5,163 research outputs found

    Simultaneous Generation of Stereoscopic Views

    Get PDF
    Currently almost all computer graphic stereoscopic images are generated by doubling the work required to create a single image. In this paper we derive and analyze algorithms for simultaneous generation of the two views necessary for a stereoscopic image. We begin with a discussion of the similarities of the two perspective views of a stereo pair. Following this, several graphics algorithms that have been optimized from known single-view methods are described and performance results obtained from testing the new stereo algorithms against the originals are presented

    Simultaneous Generation of Stereoscopic Views

    Full text link

    Morphing a Stereogram into Hologram

    Full text link
    This paper develops a simple and fast method to reconstruct reality from stereoscopic images. We bring together ideas from robust optical flow techniques, morphing deformations and lightfield 3D rendering in order to create unsupervised multiview images of a scene. The reconstruction algorithm provides a good visualization of the virtual 3D imagery behind stereograms upon display on a headset-free Looking Glass 3D monitor. We discuss the possibility of applying the method for live 3D streaming optimized via an associated lookup table.Comment: PDF, 8 pages, 4 Fig

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Three-dimensional structure of a low-Reynolds-number turbulent boundary layer

    Get PDF
    A low-Reynolds-number zero-pressure-gradient incompressible turbulent boundary layer was investigated using a volumetric imaging technique. The Reynolds number based on momentum thickness was 700. The flow was tagged with a passive scalar from two spanwise dye slots to distinguish between fluid motions originating in the inner and outer portions of the boundary layer. The resulting volumetric scalar field was interrogated using a laser sheet scanner developed for this study. Two- and three-dimensional time-dependent visualizations of a 50 volume time series are presented (equivalent to 17δ in length). In the outer portion of the boundary layer, scalar structures were observed to lie along lines in the (x, z)-plane, inclined to the streamwise (x-)direction in the range ±50°. The ejection of brightly dyed fluid packets from the near-wall region was observed to be spatially organized, and related to the passage of the large-scale scalar structures.Carl J Delo, Richard M Kelson and Alexander J Smit

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Mathieu beams as versatile light moulds for 3D micro particle assemblies

    Get PDF
    We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology, and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering
    corecore