109 research outputs found

    Regional carbon predictions in a temperate forest using satellite lidar

    Get PDF
    Large uncertainties in terrestrial carbon stocks and sequestration predictions result from insufficient regional data characterizing forest structure. This study uses satellite waveform lidar from ICESat to estimate regional forest structure in central New England, where each lidar waveform estimates fine-scale forest heterogeneity. ICESat is a global sampling satellite, but does not provide wall-to-wall coverage. Comprehensive, wall-to-wall ecosystem state characterization is achieved through spatial extrapolation using the random forest machine-learning algorithm. This forest description allows for effective initialization of individual-based terrestrial biosphere models making regional carbon flux predictions. Within 42/43.5 N and 73/71.5 W, aboveground carbon was estimated at 92.47 TgC or 45.66 MgC ha−1, and net carbon fluxes were estimated at 4.27 TgC yr−1 or 2.11 MgC ha−1 yr−1. This carbon sequestration potential was valued at 47% of fossil fuel emissions in eight central New England counties. In preparation for new lidar and hyperspectral satellites, linking satellite data and terrestrial biosphere models are crucial in improving estimates of carbon sequestration potential counteracting anthropogenic sources of carbon

    Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Get PDF
    Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB). New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses

    Characterizing 3D Vegetation Structure from Space: Mission Requirements

    Get PDF
    Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization. We also show from the literature that lidar profile samples together with wall-to53 wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives

    FUSING GEDI LIDAR AND TANDEM-X INSAR OBSERVATIONS FOR IMPROVED FOREST STRUCTURE AND BIOMASS MAPPING

    Get PDF
    The upcoming NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission presents an unprecedented opportunity to advance current global biomass estimates. However, gaps are expected between GEDI’s ground tracks, requiring the development of fusion-based methodologies to contiguously map forest biomass at satisfactory resolutions and accuracies. This dissertation is built on the complementary advantages of observations from GEDI and DLR’s TerraSAR-X/TanDEM-X (TDX)) Interferometric Synthetic Aperture Radar (InSAR) mission. To meet the goal of mapping forest structure and biomass contiguously and accurately, three types of fusion strategies have been investigated. First, a simulated GEDI-derived digital terrain model (DTM) was utilized to improve height estimation from TDX. Forest heights were initially derived from TDX coherence alone as a baseline using the widely used Random Volume over Ground (RVoG) scattering model. Here, assumptions about RVoG parameters – extinction coefficient (σ) and ground-to-volume amplitude ratio (µ) – were made. Using an external DTM derived from simulated GEDI lidar data, RVoG model was used to calculate spatially varied σ values and derived forest heights with better accuracy. TDX forest height estimation was further improved with the aid of simulated GEDI-derived DTM and canopy heights. The additional use of simulated GEDI canopy heights as RVoG input not just refined σ but also enabled the estimation of µ. Based on these parameters, forest heights were improved across three different forest types; biases were reduced from 1.7–3.8 m using only simulated GEDI DTMs to -0.9–1.1 m by using both simulated GEDI DTMs and canopy heights. Finally, wall-to-wall TDX heights were used to improve biomass estimates from simulated GEDI data over three contrasting forest types. When using simulated GEDI sampled observations alone, uncertainties were estimated statistically to be 9.0–19.9% at 1 km. These were improved to 5.2–11.7% at the same resolution by upscaling simulated GEDI footprint biomass with TDX heights. The GEDI/TDX data fusion also enabled the generation of biomass maps at a fine spatial resolution of 100 m, with uncertainties estimated to be 6.0–14.0%. Through the exploration of these fusion strategies, it has been demonstrated that a fusion-based mapping method could realize the generation of forest biomass products from GEDI with unprecedented resolutions and accuracies, while taking advantage of global seamless observations from TDX

    Assesment of biomass and carbon dynamics in pine forests of the Spanish central range: A remote sensing approach

    Get PDF
    Forests play a dynamic role in the terrestrial carbon (C) budget, by means of the biomass stock and C fluxes involved in photosynthesis and respiration. Remote sensing in combination with data analysis constitute a practical means for evaluation of forest implications in the carbon cycle, providing spatially explicit estimations of the amount, quality, and spatio-temporal dynamics of biomass and C stocks. Medium and high spatial resolution optical data from satellite-borne sensors were employed, supported by field measures, to investigate the carbon role of Mediterranean pines in the Central Range of Spain during a 25 year period (1984-2009). The location, extent, and distribution of pine forests were characterized, and spatial changes occurred in three sub-periods were evaluated. Capitalizing on temporal series of spectral data from Landsat sensors, novel techniques for processing and data analysis were developed to identify successional processes at the landscape level, and to characterize carbon stocking condition locally, enabling simultaneous characterization of trends and patterns of change. High spatial resolution data captured by the commercial satellite QuickBird-2 were employed to model structural attributes at the stand level, and to explore forest structural diversity

    An empirical assessment of the potential of post-fire recovery of tree-forest communities in Mediterranean environments

    Get PDF
    The accumulation of fuel and the homogenization of the landscape in Mediterranean forests are leading to an increasingly hazardous behavior of wildfires, fostering larger, more intense, severe, and frequent wildfires. The onset of climate change is intensifying this behavior, fostering the occurrence of extreme forest fires threatening the persistence of forest communities. In this study we present an assessment of the post-fire recovery potential of the most representative tree-forest communities affected by fire in Spain: Pinus halepensis, Pinus nigra, Pinus pinaster and Quercus ilex. A large database of field data collected during specific campaigns -carried out 25 years after the fire- is used in combination with remote sensing, forest inventory and geospatial data to build an empirical model capable of predicting the chances of recovery. The model, calibrated using Random Forest, combines information on burn severity (remote sensing estimates of the Composite Burn Index), local topography (slope and terrain aspect) and climatic data (mean values and trends of temperature and precipitation) to provide information on the degree of similarity (vegetation height, horizontal cover of the vegetation layer along vertical strata, aboveground biomass and species diversity) between the plots burned in the summer of 1994 and the unburned control. Overall, only 33 out of the 131 burned plots could be considered as recovered, that is, reaching a similar state to unburned stands in neighboring areas. Our results suggest a primary role played by burn severity (the higher the severity the lower the probability of recovery), but strongly modulated by local topographic features (higher probability of recovery on steep north-facing slopes). In turn, increasingly warm and wetter conditions increased the chance of recovery
    • …
    corecore