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Abstract

Steel production is a complex process and finding coherent and effective schedules for the wide variety of

production steps, in a dynamic environment, is a challenging task.

In this paper we propose a multi-agent architecture for integrated dynamic scheduling of the hot strip mill

and the continuous caster. The scheduling systems of these processes have very different objectives and

constraints, and operate in an environment where there is a substantial quantity of real-time information

concerning production failures and customer requests. Each process is assigned to an agent which

independently, seeks an optimal dynamic schedule at a local level taking into account local objectives,

real-time information and information received from other agents. Each agent can react to real-time

events in order to fix any problems that occur. We focus here, particularly, on the hot strip mill agent

which uses a tabu search heuristic to create good predictive-reactive schedules quickly. The other agents

simulate the production of the coil orders and the real-time events, which occur during the scheduling

process. When real-time events occur on the hot strip mill, the hot strip mill agent might decide whether

to repair the current schedule or reschedule from scratch. To address this problem, a range of schedule

repair and complete rescheduling strategies are investigated and their performance is assessed with

respect to measures of utility, stability and robustness, using an experimental simulation framework.
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1. Introduction

For decades, the steel industry has been a powerful symbol of an increasingly global market economy,

providing the most important material for many other industries. In recent years, global competitiveness
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and changing customer requirements have further underlined the importance of effective planning,

scheduling and control systems. Competitive pressures are moving manufacturers to respond to emerging

trends including high quality, low-cost, just in-time delivery, smaller order size for a more precisely

defined product, as well as the reduction of product life cycles. Consequently, steel production needs to

handle the dynamic nature of demands.

Scheduling production within a modern steel manufacturing facility is a complex task involving a variety

of processes each of which interacts with several others in an integrated fashion to produce a final

product. The central processes in the chain of steel production are the continuous casters where large

slabs of steel are cast, and the hot strip mill where the slabs are transformed into large coils. The hot strip

mill and the continuous caster have very different constraints, and need very different scheduling models.

Both are subject to real-time events.  We focus our attention on the dynamic scheduling of the hot strip

mill and its integration with the continuous caster. For many years, research on hot strip mill scheduling

has focused on centralised static scheduling using operational research techniques which aim to find

optimal solutions (Balas and Martin, 1991; Assaf et al., 1997; Tang et al., 2000). For more realistic and

complex models of the scheduling problems heuristics from artificial intelligence have been used such as

tabu search (Cowling, 1995; Stauffer and Liebling, 1997; Lopez et al., 1998), genetic algorithms (Chen et

al., 1998), and expert systems (Numao and Morishita, 1988; Numao, 1994). All these techniques, whether

heuristic or analytical, encounter great difficulties when they are applied to real-world environment,

which is characterised by ever-changing task requirements, occurrence of a variety of unexpected events,

complicated and dynamic resource constraints, uncertain processing times, and multiple or even

conflicting scheduling objectives. In practice, static scheduling is not able to react dynamically and

rapidly in the presence of dynamic information not previously foreseen in the current schedule.

Furthermore, the centralised approach is especially susceptible to problems of tractability, because the

number of interacting entities that must be managed together is large and leads to combinatorial

explosion. Often, a detailed schedule is generated over a long time horizon, and planning and execution

are carried out sequentially. On the other hand, the inherent nature of steel production environment is

distributed. Steel manufacturing is a multi-stage production and it is an interconnected and interdependent
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system where both information and decision-making are logically and geographically distributed.

Consequently, traditional centralised methods are expensive and not ideally suited to the needs of real-

world scheduling systems.

Dynamic scheduling is an important issue in steel production and other manufacturing and employee

scheduling domains. It is a challenging new research area (Dorn, 1995; Tang et al., 2001). Recently,

Multi-agent systems have proven a major success in solving dynamic scheduling problems and have

given answers to the problem of how to efficiently integrate communities of distributed and interactive

systems in a dynamic environment. Multi-agent systems have been known to provide capabilities of

integration, robustness and reactivity, flexibility, heterogeneity, and autonomy (Parunak 1996, Shen and

Norrie, 1999; Cowling et al., 2000; Shen et al., 2001), and appear to be well suited to such complex steel

production application. The fundamental objective of multi-agent based-scheduling systems is to provide

robustness to disturbances, adaptability and flexibility to rapid changes, and an efficient use of resources.

This paper presents a multi-agent architecture for robust dynamic scheduling of steel hot rolling. Section

2 presents an overview on dynamic scheduling. Section 3 briefly presents the steel production

environment. Section 4 describes the multi-agent architecture proposed for the dynamic scheduling of

steel hot rolling. Section 5 introduces the measures of utility, stability, and robustness used to evaluate a

schedule which is repaired due to the presence of real-time information. Section 6 describes the

rescheduling strategies proposed. Section 7 describes the inter-agent cooperation and communication.

Section 8 presents experimental results for our simulation prototype. Finally, conclusions are presented in

section 9.

2. Dynamic Scheduling

Approaches to production scheduling and rescheduling in a dynamic environment can be classified into

three main categories (Shafai and Bruno, 1999): completely reactive approaches, predictive-reactive

approaches and robust scheduling. In completely reactive approaches, no firm schedule is generated in

advance and decisions are made locally in real-time. The dynamic scheduling problem is viewed as a

queuing system by considering each machine as a server. In the queuing system the scheduling decisions
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are made as events occur, thus the system cannot be used to create predictive schedules, and so cannot

benefit from advances in optimisation technologies. In this situation, simulation has been found to be a

desirable technique. Extensive surveys of this topic can be found in Ramasesh (1990), and Suresh and

Chaudhuri (1993). In predictive-reactive scheduling, a predictive schedule is generated in advance of

execution using available information in the shop floor. When disruptions occur during execution, the

predictive schedule needs to be modified in order to take into account the new events. These

scheduling/rescheduling methods implicitly treat a dynamic scheduling problem as a series of static

problems, which are resolved on a rolling horizon basis. A number of researchers have examined policies

of this type (Yamamolto and Nof, 1985; Ovacik and Uzsoy, 1994). Predictive and reactive scheduling

may thus be seen as complementary activities. An important issue in which this complementary

relationship between predictive and reactive scheduling is highlighted is that of schedule robustness. In

the robust scheduling approach, the predictive schedule is built using available information on the

disruptions that are likely to occur during execution of the schedule to minimise deviation between the

performance measure values of the realised and predictive schedules. Robustness is a desirable attribute

of a predictive schedule as it focuses on minimising the effects of disruptions on the performance

measures. Wu et al. (1993) considered two possible measures: the deviation from the original job starting

times, and the deviation from the original sequence (stability) for one-machine problem in the presence of

machine breakdown. The scheduling objective is to minimize shop efficiency (makespan), and at the

same time minimise system impact caused by schedule changes. Dorn (1995) used robust scheduling and

fuzzy temporal reasoning to represent and propagate schedule uncertainty for a steel-making plant.

Cowling and Johansson (2001) proposed two measures, utility and stability, to decide whether to repair a

schedule or reschedule from scratch, and surveyed rescheduling and schedule-repair techniques. Utility is

the improvement of the objective function resulting from repair, and stability measures the deviation from

the original schedule.

During the last few years, successful results have been achieved in using multi-agents to solve complex

dynamic scheduling problems. Multi-agents are distributed and autonomous systems that support

reactivity, and are robust against failures locally and globally. Agents can locally react to local changes
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faster than a centralised system could in an ever-changing environment, and have the ability to cooperate

to define a global feasible schedule. The application of multi-agents leads to dynamic scheduling systems

that are emergent rather than planned, and concurrent rather than sequential. Multi-agent systems have

been applied for developing a wide range of dynamic scheduling applications. Lin and Solberg (1990)

modelled the manufacturing floor shop as a market place. Tasks and resources are represented by agents.

Each task agent enters the market carrying certain currency and it bargains with each resource agent on

which it can be processed. Similarly, each resource agent competes with other agents to get a more

valuable task. AARIA (Autonomous Agents for Rock Island Arsenal)  (Parunak et al., 1997) developed

for an army manufacturing facility is a multi-agent architecture for manufacturing scheduling.

Manufacturing resources are encapsulated as autonomous agents and cooperation between the agents

takes place through the manager agent.  Ouelhadj et al. (1999, 2000) described a multi-agent architecture

for dynamic scheduling in flexible manufacturing systems where resources are represented by agents. The

resource agents are responsible for scheduling the resources, and they cooperate using the Contract Net

Protocol (CNP) (Smith, 1980). Maturana and Norrie (1996) described a mediator architecture for an

intelligent manufacturing system which provides virtual organisation through virtual clustering and

distributed decision-making through the CNP. A single high-level mediator agent creates dynamically

these clusters of heterogeneous agents on an as-needed basis. The activities of the clusters are co-

ordinated by the distributed mediator agent. A similar architecture was used in Metaphor II  (Shen et al.,

2000). In this architecture, the cooperative negotiation among resource agents is realised by combining

the mediation mechanism based on hierarchical mediators and the bidding mechanism based on CNP for

generating and dynamically maintaining production schedules. Ramos and Sousa (1999) proposed a

holonic architecture for scheduling in manufacturing systems in which tasks and resources are represented

by holons and used the CNP for scheduling/rescheduling of tasks. Recently leveled commitment contracts

were proposed as an extension of the CNP for increasing the economic efficiency of contracts between

self-interested agents in the presence of incomplete information about future events. Sandholm (2000)

described a leveled commitment contracting protocol for automated contracting in distributed

manufacturing. The extended protocol allows self-interested agents to efficiently accommodate future



6

events by giving the possibility for each agent to decommit from the contract by simply paying a

decommitment penalty to the other contract party. A decommitment penalty is assigned to both agents in

a contract to be freed from the contract.

3. The Steel Production Environment

In a typical steel production environment, each customer order requires the production of a number of

coils with the required physical properties and dimensions, and each coil corresponds to one slab. A coil

is described by its delivery due date and its physical proprieties such as: hardness, width and thickness.

Steel production involves a range of processes to produce such coils (Figure 1) (Lee et al., 1996; Lopez et

al., 1998; Cowling and Rezig, 2000). Raw materials are first melted together in a blast furnace (BF) to

produce pig iron. The molten iron is transported to the steel-making shop. The principal stages of steel-

making take place in basic oxygen furnace (BOF), ladle treatment (LT), continuous casters (CC) and hot

strip mill (HSM). In the basic oxygen furnace, oxygen is passed through the molten iron to reduce the

carbon content. The resulting steel is then processed further in the ladle treatment facility to make steel of

a certain chemical grade. The molten steel is transported to one or more continuous casters to form solid

slabs with different dimensions. The slabs produced are stored in the slabyard (SY). Generally, each

customer order can be made at one of several different chemical grades. Orders which may be made at the

same grade and have similar dimensions and due dates are grouped and cast in heats, where each heat

consists of a fixed weight of molten steel, enough for between five and twenty slabs (depending upon

which steel plant we consider). In addition to compatibility of slabs within a heat, consecutive heats must

preferably contain chemically similar grades of steel, to be cast at similar widths. Before the slabs are

rolled to coils in the hot strip mill, they need to be reheated in the reheat furnaces (RF). The hot strip mill

has two sections: the roughing mill and the finishing mill. The roughing mill consists of one stand that

reduces the thickness of a slab. The resulting strip is sent to the finishing mills, where there are several

rolling stands to progressively reduce the thickness of the steel strip to a required final thickness and

width. The thin strip, thousands of feet in length is then coiled. The dimensions of the steel coiled are

controlled by a feedback mechanism, and it is highly desirable that consecutive coils should have the
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same or similar dimensions. There is a requirement to change finishing rolls every few hours, due to wear

and tear, and rolls must be warmed up following a roll change with easy-to-roll coils. There is also a

requirement to roll coils of gradually reducing width following the warm up coils, due to marks left on the

rolls by the edge of each coil. The width profile of a schedule between roll changes is broadly coffin

shaped (Figure 3). The coil thickness and hardness profiles should be relatively smooth.

4. Multi-Agent Architecture Proposed for Dynamic Scheduling of Steel Hot Rolling

In this paper, we consider only the continuous caster(s), the hot strip mill and the slabyard, whose

schedule integration poses one of the greatest challenges, due to the tight and yet flexible linkage between

hot strip mill and continuous caster schedules, via the slabyard buffer. Integration and dynamic

scheduling of other processes (especially raw material and end product logistics) is also an interesting

area of investigation, but the linkages are not so tight, and the level of uncertainty may be so high that a

detailed schedule is hard to maintain. The multi-agent architecture proposed (Cowling et al., 2001) is

organised as a population of heterogeneous and autonomous agents, each having a set of special skills.

Each agent is responsible for the local scheduling of the resource assigned to it, performs optimisation of

its own objective function, reacts to real-time events and communicates and cooperates with other agents

for global scheduling/rescheduling. Cooperation among the agents for generating and maintaining

dynamically production schedules is realised by the exchange of asynchronous messages between the

Figure 1. Steel production processes.
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agents. We use a predictive-reactive methodology to handle real-time events based on the construction of

a predictive schedule, which is modified through the dynamic interaction and cooperation of the agents.

The architecture involves the following agents (Figure 2): hot strip mill agent (HSM agent), continuous

caster agents (CC agents), slabyard agent (SY agent) and User agent.

Each agent is composed of:

� Acquaintance-agents knowledge includes names of the acquaintance agents and their competencies.

This knowledge helps the current agent to select the agents as sub-contractors for processing tasks.

�  Self-knowledge is the local information used by the agent to execute its own tasks.

� A model of its local tasks to be performed.

� A reasoning module which plans the actions required to achieve the tasks, e.g. generation of an

optimal predictive-reactive schedule.

� A communication interface for handling incoming and outgoing messages.

� The HSM agent incorporates a meta-reasoning module, which enables it to make a decision on the

selection of the scheduling-repair or complete rescheduling strategies in order to react to the presence of

real-time events.

User
agent

HSM
Agent

SY
Agent

CC-1
Agent

CC-n
Agent

CC-2
Agent

Figure 2. Multi-agent architecture for integrated
dynamic scheduling of steel production.
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4.1. Hot Strip Mill Agent

The HSM agent is responsible for generating optimal predictive schedules, and the dynamic scheduling of

the hot strip mill in the presence of real-time events. The hot strip mill scheduling is subject to various

constraints (Cowling, 1995; Tang et al., 2000; Cowling et al., 2001). The first scheduling constraint

concerns the rollers that suffer wear and tear and need to be replaced at regular intervals. The set of coils

produced between two consecutive changes of the finishing mill rollers is called a turn. The set of coils

processed between two consecutive changes of the roughing mill rollers is called a shift. Rolling is then

organised into shifts, where each shift is a set of turns. The second main constraint is that there should be

smooth jumps in coil thickness, hardness and width between consecutive coils in a turn. Smooth jumps in

width and thickness, as well as wear on the rollers caused by coil edges require scheduling the coils of

each turn in a coffin shape with respect to coil width (Figure 3).

The resulting scheduling problem has been formulated as the well-known Prize Collecting Travelling

Salesman Problem (PCTSP) (Balas and Martin, 1991; Cowling et al., 2001). The coils are represented by

a digraph G=(N, A), where N is the set of nodes and A the set of arcs with weights on both nodes and arcs.

Each node i�N corresponds to a coil, and the weight on the coili (scorei) represents priority of the coil to

be scheduled. The weight Pij on an arc (i, j) represents the combination of width, gauge and hardness

penalties to produce coilj immediately after coili. The penalty is expressed by:

Figure 3. Coffin shape.
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Wi and Gi are the width and gauge of coili, respectively. �,�, and � are constant parameters, whose

values were fixed using knowledge gained from previous investigation with a particular steel mill

(Cowling, 1995) as: � = 1,� = 6�104,� = 4.The scheduling problem is expressed by the function

objective:

Subject to the following constraints:

Xij and Yi values are chosen so as to give rise to a path in G.

Xij = 1 if coil j is scheduled right after coil i, Xij = 0 otherwise.

Yi = 1 if coil i is scheduled, Yi  = 0 otherwise.

To solve this complex optimisation problem, we used a tabu search meta-heuristic (Glover, 1997). The

search process starts from Greedy constructive solution. The first coil of the sequence is chosen to be the

widest of all the coils.  If more than one coil is found to be the widest, then the coil with the highest score

is selected. The next coil is chosen to be the one that yields the highest objective value in conjunction

with the current coil. The process is repeated until a turn is constructed. Given the Greedy initial

sequence, the solution is improved by using three moves: swaps of two coils, insertion of a coil and

reversal of a sequence of coils. At each step, all the possible moves involving both scheduled and

unscheduled coils are evaluated and the best move is applied until the stopping criterion is reached. The

stopping criterion we used is a fixed maximum number of iterations. To avoid cycling on the recently

examined solutions, each applied move is subsequently forbidden, or considered tabu, for a certain

number of iterations.  The tabu moves are kept in a tabu-list, also known as the short-term memory.  Each

entry in the tabu-list consists of the type of move, the coils involved, the value of the objective function of

� � � �

� � � �
otherwise

G
GGWW

P

WWif
G

GGWW
P

j

jiji
ij

ji
j

jiji
ij

22

22

���

�

�

���

�

��

��

���
� ��

�

N

i
ij

N

j
ij

N

i
ii XPYscore

1 11
max



11

the resulting turn, and a count representing the number of iterations for which the move must remain tabu.

Each time an entry is added to the tabu-list, its count number is given an initial value, and the count

number of each existing tabu move is decreased by one. When the count number reaches zero, the move

is removed from the tabu-list, thus becoming free to be considered at the next solution process.  In

situations where the best possible move is already tabu, an aspiration criterion is applied.  Essentially, if

the best move yields a better objective function than that of the tabu move, then the best move is applied

and as such replaces the tabu move.  Conversely, the best move is ignored, and the search continues for

the second best move.

4.2. Continuous Caster Agent

The CC agent provides dynamic scheduling and rescheduling of the continuous caster. The main

constraints imposed on the schedule of orders are chemical and width compatibility constraints.  Slabs to

be cast must be grouped in heat lots with each heat cast into several slabs. A casting sequence is a

sequence of heats with smooth jumps in width and chemical grade.

4. 3. User Agent

The user agent provides the user interface to the system. It manages and announces the orders to produce,

and deals with dynamic changes of order conditions (rush orders, changes in the deadline of orders, etc.).

4.4. Slabyard Agent

This agent is responsible for the management of the slabs produced by the CC agent(s). The SY agent is

the mediator agent between the CC agent(s) and the HSM agent. It allows negotiation between the CC

agent(s) and the HSM agent to provide a globally good schedule.

5. Robustness, Stability and Utility Measures for Dynamic Scheduling of the Hot Strip Mill

In the present architecture, the HSM agent is concerned with creating predictive-reactive schedules to

react to the real-time events which affect the hot strip mill. The real-time events considered are non-
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availability of slabs and rush orders.  In the presence of unforeseen events, the HSM agent generates

schedules that are robust. The HSM agent first constructs a predictive schedule and then modifies the

schedule in response to real-time events so as to minimise deviation between the performance measure

values of the realised and predictive schedules. In order to make a decision whether to repair the schedule

or reschedule from scratch, we defined three measures: robustness, utility and stability. These three

measures apply at a high level to the system as a whole, by considering the effects on the output of the

process, the hot strip mill schedule. More detailed measures might be developed at the level of each agent

(especially for stability) but we will not consider them here. Our results will show that our output

measures and agent architecture do produce desirable good results for the system as a whole.

Utility measures the improvement of the original schedule objective due to schedule revision. The utility

is the difference between the value of the objective function Fdynamic of the new schedule Sdynamic after

taking into account the real-time information E and the objective function Fstatic of the initial schedule

Sstatic before taking into account real-time information. It is expressed by:

Stability measures the deviation from the original schedule caused by schedule revision. The deviation is

expressed by the sum of the absolute difference between the original completion time C of the original

schedule and the new completion time C’ after the occurrence of the real-time event for each coil, which

is expressed by:

The completion time of a coil not in the schedule is expressed as the completion time of the turn plus its

processing time. The robustness measure of a schedule S combines the maximisation of the efficiency

utility and the minimisation of the deviation stability from the original schedule. The robustness is

expressed as follows, where R is a parameter in the range [0,1]:

�
�
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6. Rescheduling Strategies

We defined several strategies for modifying schedules in response to real-time events. On the occurrence

of a disruption, the pre-optimised schedule becomes invalid and a new schedule is needed for the set of

the remaining coils. Then given the sequence of the remaining coils and a value of R, the HSM agent re-

optimises so as to maximise the robustness. For each strategy the utility, stability and robustness

measures are evaluated and the strategy which maximises the robustness is applied. The strategies are the

following:

a. Rescheduling strategies for non-available slabs

� Do-nothing (NOT) ignores the real-time events and deletes the coils corresponding to the non-available

slabs.

� Simple Replacement (SR) removes the coils corresponding to the non-available slabs from the

sequence, and tries to replace them on a one-for-one basis with the best-unscheduled coils so as to

maximise robustness (Figure 4).

� Closed Schedule Repair (CSR) removes the coils corresponding to the non-available slabs and use

tabu search to re-optimise the resulting sequence without referring to coils which were not originally

scheduled (Figure 5).

Unscheduled
coils

Processed
coils

Remaining scheduled
coils

Swap of the coils corresponding to
the non-available slabs with the best

unscheduled coils.

Figure 4. Simple Replacement.
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� Hybrid Closed Schedule Repair (HCSR) is a combination of SR and CSR strategies. Tabu search

starts from the sequence found with SR and tries to re-optimise this sequence without referring to the

unscheduled coils.

� Open Schedule Repair (OSR) removes the coils corresponding to the non-available slabs and re-

optimises the sequence considering the unscheduled coils using tabu search (Figure 6).

� Hybrid Open Schedule Repair (HOSR) is a combination of SR and OSR strategies. Tabu search

starts from the sequence found with SR and tries to re-optimise this sequence considering the

unscheduled coils.

Figure 5. Closed Schedule Repair.
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the remaining coils

Deletion of the coils
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Figure 6. Open Schedule Repair.
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� Partial Reschedule (PR) reschedules from the first coil corresponding to the non-available slab using

tabu search rather than re-optimising the sequence of the remaining coils.

� Complete Reschedule (CR) regenerates a new feasible schedule from scratch.

b. Rescheduling strategies for rush orders

We consider four possible strategies:

� Do-nothing evaluates the robustness of the actual schedule ignoring the rush orders.

� Closed Schedule Repair replaces the scheduled coils with the rush orders on a one-for-one basis so as

to maximise robustness.

� Open Schedule Repair inserts the rush orders into the turn and re-optimises the sequence using tabu

search considering all available coils.

� Complete Reschedule reschedules from scratch taking into account the rush orders which may be

added to the new schedule.

7. Inter-Agent Cooperation and Communication

Cooperation among the agents for generating and maintaining dynamically production schedules is

realised by the exchange of asynchronous messages between the agents. Communication can be point-to-

point (between two agents), broadcast (one to all agents), or multicast (to a selected group of agents). The

HSM agent receives a request from the User agent to produce the coils. After receiving the message, it

uses a tabu search heuristic to find a good schedule and delegates to the SY agent the task of producing

the slabs of the turn. The SY agent sends an announcement message to the CC agent(s) to produce the

slabs required for the turn. When certain slabs from the original schedule can no longer be produced from

the CC agent due to production failures (raw material fails to arrive on time, slabs manufactured fail to

meet right specifications, etc.), alert messages describing the real-time events on the non-available slabs

are sent from the SY agent to the HSM agent in order to react to these events as described in section 5.

The communication interface of an agent is composed of several methods for treating all incoming and

outgoing messages, and a message queue for storing incoming messages. We have developed a simple

language that supports communication between the agents, which contains two categories of messages:
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assertions and cooperation messages. Assertion messages include alert messages which inform the

acquaintance agents about the occurrence of real-time events (non-available slabs, rush orders, resource in

failure), and information messages to send or request information from acquaintance agents (progress of

the production of the coils or slabs). Cooperation messages include announcements and requests for tasks

which should be performed. Each message is formatted using the eXtensible Mark-up Language (XML).

The structure of a message is as follows:

For example the request message sent  from User agent to the HSM agent to produce a sequence of coils.

<Message>
<MsgID> Ref_146_Orders </MsgID >
<MsgType>Request </MsgType>
<From> User agent </From>
<To> HSM agent </To>
<Request> Produce _Normal_Coils </Request>
<Data>

<Coil>
<ID> ID146_114 </ID>
<Width> 1.27 </Width>
<Gauge> 0.00285 </Gauge>
<Length> 7.018 </Length>
<Weight> 22.24 </Weight>
<DueDate> 24 08 2002 </DueDate>
<Carbon> 77 </Carbon>
<Aluminium> 64 </Aluminium>
<Score> 0.51 </Score>

</Coil>
<Coil>

<ID> ID146_123 </ID>
<Width> 1.225 </Width>
<Gauge> 0.003 </Gauge>
<Length> 6.667 </Length>
<Weight> 21.2 </Weight>
<DueDate> 28 08 2002 </DueDate>
<Carbon> 70 </Carbon>
<Aluminium> 65 </Aluminium>
<Score> 0.24 </Score>

</Coil>
Etc.

</Data>
</Message>

<Message>
<MsgID> Message identifier </MsgID>
<MsgType> Request, announcement </MsgType>
<From> Name of sender agent </From>
<To> Name of receiver agent </To>
<Task> Task to be performed </Task>
<Data> Data of the message </Data>

</Message>
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8. Prototype System and Simulation Results

The current software prototype has been developed as a multi-threaded application in Microsoft Visual

C++/MFC.  The proposed architecture consists of four agents, implemented as C++ objects: User agent,

HSM agent, SY agent, and CC agent (Figure 7). The User agent is responsible for introducing the coil

orders and the rush orders. The HSM agent performs the dynamic scheduling/ rescheduling of the coils.

The SY agent generates real-time events and passes them to the HSM agent to simulate non-available

slabs. The CC agent simulates the production of slabs requested from the SY agent. The cooperation

between the agents is done using the exchange of asynchronous messages formatted using XML. In order

for the agents to capture the needed acquaintance-agents knowledge, as soon as an agent is started, it

broadcasts a message to inform any agent within the architecture of its existence. The message contains

personal information about the agent together with its competencies. On receiving the message, an agent

sends its own details back to the originator if it happens to be its acquaintance, thus completing an

exchange of individual profiles.

Figure 7. Agents interface.
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A set of simulation runs was performed to evaluate the behaviour of the HSM agent in response to real-

time events, concerning the non-availability of slabs and rush orders, and investigate the performance of

the utility, stability and robustness measures in the presence of real-time events. In order to compare the

performance of our strategies, we carried out 5 runs, each consisting of 5 real-time events generated

randomly with an initial population of 148 coils provided by a steel manufacturer. Each real-time event

specifies the missing slabs and rush orders. The SY agent generates the first event at 10% of the

scheduled turn, and the next events every 20% thereafter. For each simulation run, we considered the

strategies proposed for different values of R (0, 0.01, 0.25, 0.50, 0.75, 0.95, 1) corresponding to

increasing importance of schedule quality, as measured by the objective function, and decreasing

importance of schedule stability.

For each event, the HSM agent evaluates the best strategy for different values of R using the robustness

function discussed above. Figure 8 summarises our results for the average values of utility, stability, and

robustness measures when the strategy which yields the highest robustness is chosen to react to each real-

time event. Recall that low values of the stability measure yield low schedule disruption, and high values

of the utility measure give a good value of the objective function. These results demonstrate clearly that

in an environment where stability should be maintained, the schedule repair strategies give better

performance. More precisely, open schedule repair, closed schedule repair, hybrid open schedule repair

and hybrid closed schedule repair outperform the other repair strategies in terms of both utility and

stability measures. In an environment where we tolerate significant changes in stability in order to gain

high utility and a high objective value, complete reschedule, open schedule repair, closed schedule repair

and partial reschedule are competitive, but observe that complete reschedule does not dominate the other

strategies. In this case, the schedule repair strategies attain similar utility but for better stability.

Figure 9 shows the average frequency of each strategy applied, in response to real-time events, over the

five simulation runs. The results demonstrate that irrespective of the importance given to stability or

utility, the open schedule repair and closed schedule repair strategies give better performance compared to

complete reschedule. However, we remark that the complete reschedule strategy is often selected after a
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large number of real-time events have disturbed the schedule. The CPU times for schedule repair

strategies were of the order of tenths of a second, whereas those for reschedule were tens of seconds

Figure 10 presents the results of the average frequency of each strategy for three different values of R in

the presence of a successive sequence of real-time events (event 1, event 2, event 3, event 4 and event 5).
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The results demonstrate that the schedule repair strategies open schedule repair, hybrid open schedule

repair, closed schedule repair and hybrid closed schedule repair yield the best robustness values, even

when stability is neglected (for R = 1) when minor changes are applied. However, complete reschedule is

often the best strategy to choose when the schedule has been extensively disturbed by a sequence of real-

time events, which can be seen in figure 10 where complete reschedule has a high frequency at the level

of event 3, event 4 and event 5.

Figure 10. Complete reschedule frequencies in the presence of real-time events for different
values of R.
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Figure 11 shows the average values of utility, stability and robustness measures when we apply each

strategy alone in response to the real-time events. The experimental results show that irrespective of the

value of R, schedule repair strategies have a consistent behaviour and maintain a better performance in

both utility and stability measures compared to complete reschedule.

9. Conclusion

This paper has presented a multi-agent architecture for dynamic scheduling in steel production,

particularly for the dynamic scheduling of the hot strip mill.  Two key properties of the architecture

developed are the integration of scheduling activities of the continuous caster and the hot strip mill, and

self-adaptation to real-time events. Our decentralised multi-agent architecture provides a promising

approach for efficient enterprise integration and dynamic scheduling within a steel production

environment. Robustness to disturbances and adaptability to rapid changes are supported by the local

autonomy of the agents and their cooperative behaviour. The autonomous agents use local optimisation

meta-heuristics to generate schedules, and respond locally to unpredictable real-time events using the

most suitable dynamic rescheduling mechanism. The proposed architecture consists of four dedicated

Figure 11. Performance of each strategy when
the same strategy is used to react to real-time

events.
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agents: the User agent, the hot strip mill agent, the slabyard agent and the continuous caster agent. In the

simulation prototype, the agents were implemented as C++ objects and their cooperation was carried out

using the exchange of asynchronous messages formatted using XML in the communication protocol

developed. The scheduling problem for the hot strip mill agent is modelled using the Prize Collecting

Travelling Salesman Problem model and solved using a tabu search meta-heuristic. To address the

problem of robustness against disturbances, the hot strip mill agent generates predictive-reactive

schedules based on three measures (utility, stability, robustness), and a number of schedule repair and

complete reschedule strategies which use tabu search meta-heuristics for the search of the best predictive-

reactive schedules. The experimental results showed that the schedule repair strategies tend to give better

performance in terms of both stability and utility measures. Even in an environment where we tolerate

significant changes in stability and require improvements in utility, schedule repair strategies remain

competitive. Complete reschedule is, however, often the best strategy after a large number of real-time

events have occurred. When we apply the same strategy to react to real-time events, we found that

schedule repair strategies have a consistent behaviour and give better performance in both utility and

stability measures compared to complete reschedule.

Our results suggest that such a system could provide more stable, higher quality schedules in any

environment where there is a significant element of real-time disturbance, as occurs in many

manufacturing and personnel scheduling applications.

Future work will continue the investigation of the dynamic scheduling within the continuous caster agent

and the improvement of the cooperation mechanism, as well as extending the scale of our work to

problems of larger size.
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