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2D Laser-based Probabilistic Motion 
Tracking in Urban-like Environments 
All over the world traffic injuries and fatality rates are increasing every year. The 
combination of negligent and imprudent drivers, adverse road and weather conditions 
produces tragic results with dramatic loss of life. In this scenario, the use of mobile 
robotics technology onboard vehicles could reduce casualties. Obstacle motion tracking is 
an essential ability for car-like mobile robots. However, this task is not trivial in urban 
environments where a great quantity and variety of obstacles may induce the vehicle to 
take erroneous decisions. Unfortunately, obstacles close to its sensors frequently cause 
blind zones behind them where other obstacles could be hidden. In this situation, the robot 
may lose vital information about these obstructed obstacles that can provoke collisions. In 
order to overcome this problem, an obstacle motion tracking module based only on 2D 
laser scan data was developed. Its main parts consist of obstacle detection, obstacle 
classification, and obstacle tracking algorithms. A motion detection module using scan 
matching was developed aiming to improve the data quality for navigation purposes; a 
probabilistic grid representation of the environment was also implemented. The research 
was initially conducted using a MatLab simulator that reproduces a simple 2D urban-like 
environment. Then the algorithms were validated using data samplings in real urban 
environments. On average, the results proved the usefulness of considering obstacle paths 
and velocities while navigating at reasonable computational costs. This, undoubtedly, will 
allow future controllers to obtain a better performance in highly dynamic environments. 
Keywords: motion tracking, obstacle classification, Kalman Filter, urban-like environment  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1As a result of the astonishing advances made over the last 

decades on several scientific fields, today mobile robots have many 
real applications. They range from Automatic Guided Vehicles 
(AGVs) and Autonomous Mobile Robots (AMRs) on factory floors, 
personal assistants for disabled and elderly people to exploration of 
hazardous environments such as surface of planets and bottom of 
oceans. Wherever the robot may be and whatever its purposes are an 
interface to exchange information is always needed. For many 
applications, e.g. when the interaction between humans and robots 
are not close, this interface may be a simple remote control. On the 
other hand, when robots and humans interact directly or they need to 
be more autonomous and take decisions based on their perception of 
their environment, the interface might be much more complex. 
Autonomous behavior is frequently represented as a perception-
reasoning-action loop. It means that given the specification of a 
goal, the robot uses perception to identify relevant elements, then it 
analyses them, plans tasks to attain the goal, and finally executes 
these tasks. More autonomous systems may even define the goal to 
be reached based on some criteria. 

Recently, several events around the world and research funding 
agencies have been impelling robotics researchers to focus their 
works on developing, transferring, and adapting techniques and 
approaches initially developed for indoor and outdoor mobile robots 
to car-like autonomous mobile robots. Events such as the DARPA 
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1st and 2nd Great Challenge (2005, 2007), ELROB (2005), and C-
ELROB (2007) are paving the way for the use of promising 
technologies in military and civil vehicles (Thrun et al., 2006; 
Dahlkamp et al., 2006; Lamon et al., 2006; and Stavens et al., 2007). 
On the other hand, in a near future, an assistance system that helps 
the driver and acts mostly in peril situations will be implemented 
more easily when compared to a fully autonomous system and will 
probably be more attractive for the majority of the drivers (one 
should take into account that western people tend to be standoffish 
regarding robots, in severe contrast to the Japanese, who welcome 
ubiquitous machines).  

Systems like the Intelligent Parking Assist (IPS) technology 
onboard the Toyota Prius are becoming very popular among car 
buyers. Due to this, many researchers are working on car-like robot 
autonomous parking problem. This is a perfect example of an 
assistive system that uses sensors, e.g. ultrasound sensors and 
cameras, to help the driver during maneuvers. This amounts to 
saying that a system which is able to provide a full parking 
maneuver procedure, without any human intervention, is desired and 
will shortly become a serial item. Another example is the Secure 
Propulsion using Advanced Redundant Control project – SPARC - 
developed at the Swiss Federal Institutes of Technology (EPFL and 
ETHZ) in cooperation with a European Consortium of Automotive 
Companies (Holzmann et al., 2005-a and 2005-b, and Becker et al., 
2007-b). Recent developments on sensors, actuators, algorithms, etc. 
applied on intelligent vehicles can be found in SAE series PT-132 
(2006) and PT-133 (2007).  

Today it is possible to think of freeways and urban 
environments interconnected by high-tech networks that will allow 
the dissemination of fully autonomous vehicles. Traffic jams may be 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37445603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Marcelo Becker et al. 

84 / Vol. XXXI, No. 2, April-June 2009 ABCM  

substituted by hundred of vehicles virtually interconnected and 
moving autonomously in a cooperative way. Onboard computers are 
likely to work together and control completely the vehicles under 
any weather and road conditions. Nevertheless, in order to achieve 
this dream scenario, the entire road network and vehicle fleet need 
to be adjusted accordingly.  

Taking into account that there are hundreds of millions of 
vehicles and road kilometers in the world, these changes possibly 
represent a cost of billions of dollars. In a near future, a less 
expensive solution is an intelligent road network based on road and 
onboard vehicle sensors and computers. In this case, adapted 
freeways monitor vehicles, road, and weather conditions act as an 
assistive system alerting the drivers for peril situations. Today this 
scenario is becoming a reality in Europe, Asia, and North America. 
Another option is the use of intelligent assistive systems (e.g.: anti-
collision systems) onboard vehicles. In case of an imminent 
collision, the system would alert the driver or assume the vehicle 
control. 

There are several problems to be solved in both cases (fully 
autonomous and assistive technologies), but recent developments of 
onboard hardware and sensors are resulting in considerable research 
progress. However, the best ratio between desired autonomous 
behavior and costs when selecting the onboard hardware and 
software necessary for acquiring, extracting, and interpreting the 
environment features is to be drawn. In the context of autonomous 
and assistive systems, the importance of cognitive abilities is 
noticeable. Similarly to persons that need their senses in order to 
interpret and interact with the environment, an autonomous robot 
needs sensors that would provide information about his vicinity and 
state. In practice, the interpretation of the scene (i.e.: environment 
feature extraction, robot auto-localization, obstacle position 
detection, obstacle classification, obstacle path prediction, etc.) is 
essential to provide the robot controllers with information to plan a 
safe path. Although sensor technology has experienced significant 
improvements recently, high dynamic changing and unconstrained 
environments still represent an enormous challenge for the robotics 
research community. This is the case of urban-like environments 
where traffic (car, buses, bicycles, etc.) and pedestrian paths are 
unknown and sometimes difficult to predict. In spite of this, the 
obstacle motion tracking is an indispensable procedure for 
improving the robot environment perception. Unfortunately, it is a 
difficult task when some obstacles close to the robot’s sensors may 
cause blind zones behind them. In this situation, the robot may lose 
vital information about hidden obstacles that could avoid future 
collisions.  

Some examples of researches developed in the field of 
autonomous parking are those carried out by Chao et al. (2005), 
Khoshnejad M. and Demirli (2005), Yamamoto et al. (2005), and 
Chiu et al. (2005). In this topic, fuzzy logic and artificial neural 
networks are some of the approaches used by the authors to face the 
problem. In addition to these researches, the works developed by 
Wang and Thorpe (2002), Duan  et al. (2004), Lee and Chen (2004), 
Lu and Chuang (2005), Martínez-Marín (2005), Romero-Meléndez 
et al. (2005), Thompson and Kagami (2005), Kolski et al. (2006), 
and Maček et al. (2006)  addressed a more complex problem: the 
path-planning task in urban environments for car-like mobile robots. 
The hidden and visible obstacles tracking problem was addressed in 
Becker et al. (2007-a). Virtual drivers, drive-assistant systems, and 
lane detection using artificial vision systems were focused in Maček 
et al. (2004), Bellino et al. (2005), Holzmann et al. (2005-a and 
2005-b), and Lamon et al. (2006).  

The present work focuses the 2D laser-based obstacle motion-
tracking problem in dynamic unconstrained environments (urban-
like) by applying a Kalman Filter in order to predict the obstacle 
motions when they are hidden. This would allow the car-like mobile 

robot controller to take into account hidden and non-hidden 
obstacles when maneuvering the robot. A probabilistic occupancy-
grid representation of the environment was also implemented. It 
provides a given time horizon prediction view of the robot 
surrounds based on motion-models of the obstacle classes and 
obstacle-estimated velocities. Initially, the test platform (Smart Car) 
is presented. Next, a brief review of the state of art on motion 
tracking is addressed and the multi-obstacle motion-tracking 
algorithm (including the Kalman Filter) is shortly described. Then, 
the results obtained while using real data are shown. Finally, the 
conclusion and outlook are presented. 

Nomenclature 

ac  = centripetal acceleration, m/s2 
F  = state transition matrix, - 
H  = measurement transition matrix, - 
ICM = instantaneous center of motion, - 
L  = distance between rear and front axles, m 
MD = Mahalanobis distance, m 
n   = data quantity, - 
P   = state covariance matrix, - 
Q  = process noise covariance matrix, - 
r   = turning radius, m 
R  = measurement noise covariance matrix, - 
S   = innovation covariance matrix, - 
t   = time, s 
V  = velocity, m/s 
v  = state vector, m and m/s 
w  = measurement white noise, m 
W = filter gain, - 
x   = state vector, m and m/s 
x   = measured point x coordinate on a segment, m 
y   = measured point y coordinate on a segment, m 
x̂  = state prediction vector, m and m/s 
z   = state vector, m and m/s 
ẑ  = state prediction vector, m and m/s 
 

Greek Symbols 

∆   = parameter variation, - 
θ  = steering angle, rad 
µ  = expected mean value, m 
ν   = innovation, m and m/s 
σ   = standard deviation, m 
σσσσ   = variance, - 
υυυυ  = process white noise, m 
φ   = angular orientation, rad 
ϖ   = angular velocity, rad/s 
 

Subscripts 

i       relative to parameter indices 
max relative to maximum value 
min relative to minimum value 
norm relative to norm 
X   relative to stochastic variable 
Y       relative to stochastic variable 
 

Superscripts 

T  relative to transpose matrix 
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Test Platform – Smart Car and Laser Range Finder 

The Smart Car used as test platform is based on an ordinary 
smart fortwo coupé passenger car (Fig. 1). Obviously some changes 
and improvements were included in order to allow the vehicle 
autonomous behavior, e.g.: a steer-by-wire system (Fig. 2). 
Undoubtedly, the heart of the vehicle is the onboard computer. It is 
interfaced with several sensors and actuators that control the vehicle 
through the controller-area network (CAN). For instance, braking, 
acceleration, and steering controls are made by controlling dedicated 
motors. A system of cable and pulleys controlled by a motor is used 
to activate the brake pedal. An electronic system was designed to set 
the throttle command directly (the voltage, originally provided by 
the potentiometer in the throttle pedal, is generated by the computer 
and sent to the CAN).  

 
 

 
Figure 1. Modified Smart Car used at ASL. Observe t he LMS 291 SICK 
laser sensor assembled on its front bumper. 
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Figure 2. The steer-by-wire system implemented in t he Smart Car. 

 
 
A set composed by a steering encoder and a motor allows the 

computer to steer the vehicle front wheels. Summarizing, the vehicle 
CAN can access the following internal car state data: 

1.  Vehicle flags: engine on, door closed, brake pedal pressed, 
etc.; 

2.  Engine: engine rpm, instantaneous torque, gear shift, 
temperature, etc.; 

3.  Odometry: global vehicle speed, individual wheel speeds, 
ABS activated; 

4.  Throttle pedal value and steering wheel angle. 
A switch enables to select the manual or autonomous vehicle 

modes. The Smart Car is also equipped with Global Positioning 
System (GPS) and 6 degree of freedom (DoF) Inertia Measurement 
Unit (IMU), allowing measuring the vehicle relative movement. The 
IMU measures lateral acceleration in all three dimensions, angular 

rates up to 100º/s with a resolution of 0.025º, and lateral acceleration 
up to 2g with a resolution of 0.01 m/s2. Exteroceptive sensors, such 
as a monocular camera and a laser range finder (SICK AG Laser 
Measurement Sensor - LMS 291) both looking forward, have also 
been installed. The laser sensor was assembled on the front bumper 
of the Smart Car and it has a 180º field of view with an angular 
resolution from 1º to 0.25º. Its maximum range is 80 m and it has a 
statistical error of 10 mm. 

In this work we used the data from the laser scanner as the main 
source of information. This choice was based on the fact that laser 
sensor prices are gradually decreasing every year, what may make it 
possible their commercial use in passenger vehicles in a near future.  

Sensor Model 

Laser scanners are active sensors that emit a laser beam and rely 
on the time-of-flight principle for measuring distance. A rotating 
mirror or prism is used in order to cover an angular range. The 
neighboring points are taken at successive rotations of the revolving 
unit. Thus, they are taken with a time difference proportional to the 
rotational frequency (fsensor) of the revolving unit (in our case,    
fsensor = 75Hz). The sensor data flow can be understood as follows: 
the laser sensor acquire data over a period of time ∆t, which is then 
sent to the computer via RS422 where a real-time thread reads data 
at 17Hz. In a first step, the data set is transformed into a coordinate 
system centered on the vehicle and it is assigned with a time-stamp 
and the vehicle position at this time. Depending on the desired 
angular resolution, the acquisition time varies. For 0.5º resolution 
two rotations are necessary, so the acquisition time amounts to       
∆t = 2/fsensor. During the first rotation the data points for the angular 
position 1, 3,... are taken and the second rotation provides the even 
set of 2, 4,... When running in 0.25º mode even four rotations are 
necessary and the acquisition time amounts ∆t = 4/ fsensor. 

In our case, the main objective of modeling the laser scanner is 
to take into account known sources of uncertainty while tracking the 
obstacles. The main assumption used is that different sources of 
error are pair wise independent and can be modeled as Gaussian 
distributions. Thus, the resulting uncertainty may be represented as 
its covariance (Jensen, 2004). There are several origins for laser 
measurements, but the main ones are: the timer counting the time-
of-flight, the stability of the rotational frequency of the revolving 
unity and the frequency with which beams are sent out. 
Unfortunately, the sensor documentation (SICK AG, 2006) has no 
data for ranges greater than 20 m and for the angular uncertainty. 
For the experiments carried out in this research (0.5º angular 
resolution and 30 m range) we assumed the sensor data specified in 
the documentation for a 20 m range (the uncertainty on the distance 
measured to σρ

2 = 0.012 m2). Concerning the angular uncertainty, in 
fact we observed that the angular values provided by the sensor are 
constant and taken from a table. Due to this, it is difficult to evaluate 
the angular uncertainty experimentally. So, we used the opening 
angle of the laser beam (0.5º) and assume the angular uncertainty to 
be half the beam width (σφ

2 = 0.252º2). As previously cited, distance 
and angular uncertainties are assumed to be independent and 
Gaussian distributed, thus the sensor uncertainty is represented by: 

 

),(diagsensor
222
φρ σσ=σσσσ . (1) 

 

Motion Tracking 

Applications of motion tracking algorithms range from military 
(e.g. missile guided systems, air-space surveillance, etc.) to civil 
ones (e.g. virtual reality systems, human-machine interaction, etc.). 
All these applications face challenges concerning noise sensor data 
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and data uncertainty. In order to deal with these problems the use of 
Kalman Filters (KF) was proposed in the early 1960s by Kalman 
(1960), and Kalman and Bucy (1961). Early studies focused on 
single and multi-target tracking, and data origin uncertainty applied 
on environment surveillance also proposed the use of KF (Sittler, 
1964; Sea, 1971; and Singer and Stein, 1971). When dealing with 
the incorporation of uncertainty on the data origin in tracking, one 
should keep in mind that the robot is dealing with multiple-
hypothesis tracking. This means that it has a combinatorial 
explosion of hypothesis that usually cannot be handled in real-time 
(Jensen, 2004). There is a large quantity of publications in the 
literature related to motion tracking using a variety of sensors 
(vision, laser, etc.). As our test vehicle has an onboard 2D laser 
sensor used for extracting the environment data, we decided to focus 
our literature review on the development of systems that use mobile 
robots with onboard 2D laser sensors. Nevertheless, when it comes 
to car-like tracking applications in dynamic urban scenarios that use 
only 2D laser sensor data, literature proved to be scarce up to now. 
Pradalier et al. (2004) developed an interesting approach using as 
test vehicle a bi-steerable car called CyCab. However, they did not 
focus their research on multi-obstacle motion tracking, but on the 
integration of some essential autonomy abilities into a single 
application (simultaneous localization and environment modeling, 
motion planning and motion execution amidst moderately dynamic 
obstacles).  

Considering indoor applications, there are several works that 
focused the motion-tracking problem based on 2D laser sensor data. 
Shulz et al. (2001) addressed the application of multi-obstacle 
motion tracking algorithms onboard mobile robots for tracking 
moving persons. They applied a sample-based representation of the 
joint probability density function (SJPDF) of all moving obstacles to 
avoid the combinatorial explosion of multi-hypothesis tracking. If 
on the one hand they could combine SJPDF with a local occupancy 
grid and show the tracking of several persons through temporal 
occlusions in well structured environments, on the other hand, the 
use of SJPDF requires the knowledge of the tracked obstacle 
quantity. It means that they needed to use a Bayesian filter and the 
time sequence of moving features quantity to estimate the tracked 
obstacle quantity. At the end, their motion tracking algorithm had to 
deal with local minima, non-linear relations due to the increased 
occlusion quantity, local occupancy grids, and the use of 
probabilistic filters to filter static objects that could become difficult 
to handle in real-time for non-structured environments. Kluge et al. 
(2001) presented a strategy for analyzing the robot-human 
interaction scenario. It was based on a set of prototypical situations 
in crowded public environments and consists of scene analysis, 
tracking, action recognition, and intention reasoning procedures. 
Illmann et al. (2002) extended this analysis by applying local person 
density and tree-based vector quantization. Bennewitz et al. (2002-a 
and 2002-b) developed a system to segment tracks of a person in a 
common household environment. In this work, the trackers were 
obtained from static laser sensors and the segmentation process was 
based on Expectation Maximization approach. Their purpose was 
the detection of the intention of a person based on his or her path. 
Jensen (2004) addressed the multi-object tracking problem using 
single Kalman Filters for each individual problem. In order to deal 
with data association he used validation gates and to solve the 
measurement-track assignment he utilized linear programming 
techniques. Our approach is based on (Jensen, 2004) and extends it 
for urban-like environments focusing on tracking pedestrians and 
vehicles (e.g.: cars, trucks, and buses).   
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Figure 3. Flowchart representing the General Struct ure of the Motion 
Tracking Algorithm.  

 
 
Figure 3 summarizes the approach developed for urban-like 

environments. The 2D laser raw data acquired by the SICK laser 
sensor are used as input data for the obstacle detection algorithm. 
Initially, the data are segmented in order to extract the environment 
features and to detect motion. Features that are not moving are 
considered static and stored in a local map that is also used for 
detecting motion. After detecting mobile obstacles, a process of data 
association is applied to start new trackers or update existing 
trackers. Trackers that are hidden for more than a threshold value 
(e.g.: one second) are deleted. Put simply, the whole procedure 
outputs are:  
1. Non-hidden obstacle quantity, obstacle positions and estimated 

velocities (Trackers in Fig. 3); 
2. Hidden obstacle quantity, obstacle predicted positions and 

velocities (Trackers in Fig. 3); 
3. Obstacle classification, e.g. pedestrian, car, truck, etc. (Trackers 

in Fig. 3); 
4. Local Occupancy Grid Map; 
5. Predicted Occupancy Grid Map for a given time horizon (e.g.: 1 

second). 
Both procedures, obstacle detection and tracking, are shortly 

explained as follows. 

Obstacle Detection 

There are several approaches for detecting objects using a 2D 
laser scanner in the literature, most of them centered in indoor 
mobile robotics applications. For a fixed sensor this task is 
straightforward since it is possible to compare two consecutive 
scans and immediately determine which points remains in the same 
spot and which do not. For a mobile sensor like the one onboard a 
mobile robot or a vehicle such as a car, the task is somewhat more 
difficult due to the translation and rotation caused by its 
displacement. Take for example a static obstacle that is seen by only 
one point in the first scan. In the next scan the sensor has moved a 
little and the changed viewing angle results in the point being seen 
at another spot on the same obstacle. This phenomenon can give a 
false impression that the static obstacle is actually moving. In order 
to avoid this, it is necessary to take into account, as precisely as 
possible, the vehicle position. This work focuses on detecting 
moving obstacles like vehicles and pedestrians. To perform this 
task, we utilized the Motion Filter approach (Lindstrom and 
Eklundh, 2001; and Wang and Thorpe, 2002).  

It is important to emphasize that this work is not focused on the 
vehicle position estimation. This topic was previously highlighted in 
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Lamon et al. (2006-a and 2006-b) and Kolski et al. (2007). 
Basically, in order to accurately localize the vehicle, the GPS, the 
IMU, and the wheel encoder data were combined using a Kalman 
Filter to estimate its 6 degrees of freedom, i.e. its position and 
attitude (Sukkarieh et al., 1999; and Dissanayake et al., 2001). This 
filter is called Information Filter (IF) and during the experiments it 
produced excellent results when the vehicle was traveling at low 
speeds in open areas (far from large structures, tunnels, etc.). The 
standard deviation of the filtered position was less then 0.025 m for 
all three position coordinates. Based on this result we decided to 
neglect the vehicle position uncertainty, while modeling the Kalman 
Filter used to estimate the obstacle motions when they are hidden 
(see Kalman Filter item). Following this premise, we could use 
directly the vehicle position estimated by the IF to produce local 
maps and detect motion, even when the vehicle was moving. 

Segmentation 

Grouping measurements that belong to the same object are 
mandatory, when processing data from a laser scanner. The scans 
will consist of length measurements at equidistant angles and 
therefore it is very likely that two points that are close to each other 
also belong to the same object. Likewise, two consecutive 
measurements that are far away are likely to imply that a change in 
the observed object has occurred. Since it is necessary to define a 
distance threshold, there is always the risk of making errors in the 
segmentation process, either by creating one single segment out of 
two or more close objects, or by dividing an object into more than 
one segment. The segmentation makes it possible to do further 
processing on the different segments or point clusters. This normally 
consists of classification by size, dynamic status, or geometrical 
features (MacLachlan, 2004). 

Motion Based Approach 

Basically, the idea is to compare two scans apart by some time 
interval, ∆t, trying to match them in order to determine which points 
are static and which are dynamic. By using this approach one can 
suppress spurious readings from the static environment, giving a 
better input to the tracker. The scan matching is made by storing the 
previous scan and comparing it to the new one. For each point in the 
new scan, distances to points in the old scan are calculated and 
compared to a threshold value (in our case, ± 10 cm). If a match is 
found, the point is likely to be static. One exception is when points 
are matched to a different area on a moving obstacle, for instance 
along the side of a passing vehicle. This problem was later solved by 
checking the dynamic classification in the first scan. If a point was 
labeled dynamic at that time, it is likely to be dynamic in the next 
scan. However, if no match is found, one cannot say for sure that the 
point is moving without further processing. The point could have 
been occluded in the first scan or out of range due to vehicle motion 
between scans. Therefore, we make use of the free area that is the 
space between the robot and the obstacles or scan range. If a point 
seen in the second scan is not found but within this area in the first 
scan, thereby observable, it is labeled as moving. A segment 
containing a certain amount of points labeled as moving can be sent 
to the tracker, after its center point is calculated.  

During the simulation phase, we observed that the simple use of 
scan matching was not sufficient to deal with spurious readings. One 
reason for this behavior was the translation and rotation movements 
of the sensor. Aiming to increase the detection of static points, a 
local map was created. At first, the map was implemented as a 
position vector, storing in each scan the coordinates of all points 
labeled as static ones. New scans were then checked against the map 
and when a match was found, the weight for that map point was 

increased. In order to keep down the size of the map, each point kept 
track of its own age. When a terminal age was reached, e.g. after 10 
seconds, the point would be deleted from the map. The static map 
helped to improve the motion detection, but some disadvantages 
were noticed. The representation of the map using points was one of 
them. Measurements are never exact, and therefore, it is difficult to 
determine how many map points are needed to represent an 
obstacle. If we add all new static points, we get a very large map 
which slows down the matching process. But if we only add points 
that were not matched to the map before, we will certainly miss 
useful information. A method that turned out to be a better approach 
to the local mapping was the Time Stamp Method (Fiorini and 
Shiller, 1998). Basically this method is an Occupancy Grid 
Representation (Elfes, 1989) that does not consider the uncertain 
cells. Due to this, only free and occupied cells are considered and 
the computational time necessary for each environment scan is 
reduced.  

Thanks to the use of the Fiorini and Shiller’s occupancy 
representation, we could improve and simplify the scan matching 
process. Latter, the occupancy grid was used not only to represent 
the static environment, but also to represent present and future 
predictions of the tracker output. This was carried out by adding a 
probabilistic grid to the occupancy representation (see Predicted 
Occupancy Grid Map item). Due to this, it was necessary to classify 
and model the obstacles that were being tracked. 

Obstacle Classification 

By classification, we refer to the process of determining if a 
moving segment belongs to vehicles or pedestrians. While working 
with the MatLab Simulator (Becker et al., 2007-a), pedestrians were 
rarely detected by more than two or three scan data. Since the sensor 
is placed about 50 cm from the ground, it usually detects one point 
on each leg. If the pedestrian stands close to the sensor it is easier to 
distinguish a contour, but this was rarely the case. An obvious 
difference between vehicles and pedestrians is their size, so we 
decided to base the classification on it. We used the standard 
deviation of each segment to represent its size: 
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where X and Y are stochastic variables, x and y are measured points 
on a segment, n is the data quantity, and µ and σ are expected values 
and standard deviations respectively.  

Checking the norm of standard deviations against a predefined 
threshold yields the classification into vehicle or pedestrian: 

 

22
YXnorm σσσ += . (4) 

Obstacle Tracking 

A robot navigating in an environment with other moving 
obstacles needs some kind of information concerning its 
environment in order to avoid collisions. Some systems just prohibit 
movement in directions which will bring the robot too close to an 
obstacle, regardless of how the obstacle moves (Siegwart and 
Nourbakhsh, 2004). For efficient path planning it is, however, much 
better to know more about the dynamic state of the obstacles. The 
way to achieve this goal is by tracking them and estimating their 
future positions (states). Tracking makes it possible to measure the 
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dynamic state of an obstacle, i.e. its position and velocity, and with 
this information predictions can be made on the obstacles future 
positions (Bar-Shalom and Fortmann, 1998; and Blanc et al., 2005).  

In an urban environment, laser measurements are subject to 
noise, which we have to suppress by filtering. It is also usual to 
expect obstacles being hidden by other obstacles. However, it is 
possible to continue to track these obstacles until they are seen again 
and thereby minimize the risk of a collision. Each obstacle in this 
setup is characterized by its center of gravity, or at least the center of 
gravity for the part that is being seen. Since the scanner provides a 
2D output, this point is described by (x, y) coordinates. The x and y 
velocities were also introduced in the state of the dynamic object for 
tracking the motion of each obstacle and predicting its continued 
path. The state vector then becomes: 

 

xvstate == T)yyxx( && .                                                     (5) 
 
However, from now on we will simply denote it as x. The 

measurements, containing only the x and y values, are labeled z. 

Kalman Filter 

The Kalman Filter (KF) is a wide spread technique for 
estimating the state of a dynamic system observed through noisy 
measurements. The filter is a recursive state estimator, which means 
that in every step it uses the output of the previous step to make a 
new prediction. It consists basically of two steps, the prediction step 
when estimation is made based on the old state, and an update step 
when that estimation is updated with a new measurement. The state 
and measurement predictions are denoted by x̂  and ẑ . In order to 
predict a dynamic system response, a dynamic model is used. In this 
study the linear constant-velocity model (Jensen, 2004) was applied. 
Due to its linearity, it is simple to implement. It can be described by 
its discrete-time transition and noise covariance matrices, 
respectively Eqs. (6) and (7): 
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Other models were considered and, especially for vehicles, the 

constant angular velocity model could improve the tracking for 
vehicles making turns. However, such implementation would 
require a more complex filter, Extended Kalman Filter, EKF (Thrun 
et al., 2005). It is also beneficial to keep a simple, not too 
specialized, model since the tracker is dealing with obstacles with 
different dynamic properties (e.g.: pedestrian and vehicles). The 
evolution of the dynamic system can now be described as: 

 

)tt()t()t()tt( ∆∆∆ ++=+ υxFx , (8) 
 

)tt()tt()tt( ∆∆∆ +++=+ wxHz , (9) 
 

where υυυυ and w are respectively the white process and measurement 
noises and H is the measurement matrix, which transforms a state 
vector into a measurement vector, Eq. (10): 
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In the prediction step, the latest state estimated at ∆t is used to 

produce a new state prediction at (∆t + t). Predictions are also made 
on the state and innovation covariances, respectively Eqs. (13) and 
(14): 

 

)t(ˆ)t()tt(ˆ xFx ∆∆ =+ , (11) 
 

)tt(ˆ)tt(ˆ ∆∆ +=+ xHz , (12) 
 

T)t()t()t()tt( ∆∆∆ FPFP +=+ , (13) 
 

RHPHS ++=+ T)tt()tt( ∆∆ , (14) 
 

where the measurement noise covariance, R, is the variance (σ²) 
times the identity matrix (I ), Eq. (15); in our case the variance is 
represented by the sensor data uncertainty, Eq. (1). P is the state 
covariance matrix, and S is the innovation covariance matrix.  

 
2σIR = . (15) 

 
The following step is called the update step, because a 

measurement is used to update the tracker. Now the innovation, νννν, 
can be calculated as the difference between the real measurement 
and the predicted one. The filter gain, W, is calculated after state 
and covariance updates: 

 

)tt(ˆ)tt()tt( ∆∆∆ +−+=+ zzν , (16) 
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More details concerning the implementation of Kalman Filters 

and Extended Kalman Filters may be found in: Kalman and Bucy 
(1961), Bar-Shalom and Fortmann (1998), Jensen (2004), and Thrun 
et al. (2005). 

Data Association 

Each tracker must be associated with new measurements when 
available, if the filter is working properly. There are various 
approaches for data association that are designed to suit different 
scenarios. A Joint Probability method (Bar-Shalom and Fortmann, 
1998), for instance, is an interesting choice when sampling data in a 
cluttered environment, because it takes into account the fact that the 
closest sample is not always the right one in a multi-target scenario. 
The intuitive approach in this case was the Nearest-Neighbor 
Standard Filter, NNSF (Bar-Shalom and Fortmann, 1998). The 
NNSF algorithm iteratively calculates all the distances between 
trackers and measurements. The distance is represented by the 
Mahalanobis distance, MD: 

 
TMD ννS 1−= . (20) 

 
MD is the same as the Euclidian distance, if the covariance 

matrix is the identity matrix, I. Each tracker is then associated with 



2D Laser-based Probabilistic Motion Tracking in Urban-like Environments 

J. of the Braz. Soc. of Mech. Sci. & Eng.    Copyri ght  2009 by ABCM April-June 2009, Vol. XXXI, No. 2 / 89 

the closest measurement, if it does not exceed a predefined 
threshold. However, problems may occur if the application deals 
with unambiguous association. An optimization was carried out by 
using integer programming: MD was collected in a matrix where 
one tries to minimize the total sum provided. There may be only one 
value selected from each column and each row (Jensen, 2004). 

Tracking Obstacles 

The tracking obstacles task is performed after the data 
association procedure. In the beginning (the very first scan), all 
measurements are initialized as new trackers and their initial state 
vectors, xinitial, represent their positions and null velocities (initially 
all observed features are considered static ones). Covariance 
matrices are also initialized to reasonable values, taking into account 
the sensor documentation (SICK AG, 2006). Each tracker is 
associated with a variable called hidden that keeps the scan quantity 
in which the tracker has not been updated with a measurement. At 
initiation or after a successful update this variable is reset to zero. In 
every consecutive scan, trackers are updated iteratively in the 
following sequence: 

 
1:  for  each TRACKER do 
2: Calculate Kalman prediction state; 
3: MDall  ⇐ Mahalanobis Distances of all measurement data; 
4: MD ⇐ min(MDall); 
5: if  MD  ≤   threshold1 then 
6: update Kalman Filter with measurement; 
7: hidden = 0; 
8: else 
9: hidden = hidden + 1; 
10: end if 
11: if  TRACKER is hidden for more than threshold2 then 
12: Delete TRACKER 
13: end if 
14: end for 
15: for  each unmatched measurement do 
16: Create a new TRACKER 
17: end for 

Predicted Occupancy Grid Map 

The inclusion of tracked obstacle path predictions in the 
occupancy grid map of the environment that surrounds the robot 
improves the map usefulness for navigation. In future, we plan to 
fuse the procedure presented in this work with the navigation 
procedures previously presented at Kolski et al. (2006). The 
predictions are carried out by calculating possible paths for the 
trackers and adding some uncertainty at some time step in the 
future. As the trackers are keeping the dynamic state of the tracked 
obstacles, this information can be used for predicting a future state. 
For vehicles it is a relatively easy task, taking into account that the 
vehicle maneuverability model can be expressed in a couple of 
equations. On the other hand, for pedestrians this task is quite 
complex. A person is often moving at a speed which allows it to 
stop abruptly, or entirely change heading. One might, for instance, 
stop to talk with someone and continue in another direction 
afterward. Since pedestrians are likely to travel at rather low speeds, 
the constant-velocity model was considered sufficient for predicting 
their paths. 

Unfortunately, for vehicles this solution was not possible and 
we decided to use vehicle steering kinematics to model the vehicle 
behavior. Aiming to keep the model as simple as possible, instead of 
applying the Ackermann Geometry (Gillespie, 1992), we make use 
of a simple steering model based on the vehicle instantaneous center 

of motion - ICM. The vehicle front wheel angles relative to their 
straight ahead position is called the steering angle, henceforth noted 
θ. Due to mechanical reasons most vehicles have a maximum 
steering angle that is by far less than 90º. When maintaining 
constant steering angle, θ ≠ 0, the vehicle is moving on a circular 
path. A simple car model (LaValle, 2006) gives us Eq. (21): 

 

R
Ltan =θ , (21) 

 
where L is the distance between the front and rear wheel axles, and 
R is the radius of the circular path with center in Instantaneous 
Center of Motion – ICM.  

Continuing with deriving the angular velocity in the path we 
have:  

 

r.r..d φ∆π
π
φ∆ == 2

2
, (22) 

 
where d is the distance along the circular path, same as v.∆t, and ∆φ 
is the change in angular orientation (∆φ = ϖ.∆t, ϖ is the angular 
velocity). Further simplifications: 

 

r
vt..rt.v =→= ϖ∆ϖ∆ . (23) 

 
Combining Eqs. (21) and (23) yields: 

 

θϖ tan
L

v= . (24) 

 
Equation (24) means that it is possible to calculate the angular 

velocity of an obstacle knowing its velocity, steering angle and axle 
distance. Using the velocity and angular velocity, the predicted path 
can be easily calculated. Obviously, the placement of axles varies 
between different types of vehicles, but it stays in the same vicinity 
when the same vehicle class (e.g.: cars) is considered. A future 
combination of 2D laser sensors and embedded cameras would 
solve this difficulty by recognizing and classifying the vehicles into 
more detailed classes (e.g.: buses, cars, trucks, bikes, etc.) based 
also on visual data. For the moment, this class labeling is possible 
based only on vehicle speeds and sizes. In order to simplify the 
model, a maximum steering angle for vehicles was set to 0.42 
radians (θmax ≈ 24°). Another constraint that was applied to limit the 
model was the fact that steep steering angle turns are unlikely at 
high speed. This is related to centripetal acceleration, because if 
extending it to the extreme, the car would slip taking a steep curve 
with too high speed. In a city-driving situation it is fairly unlikely 
that a driver would experience more than 1-g as lateral acceleration. 
The equation for centripetal acceleration is: 

 

r

v
ac

2
=  . (25) 

 
Combining Eqs. (24) and (25): 

 

v

a
maxc

max =ϖ . (26) 

 
The maximum angular velocity is now given as the least value 

from Eqs. (24) and (26). One limitation in the procedure is that it 
does not provide angular velocity for the trackers. In order to do that 
accurately, an EKF is needed. Due to this and keeping in mind that 
we wanted to maintain the approach as simple as possible, we 
decided to use predicted velocity changes of each tracked obstacle to 
estimate the obstacle angular velocities. In addition to this, choosing 
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a number of values in the interval [-ϖmax, ϖmax] and then calculating 
predicted paths for each one give us a set of tracker possible 
positions for a given time horizon. Assuming that the predicted 
tracker is centered on the estimated turning rate, ϖestimated  (Fig 4), 
the highest probability value is assigned to the widest path, obtained 
from ϖestimated. Therefore, the probability decreases as the distance 
between the predicted paths and the widest one increase. 

 

 [m] 
(a) 

 

 [m] 
(b) 

Figure 4. Illustration of Predicted Paths for a tra cked obstacle. In (a) the 
tracker is currently going along the y-axis ( ϖϖϖϖestimated) showing 7 possible 
paths, ranging from left ( ϖϖϖϖestimated - ϖϖϖϖmax) to right ( ϖϖϖϖestimated + ϖϖϖϖmax) maximum 
steering angles. In (b) we estimated the current st eering angle that allows 
us to center the predicted paths on it. 

 
 
Now, based on obstacle class path models, it is possible to 

implement the predicted occupancy grid map for a given time 
horizon. Since we decided to represent the robot as a point mass, the 
occupancy grid had to be enlarged to compensate for the robot sizes 
(we use the robot circumscribed circumference radius as the 
occupancy grid growth rate). The predicted occupancy grid map is 
obtained iteratively for each map update in two steps. In the first 
step, only the environment static features are considered. They have 
their occupied cells enlarged by the growth rate, forming a new 
occupancy grid map with expanded occupied cells (EOC). These 
cells are considered as having the highest probability of being 
occupied (probability density equals to 1). Then, from the EOC 
borders to cell borders that are distant up to the growth rate, the 
probability densities are linearly decreased reaching zero at the 
borders. Next, in the final step, the obstacle predicted paths are 
considered. A number of possible path predictions had been 
calculated for each tracker and for each path a number of equidistant 
points are selected along that path. The point selection process takes 
into account the obstacle class parameters (ϖmax, ϖmin, and 
maximum acceleration and deceleration) and the desired time 
horizon. In the sequence, each point is associated with a grid cell 

and the process described before for environment static features is 
applied for all trackers. In the end we obtain an occupancy grid that 
contains obstacles at present time and their estimated positions at a 
given time horizon. It is important to emphasize that the predicted 
occupancy grid map is stored in a separate data structure. It means 
that the original occupancy grid map is not changed.  

One may observe that the predicted occupancy grid map 
building process may be time and memory consuming depending on 
the characteristics of the environment. Due to this, we adopted two 
simplification strategies:  
1. We reduced the update frequency for the static part of the 

occupancy grid map; 
2. Obstacles whose distances to the robot are increasing above a 

threshold value were neglected. 
The first strategy is justified because static features usually do 

not change their positions. But if, for instance, a parked car or a 
person starts to move unexpectedly, there is always an acceleration 
period that can be noticed by the obstacle tracking procedure (it 
immediately reclassifies this obstacle as a mobile one). In spite of 
this, the new mobile obstacle has its update frequency increased for 
building the predicted occupancy grid map. Concerning the second 
strategy, obstacles that are not considered dangerous because they 
are moving away from the robot are obviously negligible. If they 
change their path and start to represent a risk, they are not neglected 
anymore. These two strategies allowed us to keep the time and 
memory consumptions at an acceptable level during the 
experiments. 

Smart Car Simulator 

In the beginning, we developed the algorithms using a MatLab 
Simulator (Becker et al., 2007-a). It reproduces a simple 2D urban-
like environment (approximately 800 m by 800 m) with parked and 
moving cars, buses, trucks, people, buildings, walls, streets, and 
trees. When using the simulator, one may reproduce the 2D 
kinematical behavior of the modified Smart Car. The Smart Car 
vehicle was kinematically modeled by applying the Ackerman 
steering geometry (Gillespie, 1992) and the real vehicle dimensions. 
While modeling the sensors, their real characteristics were taken 
into account. Lines and/or arcs represent all environment static and 
dynamic features. The sensor data are extracted from the 
environment based on its geometrical description and used as input 
data for testing the algorithms. It is important to emphasize that the 
simulator also allowed testing the algorithms while the simulated 
Smart Car was in movement. 

Basically, the simulator uses the global position of the Smart 
Car in the environment for selecting a feature-window that contains 
all lines and/or arcs close to the vehicle. Then it simulates the laser 
sensor data by verifying the intersections between the simulated 
laser beam and the environment features. Afterwards, a noise signal 
is added to the sensor raw data vector (based on SICK AG, 2006 
data). As the simulator was designed for testing different approaches 
before installing the codes in the real car, it allows the user to select 
and set different strategies, set points, and threshold values. 

Results  

Firstly, as cited previously in the text, the research was 
developed using the Smart Car Simulator. During this phase it was 
possible to test different techniques for tracking the obstacles. 
Aiming to facilitate the results comprehension, we present 
simulations and experimental samples with the vehicle parked in the 
following figures. Due to this choice, it becomes easier for the 
reader to compare the features, trackers, etc. at different time spots. 

[m] ϖestimated 

ϖestimated + ϖmax ϖestimated  - ϖmax 

[m] ϖestimated 

ϖestimated + ϖmax 

ϖestimated  - ϖmax 
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(a) 

 

  
(b) 

Figure 5. Simulation of the Smart Car parked in an urban-like environment 
tracking vehicles on a street cross. Two different time steps are 
presented. One may observe that vehicles are tracke d even when outside 
the sensor visible area (represented by salmon colo r). In this case, a pink 
circle represents the tracker. 

 
 
Figure 5 shows some simulation results. The trackers inside the 

range and the matched ones are represented by yellow circles and 
the hidden or out of range trackers, by pink circles. The black lines 
represent the obstacle predicted positions for 1 second. All occluded 
tracks were kept for 1 second. Meanwhile, if they were observed 
again, their states were updated and they were reclassified as non-
hidden tracks. On the other hand, if they were not observed anymore 
after 1 second, they would be deleted. Regarding the algorithm 
performance, we compared the moving obstacles estimated speeds 
with their actual speeds, and the errors observed were less than 5%. 

Aiming to test and refine our approach, real sample data were 
acquired on streets at EPFL. After these tests, it was possible to 
improve the tracking algorithms. The sites for sampling data were 
chosen near the parking lots at EPFL for catching as many cars and 
persons as possible. The sampling took approximately 10 minutes 
and it was also drawn in the late afternoon when there were people 
heading home by car. The vehicle was parked in a corner of an 
intersection where the exit of a parking lot could be seen (Fig. 6-a). 
We could not use the moving obstacle speeds to verify the algorithm 
performance because the data sampling took place in a real 
environment, where we could not control them. However, each 
tracker had its center point subsequent positions compared with the 

estimated ones. Again, the errors were less than 5% (5 Hz data 
acquisition). 

 

 

(a)  
 

   
(b) 

Figure 6. Experiment location represented by the x circumscribed in EPFL 
aerial view and the Sensor Field of View represente d by a white 
transparent area (a) and view of the experimental a rea (b). 

 
 

Table 1 – Real data sampling details. 

Location EPFL, facing ME G building 

Scan Acquisition Frequency 5 Hz 
Scan Range 30 m 
Scan Angular Resolution 0.5° 
Experiment Length 602 seconds 
Observed Dynamic Obstacles 33 

 
 
Table 1 presents some experiment set-up details and the quantity 

of moving obstacles observed during the data acquisition. We 
experienced traffic and the obstacles were often passing by close to 
the sensor. Because of the intersection we were also lucky to capture 
a few cases when one obstacle occluded another. An interesting 
condition in this case was that we had many passing bikes. They 
were sometimes classified as cars, sometimes as pedestrians 
depending on the viewing angle. Their tire spokes also produced an 
interesting problem: some of the laser readings acquired by the 
sensor were behind the bike (the sensor laser beam passed trough 
the spokes and detected other environment feature that was behind 
the bike). Due to this, the segmentation algorithm produced 
erroneous input data for the feature extraction and motion detection 
algorithms. This problem was solved latter by refining the 
segmentation algorithm. In the beginning, the segmentation process 
was based only on consecutive measurements and from then on we 
decided to also consider the data that are close together, as if 
belonging to the same object.  

When it comes to computer processing power performance, we 
used a 5 Hz sensor data acquisition frequency. Undoubtedly, the use 
of a dedicated computer for processing the obstacle tracking task 
will increase the frequency up to sensor limits (500 KBd data 
transmission rate for a serial RS422 data interface). We also decided 
to use a 0.5º angular resolution to detect pedestrians at large 
distances. The development framework introduced by Fleury et al. 
(1997) was also used. It allows us to execute the algorithms as 
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modules on a single laptop running Linux (Dell D505 - Centrino 
1.5 GHz). The tasks, coded in GenoM, follow the same approach 
that is used in embedded systems like typical automotive platforms. 

Figures 7 and 8 present more results, now based on real data 
sampling. In both cases the scanner was placed in the origin (0,0), 
looking along the positive x-axis and plotted frames which are not 
consecutive, they were chosen by their contents. On top of each 
plot, one may observe the time stamp (Time) and the elapsed time 
between two consecutive scans (dt), both in seconds. The elapsed 
time is almost constant, but sometimes, if the sensor detects any 
error while reading or sending the data, it can take longer because 
the data is excluded and a new scan data is acquired and sent 
(compare Fig. 7-g and h). Aiming to facilitate the results 
comprehension, we present in Fig. 7 only the trackers and in Fig. 8 
the predicted occupancy grid.  

In Fig. 7 one may observe the trackers (represented by circles), 
the estimated velocities (represented by line segments), and the 
static environment features laser sensor readings (represented by 
dots). The line segments length and direction represent respectively 
their estimated modulus and direction. In the scenario presented in 
Fig. 7, two pedestrians were moving towards each other, one from 
the right and one from the bottom of the scene. A bike was also 

traversing, coming from the upper right corner. The trackers 
continued from (a) to (b) until the moment when the bike went out 
of range in (c), although the tracker is kept for one second after 
disappearance. People continued approaching until they were almost 
perceived as a single segment, (e). In (f), they could be separated 
again and both trackers were updated. In addition, Fig. 8 shows the 
trackers, the estimated velocities, the static environment features 
laser sensor readings, and the predicted occupancy grid map 
(represented by gray scale cells – as darker the gray cell is as higher 
is the probability of an cell being occupied). In Fig. 8, the predicted 
occupancy grid is shown. It is updated at the same scan acquisition 
frequency (5 Hz). The static environment features were already 
detected and enlarged by the growth rate, forming the occupancy 
grid map with EOCs. In (a), a car was coming from the upper right 
corner and a bike from the bottom. Then the cyclist started to reduce 
its speed (b) as it approached the intersection. The car kept moving 
and crossing the intersection until it hid the cyclist (c), but the bike 
tracker was kept. In (d) the car continued moving and the bike 
tracker was seen again. The car is not seen anymore in (e) and 
finally the cyclist turns left in (f). 
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Figure 7. Real data sample on streets at EPFL (108. 96 s to 120.91 s). Two pedestrians were moving towa rds each other, one from the right and one from 
the bottom of the scene. A bike was also traversing , coming from the upper right corner. From (a) to ( b) the trackers continued until the moment when 
the bike went out of range in (c), though the track er is kept for one second after disappearance. The persons continued approaching until they were 
almost perceived as a single segment, (e). In (f), they could be separated again and both trackers wer e updated. The frames are not consecutive. 
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Figure 7. (Continued). 
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(c)       (d) 

Figure 8. Real data sample on streets at EPFL (362. 26 s to 366.53 s). In (a), a car was coming from th e upper right corner and a bike from the bottom. 
Then, the cyclist started to reduce his speed (b) a s he approached the intersection. The car kept movi ng and crossing the intersection until it hid the 
cyclist (c), but the bike tracker was kept. In (d) the car continued moving and the bike tracker was s een again.  The car is not seen anymore in (e) and 
finally the cyclist turned left in (f). Observe tha t the frames are not consecutive. 
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(e)       (f) 

Figure 8. (Continued). 

 

Conclusions 

The successful implementation of car-like mobile robots that are 
able to move autonomously on streets and roads depends on the 
vehicle ability of dealing with highly complex environments. Due to 
this, many researches initially developed for indoor applications are 
being extended and adapted for outdoor environments. Recently, 
some algorithms that fuse path planning and obstacle avoidance 
tasks into a single navigator structure were presented. However, few 
researches of obstacle path prediction on urban-like environments 
are being carried out (most of them are centered on vision systems).  

Our work presented results on obstacle tracking task in dynamic 
urban-like environments. It focused on 2D laser-based obstacle 
motion-tracking problem. A Kalman Filter was applied in order to 
predict the obstacle motions even when they were hidden. First of 
all, we introduced a short review on the motion tracking techniques 
found in literature and highlighted the scarcity of publications when 
it comes to car-like tracking applications in dynamic urban scenarios 
using laser data. Then, our approach and the test platform used, a 
modified smart fortwo coupé passenger car named Smart Car, were 
briefly described. Our approach focused on detection, classification, 
and tracking tasks of vehicles (e.g.: cars, buses, etc.) and 
pedestrians. This technique allows the controller to take into account 
hidden and non-hidden obstacles when maneuvering the vehicle. A 
probabilistic occupancy-grid representation of the environment, 
named predicted occupancy grid map, was also implemented. It 
provided a given time horizon prediction view of the vehicle 
surroundings based on motion-models of the obstacle classes and 
obstacle estimated velocities. Real data samples were used to refine 
the algorithms earlier developed and tested using a MatLab 
simulator. Finally, the results were presented. 

The results using real data samples indicated that obstacle 
detection, classification, and tracking tasks only with a 2D laser 
scanner are laborious. It happened because we decided to focus our 
research on the use of a single sensor in order to obtain a cheaper 
commercial solution that could be used on passenger cars. Due to 
this, it was necessary to take into account several environment 
feature details to turn them into diverse algorithm parameters. For 
instance, the presence of bushes and leaves can produce spurious 
readings and induce the algorithm to consider them as moving 
obstacles. In order to overcome these difficulties, we suggest the use 

of road and chart maps of the urban area and GPS, or its differential 
version (DGPS), combined with embedded cameras. This would 
increase the system overall performance by promoting data fusion 
that would allow false mobile obstacles removal and the recognition 
and classification of obstacles into more detailed classes, e.g.: walls, 
trees, buses, cars, trucks, bikes, pedestrians, etc. Obviously, as the 
use of vision systems is computer time expensive and very 
dependent on scene illumination, it is necessary to work on scene 
lighting and find a balance between computer processing 
consumption and adequate data acquisition. Of course, if more 
computers are used onboard the vehicle, this drawback can be 
overcome easily. For the moment, this class labeling is carried based 
only on obstacle speeds and observed sizes. The pedestrian class 
uses the constant-velocity model and the vehicle class makes use of 
a simple steering model based on the vehicle ICM for predicting 
their paths. When it comes to the predicted occupancy grid map 
building, we adopted two strategies that allowed us to keep the time 
and memory consumptions at an acceptable level during the 
experiments: we reduced the update frequency for the static part of 
the occupancy grid map and we decided to neglect obstacles whose 
behaviors were not considered dangerous (e.g.: obstacles whose 
distances to the Smart Car were increasing above a threshold value). 
Concluding, our results can be considered a valuable step towards 
promoting the future interface between the motion tracking and 
dynamic path planning algorithms found in literature. This 
procedure allows the controller to obtain a better performance in 
urban-like environments.  
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