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Abstract

Mobile robots capable of navigating seamlessly and safely in pedestrian rich

environments promise to bring robotic assistance closer to our daily lives. A

key limitation of existing navigation policies is the difficulty to predict and rea-

son about the environment including static obstacles and pedestrians. In this

thesis, I explore three properties of navigation including prediction of occupied

spaces, prediction of pedestrians and measurements of uncertainty to improve

crowd-based navigation. The hypothesis is that improving prediction and un-

certainty estimation will increase robot navigation performance resulting in

fewer collisions, faster speeds and lead to more socially-compliant motion in

crowds.

Specifically, this thesis focuses on techniques that allow mobile robots to

predict occupied spaces that extend beyond the line of sight of the sensor. This

is accomplished through the development of novel generative neural network

architectures that enable map prediction that exceed the limitations of the sen-

sor. Further, I extend the neural network architectures to predict multiple hy-
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potheses and use the variance of the hypotheses as a measure of uncertainty

to formulate an information-theoretic map exploration strategy. Finally, con-

trol algorithms that leverage the predicted occupancy map were developed to

demonstrate more robust, high-speed navigation on a physical small form fac-

tor autonomous car.

I further extend the prediction and uncertainty approaches to include mod-

eling pedestrian motion for dynamic crowd navigation. This includes devel-

oping novel techniques that model human intent to predict future motion of

pedestrians. I show this approach improves state-of-the-art results in pedes-

trian prediction. I then show errors in prediction can be used as a measure of

uncertainty to adapt the risk sensitivity of the robot controller in real time. Fi-

nally, I show that the crowd navigation algorithm extends to socially compliant

behavior in groups of pedestrians.

This research demonstrates that combining obstacle and pedestrian predic-

tion with uncertainty estimation achieves more robust navigation policies. This

approach results in improved map exploration efficiency, faster robot motion,

fewer number of collisions and more socially compliant robot motion within

crowds.

Primary Reader and Advisor: Professor Gregory D. Hager

Secondary Readers: Professor Chien-Ming Huang, Dr. Philippe Burlina
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Chapter 1

Introduction

The expectation is that robots and humans will coexist with one another in

a seamless manner to improve the quality of life and bring robotic assistance

to the mainstream. A critical component to achieve this goal is the ability for

mobile robotic systems to navigate safely and effectively in new, unstructured

environments consisting of crowds of pedestrians. This requires several capa-

bilities including the ability to map the environment, generate collision free

paths to the desired goal, and navigating to the goal while avoiding static and

dynamic obstacles.

There has been substantial work in adaptive robot navigation that will be

further elaborated in Chapter 2. In spite of past research, many limitations

still exist that prevent mobile robots from navigating efficiently and at high

speeds with human-like ability. Hard coded navigation policies work well in
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CHAPTER 1. INTRODUCTION

the intended domain but are difficult to generalize to new environments and

pedestrian behavior patterns. Robots typically operate based on the direct line-

of-sight and field-of-view of the sensors on board the robot. This fundamentally

limits the ability to plan at high speeds without a predictive model. Finally,

robot motion in crowded environments tends to be risk averse and lacks so-

cial norms that humans have acquired over years of navigating around other

humans.

As part of this thesis, I explore new capabilities that improve adaptive mo-

bile robot navigation. Specifically, the objective is to integrate (1) perception

including reasoning about the environment and pedestrians, (2) prediction, in-

cluding prediction of static and dynamic obstacles and (3) control algorithms

that leverage perception, prediction and uncertainty to improve navigation per-

formance.

1.1 Motivation

In this section, I describe a few motivating examples that provide context

for the research presented in this thesis.

2
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Figure 1.1: An example of a mobile manipulator system for disaster response.

1.1.1 Search and Rescue Robots

A significant opportunity for mobile robots to make a critical contribution

lies in search and rescue robotics. This is an area that has been studied at

great depths in the past [10] however we have yet to see robots play a key

role in aiding humans in the disaster response. A recent example includes the

2011 Fukushima Daiichi nuclear disaster caused by an earthquake and sub-

sequent tsunami resulting in over 500 deaths. Scenarios such as this necessi-

tate leveraging robotic systems to perform search and rescue tasks in order to

find potential survivors quickly and efficiently. The few robots that were de-

ployed include the iRobot Warrior and Packbot. While compact and agile, these

robots are traditionally teleoperated, requiring significant human intervention

3
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Figure 1.2: Mobile manipulation for disaster response A.) Manipulate a fire
extinguisher B.) Find and navigate to a spinal cord injury victim C.) Place the
victim securely on a spineboard and D.) Quickly relocate the victim a safe dis-
tance away.

to perform search and rescue tasks. In Figures 1.1 and 1.2, I show examples

of more advanced search and rescue robots developed by JHU/APL in the past

to aid in the response [11, 12]. While these mobile manipulator systems have

demonstrated capabilities to improve disaster response, an opportunity exists

to develop better autonomy that allows robots to navigate faster, explore spaces

more efficiently and navigate through pedestrians with ease. The culmination

of this research has the potential to significantly improve search and rescue

capabilities that exist today.

1.1.2 Crowd Navigation

The second motivating scenario deals with crowd navigation. This is an im-

portant capability for many service-oriented robotic systems including delivery

robots, warehouse robot systems, and robotic tour guides. One of the main chal-

lenges is dealing with high density pedestrian traffic as in Fig. 1.3. This sce-
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nario presents a challenging navigation task as the robot must move through

the crowd while avoiding collision with other pedestrians and obstacles. Many

of the existing works use explicit, hand-coded policies that are error prone. In

addition, while navigation may be functionally correct, it remains difficult to

capture socially normal behaviors that enable acceptance of robotic systems

into society. Some navigation methods focus on predicting future pedestrian

motion to improve navigation. However, these approaches typically predict

motion based on past trajectories as opposed to inferring internal states such

as intent. Finally, a critical aspect that has been overlooked in the literature

is the consideration of dynamic social groups (Fig. 1.4). The ability to model

and detect dynamic social groups to enable socially appropriate robot naviga-

tion has the potential to influence people’s perceptions of trust and acceptance

of mobile robots embedded in human environments. In conclusion, there re-

mains a significant opportunity to further improve predictive capabilities, de-

velop risk-sensitive control algorithms as well as learning based policies that

simultaneously improve navigation performance while also capturing socially

normal behaviors.
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Figure 1.3: Example of a crowded intersection representing a challenging nav-
igation task.

Figure 1.4: Dynamic social groups in naturalistic settings. People tend to walk
in groups (Top) and try to maintain group space and their formation (blue and
red lines) during walking (Bottom).
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1.2 Outline

The major goal of this work is to develop novel techniques that advance pre-

dictive capabilities with uncertainty to improve robot navigation performance

in the presence of crowds of pedestrians. Traditional methods of prediction

primarily operate on low dimensional state vectors. The approach focuses on

developing techniques that can operate on and generate high-dimensional rep-

resentations such as raw camera observations and occupancy maps. In Chap-

ter 2, I provide background information, describe existing approaches and dis-

cuss the main limitations.

In Chapter 3, I focus on developing techniques that can make predictions of

future occupied spaces that are generated from existing mapping techniques.

Here, I assume the ability to generate a map that represents occupied, unoc-

cupied and free space in the environment based on the current sensor read-

ings on the robot. I first investigate various neural network architectures and

loss functions to determine the types of generative networks and optimization

techniques that produce the most accurate predicted occupancy maps. I then

extend the architectures to produce an uncertainty metric. By leveraging pre-

diction with uncertainty, I demonstrate the ability to improve the efficiency

of exploring new environments compared to several baseline exploration ap-

proaches. Second, a controller that leverages the predicted maps was developed
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which demonstrates the ability to travel at higher speeds with fewer collisions

using a physical small platform race car.

In Chapter 4, I shift the focus to dynamic obstacles, in particular pedes-

trians. This is accomplished through techniques that perform state estima-

tion and uncertainty of pedestrians using high-dimensional observations as

the input. By applying traditional Kalman Filter techniques on latent em-

beddings representing the pedestrian, the state and uncertainty estimation is

improved against state-of-the-art baselines while also reducing the computa-

tional requirements. I then focus on predicting future motion of pedestrians. I

show that prediction accuracy can be improved by reasoning about the pedes-

trian’s intent compared to state-of-the-art baselines using traditional pedes-

trian datasets. Finally, an adaptive reinforcement learning (RL) policy was

developed that leverages the predicted pedestrian motion to improve naviga-

tion performance while reducing the number of collisions compared to baseline

policies.

In Chapter 5, I extend the RL approaches developed in Chapter 4 to im-

prove navigation performance by incorporating group information as part of

the network policy. By taking into consideration the group dynamics, signifi-

cant improvements in navigation performance and socially compliant behavior

are demonstrated within crowds of pedestrians.

Finally, Chapter 6 summarizes the main contributions, discusses the lim-
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itations and provides an overview of future work that extend the main ideas

described in this thesis.

1.3 Thesis Statement

I hypothesize that high-dimensional generative neural networks can learn

to predict with uncertainty future static and dynamic obstacles in the environ-

ment. Further, I posit that high-dimensional prediction with uncertainty and

modeling pedestrian properties such as intent and group membership will im-

prove adaptive robot navigation policies resulting in more efficient exploration

of new environments, navigation at faster speeds, reduced number of collisions

and improved social normal behaviors in crowds of pedestrians.

1.4 Contributions

The research ideas presented in this thesis have been decomposed into occu-

pancy map prediction, pedestrian prediction and group aware navigation. This

work has been published in a series of conference papers including:

1. Chris Paxton, Yotam Barnoy, Kapil D. Katyal, Raman Arora, Gregory D.

Hager. Visual Robot Task Planning. ICRA 2019: 8832-8838.

2. Kapil D. Katyal, Katie M. Popek, Chris Paxton, Philippe Burlina, Gre-
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gory D. Hager. Uncertainty-Aware Occupancy Map Prediction Using Gen-

erative Networks for Robot Navigation. ICRA 2019: 5453-5459.

3. Kapil Katyal, Gregory Hager and Chien-Ming Huang. Intent-Aware

Pedestrian Prediction for Adaptive Crowd Navigation. ICRA 2020.

4. Kapil Katyal, I-Jeng Wang, and Gregory D. Hager. Out-of-Distribution

Robustness with Deep Recursive Filters. ICRA 2021 (Accepted).

5. Kapil Katyal, Adam Polevoy, Joseph Moore, Craig Knuth, Katie M. Popek.

High-Speed Robot Navigation using Predicted Occupancy Maps. ICRA

2021 (Accepted).

6. Kapil Katyal, Yuxiang Gao, Jared Markowitz, I-Jeng Wang, and Chien-

Ming Huang. Group-Aware Robot Navigation in Crowded Environments.

RA-L (Submitted for review on 12/21/2020).

7. Kapil Katyal, Katie Popek, Chris Paxton, Joseph Moore, Kevin Wolfe,

Philippe Burlina, Gregory D. Hager. Occupancy Map Prediction Using

Generative and Fully Convolutional Networks for Vehicle Navigation.

arXiv:1803.02007.

8. Kapil Katyal, Katie Popek, Gregory D. Hager, I-Jeng Wang, Chien-Ming

Huang. Prediction-Based Uncertainty Estimation for Adaptive Crowd

Navigation. Human Computer Interaction-I 2020.
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9. Kapil Katyal, I-Jeng Wang, Gregory Hager and Chien-Ming Huang. Intent-

Aware Human Motion Prediction using Deep Generative Neural Networks.

UMD Do Good Robotics Symposium 2019.

Other publications that inspired the research presented in this thesis in-

clude the following:

1. Kapil D Katyal, Christopher Y Brown, Steven A Hechtman, Matthew

P Para, Timothy G McGee, Kevin C Wolfe, Ryan J Murphy, Michael DM

Kutzer, Edward W Tunstel, Michael P McLoughlin, Matthew S Johannes.

Approaches to robotic teleoperation in a disaster scenario: From super-

vised autonomy to direct control. IROS 2014: 1874-1881.

2. Joseph Moore, Kevin C Wolfe, Matthew S Johannes, Kapil D Katyal,

Matthew P Para, Ryan J Murphy, Jessica Hatch, Colin J Taylor, Robert J

Bamberger, Edward Tunstel. Nested marsupial robotic system for search

and sampling in increasingly constrained environments. 2016 IEEE In-

ternational Conference on Systems, Man, and Cybernetics (SMC): 002279-

002286.

3. Edward W. Staley, Kapil D. Katyal, Philippe Burlina. DRL Based Intelli-

gent Joint Manipulator and Viewing Camera Control for Reaching Tasks

and Environments with Obstacles and Occluders. IJCNN 2018: 1-7.
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4. Kapil D. Katyal, Edward W. Staley, Matthew S. Johannes, I-Jeng Wang.,

Austin Reiter, and Phil Burlina. In-hand robotic manipulation via deep

reinforcement learning. 2016 NeurIPS Workshop on Deep Learning for

Action and Interaction. December 2016.

5. Kapil D. Katyal, I-Jeng Wang, Philippe Burlina. Leveraging Deep Rein-

forcement Learning for Reaching Robotic Tasks. CVPR Workshops 2017:

490-491.
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Chapter 2

Background

The contents of this thesis span several topics in the robotics and machine

learning literature. This chapter provides a brief introduction to these topics

as well several references for further background information. Specifically re-

lated to robot navigation, this chapter covers introductory material including

robot localization, mapping, state estimation, and pedestrian prediction tech-

niques. Further, I provide a background on the machine learning techniques

used in later chapters of the thesis including deep learning, generative neu-

ral networks, and reinforcement learning. Finally, I describe several existing

datasets used in subsequent chapters as training data and evaluation against

existing approaches.
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2.1 Robot Localization and Mapping

Simultaneous localization and mapping (SLAM) algorithms are critical com-

ponents to robot navigation that allow the robot to simultaneously build a map

of the environment and localize itself within the map. A fundamental source

for theory and algorithms related to SLAM algorithms can be found in Princi-

ples of Robot Motion by Choset et al. [13]. More formally defined, the objective

of the SLAM algorithm is to estimate the robot state, xt and map of the envi-

ronment, mt given sensor observations, ot and control signals ut over a discrete

time horizon, t. The objective of the SLAM algorithm is to compute:

P (mt+1, xt+1|o1:t+1, u1:t)

. using the following update equations:

P (xt|o1:t, u1:t,mt) =
∑
mt−1

P (ot|xt,mt, u1:t)
∑
xt−1

P (xt|xt−1P (xt−1|mt, o1:t−1, u1:t)/Z

P (mt|xt, o1:t, u1:t) =
∑
xt

∑
mt

P (mt|xt,mt−1, ot, u1:t)P (mt−1, xt|o1:t−1,mt−1, u1:t)

In this thesis, I focus primarily on vision based navigation that operates

on multimodal sensor data including RGB cameras, LIDAR and Inertial Mea-

surement Units (IMU) to generate an occupancy map of the environment. An

occupancy map is a grid-like metric structure where each cell of the grid repre-
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sents the posterior probability of that space being occupied by an obstacle. In

addition to mapping the environment, the robot must localize itself within the

generated map. This problem is referred to as the SLAM problem. There are

many SLAM algorithms that exist and are summarized by several survey pa-

pers [14,15]. In this thesis, I primarily use two SLAM algorithms, Google Car-

tographer [16] and Real-Time Appearance-Based Mapping (RTAB-Map) [17].

Cartographer works by combining local and global approaches to develop the

SLAM algorithm. The local approach consists of consecutive scans of the en-

vironment to generate submaps consisting of smaller segments of the global

map. Global maps are then combined using loop closure detection and graph

optimization techniques to produce high resolution maps of the environment.

RTAB-Map uses a different approach to mapping and relies heavily on match-

ing appearance based features across frames. Similar to Cartographer, RTAB-

Map also uses loop closure and graph optimization, however uses a bag-of-

words approach to perform the loop closure step. In this method, RTAB-Map

extracts visual features from the environment and maps them to a quantized

visual word vocabulary. These visual words are then used to perform the fea-

ture to feature matching across frames of images to construct the map.

In this thesis, I primarily use Google Cartographer to perform mapping

when using a LIDAR sensor as the input and the RTAB-Map algorithm when

using stereo cameras such as the Intel® Realsense camera. These frameworks
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Figure 2.1: Sample occupancy map generated from Google Cartographer
SLAM package

provide the occupancy map data structure that is used extensively in Chapter 3

to provide the input and output occupancy maps for predicting occupied regions

beyond the sensor’s line of sight.

2.2 State and Uncertainty Estimation

State and uncertainty estimation are also critical components related to

navigation. To avoid static and dynamic obstacles in the environment, the

robot must estimate the state of obstacles in the scene to develop collision free

paths towards the goal. In this thesis, I primarily rely on a family of recur-

sive filters for state estimation, namely the Kalman filter [18], also known
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as the Kalman-Bucy filter. The Kalman filter is a state estimation algorithm

used in many application including guidance, navigation and control (GNC),

time series-based signal processing, and robotic motion planning and controls.

It operates by receiving a series of measurements containing statistical noise

over periods of time and produces estimates of unknown variables that account

for the errors in addition to an estimate of uncertainty. While this work focuses

primarily on the Kalman filter, this method represents a family of algorithms

called recursive Bayesian filtering that assumes Markov state dynamics and

observation models. The general form of the Kalman filter is a recursive solu-

tion to linear filtering and use the following two equations for the state dynam-

ics and observation models:

State Dynamics Model: x̂t+1 = f(xt, ut, wt)

Observation Model: ôt = h(xt, vt)

In the classic sense of the Kalman filter, x̂t+1 and ôt are governed by linear

models however extensions of the Kalman filter include the Extended Kalman

filter which allows for non-linear state dynamics and measurement models by

linearizing the two equations.

There are two main steps related to the Kalman filter algorithm, the state

prediction step followed by the state update step. During the prediction step,
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the algorithm produces a predicted, a priori estimate of the state and covari-

ance matrices as propagated by the provided dynamics model. The update step

uses the observation along with the a priori predicted state to produce an up-

dated a posterior state estimation and covariance. More formally, the state

prediction steps are governed by the following equations.

x̂
′

t = F̂tx̂t−1 +Btut

P̂
′

t = F̂tPt−1F̂
T
t +Qt

The Kalman filter update step receives the a priori estimate along with a

new observation to produce an a posteriori estimate according to the following

equations.

s̃t = wt −Htx̂
′

t

St = HtP̂
′

tH
T
t +Rt

Kt = P̂
′

tH
T
t S
−1
t

x̂t = x̂
′

t +Kts̃t

Pt = (I−KtHt)P̂
′

t

In these equations, x̂
′
t and P̂

′
t represent the a priori, predicted state and
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covariance estimation, F represents the dynamics model, H represents the ob-

servation model, Q is the process noise covariance matrix, R is the observation

noise covariance matrix, and B is the optional control input model. Further, s̃t

is the innovation, St is the covariance of the innovation and K is the optimal

Kalman gain that balances the contributions of the predicted state and the in-

novation covariance. Finally, x̂t and Pt represent the updated a posterior state

and covariance estimate.

In this thesis, I focus on leveraging state estimation techniques for detect-

ing and predicting pedestrian motion. Specifically, in Chapter 4, I extend tra-

ditional Kalman filter techniques to produce a posterior state and uncertainty

estimation of a latent feature embedding representing detected pedestrians in

the scene. I demonstrate this approach leads to more robust state and uncer-

tainty estimation under noisy observations.

2.3 Pedestrian Prediction Techniques

One of the major challenges in robot navigation is to develop trajectories

that safely avoid pedestrians as well as minimizes potential discomfort as-

sessed by pedestrians. Many existing works treat pedestrians as a moving ob-

stacle using simple linear dynamics to model and predict future motion based

on past observations. Formally, this problem can be stated as follows: at given
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Figure 2.2: Sample image from UCY pedestrian dataset [1]
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time t, the state of the pedestrian i can be defined as X t
i = (xti, y

t
i). The pedes-

trian state is observed during a time window t = 1 to t = Tobs represented as

Xobs
i = [(x1i , y

1
i ), ..., (x

Tobs
i , yTobsi )]. The objective is to predict the pedestrian state

from time t = Tobs+1 to t = Tpred represented as:

Y pred
i = [(x

Tobs+1

i , y
Tobs+1

i ), ..., (x
Tpred
i , y

Tpred
i )]

. One of the major challenges of using a simple linear model to predict future

motion is that pedestrian motion is often nonlinear and is typically motivated

by an underlying goal or intent that is frequently unobservable.

Many works have begun using deep neural networks to model the nonlin-

ear pedestrian motion with great success including [19–22]. These approaches

typically learn a latent representation describing a spatial and temporal fea-

ture vector that is subsequently used to generate future predictions. These

approaches are typically evaluated against two widely used, publicly available

datasets—ETH [23] and UCY [1]—consisting of 5 unique datasets (ETH, Hotel,

Univ, Zara1, and Zara2) with 4 scenes. The datasets include pedestrian motion

with a top down view and annotated pedestrian positions with respect to the

world frame. The metrics used for evaluation include the average displacement

error (ADE) and final displacement error (FDE). The ADE (in meters) is the L2

distance between the ground truth and predicted pedestrian trajectories for
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each trajectory point. The FDE (in meters) is the final displacement distance

between the last point in the predicted trajectory and the ground truth.

In Chapter 4, I describe existing approaches to pedestrian prediction by

estimating intent. Further, I augment existing latent representations with the

intent estimation to improve ADE and FDE using the datasets described above.

2.4 Deep Neural Networks

Deep learning is a class of machine learning techniques that leverage arti-

ficial neural networks (ANNs) to learn feature representations used for classi-

fication, regression or other machine learning tasks. ANNs have been loosely

derived from biological networks where each neuron can transmit information

to other neurons. These biological neurons are arranged in layers where dif-

ferent layers perform different biological tasks. ANNs model biological neural

networks with a composition of artificial neurons that consist of an input and

output signal to other neurons. The output of a neuron consists of weight-

ing the input signal and adding a bias term followed by an activation function

that allows non-linearity between layers. With deep learning, this concept is

extended to multiple deep layers of ANNs, where each layer represents an ex-

tracted feature embedding passed into subsequent layers. The final layer is

then used to perform the machine learning task.
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There are a variety of layers that can be included that process the input sig-

nal in different ways. In this work, I primarily focus on three types of layers,

fully connected, convolutional and recurrent layers. A fully connected layer is

one where each neuron is connected to all neurons on the subsequent layer.

This creates a flattening effect that maps the input dimension to the desired

output dimension of the layer. A convolutional layer is typically used in inputs

that contain spatial similarity such as images. Convolutional layers are speci-

fied by a kernel size (height x width) and number of input and output channels.

The convolutional layer convolves the input values using the specified kernel

by computing the dot product between the input window and filter entries. The

main advantage of using a convolutional layer is reduced number of free pa-

rameters by assuming spatial similarity and structure across the kernel size.

Finally, recurrent layers, such as long, short term memory are typically used

to capture temporal sequences found in time series data. A recurrent network

differs from a traditional feedforward network by not only considering the cur-

rent input but also information received from previous time steps via internal

memory cells. Recurrent neural networks have significantly improved many

machine learning tasks with temporal structure such as natural language pro-

cessing, translation and video activity recognition. In this work, I rely heavily

on these three forms of network layers to process input images, change the

dimensionality of the feature embedding and capture both spatial temporal
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Figure 2.3: Autoencoder Architecture

information when learning features.

2.5 Deep Generative Neural Networks

Deep generative neural networks are a specific class of deep learning that

is a combination of generative models and deep neural networks. The main

goal of deep generative models is to learn the true underlying distribution of

the data so that new data points can be generated. Deep generative models

can be thought of as an extension of classic unsupervised learning techniques

including principal component analysis (PCA), clustering and mixture model

techniques.

A classical deep generative model is the auto-encoder [24] which consists of

encoder and decoder networks and a compressed, bottleneck later in between

as depicted in Fig. 2.3. Typically, this style of a neural network attempts to

reconstruct the input during the optimization by minimizing the mean squared

error (MSE) reconstruction loss between the output of the neural network and
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Figure 2.4: Variational Autoencoder Architecture

the input image. Using this approach, the learned latent feature found in the

bottleneck layer is used as a lower dimensional feature vector that represents

the high dimensional input.

A second class of generative networks are known as variational autoen-

coders (VAEs) [25]. In VAEs, the main objective is to learn a distribution rep-

resenting the high dimensional input instead of a latent feature vector directly

as shown in Fig. 2.4. By learning parameters of a distribution, the distribu-

tion can be sampled many times to generate diverse samples representing the

uncertainty of the generation process.

In this thesis, I primarily use these variants of generative neural networks

for produce predicted high dimensional occupancy maps based on the limited

FOV occupancy grid. I leverage VAE techniques to capture a distribution of

the prediction that can be sampled to generate a population of hypothetical

predictions. In Chapter 3, I show these networks are capable of producing

highly accurate predicted occupancy maps using customized architectures and

loss functions specific to the robotic navigation domain.
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2.6 Reinforcement Learning

Reinforcement learning (RL) has been widely used to allow agents (i.e. robots)

to learn how to interact with the environment and is covered in great depth by

Sutton and Barto [2]. Traditionally, RL can be formalized as a Markov Decision

Process (MDP), as summarized in Fig. 2.5, which consists of an agent interact-

ing with the environment. The agent selects actions that result in a reward

causing a change to the environment as observed as the next state. Q-Learning

is a form of RL where the primary objective is to develop a policy that allows

the agent to select an action given the current state in order to maximize the

expected reward. The Q-value correlates to the quality of choosing the action

given the state and is iteratively updated by Eq. 2.1.

Qt+1(st, at) ← Qt(st, at) + αt(st, at)[Rt+1 + γmax
a
Qt(st+1, a) − Qt(st, at)] (2.1)

where Qt+1(st, at) represents the updated Q-value, Qt(st, at) is the previous Q-

value, αt(st, at) represents the learning rate, Rt+1 is the immediate reward, γ

represents the discount factor, and maxaQt(st+1, a) represents the estimate of

the optimal future value. In the simplest case, the Q-value is stored in a table

with the rows and columns corresponding to the states and actions respectively.
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Figure 2.5: Reinforcement Learning based on MDP [2]

Using this definition of the Q-value, the selected action is defined by Eq. 2.2

π(s) = argmax
a

(Q(s, a)) (2.2)

With Q-Learning, typically assumptions of the system state are made for

computational efficiency. In the case of the Atari 2600 game Breakout, the

paddle position, ball position, and block locations could all be used to repre-

sent the state. For manipulation, the state of the system could be modeled as

the Denavit-Hartenberg (DH) parameters defining the robot kinematics, the

current joint angles and the location of the target object. The issue with this

approach is that the state is specific to the application and would not apply

to other games or manipulators. The preferred approach would be to model

the state using raw image pixels of the scene. This would allow maximum

generalization however, the challenge is the curse of dimensionality. Assum-

ing the state is represented as 4 frames of an 84×84 pixel grayscale image,

the state space is equal to 2564×84×84 ≈ 1067970 dimensions. The magnitude of
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the state space would make convergence infeasible using modern computing

platforms. Instead of using a table to represent the Q-values, a deep neural

network (DNN) is used as a function approximator that maps raw image pixels

to Q-values corresponding to potential actions, known as deep reinforcement

learning (DRL) [26]. Using this approach, deep Q-learning has been able to

provide general solutions to a wide variety of challenging problems using high

dimensional inputs as the observation.

While deep Q-learning is able to approximate the Q function using a deep

neural network, an alternative approach is to optimize the policy directly us-

ing policy gradients. In practice, policy gradients have demonstrated greater

success on a wider variety of problems.

Another class of RL algorithms explicitly optimize the policy directly in-

stead of estimating the action value function as in the case of the DQN archi-

tecture. Examples of this approach include Trusted Region Policy Optimiza-

tion (TRPO) [27] and Proximal Policy Optimization (PPO) [28]. The motivation

behind TRPO and PPO is to bound the improvement step during training to

prevent learning in unstable regions. TRPO accomplishes this by bounding

the KL-divergence between two distributions where as PPO uses computation-

ally simpler first order methods as an approximation the bounded operation.

In practice, PPO is simpler to implement and empirically performs as well or

exceeds TRPO. In Chapters 4 and 5, I leverage the PPO algorithm as the fun-
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damental RL algorithm to demonstrate crowd and group based navigation.

To summarize, in this chapter, I provide a brief introduction to important

background topics related to robot navigation, state estimation, pedestrian pre-

diction, deep neural networks and various reinforcement learning policies.
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Chapter 3

Occupancy Map Prediction

3.1 Introduction

“Prediction is very difficult, especially if it’s about the future” – Niels Bohr.

This is particularly true for robot navigation where robots are expected to

travel with ease while encountering a wide variety of obstacles of varying

shapes and sizes. In this chapter, I focus on developing high-dimensional occu-

pancy map prediction techniques for static obstacles that allow a mobile robot

to efficiently explore new environments and travel at high speeds. Traditional

exploration strategies typically operate on the most recent sensor reading (e.g.,

lidar) to update an occupancy map corresponding to an internal representation

of where obstacles exist in the environment, which are subsequently used by

planning algorithms to generate a collision-free path to a target goal. A key
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limitations of existing approaches is that the planning horizon is limited to the

field of view (FOV) of the sensor and do not take into account predictions that

extend beyond the FOV. The underlying assumption is that informed explo-

ration of new environments can be improved by reasoning about future occu-

pied and unoccupied spaces.

This is evidenced by recent studies of human patterns of environment explo-

ration that have shown that (i) labeling occupied spaces based on observations,

(ii) making predictions of occupied spaces beyond line of sight and (iii) estimat-

ing the uncertainty in these predictions all contribute to efficient exploration

of a new environment [29–31].

In this chapter, I lay a foundation that models human behavior with respect

to informed exploration of new environments and high speed navigation. As a

motivating example, if asked to explore a new environment, one might glance

around the space, make predictions of occupied regions behind occluding ob-

stacles and perhaps select a hallway to explore given that this space has the

highest uncertainty. Following this intuition, I believe future predictions of oc-

cupancy maps can enable more efficient exploration strategies for mobile and

aerial robotic systems. The approach to occupancy map prediction is similar to

image completion [32,33]. Similarly, by making future predictions of the envi-

ronment, we should expect a more robust navigation policy allowing the robot

to travel at faster speeds. To accomplish this, I leverage the fact that struc-
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Figure 3.1: (a) Turtlebot robot used as platform for navigation, (b)
Information-theoretic planning using uncertainty estimation as heuristic for
exploration.

tural information from the observed geometry of the world can help us make

useful predictions about the environment. These predictions are made by us-

ing variations of autoencoder networks which are capable of encoding a latent

representation of images; these latent representations can be used to generate

new examples of predicted spaces [34].

This chapter focuses on three main contributions. I explore neural net-

work architectures that demonstrate the ability to generate future predictions

of occupancy maps. I further show how the neural network architectures can

be modified to make multiple hypotheses to provide a heuristic for map ex-

ploration. I then show how to leverage the predicted regions to improve the

robustness of high speed robot navigation.
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Figure 3.2: U-Net Neural Network Architecture with skip connections to by-
pass bottleneck layer

The organization and specific contributions of this chapter are the following:

• In Sec. 3.2, I briefly summarize prior work related to map prediction.

• In Sec. 3.3, I provide qualitative and quantitative comparisons of the pre-

diction capabilities, performance and accuracy of various network archi-

tectures and loss functions.

• In Sec. 3.4, I extend the neural network architecture to capture the inher-

ent uncertainty in robot navigation and use the uncertainty metric as a

heuristic for an information-theoretic exploration strategy.

• Finally, in Sec. 3.5, a robot controller was developed that leverages the

predicted map regions to achieve high-speed navigation using a physical

RC car.
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3.2 Prior Work

Deep Learning for Generative Models

Deep neural networks have been used in a number of promising ways to

achieve high performance in domains such as vision, speech and more re-

cently in robotics manipulation [35, 36]. Oh et al. used feedforward and re-

current neural networks to perform action-conditional video prediction using

Atari games with promising results [37]. These have also been used in image

completion, e.g., by Ulyanov et al. [38]. In addition, generative adversarial

networks (GANs) have demonstrated a promising method for image genera-

tion [39]. Isola et al. proposed an approach for training conditional GANs,

which create one image from another image [40]. While inpainting and image

completion have made significant progress in recent years, they have yet to

make a significant impact in the robotic navigation domain.

Map Exploration

Robotic navigation and specifically map exploration strategies have been

studied extensively in the robotics literature. One of the seminal papers is

frontier exploration by Yamauchi [3]. The key idea in this approach is to de-

tect frontiers defined as borders between unexplored and open spaces of the
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environment. This work is further extended by Wirth et al. [6] who take

into consideration the distance to the next frontier in the search strategy. Bai

et al. propose an information theoretic approach to exploration [4, 5]. In this

work, the authors use a combination of Bayesian optimization techniques and

a Gaussian process to estimate mutual information throughout the robot’s ac-

tion space and select the action that minimizes the entropy of the map. Finally,

O’Callaghan et al. [41] demonstrate using Gaussian processes as a statistical

modelling technique for building occupancy maps by exploiting inherent struc-

ture of real-world environments.

Deep Learning for Navigation

More recently, several papers have described approaches to combine ele-

ments of deep neural networks with autonomous navigation. These include

using deep neural networks for model predictive control [35]. Tamar et al. pro-

posed Value Iteration Networks, which embed a planner inside a deep neural

net architecture [42]. Several papers investigate the use of deep reinforcement

learning to develop collision-free planning without the need of an internal map,

however, these approaches are still restricted by the sensor’s FOV without us-

ing a predictive model [43,44].
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High Speed Navigation

Adjacent to map prediction is the problem of planning the shortest path to

a goal in an unknown environment. These methods perform some level of in-

ference over the environment to inform motion planning. For example, in [45],

they learn how to plan waypoints to a goal using a partial map of the envi-

ronment. Both [46] and [47] use prior experience to reduce the size of viable

environment hypotheses. Specifically, [46] learns the probability of collision of

motion primitives whereas [47] utilizes experience-based map predictions in a

belief space planner.

Elfhafsi et al. [48] incorporate map prediction with global path planning

that respects the system dynamics, but only experimented in simulation.

Existing work has also considered applying reinforcement learning (RL) in

tandem with occupancy maps or depth information to navigate an unknown

environment. In [49], the method uses RGB images and predicts the probabil-

ity and variance of collision while navigating towards a goal, but is incapable

of global planning. In [50], the approach models the world as a POMDP and

take an end-to-end approach to navigate to a goal. Additionally the method

presented in [51] uses a partial map as inputs to a deep RL policy to navigate

in unknown environments.
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3.3 Neural Network Architecture Design

In this section, I formally define the problem of occupancy map prediction,

describe the neural network architecture and loss functions used during train-

ing and introduce several baseline implementations used to compare relative

performance to existing inpainting approaches. The main objective of this sec-

tion is to understand which neural network architectures and loss functions

provide the most accurate predictions of occupied spaces useful for robot explo-

ration and high-speed navigation.

3.3.1 Problem Formulation

The goal of the network architecture is to learn a function that maps an

input occupancy map to an expanded occupancy map that extends beyond the

FOV of the sensor. More formally, the following function is learned:

f : mi → mp

where mi represents the state, in this case, the input occupancy map as an

image, mp represents the predicted, expanded output occupancy map. Compo-

nents of the function f include an encoding function fenc(mi) → h ∈ H which

maps the state space, input occupancy maps to a hidden state and fdec(h) →
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(mp), which is a decoding function mapping the hidden state to an expanded,

predicted occupancy map.

3.3.2 Neural Network Architecture

Because the generated, predicted occupancy map contains highly correlated

data from the input image, I selected an autoencoder architecture based on

U-Net [40, 52]. The modified U-Net architecture consists of skip connections

which allows a direct connection between layers i and n− i enabling the option

to bypass the bottleneck associated with the downsampling layers in order to

perform an identity operation. The encoder network consists of 8 convolution,

batch normalization and ReLU layers where each convolution consists of a 4×4

filter and stride length of 2. The number of filters for the 8 layers in the encoder

network are: (64, 128, 256, 512, 512, 512, 512, 512). The decoder network

consists of 8 upsampling layers with the following number of filters: (512, 1024,

1024, 1024, 1024, 512, 256, 128).

3.3.3 Loss Functions

In this section, I describe the loss functions used to minimize the error be-

tween the predicted occupancy map, m̂p and the ground truth image, mgt. The

goal was to encourage image reconstruction, while maintaining structural sim-
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ilarity, reducing output noise and emphasizing physical boundary conditions.

As described by Equation 3.1, to encourage image reconstruction, I use an l1

loss over l2 based on recent results by [53] demonstrating a reduced blurring

effect.

Ll1(mgt, m̂p) =
1

N

∑
i,j

|m̂i,j
p −m

i,j
gt | (3.1)

where N is the number of pixels in the image and i and j represent image

pixels. Equations 3.2 and 3.3 describe the second term of the loss function

used to maintain structural similarity and measure perceived changes between

generated and ground truth images.

Lssim(m̂p,mgt) = 1− SSIM(m̂p,mgt) (3.2)

SSIM(m̂p,mgt) =
(2µm̂pµmgt + C1) + (2σm̂pmgt + C2)

(µ2
m̂p

+ µm2
gt + C1)(σ2

m̂p
+ σm2

gt + C2)
(3.3)

In order to reduce the amount of noise in the generated occupancy map, I

apply a total variation loss which has been shown to reduce output noise while

preserving edges in the generated image.

Ltv(m̂p) =
∑
i,j

(
(m̂i,j+1

p − m̂i,j
p )2 + (m̂i+1,j)

p − m̂i,j
p )2
) 1

2 (3.4)
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In generating predictions of future occupancy maps, generating accurate

predictions of the physical boundaries is paramount for collision-free planning.

For this reason, I added a fourth term to the loss function that computes an l1

loss on the image gradients with the goal of highlighting edges corresponding

to physical boundaries.

Lig(m̂p,mgt) =
∑
i,j

∣∣|m̂i,j
p − m̂i−1,j

p |− |mi,j
gt −m

i−1,j
gt |

∣∣+ ∣∣|m̂i,j−1
p − m̂i,j

p |− |m
i,j−1
gt −mi,j

gt |
∣∣

(3.5)

The four loss terms are combined as a linear combination where λl1, λssim,

λtv, and λig are weights to trade-off the effects of each component of the loss

function as described by Equation 3.6.

L(m̂p,mgt) = λl1Ll1(m̂p,mgt) + λssimLssim(m̂p,mgt) + λtvLtv(m̂p) + λigLig(m̂p,mgt)

(3.6)

3.3.4 Baseline Implementations

I compare this method to several baseline implementations that have suc-

cessfully been applied to inpainting applications.

(A) a generative network based on a U-Net architecture using only L1 loss(unet l1)

(B) a generative network based on the ResNet architecture (resnet)
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Train 
Test

Figure 3.3: Simulated ground truth maps with white representing free space,
black is occupied, and gray is unknown. Four trajectories were used for train-
ing (depicted in solid red), and two paths were used as the test set (dotted
black).

(C) a GAN using the network from (a) as the generative network (gan)

3.3.4.1 U-Net Generative Model with L1 Loss

The U-Net feedforward model is based on the network architecture defined

by Ronneberger et. al [52] as described above. In the baseline experiments, I

use the same U-Net network architecture with skip connections however lim-

iting it to the L1 image reconstruction loss.
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3.3.4.2 ResNet Feedforward Model

The ResNet feedforward model is based on the work by Johnson et. al [54]

which consists of 2 convolution layers with stride 2, 9 residual blocks as defined

by [55] and two deconvolution layers with with a stride of 1
2
. A key reason this

network was selected was based on the ability to learn identify functions, which

is key to image translation as well as the success in image-to-image translation

demonstrated by the CycleGAN network [56].

3.3.4.3 GAN Model

The GAN networks is based on the pix2pix architecture [40] which has

demonstrated impressive results in general purpose image translation includ-

ing generating street scenes, building facades and aerial images to maps. This

network uses the U-Net Feedforward model defined in section 3.3.4.1 and con-

sists of a 6 layer discriminator network with filter sizes: (64, 128, 256, 512,

512, 512).

3.3.5 Simulation Experiments

The approach to testing occupancy map prediction using the networks de-

fined above first involved generating a dataset and then performing qualita-

tive and quantitative analysis of the predicted images compared to the ground
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truth.

3.3.5.1 Data Collection

A dataset of approximately 6000 images of occupancy map subsets was cre-

ated by simulating a non-holonomic robot moving through a two-dimensional

map with a planar LIDAR sensor in C++ with ROS and the OctoMap library

[57]. Two maps, shown in Fig. 3.3, were created in Solidworks with the path

width varying between 3.5 m to 10 m. These were converted into OctoMap’s

binary tree format using binvox [58, 59] followed by OctoMap’s binvox2bt tool.

The result is an occupancy map with all unoccupied space set as free. I require

space outside of the walls, shown as grey in Fig. 3.3, to be marked as unknown

to provide a ground truth for the estimated maps. These ground truth maps

were created by fully exploring the original occupancy maps.

The robot is modeled as a Dubin’s car, with a state vector x = [x, y, θ] and

inputs u = [v, θ̇] where (x, y) is the robot’s position, v is the velocity, and θ and

θ̇ are the heading angle and angular velocity, respectively. For simplicity, the

robot is constrained to move at fixed forward velocity of 0.5 m/s. A planar LI-

DAR sensor with a scanning area of 270◦ and range of 20 m is used to simulate

returns given the robot’s current pose against the ground truth map. These

simulated returns are used to create the “estimated” occupancy map. Path

planning is done with nonlinear model-predictive control and direct transcrip-
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tion at 10 Hz. At each time step, a subset of the maps (both the estimated and

ground truth) are saved. A 5 m by 5 m square centered around the robot’s pose

was chosen with a resolution of 0.05 m. At each time step, the robot’s current

state and action space are also logged. Occupancy maps are expanded over

time, so the simulation performs a continuous trajectory and the data set is

built consecutively instead of randomly sampling throughout a map. A total of

six trajectories were simulated. Four paths were used for training data (5221

images) and two were used as a test set (1090 images). Ground truth datasets

of the expanded occupancy maps were also generated. These expanded occu-

pancy maps range from 1.10x to 2.00x expansion in increments of 0.10x, e.g., a

2.00x expansion results in a 10 m by 10 m square subset centered around the

robot.

3.3.5.2 Training Details

I trained each variant of the neural network using the expanded ground

truth occupancy maps from scratch for 200 epochs with a batch size of 1. A

total of 15 training sessions were performed to evaluate each of the three neu-

ral network architectures across five expansion increases (1.10x, 1.30x, 1.50x,

1.70x, and 2.00x). I use the Adam optimizer with an initial learning rate of

0.0002 and momentum parameters β1 = 0.5, β2 = 0.999. In the feedforward

models, L1 loss was used as proposed in PatchGan [40] and in the GAN model
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L1+discriminator loss was used. The decoder layers of the network used a

dropout rate of 0.50 and weights were initialized from a Normal distribution

(µ = 0, σ = 0.2). In the experiments, I set λl1 = 100.0, λssim = 10.0, λtv = 1.0,

λig = 0.1. These were empirically determined to ensure even contribution of

each loss term to the overall loss. All models were implemented using Py-

Torch [60].

3.3.5.3 Simulation Results

I evaluated the performance of each neural network architecture across a

span of five increasing occupancy map predictions. Fig. 3.4 provides a snapshot

of the qualitative assessment of the predicted images for each of the neural net-

works. This example was selected because it demonstrates that even with very

little information, this model as well as the U-Net with L1 loss were able to

accurately predict the presence of the surrounding obstacles while the other

networks were unable to detect it. For a more quantitative comparison, Ta-

ble 3.1 provides the structural similarity index metric (SSIM) for each of the

networks. Based on the SSIM metric, it can be seen that this method out-

performs the other approaches for all five tested expansions (1.10x - 2.0x). As

expected, the quality of the prediction generally decreases as the expansion

percentage increases however this approach generally maintains good perfor-

mance.
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Figure 3.4: This figure describes the input data, the predicted images and
the ground truth for each of the neural networks evaluated on the simulated
dataset across an expanding prediction window from 1.10x increase to 1.70x
increase.
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Table 3.1: SSIM Analysis for Simulation Data

Method 1.10x 1.30x 1.50x 1.70x 2.00x
U-Net (L1) [52] 0.908 0.839 0.780 0.794 0.795
ResNet [54] 0.879 0.814 0.808 0.786 0.800
GAN [40] 0.846 0.825 0.794 0.770 0.641
Our method 0.926 0.866 0.846 0.825 0.818

3.3.6 Physical Experiments

The next experiment focused on validating this approach with occupancy

maps generated by a physical LIDAR sensor. In this experiment, I teleop-

erated a TurtleBot2 robot with a mounted Hokuyo UST-20LX LIDAR sensor

(shown in Fig. 3.1(a)) inside a building. The OctoMap library [57] along with

a custom C++ implementation of a particle filter running at 20 Hz was used

for simultaneous localization and mapping. Note I use a planar robot, so a 2D

slice of the final 3D occupancy map which corresponds to the height of the LI-

DAR sensor is used for the ground truth (shown in Fig. 3.1(b)). At each time

step a 5 m by 5 m square subset centered around the robot’s current pose of

both the ground truth and estimated maps was saved (100 images). Expanded

ground truth occupancy maps were generated ranging from 1.10x to 2.00x in

0.10x increments.

The objective was to evaluate whether training performed on a simulated

dataset could be directly transferred to occupancy maps generated by a physi-

cal LIDAR sensor. For this reason, I opted to not fine tune the networks using

the physical dataset.
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Table 3.2: SSIM Analysis for Physical Data

Method 1.10x 1.30x 1.50x 1.70x 2.00x
U-Net (L1) [52] 0.580 0.594 0.567 0.545 0.533
ResNet [54] 0.597 0.605 0.554 0.563 0.549
GAN [40] 0.611 0.602 0.583 0.546 0.493
Our method 0.630 0.637 0.626 0.600 0.577

3.3.6.1 Physical Experiment Results

Fig. 3.5 represents sample predictions obtained by running the networks

trained using simulation data on the occupancy maps generated by the physical

sensor. Table 3.2 displays the SSIM metric across each of the networks. In

the physical experiments, this method again outperforms the other baseline

implementations.

3.3.6.2 Ablation Study

The final study was to conduct a series of experiments to measure the con-

tribution of each component of the four term loss function. The SSIM results

for 1.10x expansion using both the simulated and physical test sets are pre-

sented in Table. 3.3. As the results indicate, a large improvement is made by

adding the SSIM and TV losses. Adding the image gradient loss had negligible

impact on the simulation data but did have a greater impact on the physical

data. One hypothesis for this observation is that the physical data contains

more physical boundaries, so therefore, it would see a greater effect from the
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Figure 3.5: This figure describes the input data, the predicted images and the
ground truth for each of the neural networks evaluated on the physical dataset
across an expanding prediction window from 1.10x increase to 1.70x increase.

image gradient loss.

Table 3.3: Ablation Study Results

Method l1 l1 + ssim l1 + ssim + tv l1 + ssim + tv + ig
Our method (sim) 0.908 0.917 0.926 0.926
Our method (phys) 0.580 0.622 0.625 0.630

3.3.6.3 Evaluation on Public Datasets

I further evaluated this approach using publicly available mapping datasets

provided by Google Cartographer [16]. The website corresponding to this project

contains a repository of numerous Robot Operating System (ROS) bag files
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from different robotic and non-robotic platforms including a backpack mounted

lidar, a PR2 robot from Willow Garage, Turtlebot and the Magazino Robot. For

this dataset, I used the 2011-08-03-20-03-22, 2011-08-04-12-16-23, b0-2014-

10-07-12-43-25 and the cartographer turtlebot demo bag files for training and

2011-08-04-23-46-28 and b2-2015-08-18-11-42-31 bag files for test. The bag

files were manually split to ensure non-overlapping training and test data.

These bag files consist of laser scan, images, and point cloud data of robots

navigating a variety of indoor building environments.

To construct this dataset, I leverage the Google Cartographer ROS pack-

age to first build the full 2D occupancy map by playing the entire ROS bag to

completion. I save the full map so that it is available as ground truth. I then

replay the ROS bag file, this time collecting a pair of images that represents a

4x4 m square with the robot in the center and an expanded occupancy map of

size 6x6 m to represent a 1.5x expanded prediction or 1 m in every direction.

These pairs of images are then used to train the neural network and validate

this approach. In total, I collected a dataset of 4997 training image pairs and

1368 test image pairs.

I trained each variant of the neural network using the expanded ground

truth occupancy maps from scratch for 50 epochs with a batch size of 4. I use

the Adam optimizer with an initial learning rate of 0.0002 and momentum

parameters β1 = 0.5, β2 = 0.999. The decoder layers of the network used a
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dropout rate of 0.50 and weights were initialized from a Normal distribution

(µ = 0, σ = 0.2). In these experiments, for the loss function, I set λl1 = 100.0,

λig = 0.1, λssim = 10.0, λtv = 1.0. All models were implemented using Py-

Torch [60].

I evaluated the performance of the occupancy map prediction and compared

it to the baseline implementations described above using both quantitative and

qualitative methods. The evaluation metrics used for quantitative comparison

are structural similarity metric (SSIM) and peak signal-to-noise (PSNR) be-

tween the predicted regions of the image and the ground truth. The PSNR

metric provides per pixel level accuracies while the SSIM metric focuses more

on perceived changes in the image. These metrics are widely used to compare

the relative difference between images and have been applied to various im-

age completion studies [40, 61]. I also evaluate the prediction speed of each

approach as an additional performance metric. Each of the algorithms was ex-

ecuted on a laptop consisting of an Intel® i7-7700HQ 2.80 GHz x 8 processor

and a NVIDIA® GeForce® GTX 1080 (Max-Q) 8 GB graphics card.

A summary of the quantitative results is presented in Table 4.5 and sample

images providing qualitative comparisons are presented in Fig. 3.6. In these

results, I show that qualitatively, this approach generates better prediction re-

sults compared to the baseline experiments. Quantitative assessments show

that this approach generated the maximum PSNR score however performed
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Figure 3.6: (a) Input occupancy map based on lidar’s FOV, (b) Prediction using
our method, (c) Prediction using U-Net with L1 loss, (d) Prediction using border
padding algorithm, (e) Autoencoder network, and (f) Ground truth image

Table 3.4: Quantitative Analysis for Predicted Occupancy Map

Method SSIM PSNR Speed (ms)
Border Completion 0.792 9.731 0.2
Autoencoder Network (w/o skips) 0.904 16.459 4.2
U-Net (L1) [52] 0.896 16.726 4.3
Our Method 0.903 16.907 4.3

slightly worse than the simple autoencoder network when comparing the struc-

tural similarity. One potential explanation is that the SSIM metric tends to

minimize small deviations by searching for neighboring pixels whereas the

PSNR score will capture these small deviations.
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Figure 3.7: U-Net architecture extended to generate multiple hypotheses

3.4 Information-Theoretic Exploration

The goal in this section is to leverage map prediction to improve robot ex-

ploration strategies when mapping a new environment. I extend the prior map

prediction algorithm to include uncertainty estimation and use the uncertainty

as an information-theoretic approach to exploration.

3.4.1 Uncertainty-Aware Prediction

While the approach described above using a single hypothesis prediction

produces reasonable performance, the reality is that the world is inherently

ambiguous and uncertain, particularly when navigating environments. To il-

lustrate this, consider the example of a robot approaching the start of a hall-

way. At this point, there is inherent uncertainty in the future prediction as the

hallway could result in a T-intersection or lead to an exit.
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In this scenario, making a prediction using a single hypothesis will often

result in a blurry image consisting of the two possible futures as depicted by

Fig. 3.8 (b). A better approach would be to generate multiple predictions that

capture the distribution of possible futures and plan along the different hy-

potheses. As more information is obtained, the goal is that the hypotheses will

converge to a single prediction.

3.4.2 Generating Multiple Hypotheses

To capture this uncertainty, I modify the single hypothesis network to out-

put multiple hypotheses predictions as described by Rupprecht et al. [62]. I do

this by branching N heads with each head capable of making its own prediction

as summarized in Fig. 3.7. The loss function is modified to become a weighted

sum, 1 − ε, of the best performing head loss and the weighted sum, ε/(N − 1),

of the losses of the other heads. In these experiments, I set ε = 0.05.

3.4.3 Multiple Hypotheses Prediction Results

In this section I present qualitative and quantitative results representing

multiple hypothesis prediction.
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Figure 3.8: (a) Input occupancy map based on lidar’s FOV, (b) Prediction using
single hypothesis resulting in blurred image, (c) and (d) 2 hypotheses generated
using multiple hypotheses prediction, (e) Image representing variance between
the multiple hypotheses

3.4.3.1 Qualitative Results

In Fig. 3.8 (c) and (d) where N = 2, I display the result of making multi-

ple predictions to generates hypotheses. In this figure, we can clearly see two

distinct hypotheses that represent that true uncertainty of the environment

rather than a blurred version corresponding to the combination of the possible

environments in Fig. 3.8 (b).

3.4.3.2 Quantitative Results

I then show the effects of making multiple hypotheses on a more typical

indoor navigation dataset. I consider the same test datasets described in Sec-

tion 3.3.6.3 and compare the SSIM and PSNR metrics when generating 4 and

8 hypotheses to the best results obtained with a single hypothesis. I first com-

pare the best of N hypotheses referred to as MHP-N (best) in Table 3.5. I

accomplish this by taking the highest SSIM and PSNR scores of the N predic-
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tions and observed and compared to the best results using a single hypothesis.

I further compared the average of N hypotheses and found that even the av-

erage of the hypotheses outperforms the best single hypothesis showing that

making multiple predictions is making an impact on generating better overall

predictions. An explanation for this is that while there is ambiguity in the pre-

dictions, as more information is obtained, the multiple hypotheses eventually

converge to a better prediction.

Table 3.5: Quantitative Analysis with multiple hypotheses prediction

Method SSIM PSNR Speed (ms)
Our Method - Single Hypothesis 0.903 16.907 4.3
MHP-4 (avg) 0.911 17.204 16.1
MHP-8 (avg) 0.912 17.157 32.3
MHP-4 (best) 0.919 18.022 16.1
MHP-8 (best) 0.921 18.252 32.3

3.4.4 Efficient Map Exploration

3.4.4.1 Algorithm

I now consider an approach to leverage the uncertain regions of the multiple

hypotheses as a heuristic for an information-theoretic map exploration strategy

as described by Algorithm 1. To accomplish this, I generate a variance image

from the N hypotheses that describe regions of the hypotheses with greatest

dissimilarities as shown in Fig. 3.8 (e). In this work, to generate the vari-
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ance image, I use the SSIM image difference across the N hypotheses rather

than raw pixel differences to make the variance image more resilient to minor

pixel changes. I further threshold the image using both a binary and Otsu’s

Method [63] for noise reduction. I then partition the variance image into M

clusters. In these experiments, I apply a simple 3x3 grid on the variance image

(Fig. 3.8 (e)) and determine the grid containing the maximum variance. Fi-

nally, I find the centroid of this grid and use this to compute a new robot pose

for exploration.

Algorithm 1 Map Exploration Algorithm
Input N hypotheses, M clusters, B bounding box to explore
Output Pose next pose of the robot

1: procedure EXPLOREMAP(N,M )
2: while B Not Fully Explored do
3: H[N ]← GenerateHypotheses(N)
4: V ← GenerateV arianceImage
5: Cluster[M ]← ClusterV arianceImage(V,M)
6: MaxCluster ←MAX(Cluster[M ])
7: Pose← Centroid(MaxCluster)
8: MoveRobot(Pose)

3.4.4.2 Simulation Platform

I test this algorithm using the Gazebo simulation environment consisting

of a Turtlebot with an onboard lidar. I compare this exploration strategy with

frontier exploration [3], a modified version of frontier exploration that takes

into account the distance to the next frontier [6] and an information theoretic
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approach using Bayesian optimization [4,5].

3.4.4.3 Simulation Results

Fig. 3.9 shows the trajectory of the robot using each of the baseline algo-

rithms compared to this approach with the predicted regions overlayed. The

total lengths of the trajectories are also presented in Table 3.6. The main obser-

vation here is the decision made by the other exploration algorithms to explore

the corner of the map where very little information can be gained versus the

exploration strategy which seeks the hallway where more information can be

obtained.

Table 3.6: Total Path Length

Method Path Length
Frontier Exploration [3] 28.17 m
Information-Theoretic Bayesian Optimization [4,5] 17.30 m
Frontier Exploration using Distance [6] 35.26 m
Our Method 10.05 m

3.5 High-Speed Navigation

In the previous section, I demonstrated how occupancy map prediction can

improve the performance of exploring a new environment. In this section, the

primary goal is to develop a controller that leverages the predicted regions of

the map to achieve high speed navigation. I execute the tests on an RC car as

58



CHAPTER 3. OCCUPANCY MAP PREDICTION

Figure 3.9: Trajectory of robot during exploration using (a) Frontier Explo-
ration [3], (b) Information-Theoretic Bayesian Optimization [4, 5], (c) Frontier
Exploration using Distance [6] , (d) Our Method

described in Sec. 3.5.1 and make use of RGBD mapping, map prediction, and a

receding-horizon controller to achieve this goal.

3.5.1 Platform

The platform I use for the evaluation is the MIT Race car [64] built on the

1/10-scale Traxxas Rally Car platform, as shown in Fig. 3.11. This RC car

has a reported maximum speed of 40 m/s and contains Intel Realsense D435

and T265 cameras. The onboard Nvidia® Jetson TX2 computer runs the per-

ception, mapping and planning software integrated with the Robot Operating

System (ROS) [65]. The main interface to the RC car is the variable electronic

speed controller (VESC) interface that provides vehicle state information and

receives commands including desired velocity and turn angle.
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3.5.2 Approach

A summary of the approach is described in Fig. 3.10 which consists of per-

ception and control blocks.

3.5.2.1 Perception

The objective of the perception algorithm is to observe co-registered RGB

and depth data to produce an occupancy map for planning. As demonstrated in

Fig. 3.10, RTAB-Map [17] is used to create 2D occupancy maps using the RGB

and depth images from a Realsense D435 and visual inertial odometry from a

Realsense T265.

To improve the mapping performance, I limit the D435’s depth sensor range

to 3 meters, and I apply gradient filtering on the raw depth images. The depth

image gradients are calculated using a Sobel filter with a 5 × 5 kernel. All

pixels with a gradient magnitude larger than twice the median are discarded.

This removes “ghost noise” near sharp edges in the image. I use RTAB-Map to

generate an updated map at approximately 3 Hz while running on the Nvidia®

Jetson TX2 hardware on the car.

3.5.2.2 Neural Network Architecture

I use a U-Net style neural network architecture [40, 52] as described in

Sec. 3.3 to receive the occupancy map provided by RTAB-Map and predict

60



CHAPTER 3. OCCUPANCY MAP PREDICTION

Figure 3.10: This diagram describes the overall perception and control
pipeline. The perception module receives on-board sensor data from the car
and produces a predicted occupancy map using a U-Net style generative neural
network. The control algorithm receives the robot state, predicted occupancy
map and goal point and generates collision-free trajectories.
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Figure 3.11: MIT Racecar with Intel Realsense Cameras

an expanded occupancy map. In summary, the U-Net neural network is a

generative architecture used in several image completion algorithms includ-

ing [40, 66, 67]. The U-Net network consists of skip connections allowing a

direct connection between the layers i and n− i. These skip connections enable

the option to bypass the bottleneck associated with the downsampling layers

and significantly increases the accuracy of predicted occupancy regions [68]. In

this work, the implementation of the encoder network consists of 7 convolu-

tion, batch normalization and ReLU layers where each convolution consists of

a 4× 4 filter and stride length of 2. The number of filters for the 7 layers in the

encoder network are: (64, 128, 256, 512, 512, 512, 512). Similarly, the decoder

network consists of 7 upsampling layers with the following number of filters:
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(512, 1024, 1024, 1024, 512, 256, 128).

3.5.2.3 Loss Function

To train the network, I extend the loss function described in Sec 3.3, by

using a class-balanced cross-entropy loss function as described in [69]. The

discrete classes used for labeling each pixel of the occupancy map include oc-

cupied, unoccupied and unknown spaces. Because there are significantly more

pixels associated with unoccupied and unknown spaces versus obstacles, I ap-

ply class balancing techniques on the cross entropy loss with additional 5×

weight added to the occupied space loss. This results in predictions where the

edges representing obstacles are far more pronounced as seen in Fig. 3.12.

3.5.2.4 Post Processing

During the testing on the robotic car, I frequently observed small noise ar-

tifacts being generated by the neural network, a condition commonly found in

generative neural networks [70]. While seemingly minor and transient, these

artifacts caused significant instability issues during control as the trajectory

planner would often abruptly change the planned path in response to these ar-

tificial obstacles or would fail to find a valid trajectory. To alleviate this, I apply

a traditional morphological closing operation with a 5 × 5 kernel to suppress

the noise generated by the neural network with results shown in Fig. 3.13. The
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observed map and the filtered predictive map are combined to create the plan-

ning map; any unknown space from the observed map is filled in with data

from the predictive map.

3.5.2.5 Training Details

I generate the datasets in an unsupervised manner. As the robot navigates

a new environment, the robot collects data that consists of a submap that cor-

responds to the current occupancy map based on the sensor’s horizon as well

as the expanded ground truth map after the environment has been explored.

I explored various sizes of the submap and found a map corresponding to 6 m

× 6 m provided by best geometric size of the submap given the characteristics

of the sensor. I used a map resolution of 0.05 meters per pixel so the input oc-

cupancy map image resolution was 120 × 120 pixels. Further, I experimented

with various predicted region sizes and found predicting a region of 7.5 m ×

7.5 m corresponding to an image size of 150 × 150 provided the optimal accu-

racy and performance characteristics for the controller. Further, due to limited

amounts of real world data available, I perform data augmentation techniques

to apply random rotations to the occupancy map training data. This allows us

to be more robust to various hallway configurations as shown in Fig. 3.14.
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Figure 3.12: Predicted occupancy map generated without class balancing
weight (Left) and with class balancing weight (Right) where white represents
unoccupied space, grey is occupied and black is unknown. The class balancing
weight produces stronger edges for obstacles in the predicted occupancy map.

Figure 3.13: (Left) Generated occupancy map with noise artifacts. (Right) Pre-
dicted occupancy map after morphological close operation (white is unoccupied
space, grey is occupied and black is unknown).
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Figure 3.14: Three examples from the training set of occupancy maps and
their resulting expanded predictive map along with the ground truth (white is
unoccupied space, light grey is occupied and dark grey unknown). Augmenting
the training data with random rotations, allows the network prediction to be
more robust to different environment configurations encountered by the robot.
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Figure 3.15: Visualization of system during hardware experiment. Known
map is enclosed by the red boundary. The brown path is the smoothed RRT
path to goal, and the purple path is the local optimized direct transcription
trajectory.
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3.5.3 Control Algorithm

The objective of the control algorithm as described in Fig. 3.10 is to compute

a collision free path to the goal, generate a series of feasible trajectories to way-

points, and send control commands to the mobile robot to follow the computed

trajectory. The controller proposed in the prior work [71] was adapted and

tuned for this hardware. While initially developed for fixed-wing flight, it is

particularly well suited for high-speed navigation. The receding horizon allows

for rapid replanning while using a dynamically built map, and the trajectory

generation and tracking allows for a high-rate, dynamically feasible control

output.

3.5.3.1 Dynamics Model

A simple bicycle acceleration model was used to describe the robot’s dynam-

ics. The equations of motion are as follows:
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ẋ = v ∗ cos(θ)

ẏ = v ∗ sin(θ)

v̇ = u0 (3.7)

θ̇ = v ∗ tan(δ)/L

δ̇ = u1

The state is written as x =

[
x, y, v, θ, δ

]
where x and y are 2D position, v is

forward velocity, θ is orientation, and δ is turn angle. The input, u =

[
u0, u1

]
,

represents acceleration and turn angle velocity, respectively, and L is the wheel

base length.

3.5.3.2 Control Strategy

Here, I review the receding horizon controller proposed in [71], which can

be decomposed into three main stages.

In the first stage, a path to goal is generated using a standard rapidly-

exploring random tree (RRT) [72]. The resulting path is pruned and then

smoothed using G2 Continuous Cubic Bézier Spiral Path Smoothing (G2CBS)
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[73]. The curvature along the smoothed path,
[
x(s), y(s)

]
, is calculated as:

κ(s) =
(y′′(s)x′(s)− x′′(s)y′(s))

(x′(s)2 + y′(s)2)
3
2

This curvature is then mapped to velocity based upon vmax and vmin, the maxi-

mum and minimum velocity.

v(s) =
dx

dt
(s) = vmax − κ(s) ∗

vmax − vmin
2

The path’s velocity parameterization is used to reparametrize the path by time.

t =

∫ s

0

1

v(s)
ds

In the implementation, the RRT was modified to improve performance in

a dynamically built map by initializing the RRT tree with the raw RRT path

to goal from the previous control iteration. Before initialization, the path was

checked for collisions and truncated if a collision is detected. This initialization

results in faster RRT computation and increased path consistency between it-

erations.

In the second stage, a dynamically feasible trajectory from the current state

to a horizon point is generated. The horizon point is selected as a time horizon

selected along the parameterized RRT path. The same direct transcription fea-
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sibility problem was utilized as formulated in [71]. This approach discretizes

the trajectory into N knot points using a variable time interval dt. Let 0(tk) be

the position of the robot and 0(tk), k < N , be the input at the kth knot point

where tk+1 = tk + dt. This feasibility problem was modified by introducing a

cost function to penalize large dt (therefore encouraging high speeds) as well

as slightly penalizing the input to encourage smoother trajectories. The objec-

tive function is shown below.

J(0(tk),0 (tk), dt) =
N−1∑
k=0

0(tk)
T Rc 0(tk) + dt

In order to track the dynamically feasible trajectory, time-varying LQR

(TVLQR) is performed in the third stage. The control signal is generated as:

(tk, ) = K(tk)(−0(tk)) +0 (tk).

where K(tk) is the optimal gain matrix.

3.5.3.3 Control Parameters

The control pipeline executes at a rate of 5 Hz, or a control interval of T =

0.2 seconds. The control signal is calculated from the odometry and TVLQR

gains at a rate of 50 Hz. The max time and max iterations for the RRT search

were set to 0.05 seconds and 20000 iterations. The maximum velocity for RRT
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path parameterization was set to the maximum allowed velocity specified in

each hardware trial. For RRT sampling, an obstacle avoidance radius of 0.4 m

was used.

For direct transcription, N = 10 knot points and a time horizon of H =

2 seconds were used. I set δf =

[
0.1, 0.1, 0.1, 0.25, 100.0

]
, Rc = diag(0.1, 0.1) and

use an obstacle radius of 0.35 m.

The costs for TVLQR are as follows:

Q = diag(10, 10, 10, 10, 10)

Qf = diag(1, 1, 5, 1, 1)

R = diag(1, 1)

The acceleration and turn angle control bounds were set to [-2.5, 2.5] m/s

and [-1.5, 1.5] rad/s respectively. The velocity minimum bound was set to 0.5

m/s and turn angle state bounds were set to [-0.3, 0.3] rad.

3.6 Experimental Evaluation

I conduct preliminary hardware experiments to validate this approach us-

ing a robotic car based on MIT’s open-source race car [64] as described in 3.5.1.
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Figure 3.16: This sequence of images represents a trajectory taken by the
robot during the experimental evaluation.

The map prediction network was trained on indoor scenes consisting primar-

ily of straight and turning corridors. Similar to [74], I conduct both zero-shot

and continual learning scenarios. In the zero-shot experiments, I evaluate the

performance on new environments (Fig. 3.16) not seen by the robot. In the con-

tinual learning evaluation, I allow the robot to collect data in a semi-supervised

manner from the new environment, fine tune the network offline and reevalu-

ate performance. I assessed the maximum speed allowed by the robot and the

number of successful trials, which I defined as reaching the target goal with-

out collision. A visualization of the system during the hardware experiment is

shown in Fig. 3.15.
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Algorithm Max Speed Success Rate
Without Map Prediction 3 m/s 5/5
Without Map Prediction 4 m/s 1/5

With Map Prediction (Zero-shot) 4 m/s 3/5
With Map Prediction (Fine Tuned) 4 m/s 4/5

Table 3.7: This table captures the results of the preliminary hardware experi-
ments on the modified MIT race car.

3.6.0.1 Quantitative Results

The results are summarized in Table 3.7. Without map prediction, the

robot’s maximum speed, vmax, was 3 m/s without collision. When evaluating

without map prediction with the maximum speed of 4 m/s, the robot was only

able to successfully reach the goal 1/5 attempts. With map prediction, I was

able to achieve success 3/5 trials. After allowing the network to fine tune on

the new environment, I was able to increase the ratio to 4/5 successful trials

showing the ability to continually learn as the robot explores new environ-

ments.

3.6.0.2 Qualitative Results

For comparison, the trajectories with and without prediction for one of the

trials where vmax = 4m/s is shown in Fig. 3.17. Without map prediction, the

robot limited by the sensor’s field of view, plans a waypoint in unknown space

and is not able to react in time once the map has been updated to reflect the

true occupied space. In contrast, with map prediction, the robot is able to plan
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Figure 3.17: Example trajectories of car with max velocity of 4 m/s with and
without map prediction.

with longer horizons resulting in smoother trajectories that allow the robot to

reach the desired goal.

3.7 Discussion

In this chapter, the goal was to establish a framework to allow robots to

predict occupied spaces beyond the line of sight of the sensor and subsequently

use the predictions to improve robot exploration and operate at higher speeds.

Specifically, the objective is to answer the following four main questions:

1. Can generative neural networks learn a latent representation from occu-

pied maps that act as a predictive model?
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2. Can these networks be modified to represent the uncertainty and ambi-

guity inherent in making predictions?

3. Can knowledge of this uncertainty be used as a strategy for exploring

unknown environments?

4. Can map prediction be used as part of a controller to achieve higher

speeds?

To answer the first question, I evaluate different neural network architec-

tures and loss functions and find that a U-Net autoencoder architecture with

skip connections combined with a multi-term loss function that encourages re-

construction while preserving structure and edges resulted in the best predic-

tion.

To answer the second question, I show that by extending the single hy-

pothesis to multiple hypotheses, I was able to improve prediction performance

and capture the uncertainty in both simulated and a more realistic, real world

dataset.

To address the third question, I present an algorithm that leverages the

differences in the generated hypotheses as a heuristic for efficient exploration.

I compare this approach to existing greedy and information-theoretic map ex-

ploration techniques and show that this method results in a 41% improvement

in trajectory length due to combining elements of prediction with exploration.
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Regarding the fourth question, I present a real-time controller that lever-

ages the predicted occupancy map as part of the planning algorithm. At a max

velocity of 3 m/s, 3 Hz mapping rate, 3 m sensor range, and 1 sec time horizon,

planned trajectories will almost always be within the known region of the map.

At these speeds, the system is successful without map prediction with these pa-

rameters. When the max velocity is increased to 4 m/s, the planned trajectories

will often be within unknown space of the map (outside of the sensor range).

This can cause trajectories to plan through unseen walls, causing failure. The

predicted occupancy map is able to help address this limitation by providing a

longer horizon for planning which accounts for the 4× improvement at 4 m/s in

the preliminary hardware evaluation.

3.8 Conclusion

The long term objective is to develop a full set of capabilities that can take

advantage of making predictions for robot planning. In this chapter, I lay the

foundation for making predictions based on latent spaces learned from unstruc-

tured navigation and navigation policies that leverage the predicted regions of

the map. The future work spans multiple activities. I believe the prediction

results can be improved by addressing noise issues including scattering effects

present in lidar-based sensors. I also plan to focus on more complex environ-
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ments that consist of additional static and dynamic obstacles. I further plan

to investigate new techniques that can better capture the uncertainty of the

environment.

While this chapter focused on static obstacles in the environment, an equally

important and challenging task is to predict and navigate around dynamic ob-

stacles including pedestrians. In chapter 4, I continue the work by first de-

veloping techniques to perform pedestrian state estimation with uncertainty. I

follow this by extending the prediction capabilities to include pedestrian predic-

tion using generative networks that combine past trajectories with estimated

intent. Finally, I develop an adaptive RL policy that leverages the pedestrian

prediction to improve navigation performance.
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Pedestrian Navigation

4.1 Introduction

In the previous chapter, I focused primarily on navigating around static ob-

stacles by leveraging predicted maps. In this chapter, I focus on navigation

with dynamic obstacles, in particular pedestrians. As we continue to think

about navigation activities ranging from security surveillance to warehouse

automation, it is critical for these robots to move efficiently and safely around

humans. Navigation around pedestrians is often thought to be a challenging as

humans have many unobservable states that govern their own navigation pol-

icy, making prediction of future motion challenging. While learning techniques

have made tremendous progress in this space, most approaches struggle when

operating outside of the training distribution. In this chapter, I focus on first
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pedestrian state and uncertainty estimation techniques. I show that by com-

bining Kalman filter techniques with deep neural networks, I can generate

more robust state and uncertainty estimation at a lower computational cost. I

then focus on pedestrian prediction leveraging an estimate of human intent to

generate better future predictions evaluated on several pedestrian benchmark

datasets. Finally, I develop an RL policy that leverages the predicted motion to

produce an adaptive navigation policy and evaluate in both simulation and in

physical hardware experiments.

The organization and specific contributions of this chapter are the following:

• In Sec. 4.2, I briefly summarize prior work related to pedestrian state

estimation, prediction and navigation.

• In Sec. 4.3, I focus on an approach that combines neural networks and

deep Kalman filtering techniques to provide state and uncertainty esti-

mation that is robust to out-of-distribution sensor noise.

• In Sec. 4.4, I extend my neural network prediction research to generate

predictions of future pedestrian motion and compare against state-of-the-

art methods.

• Finally, in Sec. 4.5, I describe an RL policy that leverages the pedestrian

prediction to generate an adaptive navigation algorithm that is more ro-

bust to out-of-distribution pedestrian motion.
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4.2 Prior Work

State Space Modeling

Classical state estimation has been instrumental in solving a wide vari-

ety of problems in the robotics community and can be summarized by several

review papers including [75–77]. Recently, many research efforts introduced

concepts that combine neural networks with state space models and recur-

sive filters. BackpropKF [78] uses a feedforward neural network to produce

a latent embedding and covariance matrix from a raw high dimensional in-

put however uses a known state transition model. This is further extended by

DPF [79] which includes the use of particle filters for state estimation with a

known dynamics model. Additional works combine variational autoencoders

with Kalman Filters including [80, 81]. The work presented in [82] develops a

Recurrent Kalman Filter Framework that learns a transition model operating

on latent representations with an emphasis factorized inference for efficient

computation. DVBF is another work [83] that learns state space models using

Bayesian Filters for stable long term predictions. Recently introduced, Dy-

naNet [84] employs state estimation and motion prediction techniques using a

neural Kalman Filter and evaluates their approach on visual odometry using

the KITTI dataset.
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Uncertainty Estimation

Bayesian Neural Networks [85,86] have been used extensively to represent

uncertainty in a neural network by learning a probability distribution over

the network parameters. Recent works also focus on improving uncertainty

estimation using deep neural networks. Kendall and Gal [87] describe tech-

niques that capture aleatoric uncertainty (uncertainty found in observations)

and epistemic uncertainty (model uncertainty) particularly in the computer vi-

sion domain. Gal and Ghahramani [88] describe uncertainty estimation tech-

niques using stochastic dropout as a form of Bayesian approximation. Ovadia

and Fertig [89] evaluate the performance of predictive uncertainty under distri-

butional shift on a variety of modalities including images, text and categorical

data.

Monocular 3D State Estimation

Several techniques focus on performing state estimation with a monocular

camera. Engel et al. [90] develop large scale SLAM algorithms that operate

on a monocular camera with an emphasis on real-time performance. ORB-

SLAM [91] extends this work to focus on robustness to motion clutter using loop

closure and relocalization. Bertoni et al. develop the Monoloco algorithm [7]

which is among the first approaches to perform 3D pedestrian localization from
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monocular images that captures both aleatoric and epistemic uncertainty, how-

ever do so without modeling dynamics.

Crowd Navigation

Previous studies have investigated approaches that enable mobile robot

navigation in crowded environments (e.g., [92]). This body of work can be clas-

sified into three broad areas: (1) algorithms that react to moving obstacles

in real time, (2) trajectory based approaches that plan paths by anticipating

future motion of obstacles, and (3) reinforcement learning based approaches

that learn a policy to navigate in crowded environments. Reaction based meth-

ods include works such as reciprocal velocity obstacles (RVO) [93] and opti-

mal reciprocal collision avoidance (ORCA) [94]. Trajectory based approaches,

such as [95, 96], explicitly propagate estimates of future motion over time and

perform trajectory optimization on those future states for collision avoidance.

Additionally, several recent works use variations of reinforcement learning to

learn policies capable of crowd navigation (e.g., [97–99]). Everett et al. [98]

developed a decentralized approach to multiagent collision avoidance using a

value network that estimates the time to goal for a given state transition. Chen

et al. [99] further extended this work by adding an attention mechanism and

a novel pooling method to handle a variable number of humans in the scene.

Kahn et al. [100] investigates adaptive navigation polices based on uncertainty;
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however, they only considered environment uncertainty with static obstacles

and not navigation in the presence of pedestrians.

Pedestrian Prediction

Several studies have investigated pedestrian prediction for a variety of ap-

plications including robotics, autonomous driving, and video surveillance. Many

approaches treat pedestrian prediction as a state estimation problem by rely-

ing on a kinematic model and using concepts from Bayesian and Kalman Fil-

tering [101–104]. Many other works have investigated intent or goal based

estimation as part of trajectory planning (e.g., [105–107]). Recent works have

investigated deep neural networks that consider agent-to-agent and agent-to-

environment interactions (e.g., [19–22]). This brief summary only highlights a

small snapshot of the many relevant works related to pedestrian motion pre-

diction. For a more comprehensive overview, Rudenko et al. provide a survey

describing various approaches to the human motion trajectory prediction prob-

lem [108].

This approach is unique from other works in that I include explicit modeling

of aleatoric and epistemic uncertainty within the deep recursive filter frame-

work. I show this combined uncertainty modeling with learned dynamics from

a recursive filter framework is imperative to improve state estimation and pre-

diction interval robustness in the presence of out-of-distribution noise. Further,
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I show that these techniques apply not only to toy problems but also the chal-

lenging problem of pedestrian localization using monocular cameras. Finally,

I investigate whether properties of a recursive filter can be used as a measure

of competency to further improve computational efficiency of the uncertainty

estimation.

4.3 State and Uncertainty Estimation

State estimation is a critical problem impacting a wide variety of robotic ap-

plications including mapping, localization, pose estimation, and motion plan-

ning. These challenging applications are encumbered by issues such as high

dimensional observations, partial observability, and noisy measurements. Tra-

ditional methods of state estimation, including Kalman and other recursive

filters, decouple perception and state estimation by operating directly on low

dimensional state representations after the perception pipeline. This limits

the ability to develop state estimation techniques that are robust to high sen-

sor noise.

Deep learning techniques have made a significant contribution in many ar-

eas including perception, speech recognition, and robotics. Particularly, they of-

fer the ability to operate directly on high dimensional spaces where each layer

represents learned features that can be used to perform functions such as clas-
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sification and regression. While deep learning techniques have demonstrated

significant improvements in predictive accuracy, they have demonstrably fallen

short in estimating the predictive uncertainty. As demonstrated by Ovadia and

Fertig [89], this is particularly exacerbated when evaluating predictive uncer-

tainty under distributional shift. For many applications, including robotics,

this is a fundamental limitation as robustness to out-of-distribution noise is

critical to improve the safety and reliability of systems when deployed into the

real world.

In this section, I study methods that combine deep neural networks with

traditional state estimation techniques that improve robustness to noisy in-

put data. I specifically focus on developing techniques that capture aleatoric

and epistemic uncertainty [87] to improve prediction interval accuracy in the

presence of noisy, out-of-distribution inputs.

The specific focus is along three core research questions:

1. Can principles of recursive filters combined with neural networks im-

prove state estimation accuracy of dynamical systems in the presence of

out of distribution noise?

2. Can this approach improve the robustness and performance of predictive

uncertainty estimation as the test distribution deviates from the training

distribution?
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Figure 4.1: The goal of this project is to develop robust state and uncertainty
estimation for pedestrian localization by combining elements of deep neural
networks, recursive filters and uncertainty estimation.

3. Can properties of the recursive filter provide additional insight regarding

expected competency of the trained network?

To study these questions, I evaluate this approach using two experimental

environments. The first is a toy problem using a simulated pendulum. The

objective is to estimate the pendulum angle in the presence of varying obser-

vation noise added to the 24 × 24 pixel images as input. My goal is to assess

the effects of a learned dynamical model and demonstrate robustness during

regions of high observation noise.

I then focus on a real world problem by estimating the 3D pedestrian lo-

calization from monocular images. For this evaluation, I use the nuScenes [8]

dataset consisting of real world driving scenarios with corresponding annota-

tions including pedestrian position. Again, I assess the ability of this model
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Figure 4.2: This figure describes the overall network architecture for the
pedestrian localization experiment. It consists of an encoder network used to
learn a latent embedding and measurement covariance matrix, a state tran-
sition network used to learn a dynamics model and process covariance matrix
and a decoder network used to decode the latent embedding to estimated depth
along with capturing aleatoric and epistemic uncertainty.

to provide robust state and uncertainty estimation in the presence of out-of-

distribution noise for this more complex, real world scenario.

The following summarizes the main contributions:

1. I develop an architecture, referred to as deep recursive filter (DRF) that

combines deep neural networks to learn latent embeddings, state tran-

sition models, and associated covariance matrices with a recursive filter

operating on the learned latent states.

2. This approach explicitly models aleatoric and epistemic uncertainty as

part of the deep recursive filter to improve confidence interval prediction.
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3. I show through experimental evidence that my combined approach im-

proves state estimation, confidence interval estimation, and runtime per-

formance on a toy problem and real world pedestrian localization.

4. Further, I show that my approach is more robust to out-of-distribution

noise compared to state-of-the-art approaches.

4.3.1 Preliminaries

The objective is to perform state and uncertainty estimation operating di-

rectly on high-dimensional observations. Formally, I define the noisy pendulum

problem as follows. At given time t, I observe a 24 × 24 pixel image with noise

added to the image. The objective is to estimate the state of the pendulum

defined as: Xt = (cos(θt), sin(θt))
T as well as the predicted uncertainty of each

state variable, σcos,t and σsin,t.

For the pedestrian localization experiments, I define the state of the pedes-

trian i at time t as Xi,t = (xi,t, yi,t, zi,t), the Cartesian position of the pedestrian.

Similar to [7], I assume a calibrated camera provides the transformation from

image coordinates to the x and y Cartesian points. The trained neural network

receives a 1600× 900 3-channel RGB image and estimates the zt coordinate cor-

responding to the depth of the pedestrian using a single monocular image as

well as the aleatoric and epistemic uncertainty of the depth estimate, σdepth,t.
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Figure 4.3: (Top) Samples of the noisy pendulum. (Middle) The figure com-
pares the MAE between the DRF approach with the baselines architectures
for the noisy pendulum problem for the out-of-distribution noise experiments.
(Bottom) This figure compares the PICP metric with the MPIW metric for the
three architectures. I show this approach significantly reduces state estimation
error and improves to the uncertainty estimation compared to the baselines.
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4.3.1.1 Metrics

My objective is to improve state and uncertainty estimation while develop-

ing techniques that are computationally efficient. To evaluate the accuracy of

state estimation, I measure the Mean Absolute Error (MAE) (Eq. 4.3.1.1) be-

tween the predicted and ground truth states. I use the average execution time

to compare the computational efficiency of various approaches. To assess the

quality of uncertainty estimation, I use the Prediction Interval Coverage Prob-

ability (PICP) [109,110] and Mean Prediction Interval Width (MPIW) [109,111]

metrics as defined by Eq. 4.3.1.1 and 4.3.1.1. Here, l(xi) and u(xi) are the lower

and upper bounds of the confidence interval respectively, ŷi is the point state

estimate, yi is the ground truth, and 1 is the indicator function.

MAE :=
1

N

N∑
i=1

|ŷi − yi| (4.0)

ci := 1(l(xi) ≤ yi ≤ u(xi))

PICPl(x),u(x) :=
1

N

N∑
i=1

ci, (4.0)

MPIWl(x),u(x) :=
1

N

N∑
i=1

|u(xi)− l(xi)| (4.0)

Intuitively, the PICP metric measures the percentage of samples where the
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ground truth falls inside the predicted confidence interval and the MPIW met-

ric measures the average width of the predicted interval. The goal is to maxi-

mize PICP while minimizing the MPIW metric.

4.3.2 Approach

This algorithm architecture, inspired by [84] is described in Fig. 4.2 which

consists of encoder, decoder and state transition neural networks along with

the Kalman Filter (KF) prediction and update steps.

Encoder Network

The encoder network receives a 24 × 24 × 1 grayscale image in the pendu-

lum experiments or a 1600× 900× 3 RGB image for the pedestrian localization

experiments to produce a latent embedding representing and an associated ob-

servation noise covariance matrix. In the pendulum experiment, the encoder

network consists of a 5 × 5 convolutional layer and a 3 × 3 convolutional layer.

This is followed by a fully connected layer to produce a feature vector x ini,t.

For the pedestrian localization experiments, similar to [7], I first extract Pif-

Paf [112] features that represent a 17 × 2 dimensional keypoint vector (xi,t,

yi,t) for each pedestrian i along with a confidence score. They keypoint vec-

tor and confidence scores are concatenated to produce feature vector x ini,t. In

both experiments, I pass the feature vector x ini,t to two fully connected layers
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to generate a latent embedding wi,t for each pedestrian along with a covari-

ance matrix Ri,t that represents the observation noise. The output features of

Linear1 and Linear2 are both 30 dimensions.

wt
i = Layer Norm(Linear1(x ini,t))

Rt
i = Diag[Elu(Linear2(x ini,t)) + 1]

State Transition Network

The main goal of the state transition network is to learn a dynamical model

in the latent embedding, wi,t, through a learned state transition matrix, Ft and

associated process noise covariance matrix Qt. I accomplish this by using two

LSTM layers followed by a fully connected layer for each output, Ft and Qt.

Kalman Filter Prediction and Update

The Kalman filter prediction step follows the principles of traditional Kalman

filters where the objective is to produce an a priori estimate of the state and

estimate covariance matrix, ẑt−1 and P̂t−1 respectively using the learned state

transition matrix. The state transition matrix and associated process noise co-

variance matrices, Ft and Qt are learned by the state transition network. The

following operations are performed on the previous latent embedding, zt−1.
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ẑt−1 = F̂tzt−1

P̂t−1 = F̂tPt−1F̂
T
t +Qt

The KF update step produces a posteriori estimate of the latent embedding

and estimate covariance matrix, zt−1 and Pt−1 according to the following equa-

tions.

ỹt = wt −Hzt−1

St = HtP̂t−1H
T
t +Rt

Kt = P̂t−1H
T
t S
−1
t

zt = zt−1 +Ktỹt

Pt = (I−KtHt)P̂t−1
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Figure 4.4: Comparison of MAE for pedestrian localization with a changing
distribution of noise. In these experiments, the DRF approach performs com-
parably to Monoloco [7] for in-distribution evaluation and outperforms all base-
lines for out-of-distribution evaluation.
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Figure 4.5: A comparison of the PCIP versus MPIW metrics for each algorithm for in and out-of-distribution
noise. The data points are generated by varying the dropout rate when computing the epistemic uncertainty.
All three algorithms generally show comparable performance for in-distribution samples, however DRF per-
forms better as the noise distribution increases.
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Decoder Network

The decoder network has two purposes: 1) receive the posteriori estimate of

the latent embedding and covariance matrix to decode an estimated state, 2) to

calculate the associated aleatoric and epistemic uncertainties of the state esti-

mate. Aleatoric uncertainty is computed using the mean variance estimation

(MVE) [113] technique where the decoder produces two outputs that repre-

sent the mean and variance of a Normal distribution that are sampled during

inference. To calculate the epistemic uncertainty, I use a stochastic dropout

technique [88] where several dropout layers were added to the decoder. During

inference, multiple passes of the neural network generate a sample population

from which the mean and variance can be calculated. The decoder network can

be described as follows:

hi,t = ReLU(Linear3([zi,t,Pi,t])

yi,t = Linear4(hi,t)

σi,t = Elu(Linear5(hi,t)) + 1

Training Details

The entire network is trained using the Pytorch [114] framework with the

Adam optimizer [115] with the learning rate set to 10−4 for 200 epochs. I use
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the negative log likelihood (NLL) of a Normal distribution as the loss function

computed at the end of a sequence of length S according to Eq. 4.3.2.

L =
1

S

S∑
1

(log(
√
2πσ2

s +
1

2σ2
s

∑
(ys − ŷs)2) (4.0)

4.3.3 Noisy Pendulum Experimental Evaluation

I first evaluate out-of-distribution robustness on the noisy pendulum prob-

lem similar to [81,82]. For the training set, I generate 2000 sequences of length

75 corresponding to pendulum motion. The dataset includes a 24 × 24 × 1 im-

age as the input and the corresponding state of the pendulum as defined by

Xt = (cos(θt), sin(θt))
T . For each sequence, random Gaussian noise was added

to the images. I follow the noise generating procedure described in [82] where

I vary the maximum amount of noise between 0 and 50% during training.

To measure robustness to out-of-distribution noise, during evaluation, I set

the maximum noise threshold to 75% to simulate out-of-distribution noise. I

compare against two baselines. The first baseline, referred to as no dynamics,

removes any aspects of a learned dynamical model. Here I map the outputs

of the encoder network, wt and Rt directly to the decoder network and train

end-to-end in a similar fashion. The second baseline replaces the Kalman fil-

ter elements (e.g., State Transition Network, Kalman Filter Prediction, and
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Figure 4.6: (Left) Representative image from nuScenes dataset [8]. (Right)
Distorted image with noise added.
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Kalman Filter Update steps) with a vanilla LSTM. As demonstrated in Fig. 4.3,

I show significant improvement to state estimation in both the in and out-of-

distribution noise profile. Further, the recursive filter demonstrates better ro-

bustness to predicting confidence intervals.

4.3.4 Pedestrian Localization Experimental Eval-

uation

I pivot the evaluation to focus on pedestrian localization. For this exper-

iment, I use the nuScenes (part 1) training and validation dataset [8] with

tracked pedestrians per key frame. This consists of approximately 3300 im-

ages with approximately 3700 pedestrian instances. I add Gaussian noise to

these images to represent out-of-distribution evaluation. I trained with a prob-

ability of 0.01 that a pixel will be replaced with either a black or white pixel.

I then evaluated performance with probabilities of 0.025 and 0.05 to represent

out-of-distribution noise (example found in Fig. 4.6)1.

4.3.4.1 Baseline Comparisons

I compare this algorithm to several baselines for comparison purposes. The

first two baselines, no dynamics and LSTM are similar to the baselines used
1I experimented with higher probabilities of noise, however this caused PifPaf detector to

miss a significant amount of detections. Future work will bypass this feature extractor layer.

100



CHAPTER 4. PEDESTRIAN NAVIGATION

Algorithm Avg. Time ↓ Speed Up
Monoloco 36.1 1x

Ours 12.3 2.93x

Table 4.1: The average execution time for 25 forward passes. These numbers
are computed after the PifPaf feature extraction which is common to both ap-
proaches and measured using an NVIDIA® GTX 1080 GPU.

in the noisy pendulum experiments. The third baseline that I use for com-

parison is Monoloco [7] which similarly estimates pedestrian localization with

uncertainty.

4.3.4.2 State Estimation

I first measure the MAE of the estimated depth of the pedestrian compared

to the ground truth provided by the nuScenes dataset. In Fig. 4.4, I compare

this approach to the no dynamics, LSTM and the Monoloco work. When eval-

uating in distribution, this approach is comparable to Monoloco, with both ap-

proaches outperforming the no dynamics and LSTM baselines. When evaluat-

ing out-of-distribution, I show an 18% improvement in the MAE compared to

the no dynamics baseline, 8% improvement compared to the LSTM baseline,

and a 4% improvement compared to Monoloco.
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4.3.4.3 Uncertainty Estimation

As described in Sec. 4.3.2, I use the PICP and MPIW metrics to assess the

quality of the prediction intervals. These results are summarized in Fig. 4.5,

where I analyze the trade-offs between PICP and MPIW metrics for each algo-

rithm across in and out-of-distribution noise. For the in-distribution case, all

four algorithms exhibit similar performance in uncertainty estimation. When

evaluating out-of-distribution, the performance begins to diverge with this ap-

proach showing an distinct improvement to the other methods in particularly

high out-of-distribution noise samples.

4.3.4.4 Computational Efficiency

An important criteria is to allow uncertainty estimation to run in real time.

For that purpose, I also evaluate the run time performance of this approach

as summarized by Table 4.1. I demonstrate an approximately 3x improvement

largely due to the simpler decoder network used to perform epistemic uncer-

tainty.

4.4 Pedestrian Prediction

As I continue to develop mobile robots to support various human activities

ranging from security surveillance to warehouse automation, it is critical for

102



CHAPTER 4. PEDESTRIAN NAVIGATION

Algorithm PICP ↑ MPIW ↓ Avg. Time ↓
Pend - (no dropout) 79.3 0.04 2.48

Pend - (random) 86.3 0.30 17.1
Pend - (thresholded by Kalman gain) 92.1 0.24 16.8

Pend - (always dropout) 92.9 0.48 28.23
Ped - (no dropout) 86.0 10.95 1.63

Ped - (random) 87.4 11.5 4.25
Ped - (thresholded by Kalman gain) 87.7 11.6 4.06

Ped - (always dropout) 89.7 12.9 11.3

Table 4.2: This table captures the effects of using the Kalman gain as a mea-
sure of competency on choosing when to compute the epistemic uncertainty.

these robots to move efficiently and safely around humans. To successfully

integrate these robots into human environments, I built on prior research ex-

ploring robot navigation in human crowds (e.g., [92]) and drew insights from

seamless human navigation through crowded spaces. One way that people

accomplish seamless navigation is by anticipating other pedestrians’ future

movements and adjusting their own behaviors accordingly; for example, peo-

ple slow down or change directions to avoid collisions [22]. In this work, I seek

to computationally realize and evaluate human-inspired movement anticipa-

tion and how such anticipation may enhance the quality of robot navigation in

terms of success rate and pedestrian comfort.

Specifically, this work makes the following contributions: (1) a novel ap-

proach to pedestrian prediction that combines generative adversarial networks

with a probabilistic model of intent that achieves performance which matches

or exceeds state-of-the-art baseline algorithms on real world datasets, (2) the
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Figure 4.7: Adaptive crowd navigation policy that uses pedestrian intent and
prediction error to adjust the risk profile of a control policy.

ability to use errors in predicted pedestrian motion to detect novel pedestrian

behaviors not seen during training, (3) an adaptive policy that adjusts the risk

of the robot controller based on detecting novel pedestrian behaviors to mini-

mize collisions.

The remainder of this section is organized as follows. In Sec. 4.4.1, I describe

a novel approach to longer term pedestrian prediction that probabilistically

reasons about the pedestrian’s intent. In Sec. 4.4.2, I compare the prediction

results using real world datasets and show comparable or better performance

than state-of-the-art baselines.

While each of these papers makes significant contributions to their respec-

tive fields, none of the prior work, as far as I am aware, focuses on pedestrian

prediction as a measure of uncertainty to inform adaptive crowd navigation
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Figure 4.8: The pedestrian prediction network architecture. The generator
network consists of a recurrent encoder network, a variational autoencoder, an
intent prediction module and recurrent decoder network. The discriminator
network consists of a recurrent encoder network to distinguish between real
and fake trajectories.

policies.

4.4.1 Problem Formulation

The objective is to estimate future pedestrian trajectory given an observa-

tion history of past trajectories. Formally, at given time t, I represent the state

of the pedestrian, i as: X t
i = (xti, y

t
i). I observe pedestrian state during a time

window t = 1 to t = Tobs represented as Xobs
i = [(x1i , y

1
i ), ..., (x

Tobs
i , yTobsi )]. The

objective is to predict the pedestrian state from time t = Tobs+1 to t = Tpred

represented as Y pred
i = [(x

Tobs+1

i , y
Tobs+1

i ), ..., (x
Tpred
i , y

Tpred
i )].
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Figure 4.9: Start of the Trajectory.

Neural Network Architecture

The network architecture described in Fig. 4.8 consists of a generator and

a discriminator network. The generator network includes a recurrent encoder

network, a variational autoencoder, a recurrent decoder network, and an intent

predictor. The discriminator network classifies samples as either real trajecto-

ries or not socially acceptable [19].

Encoder Network

The recurrent encoder network consists of a linear spatial embedding layer

with a ReLU activation layer, α(·), followed by an LSTM layer, where We and
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Figure 4.10: Middle of the Trajectory.

Figure 4.11: End of the Trajectory.
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Wlstme are weights of the embedding layer and LSTM, respectively.

hti = α(X t
i ,We)

pti = LSTMe(p
t−1
i , hti,Wlstme)

I then use two fully connected linear layers (MLPs) to produce latent distri-

bution parameters µ and σ, and sample from this distribution represented as

zvae to generate sample diversity, where Wµ,Wσ, bµ, and bσ are the weights and

biases of the fully connected layers, respectively.

µti = Wµp
t
i + bµ

σti = log(exp(Wσp
t
i + bσ) + 1)

z vaeti = µti + σti · ε; ε ∼ N (0, 1)

Intent Recognition

In this section, I describe the probabilistic model of intent recognition and

how navigation intent can be combined with latent embeddings from the re-

current encoder network to improve longer term prediction of pedestrian tra-

jectory.

Inspired by [116], I use a Bayesian approach to estimate the probability of
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a desired goal, gti , of the pedestrian i based on a past observation history, Xobs
i

spanning t = 1 to t = Tobs, as described by Equation 4.4.1. P (gti |Xobs
i ) is the

posterior probability of each goal, g given an observation history Xobs
i . P (gti) is

the prior probability of a pedestrian i choosing a given goal at time t. P (Xobs
i |gtt)

is the likelihood probability of observing Xobs
i given gtt and modelled as a Gibbs

measure described by Equation 4.4.1. Here, E(Xobs
i |gti) is an energy function

that I set equal to distance between the observed trajectory and the shortest

trajectory to the goal. β is a hyperparameter that adjusts the landscape of the

resulting probability distribution and Z(β) is a normalizing constant.

P (gti |Xobs
i ) =

P (gti)P (X
obs
i |gti)

P (Xobs
i )

∝ P (gti)P (X
obs
i |gti) (4.0)

P (Xobs
i |gti) =

1

Z(β)
exp(−βE(Xobs

i |gti)) (4.0)

In this work, I assume P (gti) is a uniform distribution and I set β to 0.5. I

explored two ways to represent a discrete set of goals: (1) inferring the goals di-

rectly from the data and (2) generating a uniform set of goals in a grid-like pat-

tern. I decided on using a grid-like representation of goals as it affords greater

generalization to diverse scenarios. In this work, I generated a uniform 4 × 4

grid of targets to illustrate the approach. Figs. 4.9, 4.10, and 4.11 show the

distribution landscape across the goals based on the observed trajectory in red.
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Green trajectories represent ideal paths to each of the targets with the opacity

equal to the resulting probability P (gti |Xobs
i ). In these figures, there initially

is significant uncertainty regarding the end goal of the pedestrian; however,

as the pedestrian navigates closer to the target, the uncertainty decreases to-

wards a specific goal.

The resulting 16 dimensional probability distribution is concatenated to the

zti feature vector sampled from the VAE prior to the decoder network of the

generator.

zti = [z vaeti, P (g
t
i |Xobs

i )]

Decoder Network

The goal of the decoder network is to use the latent embedding from the

encoder network combined with the intent distribution to generate prediction

samples. The decoder network used is similar to that in [19] and consists of

linear and recurrent layers used to generate pedestrian predictions. The hid-

den state of the LSTM decoder, pti is initialized to zti . Here Wd, Wlstmd and Wo

are weights, and φ is a fully connected layer.

dhti = α(X t−1
i ,Wd)
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pti = LSTMd(p
t−1
i , dhti,Wlstmd)

X̂ t
i = φ(pti,Wo)

Loss Functions

During training, I use a combination of the mean squared error (MSE) be-

tween the ground truth trajectory and the predicted trajectory, adversarial loss,

as well as KL-divergence loss from a unit Gaussian distribution for the varia-

tional autoencoder as the loss function. Similar to [19], I also experiment with

variety loss during training where for each scene I generate k possible outputs

and choose the lowest MSE to generate diversity in the samples.

4.4.2 Pedestrian Prediction Experiments

I performed a series of experiments with real world datasets and compared

the performance with several state-of-the-art baseline algorithms. In partic-

ular, I used two widely used, publicly available repositories—ETH [23] and

UCY [1]—consisting of 5 unique datasets (ETH, Hotel, Univ, Zara1, and Zara2)

with 4 scenes. The datasets include pedestrian motion with a top down view

and annotated pedestrian positions with respect to the world frame.

111



CHAPTER 4. PEDESTRIAN NAVIGATION

Training Details

The dimension of the hidden state for the encoder, p is 16. The dimension of

the decoder network’s hidden state, z is 32 including the 16 dimensions repre-

senting probability of navigation intent. I trained for 200 epochs with a batch

size of 64 using the Adam optimizer with the initial generator network learn-

ing rate set to 0.0001 and the initial discriminator network learning rate set to

0.001.

Baseline Implementations

I compare the algorithm to several baselines representing unique solutions

to the pedestrian prediction problem. These baselines include a linear regres-

sion algorithm (Linear) that minimizes least square error to estimate param-

eters of a linear model, a simple LSTM model, (S-LSTM) which is an LSTM

model with a social pooling layer [117], Social GAN (SGAN) which uses a GAN

in combination with an S-LSTM [19], and finally SoPhie which uses scene con-

textual information to make predictions [20].

*Metrics

Similar to [19, 20, 118], I use the average displacement error (ADE) and

final displacement error (FDE) metrics to compare this approach to existing

baselines. The ADE (in meters) is the L2 distance between the ground truth

and predicted pedestrian trajectories for each trajectory point. The FDE (in
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meters) is the final displacement distance between the last point in the pre-

dicted trajectory and the ground truth. I use a leave-one-out approach where I

train on 4 of the datasets and test on one.

Prediction Results

Table 4.3 summarizes the ADE and the FDE for the 5 datasets described

above when observing 8 timesteps (3.2 sec) and predicting 12 timesteps (4.8

sec) into the future. I use similar notation from [19], kV(+IR)-N , where k rep-

resents the samples for variety loss, N represents the number of samples taken

during test time and +IR represents whether intent recognition is used as part

of the prediction. Sample diversity in this sense [19] allows the learning al-

gorithm to produce k predictions and choose the prediction with the smallest

MSE to encourage diversity. I compare the results with and without sample di-

versity (where k = N = 1). This approach results in better than or equal ADE

and FDE when compared to the baselines for 8 out of 10 experiments without

sample diversity and 7 out of the 10 experiments with sample diversity. In

addition, this approach achieves best performance when averaging across the

5 datasets for both the ADE and FDE. These results demonstrate the advan-

tages of estimating a probabilistic interpretation of intent and explicitly using

this estimate when making longer term predictions of pedestrian trajectories.
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ADE

ETH 1.33 1.09 1.09 0.70 1.13 1.03 0.81 0.87 0.96 0.85 0.77 0.69
HOTEL 0.39 0.86 0.79 0.76 1.01 0.90 0.72 0.67 0.60 0.48 0.42 0.39
UNIV 0.82 0.61 0.67 0.54 0.60 0.58 0.60 0.76 0.55 0.53 0.51 0.56

ZARA1 0.62 0.41 0.47 0.30 0.42 0.38 0.34 0.35 0.45 0.41 0.36 0.35
ZARA2 0.77 0.52 0.56 0.38 0.52 0.47 0.42 0.42 0.38 0.33 0.30 0.31
AVG 0.79 0.70 0.72 0.54 0.74 0.67 0.58 0.61 0.59 0.52 0.47 0.46

FDE

ETH 2.94 2.41 2.35 1.43 2.21 2.02 1.52 1.62 1.85 1.80 1.66 1.42
HOTEL 0.72 1.91 1.76 1.67 2.18 1.97 1.61 1.37 1.18 1.04 0.94 0.79
UNIV 1.59 1.31 1.40 1.24 1.28 1.22 1.26 1.52 1.17 1.13 1.09 1.17

ZARA1 1.21 0.88 1.00 0.63 0.91 0.84 0.69 0.68 0.94 0.87 0.79 0.74
ZARA2 1.48 1.11 1.17 0.78 1.11 1.01 0.84 0.84 0.79 0.72 0.65 0.66
AVG 1.59 1.52 1.54 1.15 1.54 1.41 1.18 1.21 1.19 1.11 1.03 0.96

Table 4.3: Average Displacement Error (ADE) and Final Displacement Error (FDE) in meters for tpred = 12
timesteps. This method matches or outperforms state-of-the-art and baseline methods by explicitly estimating
intent as a probability distribution of possible goals (lower is better).
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4.5 Adaptive Crowd Navigation

I now extend the pedestrian prediction algorithm to enable adaptive crowd

navigation policies for mobile robots. I conjecture that errors in pedestrian pre-

diction can serve as a measure of policy uncertainty. Specifically, as I encounter

distribution shift of pedestrian motion, the error in pedestrian prediction can

serve as an effective method to detect novel pedestrian motions not seen dur-

ing training. I believe that detecting novel pedestrian motion profiles is a cue

to switch to a risk averse control policy and by doing so will result in fewer

collisions.

In the development of adaptive navigation, I leverage the CrowdSim sim-

ulation environment provided by [99]. This environment provides the abil-

ity to model pedestrian motion using an optimal reciprocal collision avoidance

(ORCA) model [94]. Pedestrian behavior can be modelled using parameters

such as preferred velocity, the maximum distance and time to take into ac-

count neighboring agent behavior, pedestrian’s radius, and maximum velocity.

In addition, CrowdSim provides an OpenAI Gym like environment [119] to

experiment with reinforcement learning based policies controlling a robot’s ac-

tions to reach a target goal while avoiding obstacles.

The state space of the environment follows that of [99, 120] and consists of

the following parameters with respect to the robot position as the origin and the
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x-axis pointing towards the goal: distance from robot position to goal, robot’s

preferred velocity, actual velocity and radius. For each pedestrian, the state

includes position, velocity, radius, and distance between pedestrian and robot.

The action space assumes a nonholonomic unicycle kinematic model for the

robot agent and consists of 3 discrete speeds and 6 discrete rotation angles for

a total of 18 actions.

In order to learn a policy that allows the robot to successfully reach the

target while avoiding collisions with other pedestrians, I use the same reward

definition as [98,99]:

R(s, a) =



−0.25 if dmin < 0

−0.1− dmin/2 else if dmin < 0.2

1 else if robot reached goal

0 o.w.

where dmin is the minimum distance separating the robot and the humans

during the previous timestep.

I train two navigation policies, a risk averse and an aggressive policy. The

aggressive policy consists of a preferred velocity of 2.0 m/s, and the risk averse

policy is limited to 1.0 m/s 2. I first assess state-of-the-art crowd navigation
2For the risk averse policy, I first considered training a policy where the penalty for collision

was significantly increased, however, changing the reward function would make comparisons
with existing work difficult.
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policies’ performance in the presence of a changing distribution of pedestrian

motion. I trained both CADRL [120] and SARL [99] with preferred robot ve-

locities set to 2.0 m/s with a static pedestrian motion model. The starting and

ending positions of the pedestrians were sampled uniformly inside a square of

width 10 meters. The policies were pretrained using imitation learning using

ORCA similar to [99] and were subsequently trained using a value iteration

network for 10000 steps. I then evaluated the performance of these policies on

test data with a shifted distribution of pedestrian motion uniformly sampled

from the parameters described in Table 4.4. The objective for this test is to

show the limitation in prior works’ ability to handle distribution shifts from

unseen pedestrian motion during training.

I then conducted a series of experiments with an adaptive control policy

using various methods of novelty detection of new pedestrian behaviors.

I first evaluate with a traditional, non-deep learning based approach using

a one-class SVM with a radial basis kernel [121]. I train the one-class SVM

algorithm based on the fixed pedestrian motion profile and evaluate its ability

to detect novel distributions of pedestrian motion data. I then conduct sev-

eral experiments using deep learning based approaches for novelty detection

including Social GAN and the intent-aware pedestrian prediction algorithm.

The goal is to demonstrate the benefits that a higher performing pedestrian

prediction algorithm can have on reducing collisions in an adaptive crowd nav-
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igation policy.

I trained both Social GAN and the prediction algorithm with the same fixed

pedestrian motion profile that I trained the original policies. I then tested

pedestrian prediction with a changing distribution of pedestrian motion while

allowing the robot to navigate. I compute an estimate of novelty by thresh-

olding the prediction error, as measured using the FDE, by a value α. If the

error exceeds α, the policy moves from an aggressive behavior to a risk averse

policy with the goal of avoiding collisions. The value of α was chosen by com-

puting the mean and standard deviation of the FDE in the training set. In the

experiments, α was set to 3 standard deviations from the mean to eliminate

outliers.

Table 4.4: ORCA Model Parameters

Parameters Name Min Value Max Value
Preferred Velocity 0.5 2.0
Radius 0.2 0.8
Neighbor Distance 2.0 20.0
Time Horizon 0.1 5.0

4.5.1 Quantitative Analysis

The primary metrics I used for comparison are the number of successful

trials, number of collisions, the average navigation time, the discomfort level,

and the average reward. The discomfort level is defined as the frequency of
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(a) Example prediction with low uncertainty (b) Example prediction with high uncer-
tainty

Figure 4.12: This figure provides representative examples of pedestrian pre-
dictions with low and high uncertainty.

the separating distance being less than the desired separation distance, in this

case 0.2 m. The results after running 500 test cases are reported in Table 4.5.

I compare various methods of crowd navigation denoted by method− p where p

is the number of pedestrians in the scene and A indicates an adaptive policy.

In these experiments, the starting and goal positions, and pedestrian motion

profiles are all randomly initialized for each of the 500 test cases; however,

these parameters are consistent across the various methods to create a fair

comparison.

The first two rows show the performance of CADRL and SARL policies

where I train and test without changing the distribution of the pedestrian mo-

tion profile. I then evaluate the algorithms’ ability to avoid collisions when
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Robot

Simulated
pedestrian

Continue 
aggressive policy

Collision

(a) Example of non-adaptive policy colliding
with pedestrians

Robot

Simulated
pedestrian Policy change

Reach goal

(b) Example of adaptive policy successfully
reaching target while avoiding pedestrians

Figure 4.13: This figure provides representative examples of trajectories of
the robot and pedestrians navigating to their desired goals. The non-adaptive
policy continues an aggressive motion resulting in collision. The adaptive pol-
icy reverts to a risk averse strategy allowing the robot to reach the goal.
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faced with novel pedestrian motion and show that both the CADRL and SARL

policies have a significantly higher collision and discomfort rates. The number

of collisions for CADRL and SARL increase by 35 and 65, respectively.

The non-deep learning based approach detects novel pedestrian motion us-

ing a one-class SVM and reduces the number of collisions by 2 compared to the

non-adaptive SARL algorithm.

Using Social GAN as the pedestrian prediction algorithm for novelty detec-

tion had a significant improvement compared to the one-class SVM by further

reducing the number of collisions by 20.

Our intent-aware pedestrian prediction algorithm for novelty detection re-

sulted in best performance across almost all of the metrics. Using this ap-

proach, I was able to further reduce the number of collisions by 5 compared to

Social GAN and overall by 30 compared to the non-adaptive SARL policy. I do

this while also demonstrating best performance in overall discomfort rate and

overall reward. Further, I show that the benefits of this approach scale as the

number of pedestrians in the scene increase.

4.5.2 Qualitative Analysis

I further study the qualitative aspects of this approach. In Fig 4.12a, I show

an example where the pedestrian prediction algorithm has low FDE hence has

high confidence and correctly decides to maintain a high risk, fast navigation
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policy. Conversely, in Fig. 4.12b, I show an example where the FDE in pedes-

trian motion is high. This situation is flagged as a novel pedestrian behavior

and in this example, a risk averse policy is selected resulting in an avoided

collision.

In Fig 4.13a and Fig. 4.13b, I also show example trajectories of the adaptive

and non-adaptive policies. In Fig 4.13a, with the non-adaptive policy, even

though the pedestrian prediction error is high, the default aggressive policy

continues and the robot eventually collides with a pedestrian within 3 seconds.

In contrast, using the adaptive policy as shown in Fig. 4.13b, I detect novel

pedestrian behavior and instead modify the policy to a risk averse controller.

This adaptation causes the robot to reduce its velocity in real time preventing a

near collision from occurring. Videos of this behavior and additional examples

can be found in the supplemental material of this paper.

4.5.3 Hardware Experiments

I further assess the real world applicability of the algorithms by evaluating

in a proof-of-concept physical test environment (Fig. 4.14). The physical test

bed consists of the MIT Rapid Autonomous Complex-Environment Competing

Ackermann-steering Robot (RACECAR) navigating through several pedestri-

ans. This is the same platform used in the experiments in Chapter 3 and con-

sists of a Hokuyo UST-10LX LiDAR, Sparkfun IMU, the Traxxas 1/10-scale
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Table 4.5: Quantitative Analysis of Collision Avoidance

Method Dist.
Shift Succ. Coll. Time

Out
Nav.
Time

Disc.
Rate

Avg.
Rwd.

CADRL-5 N 455 45 0 4.48 2.02 0.349
SARL-5 N 490 5 5 4.61 0.99 0.389

CADRL-5 Y 420 80 0 4.52 3.53 0.296
SARL-5 Y 425 70 5 4.62 2.27 0.303

SVM-A-5 Y 426 68 6 5.34 2.14 0.331
SGAN-A-5 Y 445 45 10 6.31 2.03 0.386
Ours-A-5 Y 450 40 10 6.74 1.98 0.409
SARL-10 Y 388 99 13 5.21 2.62 0.234

Ours-A-10 Y 444 54 2 8.49 2.18 0.330
SARL-15 Y 290 205 5 5.30 4.89 0.115

Ours-A-15 Y 366 132 2 8.69 4.20 0.212
SARL-20 Y 172 324 4 5.27 6.70 -0.017

Ours-A-20 Y 262 237 1 8.65 6.29 0.066

chassis and an onboard NVidia Jetson processor with GPU.

I use a leg detector algorithm based on an SVM classifier to detect pedestri-

ans with respect to the camera frame and a custom SLAM library to generate

maps and estimate robot position. Using the pose of the robot with respect to

the global frame and the pedestrian with respect to the robot, I transform the

pedestrians to a global coordinate frame allowing us to run the trained navi-

gation policies directly from simulations without requiring further training on

the physical hardware. As part of this hardware demonstration, I was able

to verify that the trained policy can transfer from simulation to the physical

robot, execute in real time, operate on noisy sensors and is able to successfully

reach its goal while navigating around pedestrians to avoid collisions.
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Figure 4.14: Hardware demonstration using MIT Racecar navigating around
moving pedestrians.

4.6 Discussion

In this chapter, I focus on developing techniques that allow mobile robots to

navigate in the presence of pedestrians. I first focus on pedestrian state and

uncertainty estimation including accurate and robust confidence interval pre-

diction in presence of out-of-distribution noise. I show that by modeling the

recursive filter framework within a neural network architecture and capturing

aleatoric and epistemic uncertainty, I can significantly improve state estima-

tion and the robustness of uncertainty estimation. In the pedestrian localiza-

tion scenario, I show an average of 4% improvement to the MAE across the

varying noise distributions compared to next highest performing baseline and

18% improvement compared to the no dynamics baseline. Further, in the pres-

ence of distributional shift, I show higher percentage of samples found in the
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prediction interval while also reducing the overall prediction interval width.

Finally, I show this technique is more computationally efficient as it computes

aleatoric and epistemic uncertainty with approximately 3x performance im-

provement compared to the baseline.

I then shift the focus to pedestrian prediction based on intent reasoning.

I develop an algorithm that combines intent prediction with a history of past

kinematic trajectories to estimate future motion. Leveraging widely used pedes-

trian datasets, I present empirical evidence (Table 4.3) showing the importance

of having an explicit, probabilistic representation of the intent in longer term

prediction. With this approach, the pedestrian prediction algorithm is able to

show improvements to the average displacement and final displacement errors

compared against several state-of-the-art algorithms.

Finally, I focus on developing an RL controller to enhance robot naviga-

tion in human crowds. In this chapter, I propose techniques that can use the

predicted pedestrian motion to enable adaptive policies by detecting out-of-

distribution pedestrian motion. When unexpected pedestrian motions are ob-

served, I modify the policy to a low risk controller with the goal of avoiding

collisions. Moreover, while showing how several crowd navigation methods fail

to avoid collisions in the presence of novel pedestrian motion not seen during

training, this approach demonstrated the best results in terms of most number

of successful trials, highest overall reward, lowest number of collisions, and
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lowest overall discomfort rate.

In regards to state estimation, I believe an interesting area of future work

remains in better understanding the learned covariance matrices and lever-

aging the Kalman gain as a measure of competency to improve uncertainty

sampling performance. The intuition is that one would only compute the ex-

pensive epistemic uncertainty when the estimated competency is low. Applying

this technique on the pendulum experiments, I achieve good results. As shown

in Table 4.2, the PCIP metric is comparable to always performing stochastic

dropout, while improving the MPIW by 50% and the runtime performance by

40%. However, in the pedestrian localization experiment, I do not see the same

performance. I believe this can be attributed to the sources of uncertainty.

In the pendulum example, much of the observation uncertainty is represented

by image noise and is easily captured by the Kalman gain. In the pedestrian

example, there are far more sources of uncertainty beyond observation noise

including distance from the camera and occlusions that are difficult to capture

in the Kalman gain trained in an end-to-end manner. The planned future work

is to better characterize these uncertainties and use regularization techniques

to further improve competency estimation with the goal of achieving similar

performance as the pendulum example. Another opportunity for future work

is to better leverage dynamical models. Here, I believe driving the learned state

transition network towards a known dynamics model will improve robustness
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and sample efficiency and is an area I am continuing to further explore.

In regards to pedestrian prediction and navigation, this approach also has

limitations. First, the average navigation time did increase compared to the

other approaches, although this increase was expected as the reported times

excluded test cases where a collision occurred. Moreover, this approach avoided

collisions by reducing the speed of the robot which resulted in an expected in-

crease in average navigation time. Second, while this approach reduced the

number of collisions, it did not prevent them entirely. There were instances

when even though the prediction was accurate, a collision could still occur,

suggesting that pedestrian prediction alone does not capture all aspects of un-

certainty involved in dynamic crowd navigation. In these scenarios, it may

be beneficial to consider other forms of uncertainty estimation such as boot-

strapping [122], stochastic dropout [88,123], and multiple hypothesis loss tech-

niques [124,125]. Third, this work only focused on modeling pedestrians’ nav-

igation intent to enhance the quality of robot navigation. Future work should

consider other aspects of pedestrian navigation, such as personality [126] and

group interaction, to capture nuances in human navigation. Finally, while nav-

igating in the presence of crowds in an important step forward, crowd naviga-

tion typically involves pedestrian moving within dynamic groups. Developing

algorithms that can detect group membership and enable socially appropriate

navigation has the potentially to greatly improve navigation performance as
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well as increase the acceptance of the robot in human environments. In Chap-

ter 5, I focus on extending the navigation policy to improve many aspects of

robot navigation and social performance in the presence of groups.

In spite of these limitations, I believe leveraging Kalman filter techniques

with neural networks allows us to develop better state and uncertainty esti-

mation. In addition, explicitly modelling a probabilistic interpretation of in-

tent has shown to improve accuracy of estimating future pedestrian motion.

Further, the use of pedestrian prediction has the ability to detect novel pedes-

trian behaviors not seen while learning a policy. Finally, I show that detecting

novel pedestrian behaviors and adapting the policy can significantly reduce the

number of collisions compared to alternative approaches.
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Chapter 5

Group-Aware Robot Navigation

in Crowded Environments

5.1 Introduction

Mobile robots that are capable of navigating crowded human environments

in a safe, efficient, and socially appropriate manner hold promise in bringing

practical robotic assistance to a range of applications, including security pa-

trol, emergency response, and parcel delivery. As human movements are fast,

dynamic, and following delicate social norms, an increasing body of research

has focused on the challenging quest to enable human-aware robot naviga-

tion [92,127–129]. For example, prior research has treated humans as dynamic

obstacles to avoid collisions (e.g., [130]), investigated strategies to avoid getting
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stuck in human crowds (e.g., [131]), and explored how to model social norms to

allow for socially appropriate robot navigation (e.g., [132–134]). However, prior

works have mainly treated people as individual, independent entities in robot

navigation.

The majority of people, however, walk in groups [135, 136]; an empirical

study showed that up to 70% of pedestrians in a commercial environment

walked in groups [137]. Consequently, it is imperative that a mobile robot

respects human grouping (e.g., not to cut through a social group) during its

navigation in a human environment. In particular, in this work, I consider the

problem of a robot interacting with dynamic human groups—people walking

together in groups—rather than standing groups that are commonly seen in

social events (e.g., [138]). While substantial efforts have been made to model

and understand dynamic groups (e.g., [137,139,140]), how mobile robots should

navigate effectively and appropriately around dynamic human groups is under-

explored.

In this chapter, I explore robot navigation in crowds of human groups (Fig. 5.1).

The approach is to learn navigation policies that allow the robot to safely reach

its desired goal while minimizing impact to individual and groups of pedestri-

ans. The contributions include:

• A reinforcement learning (RL) algorithm that combines robot navigation

performance and group-aware social norms for learning a robust policy;
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T=0
T=1

T=2

T=3

T=4

T=5

T=6

T=7

T=8

Robot goal

Robot
Groups of pedestrians

Move around 
groups of pedestrians

Figure 5.1: The objective of this work is to learn a navigation policy that
allows the robot to safely reach its goal while minimizing impact to individual
and groups of pedestrians.
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• A novel reward function that uses the convex hull of a group (Fig. 5.2)

as the group space to minimize impact to pedestrian groups and improve

navigation performance;

• Software extensions to the CrowdNav simulation environment [9] to sup-

port social navigation research; and

• Experimental results that demonstrate the efficacy of the learned policy

with respect to robot navigation performance, human navigation perfor-

mance, and maintenance of social norms.

5.2 Prior Work

The goal of human-aware robot navigation is to enable robots to move safely,

efficiently, and socially appropriately in natural human environments. To achieve

safe and efficient navigation, prior research has investigated reactive methods

for motion planning (e.g., [141, 142]) and considered modeling pedestrian in-

tention (e.g., [143]). To realize social appropriateness, previous works have

explored learning from human data (e.g., [97, 132, 144–147]) and used hand-

crafted rules as planning constraints (e.g., [133, 148–150]). One notable ap-

proach is the Social Force Model (SFM) [151], which is based on the proxemics

theory [152] and attempts to model pedestrian social motion using a combina-

tion of attractive and repulsive forces. This approach has been adapted and ex-
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tended for crowd simulation (e.g., [153]) and robot navigation (e.g., [154,155]).

While prior research on human-aware robot navigation has mostly regarded

humans as individual agents, increasing efforts have considered how mobile

robots should interact with human social groups. I consider human social

groups as two categories—static and dynamic social groups. Static social groups

are commonly seen in social events (e.g., a cocktail party), where people gather

together in small groups for conversation. In contrast, dynamic social groups

are groups of people walking together, and possibly engaging in conversations

during walking, toward shared destinations. Previous research has investi-

gated how to enable robots to recognize (e.g., [156]) and approach (e.g., [157,

158]) static, standing social groups, while taking account of the size and forma-

tion of the groups.

Though the detection and modeling of dynamic social groups present addi-

tional challenges when compared to static groups, they are critical in enabling

socially appropriate robot navigation in human crowds. Prior research has gen-

erally explored methods to capture intra-group coherence (e.g., [159, 160]) and

inter-group differences (e.g., [161]) in dynamic groups. For instance, salient

turn signals in groups of humans that share the same navigation goals can

be used to enhance trajectory prediction and subsequently improve the social-

awareness in robot path planning [162]. However, it has been shown that group

properties may be different in static and dynamic settings. For example, the
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o-space formation commonly observed in static groups is not necessarily ap-

parent in dynamic groups [163]. To address such difference, a set of dynamic

constraints for o-space based on the walking direction and group cohesion was

proposed for effective robot navigation [163]. Additionally, dynamic groups also

bear unique properties that mobile robots may take advantage of during their

navigation in crowded environments. As an example, robots may “group surf”

human groups by following their movement flows [164].

Methodologically, modern machine learning techniques have fueled the ad-

vancement of human-aware robot navigation. In particular, Recurrent Neu-

ral Networks (RNNs) and Generative Adversarial Networks (GANs) have been

shown to be able to accurately predict human motion for individuals (e.g., [165,

166]) and groups (e.g., [140]). However, RNN and GAN based methods only pre-

dict human motion and do not generate navigation policies for mobile robots.

Reinforcement learning approaches are increasingly used for learning navi-

gation policies. For example, prior works have leveraged inverse reinforce-

ment learning to imitate humans and realize socially appropriate movements

(e.g., [97, 138]). Deep Reinforcement Learning (DRL) has also been used for

robot navigation (e.g., [167, 168]); in particular, attention-based DRL has been

demonstrated to capture human-human and human-robot interactions in crowded

environments [9,169].

Different from these prior works, I explicitly include group modeling, rather
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than a simple consideration of pairwise interactions between individuals in a

crowd [168].

In addition, the approach uses a more compact representation of group

space by computing a polygon based on the convex hull of the pedestrians

instead of the F-formation as in prior works [163, 170]. Furthermore, the

approach considers additional metrics when evaluating the navigation perfor-

mance including group intersections as well as pedestrian and robot perfor-

mance metrics. Finally, this work differs from the others by using violations

of the group space as a reward term to learn socially appropriate movements

around groups of pedestrians.

5.3 Preliminaries

5.3.1 Problem Formulation

The main objective is to learn a controller that allows a robot to navigate

to a desired goal while maintaining social norms and avoiding collisions with

groups of pedestrians. I formulate this approach using reinforcement learning

(RL) to learn a policy to meet the objectives stated above. In this form of a

Markov decision making process, the robot uses observations to generate a

state vector, S, and chooses an action, A, that maximizes expectation of the
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future reward, R.

5.3.2 State and Action Space

The state space, S, consists of observable state information for each pedes-

trian i, represented as Pedi as well as internal state of the robot represented as

Rob as described by Eq. 5.3.2. Here, px and py are the x and y coordinates of the

position, vx and vy are the x and y coordinates of the velocity, rad is the radius

of the pedestrian or the robot, gx and gy represent the x and y goal positions,

v pref is the preferred velocity and theta is the turn angle.

Pedi = [px, py, vx, vy, rad],

Rob = [px, py, vx, vy, rad, gx, gy, v pref, theta],

S = [Ped,Rob]

(5.0)

In the simulation, I assume a robot with holonomic kinematics that receives

vx and vy commands. The action space is discretized into 5 speeds ranging from

0.2 to 1.0 m/s and 16 rotations ranging from 0 to 2π plus a stop command

resulting in 81 possible actions.
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5.3.3 CrowdNav Simulation Environment

I leverage the CrowdNav simulation environment [9] for training and eval-

uating the group aware RL policy. This environment provides a learning and

simulation framework that allows us to model scenes of pedestrians and robots

interacting while reaching their target goals. I extend this framework by al-

lowing groups of pedestrians to be instantiated with similar starting and end

goals. I further leverage the group aware social force model described in the

next section to model the motion of the groups of pedestrians as they interact

with other pedestrians and the robot.

5.3.4 Group Aware Social Force Model

I use an extended Social Force Model (SFM) proposed by Moussaid et al. [137]

to simulate dynamic social groups. In the extended SFM, each individual’s mo-

tion, as defined in Eq. 5.3.4, is driven by a combination of an attractive force

fi
des that drives them to a desired goal, the obstacle repulsive forces fiobs, the

sum of social repulsive forces from other agents
∑

j f
social
ij , and a new group

term f groupi defined by Eq. 5.3.4.

dvi
dt

=fdesi + f obsi +
∑
j

f socialij + f groupi
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The group term is defined as the summation of the attractive forces between

group members fatti , the repulsive force between group members f repi , and a

gaze force f gazei that steers the agent to keep the center of mass of the social

group within their vision field to simulate with-in group social interactions:

f groupi = fatti + f repi + f gazei (5.0)

A custom Python implementation of the extended Social Force Model was

developed 1 for the CrowdNav environment, following the implementation of

PEDSIM C++ library [171] and the ROS implementation by Vasquez et al. [172].

5.4 Approach

To evaluate the group aware policy, I extend the existing CrowdNav simu-

lation environment [9] to represent pedestrian motion in groups. I accomplish

this by stochastically sampling the number of groups per episode using a Pois-

son distribution (λ = 1.2) [173] and then randomly assigning pedestrians to the

groups. Each pedestrian within a group has similar start and goal positions.

The average number of groups and group size for five pedestrians are 2.5 and

1.96, respectively. For ten pedestrians, the number of groups and group size

increase to 4.9 and 2.0, respectively.
1https://github.com/yuxiang-gao/PySocialForce
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Figure 5.2: During training, I compute the convex hull of pedestrians that are
members of a group. I encourage the robot to maintain separation between the
robot and the group, which, in turn, leads to a more socially appropriate group
navigation policy.
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Figure 5.3: On the left is the CrowdNav Simulation Environment [9] that
provides pedestrian and robot state information as well as the reward to the
policy. The right figure represents the neural network architecture used for
the attention-based, actor-critic policy. The pedestrian and robot state vectors
are concatenated to represent a pairwise combined state vector; the output of
the network are the policy π over potential actions and value V of the current
state. The gray and green blocks indicate features from individual pedestrians.
The blue blocks indicate aggregate features across pedestrians. The argmax of
the policy is chosen as the action, which subsequently is sent to the CrowdNav
Simulation Environment to control the robot.
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5.4.1 Policy based on Convex Hull of Group

To train the policy, I use a multi-term reward function that encourages the

robot to reach its goal while maintaining social norms and avoiding collisions

with groups of pedestrians. In particular, I focus on social norms that min-

imize discomfort to individuals and discourage intersections with a group of

pedestrians.

The reward function is given by Eq. 5.4.1, where dgoal is the distance from

the robot to the goal, dcoll. = 0.6 is the distance between the centers of enti-

ties beneath which a collision is considered to have occurred, di is the distance

between the robot and pedestrian i, ddisc. = dcoll. + 0.2 is the minimum “com-

fortable” distance between a robot and a pedestrian (as in [9]), and dj is the

distance from the robot to the edge of the convex hull surrounding group j:

R(t) =Cprog.(dgoal(t− 1)− dgoal(t))

+ Cgoalδ(dgoal(t) < dcoll.)

− Cdisc.

∑
i

(ddisc. − di(t))δ(dcoll. ≤ di(t) ≤ ddisc.)

− Ccoll.

∑
i

δ(di(t) < dcoll.)

− Cgroup

∑
j

δ(dj(t) < dcoll.).

(5.0)

The multiple objectives are weighted via the following constants: Cprog. = 0.1,

Cgoal = 1.0, Cdisc. = 0.5, Ccoll. = 0.25, and Cgroup = 0.25. The first term encour-
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ages the robot to progress toward the goal, allowing us to remove the initial

imitation learning phase in [9]. The second, third, and fourth terms encourage

the robot to reach the goal, avoid close encounters with pedestrians, and avoid

collisions, respectively. The last term encourages the robot to adhere to group

social norms by penalizing any incursion into a group’s “space.”

As seen in Fig. 5.2, to determine the dj terms, I first compute a polygon

representing the convex hull of the positions of all members of the pedestrian

group. I then calculate the minimum distance between the robot and the poly-

gon and penalize the robot for intruding into this space. Note that group mem-

bership information is only needed during the training phase and is not re-

quired for evaluation or deployment of the algorithm.

5.4.2 Neural Network Architecture

The overall network architecture is depicted in Fig. 5.3. As in [9], I used

an attention-based network architecture to represent navigation policies. For

each pedestrian, a vector of quantities representing the pedestrian was first

concatenated with a vector representing the robot and passed through the first

multi-layer perceptron (MLP) in the network (MLP1). The resulting feature

vector was concatenated with the mean value of the outputs of MLP1 for all

pedestrians and used to compute an attention score αi for each pedestrian via

MLP3. The output of MLP1 was also passed through MLP2 to generate a sepa-
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rate “robot-pedestrian interaction vector” that was then multiplied by αi to gen-

erate a weighted feature vector ωi for each pedestrian. The ωi were summed for

all pedestrians and the result was passed through MLP4, ultimately leading to

separate policy and value heads. The filter parameters for the neural network

architecture are described in Table 5.1. In summary, the architecture matched

that of [9] without the interaction module and (1) with a softmax layer being

added to produce a categorical policy output and (2) a single fully-connected

layer with 100 neurons connecting to a scalar value head. This configuration

enabled actor-critic learning, as described below.

5.4.3 PPO Algorithm

The agents were trained using proximal policy optimization (PPO; [174]),

a leading model-free, actor-critic approach. Hyperparameters were chosen to

mimic those used for Atari in [174], with the exceptions of shorter windows

(16 steps) and more windows per batch (64). This change was made to accom-

modate the shorter episodes of CrowdNav while maintaining the number of

experiences per batch.
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Network Layer Output Features / Activation
MLP 1 150, ReLU, 100, ReLU
MLP 2 100, ReLU, 50
MLP 3 100, ReLU, 100, ReLU, 1
MLP 4 150, ReLU, 100, ReLU, 100, ReLU
Linear1 81
Linear2 1

Table 5.1: Network Layer Filter Parameters

5.4.4 Training Details

I used the Adam optimizer [115] with learning rate set to 2.5e-4 and epsilon

set to 1.0e-5. In the RL policy, the discount factor, γ, was set to 0.99 and the

credit assignment variable, λ, was set to 0.95. I trained the policy for 7000

iterations yielding approximately 4.8M steps and reaching a maximum reward

of approximately 1.7 based on the reward definition described in Eq. 5.4.1.

5.5 Experimental Evaluation

The goal of the experiment is to assess the efficacy of the group-aware nav-

igation policy. Below, I describe the experimental setup, metrics, and results.

5.5.1 Experimental Setup

The experiments involved four settings determined by two factors: the num-

ber of pedestrians and the number of groups. I explored both 5-person and 10-
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person settings as well as a single group and a stochastic number of groups as

described in Sec. 5.4.

I used the Circle Crossing scenario where groups of pedestrians started and

ended around the perimeter of a circle (radius = 4 m) during training and eval-

uation. The robot’s starting and end positions were set to ensure the robot to

go through the center of the circle and interact with the pedestrian groups. I

evaluated the trained policy on 250 trials with randomly initialized starting

and ending pedestrian positions for the four experimental settings. Lastly, the

comparison baseline was based on [9], without inclusion of the group-aware

reward term.

5.5.2 Metrics

The evaluation was focused on 1) robot navigation performance, 2) pedes-

trian navigation performance, and 3) social compliance. For robot navigation

performance, the metrics represent the quality of the robot’s ability to navi-

gate to the goal quickly without collision. Specifically, I measured the following

metrics:

• Successes: Number of trials the robot reached the target goal.

• Collisions: Number of trials the robot collided with a pedestrian.

• Timeouts: Number of trials the robot did not reach the goal within the
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allotted time (25 seconds).

• Time to Goal: Average of the number of seconds the robot needed to

reach the goal for all trials.

• Mean Robot Velocity: The average velocity of the robot at each time

step during all trials.

To assess pedestrian performance, I measured the impact of the robot’s nav-

igation behavior on the desired pedestrian motion. Specifically, I measured:

• Mean Pedestrian Velocity: The average velocity of the pedestrians dur-

ing the trials.

• Mean Pedestrian Angle: The average angular deviation between the

pedestrian’s observed motion and the direct vector to the pedestrian’s

goal. This metric seeks to measure the disturbance from the optimal tra-

jectory to the goal caused by the robot’s policy.

Finally, to assess social norms, I quantified how the robot maintained social

distance among individual pedestrians and limited intersections with groups

of pedestrians. For this, I considered the following metrics:

• Group Intersections: The number of groups intersections by the robot

that occurred during the trials.
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Method / #Grps / #Peds Successes ↑ Ped. Colls. ↓ Timeouts ↓
Baseline / 1 / 5 237 11 2

Group Aware / 1 / 5 236 9 5
Baseline / 2.548 / 5 238 12 0

Group Aware / 2.548 / 5 242 8 0
Baseline / 1 / 10 222 23 5

Group Aware / 1 / 10 232 14 4
Baseline / 4.884 / 10 239 10 1

Group Aware / 4.884 / 10 241 9 0

Table 5.2: This table summarizes robot navigation performance including
number of successes, collisions and timeouts across 5 and 10 pedestrians. Bold
text indicates statistically significant results.

• Individual Discomfort: The mean distance between the robot and the

pedestrians aggregated over all pedestrians when the robot violates the

discomfort threshold (0.2 m).

• Pedestrian Social Force: The mean social force applied to pedestrian i.

This is equal to the sum of the forces applied to pedestrian i from the other

pedestrians and the robot, j as described in Sec. 5.3.4 (i.e.,
∑

j fij). This

metric captures how the robot’s motion may impact directly or indirectly

human pedestrians’ motions.

• Robot Social Force: The mean social force applied to the robot, r from

other pedestrians, j as described in Sec. 5.3.4 (i.e.,
∑

j frj). This metric

captures how the robot’s motion may be impacted by human pedestrians.
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Method / #Grps / #Peds Mean
Time (s) ↓

Mean Robot
Vel. (m/s) ↑

Baseline / 1 / 5 8.24 t(471) = 9.62 0.962 t(498) = 0.60

Group Aware / 1 / 5 8.92 p < .001 0.964 p = .551

Baseline / 2.548 / 5 8.23 t(478) = 7.73 0.964 t(498) = 0.51

Group Aware / 2.548 / 5 8.81 p < .001 0.961 p = .610

Baseline / 1 / 10 8.59 t(452) = 11.19 0.955 t(498) = 0.21

Group Aware / 1 / 10 9.87 p < .001 0.956 p = .833

Baseline / 4.884 / 10 8.72 t(478) = 18.83 0.960 t(498) = 6.39

Group Aware / 4.884 / 10 10.21 p < .001 0.918 p < .001

Table 5.3: This table summarizes the mean time to completion and the mean
robot velocity across 5 and 10 pedestrians. Bold text indicates statistically
significant results. I show that the group aware policy generally takes longer
to reach the goal, which is expected because the robot navigates around the
pedestrians. I also observe robot velocities are approximately the same.

Method / #Grps / #Peds Mean Ped.
Vel. (m/s) ↑

Mean Ped.
Angle (◦) ↑

Baseline / 1 / 5 1.170 t(498) = 5.18 3.76 t(498) = 1.65

Group Aware / 1 / 5 1.183 p < .001 3.59 p = .100

Baseline / 2.548 / 5 1.136 t(498) = 1.32 5.99 t(498) = 3.23

Group Aware / 2.548 / 5 1.146 p = .186 5.59 p = .001

Baseline / 1 / 10 1.161 t(498) = 2.06 4.11 t(498) = 1.86

Group Aware / 1 / 10 1.174 p = .040 3.93 p = .064

Baseline / 4.884 / 10 1.089 t(498) = 3.53 8.09 t(498) = 8.41

Group Aware / 4.884 / 10 1.108 p < .001 7.07 p < .001

Table 5.4: This table summarizes the pedestrian velocity and disturbance an-
gle from the desired goal across 5 and 10 pedestrians. Bold text indicates sta-
tistically significant results. I show that the group aware policy allows pedes-
trians to achieve faster velocity with less disturbance to the pedestrian’s goal.

5.5.3 Results

An independent two-tailed t-test was conducted to compare the group-aware

and the baseline policies. For all the statistical tests, an α level of .05 (p < .05)
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Method / #Grps / #Peds Grp. Intersections ↓ Individual Discomfort ↓

Baseline / 1 / 5 143 3.10 t(498) = 3.48

Group Aware / 1 / 5 15 1.29 p < .001

Baseline / 2.548 / 5 151 2.87 t(498) = 0.49

Group Aware / 2.548 / 5 22 2.63 p = .625

Baseline / 1 / 10 176 4.20 t(498) = 2.92

Group Aware / 1 / 10 29 2.31 p = .004

Baseline / 4.884 / 10 258 4.94 t(498) = 4.99

Group Aware / 4.884 / 10 20 2.29 p < .001

Table 5.5: This table summarizes the number of instances a group was inter-
sected by the robot and the individual discomfort observed by the pedestrians.
Bold text indicates statistically significant results. Here, I show the group
aware policy leads has significantly less number of group intersections and on
overall reduced level of individual discomfort.

Method / #Grps / #Peds Ped. Social Force ↓ Robot Social Force ↓

Baseline / 1 / 5 0.375 t(498) = 3.43 0.523 t(498) = 1.95

Group Aware / 1 / 5 0.351 p < .001 0.482 p = .051

Baseline / 2.548 / 5 0.522 t(498) = 3.95 0.716 t(498) = 2.78

Group Aware / 2.548 / 5 0.485 p < .001 0.657 p = .006

Baseline / 1 / 10 0.395 t(498) = 3.99 0.707 t(498) = 3.85

Group Aware / 1 / 10 0.366 p < .001 0.597 p < .001

Baseline / 4.884 / 10 0.681 t(498) = 7.32 0.964 t(498) = 4.80

Group Aware / 4.884 / 10 0.599 p < .001 0.849 p < .001

Table 5.6: This table summarizes the pedestrian and robot social forces. Bold
text indicates statistically significant results. Here, I show the group aware
policy leads to reduced social force for both the pedestrian and the robot.

was used for significance.

Table 5.2 summarizes the robot navigation performance as well as their

corresponding statistical test results. Overall, the group aware policy gener-
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Figure 5.4: The figure on the left shows a representative example of the robot
navigating through the crowd of pedestrians over time using both the base-
line and the group aware policy. The baseline policy chooses actions that cut
through the group of pedestrians and influences the group formation, while
the group aware policy chooses actions that move around the group with min-
imal disturbance. The figure on the right shows the average distance between
the pedestrian and the robot (top) and the average pedestrian velocity (bottom)
over time. Here, I show the group aware policy results in increased distance to
the pedestrians while allowing the pedestrians to maintain faster speeds.

ally led to higher number of successful trials, while minimizing the number of

collisions and timeouts.

In Table 5.3, I compare the mean time of the robot to reach the goal and

the average velocity. Here I show that the group-aware policy results in a more

time needed to reach the target. This is to be expected as the robot prefers a

policy that moves around the pedestrians versus driving through the groups.

This leads to slightly deviated paths to the direct line to goal resulting in higher

times as expected. It can also be seen that the group-aware policy does not lead

to slower velocities as indicated by the results.

In Table 5.4, I evaluate the effect of the group-aware policy on the pedes-
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trian’s navigation. I measure average pedestrian velocity as well as the average

angle deviation of the pedestrian from the optimal vector to the goal. The ob-

jective is to measure the relative disturbance of one policy to the other. Here, I

can see the group-aware policy results in allowing the pedestrians to maintain

a higher velocity while minimizing the overall disturbance to the goal.

In Table 5.5, I now compare the number of instances the robot chooses to

navigate through the group versus not intersecting through it. I also compare

the individual discomfort caused by navigating too close to the pedestrians. In

both metrics, it can be seen that the group-aware policy outperforms the base-

line. It results in an 88% improvement in reducing the number of instances

where the robot navigated through a group. Moreover, the group aware policy

resulted in a 43% reduction in individual discomfort.

Finally, in Table 5.6, I summarize the social compliance results with their

corresponding statistical test results. As indicated by this table, I observe that

the group-aware policy improved the overall social forces applied to the pedes-

trians and robot.

As mentioned above, the group-aware robot took a longer path to its goal

due to its preference of navigating around groups of pedestrian to avoid group

intersections, whereas the baseline robot aimed to reach its goal in spite of

cutting in between groups of pedestrians. Fig. 5.4 illustrates an example of

such behavior—the baseline policy chose a path that cut through the pedes-

151



CHAPTER 5. GROUP-AWARE ROBOT NAVIGATION IN CROWDED
ENVIRONMENTS

trian group whereas, in the same scenario, the group-aware policy chose a

path around the group. The resulted group-aware behavior ultimately enabled

greater group cohesion and less disruption while improving group and individ-

ual discomfort. I additionally computed the distances between the pedestrians

and the robot for both policies (Fig. 5.4 top-right) as well as the velocities of the

pedestrians (Fig. 5.4 bottom-right) over time. During interaction between the

robot and the pedestrians, I observe that the distance between the pedestrians

and the robot was lower for the baseline policy corresponding to the results

reported in Table 5.5. Further, we see that the average pedestrian velocity

decreased substantially during the times of interaction in the baseline policy;

however, we do not see similar decreases in the group-aware policy.

5.6 Additional Qualitative Examples

In Fig. 5.5 through 5.11, I show additional examples of the RL policy work-

ing with increased number of pedestrians with both 1 and a Poisson distributed

group membership. Here I can see the affects of the group aware policy en-

courage the robot to move around the groups instead of disrupting the group

trajectory.
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Figure 5.5: 10 Pedestrians, 1 Group, Start of Sequence

Figure 5.6: 10 Pedestrians, 1 Group, Middle of Sequence
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Figure 5.7: 10 Pedestrians, 1 Group, End of Sequence

Figure 5.8: 10 Pedestrians, Poisson Distributed Group, Start of Sequence
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Figure 5.9: 10 Pedestrians, Poisson Distributed Group, Middle of Sequence

Figure 5.10: 10 Pedestrians, Poisson Distributed Group, End of Sequence

155



CHAPTER 5. GROUP-AWARE ROBOT NAVIGATION IN CROWDED
ENVIRONMENTS

Figure 5.11: Gazebo Crowd Navigation

5.7 Experiments in Gazebo Simulation

Environment

While the CrownNav simulation provides an ideal environment for training

RL policies, it fails to model camera sensors capable of capturing perceptual

data of the environment. To evaluate the efficacy of the learned policy on a

more realistic simulation, I leverage the Gazebo simulator using pedestrian

models and the Turtlebot as the mobile robot platform.
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5.8 Discussion

Towards achieving socially appropriate robot navigation in human environ-

ments, this chapter explores group-aware behaviors that respect pedestrian

group formations and trajectories while minimally sacrificing robot navigation

performance. This approach utilizes deep reinforcement learning and consid-

ers group formation during training. The results show that the learned pol-

icy is able to achieve higher number of successful trials in which the robot

reached the goal, fewer collisions, and less impact to the pedestrian’s motion

towards their goal. In addition, I show that the learned policy not only re-

duced the number of group violation (e.g., cutting through the group) but also

decreased the individual discomfort and social forces applied to the pedestri-

ans and robot. This approach, however, resulted in an increase of the robot’s

total time to goal compared to the baseline that did not consider group forma-

tion. This increase of robot navigation time was expected as the robot sought to

move around groups as opposed to navigate through them (Fig. 5.4). However,

the results show that even though the total time to goal increased, the average

velocity of the robot was mostly unaffected by the group aware policy.

This exploration indicates several directions of future research. First, I

would like to determine how well the learned policy reflects actual human mo-

tion through groups of pedestrians. Second, I would like to investigate whether
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I can bootstrap the learned policy with imitation learning using observations

of humans navigating groups of pedestrians. Third, I would like to investi-

gate different representations of group space beyond the convex hull approach

described in this chapter. These additional parameters include social interac-

tion during movement, the specific formation of the group, and environmental

cues (e.g., social space) that may contribute to learning more socially compli-

ant navigation policies. Additionally, while this chapter focuses mostly on robot

and pedestrian navigation performance as well as group intersections and dis-

comfort, there are other factors to consider for socially appropriate behavior

such as how to pass and follow human groups. Finally, while learning a single

policy works for limited number of environments, choosing amongst a library of

policies depending on the density of pedestrians, the layout of the environment,

and the local culture can lead to better navigation performance once deployed.

For example, respecting human grouping may not always be possible (e.g., in

a narrow corridor). It is therefore important for a mobile robot to selectively

choose a context suitable policy in order to achieve efficient, safe, and socially

appropriate navigation in crowded human environments.
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Chapter 6

Conclusions and Future Work

In this thesis, I established the foundation to integrate perception, predic-

tion and uncertainty to improve navigation performance in environments with

static and dynamic obstacles including pedestrians. By introducing concepts

such as occupancy map prediction with uncertainty, intent-aware pedestrian

prediction with uncertainty and group-aware navigation, navigation perfor-

mance was improved along key metrics including improving the exploration

efficiency, increasing the number of successful trials, reducing the number of

collisions and timeouts and improving the overall social compliance of the nav-

igation policy.

In Chapter 3, I developed techniques that use generative neural networks

to make predictions of future occupied spaces. I assume the ability to use depth

and camera data to generate an occupancy map that is limited by the field of
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view of the sensor. Using semi-supervised strategies, I develop the ability to

generate occupancy maps that extend the line of sight of the sensor that are

subsequently used by exploration and control algorithms. I first investigate

various generative neural network architectures and optimization strategies

to determine optimal architectures and learning strategies that produce pre-

dicted occupancy maps with the highest accuracy. Multiple hypothesis loss

techniques were then used to produce an environmental uncertainty metric. By

leveraging this metric, the efficiency of the exploration strategy was improved

compared to state-of-the-art exploration approaches. In addition, a controller

that uses the predicted regions to enable high speed navigation was developed.

Here, the ability to travel at higher speeds with fewer collisions was demon-

strated on a physical small platform race car.

In Chapter 4, I focused on navigation in the presence of pedestrians. I first

develop techniques that perform state and uncertainty estimation of pedestri-

ans using high-dimensional observations as the input. By using traditional

Kalman Filter techniques on latent embeddings representing the pedestrian,

an improvement to the state and uncertainty estimation was shown while re-

ducing the computational requirements. I then studied predicting future mo-

tion of pedestrians. I showed that by reasoning about the pedestrian’s intent,

the prediction accuracy can be improved on standard datasets. I then de-

velop an adaptive reinforcement learning algorithm that leverages errors in
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predicted pedestrian motion as an uncertainty metric to improve navigation

performance while reducing the number of collisions.

Finally, in Chapter 5, I extended the RL approaches developed in Chap-

ter 4 to consider navigation through groups of pedestrians. I show that by

considering group membership as part of the RL policy, key navigation perfor-

mance metrics including number of successful trials, reduced number of col-

lisions, timeouts can be significantly improved. In addition, improved perfor-

mance with respect to pedestrian navigation preferences including reducing

the number of group intersections and individual discomfort, while minimiz-

ing the disturbance to the pedestrian from navigating to their goals was also

demonstrated.

6.1 Limitations

There are a number of limitations related to the ideas presented in this

thesis that provide opportunities for future research. In Chapter 3, much of

the map prediction work was trained and evaluated in indoor, office-like envi-

ronments. While I believe these approaches will translate to outdoor environ-

ments, it is an area of future evaluation. Further, the existing approach still

requires an explicit map to be generated which is known to be computationally

expensive to produce. This could potentially limit the ability to travel at high
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speeds and is an area to investigate. Finally, the use of a multi-headed network

to produce multiple-hypotheses generates a fixed number of hypotheses during

inference. This fixed number may be difficult to tune and would likely change

depending on the complexity of the environment. Additional work towards us-

ing variational autoencoders in the latent dimension could help address this

limitation.

There are also a number of improvements that can be made with respect to

navigating in the presence of pedestrians. First, the average navigation time of

the learned policies did increase compared to the other approaches. Although,

this was primarily caused by switching to a risk-averse policy or selecting a

suboptimal trajectory to improve social compliance, additional work could be

focused on improving the time to goal metric. Second, while the number of

collisions have decreased through the learned policy, they have not been elim-

inated entirely. Addressing this would involve improving intent estimation,

better prediction algorithms, and investigating new approaches to uncertainty

estimation.

Another limitation is in the approach to pedestrian intent modeling. The

current work focuses on estimating the goal of the pedestrian as the intent.

However, there are many latent variables that could affect the pedestrian’s

navigation preference that could be expanded upon. Additionally, I focus on a

fairly limited scenario of circle crossing in many of the simulation testing. This
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was mainly due to the prevalence of existing literature using this scenario for

evaluation. Future work should consider additional and more complex envi-

ronments and scenarios. Finally, with group navigation, I primarily focus on

group intersection and individual discomfort for assessing social normal be-

havior. There are other factors that could be considered including preferable

navigation strategies depending on group formation, how to pass a group of

individuals, as well as how to minimize disturbance to the group in scenarios

where crossing the group is strictly necessary.

6.2 Future Work

In the previous section, I describe several limitations of the work presented

in this thesis. In this section, I review several ongoing and future efforts to

continue this line of research to address the limitations described above.

6.2.1 Map Prediction and High Speed Naviga-

tion in Off-Road Rough Terrain Environ-

ments

In this thesis, I have demonstrated the ability to learn spatial structures

in indoor environments that act as predictors for future occupied spaces. We
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Figure 6.1: Outdoor experiments of map prediction and navigation using the
Clearpath Husky Robot.
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(a) Border Patrol Robot (b) Combat Casualty Robot

Figure 6.2: Examples of robots needed for military and civilian operations.

are currently evaluating the applicability of this approach in outdoor, off-road,

rough terrain environments. This is a key interest area in particular to mili-

tary sponsors with applications ranging from border patrol (Fig. 6.2a), combat

casualty care (Fig. 6.2b), and warfighter support and protection. A key capa-

bility needed is to support high-speed maneuvers reliably on rough terrains.

For this reason, we are translating many of the research ideas developed as

part of this thesis to outdoor navigation. In Fig. 6.1, I show experimentation

using the Clearpath Husky robot equipped with an Intel RealSense camera

used for depth sensing and odometry. We are leveraging the same mapping

algorithm used to produce occupancy maps similar to the approach taken in

Chapter 3. The objective is to learn spatial features in outdoor environments

for future prediction and subsequently leverage the predicted regions for effi-

cient exploration and high speed navigation as presented in Chapter 3 in indoor

environments.
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In addition, we will continue to improve upon techniques to better estimate

uncertainty by generating multiple hypotheses that accurately represent the

true distribution of predicted futures. This will be accomplished by adding a

variational latent distribution as part of the encoder/decoder network. The

learned variational latent distribution will allow us to sample and generate

multiple hypotheses. We believe this approach will integrate well with the

controller described in Chapter 3 by generating a distribution of trajectories

as well as to develop risk-sensitive control algorithms based on the variance of

the multiple hypotheses.

6.2.2 Predictive Traversability

We also extended the work presented in this thesis to predict traversable

regions in the space. The premise is fundamentally similar to map prediction.

Given a high resolution input such as raw camera observations, we seek the

answer to: Can we predict areas that are traverasable conditioned by actions?

We formulate this problem by regressing the trajectory tracking error. For-

mally, given an image and action sequence, we estimate the probability that

the actions will be executed correctly as determined by predicting trajectory

tracking error. We have conducted preliminary experiments in outdoor envi-

ronments to assess the feasibility of this approach. In a semi-supervised man-

ner, a Clearpath Huskey robot navigates a wooded environment (Fig. 6.1) at
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(a) Traversability Prediction without Obsta-
cles

(b) [Traversability Prediction with Obstacles

Figure 6.3: This figure shows the output of the neural network that learns a
probability of trajectory error given the input image conditioned by the actions,
angular velocity (x-axis) and linear velocity (y-axis). One the left, we show the
output of the neural network that correctly predicts low trajectory error for
all linear and angular velocity combinations. On the right, we show that high
linear velocities regardless of the angular velocity would lead to high trajectory
errors caused by collision. For lower velocities, the neural network predicts
angular velocities turning away from the tree will produce lower trajectory
errors which is ultimately selected by the planning algorithm.

varying linear and angular velocities. We developed a neural network that re-

ceives an RGB image from the robot’s perspective and potential control actions

and produces a probabilistic map that predicts the likelihood of an error be-

tween the expected trajectory and the observed trajectory. We have shown that

this is effective at detecting obstacles as seen in Fig. 6.3. In Fig. 6.3a, we can

see that since there are no obstacles in the immediate horizon, all linear and

angular velocities result in low expected trajectory error. In Fig. 6.3b, the net-

work detects the tree obstacle and favors slower velocities as well as angular

velocities that drive the robot towards the right away from the obstacle.
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There are many ways to extend this to support high speed maneuvers in

complex environments. The algorithms must not only perform static obstacle

avoidance but also choose paths that contain smoother terrains, reason about

what obstacles will present navigation challenges as well as avoid negative

obstacles in the environment. These additional capabilities can also be formu-

lated similar to obstacle avoidance using predicted trajectory error. For exam-

ple, driving through rough terrain will lead to a mismatch between observed

and predicted trajectories. By predicting this error, we can select trajectories

that favor smoother terrains. The ongoing research will focus on developing op-

timal neural network architectures that are capable of reasoning about more

complex artifacts of the environment needed for high speed navigation.

6.2.3 Improved Social Compliant Navigation

While the ideas presented in Chapters 4 and 5 make good progress towards

developing techniques for social navigation, many improvements can be made

to increase the navigation and social compliance performance. As described in

Sec. 6.1, I primarily focus on estimating intent uniformly throughout the en-

vironment. While this was shown to be effective, it doesn’t capture contextual

and semantic cues that could further improve intent estimation. The rationale

behind this approach is that certain areas in the environment may be more

traversable than others and could be used to improve intent estimation. Fur-
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ther, contextual cues in the environment maybe indicate where the pedestrian

may be headed. An example is that an individual may visit the water fountain

after the restroom. Using semantic information from the scene can allow us to

reason about spatial relationships that can be used for better prediction.

Another area to explore is the use of inverse reinforcement learning meth-

ods to learn socially compliant behavior. Often, socially compliant behavior is

difficult to formalize in an equation used as the RL reward function. In addi-

tion, weighting different trade-offs such as reward for reaching the goal versus

penalties associated with social discomfort can be difficult to tune and heuris-

tically determine. An area we are actively exploring is the use of inverse RL

to learn the reward function by observing humans in a variety of different con-

texts and environments. The goal is to use the learned reward function to train

an RL policy to match the human behavior. The hope is that this will lead to

even more socially compliant navigation policies that generalize better to new

situations and environments.
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