18,549 research outputs found

    The cooperation of Russian and German metal forming scientific schools to develop the new energy-efficient materials and technologies

    Full text link
    The future scientific orientation of Katedra PDSS is in the area of materials forming and materials development with a focus on efficient processes regarding the use of energy and resources. Current research in the department PDSS is based on fundamental works on thermo-mechanical treatment of metals and on the modeling of nano-materials, rolled material and medical materials. This includes research on the relevant microstructural and macroscopic effects on the materials behavior. Together with its international research partners PDSS has excellent foundations for experimental research as well. With its international focus and its educational programs for students and skilled employees PDSS is an important partner of the Russian metal processing industry which supports Russian companies to compete on a world-class level

    Development of S-13G-type coatings as engineering materials Final report, 1 Sep. 1966 - 31 Aug. 1968

    Get PDF
    S-13G type thermal control coatings for space application

    Waste heat recovery via organic rankine cycle: results of a era-SME technology transfer project

    Get PDF
    The main goal of the EraSME project “Waste heat recovery via an Organic Rankine Cycle”, completed by partners Howest (Belgium), Ghent University (Belgium) and University of Applied Sciences Stuttgart (Germany) between 1 January 2010 and 31 December 2012, was to find an entrance in Flanders for the Organic Rankine Cycle (ORC) technology in applications with sufficient amounts of waste heat at high enough temperatures. The project was preceded by a similar study that focused on renewable energy sources. Several tools were developed to aid in the viability assessment, the selection, and the sizing of ORC installations. With these methods, a fast determination of feasibility is possible. The outcome is based on the size, nature and temperature of the waste heat stream as well as the electricity price. An estimate can be given of the net power output, the investment costs and the economic feasibility. The tool is linked to a database of ORC manufacturer specifications. Another objective of the project was to keep track of the evolution in ORC market supply, both commercial and precommercial. We also looked beyond the product line of the main manufacturers. Some ORCs are developed for specific applications. ORC technology was benchmarked against alternatives for waste heat recovery, such as: steam turbines, heat pumps and absorption cooling. ORC in or as a combined heat and power (CHP) system was also examined. A laboratory test unit of 10kWe nominal power was installed during the project, which is now used in further research on dynamic behavior and control. It is still the only ORC demonstration unit in Flanders and has been very instructive in introducing representatives from industry, researchers and students to the technology. A considerable part of the project execution consisted of case studies in response to industrial requests from several sectors. Detailed and concrete feasibility studies allowed us to define the current application area of waste heat recovery ORC in a better way. A knowledge center for waste heat recovery (www.wasteheat.eu) was initiated to consolidate the know-how and to advise potential users

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry

    Get PDF
    This document analyzes on the basis of a detailed bottom-up model the role of technology and its diffusion on energy consumption and CO2 emissions at plant level in the EU-27 Iron & Steel industry. Main current processes of all plants and the cost-effectiveness of their retrofit with Best Available Technologies and Innovative Technologies is analyzed up to 2030. The baseline scenario considers the demand for steel and prices of fuels and resources evolve according to the projection of Primes. Two alternative scenarios vary linearly several times by 2030 some of the main drives of technology change, such us the cost of CO2 allowances, fuels and price of the resources. The reduction ranges for the specific CO2 emissions varies between 14% and 21%. The range for the variation in specific energy consumption goes from 7 to 11%. The higher values rely on the successful market roll-out by 2020 of some key innovative technologies, underlining the importance of the successful conclusion of the research ongoing in those technologies. In the recycling route the results indicate potential improvements between 2010 and 2030 in the specific energy consumption and specific CO2 emissions of about 6% and 11%, respectively.JRC.F.6-Energy systems evaluatio

    Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    Get PDF
    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations thereof. The choice of the optimum pretreatment process depends very much on the objective of the biomass pretreatment, its economic assessment and environmental impact. Only a small number of pretreatment methods has been reported as being potentially cost-effective thus far. These include steam explosion, liquid hot water, concentrated acid hydrolysis and dilute acid pretreatments

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
    • …
    corecore