743 research outputs found

    2D laser-based probabilistic motion tracking in urban-like environments

    Get PDF
    All over the world traffic injuries and fatality rates are increasing every year. The combination of negligent and imprudent drivers, adverse road and weather conditions produces tragic results with dramatic loss of life. In this scenario, the use of mobile robotics technology onboard vehicles could reduce casualties. Obstacle motion tracking is an essential ability for car-like mobile robots. However, this task is not trivial in urban environments where a great quantity and variety of obstacles may induce the vehicle to take erroneous decisions. Unfortunately, obstacles close to its sensors frequently cause blind zones behind them where other obstacles could be hidden. In this situation, the robot may lose vital information about these obstructed obstacles that can provoke collisions. In order to overcome this problem, an obstacle motion tracking module based only on 2D laser scan data was developed. Its main parts consist of obstacle detection, obstacle classification, and obstacle tracking algorithms. A motion detection module using scan matching was developed aiming to improve the data quality for navigation purposes; a probabilistic grid representation of the environment was also implemented. The research was initially conducted using a MatLab simulator that reproduces a simple 2D urban-like environment. Then the algorithms were validated using data samplings in real urban environments. On average, the results proved the usefulness of considering obstacle paths and velocities while navigating at reasonable computational costs. This, undoubtedly, will allow future controllers to obtain a better performance in highly dynamic environments.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    An Experimental Evaluation of Position Estimation Methods for Person Localization in Wireless Sensor Networks

    Get PDF
    In this paper, the localization of persons by means of a Wireless Sensor Network (WSN) is considered. Persons carry on-body sensor nodes and move within a WSN. The location of each person is calculated on this node and communicated through the network to a central data sink for visualization. Applications of such a system could be found in mass casualty events, firefighter scenarios, hospitals or retirement homes for example. For the location estimation on the sensor node, three derivatives of the Kalman Filter and a closed-form solution (CFS) are applied, compared, and evaluated in a real-world scenario. A prototype 65-node ZigBee WSN is implemented and data are collected in in- and outdoor environments with differently positioned on-body nodes. The described estimators are then evaluated off-line on the experimentally collected data. The goal of this paper is to present a comprehensive real-world evaluation of methods for person localization in a WSN based on received signal strength (RSS) range measurements. It is concluded that person localization in in- and outdoor environments is possible under the considered conditions with the considered filters. The compared methods allow for suffciently accurate localization results and are robust against inaccurate range measurements

    Indoor pedestrian dead reckoning calibration by visual tracking and map information

    Get PDF
    Currently, Pedestrian Dead Reckoning (PDR) systems are becoming more attractive in market of indoor positioning. This is mainly due to the development of cheap and light Micro Electro-Mechanical Systems (MEMS) on smartphones and less requirement of additional infrastructures in indoor areas. However, it still faces the problem of drift accumulation and needs the support from external positioning systems. Vision-aided inertial navigation, as one possible solution to that problem, has become very popular in indoor localization with satisfied performance than individual PDR system. In the literature however, previous studies use fixed platform and the visual tracking uses feature-extraction-based methods. This paper instead contributes a distributed implementation of positioning system and uses deep learning for visual tracking. Meanwhile, as both inertial navigation and optical system can only provide relative positioning information, this paper contributes a method to integrate digital map with real geographical coordinates to supply absolute location. This hybrid system has been tested on two common operation systems of smartphones as iOS and Android, based on corresponded data collection apps respectively, in order to test the robustness of method. It also uses two different ways for calibration, by time synchronization of positions and heading calibration based on time steps. According to the results, localization information collected from both operation systems has been significantly improved after integrating with visual tracking data

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Distributed multi-agent magnetic field norm SLAM with Gaussian processes

    Full text link
    Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building

    Integrating Perception, Prediction and Control for Adaptive Mobile Navigation

    Get PDF
    Mobile robots capable of navigating seamlessly and safely in pedestrian rich environments promise to bring robotic assistance closer to our daily lives. A key limitation of existing navigation policies is the difficulty to predict and reason about the environment including static obstacles and pedestrians. In this thesis, I explore three properties of navigation including prediction of occupied spaces, prediction of pedestrians and measurements of uncertainty to improve crowd-based navigation. The hypothesis is that improving prediction and uncertainty estimation will increase robot navigation performance resulting in fewer collisions, faster speeds and lead to more socially-compliant motion in crowds. Specifically, this thesis focuses on techniques that allow mobile robots to predict occupied spaces that extend beyond the line of sight of the sensor. This is accomplished through the development of novel generative neural network architectures that enable map prediction that exceed the limitations of the sensor. Further, I extend the neural network architectures to predict multiple hypotheses and use the variance of the hypotheses as a measure of uncertainty to formulate an information-theoretic map exploration strategy. Finally, control algorithms that leverage the predicted occupancy map were developed to demonstrate more robust, high-speed navigation on a physical small form factor autonomous car. I further extend the prediction and uncertainty approaches to include modeling pedestrian motion for dynamic crowd navigation. This includes developing novel techniques that model human intent to predict future motion of pedestrians. I show this approach improves state-of-the-art results in pedestrian prediction. I then show errors in prediction can be used as a measure of uncertainty to adapt the risk sensitivity of the robot controller in real time. Finally, I show that the crowd navigation algorithm extends to socially compliant behavior in groups of pedestrians. This research demonstrates that combining obstacle and pedestrian prediction with uncertainty estimation achieves more robust navigation policies. This approach results in improved map exploration efficiency, faster robot motion, fewer number of collisions and more socially compliant robot motion within crowds

    Computational time analysis in extended kalman filter based simultaneous localization and mapping

    Get PDF
    The simultaneous localization and mapping (SLAM) of a mobile robot is one of the applications that use estimation techniques. SLAM is a navigation technique that allows a mobile robot to navigate around autonomously while observing its surroundings in an unfamiliar environment. SLAM does not require a priori map, instead the mobile robot creates a map of the area incrementally with the help of sensors on board and uses this map to localize its location Due to its relatively easy algorithm and efficiency of estimation via the representation of the belief by a multivariate Gaussian distribution and a unimodal distribution, with a single mean annotated and corresponding covariance uncertainty, the extended Kalman filter (EKF) has become one of the most preferred estimators in mobile robot SLAM. However, due to the update process of the covariance matrix, EKF-based SLAM has high computational time. In SLAM, if more observation is being made by mobile robot, the state covariance size will be increasing. This eventually requires more memory and processing time due to excessive computation needs to be calculated over time. Therefore there is a need of enhancing the estimation performance by reducing the computational time in SLAM. Three phases involve in this research methodology which the first is theoretical formulation of the mobile robot model. This is followed by the environment and estimation method used to solve the SLAM of mobile robot. Simulation analysis was used to verify the findings. This research attempts to introduce a new approach to simplify the structure of the covariance matrix using the eigenvalues matrix diagonalization method. Through simulation result it is proved that time taken to complete the SLAM process using diagonalized covariance was reduced as compared to the normal covariance. However, there is one limitation encountered from this method in which the covariance values become too small, that indicates an optimistic estimation. For this reason, second objective is motivated to improve the optimistic problem. Addition of new element into the diagonal matrix, which is known as a pseudo element, is also investigated in this study. Via mathematical approach, these problems are discussed and explored from estimation-theoretic point of view. Through adding the pseudo noise element into diagonalized covariance, the optimistic condition of covariance matrix can be improved. This was shown through the increased size of covariance ellipses at the end of simulation process. Based on the findings it can be concluded that the addition of pseudo matrix in the updated state covariance can further improved the computational time for mobile robot estimation

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr
    corecore