16,635 research outputs found

    A Hybrid Model for Photographic Supra-Projection

    Get PDF
    Photographic supra-projection (CS) comes under forensic process in which video shots or photographs of a missing person are compared against the skull that is found. By projecting both photographs on top of each other (or, even better, matching a scanned 3-D skull model against the face photo/video shot), the forensic anthropologist can try to ascertain whether it is the same person. The overall process is affected by inherent uncertainty, mostly because two objects of different nature (a face and a skull ) are involved. In this paper, we extended existing evolutionary-algorithm-based techniques to automatically superimpose the 3-D skull model and the 2-D face photo with the aim to overcome the limitations that are associated with the different sources of uncertainty, which are present in the problem. Three different approaches to handle the imprecision will be proposed: Viola- Jones Face Detection Framework, Canonical Correlation Analysis and Inverse Compositional Active Appearance Model. DOI: 10.17762/ijritcc2321-8169.15076

    Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability

    Get PDF
    Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish ( ). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution

    Forensic facial reconstruction using 3-D computer graphics: evaluation and improvement of its reliability in identification

    Get PDF
    This thesis is concerned with computerised forensic 3-D facial reconstruction as a means of identification and involves the restoration of the face on the skull in an attempt to achieve a close likeness of the individual when alive. The reconstruction process begins with the biological identification of the skeletal remains, (age, sex, ancestry and build). Facial reconstruction is then carried out and essentially works by building the “face” up from the skull using soft tissue thicknesses at specific locations from existing data. However, it is used as a last resort on skeletonised, badly decomposed or mutilated corpses, when no other information is available; even then it is only accepted as corroborative evidence in court. It is performed in the hope that it may stimulate recognition, and consequently narrow the field of identification, allowing other tests to be carried out, such as radiographic and/or dental comparisons, DNA analysis or other means, to establish positive identification. The advantages of the computerised method over the manual clay reconstruction are speed, rapid editing capability, production of images that can be stored and reconstructions repeated at any time if required. Furthermore, in many cases, the original skull instead of a cast or model may be used for reconstruction because the 3-D computerised procedure is rapid and non invasive. However, the most significant advantage of this technique with regard to the aims and objectives of the thesis is that a number of alternative reconstructions may be produced sequentially for the same skull by using different facial templates from the database that meet the anthropological/biological criteria of the skull. The issues addressed by the study and therefore its main aims are: a) evaluation and b) improvement of the reliability of facial reconstruction using 3-D computer graphics. The methodology involved initially digitizing a skull using a low-power laser scanner and a video camera interfaced to a computer. From a database of previously scanned faces, ten facial templates were selected that matched the anthropological criteria of each of the skulls, i.e. age, sex, ancestry and build. Landmarks with their corresponding soft tissue thicknesses were then located and placed on the skull and the equivalent ones on the face. The 3-D computer graphics then reconstructed the face by morphing (warping) the facial template over the skull by matching the corresponding landmarks on the skull and face with the appropriate soft tissue thicknesses at those landmark locations. The soft tissue thicknesses used at their specific landmark locations also matched the anthropological criteria of the skulls, since soft tissue depths are dependent on age, sex, ancestry and build. One of the major problems with any reconstruction which affect its reliability for identification is the uncertainty of the shape of some of the individual characteristics of soft tissue structures such as shape of lips, ears and nose/nasal tip since there is not direct information on the skull regarding the shape of some of these features. In addition, with the laser scanning system, the faces within the database all have closed eyes, because of the potential laser hazard to the eyes. Thus it is necessary to add “opened” eyes, head and facial hair (where appropriate) to give a realistic appearance to the face. The software provides the facility to export a 2-D view in a TIFF or JPEG format from the 3-D reconstructed image. The file can then be imported into a police identi-kit system such as E-FIT™, which allows the addition of features. In this study five skulls of known individuals were used for reconstruction in the manner explained. Ten facial templates which fulfilled the anthropological criteria (age, sex, ancestry and build) for each skull were used for the rebuilding process, thus totalling fifty reconstructions. The study employed a psychological resemblance test (experiment 1) where 20 different assessors, were asked to select in each case study, the best three matches of the ten reconstructions with the ante-mortem photograph of the individual during life. The results from these tests were correlated with a mathematical shape analysis assessment using Procrustes Analysis in which, the skull was compared in turn with each of the ten facial templates of each case study (experiment 2).The ranking of the assessors’ reconstruction choice was correlated with the ranking of the Procrustes Analysis by using Spearman’s Rank Order Correlation. The results indicate that although not statistically significant, it would seem however, that in some of the case studies, the mathematical approach using Procrustes Analysis does seems to capture some perceptual similarity in human observers. Experiment 3, similar to experiment 1, was a further psychological resemblance test, which involved implementing E-Fit features on four of the ten reconstructed images per case study. Assessors were asked to select the closest E-Fit image match with the ante-mortem photograph. Again, results indicated that, although not statistically significant, adding E-Fit feature to the images appears to improve perceptual similarity in human observers, provided, the limitations of adding these characteristics are addressed. Furthermore, there also appears to be good agreement in most of the case studies between the two psychological resemblance tests using the two different sets of assessors in experiment 1 and 3 (reconstruction choice and E-Fit choice, respectively). Further work involving anthropometric comparisons and using two methods of assessment (landmark line matching between images and proportion indices) was also carried out (experiment 4). It was found that matching landmark lines between images appeared to be only of limited value due to the images not being aligned at exactly the same viewpoint and magnification. It should be appreciated that because the thesis was based on recognition and was not an anthropometric study, precise alignment of viewpoints was not a requirement. Hence using the same data from the study, although images were in the frontal view, they were not aligned to the accuracy acceptable for an anthropometric study as there was no requirement to so. It would appear that, although there was some correspondence between the discrepant distances and the first and second ranked reconstructions, no firm conclusions could be drawn from this technique and therefore does not assist in understanding the way observers made their choices. Further tests would need to be carried out (beyond the scope of the thesis) to reach any firm conclusions. Undoubtedly, given the complex nature of the recognition process, it would have been desirable to use reconstructions of persons known to the assessors rather than asking them to assess unfamiliar persons, since it is well established that familiar faces are easier to recognize than those that are unfamiliar to observers. It should be appreciated however, that, although the study was designed in this way for practical and ethical reasons, it nevertheless does not truly reflect the real operational forensic scenario. Furthermore, recognition/matching is a much more complex process and even a reconstructed face which may be generally morphologically similar to the person in life may not capture perceptual similarity in human observers, especially in an unfamiliar scenario. It is not certain that identification will always occur even when the facial reconstruction bears good resemblance to the target individual

    Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance

    Get PDF
    Finite element analysis (FEA) is a modelling technique increasingly used in anatomical studies investigating skeletal form and function. In the case of the cranium this approach has been applied to both living and fossil taxa to (for example) investigate how form relates to function or infer diet or behaviour. However, FE models of complex musculoskeletal structures always rely on simplified representations because it is impossible completely to image and represent every detail of skeletal morphology, variations in material properties and the complexities of loading at all spatial and temporal scales. The effects of necessary simplifications merit investigation. To this end, this study focuses on one aspect, model geometry, which is particularly pertinent to fossil material where taphonomic processes often destroy the finer details of anatomy or in models built from clinical CTs where the resolution is limited and anatomical details are lost. We manipulated the details of a finite element (FE) model of an adult human male cranium and examined the impact on model performance. First, using digital speckle interferometry, we directly measured strains from the infraorbital region and frontal process of the maxilla of the physical cranium under simplified loading conditions, simulating incisor biting. These measured strains were then compared with predicted values from FE models with simplified geometries that included modifications to model resolution, and how cancellous bone and the thin bones of the circum-nasal and maxillary regions were represented. Distributions of regions of relatively high and low principal strains and principal strain vector magnitudes and directions, predicted by the most detailed FE model, are generally similar to those achieved in vitro. Representing cancellous bone as solid cortical bone lowers strain magnitudes substantially but the mode of deformation of the FE model is relatively constant. In contrast, omitting thin plates of bone in the circum-nasal region affects both mode and magnitude of deformation. Our findings provide a useful frame of reference with regard to the effects of simplifications on the performance of FE models of the cranium and call for caution in the interpretation and comparison of FEA results

    Data Driven Dense 3D Facial Reconstruction From 3D Skull Shape

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This thesis explores a data driven machine learning based solution for Facial reconstruction from three dimensional (3D) skull shape for recognizing or identifying unknown subjects during forensic investigation. With over 8000 unidentified bodies during the past 3 decades, facial reconstruction of disintegrated bodies in helping with identification has been a critical issue for forensic practitioners. Historically, clay modelling has been used for facial reconstruction that not only requires an expert in the field but also demands a substantial amount of time for modelling, even after acquiring the skull model. Such manual reconstruction typically takes from a month to over 3 months of time and effort. The solution presented in this thesis uses 3D Cone Beam Computed Tomography (CBCT) data collected from many people to build a model of the relationship of facial skin to skull bone over a dense set of locations on the face. It then uses this skin-to-bone relationship model learned from the data to reconstruct the predicted face model from a skull shape of an unknown subject. The thesis also extends the algorithm in a way that could help modify the reconstructed face model interactively to account for the effects of age or weight. This uses the predicted face model as a starting point and creates different hypotheses of the facial appearances for different physical attributes. Attributes like age and body mass index (BMI) are used to show the physical facial appearance changes with the help of a tool we constructed. This could improve the identification process. The thesis also presents a methods designed for testing and validating the facial reconstruction algorithm

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    Facial fatness as a complicating factor in facial reconstruction

    Get PDF
    Includes bibliographical referencesAlthough it is a reasonable assumption that a significant proportion of the variation in facial tissue thicknesses comes from anatomical differences between populations, we do not know how much of normal variation is caused by including the full range of individual obesity or slimness. Current population standard soft tissue thickness data used in facial reconstructions ignores the variation between individuals which, in theory, could be greater than the variation between populations or sexes. The aim of this study was to test if facial tissue thickness is due to the amount of sub - cutaneous fat, sex or racial origins. Methods currently used do not give a true reflection of the individual because they ignore the variation in fatness. An initial study determined if a corrective value for the non - linear distortion found between radiographic images and the physical tissues was needed. This was done by imaging cadaver heads and taking measurements from the images and the physical heads. The results demonstrated that measurements taken from LODOX® images are analogous with soft tissue measurements. Volunteers were then sought from the student body and had physical measurements and X - rays taken. The measurements allowed for both BMI and body fat percentage to be calculated. Analysis showed that body fat percentage had less of an impact than BMI, with the areas of the face most affected by change in fatness being around the chin, jaw and cheek. Analysis of the variances showed that fatness has a low impact on the soft tissues of the different ancestry groups, while having a greater impact on the soft tissues of the different sexes. The effect of changing fatness on the soft tissues is not seen in all areas of the face, but to ignore it in facial reconstruction ignores that the success of a reconstruction is not exactness but in its ability to incite recognition and lead to potential identification of the unknown target individual

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0
    • …
    corecore