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Abstract 

Integrated Steel Manufacturer (ISM) has no specific product. As, in any ISM they go on 

producing finished product from the ore. This enhances the uncertainty prevailing in the 

Integrated Steel Manufacturer (ISM) regarding the nature of finish product and 

significant demand by customers. In the present scenario where the low cost mini-mills 

are giving firm competition to ISM in terms of cost, this compels the ISM industry to 

target customers who want exotic products, and faster reliable deliveries. To meet the 

above objective, ISM are exploring the option of satisfying a portion of their demand by 

converting strategically placed products, this helps in increasing the variability of 

product produced by the ISM in short lead time. In this paper, authors have proposed a 

new hybrid evolutionary algorithm named Endosymbiotic-Psychoclonal (ESPC) to 

decide, what and how much to stock as a semi product in inventory. In the proposed 

theory, the ability of previously proposed psychoclonal algorithm to exploit the search 

space has been increased by making antibodies and antigen more cooperative interacting 

species. The efficacy of the proposed algorithm has been tested on randomly generated 

datasets and the results obtained are compared with other evolutionary algorithms such 

as Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison of ESPC with 

GA and SA proves the superiority of the proposed algorithm both in terms of quality of 

the solution obtained and convergence time required to reach the optimal /near optimal 

value of the solution. 
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1.  INTRODUCTION  

 

In the present scenario manufacturing enterprises are in an environment where markets 

are frequently shifting, new technologies are continuously emerging and contenders are 

multiplying globally. This has enforced industries to build their strategies in a way to 

support global competitiveness, new product advancement and introduction, and swift 

market responsiveness (Shen and Norrie, 1999). Rapid advances in technology and 

changes in demand patterns to incorporate customized features in manufactured products, 

and the relatively shorter life cycle of manufactured goods has reallocated the emphasis 

of manufacturing strategy from mass production to small batch manufacturing and has 

enforced the industries to adopt Make-to-Order (MTO) strategy. However, in order to 

reduce lead times, some proportion of production is planned in advance in accordance 

with the forecast of orders. Order lead time are cited based on the estimated cycle time 

i.e. the gap between receiving  requests and the earliest time the order can be delivered.  

This approach carries the risk that estimated orders may not materialize. Strategies based 

on delayed differentiation and component commonality tries to alleviate the risk by 

facilitating pooling of demand (Burman et al. 1998, and Brown et al. 2000).  

In this competitive era, steel industry is one of the fast up-and-coming industries. Steel is 

a foremost essential raw material for the construction of engineering components, 

automobiles, buildings, household objects, and various end user products. In developing 

countries, steel industry is one of the pillars behind their economical growth. All the steps 

mandatory to convert the iron ore to the finished products are performed by these 

Integrated Steel Manufacturers (ISMs). Global competitiveness has enforced the hefty 

industries such as Integrated Steel Manufacturers (ISMs) to become more customized. 

Mini-mills are giving firm competition to these ISMs in the manufacture of Plain Carbon 

Steels as they benefit from the cost advantage and significantly shorter cycle times  

owing to the processing of steel scrap. In response to the pressure build up by the global 

competitiveness, ISMs have realized their potential in the manufacturing of ample 

assortment of high-quality customized products. The technology to produce exotic grades 

and to customize finishing operations has positioned the ISMs to respond to more 

customized finished products. 
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The infrastructure of ISMs permits them to make variety of products. Reliable deliveries 

of the customized product are required to be synchronized with the customized 

production schedules. These aspects have put great pressure on ISMs to increase the 

product variety and reduce the delivery lead time for a subset of their customers. Though, 

the necessity to have a large product variety and swift response time, places inconsistent 

demands on the production system. 

The reduction of delivery lead times has pressurized the ISMs to alter from pure Make-

to-Order (MTO) production mode to a hybrid MTO/Make-to-Stock mode (Ha, 1997). 

Preserving stocks of semi-finished products reduces the order accomplishment delay 

relative to the pure Make-to-order system. The semi-finished inventory is converted to 

finished product for the customers who agree to forfeit premium for it. The delivery 

through MTO mode, where production is not initiated until the customer order is 

received, continues for the other existing customers. As high degree of demand 

uncertainty exits in the market and the custom nature of the end product prevails, it is not 

economical to put the semi-finished inventory into stocks for all customers. As semi-

finished inventory requires extra storage space, this puts extra burden of holding cost on 

the industry which is economically not viable. ISMs are facing the problem of finding an 

effective way to determine the position and amount of strategic inventory to hold. 

Inventory deployment came for rescue to industries in this regard. 

The inventories used in ISMs are categorized in the form of slabs, band, coils, and 

finished products. The coils are prepared in two stages; (i) in the first stage the raw 

materials including iron ore, coke, and limestone are converted into band and (ii) in the 

second stage the surface and structure is modified as per the customer requirements on an 

order. In the schematic figure shown in Fig.1, the stages (stage from 1-3 represents the 1st 

phase operations & the stage 4 represents the finishing operations) of production of coils 

are shown. Out of the three categories slabs are very difficult to be differentiated in 

comparison to the finished products. The advantages of width and height modification by 

further operations associated with slabs enable them for the manufacturing of various 

types of finished product orders. Conversely band has slight flexibility where as the 

typical finished inventory has no flexibility i.e. it is applicable to a single customer. 

<<Include figure 1>> 
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 The cycle time can be reduced by appropriate positioning of the slabs during the various 

staging points. Closer the inventory is placed to the final product better is the reduction in 

cycle times and demand collection benefits, the converse is also true. For instance, the 

alternate inventory positioning at the slab and coil stage reduces the cycle time by about 

50% and 75% respectively (Denton & Gupta, 2003). It can be also clarified as, by 

positioning the finished product into the stock for certain customer, the reduction in the 

cycle time is virtually zero if no stock outs are assumed  

ISMs are susceptible to uncertainty which is a major factor affecting its inventory 

planning. Prominent causes of uncertainties such as extended cycle times, volatile 

scenario of the markets, supply uncertainty, shortage or excessive production of orders 

not only affect the planning but almost it damages the inventory planning. Due to 

tentative customer orders production, deviations from the actual orders lead to the 

shortage or extra inventory. Market volatilization for specialized steel products exist 

because of bullwhip effect, as they are at the start up of various supply chains. In a supply 

chain the increment in variability with the upstream travel of demand information is 

stated as bullwhip effect (see Lee et al., 1997 and Chen et al., 2000). The effect is often 

identified with the simulation experiment, The Beer Game, which is used to demonstrate 

the effects of distorted information in the supply chain (which is the cause of the 

bullwhip effect, Kimbrough et al. 2002). The key driver of the bullwhip effect appears to 

be that the variability of the estimates or the forecasts of customer demand seems to 

amplify as the orders move up the supply chain from the customer, through retailers and 

wholesalers to the producer of the product or service (Carlsson et al. 2000). By the 

centralization of demand information, that is, providing each stage of the supply chain 

with complete information on customer demand, the bullwhip effect can be diminished. 

 In the production process, loss of yields at various points results in supply uncertainty. 

Sometimes it may happen that the slabs produced may not be of desired grade, but it can 

be distinguished only after the casting has been completed. At this instance it is almost 

impossible to re-adjust the supply plan in a short interval of time as the remaining slabs in 

the queue are already in the controlled production plan. Uncertainty in supply chain can 

also occur if slabs are purchased from the external sources and in this case the yield 
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losses can be recognized after the received order does not matches with the specifications 

mentioned.  

The paper is organized as follows. Section 2 deals with the related work. Section 3 deals 

with the model formulation starting with the problem description, leading to IDP problem 

formulation. Section 4 focuses on the background of the Endo-symbiotic Psychoclonal 

algorithm. Section 5 describes the proposed algorithm. Section 6 explains the numerical 

experiment and Section 7 concludes this paper. 

 

 

2. Related work 

In this article the problem of our interest is correlated to various dissimilar areas of 

research including in the field of random yield, multi product substitutable inventory, and 

stochastic fixed charge network flow problems. 

 The various literatures in the area of stochastic inventory deals with single-period 

problems, and with two product instances of the substitutable products problem. The 

single-period stochastic inventory models assume a two-stage decision process in which 

an initial inventory level is chosen (Birge et al. 1997), random supply and/or demand are 

observed, and inventory is subsequently allocated to demand e.g. newsvendor model 

(Porteus, 1990). 

 The assortment problem in which demand and yield are deterministic, deals with 

the problem of selecting the proper combinations to stock, and aims towards the 

minimization of the combined stocking and substitution costs. This problem has been 

studied by Pentico (1988). Multi-product inventory problem with downward substitution 

and random demand was first studied by Ignall and Veinott (1969), in which the main 

emphasis was given on the conditions of the myopic ordering policy in a multi-period 

setting. Sparling and Miltenburg (1998) presented a mixed model for U-line balancing 

problem. McGillivray and Silver (1978) and Parlar and Goyal (1984) presented the 

perfect yield analytical results for two-product problems. The solution methodology for 

the downward substitution of a two-stage stochastic linear programming formulation (2S-

SLP) of large-scale multi-product problems was considered by Bassok et al. (2000). The 

two-product case with yield uncertainty was well thought-out by Gerchak et al. (1996). 
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Bitran and Dasu (1992) study heuristics for a lot sizing model and Hsu and Bassok 

(1999) present an efficient algorithm for 2S-SLP model that assumes a single lot size 

decision resulting in random yield of multiple products. The model proposed in this paper 

incorporates various characteristics of replacement models but also oversimplifies to 

cases other than downward substitution. The paper takes account of the uncertainties such 

as due to Bullwhip effect in which the variability of the estimates or the forecasts of 

customer demand seems to amplify as the orders move up the supply chain from the 

customer, through retailers and wholesalers to the producer of the product or service 

(Chen et al., 2000). 

The uncertainties affecting the inventory planning has been well established in the 

proposed article.  One frequently suggested strategy for reducing the magnitude of the 

bullwhip effect is to centralize demand information, i.e., to make customer demand 

information available to every stage of the supply chain. For example, Lee et al. (1997) 

suggest that “one remedy is to make demand data at a downstream site available to the 

upstream site”. In perspective to the newsvendor type model, Shih (1980) illustrated that 

the cost impact of ignoring yield uncertainty can be nearly 5% of the total costs. Factors 

influencing yield randomness and related modeling approaches have been described by 

Yano and Lee (1995). Our model assumes stochastically proportional yield losses i.e. the 

number of good items in a lot is the product of a random yield rate with arbitrary 

distribution and the lot size and it is applicable to large-scale problems involving multiple 

products with substitution. 

The multi-location inventory problem with transshipment between locations has been 

studied by Karmarkar (1979), Robinson (1990), and others. The work on Make-to-Stock 

(MTS) queues has been done by Buzacott and Shanthikumar (1993). The Genetic 

Algorithm optimization of inventory control system by has been studied by Disney et al. 

(2000). The problems of two-stage stochastic linear programming have been solved by 

specialized computational procedures developed by Wallace (1986). Our proposed model 

incorporates binary decision variables in the first stage decision process, which is the 

generalization of the work done by Wallace. The first stage decision corresponds to the 

selection of order type, design, and production-level decisions. The variables representing 

the supply and demand nodes define the second stage network-flow problem. 
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The studies related to the modeling of the problem that determine the optimal point of 

differentiation, subject to a service-level constraint (Garg and Tang, 1997; Lee and Tang, 

1997; Lee and Billington, 1994; Lee, 1996; Graman and Magazine, 1998; Gupta and 

Benjaafar, 2004; Swaminathan and Tayur, (1998, 1999); Gupta and Denton, 2004), have 

been incorporated in our model. The aims of the authors are to confine the advantages of 

inventory pooling when order-up-to-level inventory models are used to elicit 

replenishment. The design features of the semi-finished product as decision variables are 

studied by only Swaminathan and Tayur (1998). The proposed model differs from it in 

that they have assumed the assembled products where as we are concerned about the 

semi-finished products. In steel industries the numbers of design choices are virtually 

infinite and there is much greater product customization. We have assumed general 

substitution as compared to the only downward substitution considered by Swaminathan 

and Tayur (1998). Swaminathan and Tayur (1998) considered model fixed costs where as 

we have considered inventory storage space constraints. 

Our model can be classified as a stochastic fixed-charge-network flow problem 

(Nemhauser and Wolsey, 1999, Chapter II.6 for discussion of the deterministic versions 

of these problems). A dual-based procedure for the stochastic un-capacitated facility 

location problem has been studied by Louveaux and Peeters (1992). Laporte et al. (1994) 

study exact solution procedures for a location problem with stochastic demands in which 

facility capacities (inventory levels) are chosen a priori. Rao et al. (2000) studied a multi-

product inventory model with downward substitution and fixed setup costs. Our model 

can be clearly distinguished from their work, as they assume perfect yield, no shortage 

constraints (rather, fixed setup costs), and take advantage of the downward substitution 

structure to propose simulation-based heuristics. 

From the literature, it has been found that these methods used to determine semi-finished 

inventory are not very interactive and need much more computer memory to store the 

representations of the sequence. It is also known that although heuristics are generally 

quick, they are prone to get entrapped in local optima and thus do not always provide a 

true optimal solution.  

    These shortcomings of previously applied algorithms on inventory deployment 

problem motivated the authors to develop a Meta heuristic, which is capable of escaping 
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local optima. To enable this, the authors have extended their previous approach of 

psychoclonal (Tiwari et al. 2005, Singh et al. 2005) by incorporating feature of reciprocal 

changes between the antibodies and antigens.  The proposed algorithm termed as 

Endosymbiotic-Psychoclonal (ESPC) Algorithm, enjoys its flavor from Endosymbiotic 

algorithm (Margulis 1980) and Psychoclonal algorithm. The Endosymbiotic algorithm is 

based on the evolution process of eukaryotes from prokaryotes. An endosymbiont is an 

individual formed by the integration of two types of symbionts, in ESPC algorithm 

antigens (Ag’s) an antibodies (Ab’s) are modeled as symbionts and the toroid matrix 

formed by the series of reciprocal changes refer as endosymbiont.  Psychoclonal 

algorithm in ESPC algorithm inherits its attributes from Maslow’s need hierarchy theory 

and the Artificial Immune System (AIS) approach. There are different levels of needs 

arranged in a hierarchy, namely physiological needs, safety needs, growth needs, esteem 

needs, and self-actualization needs. Clonal selection explains the response of immune 

systems when a non-self antigenic pattern is recognized by antibodies. Characteristic 

features of immune systems are immune memory, hypermutation and receptor editing. In 

proposed algorithm antigens (Ag’s) and antibodies (Ab’s) are referred as symbionts, in 

engineering milieu, non-self antigens are constraints and antibodies are the candidate 

solutions. In this algorithm, the different levels of needs help in maintaining the 

feasibility of a solution and thus, preserve it in the immune memory for subsequent 

operation. Hypermutation is used to guide the algorithm towards local optima, and 

receptor editing helps it to escape and look for other solutions. This process continues till 

the self-actualization level and the best solution is attained. To prove the efficacy of the 

proposed algorithm intensive runs have been carried out on computer simulated dataset 

and the results obtained are compared with the GA and SA solutions. 

 

3. MODEL FORMULATION 

3.1   Problem Description 

The model proposed in this paper deals with two types of decision-making processes for 

inventory deployment: (i) strategic planning decisions made on an infrequent basis (e.g. 

quarterly or biannually); and (ii) operational planning decisions made more frequently 

(e.g., weekly or monthly). We have considered the Inventory Deployment Problem (IDP). 
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IDP refers to the problem of determining the demand volume, customer’s priorities and 

type of orders to be served in the Make-To-Stock (MTS) production mode on the basis of 

the given historical information. IDP also refers to the determination of the designs to be 

produced in the MTS mode to support the selected customer orders subject to a constraint 

on the total number of inventory designs that can be chosen based on known potentially 

large set of inventory. The orders that are not included in the MTS mode are served by 

Make-To-Order (MTO) production mode by default. The orders having insufficient 

planned production being planned to be served in the MTS mode are assumed to be 

satisfied by an alternate longer-cycle-time sourcing method (e.g., MTO production, 

outsourcing) and incur a shortage penalty. The fluctuations in demand leading to the 

surplus production volume, which  remains unutilized is supposed to incur a penalty cost 

i.e. the opportunity cost  of reserving production capacity. 

Throughout the first planning stage i.e. the strategic planning phase, the ISM’s objective 

is to select orders and inventory designs  supporting consistent high-volume slab-to-order 

distribution at an aggregate level during horizon of the decision. In order to lessen the 

unfavorable consequences of supply and demand ambiguity the ISM fabricate the 

inventory of chosen designs thereafter. At this level of granularity, the complete planning 

era can be treated as a single period when accounting for the cost of supply-demand 

disparities. Thus, the proposed two stage stochastic linear programming model is such 

that demand and supply judgments across the strategic planning period are combined into 

a single second-stage period. The planning decisions of MTS orders are designed for the 

optimized production, in order to accomplish the aimed inventory levels on a monthly or 

weekly basis, if the variety of designs and their respective orders served by them are 

known.   

In the MTS mode the operational scheduling period can be convincingly assumed to be 

independent for the couple of reasons. Primarily, due to extended cycle times for slab 

production, and high reliability of production efficiency on sequencing and scheduling of 

the bottleneck resource, deficiency in one period cannot be regained in the subsequent 

period without considerable cost. Subsequently, rescheduling to back till a missed order, 

results in domino effect, which may cause numerous delayed subsequent customer 

orders. Therefore, in order to overcome this, either rescheduling of the order within the 
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MTO mode is carried out or the order is completed from external sources i.e. by 

purchasing of on-hand slabs/coils at relatively higher cost. In addition, ISM’s are 

equipped with sufficient capacity for finishing operations, leading to the shorter 

processing time for the customized finishing. This also refers to the reasonable 

assumption of decoupling of the planning decisions in different operational planning 

periods. In order to maintain the model refined regarding the aforementioned authenticity 

of steel production, we put forward a model that allocates a predetermined time-

independent charge for each deficiency, and scarcity of Make-To-Stock items remaining 

within the same period (Carr et al. 2000). As per the proposed stochastic linear 

programming model, once the inventory-level (first-stage) decisions i.e. selection of the 

kind of order, design, and production-level designs are made, the supply and demand 

uncertainty is resolved and optimal allocation of slab inventory is made realizing the 

customer orders in a second-stage linear program. 

 

3.2 IDP Model Formulation 

The proposed IDP problem has the network structure resembling a bipartite graph.  

Vertices in the graph can be separated into a set of potential supply nodes, 

J={1,2,......,m}, representing the set of design choices, and a set of potential demand 

nodes, K={1,2,........,l}, representing the different order choices. As per the application 

rules the allowable allocations of supply and demand are represented by the edges 

between the supply and demand nodes. The additional notations used are shown below: 

e
jC  per unit cost of having surplus inventory of design j; 

s
kC per unit cost of scarcity for order-type k; 

jkG supplementary revenue from cycle time reduction if design j is applied to order-

type k; 

p
jC additional per unit cost of producing design j in the Make to Stock mode; 

jd  binary decision variable representing the decision to stock design j; 

kv  binary decision variable; 1kv  if order-type k is supplied from inventory, and 0 

otherwise; 

c   = maximum number of permitted design choices; 
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jW production /procurement planned for design j; 

jkO quantity of order-type k supplied by design j; 

jku incidence parameter; jku 1 if design j can be applied to order k and 0 otherwise; 

ks shortage for order-type k; 

je surplus production of design j; 

jY random yield rate for design j; 

kX random demand for order-type k; 

 random vector with yields, Y j and demands, X k, as components. 

  and Ψ represents the set of positive integers and positive real numbers respectively. 

Similarly ψ represents the set of all real numbers, and A = {0, 1} is the binary set of 

variables. The domains of the problem parameter 

are: .),(,),,,,,,(,, AvdandesuWCGCCc kjjkjkj
p

kjk
s
k

e
j  , the random vector 

  has support ,ml probability distribution P, and finite first moments, Ж. 

Since IDP is formulated as two-stage stochastic integer program, the first stage 

corresponds to design and order choices, mAd  and lAv , and the planned production 

vector, mW  . The production cost incurred during the first period is denoted 

as, 

m

j j
p
j uC

1
. The production cost in the second stage is  

m

j j
e
j eC

1
, for excess 

production and for production scarcities a cost


l

k
k

s
k sC

1

 is incurred. 

The reduction in the cycle time due to matching designs with demand results in the total 

additional revenue equal to, 


l

k
jkjk

m

j

OG
11

. The complete problem, assuming a risk-

neutral firm can be expressed as: 

 

Max {F= )},,,( WvdRWC p     … (1) 

Subject to  

  cd
m

j
j 

1

  ,    … (2) 
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,mAd   ,lAv  W≥0   … (3) 

 

Where ),,,( WvdR  is known as the recourse function. It is the expected additional 

revenue earned, net of any shortage/overage costs, acquiring from the inventory 

allocation decisions. In reality, )],,,([),,(  WvdREWvdR  , where ),,,( WvdR is 

defined by: 

 

),,,( WvdR = max 








  
   

m

j

l

k

m

j

l

k
k

s
kj

e
jjkjk sCECOG

1 1 1 1

  … (4) 

 Subject to  

jjjjk

l

k
jk WYEOu 

1

   ,j      … (5) 

 
m

j
kkkjkjk vXsOu ,   ,k      … (6) 

,jkjk dXO     ),,( kj     … (7) 

,0jkO    ,0jE   ).,( kj    … (8) 

 

 Equation (1)-(3) representing the complete problem is feasible for any (d, W), due to 

positive linear basis provided by (e, s) in constraints (5)-(6), and the fact 

that ),(,0,0 kjXY kj  . In addition, randomness takes place only in the R.H.S. of 

constraints (5)-(8), and the coefficients of second stage are deterministic. The slab 

inventory is measured in tons and sO jk  are treated as continuous variable. The total 

production in MTS mode accounts for less than the half of the ISMs capacity and as there 

are substantial production efficiencies associated with the high volume MTS mode, due 

to this reason, there is no upper bound on the variables Wj. 

Some assumptions are assumed regarding the objective function coefficients such as non-

negativity of the shortage costs. The insignificant revenues are such that if for some (j, k), 

,0jku  then 0jkG  as well. In addition,   ),(,0,max kjCCG e
j

s
kjk  , i.e., it is 
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never beneficial to select not to allocate accessible supply  of design j to order k if 1jku  

for some j. The first stage procurement  cost is assumed as e
j

p
j CC  > 0, since otherwise 

it is insignificantly optimal  to produce an infinite quantity of design j, and that for each 

design j, there is an order-type k such that jk
s
k GC  > p

jC , since otherwise it is  optimal 

to bring to a halt producing design j completely. 

At ISMs the available space in the slab yard is contributed for the storage of the slab 

inventory, hence for choosing a particular design no significant fixed cost is incurred. 

Equation (2) representing the storage cell constraint plays a role analogous to fixed costs, 

through the implied opportunity cost, linked with not selecting one of the other potential 

designs. Equation (5) and (7) implies that optimal production level Wj
* = 0, if dj = 0 since 

otherwise Ej > 0 and needless surplus costs are incurred with no superfluous rewards. 

Constraints (6) and (7) implies that vk
* = 0, if all dj for which ujk = 1 are zero.  

 

4.  BACKGROUND OF ESPC 

As stated earlier, the proposed ESPC algorithm uses concepts derived from the natural 

processes of Endosymbiotic evolution, human psychology, and Artificial Immune System 

theory (Jerne, 1974). In this section, the salient features of the aforementioned theories 

are outlined. 

 

4.1 Endosymbiotic Algorithm 

The Endosymbiotic evolutionary algorithm was proposed by Kim et al. (2004). 

According to Kim et al. a symbiotic evolutionary algorithm is inspired by the biological 

coevolution that is a series of reciprocal changes in two or more cooperative interacting 

species. It maintains two or more populations (or species) that represent sub-problems. 

This means that an individual in a population becomes a partial solution to the entire 

problem.  A complete solution to the entire problem is constructed by combining all the 

partial solutions, one from each of the populations. 

The Endosymbiotic evolutionary algorithm (EEA) constructs and maintains a balancing 

population (Pop-B) and a sequencing population (Pop-S), like the existing symbiotic 

algorithm. Pop-B and Pop-S consists of symbionts that are the individuals representing 

work assignment to stations and model sequences, respectively. Each of the individuals 
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becomes a partial solution to the problem being solved. EEA maintains another 

population Pop-BS that consists of endosymbionts. An endosymbiont is an individual 

formed by the integration of the two types of symbionts, so that it becomes an entire 

solution representing a combination of work assignment and model sequence. Indeed, 

Pop-BS represents the process of forming eukaryotes from prokaryotes. 

There have been several variants to the symbiotic evolutionary algorithm, such as 

Ahmadjian et al. (1986), Potter (1997), Moriarty and Miikkulainen (1997), Kusumi et al. 

(1998), Watson et al. (1999), Mao et al. (2000), Kim et al. (2000), Tsujimura et al. 

(2001), Chang et al. (2002). The Endosymbiotic algorithm intends to replicate the natural 

process of Endosymbiotic evolution. The theory of Endosymbiotic algorithm was first 

proposed by Margulis (1980). The author provides an explanation for the evolution 

process of eukaryotes from prokaryotes in which the simple structured prokaryotes enter 

into a larger host prokaryote, and start living together in symbiosis and evolve to a 

eukaryote. Endosymbiotic Evolutionary Algorithm (EEA) incorporates an evolutionary 

strategy replicating the Endosymbiotic process embedded in an existing symbiotic 

evolutionary algorithm.  

 

4.2 Background of Psychoclonal Algorithm 

The psychoclonal algorithm (Tiwari et al. 2005, Singh et al. 2005) enjoys the flavour of 

Maslow’s need hierarchy theory (Maier, 1965) and Theory of clonal selection (De 

Castero, L.N. and Zuben, 2002). Maslow’s need hierarchy theory helps in constraints 

satisfaction by assessing the antibodies formed at each step. The clonal part helps in the 

somatic maturation of antibodies. In this section, the salient features of the 

aforementioned theories are outlined with proposed heuristic. 

 

4.2.1 Maslow’s need hierarchy theory 

Human psychologists have always attempted to explain the nature of motivation in terms 

of the type of needs that people experience during their lifespan. The basic concept 

behind such a theory is that, people have certain fundamental needs and people are 

motivated to engage in behavior that will lead to satisfaction of their needs. 

Psychologists’ claim that needs have a certain priority. As the more basic needs are 
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satisfied, an entity seeks to satisfy higher needs. Abraham Maslow had given a 

framework that helps to explain the strength of certain needs, which is known as Need 

Hierarchy Theory (Maier, 1965).  The theory hypothesize that all people posses a set of 

five needs arranged in hierarchy, from most fundamental or basic survival need to the 

most sophisticated needs of self-actualization. According to this theory, one can move to 

upper strata of hierarchy if the lower levels of needs are satisfied. The five levels of 

needs, arranged in hierarchy and known as Maslow’s Pyramid are shown in figure 2.  

 

<<Include figure 2>> 

 

4.2.2 Theory of clonal selection 

Clone selection explains the response of the immune system, when a non-self antigenic 

pattern is recognized by a B-cell. When a non-self antigen above the threshold affinity is 

recognized by B-cell receptor, it is selected to proliferate and produces antibodies in high 

volume. Antigen (Ag) stimulates the B-cell to proliferate and mature into terminal 

Antibody (Ab) (non-dividing) secreting cells, known as plasma cells. Proliferation in the 

case of immune cells is an asexual, amitotic process. The cells divide themselves (no 

crossover) to generate clones. During reproduction, the B-cells progenies undergo a 

hypermutation process that together with the strong selective pressure, results in B-cells 

with an antigenic receptor presenting higher affinities than with the selective antigen. 

This process is known as the maturation of the immune response. 

   B-cells, in addition to proliferating and differentiating into plasma cells, can 

differentiate into long-lived B memory cells with a long-life span. These memory cells 

are pre-eminent in future responses to the same antigenic pattern, or a similar one. The 

aforementioned, process of clonal, proliferation, and affinity maturation is schematically 

shown in figure 3 (Castero et al. 2002, and Tiwari et al. 2005).  

 

<<Include figure 3>> 
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5.  PROPOSED ALGORITHM 

5.1 Nomenclature: 

Ab     : Set of Antibodies available. 

Ag     : Set of Antigens available. 

Abd     :  Set of the new Ab’s that will replace Rc amount of the lower affinity Ab’s from 

Ab. 

Abk, n   :  Ab’s from Ab with highest affinities. 

Agm    :   Population of m Ag’s. 

Rk       : Population of Nc clones generated from Abk, n. 

Rk
*      : The population after hypermutation. 

BR*     : Best repertoire.  

Â       :  Vector containing values of objective function g (.) as the affinity of all Ab’s   

Â *      : Vector containing values of antigenic affinity for matured clones. 

 In relation to the antigen Agj. 

N        :  The total number of antibodies 

Nc     : The total number of clones generated for each of the Ag’s = 


n

1i
R (β. N),   i=1,2,..n. 

R (.)     :  Operator that rounds its argument toward the closest integer. 

β         :  Multiplying factor   

POPij   :  Population set of constrained satisfied Ab’s.   

PABij  :  Population of randomly generated Ab’s.  

PAGij  :  Population of randomly generated Ag’s. 

S         : Number of bits in eukaryote.  

 

Figure (4.) represents the flow of the Endosymbiotic-Psychoclonal Algorithm. The detail 

steps of the proposed algorithm are discussed below: 

 

<<Include Figure 4>> 

5.2 The Procedure 

Need Level I:   

Physiological needs: This refers to our most basic survival needs for food, water and 

shelter from the environment to permit our continued existence. In optimization, this 
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corresponds to the generation of possible sequences based upon the problem 

environment.  

For each cell; PABij and PAGij has been generated randomly, PABij is a 2D structure of 

toroid grid containing the generated set of Ab’s. PAGij is also a 3x3 matrix of randomly 

generated constraints is Ag’s. A set of eukaryotes with satisfied constraints are generated 

randomly or based on certain rules are stored in POPij matrix.   

  

Need Level II:   

Safety needs: The safety needs has to do with physical and physiological safety from 

external threats to our well-beings. An external threat in the engineering perspective 

corresponds to constraints imposed on the problem. This is where evolution of a 

particular entity or candidate solution is carried out. 

 Here, new Ab is produced by cooperation between PABij and PAGij. Calculate the 

affinity vector (Â) of the generated Ab. Randomly select a population from POPij and 

compare it with newly generated Ab. If the Selected eukaryote from POPij has Â greater 

than that of generated Ab then it will update POPij toroidal matrix else algorithm will 

move to improve the quality of Ab by cloning and that of eukaryote by carrying out 

reciprocal changes in it. 

 

Need level III: 

Social needs: In engineering this refers to the selection of the candidate solution and the 

term social reflects the interaction between candidate solutions. 

The selected antibody is cloned again by assigning cooperation between PABij and PAGij 

and proportionally to the Â, generating a repertoire Rk of clones (higher the antigenic 

affinity, the higher the number of clones generated for each selected Ab).       

 

Need level IV: 

Growth needs: Here, candidate solutions diversify to extend the search-space. This 

movement towards local optima is the basic mechanism of every evolutionary technique 

e.g. crossover and mutation in GA.  
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Set Rk is submitted for hypermutation, inversely proportional to the vector affinity (Â), 

generating a population Rk
* of matured clones (the higher the affinity, the smaller the 

mutation rate). If the solution of Rk
* don’t improve after fixed number of iteration (Reject 

is taken 2 in this report) then selected Ab is edited using receptor editing.   

After satisfaction of need level IV, vector affinity (Â) of the matured clones Rk
* is 

evaluated and the best repertoire (BR*) is passed through Need level III. 

                

Need level V:   

Self-actualisation needs: Self-actualization needs are unique and they can never be fully 

satisfied or fulfilled. This is very true for any optimization problem as we always 

concentrate on finding near optimal solution rather than the global-optima. According to 

theory, the more self-actualization needs are fulfilled, the stronger they become. 

With the number of generation the solution quality of POPij goes on improving, when the 

solution quality stops improving, the algorithm is supposed to achieve self-actualisation 

needs. In ideal condition self-actualization is achieved at optimal solution. As mentioned 

above, this level becomes stronger and stronger after a number of generations. Thus, the 

process repeats till N=Ngen (maximum number of generation). 

 

 

6.  Numerical Experiment 

It is tough to determine the capricious nature of customers therefore, to decide which 

order type for which design have to be kept in inventory and at what stage of its 

processing, to meet the customers demand at minimum tardiness is a complex decision 

making problem. In this study, the authors have proposed an ESPC algorithm to solve an 

inventory deployment problem.  The dataset for different type of scenarios have been 

randomly generated using the information provided in Denton and Gupta (2004). The 

coefficients for additional revenues, shortage costs, and excess costs are all distributed as 

uniform (1, 4). Additional procurement costs CP are assumed to be the same for all 

supply nodes and are fixed at one. The detail information regarding, demand for different 

order-type, yield rate for different design, Normal probability plot, and Histogram 

showing the deviation from the normality of the dataset can be obtain from 



 19

www.geocities.com/gurukul007/inventorydata.pdf. The ESPC algorithm has been applied 

on the generated data. To initiate the working of the proposed algorithm, initial toroid 

matrix i.e. POPij matrix consisting of eukerates have been generated. In engineering 

milieu, the toroid matrix contains the feasible solution with all constraints satisfied. The 

eukerates of toroid matrix can be generated randomly or based on some rules. The toroid 

matrix is generated i.e. POPij matrix containing feasible solution with all constraints 

satisfied. PAGij matrix consists Ag’s, in our case these are the constraints represented by 

Equation (2)-(8) in section 3. Then PABij matrix is generated consisting of Ab’s viz. 

candidate solution. The Ag’s are attacked on Ab’s randomly i.e. constraints are selected 

randomly and infeasible solutions are traced back into the feasible solution space based 

on the constraint represented by the Ag. As in considered problem, no penalty is involved 

that means each and every constraints need to be satisfied. But the order at which Ag’s 

attack the same solution will affect the quality of solution of matured Ab’s produced by 

the attack of Ag. An example of an antibody has been shown in Table (1) formed after 

the attack of Ag’s. On the basis of Ab generation, the order-type has been secreted as 

shown in Table 2. The Vector affinities of the generated Ab’s have been calculated using 

equation (1). The randomly selected Ab from PAB matrix has been compared with the 

eukerates selected from the toroid matrix represented by POPij matrix. If the vector 

affinity of selected antibody is greater then the solution selected from the toroid matrix 

then it will replace the solution else selected Ab is send for cloning carryout at need level 

III. The hypermutation is carried out on cloned Ab. The proposed algorithm has 

deterministic procedures for finding the rate of hypermutation, which is given as: 

                      Âexp                                       … (13) 

Where, 

 =Rate of hypermutation 

 =Control factor of decay 

The hypermutation offers random changes in genes as with natural mutation. The 

difference lies in the terms of the degree of modification. After hypermutation, 

maturation is carried out by attacking the Ag’s on the reproitires formed from cloning. 

Best matured reproitire has been compared with the eukerates, if the solution doesn’t 
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improve for a fixed number of iteration (In this research, reject is set to 2) the antibody is 

edited using receptor editing. The solution quality in the toroid matrix i.e. POPij improves 

with the number of iterations satisfying the self actualization needs of Ab’s and 

eukerates. 

For the problem, code has been generated in MATLAB 5.3 and the program is executed 

on IBM PC with Pentium CPU at 1.9GHz. The program for proposed ESPC algorithm is 

given on http://www.geocities.com/gurukul007/program/inventoryprg.pdf. The 

Endosymbiotic algorithm has been proposed by Margulis in 1980. In this paper, the 

authors have incorporated the merits of Endosymbiotic algorithm into the Psychoclonal 

algorithm and proposed a new Endosymbiotic Psychoclonal algorithm (ESPC). The 

ESPC algorithm has faster convergence than the GA (Genetic Algorithm) or SA 

(Simulated Annealing) based approaches. A prominent feature of the proposed algorithm 

is its ability to explore different areas of the solution space simultaneously, by breaking 

initial chromosomes into several populations, which enables it to take cut above the 

traditional GA’s, where genes are blindly divided into two chromosomes. The diversity in 

the proposed algorithm is ensured by incorporating cooperation and co-evolution among 

the symbionts. 

Endosymbiotic evolution, which is an extension of cooperative or symbiotic evolution, is 

yet another novel genetic approach that emulates the natural evolution of endosymbionts. 

An assay of the search strategy adopted by symbiotic evolution reveals that even though 

different populations cooperate, the distributed search over all the populations might 

hinder the convergence to good solutions. The proliferation of Endosymbiotic 

evolutionary algorithm has endowed the search strategy with an effective passage to get 

by the aforementioned situation. The subsistence of endosymbionts facilitates the 

exploitation along with the embedded parallel search that results in speedy convergence 

to better quality solutions. The result obtained by ESPC algorithm has been compared 

with Genetic Algorithm (GA) and Simulated Annealing (SA).The detailed result has been 

given in Table 3. While comparing the proposed ESPC algorithm with that of the GA and 

SA the crossover probability was set to be 0.6 and the mutation probability was set to 0.1. 

In SA the initial temperature was set to 200 and the final temperature was 7.    From the 

table it can be seen that the tendency of SA to get entrap in local optima is very high and 
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therefore the average solution quality of SA in most of the cases is less in comparison 

with ESPC and GA.  The GA in most of the cases gives result near to that of ESPC but 

when the experimentation on convergence rate of both algorithms is done, it is found that 

GA got very slow convergence rate. The average number of generations required by GA 

to reach optimal / near optimal solution is 761 with standard deviation of 67 generations 

whereas, in ESPC the average number of generation required by algorithm to reach the 

optimal/near optimal solution is 264 with standard deviation of 32 generations.  Thus, 

ESPC algorithm is around 288 times faster in converging toward the optimal / near 

optimal solution then GA.       

 

 

 

7.  Conclusion 

In this article a problem pertaining to inventory deployment problem has been addressed 

using a new optimization approach named Endosymbiotic-Psychoclonal Algorithm. The 

performance of proposed endosymbiotic-psychoclonal has been tested on computer 

simulated dataset, the results obtained are found exemplary when the same has been 

compared with genetic algorithm (GA) and simulated annealing (SA). Tuning of various 

parameters of endosymbiotic-psychoclonal algorithm has been rigorously carried out and 

appropriate values have been selected after large number of trial runs. 

The authors are testing the sensitivity of the proposed methodology towards different 

problems of production, planning and control. For future work a robust methodology 

need to be devised to tackle the large experimentation time required to tune the different 

parameters of Endosymbiotic Psychoclonal Algorithm. 
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Table 1. An example of Antibody 

1 0 1 0 0 0 1 1 0 1 

 

Table 2. Represents Order-type assignment on design based on Ab generation 

1 3 1 7 10 1 8 7 3 10 7 1 1 8 7 8 10 3 7 8 

    

Table 3. Numerical Results for randomly generated dataset 

K=25, Uj ~(0.8,1),  j and Dk ~N(10,2) 

 

F(Pa) 

 

(c,n,m) 

ESPC GA SA 

AV σ AV σ  AV σ 

U(0.1,0.3) (5, 10, 20) 14.676 0.41 12.256 0.81 9.125 0.31 

 (5, 10, 30) 0.929 1.88 0.9156 0.95 0.756 1.63 

 (5, 20, 30) 7.234 0.59 6.584 0.48 6.452 0.62 

 (5, 20, 40) 3.068 0.24 3.124 0.75 1.251 0.34 

 (10, 20, 30) 0.864 0.35 0.758 0.25 0.565 0.76 

 (10, 20, 40) 3.514 0.57 2.947 0.20 3.125 0.45 

 (10, 30, 50) 4.505 2.14 3.210 1.23 2.265 0.65 

U(0, 0.4) (5, 10, 20) 10.266 0.35 10.256 0.23 9.303 0.53 

 (5, 10, 30) 2.051 0.023 2.131 0.35 2.015 0.32 

 (5, 20, 30) 10.567 2.54 9.154 3.15 9.532 0.14 

 (5, 20, 40) 1.080 0.025 0.926 0.023 0.712 0.21 

 (10, 20, 30) 4.135 0.11 3.589 0.15 4.021 1.05 

 (10, 20, 40) 6.034 0.54 5.121 0.63 0.593 0.92 

 (10, 30, 50) 4.838 0.47 4.568 0.83 3.978 0.35 

U(10, 0.25) (5, 10, 20) 9.035 0.515 9.142 0.61 8.691 0.61 

 (5, 10, 30) 2.851 0.41 2.816 0.56 2.563 0.26 

 (5, 20, 30) 2.237 0.64 1.915 0.34 1.654 0.25 

 (5, 20, 40) 1.909 0.15 1.896 0.11 1.726 0.21 

 (10, 20, 30) 7.420 0.24 7.670 0.68 6.840 1.27 

 (10, 20, 40) 11.10 0.86 10.26 1.67 10.641 1.25 

 (10, 30, 50) 0.135 0.002 0.054 0.004 0.03 0.002 

AV: Average objective value; σ = Standard deviation; N = Normal Distribution; 
K= No. of scenarios, U = Uniform distribution; D = Demand; c = Maximum number 
of permitted design choices. n = set of design choices; m = set of different order 
choices, Pa = Probability. 
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Figure 2. Maslow’s Pyramid 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Process of Clonal selection, proliferation and affinity maturation 
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