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Abstract— In this paper, we present novel modelling approaches 
to investigate the sensitivity of radar interferometric coherence to 
variations in the vertical forest canopy profile. We introduce a 
common framework applicable to model radar microwave 
extinction and structure from lidar data. To perform this analysis, 
we make use of interferometric data from the UAVSAR 
(Uninhabited Aerial Vehicle Synthetic Aperture Radar) L-band 
radar and full waveform lidar data from LVIS (Laser Vegetation 
Imaging Sensor). The data sets were acquired over the 
Laurentides Wildlife Reserve forest, Quebec, Canada. A two-fold 
analysis of the framework to estimate interferometric coherence is 
undertaken. First, a sensitivity analysis is performed by 
incorporating lidar waveform Legendre descriptions into two 
adapted independent polarimetric interferometry models. Second, 
we examine the effectiveness of using lidar data in this novel way 
to model radar interferometric coherence. Where appropriate, 
coherence estimates are obtained using Legendre solutions up to 
4th order and at resolutions up to 75m. The maximum r2 values 
between modelled outputs and observed coherence across hh, vv 
and hv polarisations are shown as 0.51 (p<0.05) and 0.76 (p<0.05) 
at 25m and 75m pixel resolutions respectively. The introduction of 
a common framework to combine lidar and radar enables an 
estimation of the impact of canopy structure on observed 
interferometric coherence and provides further insight into the 
feasibility of assuming uniform microwave extinction rates on 
different scales through forest canopy. The framework’s potential 
lies in its use to assess performance of canopy structure estimates 
from future spaceborne radar interferometers in synergy with 
lidar data. 

Index Terms— Synthetic aperture radar, interferometric coherence, 
vegetation, forest, lidar, vertical structure, EM extinction. 
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I. INTRODUCTION 

nterferometric Synthetic Aperture Radar (InSAR) using 
single or multi polarisation modes [1, 2] has emerged as a 
viable alternative to estimate forest metrics necessary to 

accurately estimate aboveground forest biomass [3, 4]. 
  InSAR has been used extensively to generate Digital 
Elevation Models (DEM) [5], and more recently, to study 
forest structure [2, 6-10],  in particular, canopy height  [11-
14].  The response of interferometric coherence and phase to 
forest structure has been shown to be dependent on microwave 
polarisation [15-17].  This dependence results from the various 
scattering mechanisms such as multiple, surface, and volume 
scattering, and enables the location of the ground below the 
canopy and to infer forest height through application of a 
‘Random Volume over Ground’ (RVoG) model [3, 18]. This 
model assumes constant microwave extinction through the 
canopy volume, manifesting as an exponentially diminishing 
energy level as a function of canopy depth. This modelling 
approach adopts generic canopies of equally sized objects and 
provides little direct association with the complex scatterer 
distribution associated with a natural canopy. Although this 
model, and the like, produce robust height estimates [19-24] 
there is potential for improvement through a consideration of 
this structural complexity. To assess the impact of forest 
vertical structure on interferometric coherence, a more 
realistic interpretation of canopy extinction should see a 
variation with respect to the vertical distribution of material 
within the forest canopy. The microwave extinction can be a 
significant parameter in the estimation of canopy height when 
using a RVoG type model as shown in Fig 1. The effect on 
height estimation when incorporating a varying extinction is 
shown to great effect in [25] and serves as a major influence 
on the work presented here. Achieving a better 
characterisation of the vertical forest structure and better 
considering how extinction varies with structure type, is an 
essential step towards improved estimation of biophysical 
attributes such as above ground biomass. 

In this paper, we use lidar waveforms to produce a more 
realistic representation of extinction than simply assuming a 
constant mean value within a particular forest. This 
representation attempts to account for the apparent complexity 
of the vertical canopy structure. Full waveform recording lidar 
such as the Laser Vegetation Imaging System (LVIS) [26] 
produce detailed vertical backscatter representations of the 
vertical forest profile and it is these representations that are 
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used here to derive forest structural parameters. Synergies 
between radar and lidar have been investigated in previous 
studies [9, 27-29] but here, we seek a common modelling 
framework to link lidar and radar metrics beyond simply the 
assessment of forest height. We use lidar-derived foliage and 
woody matter distribution within the canopy [30-35] to predict 
interferometric coherence and phase values. This is primarily 
achieved through decomposition of the lidar waveform into a 
Legendre orthogonal basis commonly used in Polarisation 
Coherence Tomography (PCT) [36].  We investigate how a 
canopy height profile representation based on a lidar waveform 
can facilitate vertically varying canopy structure and 
microwave extinction as a preliminary sensitivity analysis. This 
relative sensitivity is then used to predict radar interferometric 
coherence values obtained from L-Band UAVSAR data at a 
25m and 75m pixel level. Canopy Height Profiles (CHPs) 
derived from lidar waveforms are used as tools to investigate 
both the sensitivity of interferometric coherence to vertically 
varying microwave extinction and the ability to predict radar 
coherence values through the application of two different lidar-
radar frameworks. The differences in these frameworks lie in 
their use of the input vertical profile to model extinction, with 
one incorporating absolute values associated with the 
processed waveform and the other taking advantage of relative 
shape changes. The purpose of this approach, from an 
applications perspective, is to inform whether radar 
interferometric coherence, available over large spatial scales, is 
sensitive to forest vertical structure and to also compare how 
two different frameworks perform. 

In this paper, we present a method to combine knowledge 
of forest vertical structure obtained from lidar waveforms with 
interferometric coherence from radar. Vertical structure 
estimation using SAR is not presented here as a novel idea due 
to the existence of effective methods for multi baseline 
acquisitions using coherence tomography [37], PolInSAR [1], 
and PCT. Here, a single acquisition and single polarisation 
SAR interferometric baseline is used to present a relationship 
between vertical canopy distribution, indicated by lidar 
waveform return intensity, and microwave extinction rate 
through the canopy. The latter is a parameter essential to 
effective use of the RVoG model [3, 18] and its variants [38]. 
This method regarding canopy extinction contrasts with that of 
coherence tomography. Coherence tomography has produced 
excellent results when recreating volumetric structures and 
vertical profiles of forest canopies, notably in [39, 40], [41], 
and [42]. Other work by [43] has provided an alternative 
approach to determining vertical forest structure using circular 
SAR with excellent vertical distribution results. The methods 
presented in this study do not seek to supersede these but 
provide an alternative and comparable approach, combining the 
properties of lidar and radar data as well as scattering models.  

To avoid confusion, throughout this text, correlation is 
discussed as the result of statistical comparison between 
modelled and observed data, generally presented using r2. 
Coherence is discussed as the output of the radar 
interferometry process and also for the outputs predicted using 
the examined models. These outputs then form the comparison.  

II. METHODS AND MODEL DEVELOPMENT 

A. Datasets 

UAVSAR  [44] is an airborne SAR system which flies at a 
nominal altitude of 12.5 km and operates at L-Band with full 
quad polarisation capabilities. It is designed to acquire repeat 
pass interferometric data with a range resolution of 1.8m. With 
a typical range swath of 20km, the look angle varies between 
25° and 65°.  

The LVIS sensor [26] is a lidar system developed at 
NASA’s Goddard Space Flight Center with a 20-25m footprint. 
It is effectively a pulsed laser altimeter that measures range in 
the vertical direction by timing a short (<10 ns duration) 5mJ 
pulse of laser light (1064nm) between the instrument and target 
surface with repetition frequency of 500Hz. It has been used 
extensively in cited forestry studies [32, 45, 46] and is trusted 
to an extent that it is commonly used for height verification of 
field studies and other remote sensing surveys [14, 31, 47, 48].     

 

B. Site Description 

Radar data from UAVSAR and lidar data from LVIS were 
acquired in August 2009 at the Réserve Faunique des 
Laurentides (Laurentides Wildlife Reserve), situated in the 
Canadian province of Québec between Québec City and 
Saguenay (~47.7°N, -71.3°W). The site is spread across an area 
of 7861km2 and features an elevational gradient of 1000m with 
a transition from deciduous temperate to boreal coniferous 
forest. The forest includes mature forest within conservation 
units, as well as managed stands in forest extraction zones [49]. 
The nature of the site allows analysis across a broad gradient in 
forest composition, structure and successional stage [50]. 

The radar data covers a large proportion of the area 
approximately bounded by (-71.43°W, 47.72°N) in the North 
West and (-71.24°W, 47.47°N) in the South East.  The data is 
contained within an area measuring approximately 26.1km 
north to south and 14.5km east to west. The repeat-pass 
interferometric acquisitions were performed within 
approximately 45 minutes with an interferometric baseline of 
65m. The temporal decorrelation associated with 
interferometry over forested areas was measured to be around 
0.1 [49]. Within this area, a much smaller swath of LVIS data 
is available bounded by the latitudes of the radar acquisition 
with the extremes of the lidar data located in the North East at 
(-71.23W, 47.71N) and South West at (-71.29W, 47.55N). The 
data runs in a NE to SW direction with a uniform width of 
approximately 1.4km across track. The lidar data partially 
overlap the radar data.  

C. LVIS Lidar waveforms and canopy delineation processes  
Raw lidar waveforms have been processed to enable their 

use as proxies for radar canopy extinction and vertical biomass 
distribution. The basis of the processing is in the removal of 
background noise, and the delineation of canopy, and ground 
contributions. To remove the background noise of the data the 
sigmean noise value associated with the dataset was subtracted 
from all data values. Additionally a multiplication of 3.75 
times the standard deviation of the 1st 100 ‘noise’ returns was 
used as an ad hoc noise filtering technique to account for the 
existence of anomalous signals prior to canopy interaction. 
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These first 100 returns are assumed to consist only of 
background noise with zero contribution from the forest. They 
are considered a reasonable assessment of the Sigmean value 
embedded in the LVIS data file. Upon noise removal all 
nonzero values remaining in the dataset can be considered 
either canopy or ground return. The format of the data then 
appears cropped at the upper canopy extreme and directly 
below the ground contribution. The specific ground 
contributions were identified by analysing the waveform data 
to detect the occurrence of Gaussian signatures, a method 
thoroughly described in [51].  It is assumed that the position of 
each detected Gaussian response within the LVIS waveform 
can be used to calculate the mean elevation of a specific 
reflecting surface within the laser footprint. This allows 
decomposition of the waveform into separate Gaussian 
components.  

D. Lidar canopy height profiles (CHP)  
Lidar Canopy Height Profiles (CHP) have been generated for 

this study using techniques outlined in previous high impact 
studies ([33] ; [34] [31]; [30]; [52]). More complete 
descriptions and testing of the processes can be found in these 
cited works. CHPs serve as interpretations of vertical 
extinction through the canopy by representing the vertical 
canopy biomass profile, which differ from the raw waveforms 
as they compensate for the reduced energy transmission with 
increasing canopy depth. The process involves several steps, 
beginning with the raw lidar waveform initially followed by 
the noise removal described in section 2.3. Further to noise 
removal, the ground and canopy contributions are normalised 
by the total forest based signal to form the functions Cn(z) for 
canopy and Gn(z) for ground. The transmittance height profile 
(TransHP), a preliminary dataset preceding the CHP 
calculation, is then calculated as shown in equation (1). In this 
equation the canopy contribution is normalised by the total 
wave contribution (canopy + ground). This accounts for the 
relative level of ground contribution to the total waveform. At 
any point where the ground contribution is higher the TransHP 
will be lower, as would be expected from an extinction 
relationship. Within the denominator of equation (1) the 
multiplication factor of 2 is necessary to represent the higher 
soil albedo than the associated canopy ([34], [52], [53]). The 
level of this albedo has been recorded at more than twice the 
typical level of forests (10-15%) with soils shown to produce 
values up to 40% [54]. It is worth noting that this factor applied 
to the ground component could be adapted to suit specific 
forest conditions as required, possibly accounting for greater 
reflectivity apparent at different radar frequencies.  

 (1) 

 

 This leads to the cCHP (cumulative Canopy Height Profile) 
calculation using equation (2) and its derivative the CHP 
equation (3). The cCHP can be calculated by adopting the 
MacArthur-Horn transform [55] as shown in equation (2), to 

model occlusion as derived from the Poisson distribution [56]. 
     

 

   

(2) 

Due to the direct measurement of intercepted surfaces made 
by lidar, it is necessary that this measurement be corrected for 
attenuation lower in the canopy to allow a profile to be 
established while assuming equal energy interception at each 
canopy level. The cCHP (equation (2)) follows the occlusion 
transformation of the transmittance profile (equation (1)) and is 
used to find the derivative profile, the CHP (equation (3))[31].  

 

      (3) 

 

The CHP can be viewed as the apparent description of the 
vertical distribution of woody and foliar biomass within the 
vertical profile of the forest. This lidar forest metric is regularly 
used in the literature to model biomass distribution but lacks a 
significant contribution from the stem layer. The absence of 
this significant contributor to the biomass profile is in keeping 
with the nature of optical nadir looking systems. Consequently 
it is accepted as a study limitation that it may not accurately 
represent the relative significance of biomass detected at off 
nadir look angles at which SAR operates. To reduce the 
potential impact of this limitation, reference should be made to 
studies such as [57] which indicate that at least for “typically” 
rough and non-flooded forest floors, scattering contributions 
from stem-ground interactions associated with L-Band off-
nadir data collection are not of high importance. As such this 
issue lies beyond the scope of this study. Although this 
portrayal of the vertical structure is limited, it does increase 
upon the realism portrayed by typical  forest radar scattering 
models offered by the Water Cloud [58], and RVoG models. 
Both cited models predict extinction behaviour through the 
canopy using a constant medium specific extinction coefficient 
assuming vertical homogeneity of biomass. This method 
regularly produces robust results but ignores structural 
complexity, the significance of which is explored in this study. 
Examples of the shapes of these CHP waveform descriptions 
are shown in Fig 2. A constant mean extinction similar to that 
used in the above mentioned models would be represented by 
the 0th order, as indicated by P0(x) in Fig.3. 

E. Legendre Polynomials 

To describe the CHPs mathematically and allow their use as 
inputs into interferometric coherence models, we use Legendre 
polynomials. These have been extensively used in Polarimetric 
Interferometric Synthetic Aperture Radar (PolInSAR) [36] 
[59]; [60]. 

The Legendre series is described using equation (4) with 5 
polynomial orders visualised in Fig 3. 

 

         (4) 

 

TransHP(z) 
Cn

z

zmax

 (z)

Cn(z) (2 Gn(z))

cCHP(z)   ln(1TransHP(z))

CHP(z) d(cCHP(z))

dz

L(x)  anPn (x)
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Where an is the Legendre coefficient, equation (5), and Pn (x) 
represents the Legendre polynomials, equation (6), as a 
function of x; which for this study is a function of forest height. 

 

        (5) 

 
0th  order = P0 (x) = 1 

1st  order = P1 (x) = x 
2nd order = P2 (x) = (1/2)(3x2-1) 
3rd  order = P3 (x) = (1/2)(5x3-3x) 
4th  order = P4 (x) = (1/8)(35x4-30x2+3)     (6) 
 
 
This mathematical representation was found to be accurate in 

all cases, even with low polynomial orders and for waveforms 
exhibiting multiple peaks.  

We acknowledge the relevance of this approach to existing 
single baseline interferometry data and the restrictions imposed 
on the use of multiple Legendre polynomial orders [36]. But 
here we are able to extend to higher orders through use of 
independent waveform descriptions. Most importantly, the 
Legendre polynomials enable a common framework between 
lidar waveforms and interferometric coherence which will be 
examined using two interferometric coherence models: the 
Garestier & Le Toan Model [25]  and the Cloude Model  [36] .  

 

F. Interferometric Coherence Models 

We present two separate and independent models of 
interferometric coherence to assimilate lidar-derived CHPs. 
The two models of interest are taken from Garestier & Le Toan 
[25] and Cloude [36] and are adapted for use with lidar 
waveforms (equations (9) and (12) respectively). The use of 
two different models in this study is justified due to their 
existing differences. The major difference between the models 
is how they account for the vertical profile. In the Garestier & 
Le Toan model (G&LT) the coherence estimation is possible 
using the vertical profile of return intensity as a direct proxy 
for extinction. In the Cloude [36] model the profile shape and 
its relative variations are the driver. In both cases a vertical and 
incremental consideration of interferometric coherence is 
possible, allowing for critical analysis of coherence variations 
as a consequence of variable extinction. 
1) Garestier & Le Toan (G&LT) Model 

In Equation (7) (taken from  [25]), the simple case of a 
constant extinction within a random volume was modelled. 
However, the extinction σz can be replaced with a Legendre 
polynomial expansion related to the CHP of a forest pixel.  

 

      (7) 

 

 
If the extinction increases linearly with depth into the canopy 

(z) such that σz(z) = αz, Equation 7 can be rewritten as follows:
   

 .       (8) 

 
 
 
The extinction used here represents a typical 1st order 

Legendre solution, see Fig.3. Integrating with respect to height, 
the interferometric coherence resulting from a linearly varying 
extinction can then be calculated at the chosen height 
increments dz. 

 

(9)  

 
 
As shown in Garestier & Le Toan [25], when different values 

of α are used, the coherence and phase for each height will be 
different. Similarly, the existence of an extinction value greater 
than zero at the top of the canopy will offset the coherence and 
phase of the volume.  

The Legendre approximations of extinction (CHPs) can then 
be applied to this model. The level of extinction and offset is 
directly determined from the waveform and associated 
polynomials. Moving to higher Legendre orders is possible 
using the α function to provide more complex mathematical 
descriptions of vertical variations. 

Some examples of Legendre solutions are shown in Fig. 2 
along with the representative CHP. The forest height is derived 
from the LVIS waveform. The associated mathematical 
functions of these curves are included in the interferometric 
coherence calculation using the exponent term α of equation 
(8). In the formulation of equation (8) the extinction at the top 
layer is considered null with extinction increasing linearly with 
depth. For the examples that do not consider a constant 
extinction coefficient there is an increased likelihood that the 
extinction value at the top layer will be offset from zero due to 
the independent fitting of the Legendre polynomials. The 
G&LT model uses the direct values taken from the CHPs to 
model extinction and height specific coherence estimations. 

 
2) Cloude Model 

In Cloude [36] it was shown how polarised SAR 
interferograms can be combined to estimate structural 
parameters of vegetation, and not restricted by underlying 
ground topography or apparent vegetation height. Using 
estimates of vegetation height and ground phase, the vertical 
structure function of a forest could be reconstructed through 
removal of the topography phase term and by normalising an 
integral through a change in variable. These steps allowed for a 
structural function to be defined using a Legendre series 
starting from the basic definition of coherence defined in 
equation (10). In the Cloude scenario, z represents the height 

an 
2n1

2
L(x)Pn

1

1

 (x).dx
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 jkzz

0
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cos
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from the ground contrary to its use in the G&LT model where 
it represents depth.  

  (10)  

 
The Legendre series definition (equation (4)) can be factored 

in to equation (11) and simplified to the form of equation (12).  
  

  (11)  

  
 

       (12) 

 
 
The explicit forms of the coherence basis functions (fn) of 

equation (12), up to the 4th order, are shown in equation (13) 
[36]. From equation (12) it is then possible to define coherence 
using the Legendre coefficients, lidar defined volume height, 
coherence basis functions, and through initial estimation of the 
vertical wavenumber (kz) using characteristics of the relevant 
SAR acquisition. For datasets used in this study the vertical 
wavenumber is defined by the average characteristics of the 
UAVSAR acquisition, not accounting for variable baselines. 
Variable baselines and varying incidence angles are not studied 
here and provide scope for further work. This decision was 
taken due to the small variations evident in the overlapping 
dataset. Inverse to this process, if coherence is known, such as 
that observed from UAVSAR, the vertical structure functions 
can also be estimated. 

  

  (13) 
 
 
The process outlined in Cloude [36] can be used to obtain 

relative vertical profiles of the canopy through inversion of 
coherence data. In this study the inverse of this process is 
performed. Coherence is here estimated using height and 
vertical structure measurements derived from lidar waveforms. 
When applying the inverse process of curve estimation, using 
the coherence data, the Cloude model is limited by the number 
of baselines and the subsequent data availability. However, 
these restrictions are not an issue in the forward modelling 
case.  We use the estimated curves up to a maximum of 4th 
order, due to the limited improvement in accuracy offered by 
higher Legendre orders. The Cloude model uses the shape of 
the profile as an indicator of coherence. This characteristic 
effectively creates a strong relationship in the Cloude model 

between coherence and profile height. With reference to 
Cloude [36] this is a feature of the model, included to minimise 
height estimation errors in the presence of extinctions ranging 
from 0 to 1dB/m. The Cloude model inherently constrains the 
range of extinction levels proposed from the relative structure 
function in order to maintain a range of acceptable values.  

 
In summary the G&LT and Cloude models incorporate the 

vertical profiles as extinction inputs and as biomass profile 
shapes respectively. The work flow to provide the modelled 
coherence values and then perform the comparison with 
empirical data using both models is shown in Fig. 4.  

III. RESULTS 

 
To highlight the accuracy of matching waveforms with 

Legendre polynomials Table 1 is included. The higher 
correlations associated with higher polynomial orders is 
immediately apparent. 
 

A. Modelled coherence sensitivity to variable vertical 
extinction 

The coherence sensitivity to the vertical extinction profile is 
examined using the two radar coherence models: G&LT and 
Cloude. Firstly to establish the sensitivity of coherence to 
vertical variations of extinction, and secondly to establish if 
the two coherence models produce realistic coherence 
estimates. As an example, Figure 5 shows data for two distinct 
waveforms with significantly different canopy heights with 
coherence values generated using the G&LT model for 0th, 2nd 
and 4th Legendre orders. The influence of height on coherence 
is immediately apparent. 

Although interferometric coherence is generally accepted to 
be mainly influenced by volume height, the vertical profile and 
therefore extinction, also exert significant influence (Figure 5). 
In a simple preliminary sensitivity test to compare the two 
approaches, coherence is calculated using the G&LT and 
Cloude models independently, assuming a standard forest 
height of 20m consistent across the site. This sensitivity study 
incorporates only waveforms shown to possess a forest height 
of 20m or greater with coherence values estimated at this fixed 
20m height level. Referring to Figure 5 this sensitivity analysis 
would include waveform #860297 but not #860275 due to 
minimum canopy height requirements, but the scope for 
structural variation is depicted by the waveforms. Using 
waveforms that fit the 20m criteria (32000 waveforms) ensures 
a variety of extinction profiles will be available for testing 
sensitivity to vertical structure.  

Of the two models investigated the G&LT model offers the 
greater sensitivity to extinction variation at each polynomial 
order, exhibited by the standard deviation values. The variation 
increases with CHP Legendre order highlighting greater 
structural variation sensitivity. As an example, using the 2nd 
order Legendre descriptions of CHPs, available according to 
the sensitivity criteria, and measuring at the 20m height level, 
the estimated mean coherence  across the dataset is given as 
0.88 for the G&LT model and 0.16 for the Cloude model. 
Across the dataset the standard deviations are respectively ~9% 
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and <1% of the mean. This highlights a very obvious 
difference between the two models when dealing with higher 
order polynomials. This behaviour is exhibited in the example 
waveform shown in Fig.6.. For the G&LT model the difference 
in height corresponding to one standard deviation of coherence 
is approximately 0.8m at both 2nd and 0th Legendre orders. 
Using the Cloude model this corresponds to height variations 
of ~0.1m or less at each order. Again the reader is referred to 
Fig. 6. The larger variation in coherence estimates, associated 
with different polynomials is shown when using the G&LT 
model. This suggests a greater sensitivity to structural profile 
variations related to the waveform and therefore CHP-derived 
extinction. This is a consequence of the Cloude model’s use of 
relative profile shape and inherent constraints existing on  
potential extinction values rather than the G&LT model’s use 
of the absolute.  

The use of relative shape reduces the need for, and the 
influence of, highly accurate extinction values on the estimated 
coherence. The differences exhibited also indicate a 
requirement for a modification to the G&LT model to allow 
specific frequency use, and to constrain the range of potential 
extinction variations within a medium to conform with 
expectations. This modification also allows direct comparison 
with the Cloude model output. An example of the comparison 
following the modification is shown in Fig. 6 for the example 
waveform. From the data it is evident that the introduction of a 
multiplicative factor reduces sensitivity in the Cloude model 
but increases realism in the G&LT. 

 
1) Multiplicative Factor 

As mentioned in the previous section, a multiplicative 
factor can be applied to the extinction coefficients 
represented by the CHPs to better represent L-Band canopy 
extinction values. Although these values are not reported in 
terms of vertical variation they allow a relationship to be 
established with the 0th order Legendre polynomials acting as 
the mean constant extinction through the profile. Application 
of this multiplicative factor increases the model’s 
applicability to multiple radar frequencies. It is worth noting 
here that reducing the incident frequency reduces the impact 
of a varying extinction on coherence. The multiplicative 
factor is applied according to equation (14) and can be 
applied to both the G&LT and Cloude models but with 
differing significance.   

 
MF =  σFd (dB/m)  /  (dB/m)        (14) 
 
MF represents the Multiplicative Factor,  σFd the frequency 

dependent extinction coefficient, and   the mean 
extinction of the 0th order Legendre coefficient.  

As the G&LT model is sensitive to the absolute numerical 
values of extinction provided by the CHPs it is important to 
focus on sensitivity to empirically recorded values. The 
multiplicative factor can be applied to the CHP data to create 
this product. For this study an average value of 0.15dB/m is 
identified as an estimate of L-Band extinction [61]. To obtain 
a mean CHP extinction value corresponding to L-Band 
levels, the 0th order values (representing a mean constant 
extinction through the canopy) are collated for all waveforms. 
The multiplicative factor of equation (14) is then applied with 

the resultant distribution shown in Fig 7 to give an extinction 
range 0 to ~0.70dB/m. The distribution of extinction values is 
representative of all waveforms of all heights within the 
dataset that feature a vegetation contribution. 

 
The inclusion of the multiplicative factor maintains a level of 

variation exhibited throughout the profile but the dynamic 
range of extinction is reduced, as is sensitivity to smaller 
scattering targets. This level of sensitivity is further reduced 
when examining lower frequencies. 

For the Cloude model the inclusion of similar multiplicative 
factors reduces the observed coherence variation seen for any 
particular height by subduing the extremes of the profile shape, 
essentially repeating the process. The effect can be seen in 
Fig.6 where variation between coherence estimates from 
polynomials becomes negligible. As a result of this the 
multiplicative factor is not required for use with the Cloude 
model. For the G&LT model a similar reduction in sensitivity 
to the profile variations is not seen when applying the 
multiplicative factor. As such what is shown is that mean 
coherence values are brought in line with those recorded for the 
Cloude model and most importantly empirically determined 
SAR extinction values. 

 
2) Sensitivity Summary 

 
The results regarding sensitivity, described above, suggest 

that changes in the vertical extinction profile results in 
coherence variation. This is particularly true when using the 
G&LT model, which, unlike the Cloude model, is not as rigidly 
constrained by canopy height. This feature of the Cloude model 
ensures that less variation is seen for a forest if the Legendre 
representations are similar in shape. The fact remains that 
variation, however small, influences coherence estimated by 
the models, albeit in different ways and to different levels of 
significance.  

Fig. 6 includes the coherence data comparison produced by 
the two models using a single waveform example. The data is 
shown with respect to height within the canopy volume. 
Although coherence is generally similar, they begin to diverge 
at greater height as a consequence of varying extinction. As an 
example we compare the 0th order curves, constant extinction, 
for both models. The differences existing between the two 
models are associated with the use of the absolute extinction 
value by the G&LT model and the relative profile shape used 
by the Cloude model. At 0th order the same constant extinction 
value is used for both models with the G&LT matching the 
coherence values associated with the RVoG model whereas the 
Cloude model output highlights the effect of a constraining 
feature discussed in Cloude  [36]. If the shapes of the CHPs at 
each order are similar, the Cloude model will produce similar 
coherence. Where the profile shapes are different, the 
coherence changes accordingly.   

This sensitivity analysis highlights the implications of 
considering vertical complexity using higher order Legendre 
descriptions when estimating coherence. If the extinction 
profile derived from lidar data is similar to that experienced by 
L-Band radar, it is at these higher levels of complexity that the 
greatest statistical correlation in coherence between SAR data 
and lidar models is expected. In the next section, we evaluate 
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and compare the modelled coherence using available 
UAVSAR data. Note that all waveform variations of height and 
shape, featuring a vegetation contribution, are considered in the 
remainder of the study with height restrictions no longer in 
place. 

 

B. UAVSAR Interferometric Coherence Comparison with 
Lidar Derived Data 

Interferometric coherence values observed from L-Band SAR 
data using hh, vv, and hv polarisations are compared with 
modelled coherence values estimated using the lidar derived 
CHP inputs. All data are originally considered at a pixel 
resolution of 25m. The statistics of the comparison are 
presented in terms of each polarisation, using the Legendre 
descriptions of the lidar data from the 0th up to a maximum of 
4rd order. The major difference associated with increasing 
Legendre orders is that the higher order CHP representations 
model the reduction in waveform intensity associated with the 
area between the canopy and ground responses. Sample data 
are also discussed at 75m pixel level to emphasise greater 
correlation between modelled and observed data at coarser 
spatial resolutions.  

Figure 8 displays the layout of the test site in terms of the L-
Band UAVSAR hv coherence data, the lidar derived coherence 
data using the G&LT model and the difference between 
UAVSAR observed minus G&LT modelled coherence.. The 
difference image shows areas with significant differences 
which may correspond to areas of natural (eg. topography, 
geology) or anthropogenic features such as roads, and clear 
cuttings.  

Table 2 shows the r2 correlation between the observed and 
modelled coherence values. We excluded objects from the 
analysis that included those classified as water or ground, 
objects outside a 30o range of slope angles (0-30o), and those 
declared anomalous due to missing data or incorrect recording 
of coordinates.  The r2 values are significantly improved when 
setting thresholds to compensate for topographical conditions. 
These topographical variations distort the identified ground 
response in the waveform and hence make its detection, and 
establishment of the local canopy height, difficult. Further 
work is needed to account for topographical features. 
Comparison of the UAVSAR observed coherence with the 
Cloude and G&LT models only show very slight increase in 
correlation using higher order polynomials.  

The result of averaging the coherence data over a 75m x 75m 
pixel window significantly improves the r2 but no significant 
improvement is observed at higher polynomial orders.  

As a further comparison, Fig 9 highlights the r2 values 
associated with the use of a single mean constant extinction 
level applied across the entire dataset (i.e. the waveforms being 
solely used to estimate canopy height). Some indicator 
extinctions are also included in Table 2 for comparison. In 
Table 2 the similarities between the Cloude and G&LT 
coherence values (using extinction values derived from the 
waveforms) and those using an independently assigned 
constant mean extinction, in the manner of the RVoG model 
(Fig 9), are most  apparent in the region of extinction between 
0 and 0.6 dB/m after which point the r2 values drop off rapidly 
to 0.21 at 1 dB/m. Such low values are not evident using the 

other modelling processes. The r2 for the independently defined 
constant mean extinctions are shown not to exceed the 
maximum values set by the Cloude and G&LT models at the 
25m pixel level. The coherence modelling approach provides a 
means to assess the impact of the canopy’s vertical profile on 
interferometric coherence which is found to be insignificant. 
We therefore conclude that the assumption of a constant mean 
microwave extinction through the canopy is a valid approach at 
L-band. 

 
1) Garestier & Le Toan Method 

Fig. 10 shows sample data associated with the 3rd order 
Legendre dataset following slope filtering at 25m resolution. It 
shows the distribution of radar measured and lidar derived 
coherence estimates shown with respect to the 1:1 ratio for all 
examined waveforms. The multiplicative factor and local 
topographical slope filtering have an obvious effect on the 
correlation while the remaining bias displayed in the figure 
may be partially explained by the effects of repeat-pass 
temporal decorrelation (~0.1, [49]). The highest r2 is found for 
hv polarisation using displayed example (although by only 0.03 
above the 0th order case) with an r2 of 0.51 at 25m resolution 
and 0.74 at 75m resolution.  

 
2) Cloude Method 

For the Cloude method the highest r2 is found for hv 
polarisation using the 4th order description (although by only 
0.03 above the 0th order case) with an r2 of 0.49 at 25m 
resolution and 0.75 at 75m resolution. This data is shown Fig. 
10 at 25m resolution following slope filtering. The data 
presents increased correlation associated with removal of areas 
of significant slope. Similar improvements are evident with the 
G&LT model. Both modelling procedures, to a certain extent, 
validate the assumption of a single constant extinction through 
the canopy due to the negligible increases in correlation offered 
by higher orders and hence negligible association with more 
complex descriptions of vertical profiles. This assumption is 
validated through the data in Table 2. 

IV. DISCUSSION 

This study has presented a novel framework for estimating 
radar interferometric coherence through direct association with 
modelled extinction properties obtained from full waveform 
lidar data. The approach chosen was intended to take advantage 
of the increased accuracy in vertical structural estimation 
offered by full waveform lidar to understand the radar observed 
coherence. This lidar-radar framework ultimately could aid the 
development of extinction lookup tables from coherence 
measurements and allow inversion of coherence to infer 
vertical profile. The potential for a variable extinction/profile 
look-up table derived from an association of lidar waveforms 
with interferometric coherence would offer an alternative for 
determining forest structure from multiple baselines and 
polarisations. These may offer potential to upscale to large 
areas for vertical profile estimation where only single baseline 
SAR data, and minimal lidar training data is available.  

In this study it is shown that the correlation between SAR 
and lidar inferred interferometric coherence is best presented 
when excluding local topographic slope angles exceeding 30 
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degrees and using a coarse spatial resolution of 75m. The 
filtering of a particular range of local inclination angles reduces 
the impact of slope on waveform processing, which is known 
to increase data variance, and lower the signal amplitude of the 
ground Gaussian fit. Slope is also responsible for blurring the 
ground and canopy energy separation in a waveform signal [62, 
63] hence introducing error. For the finer resolution of 25m the 
Cloude and G&LT models produced similar results with r2 

correlation around 0.5 for hv polarisation. However, these 
values are dwarfed by the 75m correlation data, with r2 values 
increasing to 0.75 and 0.74 respectively. Contrary to initial 
expectations the improvement offered by increasing vertical 
complexity beyond the standard constant mean extinction was 
shown to be minimal. In effect this validates the use of the 0th 
order Legendre representation of a constant mean extinction 
individual to each waveform. 

A distinct difference between coherence estimates made by 
the two interferometric models is the severe systematic bias 
displayed by the G&LT model in the absence of a 
multiplicative factor. This bias is not seen in the Cloude model 
data.  The bias is a result of the direct use of waveform derived 
extinction values that require adjustment for specific frequency 
compatibility through the introduction of a multiplicative 
factor.  The use of the multiplicative factor may allow 
comparison with multi-frequency data using values obtained 
with respect to both the lidar waveform data and reported 
empirical values. However, this factor reduces the uniqueness 
and dynamic range of the examined profiles. 

The effect of bias on the exhibited interferometric coherence 
estimates, particularly for the G&LT model, may result from a 
combination of several factors. One potential factor is temporal 
decorrelation due to motion of scatterers between UAVSAR’s 
repeat-passes (~45 minutes). Temporal decorrelation has been 
shown to decrease observed interferometric coherence by 
around 0.1 over the course of 45 minute repeat-pass data from 
UAVSAR [49]. A coherence correction of 0.1 in each instance 
would improve the proximity of the data to the 1:1 line in both 
model representations and likely increase statistical similarities 
with recorded SAR coherence. A second factor is the use of 
waveforms to establish forest height and define the 
contribution of the ground component in the coherence 
process. The apparent height associated with coherence 
measurements from SAR data will be a function of several 
factors including the ground contribution at these frequencies. 
The ground is taken into account when calculating the CHPs 
and ensures there is never 100% canopy attenuation in the 
presence of a ground contribution (equation (1)). In the lidar 
coherence estimations it is possible that this ground 
consideration presents an overestimation in the total percentage 
of energy lost. Assuming the ground contribution should be 
increased by a factor of 2 may be incorrect at L-Band (soil 
levels reported in the literature are as high as 40% [54]. 
Underestimating the ground contribution causes overestimation 
of extinction and thus introduces a bias. The third factor is that 
the models may incorrectly depict the effects of forest height 
and extinction on radar interferometric coherence, therefore 
providing coherence estimates above empirical values. In 
addition, the lidar-derived estimates of L-band extinction may 
have inaccuracies, particularly because of the vastly different 
viewing geometries of the side looking radar and nadir looking 

lidar. The vertical nature of the stems with respect to the nadir 
looking of the lidar system reduces the immediate 
comparability of waveform profiles with SAR data. Attempts 
to correct the CHPs to account for the prominence of stems at 
non zero incidence angles, by introducing a stem taper function 
in proportion to the diameter of the trunk at 0.1m intervals, was 
not shown to improve the data sufficiently to warrant further 
consideration. A final factor is the use of a near field incidence 
angle rather than the centre swath value. This may have a small 
effect on the data output considering the location of the LVIS 
data within the radar scene. The framework presented in this 
study would be developed greatly through future innovation in 
waveform processing, serving to address these possible 
limitations.  

V. CONCLUSIONS 

Given the ability to facilitate mathematical representation 
within coherence models and the capability to capture 
structural differences in CHPs, we are confident that the 
Legendre decomposition approach provides a promising basis 
for a framework common to radar and lidar modelling. The 
level of complexity required in the vertical profile extinction 
description beyond the use of constant mean extinction remains 
debatable. In this study we have principally asked three 
questions (i) Can lidar-derived vertical canopy height profiles 
be used to model vertical variation of microwave extinction? 
(ii) Can existing SAR interferometric coherence models be 
used as a common framework for radar and lidar? And (iii) 
how accurately can lidar waveform data be used to predict 
radar coherence using this framework, and does this approach 
warrant use of complex extinction profiles rather than uniform 
site specific extinction? We have answered these questions 
through modelled analysis of coherence sensitivity to 
extinction variation and direct comparison of lidar-derived 
coherence with L-Band SAR data acquired from Quebec, 
Canada.   

The purpose of such questioning from an applications 
perspective has been to inform whether radar interferometric 
coherence, available over large spatial scales, is sensitive to 
forest vertical structure. The relevance of such a study is rooted 
in the ecosystem monitoring requirements of next generation 
SAR sensors such as ALOS-2 PALSAR [64], Sentinel 1 [65], 
Biomass [66] and NISAR [67]. This need is furthered by the 
current absence of spaceborne waveform lidar. Relevant 
properties potentially available from successfully relating radar 
and lidar forest data include extinction rate, vertical biomass 
distribution, and height. Each of these can be related in some 
form to lidar waveform data available with excellent vertical 
resolution and remain difficult to establish using SAR data 
alone.  

To establish a common radar-lidar framework, two methods 
of linking lidar waveform data to radar interferometry 
coherence have been presented. The first uses the model of 
interferometric coherence variability with canopy depth 
presented by Garestier & Le Toan [25], with the lidar 
waveforms used to provide estimates of extinction variability. 
The second uses the model of Cloude [36] to estimate 
coherence from the vertical structure function, producing 
coherence values based on relative profile shape. The 



 9

coherence sensitivity of both models’ data outputs was initially 
analysed with respect to the CHPs and the use of an increasing 
complexity of Legendre descriptions. Modelled coherence 
values were shown to be influenced by profile variation and 
compared with observed coherence.  

The results show potential for future investigations to 
establish a more robust common lidar-radar framework, one 
which embraces the importance of determining extinction as an 
important factor in height estimation. Applying such a 
framework with the required accuracy for operational use will 
require further novel thinking and development regarding 
waveform processing. Overcoming the sensor variations in 
incidence angle, wavelength and footprint size may also 
require greater consideration. 
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Fig 1. Absolute coherence variations calculated using RVoG model for 

increasing extinctions at 5 constant forest heights.   

 
Fig 2. (Right) Normalised CHP with fitted Legendre polynomial solutions 

from 2nd to 4th order. All data is shown with respect to volume height as 
estimated by lidar waveforms. CHP values are calculated through 
normalising the canopy contribution by the total area beneath the curve thus 
allowing extinction estimates and variations to be relative to both the canopy 
and ground contributions. Greater variation in the profile is apparent when 
one or more of the following are exhibited; greater height, greater extinction, 
or greater offset variation from 0 at canopy max height.  The cCHP can be 
included in the comparison as it is the integral with respect to height of the 
CHP. 

 
Fig 3. Visual representation of the first 5 Legendre polynomials as a 

function of x. 

 
Figure 4. Processing the Lidar waveform to model radar interferometric 

coherence. Work flow outlining the process of modelling waveforms using 
Legendre polynomials and coherence estimation. The process is repeated for 
all orders up to 4th order to provide complete analysis of increasing the 
complexity of modelled waveforms.  

 
Table 1. Correlation statistics of Legendre polynomials with CHPs derived 

from lidar waveform data collected within the study area of radar and lidar 
data overlap. 

 

  Mean r2 St. Dev r2 

 CHP     

1st Order  0.44  0.20 

2nd  Order 0.63 0.14 

3rd  Order 0.77 0.17 

4th Order 0.88 0.12 
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Fig 5. G&LT model Coherence estimations resulting from extinction with 
canopy depth. (Top Left) Extinction variation shown up to 4th Legendre order 
for waveform number 860297 as a function of volume height, (Top Right) 
Extinction variation shown up to 4th order for waveform number 860275 as a 
function of volume height. (Bottom Left) Absolute coherence as a function of 
extinction up to 4th order for both waveforms. (Bottom Right) Absolute 
coherence as a function of volume height up to the 4th order for both 
waveforms. 
 
 

Table 2. r2 values associated with correlation between lidar estimated and 
UAVSAR interferometric coherence using the Cloude and Garestier & Le 
Toan models. Representative data shown for hh, vv, and hv polarisations up 
to 4th Legendre order. Data presented for slope angle filtering (<30˚). All 
correlations shown for p<0.05. 

 
 
 

 

   
 

Fig 6. Absolute coherence plotted against volume height for a single 
waveform (#. 860297) representing a forest component of 20m height. 
Representative data is shown using both the G&LT and Cloude models 
((left) without multiplicative factor applied, (right) with multiplicative factor 
applied). 0th order representations of the G&LT modelled coherence data, 
show greatest similarity to those of the Cloude model.  

 
 
 
 

 
Fig 7. Frequency of occurrence of extinction values associated with lidar 

waveform processing using CHPs following application of multiplicative 
factor. Extinction values are estimated using 0th order Legendre polynomial 
representations of waveforms. Prior to multiplicative factor mean value 
1.67dB/m. Multiplicative factor applied is 0.09 ((0.15dB/m) / (1.67 dB/m)) 
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Fig 8. (Left) Interferometric coherence from UAVSAR HV L-Band data 

displayed on a scale 0 to 1. (Centre) Estimated interferometric coherence 
using lidar data with the G&LT model, incorporating 2nd order Legendre 
polynomial representations of the CHP profiles (includes multiplicative 
factor). (Right) Area of overlap between lidar and radar data highlighted 
through subtraction of lidar estimates from radar values. Data shows the 
difference between datasets using a scale of -1 to 1. Other Legendre orders 
present similar visual data with differences between orders difficult to 
visually determine. 

 

 
Fig 9. r2 estimates across the test site made using RVoG modelled 

interferometric coherence estimation (eq 7, using constant mean extinction) 
compared with UAVSAR observed coherence. Data is associated with 25m 
resolution for entire overlapping area (Solid lines) and for the same dataset 
excluding slopes exceeding 30˚ (Dotted lines). Data can be used for 
comparison with r2 values presented using the G&LT and Cloude models and 
Legendre interpretations of extinction.  Heights used in all calculations derived 
from waveforms.  

 
Fig 10. Scattering density plots of UAVSAR hv interferometric coherence 

against LVIS lidar estimated coherence using (Left) CHP G&LT model 3rd 
order legendre with slope filtering applied (<30˚) (r2 of 0.51) (Right) CHP 
Cloude model 4th order legendre with  slopes <30 ˚ (r2 of 0.49).. Warm colours 
represent greater concentration of data.  

 


