable

functions f : Σ×Σ×Σ→ Σ and g : Σ×Σ×Σ→ Σ with the following properties.

1. f and g are monotone (w.r.t. subset ordering) in each argument.

2. f (α,β,x)⊇ x and g(α,β,x)⊇ x for all α,β,x ∈ Σ.

3. For every word w = x0x1 . . .xk over Σ, α
def
= x0 and β

def
=

⋃
i>0 xi, and

w′ def
= f (α,β,x0)g(α,β,x1) . . .g(α,β,xk) we have [[w′]] = {M′′ | ∃M ∈ [[w]]∧M ∗−−→Disc

M′ ≥M′′}.
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Proof. It is sufficient to show the existence of such functions ft and gt for individual

transitions t ∈ T and −→t instead of ∗−−→Disc. The functions f and g can then be

obtained by iterated applications of ft and gt (for all transitions t) until convergence. (In

addition to expanding x, the results of each application ft and gt are also added to α and

β, respectively.) This works, because the functions ft and gt are monotone and operate

on the finite domain/range Σ. Since we have a polynomial number of transitions, and

each symbol in Σ can increase (by strict subset ordering) at most |P| · (cmax +1) times,

the number of iterations is polynomial. Moreover, the properties of Item 1, Item 2 and

Item 3 carry over directly from ft and gt to f and g, respectively.

Now we consider the definitions and properties of the functions ft and gt for a

particular transition t. Given a variable evaluation π : Var→ R≥0, we define the func-

tions π0 and π>0 from sets over (P×Var) to sets over (P×N) as follows. Intuitively,

they cover the parts of the assignment π with zero/nonzero fractional values, respec-

tively. Let π0(S)
def
= {(p,c) |(p,y) ∈ S ∧ π(y) = c ∈ N} and π>0(S)

def
= {(p,c) |(p,y) ∈

S ∧ bπ(y)c = c ∧ frac(π(y)) > 0}. The definitions are lifted to multisets in the

straightforward way.

Now let t be a transition. We say that (α,β) enables t iff ∃π : Var→ R≥0 such

that π(y) ∈ G(t)(y) for all variables y and π0(Pre(t))⊆ α and π>0(Pre(t))⊆ β. Thus

if abs(M) = x0x1 . . .xn then M enables t iff (x0,
⋃

i>0 xi) enables t, since all transition

guards in G(t) are intervals bounded by integers (i.e., t cannot distinguish between dif-

ferent nonzero fractional values). Moreover, enabledness can be checked in polynomial

time (choose integers for the part in α and rationals with fractional part 1/2 for the part

in β).

In the case where (α,β) does not enable t we just let gt(α,β,x)
def
= x and ft(α,β,x)

def
=

x. The conditions above are trivially satisfied in this case.

In the case where (α,β) enables t, let gt(α,β,x)
def
= x∪γ where γ is defined as follows.

We have (p,c) ∈ γ iff there is a (p,y) ∈ Post(t) and (q,y) ∈ Pre(t) such that (q,c) ∈ x.

Similarly, let ft(α,β,x)
def
= x∪ γ where γ is defined as follows. We have (p,c) ∈ γ iff

either (1) there is a (p,y) ∈ Post(t) and (q,y) ∈ Pre(t) such that (q,c) ∈ x, or (2) c = 0

and there is a (p,0) ∈ Post(t). All these conditions can be checked in polynomial time.

Item 1 and Item 2 follow directly from the definition.

Towards Item 3, we show [[w′]]⊇ {M′′ | ∃M ∈ [[w]]∧M −→t M′ ≥M′′}. (The proof

of the reverse inclusion ⊆ is similar.) Let w = x0x1 . . .xk, α
def
= x0, β

def
=

⋃
i>0 xi such

that (α,β) enables t and w′ def
= ft(α,β,x0)gt(α,β,x1) . . .gt(α,β,xk). If M ∈ [[w]] and

M −→t M′ then M′ ≥M since N is non-consuming. We show that every additional
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token (p,u) ∈ M′	M is included in [[w′]]. (This implies the inclusion above, since

M′	M ≥M′′	M.) For every additional token (p,u) ∈M′	M there are two cases.

• Assume frac(u)> 0. Then the token (p,u) must have inherited its clock value

from some token (q,u) ∈M via a variable y specified in the Pre/Post of t (since

discrete transitions cannot create new fractional parts of clock values). This case

is covered by γ in the definition of gt above. In particular, if (q,u) ∈ M was

abstracted to xi in w then (p,u) ∈M′ is abstracted to gt(α,β,xi) in w′.

• Assume frac(u) = 0. Then there are two cases. In the first case the token (p,u)

inherited its clock value from some token (q,u) ∈M via a variable y specified

in the Pre/Post of t. This case is covered by part (1) of γ in the definition of ft
above. In particular, (q,u) ∈M was abstracted to x0 in w, because frac(u) = 0.

Thus (p,u) ∈M′ is abstracted to ft(α,β,x0) in w′. In the second case the token

(p,u) got its clock value via a clock-reset to zero. This case is covered by part (2)

of γ in the definition of ft above. In particular, in this case we must have u = 0,

and (p,0) ∈M′ was abstracted to ft(α,β,x0) in w′.

It follows that abs(M′) ≤ w′, i.e., by the ordering on symbols in Σ, every letter in

abs(M′) is smaller than the corresponding letter in w′. Thus M′ ∈ [[w′]]. Since M′ ≥M′′

and [[w′]] is downward closed, we also have M′′ ∈ [[w′]] as required.

The following lemma (Lemma 2.7.5) extends the properties 1, 2, and 3 of Lemma 2.7.5

to simple expressions (i.e., regular expressions with symbols that are either starred

or without a star). The intuition of point 3 of Lemma 2.7.5 is very similar to the one

in Lemma 2.7.4. First, we can treat every symbol of a simple expression in terms of

being a correspondent to the zero fractional part or not. Secondly, the function f takes

information about the structure of the previous expression and outputs a new symbol

that corresponds to the zero fractional part. The same argument applies for function g,

which refers to the remaining symbols (corresponding to non-zero fractional parts).

Therefore, we generalize this property to simple expressions by induction.

Lemma 2.7.5. For every non-consuming TPN N there are polynomial time computable

functions f : Σ×Σ×Σ→ Σ and g : Σ×Σ×Σ→ Σ with the following properties.

1. f and g are monotone (w.r.t. subset ordering) in each argument.

2. f (α,β,x)⊇ x and g(α,β,x)⊇ x for all α,β,x ∈ Σ.
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3. Suppose that E = x0x1 . . .xk is a simple expression, α
def
= x0 and β

def
=

⋃
i>0 x̂i, and

E ′ = x′0x′1 . . .x
′
k is the derived expression defined by conditions:

(a) x′0
def
= f (α,β,x0),

(b) x′i
def
= g(α,β, x̂i)

∗ for i > 0,

(c) x′i carries a star iff xi does.

Then [[E ′]] = {M′′ | ∃M ∈ [[E]]∧M ∗−−→Disc M′ ≥M′′}.

Proof. Let f and g be the functions from Lemma 2.7.4, which immediately yields

Item 1 and Item 2. Towards Item 3, consider all words w in L(E) that contain each

starred symbol in E at least once. (The other cases are irrelevant for [[E]] since they

are subsumed by monotonicity.) For each such word w, the α,β derived from w in

Lemma 2.7.4 are the same as the α,β derived from E in Item 3. If xi in E carries

a star then w contains a corresponding nonempty subsequence xi . . .xi. We apply

Lemma 2.7.4 to each such w to obtain the corresponding w′. The word w′ then contains

the corresponding subsequence g(α,β,xi) . . .g(α,β,xi). Let E ′ then be defined as

in Item 3, i.e., by applying functions to the symbols and keeping the stars at the

same symbols as in E. By Lemma 2.7.4, this is computable in polynomial time.

We have L(E ′) =
⋃

w∈L(E){w′}. Thus [[E ′]] =
⋃

w∈L(E)[[w
′]] =

⋃
w∈L(E){M′′ | ∃M ∈

[[w]]∧M ∗−−→Disc M′ ≥M′′} = {M′′ | ∃M ∈ [[E]]∧M ∗−−→Disc M′ ≥M′′} for Item 3 as

required.

In Definition 2.7.3, for a given expression E, we define the notion of successor

expression obtained by firing discrete transition steps, denoted as SAT(E).

Definition 2.7.3. We will write SAT(E) def
= E ′ for the successor expression E ′ of E

guaranteed by Lemma 2.7.5. I.e., SAT(E) is the saturation of E by maximally firing

discrete transitions.

Notice that by definition it holds that [[E]]⊆ [[SAT(E)]]⊆ Cover ([[E]]), and conse-

quently also that Cover ([[SAT(E)]]) = Cover ([[E]]).

The following lemma establishes a connection between two expresssions X and Y

and their corresponding successor expressions. Namely, if a symbol on position i in X

is smaller w.r.t. subset ordering than a symbol on position i in Y , then the corresponding

symbols in the successor expressions preserve that ordering.
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Lemma 2.7.6. Suppose that X = x0x1 . . .xk is a simple expression of length k+1 with

SAT(X) = x′0x′1 . . .x
′
k and x0,x′0 ∈ Σ. Let Y = y0α1y1α2 . . .αkyk be a simple expression

with SAT(Y ) = y′0α′1y′1α′2 . . .α
′
ky′k and y0,y′0 ∈ Σ.

If x̂i ⊆ ŷi for all i≤ k then x̂′i ⊆ ŷ′i for all i≤ k.

Proof. The assumption of the lemma provides that αx
def
= x0 ⊆ αy

def
= y0 and βx

def
=⋃

k≥i>0 x̂i ⊆ βy
def
=

⋃
k≥i>0 ŷi. Therefore, by Item 1 of Lemma 2.7.5, we get that

x′0 = f (αx,βx,x0) ⊆ f (αy,βy,y0) = y′0

and similarly, for all k ≥ i≥ 0, that x̂′i = g(αx,βx, x̂i) ⊆ g(αy,βy, ŷi) = ŷ′i.

Lemma 2.7.7 and Lemma 2.7.8 justify the timed steps as presented in Defini-

tion 2.3.4. Namely, Lemma 2.7.7 refers to the case when the time that passes does not

go over the maximal fractional part of clock values. In this case, the new fractional parts

are incremented by a sufficiently small amount such that the integer parts remain intact,

along with the symbol that corresponds to the zero fractional part being empty. How-

ever, Lemma 2.7.8 justifies the case when the time that passes goes over the maximal

fractional part of clock values. In this case, some integer parts are incremented by 1.

For x ∈ Σ we write (x+ 1) def
= {(p, int(n+ 1)) | (p,n) ∈ x} for the symbol where

token ages are incremented by 1.

Lemma 2.7.7. [[ /0E]] = {M′ | ∃M ∈ [[E]]∧M −→d M′∧d < 1−max( f rac(M))}.

Proof. “⊇”: Suppose that M is a non-empty marking in [[E]], d < 1−max(frac(M))

and M −→d M′. The assumption on d implies that for every token (p,c) ∈M we have

int(c) = int(c+d). In other words, the integral part of the token age remained the same.

Therefore (p, int(c)) = (p, int(c+d)) ∈M′. Also from the assumption on d we get that

frac(M′) = {x+d | x ∈ frac(M)}

Recall that abs(M) = absS(M) and abs(M′) = absS′(M′) for the sets S def
= {0}∪ frac(M)

and S′ def
= {0}∪ frac(M′). Clearly, 0 /∈ frac(M′). There are two cases:

1. 0 ∈ frac(M). Then abs(M′) = /0abs(M) ∈ L ( /0E), and consequently, M′ ∈ [[ /0E]].

2. 0 /∈ frac(M). Then abs(M′) = abs(M) = /0w ∈ L (E). Suppose that E = x0α, i.e.,

E has x0 ∈ Σ as its leftmost symbol, and w∈L (α). If x0 = /0 then [[E]] = [[ /0E]] and

thus abs(M′) ∈ [[ /0E]]. Otherwise, if x0 6= /0 then x0w ∈ L (E) and x0w = abs(M′′)

for some marking M′′ ≥M′. So again, M′ ∈ [[ /0E]].
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“⊆”: W.l.o.g., pick a non-empty marking M′ ∈ [[ /0E]]. If E has /0 as its leftmost

symbol, then [[ /0E]] = [[E]] and the claim follows using d = 0, since then M′ ∈ [[E]]. So

suppose that E does not start with /0. Note that by Definition 2.7.1, there are no tokens

in the marking M′ whose clocks have fractional value zero. Let

d def
= min(frac(M′))

be the minimal fractional clock value among the tokens of M′ and based on this, define

M def
= {(p,c−d) | (p,c) ∈ N′}. By construction of M we get M −→d M′ and also that

max(frac(M)) = max(frac(M′))− d < 1. Therefore that 1−max(frac(M)) < 1− d.

Finally, observe that frac(M) = {x−d | x ∈ frac(M′)} and 0 ∈ frac(M). It follows that

abs(M′) = /0abs(M) and therefore that abs(M) ∈ L (E) and M ∈ [[E]]. This means that

M′ is included in the set on the right in the claim.

Lemma 2.7.8. Let αz be a simple expression where ẑ = z ∈ Σ (the rightmost symbol

is not starred). Then, [[(z+ 1)α]] contains a marking N if, and only if, there exists

markings N′ ≥ N and M, and a set S⊆ [0,1[ so that

1. |S|= |αz|

2. absS(M) ∈ L (αz)

3. M −→d N′ for d = 1−max(S).

Proof. Suppose markings N,N′,M, a set S⊆ [0,1[ and d ∈R≥0 so that the conditions 1

to 3 are satisfied. Let S′ def
= {0}∪{s+d | s ∈ S\{d}}. Then, |S′|= |S| and absS′(N′) ∈

L ((z+1)α), which witnesses that N ∈ [[(z+1)α]].

Conversely, let N ∈ [[(z+ 1)α]] be a non-empty marking. If |α| = 0, then N ∈
[[(z+1)]] and so absS(N) ∈ L ((z+1)) for S def

= frac(N) = {0}. This means that M −→1

N = (M+1) for a marking M with absS(M) ∈ L (z) = L (αz).

If |α| > 0, pick some marking N′ ≥ N and set S′ so that absS′(N′) = (z+ 1)w,

for some word w ∈ L (α). Then we must have that |S′| = |(z+ 1)α| > 1 and so d def
=

min(S′\{0}) exists. Let S def
= {s−d | s∈ S′}∪{1−d} and M be the unique marking with

M −→d N′. Notice that 1−d = max(S). It follows that absS(M) = wz ∈ L (αz).

We will often use the following simple fact, which is a direct consequence of Lemma 2.7.8.

Corollary 2.7.9. [[(z+1)α]]⊆ Cover ([[αz]]).
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Finally, the following lemma will be the basis for our exploration algorithm.

Lemma 2.7.10. Let αx∗0 be a simple expression with SAT(αx∗0)=αx∗0. Then Cover
(
[[αx∗0]]

)
=

[[αx∗0]]∪Cover
(
[[(x0 +1)αx∗0]]

)
.

Proof. For the right to left inclusion notice that [[αx∗0]]⊆ Cover
(
[[αx∗0]]

)
trivially holds.

For the rest, we have [[(x0 +1)αx∗0]]⊆ Cover
(
[[αx∗0]]

)
by Corollary 2.7.9, and therefore

Cover
(
[[(x0 +1)αx∗0]]

)
⊆ Cover

(
Cover

(
[[αx∗0]]

))
= Cover

(
[[αx∗0]]

)
. For the left to

right inclusion, we equivalently show that

Cover ([[αx∗0]])\ [[αx∗0]]⊆ Cover ([[(x0 +1)αx∗0]]) (2.1)

Using the assumption that SAT(αx∗0) = αx∗0, the set on the left contains everything

coverable from [[αx∗0]] by a sequence that starts with a (short) time step. It can therefore

be written as

Cover ({N1 | ∃N0 ∈ [[αx∗0]]∧N0 −→d N1∧0 < d < 1−max( f rac(N0))}) .

By Lemma 2.7.7 and because [[ /0α]]⊆ [[Xα]] for all X ∈ Σ and α ∈ Σ∗, we conclude that

indeed, Cover
(
[[αx∗0]]

)
\ [[αx∗0]] ⊆ Cover

(
[[ /0αx∗0]]

)
⊆ Cover

(
[[(x0 +1)αx∗0]]

)
.

2.7.4 Acceleration

We propose an acceleration procedure based on unfolding expressions according to

Lemma 2.7.10 (interleaved with saturation steps to guarantee its premise) and intro-

ducing new Kleene stars to keep the length of intermediate expressions bounded. This

procedure (depicted in Algorithm 1), is used to characterize an initial subset of the

coverability set. Note that the length of the regular expressions that are present in the

procedure cannot be more than 4, due to one crucial aspect, namely Lemma 2.7.11,

where some symbols can be discarded because they are redundant (i.e., smaller w.r.t.

subset ordering).

We now present the actual acceleration procedure.
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Algorithm 1 Accelerate
Input: a simple expression S0 = x1x∗0 (of length 2 and with last symbol starred)

Output: simple expressions S1,Si and R, of lengths 2, 4, and 2, respectively.

1: S1
def
= x1

1(x
1
0)
∗ = SAT(x1x∗0)

2: S2
def
= x2

2x2
1(x

2
0)
∗ = SAT((x1

0 +1)S1)

3: S3
def
= x3

3x3
2x3

1(x
3
0)
∗ = SAT((x2

0 +1)S2)

4: i← 3

5: repeat
6: xi+1

i+1xi+1
i xi+1

i−1xi+1
1 (xi+1

0 )∗
def
= SAT((xi

0 +1)Si)

7: Si+1
def
= xi+1

i+1(x
i+1
i )∗xi+1

1 (xi+1
0 )∗

8: i← i+1

9: until Si = Si−1

10: R def
= (xi

1 +1)(xi
i−1)

∗

11: Return S1,Si,R
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Figure 2.2: A run of Algorithm 1 (initial steps). The column on the left indicates the line

of code, the middle depicts the current expression and the column on the right recalls its

origin. Gray bars indicate that the respective symbols are equal. Arrows denote (set)

inclusion between symbols. The gray vertical arrows indicate inclusions due to saturation

(Lemma 2.7.5), as claimed in item 1 of Lemma 2.7.11. Red and blue arrows indicate

derived inclusions (as stated in Lemma 2.7.11).

Intuitively, given a length-2 simple expression S0 where the rightmost symbol is

starred, the algorithm will first saturate (Definition 2.7.3, in line 1), and then alternatingly

rotate a copy of the rightmost symbol (Lemma 2.7.8), and saturate the result (see lines

2, 3, 6). Since each such round extends the length of the expression by one, we

additionally collapse them (in line 7) by adding an extra Kleene star to the symbol at the

second position. The crucial observation for the correctness of this procedure is that the

subsumption step in line 7 does not change the cover sets of the respective expressions.
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Observe that Algorithm 1 is well defined because the SAT(Si) are computable by

Lemma 2.7.5. Termination is guaranteed by the following simple observation, which is

also the reason that the length of the simple expressions produced by this acceleration

procedure cannot have length more than 4.

Lemma 2.7.11. Let xi
j ∈ Σ be the symbols computed by Algorithm 1. Then

1. xi+1
j ⊇ xi

j, for all i > j ≥ 0.

2. xi
i ⊇ xi−1

i−1 and xi+1
i ⊇ xi

i−1, for all i≥ 3.

Proof. The first item is guaranteed by Point 2 of Lemma 2.7.5. In particular this

means that xi+1
0 ⊇ xi

0 and therefore that (xi+1
0 + 1) ⊇ (xi

0 + 1) for all i ≥ 0 (indicated

as red arrows in Figure 2.2). The second item now follows from this observation by

Lemma 2.7.6.

Lemma 2.7.12 (Termination). Algorithm 1 terminates with i≤ 4 · |P| · (cmax +1).

Proof. From Lemma 2.7.11 we deduce that for all i≥ 2, the expression Si+1 is point-

wise larger than or equal to Si with respect to the subset ordering on symbols. The claim

now follows from the observation that all expressions Si≥3 have length 4 and that every

symbol xi ∈ Σ can only increase at most |P| · (cmax +1) times.

We now prove the correctness of Algorithm 1. We show that the cover set of the

initial expression x1x∗0 is made of 3 parts - first, it is made of the successor expression of

x1x∗0 by firing discrete transition steps, along with the expression obtained in the fixpoint

iteration along with the expression obtained by dropping the last (starred) symbol and

incrementing the first symbol by 1.

Lemma 2.7.13 (Correctness). Suppose that S1,S`,R be the expressions computed by

Algorithm 1 applied to the simple expression x1x∗0. Then Cover
(
[[x1x∗0]]

)
= [[S1]]∪

[[S`]]∪Cover ([[R]]).

Proof. Let S1, . . .S` denote the expressions defined in lines 1,2,3, and 7 of the al-

gorithm. That is, ` is the least index i such that Si+1 = Si. We define a sequence

Ei of expressions inductively, starting with E1
def
= S1 and if Ei = ei

ie
i
i−1 . . .e

i
0, we let

Ei+1
def
= ei+1

i+1ei+1
i ei+1

i−1 . . .e
i+1
0

def
= SAT((êi

0 +1)Ei). Here, the superscript indicates the po-

sition of a symbol and not iteration. This is the sequence of expressions resulting

from unfolding Lemma 2.7.10, interleaved with saturation steps, just in line 6 of the

algorithm. That is, the expressions Ei are not collapsed (line 7) and instead grow in



Chapter 2. Timed Petri Nets 50

length with i. Still, E1 = S1, E2 = S2 and E2 = S3, but E4 6= S4, because the latter is

the result of applying the subsumption step of line 7 in our algorithm. Notice that

Cover
(
[[x1x∗0]]

)
=
(⋃

k−1≥i≥1[[Ei]]
)
∪Cover ([[Ek]]) holds for all k ∈N. We will use that

⋃
i≥2

[[Ei]] =
⋃
i≥2

[[Si]] = [[S`]]. (2.2)

We start by observing that for all i, j∈N it holds that ei
j = xi

j. For i≤ 3 this holds trivially

by definition of Ei = Si. For larger i, this can be seen by induction using Lemma 2.7.5.

Towards the first equality in Equation (2.2), let S j
i be the expression resulting from

Si = xi
i(x

i
i−1)

∗xi
1(x

i
0)
∗ by unfolding the first star j times. That is, S j

i
def
= xi

i(x
i
i−1)

( j)xi
1(x

i
0)
∗,

where the superscript ( j) denotes j-fold concatenation. Clearly, [[Si]] =
⋃

j≥0[[S
j
i ]] and

so the ⊇-direction of the first equality in Equation (2.2) follows by

[[S j
i ]] = [[xi

i(x
i
i−1)

( j)xi
1(x

i
0)
∗]]⊆ [[xi+ j

i+ j

(
xi+ j

i+ j−1xi+ j
i+ j−2 . . .x

i+ j
i

)
xi+1

1 (xi+1
0 )∗]]

⊆ [[xi+ j
i+ j

(
xi+ j

i+ j−1xi+ j
i+ j−2 . . .x

i+ j
i

)(
xi+ j

i−1 . . .x
i+ j
2

)
xi+1

1 (xi+ j
0 )∗]]

= [[Ei+ j]],

where the first inclusion is due to Lemma 2.7.11. The same helps for the other direction:

[[Ei]] = [[xi
ix

i
i−1xi

i−2 . . .x
i
2xi

1xi
0]]⊆ [[xi

i(x
i
i−1)

(i−2)
xi

1xi
0]] = [[Si−2

i ]] = [[Si]], (2.3)

which completes the proof of the first equality in Equation (2.2). The second equality

holds because [[Si]] ⊆ [[Si+1]] for all i ≥ 2, by Lemma 2.7.11, and by definition of

S` = S`+1. As a next step we show that

Cover ([[S`]]) = [[S`]]∪Cover ([[R]]) (2.4)

First observe that [[R]] = [[(x`1 +1)(x``−1)
∗
]] = [[(x`1 +1)x``(x

`
`−1)

∗
]] and consequently,

Cover ([[R]]) = Cover
(
[[(x`1 +1)x``(x

`
`−1)

∗
]]
)

⊆ Cover
(
[[x``(x

`
`−1)

∗
x`1]]
)

⊆ Cover
(
[[x``(x

`
`−1)

∗
x`1(x

`
0)
∗
]]
)
= Cover ([[S`]])

where the first equation follows by Corollary 2.7.9 and the second because L
(

x``(x
`
`−1)

∗x`1
)
⊆

L
(

x``(x
`
`−1)

∗x`1(x
`
0)
∗
)

. For the left to right inclusion in Equation (2.4), consider a mark-

ing M ∈ Cover ([[S`]])\ [[S`]]. We show that M ∈ Cover ([[R]]). Recall that Cover ([[S`]])
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consists of all those markings M so that there exists a finite path

M0
∗−→D M′0

d1−−→T M1
∗−→D M′1

d2−−→T M2 . . .M′k−1
∗−→D Mk

alternating between timed and (sequences of) discrete transition steps, with M0 ∈ [[S`]],

Mk ≥M and all di ≤max(frac(M′i)).

By our choice of M, there must be a first expression in the sequence which is not

a member of [[S`]]. Since [[SAT(S`)]] = [[S`]], we can assume an index i > 0 so that

Mi /∈ [[S`]] but M′i−1 ∈ [[S`]] that is, the step that takes us out of [[S`]] is a timed step.

Because [[S`]] =
⋃

i≥2[[Si]], it must hold that M′i−1 ∈ [[S j]] = [[x j
j(x

j
j−1)

∗x j
1(x

j
0)
∗]] for

some index j ≥ 2. We claim that it already holds that

M′i−1 ∈ [[x j
j(x

j
j−1)

∗
x j

1]]. (2.5)

Suppose not. If di < max(frac(M′i−1)) then Mi ∈ [[ /0S j]] ⊆ [[S j]] by Lemma 2.7.7,

contradiction. Otherwise, if di = max(frac(M′i−1)), notice that every abstraction

absS(M′i−1) ∈ L
(
S j
)

must have |S|= 4. So by Lemma 2.7.8, Mi ∈ [[(x j
0 +1)S j]]. But

then again

[[(x j
0 +1)S j]]⊆ [[SAT((x j

0 +1)S j)]]⊆ [[S j+1]], (2.6)

contradicting our assumption that Mi /∈ [[S`]]. Therefore Equation (2.5) holds. By

Lemma 2.7.8 we derive that Mi ∈ [[(x j
1 + 1)x j

j(x
j
j−1)

∗]] = [[(x j
1 + 1)(x j

j−1)
∗]] ⊆ [[(x`1 +

1)(x``−1)
∗]] = [[R]]. This concludes the proof of Equation (2.4).

Notice that by Lemma 2.7.10 we have that

Cover ([[x1x∗0]]) = [[SAT(x1x∗0)]]∪Cover ([[SAT(x1x∗0)]]) = [[S1]]∪Cover ([[S1]]) . (2.7)

Analogously, we get for every i≥ 1 that

Cover ([[Ei]]) = [[SAT(Ei)]]∪Cover
(
[[SAT((xi

0 +1)Ei)]]
)
= [[Ei]]∪Cover ([[Ei+1]])

(2.8)

This used Lemma 2.7.10 and the fact that SAT(Ei) = Ei by construction. Using Equa-

tion (2.8) and that [[Ei]]⊆ [[Ei+1]] for i≥ 2, we deduce

Cover ([[S1]]) = Cover ([[E1]]) = [[E1]]∪

(⋃
i≥2

Cover ([[Ei]])

)
. (2.9)

Finally we can conclude the desired result as follows.

Cover ([[x1x∗0]])
(2.7)
= [[S1]]∪Cover ([[S1]])

(2.9)
= [[S1]]∪Cover

(⋃
i≥2

[[Ei]]

)
(2.2)
= [[S1]]∪Cover ([[S`]])
(2.4)
= [[S1]]∪ [[S`]]∪Cover ([[R]])
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2.7.5 Main Result

The following theorem summarizes our main claims regarding the ∃COVER problem

for Timed Petri Nets. Note that all numbers for representing clock values are encoded

in unary.

Theorem 2.7.14. Consider an instance of ∃COVER with N = (P,T,Var,G,Pre,Post)

a non-consuming TPN where cmax is the largest constant appearing in the transition

guards G encoded in unary, and let p be an initial place and t be a transition.

1. The number of different simple expressions of length m is B(m)
def
= 2(|P|·(cmax+2)·m)+m.

2. It is possible to compute a symbolic representation of the set of markings

coverable from some marking in the initial set N · {(p,0)}, as a finite set of

simple expressions. I.e., one can compute simple expressions S1, . . . ,S` s.t.⋃
1≤i≤`[[Si]] = Cover (N · {(p,0)}) and where ` ≤ 3 ·B(2). Each of the Si has

length either 2 or 4.

3. Checking if there exists M ∈ Cover (N · {(p,0)}) with M −→t can be done in

O(|P| · cmax) deterministic space.

Proof. For Item 1 note that a simple expression is described by a word where some sym-

bols have a Kleene star. There are |Σ|m different words of length m and 2m possibilities to

attach stars to symbols. Since the alphabet is Σ
def
= 2P×[cmax+1] and |[cmax +1]|= cmax+2,

the result follows.

Towards Item 2, we can assume w.l.o.g. that our TPN is non-consuming by Lemma 2.7.1,

and thus the region abstraction introduced in Section 2.7.3 applies. In particular, the ini-

tial set of markings N · {(p,0)} is represented exactly by the expression S0
def
= {(p,0)} /0∗

where /0 ∈ Σ is the symbol corresponding to the empty set. That is, we have [[S0]] =

N · {(p,0)} and thus Cover([[S0]]) = Cover(N · {(p,0)}).
The claimed expressions Si are the result of iterating Algorithm 1 until a previously

seen expression is revisited. Starting at i = 0 and S0
def
= {(p,0)} /0∗, each round will set

Si+1,Si+2 and Si+3 to the result of applying Algorithm 1 to Si, and increment i to i+3.

Notice that then all Si are simple expressions of length 2 or 4 and that in particular,

all expressions with index divisible by 3 are of the form ab∗ for a,b ∈ Σ. Therefore

after at most B(2) iterations, an expression S` is revisited (with `≤ 3B(2)). Finally, an

induction using Lemma 2.7.13 provides that
⋃

1≤i≤`[[Si]] = Cover (N · {(p,0)}).
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Towards Item 3, we modify the above algorithm for the ∃COVER problem with

the sliding window technique. The algorithm is the same as above where instead of

recording all the expressions S1, . . . ,S`, we only store the most recent ones and uses

them to decide whether the transition t is enabled. If the index i reaches the maximal

value of 3 ·B(2) we return unsuccessfully.

The bounded index counter uses O(log(B(2))) space; Algorithm 1 uses space

O(log(B(5))) because it stores only simple expressions of length ≤ 5. The space

required to store the three expressions resulting from each application of Algorithm 1 is

O(3 · log(B(4))). For every encountered simple expression we can check in logarithmic

space whether the transition t is enabled by some marking in its denotation. Altogether

the space used by our new algorithm is bounded by O(log(B(5))). By Item 1, this is

O(|P| · (cmax +2)) = O(|P| · cmax).

Corollary 2.7.15. The ∃COVER problem for TPN is PSPACE-complete.

Proof. The PSPACE lower bound was shown in Theorem 2.6.3. The upper bound

follows from Lemma 2.7.1 and Item 3 of Theorem 2.7.14.



Chapter 3

Probabilistic Infinite-State Systems

In this chapter we define a mathematical formalism for representing probabilistic infinite

state systems. We first provide a brief introduction to the core underlying probabilistic

model on which all systems that we are going to study in this chapter are based, namely

the Markov Decision Process. We briefly mention several general applications of MDPs

in the real world, along with the most studied objectives that appear in the literature.

The rest of this chapter is organized as follows. We define formally what Markov Chains

and Markov Decision Processes are, how strategies are represented, and what classes

of different strategies exist. We formally define the notion of objective, and mention

the types of problems that are studied on MCs and MDPs, such as the qualitative and

quantitative problems.We define objectives that we are going to use in our analysis,

along with a brief survey of recent results on infinite state MDPs. In this chapter, we

will not focus on the general literature for finite state MDPs since a lot of techniques

that are used to solve problems on finite state systems fail on the infinite state case. In

Section 3.2.1 we introduce the mathematical formalism for Vector Addition Systems

with States (VASS), along with its probabilistic extension that we call VASS-MDPs. We

show that a lot of qualitative problems such as sure/almost-sure/limit-sure problems are

undecidable for VASS-MDPs. We then restrict our model to single sided VASS-MDPs.

We present a result which has been published in [1], namely that the limit sure control

state reachability problem for single sided VASS-MDPs where the controller can change

the counter value is decidable.

In Section 3.4, we introduce the One-Counter Markov Decision Process, a model

which was first studied in [28]. We mention related models, such as Solvency Games,

Recursive Markov Decision Processes (RMDPs) or One-Counter Nets (OCNs). along

with some known decidability problems. We then introduce the limit-sure selective

54
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termination problem for OC-MDPs along with the almost sure {1,2,3}-parity problem

(as studied in [61]) and show that almost sure {1,2,3}-parity problem for OC-MDPs

is at least as hard as the limit-sure selective termination problem for OC-MDPs. Our

main motivation for studying One-Counter Markov Decision Processes (OC-MDPs),

along with its limit-sure selective termination problem comes from [28], where one

would like to study its decidability, as it has been left open. We recall that neither

the {1,2,3}-parity nor the selective termination problem for OC-MDPs that we will

present here have particular applications. However, the {1,2,3}-parity problem is just

the simplest subcase of the general parity problem, which is already ‘very hard‘ in many

ways. In other words, the {1,2,3}-parity problem is just a small subcase of general

parity problem, but already very hard. Note that simpler subcases of parity exist in the

Mostowski hierarchy, such as Büchi or co-Büchi objectives; see [61].

First, almost sure {1,2,3}-parity requires infinite memory on general MDPs (as

shown in [61]). Second, even on OC-MDPs, decidability of almost sure {1,2,3}-parity

is open, and (as shown in this thesis) it is at least as hard as the (also open) limit-sure

selective termination problem.

3.1 Introduction

A Markov decision process (MDP) provides a mathematical representation of a system

that has both randomized and controlled behaviour. In some situations a controller can

choose among a certain set of actions to go to a certain successor state, whereas in

other cases, this decision is based on a probability distribution among the set of possible

actions that are currently available. This model has been extensively studied in the

literature since it provides direct applicability to real world problems.

Markov decision processes (MDPs) [46] are a formal model for games on directed

graphs, where certain decisions are taken by a strategic player (a.k.a. Player 1, or

controller) while others are taken randomly (a.k.a. by nature, or the environment)

according to pre-defined probability distributions. MDPs are thus a subclass of general 2-

player stochastic games, and they are equivalent to 1.5-player games in the terminology

of [32]. They are also called “games against nature”.

A run of the MDP consists of a sequence of visited states and transitions on the

graph. Properties of the system are expressed via properties of the induced runs. The

most basic objectives are reachability (is a certain (set of) control-state(s) eventually

visited?) and Büchi objectives (is a certain (set of) control-state(s) visited infinitely
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often?).

Since a strategy of Player 1 induces a probability distribution of runs of the MDP,

the objective of an MDP is defined in terms of this distribution, e.g., if the probability

of satisfying a reachability/Büchi objective is at least a given constant. The special

case where this constant is 1 is a key example of a qualitative objective. Here one asks

whether Player 1 has a strategy that achieves an objective surely (all runs satisfy the

property) or almost-surely (the probability of the runs satisfying the property is 1).

Most classical work on algorithms for MDPs and stochastic games has focused on

finite-state systems (e.g., [46, 84, 34]), but more recently several classes of infinite-state

systems have been considered as well. For instance, MDPs and stochastic games on

infinite-state probabilistic recursive systems (i.e., probabilistic pushdown automata

with unbounded stacks) [44] and on one-counter systems [28, 26] have been studied.

Another infinite-state probabilistic model, which is incomparable to recursive systems,

is a suitable probabilistic extension of Vector Addition Systems with States (VASS;

a.k.a. Petri nets). While recursive systems use an unbounded pushdown stack, VASS

have a finite number of unbounded counters holding natural numbers.

3.1.1 Preliminaries

The set of finite words over an alphabet Σ is denoted as Σ∗, and the set of infinite words

are represented as Σω. We define Σ+ def
= Σ∗ \{ε}, where ε is the empty word. For a given

word w ∈ Σ, we define length(w) as the length of word w. If w = ε, then length(w) = 0.

In the case where w is an infinite word, we have that length(w) = +∞. Given a word

w ∈ Σ∗, we denote by w ↓ n the prefix w0w1w2 · · ·wn−1 of w. For a word w ∈ Σ∗, we

denote the individual letters of w by w(0),w(1), ..., where the indexing of the words

starts at zero. Let N (resp. Z) denote the set of nonnegative integers (resp. integers).

For two integers i, j such that i≤ j we use [i.. j] to represent the set {k ∈ Z | i≤ k ≤ j}.
Given a set X and n ∈ N\{0}, Xn is the set of n-dimensional vectors with values in X .

We use 0 to denote the vector such that 0(i) = 0 for all i ∈ [1..n]. The classical order on

Zn is noted≤ and is defined by v≤w if and only if for all i∈ [1..n], we have v(i)≤w(i).

We also define the operation + over n-dimensional vectors of integers in the classical

way (i.e., for v, v′ ∈ Zn, v+v′ is defined by (v+v′)(i) = v(i)+v′(i) for all i ∈ [1..n]).

Given a set S, we use S∗ (respectively Sω) to denote the set of finite (respectively infinite)

sequences of elements of S. A probability distribution on a countable set X is a function

f : X 7→ [0,1] such that ∑x∈X f (x) = 1. We use D(X) to denote the set of all probability



Chapter 3. Probabilistic Infinite-State Systems 57

distributions on X . Given f ∈ D(X), we let Supp( f ) = {x ∈ X | f (x) > 0} to be the

support of f . We first recall some basic definitions from probability theory.

Definition 3.1.1. Let X be a set and define X to be a collection of subsets of X . Then,

X is an field if

• X ∈ X

• If A ∈ X then A ∈ X

• If A ∈ X and B ∈ X then A∪B ∈ X

Definition 3.1.2. An experiment is a procedure that can be infinitely repeated and has a

well-defined (non-empty) set of possible outcomes, which is called a sample space. An

experiment is called random if it has more than one possible outcome, and deterministic

if it has a single possible outcome.

Definition 3.1.3 (σ-field). A σ-field over a set Ω is a set F ⊆ 2Ω of subsets of Ω, where

• Ω ∈ F

• If A ∈ F then A ∈ F

• If Ai ∈ F for every member of a countably indexed family {Ai : i ∈ I}, then⋃
i∈I Ai ∈ F

Definition 3.1.4 (Probability measure). Let Ω be a sample space and let A be a σ-field of

subsets of Ω. We call the function P : A → [0,1] probability measure (a.k.a. probability

distribution ) on (Ω,A) if it satisfies the following conditions (a.k.a. Kolmogorov

axioms):

1. P(∅) = 0 and P(Ω) = 1

2. P is σ-additive, i.e., for each sequence of disjoint sets Ai ∈A , i = 1,2, ..., we have

that

P(
∞⋃

i=1

Ai) = Σ
∞
i=1P(Ai)

Definition 3.1.5 (Probability space). A probability space (Ω,F ,P) is a tuple made by

a set of outcomes Ω (also known as sample space), a σ-algebra F ⊆ 2Ω of events over

sample space Ω, and a probability measure P : F → [0,1].



Chapter 3. Probabilistic Infinite-State Systems 58

Definition 3.1.6 (Markov Chain). A Markov Chain (MC) M = (C,→, p) is a tuple

where C is a countable set of states, → ⊆ C×C is a transition relation, and p is a

function that assigns to every state s ∈C a positive probability distribution over the

outgoing transitions of s.

A path is a finite or infinite sequence ρ = c1c2 . . . of states such that (ci,ci+1) ∈→
holds for every index i. An infinite path is called a run. We write w ∈ S∗ to denote a

finite path. We write c x−→ c′ to denote the fact that (c,c′) ∈→ and p(c)(c′) = x. We

write RunsM (w) to represent the set of infinite words wSω, namely the set of infinite

paths with finite prefix w ∈ S∗. To every state s in S we assign the probability space

(RunsM (s),F ,P) of infinite paths which start at s, where F is the σ-field generated by

all basic cones RunsM (w), and P : F → [0,1] is the unique probability measure such

that P(RunsM (w)) = Π
length(w)−1
i=1 pi, where w(i−1)

pi−→ w(i), for all 1≤ i < length(w).

From the Carathéodory’s extension theorem [33], this defines a unique probability

measure on all measurable subsets of runs.

Definition 3.1.7 (MDPs). A Markov Decision Process (MDP) M is a tuple 〈C,C1,

CP,A,→, p〉 where: C is a countable set of states partitioned into C1 and CP (that is

C = C1 ∪CP and C1 ∩CP = /0); A is a set of actions; →⊆ C×A×C is a transition

relation; p : CP 7→ D(C) is a partial function which assigns to some states in CP

probability distributions on C such that p(c)(c′) > 0 if and only if c a−→ c′ for some

a ∈ A.

Note that our definition is equivalent as seeing MDPs as games played between a

non-deterministic player (Player 1) and a probabilistic player (Player P). The set C1

contains the nondeterministic states (or states of Player 1) and the set CP contains the

probabilistic states (or states of Player P). Given two states c,c′ in C, we write c→ c′

whenever there exists a ∈ A such that c a−→ c′. We will say that a configuration c ∈C is

a deadlock if there does not exist c′ ∈C such that c→ c′. We use Cdf
1 (resp. Cdf

P ), to

denote the states of Player 1 (resp. of Player P) which are not a deadlock (df stands

here for deadlock free).

For a given state c ∈C, we say that c′ is a successor state of c whenever c→ c′. An

MDP M is finitely branching if every state has only finitely many successors. Otherwise,

it is called infinitely branching.

In our MDP framework, we interchangeably use the notion of paths with plays.

Hence, for the purpose of presentation, in what follows the notion of infinite plays will

correspond to runs.
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A play of the MDP M = 〈C,C1,CP,A,→, p〉 is either an infinite sequence of the

form c0
a0−→ c1

a1−→ c2 · · · or a finite sequence c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−→ ck. We will call

the first kind of plays an infinite play, and the second one a finite play. A play is said

maximal whenever it is infinite or it ends in a deadlock state. These latter plays are

called deadlocked plays. We use Ω to denote the set of maximal plays. For a finite play

ρ = c0
a0−→ c1

a1−→ c2 · · ·
ak−1−−→ ck, let ck = last(ρ). The notation Ω

df
1 will denote the set

of finite plays ρ such that last(ρ) ∈Cdf
1 .

A strategy for Player 1 is a function σ that assigns each word wv ∈ Ω
df
1 to a

probability distribution over the set of outgoing transitions of v. Namely, if σ(wv)(t)> 0

then t = (v,u) ∈→, for some u ∈C.

Intuitively, given a finite play ρ, which represents the history of the game so far,

the strategy represents the choice of Player 1 among the different possible successor

configurations from last(ρ). We use Π to denote the set of all strategies for Player

1. Given a strategy σ ∈ Π, an infinite play c0
a0−→ c1

a1−→ c2 · · · respects σ if for every

k ∈ N, we have that if ck ∈C1 then ck+1 = σ(c0
a0−→ c1

a1−→ c2 · · ·ck) and if ck ∈CP then

p(ck)(ck+1)> 0. We define finite plays that respect σ similarly. Let Plays(M,c,σ)⊆Ω

be the set of all maximal plays of M that start from c and that respect σ.

Note that once a starting state c0 ∈C and a strategy σ have been chosen, the MDP

M is reduced to an ordinary stochastic process, i.e., a Markov chain, that we call M(σ),

whose set of states are C∗ and xu
pi−→ xut if and only if u→ t and one of the following

conditions hold, either

• u ∈CP and p(u)(t) = pi or

• u ∈C1 and σ(xu) assigns pi to the transition u→ t

We define an objective (also known as event) A ⊆Ω as a measurable set of plays

and we use P(M,c,σ,A) to denote the probability of objective A starting from c ∈C

under strategy σ. The notation Val(M,c,A) will be used to represent the maximal

probability of event A starting from c which is defined as follows Val(M,c,A) =

supσ∈ΠP(M,c,σ,A). We will say that a strategy σ for player 1 is optimal from the

starting state c for the event A if Val(M,c,A)=P(M,c,σ,A). We will say that a strategy

σ for player 1 is ε-optimal from the starting state c the objective A if P(M,c,σ,A)≥
1− ε.
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3.1.2 Types of strategies

We say that strategy σ : Ω
df
1 7→ C is memoryless if for every ρ,ρ′ ∈ Ω

df
1 and x ∈ C1,

σ(ρx) = σ(ρ′x). A strategy is deterministic if given ρ ∈Ω
df
1 and x ∈C1, σ(ρx) assigns

probability 1 to some transition. A strategy which is memoryless and deterministic

will be abbreviated as MD. Strategies that are not (necessarily) memoryless are called

history-dependent (a.k.a. H). Moreover, strategies which are not necessarily determin-

istic are called randomized (a.k.a. R). Note that a deterministic strategy is a special

case of a randomized strategy. At every step, a player can choose a unique move with

probability 1. A strategy is history-randomized (a.k.a. HR) if it is both H and R. Let us

denote ΠMD and ΠHR by the set of of all possible MD and HR strategies, respectively.

It is easy to observe that the set of all possible strategies for the controller (Player 1)

(which is denoted as Π) is the same as the set of history-randomized strategies (denoted

as ΠHR).

For an MDP M = 〈C,C1,CP,A,→, p〉, we can construct a strategy by using a prob-

abilistic transducer T = 〈Mem,m0,πu,πs〉, where Mem is a countable set (representing

the memory of the strategy), m0 ∈ Mem is called the initial memory mode and C (the

set of states of the MDP) is the input and output alphabet. The memory mode of the

transducer is updated by a probabilistic transition function πu : Mem×C→ D(Mem).

The probabilistic successor function πs : Mem×C1→D(C) outputs the next successor,

where c′ ∈ Supp(πs(m,c)) implies that c→ c′. We lift the functions πu : D(Mem)×C→
D(Mem) and πs : D(Mem)×C1→ D(Mem), in the natural way. We extend πu to paths

by πu(m,ε) = m and πu(m,c0 → c1 → . . .cn) = πu(πu(c0 . . .cn−1,m),cn). The strat-

egy σT that is determined by the transducer T is defined as σT (c0→ c1→ . . .cn)
def
=

πs(cn,πu(m,c0→ c1→ . . .cn−1,m0)). Note that a history dependent (H) strategy σ has

finite memory if there exists a transducer T with memory Mem such that σ = σT and

|Mem| < ∞. Otherwise, the strategy needs infinite memory. Moreover, a memoryless

strategy can be implemented by a probabilistic transducer where |M|= 1.

3.1.3 Types of analysis for problems on MCs and MDPs

Computational problems can be classified into qualitative and quantitative problems.

Informally, in a qualitative framework, we would like to decide problems whether a

certain objective (a.k.a. event) holds with probability one, or whether the complement

of this objective holds with probability zero. In quantitative problems, we are interested

in computing the optimal probability that the desired objective holds. For instance,
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we want to compute if a certain objective holds with probability p, and decide exact

questions, such as p ≤ α, where α is a constant. Another version of the quantitative

problem involves computing the maximal probability of up-to arbitrary precision. This

is called an approximation of the quantitative problem.

They are presented as in the following.

1. Qualitative analysis. Let M be a MDP (or a MC) M , with objective Obj, and

a set of strategies Π 1. We want to decide whether from a starting state c0 there

exists a strategy σ∈Π such that the objective Obj holds almost surely, i.e., decide

whether

∃σ ∈Π.P(M ,c0,σ,Obj) = 1

This (decision) problem is known as the qualitative almost-sure decision problem

for the objective E, with respect to strategy σ. Clearly, we can consider the

complementary problem, when one would like to decide whether

∃σ ∈Π.P(M ,c0,σ,Obj) = 0

where we define the objective Obj def
= Ω \Obj. In the case where σ exists, one

would want to synthesise it, namely to construct it explicitly. Hence, in this case,

one would not refer to a decision problem, but to a problem of constructing a

strategy, in the case where this exists. Another qualitative decision problem (very

relevant to this thesis project) is the qualitative limit-sure decision problem for

an objective Obj, i.e decide whether

sup
σ∈Π

P(M ,c0,σ,Obj) = 1

This is equivalent with the following formulation, i.e decide whether

∀ε > 0.∃σε ∈Π.P(M ,c0,σε,Obj)≥ 1− ε

It is worth mentioning that for finite state Markov Decision Processes, the limit

sure and almost sure decision problems coincide [28]. In the general case, where

the state space of the MDP (and MC) is infinite, this may not be the case, depend-

ing on the objective. In particular, one can see in Section 3.4.7, that for an infinite

state MDP finitely represented as a OC-MDP, for the objectives such as selective

termination [28] limit sure case does not imply almost sure selective termination,

whereas the other direction is valid.
1Note that we do not specify the nature of strategies here, i.e memoryless, history randomized, etc.
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There exist other qualitative decision problems beyond the scope of this project,

such as the qualitative witness positivity decision problem ([]). For an objective

Obj, one would like to decide whether there exists a strategy σ ∈ Π such that

P(M ,c0,σ,Ob j)> 0.

2. Quantitative analysis.

• Exact quantitative decision problems. Given an MDP, an initial control

state c0, a rational α ∈Q, one would like to decide whether there exists a

strategy σ ∈Π, such that P(M ,c0,σ,Obj)≥ α. We can further apply this

framework for the expected value of a random variable X , i.e., where one

would like to answer questions such as whether there exists a strategy σ∈Π,

such that E(M ,c0,σ,(X))≥ α. In both of these cases, we are talking about

a maximization problem, i.e., one would like to make the probability of

achieving a certain objective (or the expectation of a random variable X)

as high as possible. Consider the converse problem, where one would like

to ask questions such as whether there exists a strategy σ ∈ Π, such that

P(M ,c0,σ,Obj) ≤ α (or the case of E(M ,c0,σ,X) ≤ α). In these cases,

we are talking about a minimization problem, where one would like to

make the probability of achieving a certain objective Obj (or the expectation

of a random variable X), as low as possible. In practice, it happens that

these problems are computationally hard, hence, we will use approximation

problems.

• Quantitative ε-approximation analysis. Given an MDP M , an initial starting

state c0, an objective Obj, let us define v∗ def
= supσ∈ΠP(M ,c0,σ,Obj). Given

a rational ε > 0, one would like to compute an ε-approximate value v ∈Q,

such that |v∗− v|< ε. Intuitively, the two quantities v∗ and v would like to

be as close as possible, up to ε-error of precision. Conversely, one would

like to define v∗ def
= infσ∈ΠE(M ,c0,σ,X) and compute a rational value v

such that the previous inequality holds.

Furthermore, one would like to find an ε-optimal strategy σ such that

|v∗−P(M ,c0,σ,Obj)| < ε. Conversely, given a random variable X , one

would like to find an ε-optimal strategy σ such that |v∗−E(M ,c0,σ,X)|< ε.
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3.1.4 Orderings

In what follows, we will define upward and downward-closed sets with respect to an or-

dering, and state a result by American algebraist Leonard Eugene Dickson (i.e., Dickson

lemma [35]) that we will later use in Section 3.3. Note that preorders (quasi-orderings)

and well-quasi-orderings have been defined in Chapter 2, as in Definition 2.1.1.

Definition 3.1.8 (Upward/Downward-closed sets). A set of states F is upward-closed

with respect to ordering � if and only if

〈q1,v1〉 ∈ F ∧〈q1,v1〉 � 〈q2,v2〉 =⇒ 〈q2,v2〉 ∈ F

Conversely F is downward-closed with respect to � if and only if

〈q2,v2〉 ∈ F ∧〈q1,v1〉 � 〈q2,v2〉 =⇒ 〈q1,v1〉 ∈ F

Note that the complement of a downward-closed set is upward-closed and vice-versa.

Lemma 3.1.1 (Dickson’s lemma). [35] For every infinite sequence X1X2X3 . . . of vec-

tors of Nk there exists an infinite sequence i1 < i2 < i3 < .. . of indices such that

Xi1 ≤ Xi2 ≤ Xi3 ≤ . . . .

3.1.5 Objectives on Countable MDPs

We will define the objectives that are most frequently studied on countable state MDPs,

such as reachability, safety and parity, using the Linear Temporal Logic (LTL) frame-

work. We then define a class of finite state MDPs that are equipped with rewards

(a.k.a. costs) on each transition, a model which is equivalent to an infinite state MDP

which encodes the state and the accumulated reward.

Linear Temporal Logic (LTL) is a modal temporal logic where formulas are built

from a finite set of propositions, using the Boolean logical connectives ¬, ∧, ∨, along

with temporal connectives, in order to reason about conditions that may hold in the

future. There exists two types of temporal connectives, such as the unary Next operator

(represented as ©) and the binary Until operator (represented as U). For example,

if γ is an LTL formula, then the formula True U γ means ‘γ holds eventually‘, being

represented as ♦γ. Also, the formula ¬(♦¬γ) denotes that ‘γ always holds‘, being

represented as �γ. A fully formal mathematical representation of how formulas are

defined in this model can be found in [16].
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Given an MDP M = 〈C,C1,CP,A,→, p〉, formulas are interpreted on the transition

system 〈C,→〉. Let JφKc ⊆ cCω, representing the set of plays which start in c and

satisfy formula φ. It has been shown that this set of plays is measurable [87] and write

P(M ,c0,σ,φ) to represent P(M ,c0,σ,JφKc). We define JφK def
=

⋃
c∈CJφKc.

We now define the reachability and safety objective.

Definition 3.1.9 (Reachability). Given an MDP M = 〈C,C1,CP,A,→, p〉 and a set

T ⊆C of target states, we say that a play ρ
def
= c0

a0−→ c1
a1−→ c2 · · · satisfies the reachability

condition if and only if there exists an index i ∈ N such that ci ∈ T . Let J♦T K denote

the set of plays which satisfy the reachability condition.

Definition 3.1.10 (Safety). Given an MDP M = 〈C,C1,CP,A,→, p〉 and a set T ⊆C

of target states, we say that ρ
def
= c0

a0−→ c1
a1−→ c2 · · · satisfies the reachability condition

if and only if for every index i ∈ N, ci 6= T . Let J�¬T K denote the set of plays which

satisfy the safety condition.

In a parity objective, every state has a priority, out of a finite set of priorities that

are natural numbers. An infinite play satisfies the parity objective if and only if the

maximal priority that is visited infinitely often is even.

Definition 3.1.11 (Parity objective). Given a countable state MDP M = 〈C,C1,CP,A,→,

p〉, let Col ⊆ N be a finite set of colors. We define a priority (a.k.a. color) function

λ : C→ Col, mapping each state to a natural number. For n ∈ N, we define the set

⊕ def
= {≤,≤,≥,≥} and given S⊆C, let [S]λ⊕n def

= {s ∈ S | λ(s)⊕n} in order to represent

the set of states in S which have priority ⊕n. We define the parity objective as

PAR(λ)
def
= J

∨
i∈Col

(�♦[S]λ=2i∧♦�[S]λ≤2i)K

In other words, PAR(λ) consists of the set of plays such that the maximal priority

that occurs infinitely often along the play is even.

We can classify different parity objectives by restricting the codomain of the priority

function λ. An exhaustive list of subclasses of parity problems can be encountered

in the Mostowski hierarchy [71]. We denote Col-PAR for restricted parity objectives

where Col⊆ N. Here, we present some of the most frequently used variants of parity

objectives, such as Büchi and co-Büchi objectives. We can represent a Büchi objective

as a {1,2}-PAR objective, whereas a co-Büchi objective is represented as a {0,1}-PAR
objective.
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Remark 3.1.2. For an MDP M = 〈C,C1,CP,A,→, p〉 and a set T ⊆C of target states,

the {1,2}-PAR and {0,1}-PAR objectives subsume the reachability objective by defining

the priority function λ(c) = 1 ⇐⇒ c 6∈ T , where c ∈ C. Also, both {1,2}-PAR and

{0,1}-PAR objectives subsume the safety objective by defining the priority function

λ(c) = 1 ⇐⇒ c ∈ T , where c ∈C.

Remark 3.1.3. [48] For finite state MDPs, MD strategies are sufficient for every type

of qualitative and quantitative parity objectives. In other words, if one can satisfy the

parity objective (using a qualitative or quantitative analysis), then strategies that achieve

this ignore the history of play and they are deterministic.

Since the underlying structures of the models that we will study in Section 3.2 and

Section 3.4, namely VASS-MDPs and OC-MDPs, are based on countably (infinite)

state MDPs, we would like to briefly present some state of the art results that have been

published in recent literature.

3.1.6 Countable state MDPs

The work of [61] studies general countable state MDPs with parity objectives, and

special cases when the number of colors are bounded in the Mostowski hierarchy. In

finite state MDPs with parity objectives, there always exist an optimal memoryless

deterministic (MD) strategy. However, when the MDP is infinite, in general, this is not

the case, i.e., optimal strategies may not exist. The most important result is the fact

that even for the case of finitely branching countably infinite state MDPs, the strategies

which satisfy almost-sure {1,2,3}-parity requires infinite memory (Theorem 3.1.4).

Theorem 3.1.4 (cf. Theorem 1 of [61] ). There exists a finitely branching MDP M with

color function λ, initial state c0 such that

1. for every strategy σ ∈ΠHR, we have P(M ,c0,σ,{1,2,3}-PAR(λ)) = 0

2. there exists a strategy σ ∈ΠHD such that P(M ,c0,σ,{1,2,3}-PAR(λ)) = 1

Therefore, optimal (and even almost-surely) winning) and ε-optimal strategies require

infinite memory for {1,2,3}-PAR, even in finitely branching MDPs.

In the MDP M from Section 3.1.6, all states of the form ci have λ(ci) = 1, for every

i ∈ N and are controlled. All states under the form ri have λ(ri) = 2, for every i ∈ N,

and are stochastic, whereas state t is controlled and has λ(t) = 3. The probabilities are

labelled on the corresponding transitions.
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Intuitively, for any history-randomized (HR) strategy there exists a strictly positive

probability of visiting state t with priority 3 between consecutive visits to c0. In the

long run, unless for the case where only states ci are visited (i.e., the player does not

use any transition towards ri), state t will be visited almost-surely. This implies that the

{1,2,3}-PAR objective will be satisfied with probability 0. However, one can build a

strategy to almost surely satisfy the {1,2,3}-PAR objective in the following way. At the

k-th visit to state c0, one can use the path c0c1 . . .ck and then switch to state rk, where

sk→ rk. By going along this path one can make the probability of visiting t smaller

and smaller, between the previous and succesive visits to c0. Therefore, in the long

run, the probability of visiting state t is 0 and hence the largest color that is visited

infinitely often is 2, satisfying the {1,2,3}-PAR objective. However, one can not store

infinitely many ks to perform this strategy, thus needing infinite memory. A detailed

representation can be found in the proof of Theorem 3.1.4, from [61].

c0 c1 · · · ci · · ·

r0 r1 · · · ri · · ·

t

1
2

1
2

1− 1
2 i

1
2i

Figure 3.1: A finitely branching MDP M where starting from state c0 one can satisfy the

{1,2,3} objective almost surely, as presented in [61]. The controlled (non-deterministic)

states are drawn as circles, whereas the probabilistic states are drawn as squares. For

every i ∈ N, every (controlled) state ci has priority 1, whereas every (probabilistic) state

ri has priority 2. The state t is controlled, having priority 3.

It is shown that even for infinitely branching MDPs under Büchi objective, optimal

strategies, if they exist, can be chosen MD (Theorem 12, [61]). Moreover, for finitely

branching MDPs under {0,1,2}-PAR objective, if there exist optimal strategies, they

can be chosen MD (Theorem 16, [61]). Furthermore, it is shown that for co-Büchi

objectives, ε-optimal strategies can be chosen MD (Theorem 19, [61]).

We now present recent literature about several combined objectives on finite state
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MDPs with rewards.

3.1.7 Finite state MDPs with Rewards

A finite state MDP with rewards consists of a finite MDP where each transition is

labelled by an integer. Let M = 〈C,C1,CP,A,→, p〉 be a finite MDP with reward

function r :→→ Z. Note that the first arrow→ in the signature of r denotes its domain,

whereas Z represents its codomain.

An energy condition on MDP M is defined with respect to reward function r in

the following way. Given an initial energy level k ∈ N, an infinite play ρ = c0
a0−→

c1
a1−→ c2 · · · satisfies the k-energy condition if and only if for every finite prefix, k+

Σi=0r(ci,ci+1)≥ 0. Let EN(k) be the set of all infinite plays that satisfy the k- energy

objective.

We define Mean Payoff conditions with respect to cost function r :→→ Z. An

infinite play ρ = c0
a1−→ c1

a2−→ c2
a3−→ . . . satisfies the positive mean-payoff condition if

and only if liminfn→∞ Σ
n−1
i=0

r(ci,ci+1)
n > 0. Let MP>0 be the set of infinite plays that satisfy

the positive mean-payoff condition.

We recall some results about combined objectives, namely the energy-parity (EN(k)∩
PAR) and mean-payoff parity (MP>0∩PAR ).

In energy-parity objectives, one would like to take into account the remaining stored

energy of the system (such as a battery), combined with a parity condition. It has been

shown both in [68] and that the almost-sure energy-parity objective for finite state MDPs

with rewards is decidable and is in NP∩ coNP, being solved in pseudo-polynomial time.

Moreover, in order to achieve almost sure energy parity objective, one would need to use

infinite-memory. Moreover, it is shown [68] that the limit-sure energy-parity problem

does not coincide with the almost-sure one. However, the problem is still in NP∩ coNP.

Other variants of the energy objectives exists as well such as the k-storage objective,

where the energy level must not drop by a certain amount fixed by the controller [68].

The almost-sure mean-payoff-parity problem is decidable in polynomial time [31],

hence PTIME-complete.

3.1.8 Infinite state MCs

We would like to present some recent results about infinite state MCs, in particular a

subclass called decisive MCs. Intuitively, a MC is decisive with respect to a given set

of target (final) states T if it almost surely eventually reaches either T or a state from



Chapter 3. Probabilistic Infinite-State Systems 68

which T can no longer be reached. Note that by construction, all finite MCs are trivially

decisive. Moreover, for some particular classes of infinite state MCs, this is also the

case.

• By (Lemma 3.4, [7]), all infinite state MCs which have a finite attractor are

decisive w.r.t T . An attractor represents a set of states from which one can reach

them almost surely from every state of the MC.

• By (Lemma 3.5, [7]), all infinite state MCs which are globally coarse are decisive

w.r.t. T . A MC is globally coarse w.r.t. T if there exists θ > 0 such that from

every state, the probability of reaching T is either 0 or ≥ θ.

3.2 VASS-MDPs

In this section we study the decidability of limit-sure reachability for infinite-state

MDPs that are induced by suitable probabilistic extensions of Vector Addition Systems

with States that we call VASS-MDPs.

Most quantitative objectives in probabilistic VASS are either undecidable, or the

solution is at least not effectively expressible in (R,+,∗,≤) [7]. It is easy to show that,

for general VASS-MDPs, even the simplest of these problems, (almost) sure reachability,

is undecidable (see Section 3.2.3). In particular, we focus on single-sided VASS-MDPs,

which are split into two monotone subclasses: 1-VASS-MDPs and P-VASS-MDPs. In

1-VASS-MDPs, only Player 1 can modify counter values while the probabilistic player

can only change control-states, whereas for P-VASS-MDPs it is vice-versa. Still these

two models induce infinite-state MDPs. Unlike for finite-state MDPs, it is possible that

the value of the MDP, in the game theoretic sense, is 1, even though there is no single

strategy that achieves value 1. For example, there can exist a family of strategies σε for

every ε > 0, where playing σε ensures a probability ≥ 1− ε of reaching a given target

state, but no strategy ensures probability 1. In this case, one says that the reachability

property holds limit-surely, but not almost-surely (i.e., unlike in finite-state MDPs,

almost-surely and limit-surely do not coincide in infinite-state MDPs).

For our decidability result of the limit-sure reachability problem in 1-VASS-MDP,

we use an algorithm which at each iteration reduces the dimension of the considered

VASS while preserving the limit-sure reachability properties.

This work has been published in [1]. Furthermore, in [1] it has also been shown that

even for P-VASS-MDPs, all sure/almost-sure/limit-sure reachability/Büchi problems
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are still undecidable. However, in the deadlock-free subclass of P-VASS-MDPs, the

sure reachability/Büchi problems become decidable (while the other problems remain

undecidable). In contrast, for 1-VASS-MDPs, the sure/almost-sure reachability problem

and the sure/almost-sure Büchi problem are decidable, by reducing them to the model-

checking problem over VASS of a restricted fragment of the modal µ-calculus that has

been proved to be decidable in [9].

3.2.1 Qualitative Analysis of VASS-Induced MDPs

Probabilistic Vector Addition Systems with States have been studied, e.g., in [7]. Here

we extend this model with non-deterministic choices by a controller. We call this new

model VASS-MDPs. We first recall the definition of Vector Addition Systems with

States.

Definition 3.2.1 (Vector Addition System with States). For n > 0, an n-dimensional

Vector Addition System with States (VASS) is a tuple S = 〈Q,T 〉 where Q is a finite set

of control states and T ⊆ Q×Zn×Q is the transition relation labelled with vectors of

integers.

In the sequel, we will not always make precise the dimension of the considered

VASS. Configurations of a VASS are pairs 〈q,v〉 ∈Q×Nn. Given a configuration 〈q,v〉
and a transition t = 〈q,z,q′〉 in T , we will say that t is enabled at 〈q,v〉, if v+ z ≥ 0.

Let then En(q,v) be the set {t ∈ T | t is enabled at 〈q,v)〉}. In case the transition

t = 〈q,z,q′〉 is enabled at 〈q,v〉, we define t(q,v) = 〈q′,v′〉 where v′ = v+ z. An n-

dimensional VASS S induces a labelled transition system 〈C,T,→〉 where C = Q×Nn

is the set of configurations and the transition relation →⊆ C×T ×C is defined as

follows: 〈q,v〉 t−→ 〈q′,v′〉 iff 〈q′,v′〉 = t(q,v). VASS are sometimes seen as programs

manipulating integer variables, a.k.a. counters. When a transition of a VASS changes

the i-th value of a vector v, we will sometimes say that it modifies the value of the i-th

counter. We now show in which manner we add probability distributions to VASS, and

obtain a VASS-MDP. Conceptually, the finite state space of a VASS-MDP is partitioned

into controlled and probabilistic states, and every transition is assigned a positive

natural number, denoted as transition weight. Note that we do not explicitly introduce

probability distributions on the outgoing transitions at this level, but we do it at the

level of the equivalent infinite state MDP via encoding VASS-MDP configurations. In

particular, for every probabilistic configuration c, one can define the probability of going

from c to configuration c′ by taking the summation of weights of the corresponding
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transitions in the VASS-MDP, divided by the total weights of the enabled transitions

at that particular configuration c. One can easily check that in this way the probability

function for the infinite state MDP is well-defined.

Definition 3.2.2 (VASS-MDP). A VASS-MDP is a tuple S = 〈Q,Q1,QP,T,τ〉 where

〈Q,T 〉 is a VASS for which the set of control states Q in partitioned into Q1 and QP

and τ : T 7→ N\{0} is a partial function assigning to each transition a weight which is

a positive natural number.

We use T1 ⊆ T (respectively TP ⊆ T ) to denote the subsets of transitions leaving

from a nondeterministic state (respectively a probabilistic state). Hence T = T1∪TP

with T1 ⊆ Q1×Zn×Q and TP ⊆ QP×Zn×Q. A VASS-MDP S = 〈Q,Q1,QP,T,τ〉
induces an MDP MS = 〈C,C1,CP,T,→, p〉 where: 〈C,T,→〉 is the labelled transition

system associated to the VASS 〈Q,T 〉; C1 = Q1×Nn and CP = QP×Nn; and for all

c ∈CP and c′ ∈C if c→ c′, the probability of going from c to c′ is defined as follows:

p(c)(c′) =
∑{t|t(c)=c′} τ(t)

∑t∈En(c) τ(t)
(3.1)

and we have p(c)(c′) = 0 in case c 6→ c′. Note that the MDP MS is well-defined: when

defining p(c)(c′) in the case c→ c′, there exists at least one transition in En(c) and

consequently the sum ∑t∈En(c) τ(t) is never equal to 0. Also, we could have restricted

the weights to be assigned only to transitions leaving from a control state in QP since

we do not take into account the weights assigned to the other transitions. A deadlock

free VASS-MDP is a VASS-MDP whose underlying VASS is deadlock free.

Finally, as in [79] or [9], we will see that to gain decidability it is useful to restrict

the power of the nondeterministic player or of the probabilistic player by restricting

their ability to modify the counters values and hence letting them only choose a control

location. This leads to the two following definitions: a P-VASS-MDP is a VASS-MDP

〈Q,Q1,QP,T,τ〉 such that for all 〈q,z,q′〉 ∈ T1, we have z = 0 and a 1-VASS-MDP is

a VASS-MDP 〈Q,Q1,QP,T,τ〉 such that for all 〈q,z,q′〉 ∈ TP, we have z = 0. In other

words, in a P-VASS-MDP, Player 1 cannot change the counter values when taking a

transition and in a 1-VASS-MDP, it is Player P which cannot perform such an action.

3.2.2 Verification Problems for VASS-MDPs

We consider qualitative verification problems for VASS-MDPs, taking as objectives

control-state reachability and repeated reachability. To simplify the presentation, we
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consider a single target control state qF ∈ Q. However, our positive decidability results

easily carry over to sets of target control states (while negative ones trivially do). Note,

however, that asking to reach a fixed target configuration like 〈qF ,0〉 is a very different

problem [7]. Let S = 〈Q,Q1,QP,T,τ〉 be a VASS-MDP and MS its associated MDP.

Given a control state qF ∈ Q, we denote by J♦qFK the set of infinite plays c0 · c1 · · · ·
and deadlocked plays c0 · · · · · cl of MS for which there exists an index k ∈ N such that

ck = 〈qF ,v〉 for some v ∈ Nn. Similarly, J�♦qFK characterizes the set of infinite plays

c0 · c1 · · · · of MS for which the set {i ∈ N | ci = 〈qF ,v〉 for some v ∈ Nn} is infinite.

Since MS is an MDP with a countable number of configurations, we know that the sets

of plays J♦qFK and J�♦qFK are measurable (for more details see for instance [16]),

they are hence events for MS. Given an initial configuration c0 ∈ Q×Nn and a control

state qF ∈ Q, we consider the following questions for the VASS-MDP S:

1. The sure reachability problem: Does there exist a strategy σ ∈ Σ such that

Plays(MS,c0,σ)⊆ J♦qFK?

2. The almost-sure reachability problem: Does there exist a strategy σ ∈ Σ such that

P(MS,c0,σ,J♦qFK) = 1?

3. The limit-sure reachability problem: Does Val(MS,c0,J♦qFK) = 1?

4. The sure repeated reachability problem: Does there exist a strategy σ ∈ Σ such

that Plays(MS,c0,σ)⊆ J�♦qFK?

5. The almost-sure repeated reachability problem: Does there exist a strategy σ ∈ Σ

such that P(MS,c0,σ,J�♦qFK) = 1?

6. The limit-sure repeated reachability problem: Does Val(MS,c0,J�♦qFK) = 1?

Note that sure reachability implies almost-sure reachability, which itself implies

limit-sure reachability, but not vice-versa, as shown by the counterexamples in Fig-

ure 3.2. The same holds for repeated reachability. Furthermore for the sure problems,

probabilities are not taken into account, and thus these problems can be interpreted

as the answer to a two player reachability game played on the transition system of S.

Such games have been studied for instance in [79, 2, 9]. Finally, VASS-MDPs subsume

deadlock-free VASS-MDPs and thus decidability (resp. undecidability) results carry

over to the smaller (resp. larger) class.
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q2
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Figure 3.2: Two 1-dimensional VASS-MDPs. The circles (resp. squares) are the control

states of Player 1 (resp. Player P). All transitions have the same weight 1. From 〈q0,0〉
the state qF is reached almost-surely, but not surely, due to the possible run with an

infinite loop at q0 (which has probability 0). From 〈q1,0〉, the state qF can be reached

limit-surely, by a family of strategies that repeats the loop at q1 more and more often, but

not almost-surely (or surely), since every strategy has a chance of getting stuck at state

q2 with counter value zero.

3.2.3 Undecidability in the General Case

It was shown in [2] that the sure reachability problem is undecidable for two player

VASS. From this we can deduce that the sure reachability problem is undecidable

for VASS-MDPs. We now present a similar proof to show the undecidability of the

almost-sure reachability problem for VASS-MDPs.

For all of our undecidability results we use reductions from the undecidable control-

state reachability problem for Minsky machines. A Minsky machine is a tuple 〈Q,T 〉
where Q is a finite set of states and T is a finite set of transitions manipulating two

counters, say x1 and x2. Each transition is a triple of the form 〈q,xi = 0?,q′〉 (counter xi

is tested for 0) or 〈q,xi := xi +1,q′〉 (counter xi is incremented) or 〈q,xi := xi−1,q′〉
(counter xi is decremented) where q,q′ ∈ Q. Configurations of a Minsky machine

are triples in Q×N×N. The transition relation ⇒ between configurations of the

Minsky machine is then defined in the obvious way. Given an initial state qI and a

final state qF , the control-state reachability problem consists in asking whether there

exists a sequence of configurations 〈qI,0,0〉 ⇒ 〈q1,v1,v′1〉 ⇒ . . .⇒ 〈qk,vk,v′k〉 with

qk = qF . This problem is known to be undecidable [70]. W.l.o.g. we assume that

Minsky machines are deadlock-free and deterministic (i.e., each configuration has

always a unique successor) and that the only transition leaving qF is of the form

〈qF ,x1 := x1 +1,qF〉.
We now show how to reduce the control-state reachability problem to the almost-

sure and limit-sure reachability problems in deadlock-free VASS-MDPs. From a Minsky

machine, we construct a deadlock-free 2-dim VASS-MDP for which the control states
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q1 q2
(1,0)

q3 q4
(0,−1)

q5
(0,0)

q6
(0,0)

⊥
(−1,0)

(0,0)

Figure 3.3: Encoding 〈q1,x1 := x1+1,q2〉 and 〈q3,x2 := x2−1,q4〉 and 〈q5,x1 = 0?,q6〉

of Player 1 are exactly the control states of the Minsky machine. The encoding is

presented in Figure 3.3 where the circles (resp. squares) are the control states of Player

1 (resp. Player P), and for each edge the corresponding weight is 1. The state ⊥ is an

absorbing state from which the unique outgoing transition is a self loop that does not

affect the values of the counters. This encoding allows us to deduce our first result.

Theorem 3.2.1. The sure, almost-sure and limit-sure (repeated) reachability problems

are undecidable problems for deadlock-free VASS-MDPs.

In the special case of 1-dimensional VASS-MDPs, the sure and almost-sure reacha-

bility problems are decidable [28].

3.2.4 Probabilistic Vector Addition Systems with States (PVASS)

A probabilistic VASS (PVASS)[7] is a VASS where every state is probabilistic. One can

immediately notice the difference with regard to the VASS-MDP model. There, some

control states were non-deterministic, whereas here, it is not the case.

From a PVASS, one can derive an infinite state MC in a similar manner as in

Section 3.2. We recall some of the decidability questions for PVASS. Given PVASS V
and its associated infinite state MC MV , in [7] it has been shown the following

1. MV is decisive.

2. The approximate quantitative reachability problem is decidable when the set of

target states T is upward closed.

3. The qualitative reachability problem is undecidable if the set of target states T is a

general upward closed set (i.e represented by its finitely many minimal elements)

4. The qualitative repeated reachability problem (for probability 1) is decidable

if the set of targets T is upward closed. For qualitative-probability 0 repeated

reachability, the problem is open.
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3.3 Limit-Sure Control State Reachability for 1-VASS-

MDP

We consider a slightly more general version of the limit-sure reachability problem with a

set X ⊆Q of target states instead of a single state qF , i.e., the standard case corresponds

to X = {qF}.
Limit sure control state reachability for 1-VASS-MDPs

Input: a 1-VASS-MDP S = 〈Q,Q1,QP,T,τ〉 of dimension n≥ 0, initial configu-

ration c0 = 〈q0,v〉 ∈ Q×Nn, a set of target states X ⊆ Q

Question: Is Val(MS,c0,J♦XK) = 1?

Definition 3.3.1. We extend the set of natural numbers N to N∗ =N
⋃
{∗} by adding an

element ∗ /∈N with ∗+ j = ∗− j = ∗ and consider the set of vectors Nd
∗ . The projection

of a vector z in Nd by eliminating components that are indexed by a natural number k is

defined by

projk(z)(i) =

{
z(i) if i 6= k

∗ if otherwise

Let Qc represent control-states which are indexed by a color. The coloring functions

coli : Q→ Qc create colored copies of control-states by coli(q) = qi.

Given a 1-VASS-MDP S = 〈Q,Q1,QP,T,τ〉 of dimensions d, an index k ≤ d and a

color i, the projection is defined as:

Projk(M,d, i) = (coli(Q),coli(Q1),coli(QP),projk,i(T ),τ)

where projk,i(T ) = {projk,i(t)|t ∈ T} is the projection of the set of transitions T and

projk,i(t) = (coli(x),projk(op),coli(y)) is the projection of transition t by removing

component k and coloring the states x and y with color i.

We define the functions state : Q×Nd → Q and count : Q×Nd → Nd s.t for a

configuration ci = (q,v), where q ∈ Q and v ∈ Nd we have that state(q,v) = q and

count(q,v) = v. For any 2 configurations c1 and c2, we write c1 ≺ c2 to denote that

state(c1) = state(c2), and there exists a nonempty set of indexes I where for every i ∈ I,

count(c1)(i)< count(c2)(i), whereas for every index j /∈ I, 0 < j ≤ d, count(c1)( j) =

count(c2)( j).

Algorithm 2 reduces the dimension of the limit-sure reachability problem for 1-

VASS-MDP, by a construction resembling the Karp-Miller tree [60]. It takes as input
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a 1-VASS-MDP S of some dimension d > 0 with a set of target states X . It outputs a

new 1-VASS-MDP S′ of dimension d− 1 and a new set of target states X ′ such that

MS can limit-surely reach X iff MS′ can limit-surely reach X ′. In particular, in the

base case where d−1 = 0, the new system S′ has dimension zero and thus induces a

finite-state MDP MS′ , for which limit-sure reachability of X ′ coincides with almost-sure

reachability of X ′, that is known to be decidable in polynomial time. Algorithm 2 starts

by exploring all branches of the computation tree of S (and adding them to S′ as the

so-called initial uncolored part) until it encounters a configuration that is either (1)

equal to, or (2) strictly larger than a configuration encountered previously on the same

branch. In case (1) it just adds a back loop to the point where the configuration was

encountered previously. In case (2), it adds a modified copy of S (identified by a unique

color) to S′. This so-called colored subsystem is similar to S except that those counters

than have strictly increased along the branch are removed. The intuition is that these

counters could be pumped to arbitrarily high values and thus present no obstacle to

reaching the target. Since the initial uncolored part is necessarily finite (by Dickson’s

Lemma) and each of the finitely many colored subsystems only has dimension d−1

(since a counter is removed; possibly a different one in different colored subsystems),

the resulting 1-VASS-MDP S′ has dimension d−1. The set of target states X ′ is defined

as the union of all appearances of states in X in the uncolored part, plus all colored

copies of states from X in the colored subsystems.

Lemma 3.3.1. Algorithm 2 terminates.

Proof. Algorithm 2 explores an unfolding of the computation tree of S, which is

finitely branching since |T | is finite. The number of counters is fixed, and therefore, by

Dickson’s Lemma, (Nd,�) is a well quasi ordering. Therefore, on every branch we

eventually satisfy either the condition of line 20 or of line 8. In the former case, a loop

in the derived system S′ is created, and the exploration of the current branch stops. In

the latter case, a finitary description of a new colored (possibly infinite-state) subsystem

is added to S′ by adding finitely many states, transitions and configurations to Q′, T ′

and X ′, respectively. Also in this case, the exploration of the current branch stops. Since

the exploration is finitely branching, and every branch eventually stops, the algorithm

terminates.

We now illustrate a run of Algorithm 2 using the following example.
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Algorithm 2 Reducing the dimension of the limit-sure reachability problem.
Input: S = (Q,Q1,QP,T,τ) 1-VASS-MDP, dimension d > 0, c0 = (q0,v) ∈ Q×Nd

X ⊆ Q - set of target states

Output: S′ = (Q′,Q′1,Q
′
P,T

′,τ′); c′0 = (q′0,0); X ′ ⊆ Q′; λ : Q′→ ((Q
⋃

Qc)×Nd
∗)

1: Q′←∅; Q′1←∅; Q′P←∅; T ′←∅; τ′←∅
2: new(q’); q′0← q′; λ(q′)← c0; Q′←{q′}; i← 0

3: if state(λ(q′)) ∈ Q1 then Q′1←{q′} else Q′P←{q′}
4: ToExplore← {q′}
5: while ToExplore 6= ∅ do
6: Pick and remove a q ∈ ToExplore

7: if ∃q′. q′ is previously on the same brach as q and λ(q′)≺ λ(q) then
8: get indexes I in which the counter is increasing

9: pick and remove the first index k from I

10: i← i+1; // increase color index

11: new(q”);

12: λ(q′′)← (coli(state(λ(q))),projk(count(λ(q))))

13: if state(λ(q)) ∈ Q1 then Q′1← Q′1
⋃
{q′′} else Q′P← Q′P

⋃
{q′′}

14: T ′← T ′
⋃
{(q,0,q′′)}; τ′(〈q,0,q′〉) = 1

15: Q′1← Q′1
⋃

coli(Q1); Q′P← Q′P
⋃

coli(QP); T ′← T ′
⋃

projk,i(T );

16: X ′← X ′
⋃

coli(X); τ′← τ′∪ τk,i

17: else
18: for every t = 〈x,z,y〉 ∈ T such that t ∈ En(λ(q)) do
19: if ∃q′. q′ is previously on the same branch as q and t(λ(q)) = λ(q′) then
20: T ′← T ′

⋃
{(q,z,q′)}

21: else
22: new(q’); λ(q′)← t(λ(q))

23: T ′← T ′
⋃
{(q,z,q′)}; τ′(〈q,z,q′〉)← τ(t)

24: if state(λ(q′)) ∈ Q1 then Q′1← Q′1
⋃
{q′} else Q′P← Q′P

⋃
{q′}

25: if state(λ(q′)) ∈ X then X ′← X ′
⋃
{q′}

26: ToExplore← ToExplore
⋃
{q′}

27: end if
28: end for
29: end if
30: end while
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Figure 3.4: A 1-VASS-MDP S . The circled state are controlled, whereas the squared

ones are probabilistic. All transitions have weight 1.

Example 3.3.1. Let S = 〈Q,Q1,QP,T,τ〉 be a 1-VASS-MDP of dimension d = 2, where

Q def
= {p,q,r}, Q1

def
= {x}, QP

def
= {y,z}, c0 = 〈x,(2,3)〉, and X def

= {r}, and set of transitions

T as in Figure 3.4. All transitions have weight 1.

• Lines 1-5: q′0← a, λ(a)← 〈p,(2,3)〉 Q′1←{a}, ToExplore←{a}

• Line 6: ToExplore←∅

• Lines 18-26: let t = 〈p,(+1,0), p〉 ∈ T ; create b;

λ(b)← 〈p,(3,2)〉; T ′←{a,(+1,−1),b}; Q′1←{a,b}; ToExplore←{b};

Let t = 〈p,(0,0),q〉 ∈ T ; create c; λ(c)← 〈q,(2,3)〉; Q′P ← {c}; T ′ ← T ′ ∪
{a,(0,0),c}; ToExplore←{c,b};

• Line 6: remove c; ToExplore←{b}

• Line 18-26: let t = 〈q,(0,0),r〉; create d;

λ(d) def
= 〈r,(2,3)〉; T ′← T ′∪{c,(0,0),d}; X ′←{d}; ToExplore def

= {d,b}

• Lines 6 and 18-20 : remove d; ToExplore← {b}; let t = 〈r,(0,0),r〉; T ′ ←
T ′∪{d,(0,0),d}

• Line 6-16: remove b; ToExplore← ∅; i← 1; create p1; λ(p1) = 〈p1,(∗,2)〉
Q′1← Q′1∪{p1}; Q′P←{q1,r1}; X ′←{r1,d}

• Halt.

Remark 3.3.2. Limit sure control state reachability for 1-VASS-MDPs is EXPSPACE-

hard, since it is at least as hard as control state reachability for VASS (which is has been

shown to be EXPSPACE-hard in [39]).
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Figure 3.5: Given as input 1-VASS-MDP S from Example 3.3.1, Algorithm 2 produces the

1-VASS-MDP S′ described as above. The circled control states are controlled, whereas

the squared ones are probabilistic. The double edge control states are targets.

The following two lemmas show the correctness of Algorithm 2. Let S=(Q,Q1,QP,T,τ)

be 1-VASS-MDP of dimension d > 0 with initial configuration c0 = (q0,v) and X ⊆ Q

a set of target states. Let S′ = (Q′,Q′1,Q
′
P,T

′,τ′) with initial configuration c′0 = (q′0,0)

and set of target states X ′ ⊆ Q′ be the (d−1) dimensional 1-VASS-MDP produced by

Algorithm 2.

Lemma 3.3.3. Val(MS,c0,J♦XK) = 1 =⇒ Val(MS′,c′0,J♦X ′K) = 1.

Proof. Let us assume that Val(MS,c0,J♦XK) = 1. Therefore, there exists a family of

strategies that make the probability of reaching X arbitrarily close to 1. In other words,

∀ε,∃σε,P(MS,c0,σε,J♦XK)≥ 1−ε. For every ε > 0 we use the strategy σε of player 1

on MS to construct a copycat strategy σ′ε for the game on MS′ that starts in c′0 = (q0,0),
such that it achieves J♦X ′K with probability ≥ 1− ε.

The strategy σ′ε will use the same moves on MS′ as σε on MS, which is possible due

to the way how MS′ is constructed from MS by Algorithm 2. By construction, for every

reachable configuration in MS there is a corresponding configuration in MS′ , and this

correspondence can be maintained stepwise in the moves of the game.

For the initial uncolored part of MS′ , this is immediate, since S′ is derived from the

unfolding of the game tree of S. The correspondence is expressed by the function λ.

Each current state of MS′ is labeled by the corresponding current configuration of MS.

In the colored subsystems, the corresponding configuration in system MS′ is a

projection of a configuration in MS. For any transition t ∈ T that is controlled by
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player 1 from a configuration in MS, there exists a transition t ′ ∈ T ′ that belongs to

player 1 in the corresponding configuration in MS′ , such that this transition leads to the

corresponding state. This is achieved by the projection and the fact that the 1-VASS-

MDP game is monotone w.r.t. player 1, i.e., larger configurations always benefit the

player (by allowing the same moves or even additional moves).

We now show a property on how probabilistic transitions in MS and MS′ correspond

to each other: For every probabilistic transition t ∈ T from a configuration in MS,

there exists a probabilistic transition t ′ ∈ T ′ in the corresponding configuration in MS′ ,

and vice-versa, such that these transitions have the same probability. In particular, a

configuration in MS′ does not allow any additional probabilistic transitions compared

to its corresponding configuration in MS (though it may allow additional transitions

controlled by player 1).

The first part of this statement follows from the monotonicity of the projection

function and the monotonicity of the transitions w.r.t. the size of the configurations.

For the second part we need to show that for every probabilistic transition t ′ =

(coli(x),projk(op),coli(y)) ∈ T ′ from a configuration in MS′ , there exists a probabilis-

tic transition t = (x,op,y) ∈ T in the corresponding configuration in S, such that the

probabilities of these transitions are equal. This latter fact holds only because we are

considering 1-VASS-MDP, where only the player can change the counters, whereas

the probabilistic transitions can only change the control-states. I.e., the ‘larger’ pro-

jected configurations in MS′ do not enable additional probabilistic transitions, since in

1-VASS-MDP these only depend on the control-state.

Therefore, by playing in MS′ using strategy σ′ε with the same moves as σε plays in

MS, we reach the same corresponding configurations in MS′ with the same probability

values as in MS. Since the definition of the target set X ′ in S′ includes all configurations

corresponding to configurations in X on S, it follows from P(MS,c0,σε,J♦XK))≥ 1−ε

that P(MS′,c′0,σ
′
ε,J♦X ′K) ≥ 1− ε. Since, by assumption above, this holds for every

ε > 0, we obtain Val(MS′,c′0,J♦X ′K)) = 1.

Lemma 3.3.4. Val(MS′,c′0,J♦X ′K) = 1 =⇒ Val(MS,c0,J♦XK) = 1.

Proof. We use the assumed family of strategies on MS′ that witnesses the property

Val(MS′,c′0,J♦X ′K) = 1 to synthesize a family of strategies on MS that witnesses

Val(MS,c0,J♦XK) = 1.

First we establish some basic properties of the system S′. It is a 1-VASS-MDP

of dimension d− 1 with initial configuration c′0, and consists of several parts. The
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initial uncolored part induces a finite-state MDP. Moreover, S′ contains finitely many

subsystems of distinct colors, where each subsystem is a 1-VASS-MDP of dimension

d−1 obtained from S by projecting out one component of the integer vector. For color

i, let k(i) be the projected component of the vector (see line 10 of the algorithm). Each

colored subsystem of dimension d−1 induces an MDP that may be infinite-state (unless

d = 1, in which case it is finite-state).

Note that colored subsystems are not reachable from each other, i.e., a color, once

reached, is preserved. Each colored subsystem has its own initial configuration (created

in lines 12-13 of Alg. 2). Let m be the number of colors in S′ and ri the initial

configuration of the subsystem of color i (where 0≤ i≤ m−1).

Let’s now consider only those colored subsystems in which the target set X ′ can be

reached limit-surely, i.e., let J = {i : 0≤ i≤ m−1 | P+(MS′,ri,J♦X ′K) = 1} be the set

of good colors and let R = {r j | j ∈ J}, and R̄ = {r j | j /∈ J}.
Further, let X ′f be the restriction of X ′ to the finite uncolored part of S′ (i.e., only

those parts added in line 26 of Alg. 2).

We now establish the existence of certain strategies in subsystems of S′. These will

later serve as building blocks for our strategies on MS.

Since we assumed that Val(MS′,c′0,J♦X ′K) = 1, there exists a family of strategies

that makes the probability of reaching X ′ arbitrarily close to one. In particular, they must

also make the probability of reaching configurations in R̄ arbitrarily close to zero. Thus

we obtain Val(MS′,c′0,J♦X ′f ∪RK) = 1, i.e., we can limit-surely reach X ′f ∪R. Since, for

this objective, only the finite uncolored part of MS′ is relevant, this is a problem for a

finite-state MDP and limit-surely and almost-surely coincide. So there exists a partial

strategy σ, for the uncolored part of MS′ , such that, starting in c′0, we almost-surely

reach X ′f ∪R, i.e., P(MS′,c′0,σ,J♦X ′f ∪RK) = 1.

In each of the good colored subsystems we can limit-surely reach X ′, i.e., for every

r j ∈ R we have Val(MS′,ri,J♦X ′K) = 1. So for every ε > 0 there exists a strategy σε
i

such that P(MS′,ri,σ
ε
i ,J♦X ′K)≥ 1− ε. Consider the computation tree of the game on

MS′ from ri when playing according to σε
i and its restriction to some finite depth d. Let

Pd(MS′,ri,σ
ε
i ,J♦X ′K) be the probability that the objective is reached already during

the first d steps of the game. We have Pd(MS′,ri,σ
ε
i ,J♦X ′K) ≤ P(MS′,ri,σ

ε
i ,J♦X ′K),

but limd→∞Pd(MS′,ri,σ
ε
i ,J♦X ′K) = P(MS′,ri,σ

ε
i ,J♦X ′K)≥ 1− ε. Thus for every color

i∈ J and every ε> 0 there exists a number d(i,ε) s.t. Pd(i,ε)(MS′,ri,σ
ε
i ,J♦X ′K)≥ 1−2ε.

Since configurations of MS′ are obtained by projecting configurations of MS, we can

go the reverse direction by replacing the missing component in an MS′ configuration
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by a given number. Given an MS′-configuration ri and a number d(i,ε) we obtain

an MS-configuration si(d(i,ε)) by replacing the missing k(i)-th component of ri by

d(i,ε). Let α ∈ N be the maximal constant appearing in any transition in S, i.e., the

maximal possible change in any counter in a single step. Since a single step in MS

can only change a counter by ≤ α, the k(i)-th component of si(α∗d(i,ε)) cannot be

exhausted during the first d(i,ε) steps of the game on MS starting at si(α ∗ d(i,ε)).

Thus we can use the same strategy σε
i in the game from si(α ∗ d(i,ε)) on MS and

obtain P(MS,si(α∗d(i,ε)),σε
i ,J♦XK)≥ 1−2ε. Intuitively, the number α∗d(i,ε) is big

enough to allow playing the game for sufficiently many steps to make the probability of

success close to 1.

Using the strategy σ above and the strategies σε
i , we now define a new family

of strategies σε for every ε > 0 for the game on MS from c0. Given ε > 0, we let

d(ε) = α∗maxi∈J d(i,ε) (a number that is big enough for each projected component).

Playing from c0 in MS, the strategy σε behaves as follows. First it plays like strategy

σ in the corresponding game from c′0 on MS′ . (Function λ connects the corresponding

configurations in the two games.) When the game in MS′ reaches a configuration ri

then there are two cases: If the configuration in MS is ≥ si(d(ε)) then σε henceforth

plays like σε
i , which ensures to reach the target X with probability ≥ 1−2ε. Otherwise,

the configuration in MS is still too small to switch to σε
i . In this case, σε continues to

play like σ plays from the previously visited smaller configuration in the uncolored part

of MS′ (see line 8 of the algorithm). This is possible, because the game is monotone

and larger configurations always benefit Player 1. So the game on MS continues with a

configuration that is larger (at least on component k(i)) than the corresponding game

on MS′ , i.e., component k(i) is pumped. Since we know that σ on MS′ will almost

surely visit X ′f or R, we obtain that σε on MS will almost surely eventually visit X or

some configuration ≥ si(d(ε)) for i ∈ J (and from there achieve to reach the target with

probability ≥ 1−2ε). Since every weighted average of probabilities ≥ 1−2ε is still

≥ 1−2ε, we obtain P(MS,c0,σε,J♦XK)≥ 1−2ε and thus Val(MS,c0,J♦XK) = 1.

Theorem 3.3.5. The limit-sure reachability problem for 1-VASS-MDP is decidable.

Proof. Let S = (Q,Q1,QP,T,τ) be 1-VASS-MDP of dimension d > 0 with initial

configuration c0 = (q0,v) and X ⊆ Q a set of target states. We show decidability of

Val(MS,c0,J♦XK) = 1 by induction on d. Base case d = 0. If S has 0 counters then

MS is a finite-state MDP and thus limit sure reachability coincides with almost sure

reachability, which is decidable.
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Inductive step. We apply Algorithm 2, which terminates by Lemma 3.3.1, and

obtain a new instance of the 1-VASS-MDP limit sure reachability problem of dimension

d−1: S′ = (Q′,Q′1,Q
′
P,T

′,τ′) with initial configuration c′0 = (q′0,0) and set of target

states X ′ ⊆ Q′. By Lemma 3.3.3 and Lemma 3.3.4, we have P+(MS,c0,J♦XK) = 1 ⇔
P+(MS′,c′0,J♦X ′K) = 1. By induction hypothesis, P+(MS′,c′0,J♦X ′K) = 1 is decidable

and the result follows.

Below, in Figure 3.6, we summarize the results regarding all (control state) reacha-

bility problems related to VASS-MDPs, as presented in [1]. The 7 mark represents the

fact that the corresponding problem is undecidable, whereas the 3 mark states that it is

decidable. The ‘df‘ word is an abbreviation for ‘deadlock-free‘.
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Reachability P-VASS-MDP df P-VASS-MDP 1-VASS-MDP

Sure 7 3 3

Almost-sure 7 7 3

Limit-sure 7 7 3

Sure repeated 7 3 3

Almost-sure repeated 7 7 3

Limit-sure repeated 7 7 open

Figure 3.6: Control state reachability results for VASS-MDPs

3.4 One-Counter Markov Decision Processes (OC-MDPs)

One-counter Markov Decision Processes (OC-MDPs) are probabilistic variants of

one-counter automata (OCA), which in turn are extensions of finite state automata

with an unbounded counter. Equivalently, OC-MDPs can be viewed as extensions of

Quasi-Birth-Death Processes (QBD) with a controller [14].

Several studies has been made in order to solve computational problems on classes of

counter machines for which reachability is decidable, such as one counter automata [70],

Petri nets and Vector Addition Systems with States (VASS) [67], [64], [77]. Initially, a

counter could be incremented or decremented by one unit or remain the same. However,

different problems has been studied in recent years, involving adding a certain constant

to a counter [22] or adding parameters that are integers [25].

One counter processes (OCPs) operate on pushdown automata whose alphabet

contains only one symbol. The reachability problem for pushdown automata can be

solved in polynomial time [23]. In recent years, there has been multiple novel results

related to verification of OCPs. For example, it has been shown in [51] that both model

checking over OCPs with the temporal logic EF where formulas are represented as

directed acyclic graphs (DAGs) and problems such as weak bisimilarity checking against

finite systems are PNP-complete. Their result is based on the membership problem

under a fragment of Presburger Arithmetic, which it is shown that is PNP-complete. We

recall that PNP represents a class of all problems that can be solved on a deterministic

polynomial time Turing machine with access to an oracle from NP. Moreover, [51]

shows that there exists a fixed EF formula (i.e., a finite system) where verification over

OCPs is hard for PNP[log], where PNP[log] represents the class of all problems that can
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be solved on a deterministic polynomial Turing machine which is allowed to perform

O(log(n)) many queries to an oracle from NP. In the case where the system is fixed, the

complexity drops to P.

One-Counter Markov decision processes (OC-MDPs) are a class of infinite state

MDPs that are generated by finite-state automata that possess a single unbounded

counter. Informally, an OC-MDP is a finite directed graph whose vertices are called

control states and edges specify transitions between control states. A control state may

be non-deterministic (i.e., controlled by Player 1 ) or probabilistic, where there exists a

probability distribution over the set of outgoing edges. Every edge in the directed graph

can increase/decrease the current counter value by one unit or leave it unchanged.. We

denote configurations as pairs under the form 〈p, i〉, where p is a control state of the

directed graph and i is the current counter value.

Every OC-MDP V induces two different types of countably infinite state (finitely

branching) MDPs where the state space is made of configurations that encode control

states of V and counter values - with boundary and boundaryless. An infinite state

MDP with boundary encodes control states of V and counters that are natural numbers

only, hence not allowing negative values. This is the model on which we are going to

focus in detail in this section. Conversely, the boundaryless infinite state MDP encodes

control states of V and counter values that are integers. Different objectives can be

specified on these types, giving birth to different computational analysis.

The goal of the controller is to maximize the probability (respectively, optimize the

expected value of an objective function) on the set of plays on the induced infinite state

MDP. For example, one would like to study objectives such as reaching a configuration

for the first time with counter value zero. This is known as a termination problem. Note

that we do not make any constraint on the control states that are visited. A selective

termination problem is a termination problem applied on a particular set of control

states, which we call targets. In other words, given a set of control states T of a OC-

MDP, the selective termination objective requires to reach a configuration with counter

value 0 in a control state of T . The limit-sure selective termination problem requires to

achieve the selective termination objective with probability arbitrarily close to 1. Our

main motivation for studying limit-sure selective termination problem comes from [28],

where one would like to study its decidability, as it has been left open. We would like

to establish a connection between limit-sure selective termination for OC-MDPs and

another (hard) problem. A suitable candidate for this is the almost sure {1,2,3}-parity

problem.
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In the OC-MDP framework - in order to consider the parity problem - all control

states of the system are colored, i.e., they are labelled by a natural number. The almost-

sure {1,2,3}-parity problem asks whether with probability 1 the maximal color that is

visited infinitely often is 2. We recall that the {1,2,3}-parity problem is just a subcase

of general parity problem, but already very hard. As presented in [61], simpler subcases

of parity exist in the Mostowski hierarchy, such as Büchi or co-Büchi objectives. Note

that as stated in [61], almost sure {1,2,3}-parity requires infinite memory on general

MDPs. It remains open whether the almost sure {1,2,3}-parity and the limit-sure

selective termination problems are decidable.

Our contribution is based on two results:

1. For the limit-sure selective termination objective, memoryless deterministic (MD)

strategies are sufficient. In other words, for a OC-MDP V , if one can achieve

limit-sure selective termination on V using a family of history-randomized (HR)

strategies, then one can achieve this via a family of memoryless deterministic

(MD) strategies.

2. We prove that the almost-sure {1,2,3}-parity problem for OC-MDPs is at least

as hard as the limit-sure selective termination problem for OC-MDPs.

Definition 3.4.1 ([28]). A One-Counter MDP (OC-MDP) is a tuple V = 〈Q,Q1,QP,δ
=0,

δ>0,P=0,P>0〉 where

• Q is a finite set of states which is partitioned into controlled (Q1) and probabilistic

(QP) states.

• δ=0 ⊆Q×{0,1}×Q is the set of zero rules and δ=0 ⊆Q×{−1,0,1}×Q is the

set of positive rules, where every q ∈ Q has an outgoing zero and an outgoing

positive rule.

• P=0 assigns to every q ∈ QP a positive rational probability distribution over the

outgoing transitions in δ=0 of q

• P>0 assigns to every q ∈ QP a positive rational probability distribution over the

outgoing transitions in δ>0 of q.

Given a OC-MDP, we now define a naturally induced MDP with boundary and a

boundaryless MDP as in Definition 3.4.2 and Definition 3.4.3, respectively.
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Definition 3.4.2 (MDP with boundary). A OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉

determines an infinite state MDP MV = 〈Q×N,Q1×N,QP×N,A,→, p〉 as in the fol-

lowing. For every p,q ∈ Q with i ∈ N, we have that

• A def
= {−1,0,1}

• 〈p,0〉 i−→ 〈q, i〉 if and only if 〈p, i,q〉 ∈ δ=0

• If p ∈ QP, then the probability of 〈p,0〉 j−→ 〈q, j〉 is P=0(p, j,q)

and for every p,q ∈ Q with i ∈ N and j ∈ N,

• 〈p, i〉 j−i−−→ 〈q, j〉 if and only if 〈p, j− i,q〉 ∈ δ>0

• If p ∈ QP, then the probability of 〈p, i〉 j−i−−→ 〈q, j〉 is P>0(p, j− i,q)

Conversely, we define an MDP with boundary as in the following.

Definition 3.4.3 (boundaryless MDP). Every OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,

P>0〉 determines an infinite state MDP M̂V = 〈Q×Z,Q1×Z,QP×Z,A,→, p〉 as in

the following. For every p,q ∈ Q with i, j ∈ Z, we have that

• A def
= {−1,0,1}

• 〈p, i〉 j−i−−→ 〈q, j〉 if and only if 〈p, j− i,q〉 ∈ δ>0

• If p ∈ QP, then the probability of 〈p, i〉 j−i−−→ 〈q, j〉 is P>0(p, j− i,q)

A strategy σ on an MDP with boundary or boundaryless MDP is called counter-

oblivious memoryless-deterministic if there exists a function h : Q→ δ>0 that chooses

a transition from each state q ∈ Q such that at every 〈q,n〉 ∈ Q×N, strategy σ chooses

h(q) with probability 1. In this way, the counter value and the history of play is not

taken into account.

3.4.1 Objectives for OC-MDPs

We consider qualitative objectives for OC-MDPs, such as variants of control-state

reachability with imposed conditions on the counter values.

Let V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉 be a OC-MDP and MV = 〈C×N,C1×N,

CP×N,A,→, p〉 be an infinite state MDP with boundary as in Definition 3.4.2.

We first define the termination objective (denoted as Term). Intuitively, it consists of

the set of all (infinite) plays of MV that encounter a configuration for which the counter
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value is zero, regardless of the control state that is visited when this scenario happens.

In other words, the objective does not take into account what specific control state is

visited, just the fact that the counter value is 0.

Definition 3.4.4 (Termination). Given a OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉

with the derived MDP with boundary MV = 〈Q×N,Q1×N,QP×N,A,→, p〉, we

define the termination objective (denoted as Term) as the set of all infinite plays ρ
def
=

c0
a0−→ c1

a1−→ c2 · · · of MV for which there exists an index i ∈ N such that ci = 〈q,0〉,
where q ∈ Q.

Given a set of target states T ⊆ Q, the selective termination objective (denoted as

STT or for simplicity, just ST if T is understood from the context) consists of the set of

all infinite plays of MV that encounter a configuration for which the counter value is

zero and the control state belongs to T . Clearly, this objective is more restrictive than

termination.

Definition 3.4.5 (Selective termination). Given a OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,

P=0,P>0〉with the derived MDP with boundary MV = 〈Q×N,Q1×N,QP×N,A,→, p〉
and a subset T ⊆ Q of control states (a.k.a. target set), we define the selective termina-

tion objective (denoted as STT and ST if T is understood from the context) as the set of

all infinite plays ρ
def
= c0

a0−→ c1
a1−→ c2 · · · of MV for which there exists an index i ∈ N

such that ci = 〈q,0〉, where q ∈ T .

We sometimes will use in our proofs a more expanded notation for termination and

selective termination, as in Lemma 3.4.1.

Lemma 3.4.1. Given OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉 with the derived

MDP with boundary MV = 〈Q×N,Q1×N,QP×N,A,→, p〉, a target set T ⊆ Q, we

have that

ST= J♦(T ×{0})K

Moreover,

Term= J♦((T ∪¬T )×{0})K

Proof. The result follows by unfolding the definitions of the ST and Term objectives,

respectively.

We will define the following two sets on MDPs with boundary. We define ValOneTerm
def
=

{〈p, i〉 | Val(MV ,〈p, i〉,Term) = 1} to represent the set of configurations from which
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a controller can achieve termination with probability arbitrarily close to 1, i.e., limit-

surely.

Conversely, we define OptValOneTerm
def
= {〈p, i〉 | ∃σ∈ΠHR.P(MV ,〈p, i〉,σ,Term)=

1} to represent the set of configurations from which a controller can achieve termination

with probability 1, i.e., almost-surely.

Theorem 3.4.2 (cf. Theorem 12 of [28]). Given a OC-MDP V , it holds that ValOneTerm=

OptValOneTerm. For any configuration 〈p, i〉 of V , we can decide in polynomial time

whether 〈p, i〉 ∈ ValOneTerm. Moreover, there exists a counter-oblivious MD strategy

σ which is constructible in polynomial time that is optimal in every configuration of

ValOneTerm = OptValOneTerm.

3.4.2 OC-MDPs

In [28], several algorithmic problems have been treated. In particular, for the termination

objective, the set of configurations from which one can achieve almost-sure termination

coincide with the set of configurations from which one can achieve termination limit-

surely. Moreover, deciding whether the optimal probability is 1 has been shown to be in

polynomial time, as in Theorem 3.4.2. However, for the selective termination objective,

the limit-sure case does not coincide with the almost-sure case, i.e., there may not be

any optimal strategy, even if the supremum probability of terminating in a desired subset

of control state is 1. Note that if from a configuration one can achieve the ST objective

almost-surely, then trivially, one can satisfy the ST objective limit-surely as well, but

not vice-versa. This fact can be illustrated in Section 3.4.7. In (Theorem 15,[28]) it

has been shown that the almost-sure selective termination problem for OC-MDPs is

decidable and PSPACE-hard, and provide an exponential time algorithm.

In the case of limit-sure selective termination for OC-MDPs, the problem has shown

to be PSPACE-hard [50], but its decidability remains still open. Our main result here is

a connection between the limit-sure selective termination and the almost-sure subcase of

general parity, called {1,2,3}-parity problem. Intuitively, every control state is labelled

with a number (color) between 1 and 3, needing to have that the maximally color visited

infinitely often is 2.

We recall that as stated in the beginning of Chapter 3, the {1,2,3}-parity is just a

small subcase of general parity problem, but already very hard (unlike simpler subcases

of parity in the Mostowski hierarchy presented in [61]). Firstly, this is the case because

almost-sure {1,2,3}-parity requires infinite memory on general MDPs (as shown in
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[61]). Secondly, even on OC-MDPs, decidability of almost-sure {1,2,3}-parity is open,

and (as shown in this thesis) it is at least as hard as the (also open) limit-sure selective

termination problem.

3.4.3 Solvency Games

Solvency games (studied in [20]) model a risk-averse gambler (also known as investor).

They are a subclass of OC-MDPs, since they have a single control state, but there may

exist several actions that can modify the counter value (also known as bankroll). Each

action (also known as investment choice) is a finitely supported probability distribution

on the set of integers. The probability distribution will specify the probabilities for

which each payoff (modification in the counter value) is assigned, given a particular

action that is chosen. Hence, it is possible that the counter value is modified by more

than 1 unit per transition. The objective in solvency games is to minimize the risk of

becoming bankrupt, starting with a given strictly positive bankroll. In [20] it has been

shown that if the solvency game satisfies certain technical conditions on the eigenvalues

of a matrix of a game, there exists a rich man’s pure optimal strategy. In other words,

once the gambler’s bankroll is above a certain threshold, it is optimal to use the same

action every time. They compute the optimal strategy under these game restrictions

in exponential time. In general however, they show that this optimal strategy may not

exist. Moreover, in [28] it has been shown that all qualitative problems for solvency

games are decidable in PTIME2.

3.4.4 Recursive Markov Chains (RMCs) and Recursive Markov De-

cision Processes (RMDPs)

Recursive Markov Chains (RMCs) denote a class of countably infinite MCs that are

constructed by adding a natural recursion feature to finite state MCs.

It has been shown in [42] that adding recursion to stochastic systems provides an

abstract model to represent probabilistic procedural programs. A reachability problem

for a Recursive Markov Chain is based on calculating the probability for which one can

reach a certain control state from the initial one. The work of [29] tackles the reachability

and termination problems for RMCs. Namely, they perform both a qualitative and

2In other words, for a given solvency game it is decidable in PTIME whether the gambler has a
strategy to go bankrupt with probability > 0, = 0, or < 1.
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quantitative analysis for the reachability and termination objectives and show that these

problems can be decided in PSPACE.

RMCs generalize multiple classes of stochastic systems, such as Stochastic Context-

Free Grammars (SCFGs) (also known as 1-exit RMCs), Multi-Type Branching Processes

[40], Quasi Birth Death Processes (QBDs). It has been shown in [43] that other models

such as probabilistic Pushdown Automata (pPDA) [38] and Tree-Like Quasi Birth

Death Processes [41] are equivalent to the RMC model.

3.4.5 One-Counter Simple Stochastic Games (OC-SSGs)

One-counter Simple Stochastic Games (OC-SSGs) [26] are a subclass of two-player

zero-sum stochastic games played on transition graphs of one-counter automata. The

OC-SSGs framework can be considered as a 2-player variant of OC-MDPs, in which

some control states belong to another non-deterministic player. Informally, a OC-SSG

possesses a finite set of control states, partitioned into three disjoint sets. The first set

of control states are under player 1’s control (also known as player Max ), the second

set of control state are under player 2’s control (also known as player Min), whereas

the third set of control states are random, i.e under Nature’s control. Transitions may

change the control state as well as it can decrease/increase by 1 the counter value or it

can leave it unchanged. In the case where the set of control states under player Min’s

control are empty, the system is called a maximizing OC-MDP. Conversely, if there

are no control states that belong to player Max, the system is known as a minimizing

OC-MDP. Intuitively, player Max would like to maximize the probability of achieving a

certain objective, whereas player Min would like to minimize it. From the Blackwell’s

determinacy theorem [65], it follows that objectives such as reachability, termination

are determined, i.e., they have a value. In the 2-player framework, a value v of a game

is represented as the following. For every ε > 0, no matter what strategy player Min

uses, player Max has a strategy such that the probability of achieving the objective is

≥ v− ε. Also, regardless of what player Max does, player Min has a strategy such that

the probability of achieving the objective is ≥ v+ ε.

For termination objectives, it has been shown in [26] that the value of a OC-SSG

can be irrational, even if the system contains rational probabilites on its transitions. This

is realized even if the set of Max’s and Min’s control states are empty, i.e there are only

stochastic control states. Moreover, deciding whether the termination value is < 1 is

at least as hard as Condon’s quantitative reachability problem for Simple Stochastic
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Games.

3.4.6 One-Counter Nets (OCNs)

One-Counter Nets (OCNs) consist of a finite control and one integer counter that cannot

be tested for zero. In this sense, this model is subsumed by One-Counter Automata, and

Pushdown Automata in general, since those allow zero tests by reading a bottom marker

on the stack. Moreover, OCNs are a subclass of VASS/Petri nets, being the equivalent

of the one-dimensional VASS model or Petri Nets with at most one unbounded place.

Hence, multiple decidability questions for VASS apply to OCNs as well. Further details

about OCNs and their decidability questions can be found in [57].

3.4.7 Limit-Sure Selective Termination for OC-MDPs

In this subsection, we are interested in the limit-sure selective termination problem for

OC-MDPs. Given a OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉, a subset T ⊆ Q of

target states, an initial configuration 〈p,1〉 ∈Q×N, one would like to decide whether it

is possible to make the probability of reaching a configuration 〈q,0〉 ∈ T ×N arbitrarily

close to 1.

We now formally state the limit-sure selective termination problem for OC-MDPs.

Limit sure selective termination for OC-MDPs

Input: OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉, T ⊆ Q, initial configura-

tion 〈p,1〉 ∈ Q×N
Question: Does there exist for every ε > 0, a strategy σε such that

P(MV ,〈p,1〉,σε,ST)≥ 1− ε?

Conversely, we now state the almost-sure {1,2,3}-parity decision problem on OC-

MDPs. Recall from Definition 3.1.11 that the parity objective is defined in terms of

a priority (color) function that is given a priori. Given a OC-MDP V and a function

λ : Q→{1,2,3}, we define a priority λ̂ : Q×N→{1,2,3} by lifting λ to configurations

(states) in the infinite state MDP with boundary MV .
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Almost sure {1,2,3}-PAR problem for OC-MDPs

Input: OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉, initial configuration

〈q,1〉 ∈ Q×N, a function λ : Q→{1,2,3}
Question: Does there exist a strategy σ ∈Π such that P(MV ,〈q,1〉,σ,{1,2,3}-
PAR(̂λ)) = 1?

p

+1

q
0

-1

r
0

-1

Figure 3.7: An illustration of the limit sure selective termination problem for a OCMDP

V . The circles states are controlled, whereas the square states are probabilistic. The

target control state r is drawn with double edges. From 〈p,1〉, the configuration 〈r,0〉
can be reached limit-surely (by a family of strategies that repeats the loop at p more and

more often), but not almost-surely, since every strategy has a non-zero chance of getting

stuck at state q with counter value zero. Each probabilistic transition has chance 1
2

In Figure 3.7, similar as in [28], we present an illustration of the limit-sure se-

lective termination problem for a OC-MDP V . It is not hard to observe that for all

ε > 0, there exists a strategy σε, for every configuration 〈p, i〉 ∈ Q×N, such that

P(MV ,〈p, i〉,σε,ST)≥ 1− ε. The intuition behind this construction is the fact that for

every ε > 0, one can construct a strategy σε in the following way. Starting at configu-

ration 〈p,1〉, we define kε ∈ N (which is chosen in terms of the value of ε) so that the

controller can “pump the counter up“ by using the transition 〈p,+1, p〉 kε many times.

Then, from configuration 〈p,kε〉 move to state q by using the transition 〈p,0,q〉. Then,

there exists a chance of 1
2 of staying in q and chance of 1

2 of going to target control state

r. It is easy to observe that each strategy σε reaches configuration 〈r,0〉 with probability

P(MV ,〈p,1〉,σε,ST) ≥ 1− 1
2kε

> 1− ε. However, there is no chance to reach state

r with counter value 0 with probability 1, since there is a strictly positive chance of

getting stuck at control state q.

Furthermore, for this particular example, the constructed strategies are both memo-

ryless deterministic (MD) and finitely representable by a deterministic finite automaton.

A further analysis concerning this fact is presented in [28].

Lemma 3.4.3 (cf. Theorem B, [74]). Given a countable state MDP M = 〈C,C1,
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,CP,A,→, p〉 and a set Q⊆C, then for every ε> 0, there exists a memoryless-deterministic

σε ∈ΠMD such that for every c ∈C,

P(M ,c,σε,J♦QK)≥ (1− ε)× sup
σ∈ΠHR

P(M ,c,σ,J♦QK)

We prove in Theorem 3.4.4 that in order to achieve limit sure selective termination

on OC-MDPs, it suffices to use a memoryless-deterministic strategy only.

Theorem 3.4.4. Given a OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0〉, and the derived

MDP with boundary MV = 〈Q×N,Q1×N,QP×N,A,→, p〉, a set of target states

T ⊆ Q and initial control state 〈p,1〉, we have that limit sure selective termination can

be achieved if and only if limit sure selective termination can be achieved using a family

of MD strategies, i.e.

sup
σ∈ΠHR

P(MV ,〈p,1〉,σ,ST) = 1 ⇐⇒ sup
σ∈ΠMD

P(MV ,〈p,1〉,σ,ST) = 1

Proof. Case ⇐= is trivial since by [76], any memoryless deterministic strategy is also

a history randomized one, i.e. ΠMD ⊆ΠHR. Hence, the result follows.

Case =⇒ . Assume that supσ∈ΠHR P(MV ,〈p,1〉,σ,ST) = 1. By Lemma 3.4.3 (let

Q def
= T ×{0}), we have that for every ε > 0, there exists σε ∈ΠMD such that

P(MV ,〈p,1〉,σε,J♦T ×{0}K)≥ (1− ε)× sup
σ∈ΠHR

P(MV ,〈p,1〉,σ,J♦T ×{0}K)

From Lemma 3.4.1, we have that ST= J♦T ×{0}K. Hence, by our assumption, since

supσ∈ΠHR P(MV ,〈p,1〉,σ,ST) = 1, we obtain that

∀ε > 0.∃σε ∈Π
MD.P(MV ,〈p,1〉,σε,ST)≥ (1− ε)

and so that supσ∈ΠMD P(MV ,〈p,1〉,σ,ST) = 1.

Now we prove that the almost-sure {1,2,3} parity problem for OC-MDPs is at least

as hard as the limit sure selective termination problem for OC-MDPs. This result is

presented in Theorem 3.4.7.

The main idea of the reduction is the following. From the OC-MDP V with control

states Q, an initial control state p and a target set T ⊆ Q, we construct a OC-MDP V ′

with control states Q′ and a priority function λ′ : Q′→{1,2,3}, by keeping the control

states of V and add two new probabilistic control states t and f . The transition rules

from V are kept, along with some new zero rules. In particular, from every control state
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in T where the counter value is zero, there exists a zero rule (taken with probability 1)

towards control state t. Conversely, from every control state not in T where the counter

value is zero, there exists a zero rule towards control state f . Furthermore, from both

t and f there exists a zero rule towards initial control state p which increments the

counter by 1. The priority function λ′ labels control state t and f with color 2, and 3,

respectively, whereas every other control state is labelled by color 1.

Hence, one can achieve limit-sure selective termination in V if and only if one

achieve almost-sure {1,2,3}-parity in V ′.

Definition 3.4.6. Given a OC-MDP V = 〈Q,Q1,QP,δ
=0,δ>0,P=0,P>0〉with target set

T ⊆ Q, an initial control state pi ∈ Q, we construct a OC-MDP V ′ = 〈Q′,Q′1,Q′P,δ′=0,

δ′>0,P′=0,P′>0〉 and a priority function λ′ : Q′→{1,2,3} as

• Q′1
def
= Q1; Q′P

def
= QP∪{t, f}

• δ′>0 def
= δ′>0

• δ′=0 def
= δ=0∪{(p,0, t) | p ∈ T}∪{(p,0, f ) | p 6∈ T}∪{〈t,+1, pi〉,〈 f ,+1, pi〉}

• P′=0(〈x,op,y〉) def
=


1 if {x,y}∩{t, f} 6=∅
P=0(〈x,op,y〉) if x ∈ QP∧ y ∈ Q

0 if otherwise

• λ′(q) = 1, for all q 6∈ {t, f}; λ′(t) = 2; λ′( f ) = 3

We state the Borel-Cantelli lemma [33], which will be used in the proof of Theo-

rem 3.4.7

Lemma 3.4.5 (Borel-Cantelli lemma). [33] Let (En)n∈N be a sequence of events in a

probability space. Let us denote the event E∞ def
=

⋂
∞
k=1

⋃
∞
n=k En, which denotes the fact

that En occurs for infinitely many n. If Σ∞
n=1P(En)< ∞ then P(E∞) = 0.

We will show that if limit-sure selective termination holds from an initial configura-

tion on a OCMDP V , then limit-sure selective termination holds by always remaining

in a set of configurations from which one would almost-surely reach a configuration

〈q,0〉, where q 6∈ T .

Lemma 3.4.6. Given a OC-MDP V with states Q, an initial configuration c ∈ Q×N
and a set of target states T ⊆ Q, we have that

Val(MV ,c,ST) = 1 =⇒ Val(MV ,c,ST∩ J�CK) = 1

where C def
= {c′ ∈ Q×N | Val(MV ,c′,Term) = 1}.
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〈 f ,0〉 〈p,0〉 〈p,1〉 〈p,2〉 · · ·

〈t,0〉 〈q,0〉 〈q,1〉 〈q,2〉 · · ·

〈r,0〉 〈r,1〉 〈r,2〉 · · ·

Figure 3.8: An infinite state MDP MV ′ derived from OC-MDP V ′ (which is itself induced

by the OCMDP V from Figure 3.7) as in Definition 3.4.6. The non-deterministic states are

represented as circles and probabilistic states drawn as squares. Configurations 〈t,0〉
and 〈 f ,0〉 are labelled with colors 2 and 3, respectively, whereas all other configurations

have priority 1. Given a probabilistic state s ∈ QP×N0, every transition is taken with

probability 1
2 . From s ∈ {〈t,0〉,〈 f ,0〉} there is a unique transition to 〈p,1〉 (illustrated by

the green and red arrows, respectively) that is taken with probability 1.

Proof. By Theorem 3.4.2, it holds that the set of configurations of C satisfy Term

objective almost-surely, using a counter-oblivious memoryless strategy σ. Moreover, for

every 〈q,k〉 ∈ Q×N, we have that Val(MV ,〈q,k+1〉,Term)≤ Val(MV ,〈q,k〉,Term),
as stated in [27]. In other words, for any control state q, the value of achieving

termination decreases as the counter value increases. For any control state q ∈ Q, let

us consider the smallest k ∈ N such that Val(MV ,〈q,k〉,Term) < 1, and define vq
def
=

Val(MV ,〈q,k〉,Term), if such k exists. Otherwise, disregard the control state q. Since Q

is finite, there exists a minimum value for vq and we define δ
def
= minq(1− vq). Note that

by construction, δ > 0. Given ε > 0, let us fix σε ∈ΠHR such that P(MV ,c,σε,ST)≥
1−ε. Let us define γ

def
= P(MV ,c,σε,J¬�CK), namely the probability that σε eventually

reaches a configuration in (Q×N)\C, which does not satisfy the Term objective almost

surely. We have that

P(MV ,c,σε,¬ST)≥ γ×δ (3.2)

Since the ST objective is satisfied limit-surely, we have that

P(MV ,c,σε,¬ST)< ε (3.3)

From Equation (3.2) and Equation (3.3), we obtain γ≤ ε

δ
.

Let us pick an arbitrary strategy σ′ε that replicates the same moves of σε up until a
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configuration in (Q×N)\C is reached, and fail otherwise. Namely, for all plays ρ with

σε(ρ) 6∈ (Q×N)\C, it holds that σ′ε(ρ) = σε(ρ). Using γ≤ ε

δ
, we obtain:

P(MV ,〈p,1〉,σ′ε,ST)≥ 1− ε− γ

≥ 1− ε− ε

δ

= 1− ε

(
1− 1

δ

) (3.4)

Since (1− 1
δ
) is independent of ε, one can still satisfy the ST objective with prob-

ability arbitrarily close to 1, by never visiting a configuration that does not terminate

with probability 1, i.e. always remain in the set C.

We will now provide a polynomial time reduction from the limit sure selective

termination for OC-MDPs to the almost sure {1,2,3}-parity for OC-MDPs.

Theorem 3.4.7. Given V = (Q,Q1,QP,δ
=0,δ>0,P=0,P>0) be a OC-MDP with initial

configuration 〈p,1〉 and a set of target states T ⊆ Q, one can construct in logarithmic

space (and thus in polynomial time) a OC-MDP V ′ with priority function λ′ : Q′→
{1,2,3}, as in Definition 3.4.6. Then, limit-sure selective termination holds in V if and

only if almost sure {1,2,3}-parity holds in V ′.

∀ε > 0∃σε ∈Π
HR.P(MV ,〈p,1〉,σε,ST)≥ 1− ε ⇐⇒

∃σ ∈Π
HR.P(MV ′,〈p,1〉,σ,{1,2,3}−PAR(λ̂′)) = 1

Proof. Case ⇐= . Assume that limit sure selective termination does not hold in MV .

Hence, there must exist ε > 0 such that

∀σ ∈Π
HR.P(MV ,〈p,1〉,σ,ST)< 1− ε (3.5)

We show that there is no strategy σ′ ∈ΠHR such that P(MV ′,〈p,1〉,σ,{1,2,3}-PAR(λ̂′))=
1. We will prove this fact by contradiction.

Let us assume that almost sure {1,2,3}-parity holds in MV ′ , i.e.,

∃σ′ ∈Π
HR.P(MV ′,〈p,1〉,σ′,{1,2,3}−PAR(λ̂′)) = 1 (3.6)

From the hypothesis and by construction of MV ′ , w.l.o.g.,

∃ε > 0.∀τ ∈Π
HR.P(MV ′,〈p,1〉,τ,J♦(〈t,0〉)K)< 1− ε < 1 (3.7)
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However, from the definition of the {1,2,3}-parity objective we have that {1,2,3}(λ̂′)⊆
J�♦(〈t,0〉)K. Therefore, by Equation (3.7), we obtain the following inequality

∀τ ∈Π
HR.P(MV ′,〈p,1〉,τ,{1,2,3}−PAR(λ̂′))≤ P(MV ′,〈p,1〉,τ,J♦(〈t,0〉)K)< 1

(3.8)

which contradicts Equation (3.6). Hence, there is no strategy on MV ′ that satisfies the

{1,2,3}-parity objective almost-surely.

Case =⇒ . Assume that limit-sure selective termination holds in MV , i.e.,

∀ε > 0∃σε ∈Π
HR.P(MV ,〈p,1〉,σε,ST)≥ 1− ε.

Given ε > 0, fix strategy σε on MV such that the ST objective is satisfied with

probability ≥ 1− ε. We define Pkε
(MV ,〈p,1〉,σε,ST) to be the probability that the ST

objective is satisfied within the first k steps. Observe that

Pkε
(MV ,〈p,1〉,σε,ST)≤ P(MV ,〈p,1〉,σε,ST).

and

lim
k→∞

Pk(MV ,〈p,1〉,σε,ST) = P(MV ,〈p,1〉,σε,ST)≥ 1− ε.

Therefore, for every ε> 0, there exists a number kε ∈N such that Pk(MV ,〈p,1〉,σε,ST)≥
1−2ε.

Now we construct a strategy τ on MV ′ as in the following. For every εi > 0, replicate

the same moves as σεi for the first kεi steps. By construction, Pkεi
(N ,〈p,1〉,σεi,J♦〈t,0〉K≥

1−2εi. Then, let us denote ckεi
be the configuration at step kεi . By Lemma 3.4.6 we can

assume without restriction that ckεi
∈C, where C def

= {c′ ∈ Q×N | Val(MV ,c′,Term) =

1}, and then switch to an existing strategy σ to ensure that P(MV ′,ck,σ,J♦(〈t,0〉∨ 〈 f ,0〉)K)=
1. By construction, the system is guaranteed to restart in 〈p,1〉 and then the strategy τ

restarts the process with a smaller εi (see below).

Now we argue that P(MV ′,〈p,1〉,τ,J�(♦〈 f ,0〉)K) = 0. For simplicity, let us define

S def
= Q×N0. We define the sequence of events El of visiting 〈 f ,0〉 between the l-th and

(l +1)-th visits of 〈p,1〉, i.e.,

El
def
= (〈p,1〉(S\{〈p,1〉})∗)l−1〈p,1〉(S\{〈p,1〉,〈 f ,0〉})∗〈 f ,0〉〈p,1〉Sω

We apply the Borel-Cantelli lemma [33] to show that infinitely many of events El

occur with probability zero. Let εi
def
= 2−(i+1). We have that

Σ
∞
l=1P(MV ′,〈p,1〉,τ,El) = 1+

1
2
+ ...+

1
2i+1 + ...= 2 < ∞
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Using the Borel-Cantelli lemma we now have that P(MV ′,〈p,1〉,τ,J�(♦〈 f ,0〉)K) = 0

and hence, P(MV ′,〈p,1〉,τ,{1,2,3}-PAR) = 1.



Chapter 4

Conclusion and Outlook

We studied decidability and complexity questions for timed and probabilistic extensions

of Petri nets.

In the first part of the thesis (Chapter 2), we have shown that the Existential Cov-

erability problem (and its dual of universal safety) is PSPACE-complete for a timed

extension model of Petri nets, called Timed Petri Nets. Our model corresponds to a

controller-less timed network where each process is a 1-clock Timed Automata, inter-

acting via handshake communication. The corresponding problem for a Timed Network

with a central controller is complete for F
ωωω [55]. In the Timed Petri Net model, every

token has a real-valued clock (a.k.a age), and transition firing is constrained by the

clock values that have integer bounds (using strict and non-strict inequalities). The

newly created tokens can either inherit the age from an input token of the transition

or it can be reset to zero. We hence positively solve an open question from [6] con-

cerning the decidability of universal safety in timed network with no central controller.

Furthermore, we can compute a symbolic representation of the set of markings which

are coverable, using exponential space (Theorem 2.7.14). We show the PSPACE lower

bound (Section 2.6) by a reduction from the iterated monotone Boolean circuit problem.

Note however that this result does not follow directly from the PSPACE-completeness

of the reachability problem for timed automata [12] due to the absence of the global

controller. In order to show the PSPACE upper bound, we provide a logspace reduction

of the Existential Coverability problem for Timed Petri Nets to the corresponding

problem for a syntactic subclass, called non-consuming Timed Petri Net (Lemma 2.7.1).

We then perform an abstraction of the real-valued clocks, similar to the one used in

[8]. Clock values are split into integer parts and fractional parts. The integer parts

of the clocks can be abstracted Section 2.7.3 into a finite domain, since the transition
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guards cannot distinguish between values above the maximal constant that appears in

the system. The fractional parts of the clock values that occur in a marking are ordered

sequentially. Then every marking can be abstracted into a string where all the tokens

with the i-th fractional clock value are encoded in the i-th symbol in the string. Since

token multiplicities do not matter for Existential Coverability, the alphabet from which

these strings are built is finite. The primary difficulty is that the length of these strings

can grow dynamically as the system evolves, i.e., the space of these strings is still

infinite for a given Timed Petri Net. We perform a forward exploration of the space of

reachable strings. By using an acceleration technique (Algorithm 1), we can effectively

construct a symbolic representation of the set of reachable strings in terms of finitely

many regular expressions. Finally, we can check Existential Coverability by using this

symbolic representation (Theorem 2.7.14).

It remains an open question whether these positive results for the controller-less case

of timed network model can be generalized to multiple real-valued clocks per token.

This problem has been considered in this project as well but several issues occurred

when reasoning about how clock values relate to each other in a similar acceleration

technique as presented here for the one-clock case. In the case with a controller, safety

becomes undecidable already for two clocks per token [6].

Another question is whether our results can be extended to more general versions of

Timed Petri Nets. In our version, clock values are either inherited, advanced as time

passes, or reset to zero. However, other versions of Timed Petri Nets allow the creation

of output-tokens with new non-deterministically chosen non-zero clock values, e.g., the

timed Petri nets of [8, 10] and the read-arc timed Petri nets of [24].

In the second part of the thesis (Chapter 3), we referred to systems with controlled

behaviour that are probabilistic extensions of Vector Addition Systems with States

(VASS) and One-Counter Automata. We studied the decidability of probability-1 quali-

tative qualitative reachability and Büchi objectives for infinite-state Markov Decision

Processes (MDPs) that are induced by probabilistic extensions of VASS called VASS-

MDPs. Several quantitative objectives in probabilistic VASS are either undecidable,

or the solution is at least not effectively expressible in (R,+,∗,≤) [7]. For general

VASS-MDPs, we show that even the simplest of these problems, such as (almost)-sure

reachability, is undecidable (see Section 3.2.3). We consider two monotone subclasses

of VASS-MDPs: 1-VASS-MDPs and P-VASS-MDPs. These are called single-sided,

since either the controller or the probabilistic player can change counter values. In

1-VASS-MDPs, only Player 1 can modify counter values while the probabilistic player
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can only change control-states, whereas for P-VASS-MDPs it is vice-versa. These

two models induce infinite-state MDPs as well. We show that the limit-sure control

state reachability problem in 1-VASS-MDPs is decidable (Theorem 3.3.5). For our

decidability result, we use an algorithm which at each iteration reduces the dimension

of the considered 1-VASS-MDP while preserving the limit-sure reachability properties.

The limit-sure repeated reachability for 1-VASS-MDPs has been still left open, since

several difficulties may arise. In particular, a solution might involve an analysis of

the long run behaviour of multi-dimensional random walks induced by probabilistic

VASS. In [30] (Section 5) it has been shown that this may exhibit strange non-regular

behaviours where the dimension is ≥ 3.

One counter Markov decision processes (OC-MDPs) are a class of infinite state

MDPs that are generated by finite-state automata that possess a single unbounded

counter. We show in Theorem 3.4.4 that for the limit-sure selective termination objective

on OC-MDPs, memoryless-deterministic strategies are sufficient. In other words, for

a OC-MDP V , if one can achieve limit-sure selective termination on V , then one can

achieve this via a family of memoryless-deterministic strategies. Furthermore, we

prove in Theorem 3.4.7 that the almost-sure {1,2,3}-parity problem for OC-MDPs is

at least as hard as the limit-sure selective termination problem for OC-MDPs. Note

that Theorem 3.4.7 relates a limit-sure problem with an almost-sure problem (for OC-

MDPs). In this project, the decidability problem for limit-sure selective termination

for OC-MDPs has been considered as well, but several issues have been encountered,

when reasoning about limit-sure strategies. Nevertheless, the decidability of both

{1,2,3}-parity problem and limit-sure selective termination problem for OC-MDPs is

still open.
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