
2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 83

Marcelo Becker
Senior Member, ABCM

becker@sc.usp.br
University of São Paulo - USP

São Carlos Engineering School - EESC
13560-400 São Carlos, SP, Brazil

Richard Hall
rhall@kth.se

Sascha Kolski
skolski@gmail.com

Kristijan Maček
kristijan.macek@mavt.ethz.ch

Roland Siegwart
rsiegwart@ethz.ch

Swiss Federal Inst. of Technology Zurich – ETHZ
ASL-IRIS

CH-8092, Zürich, Switzerland

Björn Jensen
bjoern.jensen@singleton-technology.com

Singleton Technology Sàrl
Parc Scientifique (PSE-C)

CH-1015 Laussane, Switzerland

2D Laser-based Probabilistic Motion
Tracking in Urban-like Environments
All over the world traffic injuries and fatality rates are increasing every year. The
combination of negligent and imprudent drivers, adverse road and weather conditions
produces tragic results with dramatic loss of life. In this scenario, the use of mobile
robotics technology onboard vehicles could reduce casualties. Obstacle motion tracking is
an essential ability for car-like mobile robots. However, this task is not trivial in urban
environments where a great quantity and variety of obstacles may induce the vehicle to
take erroneous decisions. Unfortunately, obstacles close to its sensors frequently cause
blind zones behind them where other obstacles could be hidden. In this situation, the robot
may lose vital information about these obstructed obstacles that can provoke collisions. In
order to overcome this problem, an obstacle motion tracking module based only on 2D
laser scan data was developed. Its main parts consist of obstacle detection, obstacle
classification, and obstacle tracking algorithms. A motion detection module using scan
matching was developed aiming to improve the data quality for navigation purposes; a
probabilistic grid representation of the environment was also implemented. The research
was initially conducted using a MatLab simulator that reproduces a simple 2D urban-like
environment. Then the algorithms were validated using data samplings in real urban
environments. On average, the results proved the usefulness of considering obstacle paths
and velocities while navigating at reasonable computational costs. This, undoubtedly, will
allow future controllers to obtain a better performance in highly dynamic environments.
Keywords: motion tracking, obstacle classification, Kalman Filter, urban-like environment

Introduction
1As a result of the astonishing advances made over the last

decades on several scientific fields, today mobile robots have many
real applications. They range from Automatic Guided Vehicles
(AGVs) and Autonomous Mobile Robots (AMRs) on factory floors,
personal assistants for disabled and elderly people to exploration of
hazardous environments such as surface of planets and bottom of
oceans. Wherever the robot may be and whatever its purposes are an
interface to exchange information is always needed. For many
applications, e.g. when the interaction between humans and robots
are not close, this interface may be a simple remote control. On the
other hand, when robots and humans interact directly or they need to
be more autonomous and take decisions based on their perception of
their environment, the interface might be much more complex.
Autonomous behavior is frequently represented as a perception-
reasoning-action loop. It means that given the specification of a
goal, the robot uses perception to identify relevant elements, then it
analyses them, plans tasks to attain the goal, and finally executes
these tasks. More autonomous systems may even define the goal to
be reached based on some criteria.

Recently, several events around the world and research funding
agencies have been impelling robotics researchers to focus their
works on developing, transferring, and adapting techniques and
approaches initially developed for indoor and outdoor mobile robots
to car-like autonomous mobile robots. Events such as the DARPA

Paper accepted January, 2009. Technical Editor: Gla uco A. de P. Caurin

1st and 2nd Great Challenge (2005, 2007), ELROB (2005), and C-
ELROB (2007) are paving the way for the use of promising
technologies in military and civil vehicles (Thrun et al., 2006;
Dahlkamp et al., 2006; Lamon et al., 2006; and Stavens et al., 2007).
On the other hand, in a near future, an assistance system that helps
the driver and acts mostly in peril situations will be implemented
more easily when compared to a fully autonomous system and will
probably be more attractive for the majority of the drivers (one
should take into account that western people tend to be standoffish
regarding robots, in severe contrast to the Japanese, who welcome
ubiquitous machines).

Systems like the Intelligent Parking Assist (IPS) technology
onboard the Toyota Prius are becoming very popular among car
buyers. Due to this, many researchers are working on car-like robot
autonomous parking problem. This is a perfect example of an
assistive system that uses sensors, e.g. ultrasound sensors and
cameras, to help the driver during maneuvers. This amounts to
saying that a system which is able to provide a full parking
maneuver procedure, without any human intervention, is desired and
will shortly become a serial item. Another example is the Secure
Propulsion using Advanced Redundant Control project – SPARC -
developed at the Swiss Federal Institutes of Technology (EPFL and
ETHZ) in cooperation with a European Consortium of Automotive
Companies (Holzmann et al., 2005-a and 2005-b, and Becker et al.,
2007-b). Recent developments on sensors, actuators, algorithms, etc.
applied on intelligent vehicles can be found in SAE series PT-132
(2006) and PT-133 (2007).

Today it is possible to think of freeways and urban
environments interconnected by high-tech networks that will allow
the dissemination of fully autonomous vehicles. Traffic jams may be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37445603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Marcelo Becker et al.

84 / Vol. XXXI, No. 2, April-June 2009 ABCM

substituted by hundred of vehicles virtually interconnected and
moving autonomously in a cooperative way. Onboard computers are
likely to work together and control completely the vehicles under
any weather and road conditions. Nevertheless, in order to achieve
this dream scenario, the entire road network and vehicle fleet need
to be adjusted accordingly.

Taking into account that there are hundreds of millions of
vehicles and road kilometers in the world, these changes possibly
represent a cost of billions of dollars. In a near future, a less
expensive solution is an intelligent road network based on road and
onboard vehicle sensors and computers. In this case, adapted
freeways monitor vehicles, road, and weather conditions act as an
assistive system alerting the drivers for peril situations. Today this
scenario is becoming a reality in Europe, Asia, and North America.
Another option is the use of intelligent assistive systems (e.g.: anti-
collision systems) onboard vehicles. In case of an imminent
collision, the system would alert the driver or assume the vehicle
control.

There are several problems to be solved in both cases (fully
autonomous and assistive technologies), but recent developments of
onboard hardware and sensors are resulting in considerable research
progress. However, the best ratio between desired autonomous
behavior and costs when selecting the onboard hardware and
software necessary for acquiring, extracting, and interpreting the
environment features is to be drawn. In the context of autonomous
and assistive systems, the importance of cognitive abilities is
noticeable. Similarly to persons that need their senses in order to
interpret and interact with the environment, an autonomous robot
needs sensors that would provide information about his vicinity and
state. In practice, the interpretation of the scene (i.e.: environment
feature extraction, robot auto-localization, obstacle position
detection, obstacle classification, obstacle path prediction, etc.) is
essential to provide the robot controllers with information to plan a
safe path. Although sensor technology has experienced significant
improvements recently, high dynamic changing and unconstrained
environments still represent an enormous challenge for the robotics
research community. This is the case of urban-like environments
where traffic (car, buses, bicycles, etc.) and pedestrian paths are
unknown and sometimes difficult to predict. In spite of this, the
obstacle motion tracking is an indispensable procedure for
improving the robot environment perception. Unfortunately, it is a
difficult task when some obstacles close to the robot’s sensors may
cause blind zones behind them. In this situation, the robot may lose
vital information about hidden obstacles that could avoid future
collisions.

Some examples of researches developed in the field of
autonomous parking are those carried out by Chao et al. (2005),
Khoshnejad M. and Demirli (2005), Yamamoto et al. (2005), and
Chiu et al. (2005). In this topic, fuzzy logic and artificial neural
networks are some of the approaches used by the authors to face the
problem. In addition to these researches, the works developed by
Wang and Thorpe (2002), Duan et al. (2004), Lee and Chen (2004),
Lu and Chuang (2005), Martínez-Marín (2005), Romero-Meléndez
et al. (2005), Thompson and Kagami (2005), Kolski et al. (2006),
and Maček et al. (2006) addressed a more complex problem: the
path-planning task in urban environments for car-like mobile robots.
The hidden and visible obstacles tracking problem was addressed in
Becker et al. (2007-a). Virtual drivers, drive-assistant systems, and
lane detection using artificial vision systems were focused in Maček
et al. (2004), Bellino et al. (2005), Holzmann et al. (2005-a and
2005-b), and Lamon et al. (2006).

The present work focuses the 2D laser-based obstacle motion-
tracking problem in dynamic unconstrained environments (urban-
like) by applying a Kalman Filter in order to predict the obstacle
motions when they are hidden. This would allow the car-like mobile

robot controller to take into account hidden and non-hidden
obstacles when maneuvering the robot. A probabilistic occupancy-
grid representation of the environment was also implemented. It
provides a given time horizon prediction view of the robot
surrounds based on motion-models of the obstacle classes and
obstacle-estimated velocities. Initially, the test platform (Smart Car)
is presented. Next, a brief review of the state of art on motion
tracking is addressed and the multi-obstacle motion-tracking
algorithm (including the Kalman Filter) is shortly described. Then,
the results obtained while using real data are shown. Finally, the
conclusion and outlook are presented.

Nomenclature

ac = centripetal acceleration, m/s2
F = state transition matrix, -
H = measurement transition matrix, -
ICM = instantaneous center of motion, -
L = distance between rear and front axles, m
MD = Mahalanobis distance, m
n = data quantity, -
P = state covariance matrix, -
Q = process noise covariance matrix, -
r = turning radius, m
R = measurement noise covariance matrix, -
S = innovation covariance matrix, -
t = time, s
V = velocity, m/s
v = state vector, m and m/s
w = measurement white noise, m
W = filter gain, -
x = state vector, m and m/s
x = measured point x coordinate on a segment, m
y = measured point y coordinate on a segment, m
x̂ = state prediction vector, m and m/s
z = state vector, m and m/s
ẑ = state prediction vector, m and m/s

Greek Symbols

∆ = parameter variation, -
θ = steering angle, rad
µ = expected mean value, m
ν = innovation, m and m/s
σ = standard deviation, m
σσσσ = variance, -
υυυυ = process white noise, m
φ = angular orientation, rad
ϖ = angular velocity, rad/s

Subscripts

i relative to parameter indices
max relative to maximum value
min relative to minimum value
norm relative to norm
X relative to stochastic variable
Y relative to stochastic variable

Superscripts

T relative to transpose matrix

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 85

Test Platform – Smart Car and Laser Range Finder

The Smart Car used as test platform is based on an ordinary
smart fortwo coupé passenger car (Fig. 1). Obviously some changes
and improvements were included in order to allow the vehicle
autonomous behavior, e.g.: a steer-by-wire system (Fig. 2).
Undoubtedly, the heart of the vehicle is the onboard computer. It is
interfaced with several sensors and actuators that control the vehicle
through the controller-area network (CAN). For instance, braking,
acceleration, and steering controls are made by controlling dedicated
motors. A system of cable and pulleys controlled by a motor is used
to activate the brake pedal. An electronic system was designed to set
the throttle command directly (the voltage, originally provided by
the potentiometer in the throttle pedal, is generated by the computer
and sent to the CAN).

Figure 1. Modified Smart Car used at ASL. Observe t he LMS 291 SICK
laser sensor assembled on its front bumper.

Torque sensor

Velocity

(CAN)

Torque

(voltage)

Madd

ComputerComputer

CAN to
analog
CAN to
analog

Steering
electronic board

Steering Steering
electronic boardelectronic board

Vehicle CAN

C
om

pu
te

r
C

A
N

V
eh

ic
le

 C
A

N

Switch

Position controller (PID)
Minimize : e = θθθθdesired – θθθθ

DA UnitDA Unit

Torque sensor

Velocity

(CAN)

Torque

(voltage)

Madd

ComputerComputer

CAN to
analog
CAN to
analog

Steering
electronic board

Steering Steering
electronic boardelectronic board

Vehicle CAN

C
om

pu
te

r
C

A
N

V
eh

ic
le

 C
A

N

Switch

Position controller (PID)
Minimize : e = θθθθdesired – θθθθ

DA UnitDA Unit

Figure 2. The steer-by-wire system implemented in t he Smart Car.

A set composed by a steering encoder and a motor allows the

computer to steer the vehicle front wheels. Summarizing, the vehicle
CAN can access the following internal car state data:

1. Vehicle flags: engine on, door closed, brake pedal pressed,
etc.;

2. Engine: engine rpm, instantaneous torque, gear shift,
temperature, etc.;

3. Odometry: global vehicle speed, individual wheel speeds,
ABS activated;

4. Throttle pedal value and steering wheel angle.
A switch enables to select the manual or autonomous vehicle

modes. The Smart Car is also equipped with Global Positioning
System (GPS) and 6 degree of freedom (DoF) Inertia Measurement
Unit (IMU), allowing measuring the vehicle relative movement. The
IMU measures lateral acceleration in all three dimensions, angular

rates up to 100º/s with a resolution of 0.025º, and lateral acceleration
up to 2g with a resolution of 0.01 m/s2. Exteroceptive sensors, such
as a monocular camera and a laser range finder (SICK AG Laser
Measurement Sensor - LMS 291) both looking forward, have also
been installed. The laser sensor was assembled on the front bumper
of the Smart Car and it has a 180º field of view with an angular
resolution from 1º to 0.25º. Its maximum range is 80 m and it has a
statistical error of 10 mm.

In this work we used the data from the laser scanner as the main
source of information. This choice was based on the fact that laser
sensor prices are gradually decreasing every year, what may make it
possible their commercial use in passenger vehicles in a near future.

Sensor Model

Laser scanners are active sensors that emit a laser beam and rely
on the time-of-flight principle for measuring distance. A rotating
mirror or prism is used in order to cover an angular range. The
neighboring points are taken at successive rotations of the revolving
unit. Thus, they are taken with a time difference proportional to the
rotational frequency (fsensor) of the revolving unit (in our case,
fsensor = 75Hz). The sensor data flow can be understood as follows:
the laser sensor acquire data over a period of time ∆t, which is then
sent to the computer via RS422 where a real-time thread reads data
at 17Hz. In a first step, the data set is transformed into a coordinate
system centered on the vehicle and it is assigned with a time-stamp
and the vehicle position at this time. Depending on the desired
angular resolution, the acquisition time varies. For 0.5º resolution
two rotations are necessary, so the acquisition time amounts to
∆t = 2/fsensor. During the first rotation the data points for the angular
position 1, 3,... are taken and the second rotation provides the even
set of 2, 4,... When running in 0.25º mode even four rotations are
necessary and the acquisition time amounts ∆t = 4/ fsensor.

In our case, the main objective of modeling the laser scanner is
to take into account known sources of uncertainty while tracking the
obstacles. The main assumption used is that different sources of
error are pair wise independent and can be modeled as Gaussian
distributions. Thus, the resulting uncertainty may be represented as
its covariance (Jensen, 2004). There are several origins for laser
measurements, but the main ones are: the timer counting the time-
of-flight, the stability of the rotational frequency of the revolving
unity and the frequency with which beams are sent out.
Unfortunately, the sensor documentation (SICK AG, 2006) has no
data for ranges greater than 20 m and for the angular uncertainty.
For the experiments carried out in this research (0.5º angular
resolution and 30 m range) we assumed the sensor data specified in
the documentation for a 20 m range (the uncertainty on the distance
measured to σρ

2 = 0.012 m2). Concerning the angular uncertainty, in
fact we observed that the angular values provided by the sensor are
constant and taken from a table. Due to this, it is difficult to evaluate
the angular uncertainty experimentally. So, we used the opening
angle of the laser beam (0.5º) and assume the angular uncertainty to
be half the beam width (σφ

2 = 0.252º2). As previously cited, distance
and angular uncertainties are assumed to be independent and
Gaussian distributed, thus the sensor uncertainty is represented by:

),(diagsensor
222
φρ σσ=σσσσ . (1)

Motion Tracking

Applications of motion tracking algorithms range from military
(e.g. missile guided systems, air-space surveillance, etc.) to civil
ones (e.g. virtual reality systems, human-machine interaction, etc.).
All these applications face challenges concerning noise sensor data

Marcelo Becker et al.

86 / Vol. XXXI, No. 2, April-June 2009 ABCM

and data uncertainty. In order to deal with these problems the use of
Kalman Filters (KF) was proposed in the early 1960s by Kalman
(1960), and Kalman and Bucy (1961). Early studies focused on
single and multi-target tracking, and data origin uncertainty applied
on environment surveillance also proposed the use of KF (Sittler,
1964; Sea, 1971; and Singer and Stein, 1971). When dealing with
the incorporation of uncertainty on the data origin in tracking, one
should keep in mind that the robot is dealing with multiple-
hypothesis tracking. This means that it has a combinatorial
explosion of hypothesis that usually cannot be handled in real-time
(Jensen, 2004). There is a large quantity of publications in the
literature related to motion tracking using a variety of sensors
(vision, laser, etc.). As our test vehicle has an onboard 2D laser
sensor used for extracting the environment data, we decided to focus
our literature review on the development of systems that use mobile
robots with onboard 2D laser sensors. Nevertheless, when it comes
to car-like tracking applications in dynamic urban scenarios that use
only 2D laser sensor data, literature proved to be scarce up to now.
Pradalier et al. (2004) developed an interesting approach using as
test vehicle a bi-steerable car called CyCab. However, they did not
focus their research on multi-obstacle motion tracking, but on the
integration of some essential autonomy abilities into a single
application (simultaneous localization and environment modeling,
motion planning and motion execution amidst moderately dynamic
obstacles).

Considering indoor applications, there are several works that
focused the motion-tracking problem based on 2D laser sensor data.
Shulz et al. (2001) addressed the application of multi-obstacle
motion tracking algorithms onboard mobile robots for tracking
moving persons. They applied a sample-based representation of the
joint probability density function (SJPDF) of all moving obstacles to
avoid the combinatorial explosion of multi-hypothesis tracking. If
on the one hand they could combine SJPDF with a local occupancy
grid and show the tracking of several persons through temporal
occlusions in well structured environments, on the other hand, the
use of SJPDF requires the knowledge of the tracked obstacle
quantity. It means that they needed to use a Bayesian filter and the
time sequence of moving features quantity to estimate the tracked
obstacle quantity. At the end, their motion tracking algorithm had to
deal with local minima, non-linear relations due to the increased
occlusion quantity, local occupancy grids, and the use of
probabilistic filters to filter static objects that could become difficult
to handle in real-time for non-structured environments. Kluge et al.
(2001) presented a strategy for analyzing the robot-human
interaction scenario. It was based on a set of prototypical situations
in crowded public environments and consists of scene analysis,
tracking, action recognition, and intention reasoning procedures.
Illmann et al. (2002) extended this analysis by applying local person
density and tree-based vector quantization. Bennewitz et al. (2002-a
and 2002-b) developed a system to segment tracks of a person in a
common household environment. In this work, the trackers were
obtained from static laser sensors and the segmentation process was
based on Expectation Maximization approach. Their purpose was
the detection of the intention of a person based on his or her path.
Jensen (2004) addressed the multi-object tracking problem using
single Kalman Filters for each individual problem. In order to deal
with data association he used validation gates and to solve the
measurement-track assignment he utilized linear programming
techniques. Our approach is based on (Jensen, 2004) and extends it
for urban-like environments focusing on tracking pedestrians and
vehicles (e.g.: cars, trucks, and buses).

Outputs

Tracking

Detection
Scan Raw DataScan Raw Data

SegmentationSegmentation

Obstacle and Features
Extraction

Obstacle and Features
Extraction

Motion
Detection

Motion
Detection

Local
Occupancy

Grid Map

Local
Occupancy

Grid Map

Data AssociationData Association

Initiate a
New Tracker

Initiate a
New Tracker

Update
Tracker

Update
Tracker

Predicted
Occupancy

Grid Map

Predicted
Occupancy

Grid Map

TrackersTrackers

Outputs

Tracking

Detection
Scan Raw DataScan Raw Data

SegmentationSegmentation

Obstacle and Features
Extraction

Obstacle and Features
Extraction

Motion
Detection

Motion
Detection

Local
Occupancy

Grid Map

Local
Occupancy

Grid Map

Data AssociationData Association

Initiate a
New Tracker

Initiate a
New Tracker

Update
Tracker

Update
Tracker

Predicted
Occupancy

Grid Map

Predicted
Occupancy

Grid Map

TrackersTrackers

Figure 3. Flowchart representing the General Struct ure of the Motion
Tracking Algorithm.

Figure 3 summarizes the approach developed for urban-like

environments. The 2D laser raw data acquired by the SICK laser
sensor are used as input data for the obstacle detection algorithm.
Initially, the data are segmented in order to extract the environment
features and to detect motion. Features that are not moving are
considered static and stored in a local map that is also used for
detecting motion. After detecting mobile obstacles, a process of data
association is applied to start new trackers or update existing
trackers. Trackers that are hidden for more than a threshold value
(e.g.: one second) are deleted. Put simply, the whole procedure
outputs are:
1. Non-hidden obstacle quantity, obstacle positions and estimated

velocities (Trackers in Fig. 3);
2. Hidden obstacle quantity, obstacle predicted positions and

velocities (Trackers in Fig. 3);
3. Obstacle classification, e.g. pedestrian, car, truck, etc. (Trackers

in Fig. 3);
4. Local Occupancy Grid Map;
5. Predicted Occupancy Grid Map for a given time horizon (e.g.: 1

second).
Both procedures, obstacle detection and tracking, are shortly

explained as follows.

Obstacle Detection

There are several approaches for detecting objects using a 2D
laser scanner in the literature, most of them centered in indoor
mobile robotics applications. For a fixed sensor this task is
straightforward since it is possible to compare two consecutive
scans and immediately determine which points remains in the same
spot and which do not. For a mobile sensor like the one onboard a
mobile robot or a vehicle such as a car, the task is somewhat more
difficult due to the translation and rotation caused by its
displacement. Take for example a static obstacle that is seen by only
one point in the first scan. In the next scan the sensor has moved a
little and the changed viewing angle results in the point being seen
at another spot on the same obstacle. This phenomenon can give a
false impression that the static obstacle is actually moving. In order
to avoid this, it is necessary to take into account, as precisely as
possible, the vehicle position. This work focuses on detecting
moving obstacles like vehicles and pedestrians. To perform this
task, we utilized the Motion Filter approach (Lindstrom and
Eklundh, 2001; and Wang and Thorpe, 2002).

It is important to emphasize that this work is not focused on the
vehicle position estimation. This topic was previously highlighted in

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 87

Lamon et al. (2006-a and 2006-b) and Kolski et al. (2007).
Basically, in order to accurately localize the vehicle, the GPS, the
IMU, and the wheel encoder data were combined using a Kalman
Filter to estimate its 6 degrees of freedom, i.e. its position and
attitude (Sukkarieh et al., 1999; and Dissanayake et al., 2001). This
filter is called Information Filter (IF) and during the experiments it
produced excellent results when the vehicle was traveling at low
speeds in open areas (far from large structures, tunnels, etc.). The
standard deviation of the filtered position was less then 0.025 m for
all three position coordinates. Based on this result we decided to
neglect the vehicle position uncertainty, while modeling the Kalman
Filter used to estimate the obstacle motions when they are hidden
(see Kalman Filter item). Following this premise, we could use
directly the vehicle position estimated by the IF to produce local
maps and detect motion, even when the vehicle was moving.

Segmentation

Grouping measurements that belong to the same object are
mandatory, when processing data from a laser scanner. The scans
will consist of length measurements at equidistant angles and
therefore it is very likely that two points that are close to each other
also belong to the same object. Likewise, two consecutive
measurements that are far away are likely to imply that a change in
the observed object has occurred. Since it is necessary to define a
distance threshold, there is always the risk of making errors in the
segmentation process, either by creating one single segment out of
two or more close objects, or by dividing an object into more than
one segment. The segmentation makes it possible to do further
processing on the different segments or point clusters. This normally
consists of classification by size, dynamic status, or geometrical
features (MacLachlan, 2004).

Motion Based Approach

Basically, the idea is to compare two scans apart by some time
interval, ∆t, trying to match them in order to determine which points
are static and which are dynamic. By using this approach one can
suppress spurious readings from the static environment, giving a
better input to the tracker. The scan matching is made by storing the
previous scan and comparing it to the new one. For each point in the
new scan, distances to points in the old scan are calculated and
compared to a threshold value (in our case, ± 10 cm). If a match is
found, the point is likely to be static. One exception is when points
are matched to a different area on a moving obstacle, for instance
along the side of a passing vehicle. This problem was later solved by
checking the dynamic classification in the first scan. If a point was
labeled dynamic at that time, it is likely to be dynamic in the next
scan. However, if no match is found, one cannot say for sure that the
point is moving without further processing. The point could have
been occluded in the first scan or out of range due to vehicle motion
between scans. Therefore, we make use of the free area that is the
space between the robot and the obstacles or scan range. If a point
seen in the second scan is not found but within this area in the first
scan, thereby observable, it is labeled as moving. A segment
containing a certain amount of points labeled as moving can be sent
to the tracker, after its center point is calculated.

During the simulation phase, we observed that the simple use of
scan matching was not sufficient to deal with spurious readings. One
reason for this behavior was the translation and rotation movements
of the sensor. Aiming to increase the detection of static points, a
local map was created. At first, the map was implemented as a
position vector, storing in each scan the coordinates of all points
labeled as static ones. New scans were then checked against the map
and when a match was found, the weight for that map point was

increased. In order to keep down the size of the map, each point kept
track of its own age. When a terminal age was reached, e.g. after 10
seconds, the point would be deleted from the map. The static map
helped to improve the motion detection, but some disadvantages
were noticed. The representation of the map using points was one of
them. Measurements are never exact, and therefore, it is difficult to
determine how many map points are needed to represent an
obstacle. If we add all new static points, we get a very large map
which slows down the matching process. But if we only add points
that were not matched to the map before, we will certainly miss
useful information. A method that turned out to be a better approach
to the local mapping was the Time Stamp Method (Fiorini and
Shiller, 1998). Basically this method is an Occupancy Grid
Representation (Elfes, 1989) that does not consider the uncertain
cells. Due to this, only free and occupied cells are considered and
the computational time necessary for each environment scan is
reduced.

Thanks to the use of the Fiorini and Shiller’s occupancy
representation, we could improve and simplify the scan matching
process. Latter, the occupancy grid was used not only to represent
the static environment, but also to represent present and future
predictions of the tracker output. This was carried out by adding a
probabilistic grid to the occupancy representation (see Predicted
Occupancy Grid Map item). Due to this, it was necessary to classify
and model the obstacles that were being tracked.

Obstacle Classification

By classification, we refer to the process of determining if a
moving segment belongs to vehicles or pedestrians. While working
with the MatLab Simulator (Becker et al., 2007-a), pedestrians were
rarely detected by more than two or three scan data. Since the sensor
is placed about 50 cm from the ground, it usually detects one point
on each leg. If the pedestrian stands close to the sensor it is easier to
distinguish a contour, but this was rarely the case. An obvious
difference between vehicles and pedestrians is their size, so we
decided to base the classification on it. We used the standard
deviation of each segment to represent its size:

∑
=

=
n

i
iX x

n 1

1µ ∑
=

=
n

i
iY y

n 1

1µ , (2)

∑
=

−=
n

i
iXX)x(

n 1

22 1 µσ ∑
=

−=
n

i
iYY)y(

n 1

22 1 µσ , (3)

where X and Y are stochastic variables, x and y are measured points
on a segment, n is the data quantity, and µ and σ are expected values
and standard deviations respectively.

Checking the norm of standard deviations against a predefined
threshold yields the classification into vehicle or pedestrian:

22
YXnorm σσσ += . (4)

Obstacle Tracking

A robot navigating in an environment with other moving
obstacles needs some kind of information concerning its
environment in order to avoid collisions. Some systems just prohibit
movement in directions which will bring the robot too close to an
obstacle, regardless of how the obstacle moves (Siegwart and
Nourbakhsh, 2004). For efficient path planning it is, however, much
better to know more about the dynamic state of the obstacles. The
way to achieve this goal is by tracking them and estimating their
future positions (states). Tracking makes it possible to measure the

Marcelo Becker et al.

88 / Vol. XXXI, No. 2, April-June 2009 ABCM

dynamic state of an obstacle, i.e. its position and velocity, and with
this information predictions can be made on the obstacles future
positions (Bar-Shalom and Fortmann, 1998; and Blanc et al., 2005).

In an urban environment, laser measurements are subject to
noise, which we have to suppress by filtering. It is also usual to
expect obstacles being hidden by other obstacles. However, it is
possible to continue to track these obstacles until they are seen again
and thereby minimize the risk of a collision. Each obstacle in this
setup is characterized by its center of gravity, or at least the center of
gravity for the part that is being seen. Since the scanner provides a
2D output, this point is described by (x, y) coordinates. The x and y
velocities were also introduced in the state of the dynamic object for
tracking the motion of each obstacle and predicting its continued
path. The state vector then becomes:

xvstate == T)yyxx(&& . (5)

However, from now on we will simply denote it as x. The

measurements, containing only the x and y values, are labeled z.

Kalman Filter

The Kalman Filter (KF) is a wide spread technique for
estimating the state of a dynamic system observed through noisy
measurements. The filter is a recursive state estimator, which means
that in every step it uses the output of the previous step to make a
new prediction. It consists basically of two steps, the prediction step
when estimation is made based on the old state, and an update step
when that estimation is updated with a new measurement. The state
and measurement predictions are denoted by x̂ and ẑ . In order to
predict a dynamic system response, a dynamic model is used. In this
study the linear constant-velocity model (Jensen, 2004) was applied.
Due to its linearity, it is simple to implement. It can be described by
its discrete-time transition and noise covariance matrices,
respectively Eqs. (6) and (7):

=

1000

100

0010

001

t

t

∆

∆

∆t)(F , (6)

=

tt

tt

tt

tt

∆∆
∆∆

∆∆
∆∆

∆

200

2300

002

0023

2

23

2

23

t)(Q . (7)

Other models were considered and, especially for vehicles, the

constant angular velocity model could improve the tracking for
vehicles making turns. However, such implementation would
require a more complex filter, Extended Kalman Filter, EKF (Thrun
et al., 2005). It is also beneficial to keep a simple, not too
specialized, model since the tracker is dealing with obstacles with
different dynamic properties (e.g.: pedestrian and vehicles). The
evolution of the dynamic system can now be described as:

)tt()t()t()tt(∆∆∆ ++=+ υxFx , (8)

)tt()tt()tt(∆∆∆ +++=+ wxHz , (9)

where υυυυ and w are respectively the white process and measurement
noises and H is the measurement matrix, which transforms a state
vector into a measurement vector, Eq. (10):

=

01

00

00

01
H . (10)

In the prediction step, the latest state estimated at ∆t is used to

produce a new state prediction at (∆t + t). Predictions are also made
on the state and innovation covariances, respectively Eqs. (13) and
(14):

)t(ˆ)t()tt(ˆ xFx ∆∆ =+ , (11)

)tt(ˆ)tt(ˆ ∆∆ +=+ xHz , (12)

T)t()t()t()tt(∆∆∆ FPFP +=+ , (13)

RHPHS ++=+ T)tt()tt(∆∆ , (14)

where the measurement noise covariance, R, is the variance (σ²)
times the identity matrix (I), Eq. (15); in our case the variance is
represented by the sensor data uncertainty, Eq. (1). P is the state
covariance matrix, and S is the innovation covariance matrix.

2σIR = . (15)

The following step is called the update step, because a

measurement is used to update the tracker. Now the innovation, νννν,
can be calculated as the difference between the real measurement
and the predicted one. The filter gain, W, is calculated after state
and covariance updates:

)tt(ˆ)tt()tt(∆∆∆ +−+=+ zzν , (16)

)tt()tt()tt(T ∆∆∆ ++=+ −1SHPW , (17)

)tt()tt()t(ˆ)tt(ˆ ∆∆∆ +++=+ νWxx , (18)

T)tt()tt()tt(...

...)t()tt(

∆∆∆

∆

+++

−=+

WSW

PP
 (19)

More details concerning the implementation of Kalman Filters

and Extended Kalman Filters may be found in: Kalman and Bucy
(1961), Bar-Shalom and Fortmann (1998), Jensen (2004), and Thrun
et al. (2005).

Data Association

Each tracker must be associated with new measurements when
available, if the filter is working properly. There are various
approaches for data association that are designed to suit different
scenarios. A Joint Probability method (Bar-Shalom and Fortmann,
1998), for instance, is an interesting choice when sampling data in a
cluttered environment, because it takes into account the fact that the
closest sample is not always the right one in a multi-target scenario.
The intuitive approach in this case was the Nearest-Neighbor
Standard Filter, NNSF (Bar-Shalom and Fortmann, 1998). The
NNSF algorithm iteratively calculates all the distances between
trackers and measurements. The distance is represented by the
Mahalanobis distance, MD:

TMD ννS 1−= . (20)

MD is the same as the Euclidian distance, if the covariance

matrix is the identity matrix, I. Each tracker is then associated with

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 89

the closest measurement, if it does not exceed a predefined
threshold. However, problems may occur if the application deals
with unambiguous association. An optimization was carried out by
using integer programming: MD was collected in a matrix where
one tries to minimize the total sum provided. There may be only one
value selected from each column and each row (Jensen, 2004).

Tracking Obstacles

The tracking obstacles task is performed after the data
association procedure. In the beginning (the very first scan), all
measurements are initialized as new trackers and their initial state
vectors, xinitial, represent their positions and null velocities (initially
all observed features are considered static ones). Covariance
matrices are also initialized to reasonable values, taking into account
the sensor documentation (SICK AG, 2006). Each tracker is
associated with a variable called hidden that keeps the scan quantity
in which the tracker has not been updated with a measurement. At
initiation or after a successful update this variable is reset to zero. In
every consecutive scan, trackers are updated iteratively in the
following sequence:

1: for each TRACKER do
2: Calculate Kalman prediction state;
3: MDall ⇐ Mahalanobis Distances of all measurement data;
4: MD ⇐ min(MDall);
5: if MD ≤ threshold1 then
6: update Kalman Filter with measurement;
7: hidden = 0;
8: else
9: hidden = hidden + 1;
10: end if
11: if TRACKER is hidden for more than threshold2 then
12: Delete TRACKER
13: end if
14: end for
15: for each unmatched measurement do
16: Create a new TRACKER
17: end for

Predicted Occupancy Grid Map

The inclusion of tracked obstacle path predictions in the
occupancy grid map of the environment that surrounds the robot
improves the map usefulness for navigation. In future, we plan to
fuse the procedure presented in this work with the navigation
procedures previously presented at Kolski et al. (2006). The
predictions are carried out by calculating possible paths for the
trackers and adding some uncertainty at some time step in the
future. As the trackers are keeping the dynamic state of the tracked
obstacles, this information can be used for predicting a future state.
For vehicles it is a relatively easy task, taking into account that the
vehicle maneuverability model can be expressed in a couple of
equations. On the other hand, for pedestrians this task is quite
complex. A person is often moving at a speed which allows it to
stop abruptly, or entirely change heading. One might, for instance,
stop to talk with someone and continue in another direction
afterward. Since pedestrians are likely to travel at rather low speeds,
the constant-velocity model was considered sufficient for predicting
their paths.

Unfortunately, for vehicles this solution was not possible and
we decided to use vehicle steering kinematics to model the vehicle
behavior. Aiming to keep the model as simple as possible, instead of
applying the Ackermann Geometry (Gillespie, 1992), we make use
of a simple steering model based on the vehicle instantaneous center

of motion - ICM. The vehicle front wheel angles relative to their
straight ahead position is called the steering angle, henceforth noted
θ. Due to mechanical reasons most vehicles have a maximum
steering angle that is by far less than 90º. When maintaining
constant steering angle, θ ≠ 0, the vehicle is moving on a circular
path. A simple car model (LaValle, 2006) gives us Eq. (21):

R
Ltan =θ , (21)

where L is the distance between the front and rear wheel axles, and
R is the radius of the circular path with center in Instantaneous
Center of Motion – ICM.

Continuing with deriving the angular velocity in the path we
have:

r.r..d φ∆π
π
φ∆ == 2

2
, (22)

where d is the distance along the circular path, same as v.∆t, and ∆φ
is the change in angular orientation (∆φ = ϖ.∆t, ϖ is the angular
velocity). Further simplifications:

r
vt..rt.v =→= ϖ∆ϖ∆ . (23)

Combining Eqs. (21) and (23) yields:

θϖ tan
L

v= . (24)

Equation (24) means that it is possible to calculate the angular

velocity of an obstacle knowing its velocity, steering angle and axle
distance. Using the velocity and angular velocity, the predicted path
can be easily calculated. Obviously, the placement of axles varies
between different types of vehicles, but it stays in the same vicinity
when the same vehicle class (e.g.: cars) is considered. A future
combination of 2D laser sensors and embedded cameras would
solve this difficulty by recognizing and classifying the vehicles into
more detailed classes (e.g.: buses, cars, trucks, bikes, etc.) based
also on visual data. For the moment, this class labeling is possible
based only on vehicle speeds and sizes. In order to simplify the
model, a maximum steering angle for vehicles was set to 0.42
radians (θmax ≈ 24°). Another constraint that was applied to limit the
model was the fact that steep steering angle turns are unlikely at
high speed. This is related to centripetal acceleration, because if
extending it to the extreme, the car would slip taking a steep curve
with too high speed. In a city-driving situation it is fairly unlikely
that a driver would experience more than 1-g as lateral acceleration.
The equation for centripetal acceleration is:

r

v
ac

2
= . (25)

Combining Eqs. (24) and (25):

v

a
maxc

max =ϖ . (26)

The maximum angular velocity is now given as the least value

from Eqs. (24) and (26). One limitation in the procedure is that it
does not provide angular velocity for the trackers. In order to do that
accurately, an EKF is needed. Due to this and keeping in mind that
we wanted to maintain the approach as simple as possible, we
decided to use predicted velocity changes of each tracked obstacle to
estimate the obstacle angular velocities. In addition to this, choosing

Marcelo Becker et al.

90 / Vol. XXXI, No. 2, April-June 2009 ABCM

a number of values in the interval [-ϖmax, ϖmax] and then calculating
predicted paths for each one give us a set of tracker possible
positions for a given time horizon. Assuming that the predicted
tracker is centered on the estimated turning rate, ϖestimated (Fig 4),
the highest probability value is assigned to the widest path, obtained
from ϖestimated. Therefore, the probability decreases as the distance
between the predicted paths and the widest one increase.

 [m]
(a)

 [m]
(b)

Figure 4. Illustration of Predicted Paths for a tra cked obstacle. In (a) the
tracker is currently going along the y-axis (ϖϖϖϖestimated) showing 7 possible
paths, ranging from left (ϖϖϖϖestimated - ϖϖϖϖmax) to right (ϖϖϖϖestimated + ϖϖϖϖmax) maximum
steering angles. In (b) we estimated the current st eering angle that allows
us to center the predicted paths on it.

Now, based on obstacle class path models, it is possible to

implement the predicted occupancy grid map for a given time
horizon. Since we decided to represent the robot as a point mass, the
occupancy grid had to be enlarged to compensate for the robot sizes
(we use the robot circumscribed circumference radius as the
occupancy grid growth rate). The predicted occupancy grid map is
obtained iteratively for each map update in two steps. In the first
step, only the environment static features are considered. They have
their occupied cells enlarged by the growth rate, forming a new
occupancy grid map with expanded occupied cells (EOC). These
cells are considered as having the highest probability of being
occupied (probability density equals to 1). Then, from the EOC
borders to cell borders that are distant up to the growth rate, the
probability densities are linearly decreased reaching zero at the
borders. Next, in the final step, the obstacle predicted paths are
considered. A number of possible path predictions had been
calculated for each tracker and for each path a number of equidistant
points are selected along that path. The point selection process takes
into account the obstacle class parameters (ϖmax, ϖmin, and
maximum acceleration and deceleration) and the desired time
horizon. In the sequence, each point is associated with a grid cell

and the process described before for environment static features is
applied for all trackers. In the end we obtain an occupancy grid that
contains obstacles at present time and their estimated positions at a
given time horizon. It is important to emphasize that the predicted
occupancy grid map is stored in a separate data structure. It means
that the original occupancy grid map is not changed.

One may observe that the predicted occupancy grid map
building process may be time and memory consuming depending on
the characteristics of the environment. Due to this, we adopted two
simplification strategies:
1. We reduced the update frequency for the static part of the

occupancy grid map;
2. Obstacles whose distances to the robot are increasing above a

threshold value were neglected.
The first strategy is justified because static features usually do

not change their positions. But if, for instance, a parked car or a
person starts to move unexpectedly, there is always an acceleration
period that can be noticed by the obstacle tracking procedure (it
immediately reclassifies this obstacle as a mobile one). In spite of
this, the new mobile obstacle has its update frequency increased for
building the predicted occupancy grid map. Concerning the second
strategy, obstacles that are not considered dangerous because they
are moving away from the robot are obviously negligible. If they
change their path and start to represent a risk, they are not neglected
anymore. These two strategies allowed us to keep the time and
memory consumptions at an acceptable level during the
experiments.

Smart Car Simulator

In the beginning, we developed the algorithms using a MatLab
Simulator (Becker et al., 2007-a). It reproduces a simple 2D urban-
like environment (approximately 800 m by 800 m) with parked and
moving cars, buses, trucks, people, buildings, walls, streets, and
trees. When using the simulator, one may reproduce the 2D
kinematical behavior of the modified Smart Car. The Smart Car
vehicle was kinematically modeled by applying the Ackerman
steering geometry (Gillespie, 1992) and the real vehicle dimensions.
While modeling the sensors, their real characteristics were taken
into account. Lines and/or arcs represent all environment static and
dynamic features. The sensor data are extracted from the
environment based on its geometrical description and used as input
data for testing the algorithms. It is important to emphasize that the
simulator also allowed testing the algorithms while the simulated
Smart Car was in movement.

Basically, the simulator uses the global position of the Smart
Car in the environment for selecting a feature-window that contains
all lines and/or arcs close to the vehicle. Then it simulates the laser
sensor data by verifying the intersections between the simulated
laser beam and the environment features. Afterwards, a noise signal
is added to the sensor raw data vector (based on SICK AG, 2006
data). As the simulator was designed for testing different approaches
before installing the codes in the real car, it allows the user to select
and set different strategies, set points, and threshold values.

Results

Firstly, as cited previously in the text, the research was
developed using the Smart Car Simulator. During this phase it was
possible to test different techniques for tracking the obstacles.
Aiming to facilitate the results comprehension, we present
simulations and experimental samples with the vehicle parked in the
following figures. Due to this choice, it becomes easier for the
reader to compare the features, trackers, etc. at different time spots.

[m] ϖestimated

ϖestimated + ϖmax ϖestimated - ϖmax

[m] ϖestimated

ϖestimated + ϖmax

ϖestimated - ϖmax

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 91

(a)

(b)

Figure 5. Simulation of the Smart Car parked in an urban-like environment
tracking vehicles on a street cross. Two different time steps are
presented. One may observe that vehicles are tracke d even when outside
the sensor visible area (represented by salmon colo r). In this case, a pink
circle represents the tracker.

Figure 5 shows some simulation results. The trackers inside the

range and the matched ones are represented by yellow circles and
the hidden or out of range trackers, by pink circles. The black lines
represent the obstacle predicted positions for 1 second. All occluded
tracks were kept for 1 second. Meanwhile, if they were observed
again, their states were updated and they were reclassified as non-
hidden tracks. On the other hand, if they were not observed anymore
after 1 second, they would be deleted. Regarding the algorithm
performance, we compared the moving obstacles estimated speeds
with their actual speeds, and the errors observed were less than 5%.

Aiming to test and refine our approach, real sample data were
acquired on streets at EPFL. After these tests, it was possible to
improve the tracking algorithms. The sites for sampling data were
chosen near the parking lots at EPFL for catching as many cars and
persons as possible. The sampling took approximately 10 minutes
and it was also drawn in the late afternoon when there were people
heading home by car. The vehicle was parked in a corner of an
intersection where the exit of a parking lot could be seen (Fig. 6-a).
We could not use the moving obstacle speeds to verify the algorithm
performance because the data sampling took place in a real
environment, where we could not control them. However, each
tracker had its center point subsequent positions compared with the

estimated ones. Again, the errors were less than 5% (5 Hz data
acquisition).

(a)

(b)

Figure 6. Experiment location represented by the x circumscribed in EPFL
aerial view and the Sensor Field of View represente d by a white
transparent area (a) and view of the experimental a rea (b).

Table 1 – Real data sampling details.

Location EPFL, facing ME G building

Scan Acquisition Frequency 5 Hz
Scan Range 30 m
Scan Angular Resolution 0.5°
Experiment Length 602 seconds
Observed Dynamic Obstacles 33

Table 1 presents some experiment set-up details and the quantity

of moving obstacles observed during the data acquisition. We
experienced traffic and the obstacles were often passing by close to
the sensor. Because of the intersection we were also lucky to capture
a few cases when one obstacle occluded another. An interesting
condition in this case was that we had many passing bikes. They
were sometimes classified as cars, sometimes as pedestrians
depending on the viewing angle. Their tire spokes also produced an
interesting problem: some of the laser readings acquired by the
sensor were behind the bike (the sensor laser beam passed trough
the spokes and detected other environment feature that was behind
the bike). Due to this, the segmentation algorithm produced
erroneous input data for the feature extraction and motion detection
algorithms. This problem was solved latter by refining the
segmentation algorithm. In the beginning, the segmentation process
was based only on consecutive measurements and from then on we
decided to also consider the data that are close together, as if
belonging to the same object.

When it comes to computer processing power performance, we
used a 5 Hz sensor data acquisition frequency. Undoubtedly, the use
of a dedicated computer for processing the obstacle tracking task
will increase the frequency up to sensor limits (500 KBd data
transmission rate for a serial RS422 data interface). We also decided
to use a 0.5º angular resolution to detect pedestrians at large
distances. The development framework introduced by Fleury et al.
(1997) was also used. It allows us to execute the algorithms as

Smart Car

Smart Car

Smart Car Position
(0,0,0°)

Sensor Field
of View

Parking Lot

Out of Range
Tracker

Out of Range
Tracker

Tracker

Sensor Field
of View

Tracker

0 19 38 57 76 95 [m]

Trackers

Marcelo Becker et al.

92 / Vol. XXXI, No. 2, April-June 2009 ABCM

modules on a single laptop running Linux (Dell D505 - Centrino
1.5 GHz). The tasks, coded in GenoM, follow the same approach
that is used in embedded systems like typical automotive platforms.

Figures 7 and 8 present more results, now based on real data
sampling. In both cases the scanner was placed in the origin (0,0),
looking along the positive x-axis and plotted frames which are not
consecutive, they were chosen by their contents. On top of each
plot, one may observe the time stamp (Time) and the elapsed time
between two consecutive scans (dt), both in seconds. The elapsed
time is almost constant, but sometimes, if the sensor detects any
error while reading or sending the data, it can take longer because
the data is excluded and a new scan data is acquired and sent
(compare Fig. 7-g and h). Aiming to facilitate the results
comprehension, we present in Fig. 7 only the trackers and in Fig. 8
the predicted occupancy grid.

In Fig. 7 one may observe the trackers (represented by circles),
the estimated velocities (represented by line segments), and the
static environment features laser sensor readings (represented by
dots). The line segments length and direction represent respectively
their estimated modulus and direction. In the scenario presented in
Fig. 7, two pedestrians were moving towards each other, one from
the right and one from the bottom of the scene. A bike was also

traversing, coming from the upper right corner. The trackers
continued from (a) to (b) until the moment when the bike went out
of range in (c), although the tracker is kept for one second after
disappearance. People continued approaching until they were almost
perceived as a single segment, (e). In (f), they could be separated
again and both trackers were updated. In addition, Fig. 8 shows the
trackers, the estimated velocities, the static environment features
laser sensor readings, and the predicted occupancy grid map
(represented by gray scale cells – as darker the gray cell is as higher
is the probability of an cell being occupied). In Fig. 8, the predicted
occupancy grid is shown. It is updated at the same scan acquisition
frequency (5 Hz). The static environment features were already
detected and enlarged by the growth rate, forming the occupancy
grid map with EOCs. In (a), a car was coming from the upper right
corner and a bike from the bottom. Then the cyclist started to reduce
its speed (b) as it approached the intersection. The car kept moving
and crossing the intersection until it hid the cyclist (c), but the bike
tracker was kept. In (d) the car continued moving and the bike
tracker was seen again. The car is not seen anymore in (e) and
finally the cyclist turns left in (f).

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 108.959 [s] dt: 0.207 [s]

-20 -10 0 10 20 30 40

-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 113.218 [s] dt: 0.207 [s]

(a) (b)

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 114.493 [s] dt: 0.207 [s]

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 117.276 [s] dt: 0.207 [s]

(c) (d)

Figure 7. Real data sample on streets at EPFL (108. 96 s to 120.91 s). Two pedestrians were moving towa rds each other, one from the right and one from
the bottom of the scene. A bike was also traversing , coming from the upper right corner. From (a) to (b) the trackers continued until the moment when
the bike went out of range in (c), though the track er is kept for one second after disappearance. The persons continued approaching until they were
almost perceived as a single segment, (e). In (f), they could be separated again and both trackers wer e updated. The frames are not consecutive.

Pedestrian #1

Pedestrian #2

Bike

Pedestrian #1

Pedestrian #2

Bike

Pedestrian #1

Pedestrian #2

Bike

Pedestrian #1

Pedestrian #2

Out of Range
Tracker

Smart Car Position
(0,0,0°)

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 93

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 118.334 [s] dt: 0.207 [s]

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

X [m]

Y
 [

m
]

Time: 120.911 [s] dt: 0.231 [s]

(e) (f)

Figure 7. (Continued).

(a) (b)

(c) (d)

Figure 8. Real data sample on streets at EPFL (362. 26 s to 366.53 s). In (a), a car was coming from th e upper right corner and a bike from the bottom.
Then, the cyclist started to reduce his speed (b) a s he approached the intersection. The car kept movi ng and crossing the intersection until it hid the
cyclist (c), but the bike tracker was kept. In (d) the car continued moving and the bike tracker was s een again. The car is not seen anymore in (e) and
finally the cyclist turned left in (f). Observe tha t the frames are not consecutive.

Pedestrian #2

Pedestrian #1

Car

Bike

Car

Car

Car

Bike

Bike

Bike
Hidden Tracker

Smart Car Position
(0,0,0°)

Marcelo Becker et al.

94 / Vol. XXXI, No. 2, April-June 2009 ABCM

(e) (f)

Figure 8. (Continued).

Conclusions

The successful implementation of car-like mobile robots that are
able to move autonomously on streets and roads depends on the
vehicle ability of dealing with highly complex environments. Due to
this, many researches initially developed for indoor applications are
being extended and adapted for outdoor environments. Recently,
some algorithms that fuse path planning and obstacle avoidance
tasks into a single navigator structure were presented. However, few
researches of obstacle path prediction on urban-like environments
are being carried out (most of them are centered on vision systems).

Our work presented results on obstacle tracking task in dynamic
urban-like environments. It focused on 2D laser-based obstacle
motion-tracking problem. A Kalman Filter was applied in order to
predict the obstacle motions even when they were hidden. First of
all, we introduced a short review on the motion tracking techniques
found in literature and highlighted the scarcity of publications when
it comes to car-like tracking applications in dynamic urban scenarios
using laser data. Then, our approach and the test platform used, a
modified smart fortwo coupé passenger car named Smart Car, were
briefly described. Our approach focused on detection, classification,
and tracking tasks of vehicles (e.g.: cars, buses, etc.) and
pedestrians. This technique allows the controller to take into account
hidden and non-hidden obstacles when maneuvering the vehicle. A
probabilistic occupancy-grid representation of the environment,
named predicted occupancy grid map, was also implemented. It
provided a given time horizon prediction view of the vehicle
surroundings based on motion-models of the obstacle classes and
obstacle estimated velocities. Real data samples were used to refine
the algorithms earlier developed and tested using a MatLab
simulator. Finally, the results were presented.

The results using real data samples indicated that obstacle
detection, classification, and tracking tasks only with a 2D laser
scanner are laborious. It happened because we decided to focus our
research on the use of a single sensor in order to obtain a cheaper
commercial solution that could be used on passenger cars. Due to
this, it was necessary to take into account several environment
feature details to turn them into diverse algorithm parameters. For
instance, the presence of bushes and leaves can produce spurious
readings and induce the algorithm to consider them as moving
obstacles. In order to overcome these difficulties, we suggest the use

of road and chart maps of the urban area and GPS, or its differential
version (DGPS), combined with embedded cameras. This would
increase the system overall performance by promoting data fusion
that would allow false mobile obstacles removal and the recognition
and classification of obstacles into more detailed classes, e.g.: walls,
trees, buses, cars, trucks, bikes, pedestrians, etc. Obviously, as the
use of vision systems is computer time expensive and very
dependent on scene illumination, it is necessary to work on scene
lighting and find a balance between computer processing
consumption and adequate data acquisition. Of course, if more
computers are used onboard the vehicle, this drawback can be
overcome easily. For the moment, this class labeling is carried based
only on obstacle speeds and observed sizes. The pedestrian class
uses the constant-velocity model and the vehicle class makes use of
a simple steering model based on the vehicle ICM for predicting
their paths. When it comes to the predicted occupancy grid map
building, we adopted two strategies that allowed us to keep the time
and memory consumptions at an acceptable level during the
experiments: we reduced the update frequency for the static part of
the occupancy grid map and we decided to neglect obstacles whose
behaviors were not considered dangerous (e.g.: obstacles whose
distances to the Smart Car were increasing above a threshold value).
Concluding, our results can be considered a valuable step towards
promoting the future interface between the motion tracking and
dynamic path planning algorithms found in literature. This
procedure allows the controller to obtain a better performance in
urban-like environments.

Acknowledgments

The first author thanks CAPES for the financial support during
his stay at EPFL – ASL (Grant # 0269-05-0), Switzerland. The
staffs of EPFL and ETHZ are also due to gratitude for their priceless
assistance and remarkable kindness.

References

Bar-Shalom, Y. and Fortmann, T.E., 1998, “Tracking and data
association”, Academic Press Inc., London, UK.

Becker, M., Hall, R., Jensen, B., Kolski, S., Maček, K. and Siegwart, R.,
2007-a, “The use of obstacle motion tracking for car-like mobile robots
collision avoidance in dynamic urban environments”, Proc. of XII International
Symposium on Dynamic Problems of Mechanics – DINAME 2007.

Car

Bike
Bike

Out of Range
Tracker

2D Laser-based Probabilistic Motion Tracking in Urban-like Environments

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri ght 2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 95

Becker, M., Kolski, S., Jensen, B., Maček, K., Weingarten, J., Lamon, P.
and Siegwart, R., 2007-b, “Car-like mobile robots: soon or latter a reality on
our streets”, Proc. of 6th Brazilian Conf. on Dynamics, Control, and their
Applications – DINCON 2007.

Bellino, M., Lopez de Meneses, Y. and Kolski, S., 2005, “Calibration of
an embedded camera for driver-assistant systems”, Proc. of Intelligent
Transport Systems Conference.

Bennewity, M., Burgard, W. and Thrun, S., 2002-a, “Learning motion
patterns of persons for mobile service robots”, Proc. of IEEE Int. Conf.
Robotics and Automation – ICRA 2002, Vol. 4, pp. 3601-3606.

Bennewity, M., Burgard, W. and Thrun, S., 2002-b, “Using EM to learn
motion behaviors of person with mobile robots”, Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems – IROS 2002, vol. 1, pp. 502-507.

Blanc, C., Trassoudaine, L. and Gallice, J., 2005, “EKF and particle filter
track to track fusion: a quantitative comparison from radar/lidar obstacle
tracks”, Proc. of 8th Int. Conf. on Information Fusion, Vol. 2, pp. 25-28.

Chao, C.H., Ho, C.H., Lin, S.H. and Li, T.H.S., 2005, “Omni-directional
vision based parallel-parking control design for car-like mobile robot”, Proc.
of the 2005 IEEE Int. Conference on Mechatronics, pp. 562-67.

Chiu, C.S., Lian, K.Y. and Liu, P., 2005, “Fuzzy gain scheduling for
parallel parking a car-like robot”, IEEE Transactions on Control Systems
Tech., Vol. 13, No. 6, November 2005, pp. 1084-1092.

Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S. and Bradski, G.,
2006, “Self-supervised monocular road detection in desert terrain”,
Proceedings of the Robotics Science and Systems Conference, Philadelphia,
PA, U.S.A., 2006.

Dissanayake, E.N.G., Sukkarieh, S. and Durrant-Whyte, H., 2001, “The
aiding of a low-cost strapdown inertial measurement unit using vehicle
model constraints for land vehicle applications”, IEEE Transactions on
Robotics and Automation, 2001.

Duan, Q.J., Wang, R.X, Feng, H.S. and Wang, L.G., 2004, “An
immunity algorithm for path planning of the autonomous mobile robot”,
Proc. of INMIC 2004, pp. 346-350.

Elfes, A., 1989, “Using occupancy grids for mobile robot perception and
navigation”, Computer, Vol. 22, No. 6, IEEE Computer Society Press, pp.
46-57.

Fiorini, P. and Schiller, Z., 1998, “Motion planning in dynamic
environments using velocity obstacles”, International Journal of Robotics
Research, Vol. 17, pp. 760-772.

Fleury, S., Herrb, M. and Chatila, R., 1997, “Genom: a tool for the
specification and the implementation of operating modules in a distributed
robot architecture”, International Conference on Intelligent Robots and
Systems, Vol. 2, pp. 842-848.

Gillespie, T.D., 1992, “Fundamentals of vehicle dynamics”, SAE
International, ISBN: 1-56091-199-9.

Holzmann, F., Kolski, S., Sulzmann, A., Spiegelberg, G., Siegwart, R.
and Bubb, H., 2005-a, “Improvement of the driving safety using a virtual
driver”, Proc. of Intelligent Transport Systems Conference.

Holzmann, F., Bellino, M., Kolski, S., Spiegelberg, G. and Siegwart, R.,
2005-b, “Robots go automotive – the SPARC approach”, Proc. of IEEE
Intelligent Vehicles Symposium, Las Vegas, Nevada, U.S.A. June 6-8, 2005.

Illmann, J., Kluge, B. and Prassler, E., 2002, “Statistical recognition of
motion patterns”, Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems – IROS 2002, Vol. 2, pp. 1259-1264.

Jensen, B., 2004, “Motion tracking for human-robot interaction”, PhD.
Thesis No. 3156 (2004), EPFL, Lausanne, Switzerland, 167 p.

Kalman, R.E., 1960, “A new approach to linear filtering and prediction
problems”, Transactions of ASME, J. Basic Engineering, Vol. 82, pp. 34-45.

Kalman, R.E. and Bucy, R., 1961, “New results in linear filtering and
prediction theory”, Transactions of ASME, J. Basic Engineering, Vol. 83, pp.
95-108.

Khoshnejad, M. and Demirli, K., 2005, “Autonomous parallel parking of
a car-like mobile robot by a neuro-fuzzy behavior-based controller”, Proc. of
NAFIPS 2005 – 2005 Annual Meeting of the North American Fuzzy
Information Processing Society, pp. 814-819.

Kluge, B., Illmann, J. and Prassler, E., 2001, “Situation assessment in
crowded public environments”, Proc. of Int. Conf. on Field and Service
Robotics.

Kolski, S., Ferguson, D., Bellino, M. and Siegwart, R., 2006,
“Autonomous driving in structured and unstructured environments”, Proc. of
IEEE Intelligent Vehicles Symposium.

Kolski, S., Macek, K., Spinello, L and Siegwart, R., 2007, “Secure
autonomous driving in dynamic environments: from object detection to safe
driving”, Proc. of the Workshop on Safe Navigation in Open and Dynamic
Environments: Applications to Autonomous Vehicles – IROS 2007.

Lamon, P., Kolski, S., Triebel, R., Siegwart, R. and Burgard, W., 2006-
a, “The SmartTer for ELROB 2006 – a vehicle for fully autonomous
navigation and mapping in outdoor environments”, Technical Report.

Lamon, P., Kolski, S. and Siegwart, R., 2006-b, “The SmartTer - a
vehicle for fully autonomous navigation and mapping in outdoor
environments”, Proc. of CLAWAR 2006, Brussels, Belgium.

LaValle, S.M., 2006, “Planning algorithms”, Cambridge University
Press, Available online at: http://planning.cs.uiuc.edu/

Lee, Z. and Chen, X., 2004, “Path planning approach based on
probabilistic roadmap for sensor based car-like robot in unknown
environments”, Proceedings of 2004 IEEE International Conference on
Systems, Man and Cybernetics, pp. 2907-2912.

Lindstrom, M. and Eklundh, J.O., 2001, “Detecting and tracking moving
objects from mobile platform using a laser range scanner”, Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems – IROS 2001, Vol. 3,
pp. 1364-1369.

Lu, H.C. and Chuang, C.Y., 2005, “The implementation of fuzzy-
based path planning for car-like mobile robot”, Proc. of the 2005
International Conference on MEMS, NANO and Smart Systems –
ICMENS’05, pp. 467- 472.

Maček, K., Williams, B., Kolski, S. and Siegwart, R., 2004, “A lane
detection vision module for driver assistance”, Proc. of the IEEE/APS
Conference on Mechatronics and Robotics, Aachen, Germany.

Maček, K., Becker, M. and Siegwart, R., 2006, “Motion planning for
car-like vehicles in dynamic urban scenarios”, Proc. of IROS 2006 –
IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 2006, Beijing, China.

MacLachlan, R., 2004, “Tracking moving objects from a moving vehicle
using a laser scanner”, Report, Carnegie Mellon University, available online
at: http://www.cs.cmu.edu/~ram/resume/datmo_report.pdf

Martínez-Marín, T., 2005, “Learning optimal motion planning for car-
like vehicles”, Proc. of the 2005 International Conference on Computational
Intelligence for Modeling, Control and Automation, and International
Conference on Intelligent Agents, Web Technologies and Internet
Commerce – CIMCA-IAWTIC’05, pp. 601-612.

Pradalier, C., Hermosillo, J., Koike, C., Braillon, C., Bessiere, P. and
Laugier, C., 2004, “An autonomous car-like robot navigating safely among
pedestrians”, Proc. of 2004 IEEE Int. Conf. on Robotics and Automation –
ICRA 2004 , Vol. 2, pp. 1945-1950.

Romero-Meléndez, C., Monroy-Pérez, F. and Vázquez-González, B.,
2005, “Complexity and path planning for a car-like robot” Proc. of 2nd
International Conference on Electrical and Electronics Engineering – ICEEE
and XI Conference on Electrical Engineering – CIE 2005, pp. 463-466.

SAE Series PT-132, 2006, “Adaptative cruiser control”, Edited by
Ronald K. Jungen, Published by SAE International, 474 p.

SAE Series PT-133, 2007, “Object detection, collision warning and
avoidance systems – Volume 2”, Edited by Ronald K. Jungen, Published by
SAE International, 419 p.

Schulz, D., Burgard, W., Fox, D. and Cremers, A.B., 2001, “Tracking
multiple moving targets with a mobile robot using particle filters and
statistical data association”, Proc. of the 2001 IEEE Int. Conf. on Robotics
and Automation (ICRA 2001), Vol. 2, pp. 1665-1670.

Sea, R.G., 1971, “An efficient suboptimal decision procedure for
associating sensor data with stored tracks in real-time surveillance systems”,
Proc. of 10th IEEE Conf. on Decision and Control, pp. 33-37.

SICK AG, 2006, “Technical description LMS200/211/221/291 laser
measurement systems”, 48 p.

Siegwart R. and Nourbakhsh, I., 2004, “Introduction to autonomous
mobile robots”, The MIT Press, Cambridge, Massachusetts, USA.

Singer, R.A. and Stein, J.J., 1971, “An optimal tracking filter for
processing sensor data of imprecisely determined origin in surveillance
systems”, Proc. of 10th IEEE Conf. on Decision and Control, pp. 171-175.

Sittler, R.W., 1964, “An optimal data association problem in
surveillance theory”, IEEE Transactions on Military Electronics, MIL-8, pp.
125-139.

Stavens, D., Hoffmann, G. and Thrun, S., 2007, “Online speed
adaptation using supervised learning for high-speed, off-road autonomous
driving”, Proc. of the International Joint Conference on Artificial
Intelligence – IJCAI, Hyderabad, India.

Sukkarieh, E.N.S. and Durrant-Whyte, H., 1999, “A high integrity
IMU/GPS navigation loop for autonomous land vehicle applications”, IEEE
Transactions on Robotics and Automation.

Thompson, S. and Kagami, S., 2005, “Continuous curvature trajectory
generation with obstacle avoidance for car-like robots”, Proc. of the 2005
International Conference on Computational Intelligence for Modeling, Control
and Automation, and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce – CIMCA-IAWTIC’05, pp. 863-870.

Marcelo Becker et al.

96 / Vol. XXXI, No. 2, April-June 2009 ABCM

Thrun, S., Burgard, W. and Fox, D., 2005, “Probabilistic robotics”, MIT
Press, USA, ISBN 0-262-20162-3.

Thrun, S., Montemerlo, M. and Aron, A., 2006, “Probabilistic terrain
analysis for high-speed desert driving”, in: G. Sukhatme, S. Schaal, W.
Burgard, and D. Fox, editors, Proceedings of the Robotics Science and
Systems Conference, Philadelphia, PA, U.S.A., 2006.

Wang, C.C. and Thorpe, C., 2002, “Simultaneous localization and
mapping with detection and tracking of moving objects”, Proc. of the IEEE
Int. Conf. on Robotics and Automation – ICRA 2002, Vol. 3, pp. 2918-2924.

Yamamoto, M., Hayashi, Y. and Mohri, A., 2005, “Garage parking
planning and control of car-like robot using a real time optimization
method”, Proc. of the 6th IEEE International Symposium on Assembly and
Task Planning: from Nano to Macro Assembly and Manufacturing – (ISATP
2005), pp. 248-253.

