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Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest
succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB). New
remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being
developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB
estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their
most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status
evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and
forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing
methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable
for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of
temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful

for regional or global analyses.

1. Introduction

Secondary and disturbed forests comprise roughly 30-50%
of the area covered by tropical forests [1-4]. These forests
play important roles as habitats for animal and plant species
[5-7] and store significant amount of carbon per unit area
[8]. Secondary forests emerge following natural or human
disturbances, such as clearing, selective logging, introduction
of invasive species, storms, or wild fires. Forest succession is a
natural response to these disturbances and occurs at varying
rates and in different directions, as indicated through species
composition and forest structure, depending on environment
conditions [9]. Changes in structure and species composi-
tion during forest succession typically result in substantial
increases in aboveground biomass [10, 11]. Thereby spatial
and temporal changes in aboveground biomass (AGB) can
be useful indicator of the velocity and direction of the forest
succession and patterns of AGB distribution and change
through time can help to understand how forest structure is

related to the natural environmental conditions [12, 13] and
global carbon cycle [14].

The use of continuous forest metrics obtained using
remote sensing (RS) data, for example, aboveground biomass,
tree diameter, canopy height, and canopy closure, enables
improved characterization of the forest [15] and allows an
improved understanding of the ecological drivers behind
land cover dynamics [16]. However, challenges exist to esti-
mate biophysical data via available remote sensing technolo-
gies, such as optical, radar, and LiDAR data, which form the
main tools capable of estimating forest AGB [12, 17-19]. One
issue is due to the varying spatial, temporal, radiometric, and
spectral resolutions unique to each sensor system, resulting
in different advantages and disadvantages to AGB estimation
(20, 21].

The use of estimated forest biomass in ecology depends on
the cost-benefit relationship that includes image accessibility,
availability of image processing techniques, and data confi-
dence. The available literature provides an overall view of RS
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TABLE 1: Major issues discussed in the reviewed references and the information derived from the aboveground biomass (AGB) estimation by

using remote sensing data.

Topic Information derived

Reference

(i) Identifying forest regenerating processes using temporal AGB

comparison
Forest regrowth P

gradient

(iii) Secondary forest detection

[28, 29, 37, 38, 88, 104-106]

(ii) Forest structure and AGB changing across forest successional

Human impact on forest
biomass

structure

(i) AGB differences due to disturbance regimes

[26, 28, 49, 86, 102]

(ii) Effect of invasive tree species on the stored AGB and forest

Forest responses to
ecological conditions

(i) AGB differences between vegetation physiognomies

(12,13, 53, 73, 94, 104]

(ii) Forest structure differences related to topoedaphic gradients,
climatic conditions, or past land use

i) Carbon sequestration
Carbon sink, source, and @ q

storage

(ii) Carbon amount before specific human impact

[12, 26, 29, 30, 102, 106-111]

(iii) Identifying management action that can improve carbon storage

i) Testing modeling approach

Modeling evaluation ii) Image processing techniques

iii) Influence of different spatial scale

—~ o~ o~

iv) Simulation approach

(17,18, 30, 37, 41, 78, 87, 88, 98, 102,
112-121]

(i) Testing the performance of specific satellite data to estimate

) biomass and forest structure
Sensor evaluation

(i) Testing the AGB accuracy between successional stages

[28, 50, 104, 105, 107, 111-
113, 116, 118, 121-131]

(iii) Testing performance of specific satellite data to temporal

comparison

on forest biomass estimation [20, 21] and evaluates specific
sensors and techniques [19]. However, an integrated effective-
ness evaluation of how the AGB estimated with RS data can
be used to study the progress of the forest succession and the
secondary forest characteristics that interfere in the biomass
estimation is missing. Therefore, there is a need for a critical
review covering the advantages and limitations of the use of
remotely sensed AGB in the evaluation of drivers and paths
of the forest succession. In this review we discuss how remote
sensing of forests biomass helps to identify forest successional
patterns. Our specific objectives are (a) to discuss subtle
characteristics of secondary forests that challenge the use of
remotely sensed AGB estimations in forest succession studies,
(b) to summarize the most frequent ecological inferences dis-
cussed and methods used in the literature, and (c) to evaluate
the implications of methodological and technological issues
in the AGB estimation. We first analyze the potential use of
remotely sensed AGB estimations as an ecological variable
and then discuss the implications for studies of forest succes-
sion. We then summarize the ecological issues mentioned in
and the methodological characteristics of the selected studies.
We conclude with a discussion of the implications of the
findings and highlight opportunities for future investigation.

2. Database

Relevant journal articles were found by using keyword
searches in the Web of Science and Scopus Databases
(accessed in January 2014) and by looking through the ref-
erence lists of previous narrative reviews [16, 19, 20]. All

» «

searches included the words “tropical forest,” “aboveground
(or above ground or above-ground) biomass or carbon stock;”
and “remote sensing” (or “sensed”). Our database selected by
the keyword searches consisted of 318 articles and reviews. We
found a continuous increase on the number of publications
about biomass and carbon stock on tropical forests over the
last 29 years (Figure 1). In addition, the higher number of
published articles in the last 5-8 years may be related to the
increased global interest on climate change. Research institu-
tions from the United States, Brazil, United Kingdom, Ger-
many, and France published most of these articles (Figure 2).
The selected articles were published in 101 journals; how-
ever, 23% of them were published only in two journals:
“Remote Sensing of Environment” and “International Journal
of Remote Sensing”

This total database was used to identify the main eco-
logical questions dealt with in the literature. The stud-
ies selected by our literature search discussed different
ecological problems, including biological invasions, carbon
sources and sinks, conservation status, habitat suitability,
technical management comparisons, and biomass map elab-
oration (Table 1). These subjects were discussed in the present
review because each is closely related to the forest succession
process.

We refined our final database using the new following
criteria: (a) the search words had to be reported either in
the title, abstract, author keywords, or plus keywords; and
(b) the aboveground biomass estimation had to be performed
using biophysical structure (i.e., length, diameter, and crown
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FIGURE 1: Number of articles published over the last 29 years.

size) and remote sensing data. Our final database consisted
of 50 articles, which all met the refined criteria and directly
or indirectly discuss forest succession patterns and processes.
Figure 3 shows the geographic location and spatial resolution
of all selected studies. The studies were highly concentrated
on Brazilian Amazon, Costa Rica, and Borneo and many of
the papers shared the same studied location to collect field
data. Approximately, 50% of these studies were done by
institutions located outside the studied country.

3. Estimated Aboveground Biomass as
a Variable in Forest Succession Studies

Forest patches regrowth from initial to mature condition
by forest succession processes [22]. The opposite way, from
mature to initial forest stages, also occurs due to forest distur-
bances in a direct (i.e., clear cut, selective logging) or indirect
way (i.e., edge effect in fragmented landscapes) [23-25]. The
progress and regress of forest succession result in contin-
uous modifications in species composition and biophysical
features. Successively, there is a replacement of species, local
environmental changes, and tree growth or increased mortal-
ity. Thereby, many studies investigate how fast the velocity of
the forest regeneration is [22], how invasive species change
the regrowth tendency [26], what the main environmental
features determining the direction of the forest succession are
[13], or what the level of the carbon storage in different forest
stages is [27].

Historically, these questions have been addressed by
ground-based surveys, which are frequently sparsely sam-
pled, inventoried at a small scale, and time consuming [28].
Remote sensing technology adds new possibilities for anal-
ysis, allowing obtaining data from inaccessible areas using
satellite images, which can reduce biases caused by nonran-
dom plot locations. Satellite images have been largely used to
map forest recovery by forest/nonforest maps or successional
stand classifications (initial, advanced stages). However,
biomass maps obtained from RS data can be used to identify
forest succession patterns because AGB integrates important
forest structure information associated with forest regrowth
or disturbances, such as tree height, diameter, number of trees
by area, and wood density (Figure 4), which can be measured
and validated in the field.

3.1. Dynamics of AGB during Forest Regrowth from Field
and RS Measurements. In tropical forests, young fallows
show biomass increases ranging from 1 to 15Mgha " yr™!
after short-term shifting cultivation [10, 27, 29, 30]. A mean
biomass increment of 5.3 Mgha™' yr™' has been documented
in Atlantic rainforest over a 22-year study of undisturbed for-
est plots [31]. Thus, secondary forests can rapidly grow up
to 100 Mgha™' of AGB or less than 20 Mgha™" within 20
years after land abandonment. The rate of regrowth depends
on the availability of seed propagules, vegetation type, envi-
ronmental conditions, site productivity, intensity of the past
land use, and/or human intervention [32]. In tropical forest
regrowth, leaf AGB tends to increase for 20 years and wood
AGB increases for 40 years before stabilizing [10]. These
time periods seem short when compared to some modeling
estimations and field observations that have indicated that the
tropical forest needs approximately 80-160 years to reach the
mature stage (90% of similar species) [33], although Liebsch
et al. [34] found an increase of approximately 57% in species
richness over 25 years of forest regrowth in the Brazilian
Atlantic Forest. During regrowth, the species richness and the
abundance of fauna also increase rapidly and can recover in
the first 10-20 years for animals that are not dependent on
late-stage plant species [35].

The challenge is to obtain reliable estimates of AGB asso-
ciated with regrowth using temporal remotely sensed data.
Although landscape scale land cover dynamics have been
accurately assessed through RS using classification schemes,
such as forest/nonforest (e.g., [36]), the study of forest
regrowth using continuous variables, such as AGB, can pro-
vide new perspectives on regeneration patterns. The ability to
track AGB through time enables the assessments of the direc-
tional changes in forest dynamics [16]. Although limitations
to RS estimation of temporal variation in AGB exist, such
as those found by [37] who showed that they overestimated
forest regrowth rates as a result of forest fires and a severe El
Nifo drought before the image dates and uncorrected atmo-
spheric effects; a growing number of studies are developing
and implementing methodological techniques to minimize
such uncertainties [38-41].

The spatial and temporal evaluation of forest regrowth
patterns is also an important issue. Areas belonging to the
same region may show different forest area increase as a con-
sequence of differences in human demography and industri-
alization [42, 43]. Moreover, the losses (by degradation) and
accumulations (by forests regrowth) of biomass may change
without a change in forest area [44]. The structure and change
dynamics of an old-growth tropical forest was studied by
Kellner et al. [38]. In 8.5 years, the authors found an equal
number of positive and negative transitions of mean canopy
height estimated by using LiDAR data, indicating steady-
state dynamics of disturbance and regeneration. Therefore,
unknown tendencies in forest regrowth patterns associated
with AGB changes can appear at different time and spatial
ranges of analysis.

Forest regrowth has also been identified in remote sensing
studies by using forest age [30, 45] or successional stand
classes [46, 47]. However, it is common for one forest age
class to exhibit different structural features due to the soil
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FIGURE 2: Number of articles published by author’s countries. The countries included in the figure have more than two publications,

considering our search criteria.

FIGURE 3: Geographic location of the selected studies. Green area refers to the distribution of the tropical forest biome. Number refers to
the article identification on the references (underline black number = spatial resolution <10 m; black numbers = spatial resolution >10 m and

<30 m; grey numbers = spatial resolution >30 m).

and geographic features or land-use history [11]. In addition,
forest age or successional stand information is not always
available for some forest areas [45].

3.2. Natural and Anthropogenic Disturbance Impacts on Forest
AGB. Changes in the natural course of forest succession
may occur due to a large number of disturbances, including
wild and intentional fires, selective logging, climate change,
and/or the introduction of invasive species. Forest responses

to natural disturbances (i.e., storms and fire) are also a feasible
use of the estimated AGB data [48]. These disturbance factors
may reshape the biophysical structure of the forest or reorder
the plant community, resulting in AGB dissimilarity among
forest patches with different historical human intervention.
Some of the reviewed studies evaluated spatial and temporal
changes of tree biomass in logged forests under different man-
agement techniques. Tangki and Chappell [49] demonstrated
that high-lead harvesting techniques resulted in smaller
remaining tree biomasses than logging using tractor skidders.
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FIGURE 4: Climate, soil, and human activities determine the forest stand structure and the forest regrowth pattern. The estimated aboveground
biomass (AGB) may be used as a variable to answer ecological issues, such as forest responses to environmental conditions, habitat suitability,
carbon storage, and conservation in managed areas (adapted from Sarker et al. [132]).

The authors explained that the AGB differences are related to
the higher levels of collateral damage caused during high-lead
harvesting. In other cases, logged areas exhibited lower mean
maximum crown size diameters than old-growth forests
[28]. Aerial photographs revealed that tree height/diameter
allometric relationships exhibit regression slope differences
between logged and old-growth forests [50].

The impacts of tree species invasion on forest structures
and AGB are also well studied and particularly in Hawaii,
USA. Invasive tree species can rapidly spread through seeds
or vegetative propagation and show opportunistic behaviours
[51]. This is expected to lead to changes in overall forest AGBs.
Asner et al. [26] used airborne LiDAR data to quantify forest
structure and found that invasion by the tree Morella faya
altered the three-dimensional structure of the rainforests,
including the mean tree height, but not the total amount
of AGB at the landscape level. The proliferation of tree
species, Psidium cattleianum and Ficus rubiginosa, however,
corresponded to decreases of 19-38% in tropical forest AGB
(13].

3.3. Forest Responses to Environmental Conditions. Environ-
mental conditions and resource availability can also affect
primary net production [52] and, consequently, AGB changes
throughout forest succession. Differences in the spatial and
temporal distributions of precipitation across bioclimatic
zones constrain forest AGB in some locations and were
found to be an important ecological issue discussed in the
reviewed literature. The increase in the number of dry months
produced a reduction in forest AGB, showing the influence
of net water deficits in the forest structure at regional [53] to
continental scales [12]. In a study by Asner et al. [13], using
airborne LiDAR data, biomass declined 53-84% in areas
with increasing elevation, due to changes in temperature
and humidity. On the contrary, Alves et al. [54] found AGB
increment with elevation increase in the Brazilian Atlantic
coast. All these examples demonstrate how environmental
conditions can modulate spatial and temporal patterns of
forest AGB.

Another common theme in the literature focuses on spa-
tial distribution of biomass as related to differences among
forest types. Biomes or vegetation physiognomies are closely
related to environmental and climatic conditions. Wang and
Qi [18] reported RS AGB differences between dry dipte-
rocarp forests, mixed deciduous forests, and tropical ever-
green forests. These results illustrate the potential use of RS
AGB data to distinguish between vegetation types. However,
Saatchi et al. [12] found that RS AGB data from Amazon forest
was not a useful tool for distinguishing between vegetation
types due to the low correlation between forest biomass and
vegetation types in this biome. Asner et al. [55] integrated
airborne LiDAR with maps of ecosystem types and found
significant differences related to forest types and geologic
substrate, allowing them to scale up the detailed LiDAR
measurements to a large portion of the Southern Peruvian
Amazon. Vieira et al. [11] and Saatchi et al. [12], however,
found that AGB variations in tropical forests were more due
to differences in soil type and land-use history than forest
types. Thereby, the relationship between estimated AGB and
forest succession patterns needs to be interpreted considering
specific characteristics of forest types and the influence of
environmental conditions among different scales of analyses.

3.4. Carbon Source, Sink, and Storage. The spatial and tempo-
ral change of AGB during the forest succession is controlled
by a conjunct of environmental, biological, and human
factors, as seen until now. The observed forest AGB can
be directly related to tree carbon storage. Dry biomass is
expected to contain approximately 50% carbon [8, 56]. The
relationship between AGB and carbon opens up a wide range
of integrated discussions of the use of forest biomass for
carbon monitoring [57, 58]. Brazil, the Democratic Republic
of Congo, and Indonesia have the highest carbon stocks
and the largest tropical forest areas, indicating that great
effort should be expended in the further verification and
monitoring of data in these countries [59, 60].

The effect of the increase in atmospheric carbon concen-
tration on climate change is the flagship topic for the study
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FIGURE 5: Source of variability and challenges related to each stage of aboveground biomass estimation and modelling.

and implementation of environmental carbon sinks as a result
of the forest succession. The concept of carbon sinks has been
criticized because of estimation biases and the difficulties
associated with their quantification and verification using the
available technology [61]. The difficulty in measuring changes
in biomass and the lack of spatially explicit data are the main
cause of variation among carbon estimates at the same area
[44]. To overcome these limitations, Hall et al. [19] proposed
a new orbital mission capable of estimating forest carbon
storage around the world (see Section 4.1.1 for details).

3.5. Habitat Suitability. Forest structural complexity can
affect animal species distributions and abundance patterns
[62]. Structural attributes and microclimatic conditions
change during the forest regrowth process, which can deter-
mine habitat suitability for some species [35]. A good relation
of habitat heterogeneity and species diversity depends on the
taxonomic group under study, how the animal guild studied
perceives the vegetation structure, and the spatial resolution
of the observation [63]. Biophysical forest characteristics
obtained through RS data can generate continuum models
related to ecological gradients and can be used to produce
habitat suitability models [64].

Gradual changes in RS AGB and forest structure through
space and time assessed by optical, radar, or LiIDAR data
have also been used to investigate the relationship between
habitat heterogeneity and species diversity. Kalacska et al. [15]
obtained a suitable RS model to estimate Shannon index in
a tropical forest. However, the authors noted that remotely
sensed data focusing on the canopy surface (ie., surface
reflection measured by Hyperion) might be inappropriate for
assessing relationships between subcanopy elements, such as
understory species richness. Even though the relationship
between species diversity and habitat suitability has been
widely documented in field-based research, the empirical
knowledge of this relation may be seriously affected by

the lack of information over a broad range of environmental
conditions [63]. Such problems demonstrate the necessity of
large-scale studies related to habitat suitability and the need
to understand how RS data interact with field-based variables.

4. Biophysical Measurement and Modeling

Successful estimation and modeling of AGB over large
scales require (a) correct selection and application of remote
sensing, (b) being coupled with field data for calibration and
validation, and being integrated into (c) an appropriate mod-
eling approach (Figure 5). In this review, we focus on the
information required to determine forest successional pro-
cesses and spatial distribution.

4.1. Data Sources

4.1.1. Remote Sensing. Selection of an appropriate source
of data requires first the identification of the ecological
question being asked and identification of the limitations
and advantages of each sensor. Overall, the combination
or fusion of optical and radar data has the potential to
achieve the highest accuracies in the estimated AGB [65, 66].
Optical data can be used to improve the accuracy of radar
data [12], for example, by removing leaf backscatter and
compensating leaf attenuation to woody structures in each
pixel [18]. Radar data (e.g., JERS-1 images) may be especially
helpful as the microwaves are independent of cloud cover,
a frequent problem in tropical forests. Although the trunk
and branch biomass estimations coming from radar are better
than the optical data estimations, the response cannot be
always the same in terrains with steeper slopes [20].

Other data sources used in the studies evaluated include
the Hyperion satellite sensor and aircraft based HYDICE
sensor, with high spectral (220 and 210 narrow bands, resp.)
and radiometric resolutions. Whereas Landsat has 8-bit
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TABLE 2: Remote sensing data used in the studies reviewed.

Sensor Data used Spatial resolution Cost Number of case studies
E?Q?SAT/MSS’ TM, and 6 optical bands 30m Low 12
USGS/LIDAR Airborne laser altimeter 1.2-25m Very high 8
AIRSAR” Radar X, C, L, and P band 1.5-10m High 5
SAR/JERS-1 7 optical bands and radar L band 18 to 24 m Low 5
ALOS Palsar/AVNIR-2 Radar L band and 4 optical bands 4.8mto0 9.6 m Medium 4
IKONOS/IKONOS 4 optical bands 4m High 4
SPOT-5/HRS 5 optical bands 25to5m High 3
Terra/MODIS 7 optical bands 250 to 500 m Low 2
NOAA/AVHRR 5 optical bands L1Km Low 2
SIR-C X, C, and L bands 15 to 25m Medium 2
GLAS/ICEsat Laser altimeter satellite 0.75to 75m High 1
Quickbird/Quickbird 4 optical bands 2.4m High 1
EO-1/Hyperion 220 optical bands 30m Very high 1
NASA/QuikSCAT Radar L and P bands 12m Medium 1
Aerial photographs RGB true color composite — High 1
CHRIS/PROBA 62 optical bands 18m Medium 1
VHR Google RGB true color composite Im Low 1
HYDICE** 210 optical bands 0.75t03.75m Very high 1
ERS-1 Radar X band 25 Medium 1
TropiSAR Radar L and P bands 1.2 Very high 1

* AIRSAR: airborne synthetic-aperture radar.
**HYDICE: hyperspectral digital imagery collection experiment.

resolution with 256 information levels, Hyperion data has 16
bits with 65,536 information levels ranging from data range
~0.4 to 2.5 um [67]. The greater spectral resolution provided
by Hyperion can result in improved sensor capabilities allow-
ing measurements of smaller variations in reflected energy
[68, 69], which can be related to forest biomass or phyto-
chemical characteristics of the canopy. The capacity of hyper-
spectral sensors to differentiate tree phytochemical features
enables more detailed estimates of forest structural data in the
forest succession studies, partly related to improved mapping
of canopy chemistry related to the tree species composition.
Some research initiatives have achieved successful measure-
ments of forest structure and species composition by merging
LiDAR (tree height) and hyperspectral (phytochemical) data
[70, 71], which is an important ongoing focus for studies on
the direction and rate of the forest succession.

LiDAR systems can be used to obtain both top of canopy
and within canopy structural information as some systems
can have effective signal penetration through the forest
canopy, resulting in 3D vegetation structure data [53, 72] with
spatial resolution varying according to the system design and
flight altitude above the study area. LIDAR is now considered
to be the state of the art for remote sensing based biomass
estimation but has significant disadvantages related to the
high cost per area, lack of historical data for temporal analysis,
and the unavailability of large-scale datasets making regional
or global AGB estimation with airborne LiDAR unfeasible
[59, 73]. To mitigate this problem, there is a need for a satellite
based platform providing global LiDAR data optimized for
AGB estimation with errors less than 10 to 25 Mg C ha™! [19].

The sensors used in the reviewed studies mainly differed
in cost and temporal, spatial, spectral, and radiometric reso-
lutions (Table 2). The widespread use of Landsat TM data may
be attributed to the low cost of this data. Despite this, the main
limitation of the Landsat images is the reflectance saturation
at higher biomass values [20]. However, the longer time
span of available information (since 1984) is an advantage of
Landsat data that can play an important role in temporal
forest regrowth analyses.

Multitemporal imagery can be an important source of
data for the study of forest regrowth patterns, but the data
processing should account for atmospheric corrections and
phenological effects. Atmospheric conditions can influence
optical RS data through two processes: the absorption and
the scatter of solar radiance [74]. The main problem is that
images from different dates were acquired under different
atmospheric conditions, and preprocessing analyses need to
accurately correct for these differences [75]. The comparison
of multiple images from different months to monitor succes-
sional changes also needs to consider signal effect resulting
from phenological variations in the canopy. Seasonal changes
in solar zenith angle, variations in the amount of leaves in the
canopy, and the growth of understory vegetation are the main
features that can confound remotely sensed signals [76].

4.1.2. Ground Truthing. The reviewed studies obtained
ground truthing field data from plots or through the point
quadrant method. The total sampled area ranged from 1.5
to 272ha, but in 70% of the studies the area ranged from
lha to 9.5ha. Access difficulties may create restrictions to



the sampling of larger areas. Studies with small sampling areas
tended to overestimate AGB per hectare, but this tendency is
not always significant [77]. Even so, ground truthing of only
small areas may result in site-specific models and limit the
transferability of the model to other areas [17]. To minimize
this condition some studies have used large field databases
merging data from different regions [12, 73, 78].

The suitability of the method depends on the scale of
the study area and the structural heterogeneity of the forest
[79, 80]. The greater the sampling spatial scale, the greater the
probability of having good representation of forest structural
heterogeneity in the region, indicating that a broad sample
area may be required. Moreover, there is a need for a mini-
mum knowledge about the spatial distribution of the forest
structure studied [81] and the local influence of the topog-
raphy and soil on the AGB. Tropical trees tend to exhibit an
aggregation pattern [82] and high variability within short spa-
tial distances in forest structure and biomass [83], resulting
in a complex mosaic that can be difficult to fully sample. The
use of plots greater than 0.1ha has been shown to be more
reliable than smaller plots, which is also related to decreased
stochastic small-scale disturbances having disproportionate
weighting on total measured structure and AGB [83], main-
tain greater spatial overlap between ground-reference and
sensor data, capture greater forest variability, and reduce
edge noise from neighbouring trees [84]. The use of the
point quadrant method has the advantage of evaluating forest
heterogeneity at less effort and lower cost than plot-based
sampling, but this method can underestimate densities and
basal areas [85]. The studies that used point quadrant meth-
ods also showed high correlation values between field and RS
data [18, 86]. Nevertheless, the use of this method needs to be
better evaluated as a ground truthing option because such a
method has the potential to be used in large-scale studies with
reduced fieldwork [87]. Furthermore, a hierarchical sampling
scheme of plots, quadrants, and subquadrants can be a good
way to include this complexity [88]. Data from the smallest
scale (subquadrant) can be treated as random draws from
an unobserved quadrant and modeled to obtain uncertainty
parameters for the regression of quadrant and satellite data
[89].

4.2. Statistical Modeling

4.2.1. Allometric Equations to Estimate Forest Biomass. The
studies reviewed used between 1 and 16 different allometric
equations per study to estimate AGB. Different allometric
relations between biomass and tree diameter or height are
set by environmental (e.g., ground slope, climatic conditions,
and light level) or biological factors [90] and can explain up to
90-95% of the ground AGB [11, 91]. Testing allometric model
accuracies, Vieira et al. [92] applied several allometric equa-
tions (developed by different authors) to the same diameter
at breast height (DBH) and height and found a difference of
5-7% in AGB estimations, indicating a source of error depen-
dent upon the equation choice. Another source of error in
the forest AGB estimation may be the lack of information
from nonarboreal sources (such as lianas, palms, tree ferns,
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bamboo, and epiphytes), which can account for more than
10% of the AGB in Atlantic Forest areas [92].

The choice of the equation used to estimate AGB may
depend on the height and DBH range and on the species
composition of the forest studied. Attention to these factors
may improve the suitability of the biomass estimation using
allometric equations [88, 93]. Another option would be to
include wood density in the biomass estimation, providing
a more accurate representation of tree biomass than those
relying only on DBH and height [94]. When species-level data
are not available, a mean wood density by forest type, family,
or genus can be used [53].

4.2.2. Remotely Sensed Biomass Estimation by Model Inver-
sion. The main statistical tool used in the studies to relate
field and RS data was parametric statistic (90% of the studies).
This statistic approach uses continuous biomass data as
dependent variable and RS data as independent variable.
Modeled biomass values from tropical forests can display
nonlinear trends in the residuals, indicating the use of non-
linear models [45]. Li et al. [88] obtained better adjusted R-
squared and mean squared error values using nonlinear
models than linear models and presented a clear framework
to develop a nonlinear biomass model for tropical forests.
However, about 50% of the studies used linear regression
(simple or multiple). Therefore, the choice between linear
or nonlinear approaches depends on their statistical require-
ments. In both cases, linear or nonlinear equations, the
resulted equations are frequently used to predict biomass
data in areas not surveyed with field work. Generalized
linear models (GLM) have also been used to analyze the
suitability of AGB models using Akaike Information Crite-
rion and R-squared values to evaluate model performances
[87, 95]. GLM models allow us to explore combinations of
factors, covariates, and interactions among variables through
a process called iteratively reweighted least squares. This
overcomes the basic problem related to regression models
that is the change in the variance as a consequence of the
transformation of the data to attain normality [96].

Finally, other predictive models used in the reviewed
studies were decision tree and neural networks. Decision
trees use hierarchical set of rules to define classes and it does
not assume any a priori statistical characteristics for the input
data layers [12]. The use of neural networks is an alternative
that can play a significant role in obtaining better accuracy
[97]. However, neural network models have a substantial sub-
jective component and can be relatively poor for semantically
related field and remotely sensed data [98].

4.3. Uncertainty. In the modeling context, uncertainty is the
lack of knowledge of the true values of a variable, which can
be estimated by the range and likelihood of possible values
[57]. The overall uncertainty in AGB estimation using RS is
directly related to the relationship between a set of potential
errors coming from processing satellite data (Section 4.1.1),
field data (Section 4.1.2), statistical modeling (Section 4.2),
and the ecological variables studied. Beyond the uncertainty
from each variable, the errors can come from the interaction
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among them, for example, in the conflict of scale between
satellite and field data samples. The challenge is to balance
how the errors influence the ecological data interpretation
and how the errors from each modeling step influence the
overall error.

Most studies considered were mainly performed in flat

forest areas. In optical images, ground slope can shade areas,
resulting in decreased reflectance values compared to flat
areas [99] and the generation of spectral differences between
forests at the same successional stage [76]. These topographic
effects can be minimized by different algorithmic corrections
[100], but biases may still be included in analyses [87].

The position errors of the sensor data can also reduce
the modeling accuracy in pixel-based modeling [76]. Two
common strategies were used to minimize this problem: the
correlation of the field data with a 3 x 3 or 5 x 5 pixel window
around the ground data [15, 98, 101] and the use of a mean
radiance from a forest patch [18, 49]. These approaches can
also reduce the confidence level of the model due to the high
area disproportion between the field area plot (i.e., 0.09 ha)
and the pixel window from, for example, the Landsat data
(2.25hain a5 x 5 window).

The root mean square error (RMSE) and determination
coeflicient values were widely used to compare the accuracies
of the AGB estimates. The error estimate had a mean value of
412Mgha™" (SD = 29.3Mgha™"), considering the reviewed
studies that present this analysis in the results (17 studies
from the 46 analyzed). Commonly, the RMSE is obtained
from the comparison of model predictions with independent
data. Data can be randomly separated in two groups, one to
implement the model and one to check its performance. This
process can be repeated many times to obtain randomized
RMSE values. Finally, all values are used to build up the
overall error probability density function, which can be used
to evaluate the magnitude and trend direction of the errors

57].

[ ]Li et al. [88] found that the AGB model might show
inflated residual variances toward higher biomass values. The
authors noted that this can be associated with the application
of the same allometric equation to trees with different sizes
and forest with different structure complexities. Errors in for-
est AGB estimation can be random or systematic [83]. Minor
AGB errors have been found in forests with low biomass
(12, 53,102].

Despite these inherent modeling errors, biomass estima-
tion using exclusively field data is far from being easy and is
free of errors [17]. Studies based only on field information are
accurate at the local scale but may fail to take into account
the large spatial variability of biomass. AGB estimations
using only field data over large areas showed an overall
sampling error of approximately +20% [54, 103]. Moreover,
field-based measurements and estimates are time consuming,
labor intensive, and difficult to implement in remote areas
[20]. Challenges exist in the collection of both RS and field
data. However, the integration of these different sources of
information is crucial to better AGB estimates in any sites.

5. Synthesis and Future Research

In this review we highlight the advantages and disadvantages
of estimating forest biomass from remote sensing. Remote

sensing of aboveground biomass is critical to understand
forest succession and landscape dynamics. Forest biomass
relates to unique regrowth patterns, including rates and direc-
tions, which are partly determined by natural and anthro-
pogenic disturbances. As species composition changes occur
simultaneously to changes in forest structure and related
aboveground biomass, study approaches limited to forest
structure may have high errors in correctly identifying forest
successional stages. This problem may be alleviated through
fusion of sensors capable of deriving detailed structural (e.g.,
radar and LiDAR) and phytochemical (e.g., hyperspectral
images) features of the forest canopy.

Access to historical ground truthing information remains
one of the main difficulties in multitemporal comparisons of
AGB. Most of the selected studies indicated forest regrowth
as a potential subject to be analyzed by AGB estimation but
do not address the topic. Further interpretation of tropical
forest ecological processes, as can be derived from remotely
sensed forest structure, is required [13]. Nevertheless, the
potential for the use of remotely sensed biomass estimations
in forest succession studies in tropical forests remains high.
More detailed analyses on the spatial distribution of AGB
are merited for improved forest management, conservation
status evaluation, carbon source and sink investigations,
and better understanding implications of environmental
conditions, including climatic change, on forest structure and
composition.

Our review indicates that accuracy and precision assess-
ment are the most important challenges related. The uncer-
tainty estimates need to be robust and transparent, due to
the current importance for decision makers [58]. In addition,
the evaluation of the studies reviewed here indicates that
errors in AGB estimations can in some cases be the same
as annual AGB changes by regrowth process, making AGB
comparisons on a short time scale unfeasible using imprecise
or biased data. However, long time scale lag comparisons are
still possible if attention is paid to spectral variations between
satellite images related to atmospheric conditions and satellite
signal degradation over time. Hall et al. [19] highlighted the
importance of a new space mission with a technology able to
obtain biophysical forest estimates with lower errors in short
time scale comparisons.

A reliable AGB estimation depends on the sensor type,
processing strategy and forest characteristics. In focusing
attention only on the RS data process, we may fail to identify
critical ecological patterns. Our results suggest that sampling
choices depend on intrinsic forest features and sources of
noise related, for example, to topographic characteristics. In
addition, we discussed some positive and negative features
of each sensor for obtaining AGB estimations. The choice of
data source depends on trade-offs between advantages and
disadvantages of methodological and technological features.

When making a modeling choice, attention must be paid
to potential sources of bias in the biomass regression models,
including (a) sample size, (b) accuracy of the allometric
equations, (c) image calibration, (d) the methodology used
for temporal adjustments between the sampled biomass data
and satellite observations, (e) the multicollinearity of the
polynomial model [88], (f) the fact that 30-50% of the forest
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biomass is hidden by emergent trees [94], (g) the increased
number of lianas in the intermediate successional stage [15],
(h) topography, and (i) the past land-use context in the study
of forest regrowth dynamics.
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