2,995 research outputs found

    Sensor fault detection and isolation for a class of uncertain nonlinear system using sliding mode observers

    Get PDF
    Quick and timely fault detection is of great importance in control systems reliability. Undetected faulty sensors could result in irreparable damages. Although fault detection and isolation (FDI) methods in control systems have received much attention in the last decade, these techniques have not been applied for some classes of nonlinear systems yet. This paper deals with the issues of sensor fault detection and isolation for a class of Lipschitz uncertain nonlinear system. By introducing a coordinate transformation matrix for states and output, the original system is first divided into two subsystems. The first subsystem is affected by uncertainty and disturbance. The second subsystem just has sensor faults. The nonlinear term is separated to linear and pure nonlinear parts. For fault detection, two sliding mode observers (SMO) are designed for the two subsystems. The stability condition is obtained based on the Lyapunov approach. The necessary matrices and parameters are obtained by solving the linear matrix inequality (LMI) problem. Furthermore, two sliding mode observers are designed for fault isolation. Finally, the effectiveness of the proposed approach is illustrated by simulation examples

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    A class of predefined-time stable dynamical systems

    Get PDF
    This article introduces predefined-time stable dynamical systems which are a class of fixed-time stable dynamical systems with settling time as an explicit parameter that can be defined in advance. This concept allows for the design of observers and controllers for problems that require to fulfil hard time constraints. An example is encountered in the fault detection and isolation problem, where mode detection in a timely manner needs to be guaranteed in order to apply a recovery action. Furthermore, through the notion of strong predefined-time stability, the approach hereinafter presented permits to overcome the problem of overestimation of the convergence time bound encountered in previous methods for the analysis of finite-time stable systems, where the stabilization time is often an unbounded function of the initial conditions of the system. A Lyapunov analysis is provided together with a detailed discussion of the applications to consensus and first order sliding mode controller design

    Actuator fault reconstruction using FDI system based on sliding mode observers

    Get PDF
    Interplanetary space missions require spacecraft autonomy in order to fulfill the mission objective. The fault detection and isolation (FDI) system increases the level of autonomy and can ensure the safety of the spacecraft by detecting and isolating potential faults before they become critical. The proposed FDI system is based on an innovative bank of SMOs (sliding mode observers), designed for different fault scenarios cases. The FDI system design aims to detect and isolate actuators and measurement units’ faults used by the satellite control system and considers the nonlinear model of the satellite dynamics. This approach gives the possibility of fault reconstruction based on the information provided by an equivalent injection signal, allowing to reconstruct external perturbances and faults. The SMO chattering phenomenon is avoided by using the pseudo-sliding function, being a linear approximation of the signum function, which gives the possibility of using the equivalent injection signal for fault reconstruction purposes. The proposed fault reconstruction methodology is illustrated by a case study for a 6U Cubesat

    Sliding mode adaptive state observation for time-delay uncertain nonlinear systems

    Get PDF
    In this paper a method to design robust adaptive sliding mode observers (ASMO) for a class of nonlinear time- delay systems with uncertainties, is proposed. The objective is to achieve insensitivity and robustness of the proposed sliding mode observer to matched disturbances. A novel systematic design method is synthesized to solve matching conditions and compute observer stabilizing gains. The Lyapunov-Krasovskii theorem is employed to prove the ultimate stability with arbitrary boundedness radius of the estimation error of the proposed filter. Finally, the ability of ASMO for fault reconstruction is studied

    Sampled-data sliding mode observer for robust fault reconstruction: A time-delay approach

    Get PDF
    A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches

    Observer-based Fault Detection and Diagnosis for Mechanical Transmission Systems with Sensorless Variable Speed Drives

    Get PDF
    Observer based approaches are commonly embedded in sensorless variable speed drives for the purpose of speed control. It estimates system variables to produce errors or residual signals in conjunction with corresponding measurements. The residual signals then are relied to tune control parameters to maintain operational performance even if there are considerable disturbances such as noises and component faults. Obviously, this control strategy outcomes robust control performances. However, it may produce adverse consequences to the system when faults progress to high severity. To prevent the occurrences of such consequences, this research proposes the utilisation of residual signals as detection features to raise alerts for incipient faults. Based on a gear transmission system with a sensorless variable speed drive (VSD), observers for speed, flux and torque are developed for examining their residuals under two mechanical faults: tooth breakage with different degrees of severities and shortage of lubricant at different levels are investigated. It shows that power residual signals can be based on to indicate different faults, showing that the observer based approaches are effective for monitoring VSD based mechanical systems. Moreover, it also shows that these two types fault can be separated based on the dynamic components in the voltage signals

    The application of sliding mode observers to fault detection and isolation for multilevel converters

    Get PDF
    Multilevel converters have received significant interest recently as a result of their high power capability and good power quality. However due to the large number of sensitive components including power semiconductor devices and capacitors used in such circuits there is a high likelihood of component failures. This thesis considers one of the most promising multilevel topologies---the modular multilevel converter (MMC). Several methods are presented to detect and locate open-circuit faults in the power semiconductor devices in an MMC. These methods are based on sliding mode observers (SMOs). The signals used in the proposed methods are already available as measurement inputs to the control system and no additional measurement elements are required. An experimental MMC rig has been designed and built to validate these fault detection and isolation methods. The methods can be used with other multilevel converter topologies employing similar analysis and principles
    corecore