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 17 
ABSTRACT 18 

Human and natural forces are rapidly modifying the global distribution and 19 
structure of terrestrial ecosystems on which all of life depends, altering the global carbon 20 
cycle, affecting our climate now and for the foreseeable future, causing steep reductions 21 
in species diversity, and endangering Earth’s sustainability.  22 
 To understand changes and trends in terrestrial ecosystems and their functioning 23 
as carbon sources and sinks, and to characterize the impact of their changes on climate, 24 
habitat and biodiversity, new space assets are urgently needed to produce high spatial 25 
resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass 26 
above ground, the carbon stored within and the implications for atmospheric green house 27 
gas concentrations and climate.  These needs were articulated in a 2007 National 28 
Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, 29 
DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a 30 
multi-beam lidar  (Light RAnging And Detection) operating at 1064 nm. The objectives 31 
of this paper are to articulate the importance of these new, multi-year, 3D vegetation 32 
structure and biomass measurements, to briefly review the feasibility of radar and lidar 33 
remote sensing technology to meet these requirements, to define the data products and 34 
measurement requirements, and to consider implications of mission durations.  The paper 35 
addresses these objectives by synthesizing research results and other input from a broad 36 
community of terrestrial ecology, carbon cycle, and remote sensing scientists and 37 
working groups.  We conclude that:  38 

(1) current global biomass and 3-D vegetation structure information is unsuitable 39 
for both science and management and policy. The only existing global datasets of 40 
biomass are approximations based on combining land cover type and representative 41 
carbon values, instead of measurements of actual biomass. Current measurement attempts 42 
based on radar and multispectral data have low explanatory power outside low biomass 43 
areas. There is no current capability for repeatable disturbance and regrowth estimates. 44 

(2) The science and policy needs for information on vegetation 3D structure can 45 
be successfully addressed by a mission capable of producing (i) a first global inventory of 46 
forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) 47 
annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass 48 
accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and 49 
horizontal forest structure with 30 m along-transect measurements globally at 25 m 50 
spatial resolution, essential for habitat characterization.    51 

We also show from the literature that lidar profile samples together with wall-to-52 
wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together 53 
to satisfy these vegetation 3D structure and biomass measurement requirements. Finally 54 
we argue that the technology readiness levels of combined pol-SAR and lidar instruments 55 
are adequate for space flight. Remaining to be worked out, are the particulars of a 56 
lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information 57 
and measurement requirement articulated herein.  58 
   59 
 1.0 INTRODUCTION 60 

The structure and extent of global forest cover are changing rapidly, altering the 61 
major terrestrial sink and source of atmospheric carbon dioxide (CO2). As forests grow 62 



 3  

and increase their biomass, CO2 is absorbed. Terrestrial ecosystems have the capability to 63 
absorb nearly a third of the current carbon (C) emissions from fossil fuel combustion, 64 
slowing atmospheric green house gas accumulation, a service with enormous economic 65 
value (Stern Report, 2008). While forest clearing from human-driven land use change can 66 
increase albedo reducing warming,  land-use change also releases carbon as CO2 67 
accelerating warming. Land-use change also results in habitat loss, impacting 68 
biodiversity.  Regrowth following disturbance can restore habitat to some extent, but the 69 
success of this depends on sufficient conservation management information on species 70 
habitat requirements and their relationships to vegetation three-dimensional (3D) 71 
structure, i.e. vegetation vertical structure and biomass plus horizontal landscape patch 72 
structure (Bergen et al. 2010; Martinuzzi et al. 2010).  73 
 The amounts of C stored within and released to the atmosphere through land-use 74 
change and regrowth are poorly known, creating large uncertainties in the global carbon 75 
budget and future climate. The uncertainty is directly related to very limited knowledge 76 
of the 3D structure of global forests, which is required to accurately estimate biomass and 77 
biomass change, carbon storage and release, hence climate change, habitat and 78 
biodiversity. Better information is needed if we are to understand our vulnerability to 79 
climate change, and the vulnerability of life to not only climate change, but to changes in 80 
their habitat as reflected in changes to the structure and extent of forests.   81 

The objectives of this paper are to articulate the importance of acquiring these 82 
new, multi-year, 3D vegetation structure and biomass measurements, to briefly review 83 
the potential of polarized synthetic aperture radar (pol-SAR) and lidar remote sensing 84 
technology to obtain these measurements and to define the precision, extent, temporal 85 
and the finest spatial resolution desired and the coarsest spatial resolution required. We 86 
will also discuss the nature and duration of the required satellite mission needed to obtain 87 
the desired and required data products. 88 

In section 1.1 we review in greater detail the essential roles that the Earth’s forests 89 
play in the global carbon cycle, hence future climate.  We also further examine the 90 
important role forests play in the sustainability of habitat and biodiversity. We then 91 
summarize the open science issues that must be addressed to improve our understanding 92 
and quantify these critical roles. In section 1.2 we review the new information required to 93 
address these science issues. In section 1.3 we define an ensemble of new measurements 94 
of forest 3D structure needed to provide this information.  In section 2.0 we assess the 95 
feasibility of combined satellite lidar and pol-SAR measurements of global vegetation 96 
structure, biomass and biomass change to obtain these essential measurements. We 97 
devote section 3.0 to a detailed quantification of the measurement requirements that 98 
represent a synthesis of a March 2008 NASA-sponsored workshop at the University of 99 
Virginia, Charlottesville attended by more than 100 scientists from relevant disciplines, 100 
followed up by regular teleconferences since then.  Section 4.0 summarizes the 101 
conclusions of this study. 102 
 103 

1.1 SCIENCE AND POLICY ISSUES NEEDING RESOLUTION 104 
In this section we examine the importance of acquiring new scientific information 105 

and related measurements to quantify and understand the impacts on climate (section 106 
1.1.1) and habitat and biodiversity (section 1.1.2) resulting from the rapid alteration of 107 
the extent and structure of terrestrial ecosystems. In section 1.1.3 we discuss how 108 
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provision of this missing information could provide necessary but currently unavailable 109 
data to inform significant climate policy decisions. 110 

 111 

1.1.1 Biomass, the Carbon Cycle and Climate  112 
Terrestrial ecosystems play a huge role in current and future climate. Analyses 113 

show (Canadell et al. 2007 and Friedlingstein et al. 2010 and see Figure 1) that on 114 
average terrestrial ecosystems are absorbing more than one-third of the fossil fuel 115 
emissions, or ~2.7 of 7.7 Peta (1015) grams carbon per year (PgC yr-1) .  Estimates of the 116 
fossil fuel, atmospheric storage, land use change and ocean uptake components of the 117 
global carbon budget are based on various data sources, and are uncertain to varying 118 
degrees (Figure 1); so uncertain that we cannot “close” the global carbon budget. The 119 
magnitude and uncertainty of the “missing” terrestrial sink (2.7 ± 1 PgC yr-1) is not based 120 
on direct measures, hence its location and cause is unknown. Rather its magnitude and 121 
uncertainty is computed as the difference among the various carbon budget components 122 
and their uncertainties (see the equation in Figure 1). The estimated magnitude is large, 123 
and its economic importance huge, but we cannot say much about it other than that it is 124 
terrestrial in nature, most likely located in forested ecosystems.  But exactly where it is 125 
located, or how long it will continue we cannot say without more information, thus 126 
motivates the urgent need for a global vegetation 3D structure and biomass mission.  127 
 Why is this important? From an economic perspective, net uptake of CO2 by 128 
terrestrial ecosystems provides an estimated societal benefit of ~$3 Trillion through mid-129 
century. How?  Without it, atmospheric CO2 concentrations would increase over the next 130 
40 years to 2050 by more than 100 PgC. The additional climate warming and subsequent 131 
thinning of the Earth’s ice sheets and associated sea level rise, as well as other climate 132 
impacts to society is estimated by the Stern Report (2008) to be at a minimum, $30 for 133 
each metric ton of carbon or $30 billion per PgC of emissions, a total of ~$3 trillion 134 
social costs.   Will this huge net economic benefit continue in the future? Unfortunately, 135 
the global carbon budget in Figure 1 is too uncertain to predict the future of the terrestrial 136 
sink strength or the atmospheric CO2 trajectories with much confidence. Recent evidence 137 
suggests that this terrestrial sink strength may have actually decreased over the last 48 138 
years, (Canadell et al. 2007, Zhao and Running, 2010).   139 
 One of the most uncertain of the “known” terms in Figure 1 is the loss of carbon 140 
to the atmosphere from land use change (1.4 PgC yr-1).  At least half of this uncertainty 141 
results from uncertain estimates of standing biomass (Houghton 2005). The major source 142 
of that uncertainty is how much biomass is lost when tropical forests are converted to 143 
other land uses.  Recent calculations (Houghton 2005) estimate a net positive tropical 144 
carbon flux to the atmosphere to be somewhere between 0.84 and 2.15 PgC yr-1.  145 
 In addition to cycling carbon to and from the atmosphere, forests also play a 146 
major role in climate change by affecting the exchange of solar energy and water between 147 
the atmosphere and the Earth’s surface; increasing forest cover reduces albedo, increasing 148 
radiative climate forcing, but increases evapotranspiration and carbon uptake by forests, 149 
decreasing climate forcing overall (Bounoua et al, 2000, 2010). However, forest extent 150 
and structure are both being rapidly altered by land use change (Figure 2) and without 151 
improved information on these factors, impacts on future climate are uncertain. It is 152 
estimated from ground surveys and remote sensing that from1990 to 2000 deforestation 153 
in the tropics exceeded 12 million hectares per year (Millennium Ecosystem Assessment 154 
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Synthesis Report, 2005). Forest degradation was offset to some extent by a smaller 155 
increase of 3 million hectares per year in the area of temperate forest. We need improved 156 
information as to how these changes are affecting the Earth’s carbon cycle, its radiation 157 
budget, hence climate, or its biodiversity, now and in the future.  It is essential, both from 158 
a climate and ecological perspective to develop better information. 159 
 160 

1.1.2 Forest Structure, Habitat and Biodiversity 161 
From an ecological perspective the rapid change in vegetation 3D forest structure 162 

worldwide, including habitat fragmentation, species extinctions and spread of invasive 163 
species are already having undesirable consequences for biodiversity (Butchart, 2010). 164 
Known species may be at risk of extinction. Invasive species may gain footholds. 165 
Undiscovered species may be eliminated before they are even recorded by taxonomists. 166 
One study estimates that globally, the terrestrial species population index decreased by 167 
31% from 1970 to 2006; another study by about 30% from 1970 to 2003 (World Wildlife 168 
Fund, 2006). These declines can be partially attributed to loss and fragmentation of 169 
vegetated habitat. In tropical biomes species abundance decreased over the past 33 years 170 
by 55%.  Almost three-quarters of Earth’s species occur in only 12 countries: Australia, 171 
Brazil, China, Columbia, Ecuador, India, Indonesia, Madagascar, Mexico, Peru, and 172 
Zaire.  These are the same areas that are undergoing unprecedented land use change 173 
resulting in significant alteration in vegetation 3D structure and biomass.  Unfortunately, 174 
there is a paucity of information on the rate, extent and location of these structural 175 
alterations, and the resulting changes in forest biomass. Butchart et al. 2010 notes that 176 
“…Global trends for habitat fragmentation are unavailable…”. 177 
  178 

1.1.3 Policy Implications 179 
In addition to producing major advances in our knowledge of how forests are 180 

changing and how these changes are affecting the global carbon cycle, climate and 181 
biodiversity, better monitoring from space can play a major role supplying objective 182 
information to support international carbon emission reduction initiatives, now and in the 183 
future.  Many examples could be cited. A good example would be the “Reduced 184 
Emissions from Deforestation and Degradation”  (REDD-plus) initiative from the recent 185 
Copenhagen summit, proposed as a means to cut greenhouse gas emissions associated 186 
with forest clearing by the inclusion of “avoided deforestation” in carbon market 187 
mechanisms; in short, payments to countries in return for their preservation of existing 188 
forests.  REDD-Plus would also provide monetary incentives for developing countries to 189 
reduce greenhouse emissions beyond deforestation and forest degradation through 190 
sustainable forest management, afforestation and reforestation.  (Rosenqvist et al. 2003, 191 
DeFries et al. 2007, Angelsen et al. 2009, UNFCCC LCA Agreement on REDD, 2009). 192 
 Improved 3D vegetation structure data will also provide urgently needed 193 
information for other important applications in our changing climate, for example, forest 194 
fire management. As the wild/urban interface between development and forest increases, 195 
the potential for catastrophic fires is greatly enhanced.  USDA Forest Service fire spread 196 
models require structural inputs such as canopy height, canopy biomass and moisture 197 
content, vertical biomass profiles, and canopy base height (Weise, D. R. and G. Biging 198 
1997).  The destructive fires of 2007 in Southern California highlight the need for 199 
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information about the distribution of fire fuel loads at landscape to regional scales to 200 
improve fire spread models for forest fire prediction and mitigation. 201 
 Improved capability to predict the consequences of changes in drivers for 202 
biodiversity, ecosystem functioning, and ecosystem services, together with improved 203 
measures of biodiversity, would aid decision-making at a number of levels (Millenium 204 
Ecosystem Assessment, 2005).  Strategic decisions are already being made as to what 205 
biodiversity will be maintained on the global landscape (Butchart et al. 2010, Brooks et 206 
al. 2006; Olson and Dinerstein 2002).  At the more local level, management organizations 207 
are seeking to benefit from access to information on vegetation structure in assessing 208 
biodiversity and/or habitat. For example, the U.S. Geological Survey GAP program 209 
regularly maps habitat of species in each U.S. State based on Landsat-derived “habitat” 210 
(vegetation type) maps combined with models of wildlife habitat suitability requirements.  211 
Because these data and models frequently over-predict habitat in ways that could be 212 
remedied by introducing vegetation 3D structure, GAP programs are investigating which 213 
common habitat structure variables could be retrieved from Lidar instruments and used to 214 
improve the mapping of habitat (Martinuzzi et al. 2009).   215 
 216 

1.2 INFORMATION NEEDED TO ADDRESS SCIENCE ISSUES 217 
An entire class of environmental problems cannot be addressed with the 218 

information available from current forest structure and biomass survey methods. While 219 
existing satellite remote sensing can provide spatially resolved global maps of the areal 220 
extent of forests and deforestation (Tucker and Townshend, 2000), the lack of spatially 221 
resolved information on forest structure and biomass severely limits knowledge of 222 
biomass and biomass change and subsequent carbon exchange with the atmosphere 223 
(Houghton 2005, Frolking et al. 2009) as well as impacts on habitat and biodiversity.  In 224 
section 1.2.1 information needed to resolve uncertainties in the global carbon budget will 225 
be reviewed, and in section 1.2.2 the information needed to map vegetation variables 226 
related to habitat and biodiversity.  In section 1.3 the general types of measurements 227 
required (in situ and remote sensing) to obtain this information will be described. In 228 
section 3.0 we will quantify the measurement error, spatial and temporal characteristics. 229 

 230 

1.2.1 Information Needs for the Global Carbon Budget 231 
The total amount of carbon contained in the forest’s biomass is not known to even 232 

one significant Figure. Estimates range from 385 to 650 PgC (Saugier et al. 2001, FAO 233 
2001, Goodale et al. 2002, Houghton et al. 2009). Satellite monitoring of the ongoing 234 
rapid degradation of the Earth’s terrestrial forest cover and its mass change can  reduce 235 
the magnitude of this huge uncertainty.    236 

What terrestrial carbon information is required to reduce these uncertainties?  For 237 
forested and savanna/wooded ecosystems (Figure 3), it is the live and non-living carbon 238 
contained within the layer of organic biomass of above ground trees and understory and 239 
below ground roots. The biomass of woody plants is the most important component of 240 
terrestrial organic carbon. Forests are estimated to hold 70-90% of terrestrial above- and 241 
belowground biomass (Houghton 2008). Within forests, above ground biomass (AGBM) 242 
accounts for 70-90% of the total, most of it in trees (Cairns et al. 1997). 243 
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Aboveground or standing forest biomass as used herein means the total dry 244 
weight of wood above ground. Biomass density is the biomass per unit area, but we will 245 
use the term biomass and biomass density interchangeably.  We will use units of 246 
Megagrams per hectare Mgha-1 (1000kg m-2 or 1 metric ton m-2) as our standard unit of 247 
biomass measure. Forest biomass is approximately 50% carbon. We will use Megagrams 248 
carbon per hectare MgC ha-1 when referring to carbon density, where one MgC ha-1 is 249 
equivalent to two Mg ha-1 biomass. 250 
 Changes in standing biomass dominate changes in net terrestrial carbon flux  251 
(Houghton 2005). Belowground carbon stored in roots, rhizomes, and soil microbes 252 
contributes to a lesser extent.  Soil organic matter (decomposed plant matter no longer 253 
identifiable as such) holds two to three times more carbon globally than biomass; but is 254 
usually not considered in short term forest/atmosphere carbon exchange, since much of 255 
the soil carbon is physically and chemically protected and not easily oxidized (Davidson 256 
and Janssens 2006). Wood products for construction, paper, etc., also gradually release 257 
carbon to the atmosphere as they oxidize. 258 
 It is necessary to obtain vegetation 3D structure and biomass and biomass change 259 
information regionally as well as globally. Estimates show that biomass ranges over two 260 
to three orders of magnitude between biomes, from more than 600 Mgha−

1 in some 261 
tropical forests and temperate rainforests of the Pacific Northwest in North America to 262 
less than Mgha-1 in treeless grasslands, croplands, and deserts.  263 

Structure and biomass can vary as much within ecosystems as between them.  The 264 
variability results in part from differences in disturbance modalities, physiognomy and 265 
recovery processes at the much fine scales of forest disturbance and regrowth.  266 
Thus fine scale, spatially contiguous observations of biomass and 3D structure will be 267 
required to calibrate ecosystem dynamics and carbon models for prognosticating future 268 
trends in the strength of the land carbon sink and biodiversity as a function of current 269 
rates, modalities and locations of land use change.  270 
 271 

1.2.2 Information Needs for Habitat and Biodiversity 272 
A number of quantitative and observable 3D forest structure characteristics are 273 

needed to characterize habitat (canopy cover, tree and canopy height, vertical structure, 274 
and tree volume) [MacArthur and MacArthur, 1961; Anderson and Shugart 1974; 275 
Willson 1974; Morgan and Freedman 1986]. As described in section 1.3 these same 276 
variables are also needed to estimate biomass. At landscape scales, the spatial 277 
heterogeneity of a vegetated region of interacting multi-dimensional vegetation 278 
communities and animal habitats influence how plant and animal biodiversity is 279 
distributed (Tews et al. 2004). A large diversity of tree size distributions can indicate a 280 
wide range of habitat for wildlife (Morgan and Freedman 1986) and thus stand variation 281 
in tree height and diameter is an important consideration in biodiversity conservation in 282 
forested landscapes.  Edges provide habitat for many organisms and the amount, variety 283 
and structural characteristics of edges may be related positively to habitat. Likewise 284 
amount of edge may also be a significantly negative effect of forest fragmentation on 285 
other species (Matlack and Litvaitis, 1999).  Landscape pattern metrics (e.g. shape, size, 286 
contiguity, edge density, etc.) are now standard in wildlife habitat and corridor science 287 
management. Biomass is also a useful indirect indicator of age, as well as of density and 288 
successional stage, although vegetation structure factors more easily measured in the field 289 



 8  

than biomass are known to influence habitat selection and both plant and animal diversity 290 
(Reinkensmeyer et al. 2007; Hartung et al. 2005). 291 
 The key biodiversity and habitat variables are needed at both the patch-level and 292 
landscape-level. While these 3D forest characteristics have been measured for forest 293 
stands using various in situ techniques, and have all been shown through various studies 294 
to be related to observed species diversity in geographically limited areas, such in situ 295 
measures are labor intensive, therefore severely limiting the scope of habitat and 296 
biodiversity studies. Availability of these measures at key biodiversity regional 297 
“hotspots” around the globe and over time would revolutionize our understanding of how 298 
forest 3D structure and its change over time is affecting the habitat and diversity of life-299 
forms that are wholly dependent on forested ecosystems. 300 
 301 

1.3 MEASUREMENTS NEEDS FOR CARBON AND BIODIVERSITY  302 
We have referred to biomass and biomass change, as the information that is vital 303 

for reducing the uncertainty in surface-atmosphere carbon exchange estimates, hence 304 
future climate change uncertainty; and to vegetation 3D structure as the information 305 
needed to better understanding changes in habitability and biodiversity, as well as 306 
biomass and biomass change.  This section will concern itself with describing the general 307 
measurement types required to obtain this information.  In section 3.0 we will quantify 308 
these measurement requirements.  309 

The measurements needed are (1) direct in situ measures of forest biomass and 310 
structure by weighing or measuring tree height etc, for calibration and validation of, (2) 311 
the remote sensing lidar and radar measures of 3D forest characteristics related to 312 
biomass. We will describe in this section the information required to address the science 313 
issues posed in section 1.2: spatially contiguous maps of biomass and biomass change, 314 
with spatial resolutions on the order of a kilometer, at both regional to global scales. The 315 
biomass observations must be separated sufficiently in time for biomass change to be 316 
measureable by the remote sensing instruments employed.   As we will see in section 2.0 317 
and in section 3.0, this will require the spatial resolution of the remote sensing sensors 318 
and in situ measurements to be on the order of 25 meters.  319 

Because the biomass and structure information products required are contiguous 320 
regional and global maps, direct measures of these by in situ measurements of structure 321 
and weighing sacrificed trees is obviously far too labor intensive to be practical. Rather, 322 
the biomass and structural information needs described in section 1.2 require an analysis 323 
framework using remote sensing together with in situ inputs to extrapolate direct biomass 324 
and structural measures at the tree level to regional and global scales to produce spatially 325 
contiguous maps at fine spatial resolution. The remote sensing component of the analysis 326 
framework relies on lidar samplers and radar and passive optical imagers to sample and 327 
map landscape vegetation spectral and spatial “metrics” at high spatial resolution (~25m). 328 
To relate the lidar and radar measures or “metrics” to in situ measures, lidar and radar 329 
measures are then regressed against in situ timber height and volume measures in sample 330 
plots (Kohler and Huth, 2010). The resulting regression equations are used to convert 331 
landscape level lidar and radar metrics into regional, contiguous biomass and 3D 332 
vegetation structure products.  Finally, an independent set of ground plots must be held 333 
aside for validation and error characterization of the remote sensing measurements. In 334 
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sections 1.3.1 and 1.3.2 below, we will describe the specific spatial and temporal 335 
resolutions and coverage requirements needed for the remote sensing measurements. 336 

 337 

1.3.1 Vegetation structure, biomass and biomass change 338 
Within forests above ground biomass AGBM accounts for 70-90% of the total, 339 

most of it in trees (Cairns et al., 1997). Throughout this paper, biomass and AGBM will 340 
be used interchangeably. The biomass of an individual tree is the product of its above 341 
ground volume (m-3) and its average mass density (kg m-3).  The biomass of all trees in a 342 
plot is the sum of the individual’s biomass, which is approximately the product of their 343 
aggregated individual timber volume in the plot and their average volumetric density. 344 
Both can be measured destructively, however doing so is a very labor-intensive 345 
proposition.  In lieu of destructive methods, biomass can be reliably estimated using 346 
allometry with much less, but yet considerable labor.  347 

Allometry uses non-destructive measures (e.g., tree height and diameter) to 348 
estimate timber volume and published values for wood density (kg m-3). The product is 349 
biomass. Allometric relations are developed using regression from plots for which both 350 
arboreal structural variables (individual bole diameters, tree heights etc.) and sacrificed 351 
tree biomass data are available. Chave et al. (2004) found that 1ha plots are reasonable 352 
and practical with accuracies of 18 to 33% depending on the accuracy of wood density 353 
information.  354 

Allometric equations have been established for boreal and temperate forests (Ter-355 
Mikalian and Korzikhin 1997; Jenkins et al. 2003) as well as tropical forests (Chave et al. 356 
2005).  Jenkins et al. combine an ensemble of allometric equations to develop 357 
generalized equations for large areas of North American forests.  Chave et al. generalize 358 
over different tropical forests globally. Allometric equations have been validated 359 
extensively at the plot level yielding biomass accuracies of a few percent (Ter-Mikaelian 360 
and Korzukhin 1997). 361 

To scale from plot-level allometry to regional scales requires a probability 362 
sampling strategy.  In North America, the Forest Inventory Agency (FIA) Program 363 
employs such a strategy designed for regional and national reporting units.  In foreign 364 
regions, plots may be allocated even more sparsely than in the US and worse, not 365 
necessarily allocated in an unbiased manner.  The resulting biomass and structure maps 366 
from a probability sample framework are generally not fine enough spatially to allow a 367 
mechanistic understanding of the biomass variation with topographic, edaphic and 368 
climatic gradients, which can vary at scales of km and finer (Brown and Lugo 1992, 369 
Fearnside 1992, DeFries et al. 2002, Achard et al. 2004, Brown et al. 1993, Iverson et al. 370 
1994, Myneni et al. 2001, Baccini et al. 2004, Houghton et al. 2007 & 2009, Saatchi et al. 371 
2007, Hurtt et al. 2010). 372 
  Biomass change is a balance between losses in biomass from disturbance and 373 
gains from subsequent regrowth. The forest is a carbon source when ecosystems are 374 
disturbed and a sink when recovering or growing. Forest carbon source strength is also 375 
related to its biomass, which controls the magnitude and rate of autotrophic respiration. 376 
Biomass change can be estimated by two means: by observing and differencing changes 377 
in 3D structure over time; or, by using structure values observed at one date as inputs to 378 
growth models that use climate and other physiognomic variables to model future growth 379 
and atmospheric carbon exchange. The observed temporal differences in forest carbon 380 
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stocks can be used as inputs to inventory models to estimate carbon emissions to the 381 
atmosphere in the form of CO2, CO, and CH4.  382 

The use of ecosystem growth models to estimate biomass change requires a 3D 383 
structure map to initialize the models. Additional years of observations can be used to 384 
calibrate and validate the models. Based on the initial conditions, models simulate forest 385 
succession and estimate carbon stocks and associated, time-dependent fluxes of carbon 386 
between the atmosphere and the surface (Hurtt, et al. 1998, Moorcroft et al. 2001, Hurtt et 387 
al. 2002, Hurtt et al. 2004, Hurtt et al. 2010). For each patch in a landscape the rates of 388 
structural and biomass change following disturbance depends on the (1) vegetation state 389 
pre-disturbance (2) type of disturbance (3) lapsed time since disturbance, (4) composition 390 
of the regenerating vegetation (5) its physiognomy (primarily soils and topography) and 391 
(6) extant climate conditions.  392 

Inputs to both inventory and growth models require remote sensing estimates of 393 
forest 3D structure at the scale of disturbance, and scales where regrowth rates are 394 
reasonably homogeneous. The scale varies depending on the various disturbance types. 395 
According to FAO (2006) fire disturbs about ~1% of the global forested area each year; 396 
wind throw another ~1% yr-1; insect/disease damage ~3% yr-1; deforestation & land 397 
conversion 0.2% yr-1. Afforestation adds to forest area ~0.1% yr-1. FAO (2006) reports 398 
that the area of ‘modified natural forest’ is globally about 50% larger than the area of 399 
‘primary forest’.  These various modalities of disturbance can occur at scales as fine as 400 
single trees  (wind-throw, mortality and selective logging) to many kilometers in extent 401 
as a result of fire and clear-cutting. Regrowth occurs one tree at a time, but homogeneity 402 
in regrowth rates often occur at scales on the order a kilometer as a result of management 403 
practices, the homogeneity of landscape characteristics, soils, topography and 404 
environmental factors; regrowth rates are also a function of disturbance type and 405 
preceding land use history, both important in determining the suitability of the soil 406 
substrate suitable for growth (water holding capacity, carbon content etc). Ecosystem 407 
simulation models incorporating these factors together with 3D structure measurements 408 
to constrain them, will be central to prognosticating future trends in carbon exchange to 409 
the atmosphere, and future climate. Sensitivity studies based on these models show that 410 
biomass and flux estimation errors are minimized when the scale of mapping matches 411 
important scales of vegetation dynamics and underlying environmental gradients, 412 
operationally about 1 ha in complex environments (Hurtt et al. 2008, 2010). 413 

As will be discussed in section 3, to address the science issues posed in section 414 
1.2 the desired information are spatially contiguous maps of biomass and biomass 415 
change, at spatial resolutions of 25 to 100m; however, even spatial resolutions on the 416 
order of 250 to 1000 meters, at both regional to global scales would provide greatly 417 
improved information over that currently available. The biomass observations must be 418 
separated sufficiently in time for biomass change to be measureable by the remote 419 
sensing instruments employed.   As we will see in section 2.0 and in section 3.0, this will 420 
require the actual spatial resolution of the more fundamental remote sensing and in situ 421 
measurements to be on the order of 25 meters.  422 

 423 

1.3.2 Vegetation structure, biodiversity and habitat 424 
Many of the measurements of vegetation 3D structural variables needed for 425 

biomass and biomass change information are the same ones needed for habitat and 426 
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biodiversity studies vertical distribution of foliage and wood, diameter at breast height 427 
(DBH) and basal area. The vertical dimension required for biodiversity studies is the 428 
bottom-to-top configuration of forest vegetation (Brokaw and Lent, 1999), which in turn 429 
may be characterized by observable variables such as canopy cover, tree and canopy 430 
height, vegetation layers, and biomass or volume (Bergen et al. this issue).  Structure in 431 
the horizontal dimension is the spatial heterogeneity of interacting patches of woody 432 
vegetation differing between patches in their structures and compositions, often described 433 
by match metrics or spatial statistics (Gustafson, 1998).    434 
 The two primary components of vegetation 3D structure – vertical forest structure 435 
and horizontal forest heterogeneity – are known to underlie habitat selection by many 436 
animal species, as well as influence patterns of diversity of animals and other plants 437 
(Brokaw and Lent 1999; MacArthur 1966; Tews et al. 2004; Verner et al. 1986).  In 438 
terms of plants, vegetation community diversity is often expressed through the 439 
complexity of vegetation structure within forests, which is in turn linked to the 440 
functioning and health of Earth’s terrestrial ecosystems (Franklin et al. 1989; Ishii et al. 441 
2004).  Animal biodiversity may act as “bioindicators” of the health of natural forests or 442 
the success of different vegetation structure-based techniques to manage forests 443 
ecologically and sustainably (e.g. thinning treatments or maintaining even vs. uneven-444 
aged forest patches; Maleque et al. 2009).   445 
 Vertical canopy profiles may also shed light on serious cases of insect defoliation 446 
that alters vertical foliage complexity.  Vertical complexity has been described through 447 
the use of the Foliage Height Diversity index (FHD; MacArthur and MacArthur, 1961).  448 
The FHD statistic is intended to explain both the density and height distribution of foliage 449 
in a vegetation profile and is given as: 450 

 FHD = - Σ pi loge pi         (1) 451 
Where pi = proportion of horizontal vegetation coverage in the ith vertical layer, summed 452 
over the number of homogeneous structural layers.   453 
 454 
2.0 REMOTE SENSING OF 3D VEGETATION STRUCTURE 455 
The National Research Council recommended in its Decadal Survey Report (NRC 2007) 456 
that NASA develop a space-based lidar and radar capability to measure the 3D structure 457 
of the Earth’s terrestrial ecosystems (Figure 4).  Instruments recommended were: 458 

• A sampling, profiling lidar that can measure vegetation height profiles, as well as 459 
the height of non-vegetated solid earth and ice surfaces within plots along 460 
transects. 461 

• An L-band pol-SAR sensor also potentially capable of measurements needed to 462 
infer vegetation biomass, and structure.   463 

A lidar instrument emits nanosecond pulses of coherent light at the characteristic 464 
wavelength of its lasers.  For DESDynI the lasers are planned to operate at 1064 nm. 465 
Within the lidar, a number of lasers emit beams of photons in a near-nadir direction. Then 466 
photons are scattered by the land surface and vegetated structures back to the lidar 467 
telescope and detectors on board. The round trip time for the scattered photons is clocked, 468 
and multiplied by the speed of light to calculate the distance to their various scattering 469 
events.  The relative intensities of returned photons at various times are recorded to 470 
obtain a relative intensity profile (shown in the middle panel of Figure 4).  Given 471 
sufficient laser energy in a pulse to penetrate the canopy, the difference in distance 472 
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between the first scattering event (canopy tops) and the last scattering event (the 473 
underlying terrain surface) can be used to measure the average height of the trees within 474 
the pixel and the vertical distribution of scattering surfaces in the canopy.  Each laser 475 
“measurement” is a profile of detected scattered relative light intensity versus relative 476 
range, i.e. distance from the last return (presumably the ground). Various metrics related  477 
to the profile can then be used to characterize vertical structure and related to biomass 478 
(sections 1.3.1 and 2.1).  479 

Lidar instruments have been demonstrated capable of estimating biomass in some of 480 
the denser dry tropical forests (Drake et al. 2002a, 2000b, 2003). The pixel or spot size is 481 
determined by the instrument optics that shapes the laser beams. The main limitations of 482 
currently available lidar technology are two-fold. First, while lidar imagers are being 483 
flown from aircraft, fully imaging lidar technology is not yet sufficiently mature to be 484 
flown in orbit; only multi-beam laser samplers are space-qualified. Second, successful 485 
lidar measurements require sufficiently transparent atmospheric conditions for the laser 486 
pulse to penetrate the atmosphere, the canopy and back to obtain a useable lidar profile.   487 

A number of methods have been developed to relate various “metrics” or 488 
characteristics of the lidar profile to vertical vegetation structure and biomass.  The 489 
methods, accuracies and limitations will be discussed in section 2.1.  490 
 Radar emits coherent pulses of polarized electromagnetic radiation (at a much 491 
lower frequency and longer wavelength than lidar (e.g. 1.25 GHz or ~21 cm) and 492 
measures the energy fraction of each pulse returned in particular polarization orientations 493 
that is backscattered from limbs, trunks and ground beneath a forest canopy. The 494 
centimeters-long wavelength of a radar and its off-nadir orientation precludes a vertical 495 
profile as with lidar.  Rather, the backscattering coefficient for a single pulse is 496 
determined by the entire canopy volume scattering the radar signal. However, a SAR 497 
creates an image by using a complex processing technique to emit and process the radar 498 
pulses. But the processing technique requires that the landscape be imaged along an off-499 
nadir swath parallel to the satellite orbital track. The fraction of each SAR pulse that is 500 
backscattered, and the degree to which its polarization has been altered by the target, is 501 
rich in information about the 3D vegetation structure. Because the intervening 502 
atmosphere is relatively transparent at the L-band frequency, pol-SAR can provide wall-503 
to-wall seasonal to annual observations of the global distribution of vegetation, 504 
particularly disturbance events, even under cloudy conditions. 505 

Limitations of a SAR include the inability to penetrate very dense, tall forest 506 
canopies or obtain directly a vertical profile of vegetation distribution.  A number of 507 
algorithms have been developed to relate the strength and polarization of the radar signal 508 
to vegetation structure and biomass.  These will be described in section 2.2. 509 

Neither a lidar nor SAR measure biomass directly. Their signal structures are a 510 
function of vegetation structural variables, which in turn can be related to biomass either 511 
statistically, or using physically-based models through allometric relations (section 512 
1.3.1). By combining data from both radar and lidar through data fusion, information on 513 
the overall fine-scale variability of the vertical and horizontal distribution of vegetation 514 
cover can be extended to denser canopies. Fusion algorithms can potentially utilize the 515 
strongest characteristics of each instrument; the denser canopy penetration ability of lidar 516 
to ensure accurate biomass estimates, even in high-density biomass ecosystems, and the 517 
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cloud penetrating, wall-to-wall imaging capability of the pol-SAR. Data fusion 518 
approaches will be described more fully in section 2.3.   519 
 In just the last two decades, advances in the use of interferometric radar 520 
techniques utilizing multiple L or C-band pol-SAR (pol-InSAR) images acquired nearly 521 
simultaneously at two or more view geometries from aircraft have demonstrated a 522 
capability to map the 3D structure of forests (Treuhaft et al. 1996, Cloude and 523 
Papathanassiou 1998, Treuhaft and Siqueira 2000, Papathanassiou and Cloude 2001, 524 
Neef et al. 2005). L-band pol-inSAR has also shown promise to map structure in higher 525 
density regions of the tropics (Hajnsek et al. 2009). Pol-Insar data will be available with 526 
the DESDynI mission.  To the degree that decorrelation of the vegetation signal between 527 
overpasses is not problematic, pol-Insar can potentially provide 3D structure.  As 528 
opportunities arise to coordinate the DESDynI mission with another pol-SAR mission a 529 
tandem-L-band option could be pursued to mitigate decorrelation, but as of this writing, 530 
an international collaboration would be required since a dual-platform mission is not in 531 
NASA’s Decadal Survey plan. 532 
 533 

2.1 Lidar Measures of Structure and Biomass 534 
 Various lidar “metrics” related to canopy structure can be generated by 535 
characterizing the vertical structure of the lidar profile (Figure 4). Two different relative 536 
height (RH) lidar metrics (relative to the ground return) are frequently employed in the 537 
estimation of biomass; (1) RH100 the height relative to the ground from which 100 538 
percent of the lidar pulse energy is returned (2) RH50, the height relative to the ground 539 
for which 50% of the lidar energy is returned (Nilson 1995, Nelson 1997, Means et. 540 
al.1999, Lefsky 1999a, Lefsky 1999b, Pang et al. this issue, Dubayah et al. 2000, Drake 541 
et al. 2002). The studies just cited used aircraft lidar data to show that RH100 is closely 542 
related to the tallest trees in a forest stand, and in turn is correlated with the above ground 543 
biomass in the stand. Repeated aircraft lidar observations of the same ground target in 544 
conifer stands in the Sierra Nevada on level ground show that RH metrics can be 545 
measured with a repeatability of about 1 m. Ground elevation was located with a 546 
precision of 0.1 m.  Most of the variability between measurements resulted from 547 
variability in canopy tops. (Bryan Blair Private Communication).  548 
 Lidar studies have also demonstrated that canopy height metrics are correlated to 549 
bird species biodiversity. Relationships between avian biodiversity and lidar structure 550 
metrics  (Figure 5) from the Laser Vegetation Imaging Sensor (LVIS) were analyzed 551 
(Goetz et al. 2007). In the two major ecosystem types studied (forest and scrub/second 552 
growth), distinct relationships were found between vegetation height and species 553 
richness.  554 
 While imaging lidar instruments are available and have been flown successfully 555 
aboard aircraft, the only space-qualified lidar technologies are instruments with a few 556 
beams to sample the landscape.   In the DESDynI time-frame, a 5 to 7 beam lidar would 557 
be feasible and could potentially sample the landscape to estimate average regional-scale 558 
height metrics by sampling regularly spaced grid cells covering the globe.  The lidar 559 
height metrics are in turn related through allometry to biomass (see section 1.3.1 for 560 
discussion). Biomass could also be estimated using ecosystem-based models to relate 561 
RH100 and other metrics to biomass. Studies have shown that accuracies of about 1-2 m 562 
are required to achieve a biomass estimation precision of 20Mg/ha (Thomas et al. 2006, 563 
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Thomas et al, 2008). As shown in Figure 6 the average standard deviation in the height 564 
metric RH100 measured from aircraft lidar over 1km areas, for a range of biome types, is 565 
about 7 meters.   Thus, the sample error within a grid cell will dominate the lidar RH100 566 
measurement error of 1 to 2 meters and orbital design must ensure adequate numbers of 567 
sufficiently cloud-free lidar samples to achieve aggregate height accuracies of 1-2 meters 568 
in each grid cell.  It will however be possible to trade grid cell resolution vs. biomass 569 
estimation accuracy.  This will be discussed more fully in section 3.1.2. 570 

2.2 Biomass Measures Using Pol-SAR 571 
 The sensitivity of polarized L-band (~1.25 Ghz) Radar signals to forest 572 
structural attributes such as wood volume and basal area renders polarized synthetic 573 
aperture radar (pol-SAR) suitable for inferring biomass, using nonlinear regression 574 
models, by relating measured cross-polarized backscattering coefficients to ground or 575 
lidar measures of biomass (Ranson and Sun 2002, Saatchi et al. 2007). Current state-of-576 
the-art in radar technology permits L-band measurements from space with high spatial 577 
resolution (25-100 meters) both day and night regardless of atmospheric conditions and 578 
cloud cover, and with a repeating global coverage at monthly to seasonal intervals.   579 
 Radar sensitivity to canopy biomass ceases for moderate to dense canopies where 580 
the signal no longer penetrates through the entire canopy. This biomass level, the so-581 
called saturation level, depends on the frequency, the polarization mode, incidence angle, 582 
the type of forest, foliage structure and moisture conditions.  As a result, a wide range of 583 
sensitivities have been reported. L-band polarimetric algorithms have been reported to 584 
estimate biomass with 20% accuracy up to 100-150 Mgha-1 in boreal, temperate and 585 
woodlands and up to 100 Mgha-1 in tropical forests (Mitchard et al. this issue, Mitchard et 586 
al 2009, Saatchi et al. this issue, Kasischke et al., 1997). L-band pol-InSAR has 587 
demonstrated sensitivities up to 250-300 Mg/ha (Treuhaft et al. 2009, Neef 2005). 588 
 In addition to measuring one-time biomass densities, pol-SAR also provides the 589 
capability of monitoring biomass changes resulting from clear-cutting, forest fires, insect 590 
disturbance, wind damage, and to some extent more subtle changes in forest structure 591 
(Saatchi et al. 1997; Rignot et al. 1994; Couturier et al. 2001; Siegert et al. 2001; Salas et 592 
al. 2002; Ranson et al. 2003).   Biomass losses can be quantified by either using a direct 593 
method differencing two sequential biomass maps to calculate change or by employing 594 
established pol-SAR change detection algorithms (Rignot and vanZyl 1993; Lombardo 595 
and Oliver 2001). Areas of rapid regrowth following disturbance (after 1 year for many 596 
areas, and after several years for more slowly growing areas) can be mapped and 597 
quantified using pol-SAR.  Fusion with structural information from lidar along transects 598 
can be used to map and quantify biomass changes in areas of degradation, in areas 599 
undergoing slower regrowth and those undergoing little change. Precision of biomass 600 
change can be increased at coarser resolutions by accumulating lidar samples and by 601 
multi-looking (500-1000 looks) pol-SAR backscatter measurements to reduce speckle  602 
(Rignot and vanZyl 1993; Conradsen et al., 2003, Rowland et al. 2002; Mitchard et al. in 603 
press).  604 
 The results from these studies summarize the accuracy of radar monitoring of 605 
forest disturbance and recovery and highlight various sources of errors and ambiguities.  606 
However the results support that backscatter polarimetric measurements can detect and 607 
map disturbance modes in most global forested ecosystems. 608 
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 609 

2.3 Fusion of Pol-SAR Measurements With Lidar Sampling 610 
Radar and lidar sensors provide complementary information about the forest 611 

structure.  The volume of vegetation sensed by these two instruments at a pixel level 612 
differs.  Nadir-pointing lidar measures a vertical vegetation profile along its orbital track.   613 
SAR requires that a scene be imaged at off-nadir view angles though a slanted volume 614 
accessing different canopy information. SAR provides wall-to-wall coverage, although 615 
saturating at lower biomass levels (100 to 150 Mgha-1) than lidar. A properly designed 616 
lidar signal can detect the ground to measure canopy height metrics and infer biomass in 617 
the densest of canopies found in the tropics.   618 
 While radar/lidar fusion algorithms are in the early stages of development, fusion 619 
between the lidar/radar measurements can potentially be exploited using algorithms that 620 
are primarily statistical in nature, or physically based approaches that exploit 621 
backscattering models relating vegetation properties to the strength and polarization of 622 
the scattered signal. 623 

1. Radar backscatter or pol-InSAR measurements can be combined with lidar height 624 
metrics in statistical regression models to estimate forest three-dimensional 625 
structure (height, biomass, volume, basal area) (Sun and Ranson, 2002; Slaton et 626 
al. 2001).  This approach is dependent on ground inventory data to develop the 627 
statistical models and validate the results and hence requires careful assessment of 628 
the compatibility of inventory plot size and spatial resolution of remote sensing 629 
data. 630 

2. Lidar measurements of vertical structure can be used as input to radar backscatter 631 
and pol-InSAR electromagnetic backscattering models that relate biomass to 632 
vegetation to constrain vegetation structural properties. The major driving 633 
parameters of these radar models are tree number per unit area and average tree 634 
heights in a stand (Richards et al., 1987; Sun et al., 1991; Sun and Ranson, 1995; 635 
Liu et al., 2010). The use of a physically-based approach can potentially reduce 636 
the dependence on in situ measures. However, radar backscatter is also a function 637 
of canopy electromagnetic properties that can vary with soil moisture, dielectric 638 
properties etc., thus will certainly require some calibration using ground inventory 639 
data, although less so than purely statistical approaches. Physically-based 640 
approaches are well suited for multi-sensor applications, can directly process data 641 
from multiple dates, can account for variations in sensor position/geometries, and 642 
provide a comprehensive treatment of full scene components (e.g. trees, 643 
background) that influence spectral response. In areas of sloped terrain including 644 
steeper mountain areas, the physically based approaches can account for terrain 645 
slope and aspect.  646 
 647 
The fusion of pol-SAR wall-to-wall measurements with lidar samples can 648 

potentially provide enhanced biomass accuracies extending accurate biomass estimates to 649 
even denser forests.  650 

In sparser forests (e.g., boreal ecosystems or savannahs) passive optical satellite 651 
remote sensing technology such as the MODerate resolution Imaging System (MODIS) 652 
and Landsat and other similar imagers can be added to the data fusion mix to augment the 653 
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information from lidar and radar. MODIS and Landsat have been able to effectively map 654 
the 3D structure and characteristics of sparser forests: Landscape characteristics such as 655 
areal extent, disturbance rates, landscape pattern metrics such as shape, size, contiguity, 656 
edge density, and the vertical dimension, canopy crown dimensions and stem density 657 
(Peddle et al. 1996, Soenen et al. 2009,  Widlowski et al. 2007) and biomass (Hall et al. 658 
1996).    659 

The fusion of active sensors with one another as well as the conjoining of active 660 
sensor-information with information obtained from the existing constellation of passive 661 
remote sensing devices is currently limited by the lack of contemporaneous data 662 
acquisitions by both sensor types at locations with well developed ground data.  This 663 
will likely be an ongoing area research for several years to come. 664 

 665 
3.0 MEASUREMENT REQUIREMENTS  666 

For which forest ecosystems does structure, biomass and biomass change need to 667 
be measured or modeled and with what accuracy to produce improved biomass and 668 
biomass change information? How accurate do the measurements need to be? The 669 
information needs and measurement types specified in sections 1.2 and 1.3 are generic, 670 
not mission dependent.  But the quantitative needs specified here are influenced by the 671 
state of the art in lidar and radar capability to measure structure and biomass.  The 672 
requirements will also guide instrument design considerations (power, instrument 673 
lifetimes, number of lidar beams, radar polarization and signal to noise etc) and the 674 
capabilities of launch vehicles, spacecraft etc).  675 
 Which elements of the global forested landscape must be measured to reduce the 676 
uncertainty, locate and understand the underlying causes of the terrestrial sink and the 677 
land use contributions of Figure 1? Although the magnitude of the residual terrestrial 678 
“sink” is inferred as a residual of other terms in the budget,, the fact that it is a “sink” 679 
implies that it must result from carbon gain in either secondary (“recently” disturbed) or 680 
primary older forests. While carbon storage in croplands soils is important, the 681 
contributions to global carbon flux, even in the US is small in comparison to forested 682 
ecosystems or regions of woody encroachment (Pacala et al. 2001).   683 

For forested ecosystems over a specified reporting period R, the net terrestrial 684 
uptake ΔCR globally is the sum over all landscape elements (or patches) of the above 685 
ground carbon loss ΔCi (Mgha-1yr-1) in each of the elements of area Ai and the above 686 
ground carbon gain from regrowth. Carbon loss must be adjusted for ΔSR, the subsequent 687 
changes in carbon pools following loss -- plants, soil, wood products, and detritus. 688 
Patches are landscape elements or strata relatively “homogeneous” in structure, biomass 689 
and growth rate. Above ground carbon gain is the product of the area of the ith patch Ai 690 
and its net ecosystem production NEPi in Mgha-1yr-1. Only the above ground component 691 
of NEPi can be measured using remote sensing, thus below-ground carbon change must 692 
be estimated using carbon models. The storage and decomposition term ΔSR is somewhat 693 
complex but represents the loss of carbon to the atmosphere from wood products and 694 
litter decomposition, which must also be modeled. Expressed mathematically, 695 
 ΔCR = Σ Ai (NEPi - ΔCi) – ΔSR        (2) 696 
which can be further decomposed into components measureable by remote sensing and or 697 
quantifiable by modeling as follows.  698 
 ΔCi can be decomposed into biomass loss from rotation logging ΔCil, biomass 699 
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loss from “permanent” land use conversion ΔCip and loss from natural disturbance ΔCid. 700 
A similar decomposition can be effected for NEPi.  Equation (2) then can be written as 701 
ΔCR=Σl Ail NEPil + Σl Aiag NEPiag+  Σl Aid NEPid  - Σl AilΔCil - ΣdAid ΔCid – SR (3) 702 
where Aiag is the area converted from abandoned agriculture to forest, and NEPiag the net 703 
ecosystem production of that patch. 704 
 With terms on the right hand side of (3) collected to match the components of the 705 
global carbon balance of Figure 1, ΔC may be expressed as, 706 
Σl Ail (NEPil - ΔCil) + Σp Aiag NEPiag - Σp AipΔCip – ΔSR + Σd Aid (NEPid - ΔCid) (4) 707 
  Rotation         +     Recovering        – Permament – storage +  Natural disturbance  708 
  logging   abandoned cropland       change & decay      and recovery_____        709 
                         LAND-USE CHANGE                                 RESIDUAL SINK 710 

For which forested ecosystems are the measurements needed to locate the 711 
terrestrial sink, the land use sources and understand the underlying causes? Tropical 712 
secondary forests and post-disturbance recovery from logging and fire in boreal and 713 
temperate regions are the major carbon sinks. Estimating regional and global carbon flux 714 
requires observations to provide a wall-to-wall initial biomass inventory, then updated at 715 
least annually to identify the various causes of biomass change using direct observations 716 
and/or combined with models. The global biomass inventory needs to be at a relatively 717 
fine spatial scale (1ha desired to 1000m required). To capture the entire range of 718 
disturbance events from selective logging, insect and disease observations are needed at 719 
even finer spatial resolution (Houghton et al, 2009). Annual global coverage is necessary 720 
to develop an inventory of type, size, frequency, and interannual variability of these 721 
processes. 722 

How can the terms in equation (4) be measured or modeled? The first sum in 723 
equation (4) is the net above ground carbon change from rotation logging; the second 724 
sum carbon uptake on lands where conversion from agriculture to forests has occurred; 725 
the third term is carbon loss where “permanent” loss of forest has occurred, the fourth 726 
term subsequent changes in carbon pools (plants, soil, wood products, and detritus) and 727 
the fifth term, carbon change from natural disturbances in forests and subsequent 728 
recovery. NEPid is a function of not only climate change, but also changes in 729 
environmental conditions affecting growth or physiological functioning (e.g. nitrogen and 730 
CO2 fertilization ). NEPid can be measured as biomass change over time, or can be 731 
estimated using ecosystem growth models. The land-use term in Figure 1 is an estimate 732 
of the magnitude of the first four terms, and includes the uptake of carbon in 733 
secondary forests recovering from rotation logging and agricultural abandonment, but not 734 
the sources or sinks from natural disturbances.  735 
 The carbon sources and sinks resulting from land use change are calculated with 736 
carbon tracking models based on two types of information: rates of land use change and 737 
subsequent changes in carbon pools (plants, soil, wood products, and detritus). The major 738 
source of uncertainty is ΔCip the aboveground biomass loss from forests converted to 739 
other land uses, and it results from a lack of spatially specific estimates of biomass 740 
(Houghton, 2007, 2003). Accurate estimates of aboveground biomass at the spatial 741 
resolution of land use change would greatly reduce the uncertainty in estimates of carbon 742 
flux from land use change.  743 
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 Thus, direct estimates of biomass and biomass change from satellite must focus 744 
on measuring the biomass lost from disturbance, and that gained from forest growth. 745 
With a proper satellite design, all Ai terms can be measured by radar and all ΔC terms 746 
using lidar from a probability sample to measure biomass prior to disturbance in 747 
“homogeneous” strata on the size of a few kilometers, and from radar to obtain biomass 748 
following disturbance. Radar can also obtain seasonal temporally-spaced measures of 749 
biomass change in each patch within a specified period of time, with the saturation 750 
limitations described in section 2.2.  751 

How accurately must the structure and biomass of forested landscape elements be 752 
measured?  A reasonable global goal given present capability is to reduce the uncertainty 753 
in the terrestrial net flux of carbon to that of the uncertainty in the global net uptake by 754 
the oceans, which from Figure 1 is 0.5 PgC yr-1.  The net terrestrial uptake is the 755 
difference between (1) carbon input to the atmosphere from land use change and (2) the 756 
terrestrial “sink” (the residual imbalance among all other terms in Figure 1). Given the 757 
individual uncertainties in these two terms, the rms uncertainty of the difference is ~1.3 758 
PgC yr-1. Reducing the uncertainty of the net terrestrial uptake that of the ocean would be 759 
a significant reduction.  760 

Equation (2) provides a framework within which to define the measurement 761 
requirements to measure ΔCR to the specified accuracy of ± 0.5 PgC yr-1.  How accurately 762 
do we need to measure the terms inside equation (2), i.e. the area A, the NEP and the 763 
biomass loss from each patch sampled in the region?  The error of an estimate of ΔBR SE 764 
given n observations within R is to first order   765 

SE = (MSEmeas+ MSEsamp)½/√n	
   	
   	
   	
   	
   	
   (5) 766 
Where MSEmeas is the biomass measurement error for a sample, MSEsamp is the sample 767 
error,	
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  mean	
  square	
  difference	
  in	
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  total	
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  768 
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 A remote sensing system employing radar and lidar will have the capability to 770 
measure a very large number n of sample plots in a region, even a complete enumeration 771 
with radar. Thus, as seen in (5), even modest regional scales, the large number n of 772 
measurements will permit a reduction in the sample error, given an unbiased sample 773 
design, effectively to nil.  Thus, the driver of SE at a regional scale is the measurement 774 
error, not sample error.  However, if the measurement error itself is on average, unbiased, 775 
even the measurement errors become negligible over a sufficiently large region 776 
sufficiently sampled.  But, there is no guarantee that either the lidar or radar 777 
measurements are unbiased, so the bias must somehow be measured or estimated in order 778 
to assess whether the regional level estimate is to within a specified accuracy.  Bias can 779 
result for example, from a consistent under or overestimate of the true biomass in the 780 
allometric equations, or bias in the ecosystem carbon models or their inputs, or 781 
measurement bias in either the radar or lidar.  Bias cannot be estimated without 782 
comparing DESDynI estimates to a “gold standard” that is chosen to represent the “best 783 
estimate” of the “true” biomass. In DESDynI the gold standard will be biomass estimates 784 
from allometry and insitu measurements. Therefore, a validation program is essential, 785 
consisting of ground-measured structural and biomass values to be compared with those 786 
from lidar and radar.  But ground truth is expensive. How many such sites will be 787 
required in order to assure that our remote sensing estimates are meeting the required 788 
accuracies over a region? 789 
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 That is, as far as bias is concerned, if we want to ensure absolutely that the global 790 
carbon flux is within 0.5PgC yr-1 of the “true” or gold standard value, or about 38% of 791 
the estimated net global terrestrial flux of 1.3 PgC yr-1, then the plot or patch level 792 
average overall bias must be 38% or less, simply because measurement bias does not 793 
decrease with the number of samples. Of course, bias will not be the same for every 794 
patch, and could in fact average out over many regions from overestimation in some, and 795 
underestimation in others.  But there is no guarantee of this.  As seen from section 2.2, 796 
errors in denser old-growth tropical forest patches where radar saturation is an issue will 797 
likely be larger than in recently disturbed patches. 798 
 To allocate independent validation sites they should ideally be placed in the major 799 
global biomes of interest, and allocated in a manner to be representative of the biomes.  800 
Validation results will be specific to each biome, since each presents different problems 801 
in lidar, radar estimation.  But how many such sites will be required to determine that the 802 
average estimation bias over the validation sites is ±38% or less? Sufficient numbers of 803 
validation sites for estimating the bias are required to ensure that the standard error of the 804 
regression between the estimated ΔCRe and the “true” ΔCRt is ≤ ±38%. The number of 805 
validation sites required will depend upon the precision of the estimate ΔCR. 806 
 In the remainder of this paper, we will address in detail the vegetation structural 807 
characteristics we need to measure to provide the needed information, and in this section, 808 
quantify the measurement accuracies, frequencies and spatial resolutions required, and 809 
finally, the data products envisioned from such missions.  The measurement accuracies 810 
realized in an actual mission will depend on instrument performance, mission duration, 811 
orbital constraints and other elements of the final mission design, all constrained by cost. 812 
Therefore, in the following sections we will quantify the measurement accuracies in 813 
terms of desired and required accuracies denoting the upper and lower bounds of the 814 
information quality thought to be feasible from the spacecraft mission design.  “Desired” 815 
cites the desired quality of the information (upper bound), while “required” cites the least 816 
acceptable quality (lower bound) of the information.    Tables 1 through 3 summarizes all 817 
the measurement needs (desired and required), and the principal target products. The 818 
needs are interrelated, thus to some extent are redundant. 819 

In section 3.1 we will describe the measurements required to develop globally 820 
consistent and spatially resolved estimates of aboveground biomass and carbon stocks; In 821 
section 3.2 those required to quantify changes in terrestrial sources and sinks of carbon 822 
resulting from disturbance and recovery (net terrestrial carbon flux) and in Section 3.3 the 823 
measurements required to characterize habitat structure for biodiversity assessments.     824 
 825 
3.1 Biomass and Carbon Stocks 826 

3.1.1 Summary of Core Observables 827 
The desired biomass product required is a global map with a spatial resolution of 1 ha, 828 
but no worse than 1km, with an accuracy of +/-20 Mg ha-1 ( +/-10 MgC ha-1) or 20%, 829 
whichever is greater), with errors not in excess of 50 Mg/ha (25MgC. ha-1).  For areas 830 
with biomass less than 100 Mg ha-1, the required spatial resolution is 1ha. Annual updates 831 
to the global biomass maps are required but the updates need not achieve the desired 832 
accuracies until a sufficient density of lidar samples has been acquired.  The time frame 833 
will depend on the number of lidar beams and mission design. 834 
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Annual, spatially resolved biomass permits a direct measure of the rate of change 835 
in biomass, hence the carbon flux resulting from biomass loss from disturbance and the 836 
subsequent biomass gain from recovery. Figure 7 (Saatchi and Houghton, 2007) is typical 837 
of a landscape mosaic of disturbance and recovery following disturbance. Table 1 838 
summarizes the biomass requirements. 839 
 840 
Develop globally consistent and spatially resolved estimates of aboveground biomass and 841 
carbon stocks.  842 

Because the lidar RH metrics and radar σ metrics are non-linear in biomass (see 843 
sections 2.1 and 2.2), it is straight forward to show from equation (6) that  844 
 845 
ΔCR = Σ Ai (NEPi - ΔCi)  ≠ AR < NEPi >R -  < ΔC i >R    (6) 846 
 847 
where AR is the estimated (from remote sensing) total regional forested area for R, 848 
<NEPi>R the average net primary production for R  and <ΔC i>R the average regional 849 
biomass per unit area (again, the latter two from remote sensing).  ΔCR computed as 850 
products of regional averages can differ significantly from those same calculations made 851 
at the spatial resolution of disturbance and regrowth. Much of the annual deforestation 852 
over the Amazon basin, Figure 7 (top), occurs at scales of 1ha and below.  Mapping the 853 
spatial distribution of disturbance and recovery at these scales to estimate biomass change 854 
can differ from a gross regional averaging approach by a factor of 2 (bottom right). A 855 
biomass distribution (bottom left) at the scale of 1 km resolution (Saatchi et al, 2007) 856 
over the Amazon basin corrected the average annual estimate from 0.38 PgC yr-1 to 0.23 857 
PgC yr-1. The heterogeneity of ecosystems occurs at different scales and has been studied 858 
extensively to capture its magnitude and causes (Pastor 2005). If these patterns cannot be 859 
mapped at sufficiently high spatial resolution, the relationship between current carbon 860 
stocks and future trends cannot be adequately resolved.  861 

Spatially resolved biomass data will also be essential to initialize ecosystem 862 
models that estimate carbon stocks and associated, time-dependent fluxes of carbon 863 
between the atmosphere and the surface.  (Hurtt, et al. 1998, Moorcroft et al. 2001, Hurtt 864 
et al. 2002, Hurtt et al. 2004, Hurtt et al. this issue). Sensitivity studies based on these 865 
models show that biomass and flux estimation errors are minimized when the scale of 866 
mapping matches important scales of vegetation dynamics and underlying environmental 867 
gradients, operationally about 1 ha in complex environments. However, even coarser 868 
resolutions up to 1km can provide superior information in comparison to current global 869 
estimates.  870 
 871 

3.1.2 Required Measurement Capabilities for Biomass 872 
 873 
Global coverage of all forested ecosystems  874 
 The location of the land carbon sinks and sources based on inverse analyses agree 875 
only zonally (e.g. northern vs southern hemisphere, boreal vs. temperate vs. tropical, e.g. 876 
see Rodenbeck et al. 2003); thus, the precise causes of their annual swings in strength, on 877 
occasion as much as 100% (Canadell et al. 2007) are unknown.  To what degree are these 878 
large shifts a result of climate variability, or disturbance? To address this question 879 
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adequately, satellite assets are needed that can observe all global regions and provide an 880 
initial biomass inventory, then map disturbance and regrowth at least annually to identify 881 
the various causes of biomass change using direct observations or models. 882 
 883 
Forest height with 1 m height accuracy (1sigma) at zero slope 884 

The original Vegetation Canopy Lidar mission (VCL; Dubayah et al. 1997) 885 
exploited the relationship between AGBM and canopy height. Numerous studies 886 
(Dubayah et al. 2000, Lefsky et al. 2002, Drake et al. 2003, Hyde et al. 2005) have 887 
validated this approach. Additionally it is the foundation of the Tandem-L concept. The 888 
accuracy requirement for height from VCL was documented and reviewed at various 889 
stages of the mission. In addition, modeling studies have confirmed the approach. 890 
 As described in section 1.3, biomass may be estimated through statistical and 891 
ecosystem-based modeling. At scales of 1 ha, studies have shown that accuracies of about 892 
1-2 m are required to achieve desired AGBM accuracies (Hurtt et al. in press, Hurtt, et al. 893 
2004, Thoomas et al 2008, Thomas et al. 2006). In addition, there will be a fusion 894 
requirement on height accuracy on a per shot basis, where lidar estimates of height are 895 
used to constrain radar based estimations.  896 
 897 
Forest vertical structure: Forest vertical structure (e.g. height of median energy return - 898 
HOME) in 25 m ground element accurate to 1-2 m of canopy height. 899 

This footprint size minimizes errors from blending too many trees, as well as 900 
errors that occur from slope effects. Realization of canopy gap structure is optimized 901 
when the observations match the spatial length scales of gaps in the forest and breadth of 902 
canopies of individual trees. Simulations have shown (Figure 7 of Yang et al, Pang et al. 903 
this issue) that with nadir-pointing for lidar, 1 m height accuracy can be achieved with 25 904 
m footprint on slopes up to 15 degrees and a 2 meter height accuracy on slopes up to 905 
about 30 degrees.  As can be seen in the error simulation in the upper left of Figure 8, off-906 
nadir pointing beyond 4 degrees exceeds the one-meter rms height accuracy requirement 907 
for a large percentage of the world’s forests (other graphics in Figure 8).    In addition to 908 
canopy height, it has been shown that for lidar, other metrics are required for optimal 909 
biomass estimation, such as HOME; these internal height quantiles should also be known 910 
to about 10% relative to canopy height (Dubayah et al. 2000, Lefsky et al. 2002, Drake et 911 
al. 2003, Hyde et al. 2005). 912 
 913 
1 ha resolution desired  with 1 km required.  Sufficient global coverage to obtain 1- 2 m 914 
(1 sigma) height error for1ha and 1km grid cells.    915 

In certain regions of the world, especially in the tropics, forest biomass is known 916 
to exceed 100 - 200 Mg ha-1. In such cases, lidar has been shown to penetrate through the 917 
canopy to the ground beneath, providing a means to sample both canopy structure and 918 
height (Drake et al. 2002a, 2000b, 2003). Modeling studies  (Hurtt et al. 2004; Thomas et 919 
al. 2008) suggest that a height accuracy of 1 to 2 m, depending on biome, leads to 920 
biomass estimation accuracy on the order of 10 MgC ha-1.  For very high-biomass areas, 921 
estimation algorithms may need to rely on lidar observations alone due to L-band radar 922 
saturation. In such cases, lidar sampling densities must be sufficient to achieve the 923 
required measurement accuracies, given the specifics of the instrument capabilities and 924 
mission parameters (orbit selection etc.). To meet the desired biomass measurement 925 
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accuracy requirement implies sufficient numbers of lidar shots to estimate mean canopy 926 
height with 1 to 2 m accuracy within each grid cell. For a variety of biomes, populations 927 
of 1 km cells show a within-cell standard deviation of height that averages around 7 m 928 
but can range from about 3 to 15 m (see Figure 6). Such variation implies that on 929 
average, 50 cloud-free lidar observations per 250 m grid cell would be required to 930 
achieve a height estimation accuracy of about 1 m. A 5-beam lidar system in a proper 931 
orbit could over five years acquire this number of cloud-free shots at the equator 932 
(assuming 50% data loss to cloud cover), hence meet the accuracy requirement at 250 m 933 
globally. After three years only three-fifths this number of samples would be available 934 
coarsening the spatial resolution of the lidar-only biomass maps by approximately 5/3 at 935 
the same height accuracy.  936 

There is potential for fusion and geostatistical techniques to achieve the 1 to 2 937 
meter height accuracy at even smaller spatial resolutions in some regions. Furthermore, if 938 
an accuracy of 2 m were acceptable then it would lower the required number of shots to 939 
around 20 to achieve this accuracy at finer grid sizes.  While it is desired to map biomass 940 
globally on a 100 m grid, the requirement specified is a 1 km grid spacing at the equator. 941 
Given the current lack of knowledge of biomass spatial distribution the required product 942 
would still represent a revolutionary leap in our ability to understand and model carbon 943 
changes in these areas. 944 
 945 

For areas with carbon density < 40 MgC ha-1, global, spatially continuous biomass 946 
estimates at 100 m resolution, annually are required. 947 

Ecosystems with aboveground biomass of less than 40 MgC ha-1 include large 948 
regions of boreal forests of North America and Eurasia, tropical savanna woodlands, 949 
forest plantations and other less dense temperate forests, and young secondary forests 950 
(Saugier et al. 2001; FAO 2001; Goodale et al. 2001).  The capability of L-band radar to 951 
estimate biomass with the required 20% accuracy in these regions has been demonstrated 952 
(Ranson et al. 1995; Saatchi and Moghaddam 2000; Dobson et al. 1995; Kasischke et al. 953 
1997; Luckman et al. 1997; Saatchi et al. 2007).  954 

 An important pol-SAR signal feature, and the basis for a global retrieval of forest 955 
biomass, is the stability of the biomass-backscatter relationship across this highly varied 956 
set of forest biomes. In addition to this intrinsic variability between backscatter and 957 
biomass there are extrinsic factors that can be minimized through proper instrument and 958 
spacecraft design and data processing; namely (1) variability in the backscattering 959 
coefficient resulting from radar speckle, (2) errors in the in-situ estimates of biomass, (3) 960 
geolocation errors and (4) radar spatial resolution. 961 
 However, L-band pol-SAR measurements at resolutions of approximately 10 m 962 
(single look) will be needed to provide the global pol-SAR coverage of vegetated areas 963 
providing about 100 looks within 1ha grid cells.  If necessary, to reduce the variability 964 
and improve pol-SAR calibration, the individual 10 m pol-SAR measurements can be 965 
aggregated to 250 or 500 m globally.  Improved pol-SAR backscatter measurements at 966 
these larger spatial resolutions can be readily integrated with lidar samples for fusion 967 
approaches. There is ample research cited in the literature demonstrating that the 968 
40MgC/ha requirements can be met using L-band pol-SAR measurements (Dobson et al., 969 
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1995; Kasischke et al. 1997).  In addition, multi-temporal measurements will reduce 970 
radar backscatter variability due to moisture and vegetation seasonality (Pulliainen et al. 971 
1999). Furthermore, reducing the speckle noise by multi-look pol-SAR images will 972 
improve the calibration of the radar for separating biomass levels at larger spatial 973 
resolutions. Finally, low incidence angles improve penetration of pol-SAR waves into the 974 
forest canopy and enhance the sensitivity to forest biomass.  Incidence angles at about 975 
30-35 degrees provide optimum penetration and polarization diversity to capture forest 976 
structure. 977 

 Seasonal coverage will also be necessary to reduce the variability associated with 978 
leaf-on, leaf-off periods for deciduous forests of northern hemisphere and savanna 979 
woodlands, and wet and dry seasons in tropical forests.  At least two measurements to 980 
capture the extreme conditions will be sufficient to reduce the estimation error on a 981 
global scale.   982 
 983 

Contiguously sampled profiles to estimate height correlation length scales (25 m and 984 
greater) 985 

The need for along-track contiguity of height measurements, i.e. transects, stems 986 
from several considerations, both ecological and technical, but it is driven primarily by 987 
the need to estimate the length scales of canopy variation to correctly observe the 988 
autocorrelation structure of the canopy (Shugart et al. 2000, Weishampel et al. 1992). 989 
Secondly, there are pragmatic considerations speaking for spatial continuity of lidar 990 
samples.  Some shots will always be missed, either through clouds, dense canopy, etc. 991 
Isolated height samples are difficult to interpret without nearby shots, especially with 992 
regard to noise and ecosystem heterogeneity. This has been clearly demonstrated with 993 
ICESat data. Third, our ability to infer successional state of a stand is greatly facilitated 994 
by a contiguous sample of tree heights from which to infer the height distribution. This is 995 
quite difficult to do with   non-contiguous samples, such as those shots from the ICESat 996 
GLAS laser, especially where forest patch sizes are relatively small. Finally, lidar canopy 997 
and height information from contiguous along-track samples, utilized in combination 998 
with pol-SAR images may be necessary to develop empirical and physically-based fusion 999 
algorithms, e.g. using Bayesian estimation where knowledge of canopy length scales and 1000 
co-variation with canopy, topographic and pol-SAR backscatter correlates are required. 1001 

 1002 

3.2 Biomass Change and Carbon Flux 1003 
Disturbance from fire, logging, insects, wind damage etc. creates carbon flux to 1004 

the atmosphere.  Recovery following disturbance reabsorbs carbon from the atmosphere.  1005 
The balance of these two processes at landscape scales dominates the interannual land-1006 
atmosphere carbon exchange. Equation (4) identifies a number of measurement and 1007 
modeling needs to obtain the information for assessing the terrestrial carbon balance and 1008 
prognosticating future trends.  The ΔC terms in (4) can be measured using the difference 1009 
between the initial biomass inventory data and the biomass following disturbance. If the 1010 
mission meets the needs specified in section 3.1 for biomass, the only new information 1011 
needed is identification, location and mensuration of all disturbed patches, and new 1012 
measures of biomass for each patch. The gain in biomass from recovery in (4) can be 1013 
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measured directly by differencing subsequent biomass measures provided the mission 1014 
lifetime is long enough. In any case, modeling will be needed to supplement direct 1015 
measurements to estimate the NEP terms in (4) and prognosticate their dependence on 1016 
future climate scenarios.   We will summarize in 3.2.1 separately, the needs for 1017 
measuring disturbance, and measuring and/or modeling recovery rates. 1018 
 1019 

3.2.1 Summary of Core Observables 1020 
The core observables for biomass loss are changes in biomass from disturbance.  1021 

The desired spatial resolution for disturbance is 1ha, with sufficient accuracy to detect a 1022 
biomass loss of 50% or at worst, disturbances resulting in a 90% loss. The required 1023 
spatial resolution is 1km. For areas of more subtle disturbance (selective logging, tree fall 1024 
and mortality) with losses less than 50%, the spatial resolution may need to be coarsened 1025 
to 1km to acquire the > 1000 looks needed to reduce pol-SAR noise.  Using lidar/pol-1026 
SAR fusion it may be possible to achieve desired accuracies with fewer looks. For low 1027 
biomass areas, estimates of interannual changes satisfying accuracy requirements can 1028 
potentially be made at the finer resolution of 500 m.   1029 
 1030 
The core observables from biomass gain from recovery are changes in biomass.  1031 

The desired accuracy is to quantify a biomass gain of 2-10 MgC ha-1 at 1 ha grid 1032 
spacing on an interannual basis. The required spatial resolution for low biomass areas is 1033 
1km, but again identifying disturbance and recovery after disturbance at 100 m resolution 1034 
(Table 2). Rates of biomass development in young forests are much faster than the old-1035 
growth forests with biomass staying below 100 Mg Mgha-1 for the first 10-20 years after 1036 
disturbance (Chazdon 2003; Johnson et al. 2001).  As seen from Figure 9a increases in 1037 
woody biomass in soft and hardwoods varied from 2 to more than 11 Mgha-1yr-1.  For 1038 
softwoods only about 5% of the production occurred in the older low yield (<4 Mgha-1yr-1039 
1) forests, in hardwoods only 6%. Forest inventories in the U.S. suggest that an accuracy 1040 
of 2 Mgha-1yr-1 would capture the growth of more than 90% of the counties in the eastern 1041 
U.S. (Brown and Schroeder 1999). 1042 

3.2.2 Required Biomass Change Measurement Capabilities  1043 

Global coverage of forested areas 1044 
At least two global maps are desired yearly to capture seasonally variability, to map the 1045 
disturbance and to measure the biomass change on an annual cycle.  The products will be 1046 
improved over areas using lidar/radar fusion methods with more frequent pol-SAR 1047 
measurements or higher numbers of lidar samples. Seasonal measurements are performed 1048 
during the leaf-on and leaf-off periods (early and later growing seasons) in northern mid 1049 
and high latitude forests and the peak of wet and dry seasons in the tropics (see Figure 1050 
10).  As far as pol-SAR measurements are concerned, it is preferable to avoid winters of 1051 
high latitude vegetated areas because of increasing effect of snow and freezing condition. 1052 
For lidar measurements of annual change, peak leaf on period is necessary for year-to-1053 
year consistency. In the boreal ecosystem this is about a three-month period; for the 1054 
tropics, much longer (6-12 months).   1055 

 1056 
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Targeted response for events (hurricanes, fire, blow downs) 1057 
This has the same justification as for disturbance; however, the targeted aspect is related 1058 
to a mission requirement, i.e. the need to obtain high-resolution pol-SAR imagery in a 1059 
reasonable time after the disturbance event.     1060 

 1061 

Spatial resolution 1062 

One ha spatial resolution requires 100, 10 m single pol-SAR looks.  Large disturbance 1063 
events need to be mapped at this resolution globally at least twice a year. Over 1064 
environmentally heterogeneous landscapes, the required spatial resolution for inputs to 1065 
biomass and biomass change modeling may drive mission requirements. Recent studies 1066 
using forest dynamics computer simulation models suggests that models initialized with 1067 
data that is too coarse to resolve the distribution in vegetation height (and how it is 1068 
correlated to underlying environmental gradients) incur substantial initialization and flux 1069 
prediction error. Operationally, model prediction errors over complex mountainous 1070 
terrain increase rapidly at data scales > 1 ha (Thomas et al. 2008, Hurtt et al. 2010).    1071 
 1072 
Temporal resolution 1073 

For periodic biomass surveys, intervals less than a year are generally too short for 1074 
accurate measurement of most changes in biomass. Intervals greater than a year can miss 1075 
an opportunity to attribute year-to-year variations in carbon emissions to disturbance, as 1076 
opposed to metabolism (photosynthesis and respiration).   Ecological processes 1077 
functioning at various spatial and temporal and scales add to the complexity and 1078 
variability of carbon dynamics of vegetated ecosystems (see Figure 11).  An annual 1079 
measurement of changes in biomass at high spatial resolution will enable the processes 1080 
contributing to that variation (fire or respiration) to be quantified. 1081 
 Biomass changes can be inferred either by differencing direct subsequent biomass 1082 
inventories or using biomass estimation algorithms employing temporal differences of 1083 
pol-SAR and lidar signals to infer structure and biomass change from two or more pol-1084 
SAR/lidar acquisitions.  If inferred by differencing subsequent radar biomass inventories, 1085 
the accuracy of  ± 20% in each of two biomass inventories in different years could map 1086 
global areas of disturbance and regrowth at 1 ha resolution annually with regrowth to an 1087 
accuracy of 4 Mgha-1yr-1 for areas disturbed at least 4 years prior to the first observation 1088 
and where the resulting biomass was less than 80 Mg/ha.  With a three-year mission an 1089 
accuracy of ~7 Mgha-1yr-1 would be feasible. 1090 
 1091 
Minimum 5-year observation period for chronosequencing and successional state. 1092 

A minimum of 5 years of annual observations of forest structure is needed to 1093 
establish the composition and structure of a patch recovering from disturbance.  The 1094 
successional dynamics will depend both on the type of disturbance and the pre-1095 
disturbance forest, as well as post-disturbance recovery and management techniques. As 1096 
forest patches recover from disturbance, a pattern of succession unfolds, beginning with 1097 
pioneer species that initially colonize the disturbed patch, followed by early successional 1098 
species that eventually become the canopy dominants. Seasonal to annual measurements 1099 
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over a minimum of 5 years will allow us to identify this trajectory.  In addition, by 1100 
improving the estimation of forest biomass over 5 years of lidar and pol-SAR data 1101 
acquisition, we will be able to map forests at different stages of successions.  In 1102 
summary, the two products aboveground biomass map and biomass change will capture 1103 
the successional state and the rate of succession, and the underlying mechanism of 1104 
successional trajectory as shown in Figure 9b. The occurrence of such patterns has been 1105 
documented for several different mature forest systems and is consistent with the mosaic 1106 
dynamics of mature forests (Whitmore 1974, Knight 1975, Hartshorn 1978, Raup 1964, 1107 
White 1979, and Oliver 1981).   1108 
 1109 

3.3 Biodiversity and Habitat Measurement Requirements 1110 

3.3.1 Summary of Core Observables 1111 
The core observational requirement is to characterize forest structure and biomass for 1112 
habitat and biodiversity assessments.  1113 

Habitat and biodiversity studies require fine resolution measurements of 1114 
vegetation vertical structure and biomass at both the pixel level and over contiguous 1115 
domains in landscapes. Organisms and local populations typically discriminate suitable 1116 
habitat at fine resolutions at landscape scales; therefore vegetation measurements are 1117 
required at commensurate resolutions and extents. Global-to-regional habitat and 1118 
biodiversity patterns are controlled by climate (Wright 1983) and over landscapes at 1119 
regional scales by topography (Burnett et al, 1998; Thompson and Brown, 1992). 1120 
Analysis and interpretation of global-to-regional habitat and biodiversity patterns may 1121 
also benefit, in ways not yet well understood, from 1 ha to 1 km resolution global 1122 
vegetation structure and biomass products (as discussed in section 2.1 for biomass). 1123 
 In terms of the general precision of vegetation structure and biomass estimates, 1124 
sparse forests and shrublands (vegetation less than about 5 meters tall) are important 1125 
habitats for many species.  Therefore, the Lidar should be designed to ensure that height 1126 
measures are accurate to within 1-2 meters.  With respect to the pol-SAR, cross-1127 
polarization has been shown to be useful in crown cover and biomass retrievals, and 1128 
therefore cross-polarization is a minimum requirement for the pol-SAR. Because of the 1129 
need to map habitat contiguously (rather than to sample), wall-to-wall coverage is 1130 
required; thus the fusion of lidar plots and transects with pol-SAR will be important.  1131 
Because edges and patch sizes are important to many species and to patterns of diversity, 1132 
contiguous along-track lidar plots are highly desired.  Following are more specific 1133 
required measurement capabilities. See Table 3 for a summary of biodiversity and habitat 1134 
measurement requirements. 1135 
 1136 

3.3.2 Required Measurement Capabilities for Habitat and Biodiversity  1137 
Measurements characterizing vegetation vertical structure and biomass, landscape 1138 

horizontal structure and biomass and landscape heterogeneity are needed to fully 1139 
characterize vegetated areas for habitat and biodiversity. The following variables and 1140 
characteristics are seen as both important and feasible to derive from pol-SAR, InSAR 1141 
and lidar sensors. 1142 
 1143 
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Global coverage of forested ecosystems 1144 
Vegetation and landscape structures, indispensible as habitat for biodiversity, are 1145 

rapidly changing worldwide due to human- and nature-driven land-cover change.  1146 
Implications for the Earth’s biodiversity include loss of habitat, increasing extinctions, 1147 
invasive species and alteration of ecosystem functioning (Sala et al. 2000). DESDynI will 1148 
need to establish complete coverage of Earth’s 3D vegetation structure and biomass as a 1149 
scientific baseline in order to enable quantification of change and of trends in habitat and 1150 
biodiversity. In addition, while some forested ecosystems are “hotspots” for habitat 1151 
degradation as a result of changing land use patterns, the locations of such changes are 1152 
distributed over the globe (Brooks et al. 2006), and in some cases unknown from lack of 1153 
observation.  Data from all areas of the globe supporting woody vegetation (Figure 3) 1154 
will be required in order to assess the global extent of threats to biodiversity and habitat 1155 
and in order to observe the different geographic areas perceived as priorities for 1156 
conservation (Brooks et al. 2006; Wilson et al. 2006; Lee and Jetz 2008).  The global 1157 
perspective makes demands on the sensor temporal configurations, especially as related 1158 
to tree phenology in different biomes (Figure 10).  While tropical moist forest biomes at 1159 
low latitudes exhibit lower seasonality but may be asynchronous in timings of leaf 1160 
phenology, other biomes especially temperate forests at higher latitudes, have strong and 1161 
seasonalities and synchronous phenology (Mcdonald, 2003). Given seasonal 1162 
considerations, leaf-on is required for the lidar in all biomes and a temporal resolution of 1163 
90 days between pol-SAR repeat coverage would be optimal, but 180 days would be 1164 
acceptable.  Orbit design should consider interactions between regional and seasonal 1165 
variations in cloud cover (Figure 12) and phenology to maximize lidar acquisition 1166 
probabilities during leaf-on. 1167 
 1168 
Targeted response for events (hurricanes, fire, blow downs, insects, etc) 1169 

Periodic or stochastic disturbance events such as hurricanes, other wind blow 1170 
downs, fire and insects can have significant impacts on vegetation 3D structure and 1171 
consequently on biodiversity and habitat of plants and animals (Spies and Turner 1999). 1172 
To understand the implications of such events for species habitats, high-resolution pol-1173 
SAR imagery of such areas is needed soon after the event in a time fame prior to 1174 
significant recovery. Thus radar and lidar targeting capability should be a mission 1175 
requirement, consistent with the requirement for observing changes in biomass following 1176 
such events. 1177 
 1178 
Canopy cover, ± 10% at 25 m resolution, leaf-on, same season each year. 1179 

Measuring canopy cover to ± 10% is both feasible and necessary for biodiversity 1180 
assessments (Hyde et al. 2006). Canopy cover observations must be taken when leaves 1181 
are present and made during at the same vegetation phenology each year (Figure 10). 1182 
Accurate canopy cover measurements from lidar are sensitive to slope effects, and a 25-m 1183 
footprint is the maximum acceptable for biodiversity studies. SARs have also been shown 1184 
to be indirectly sensitive to degree of canopy cover [Green, 1998], however repeated 1185 
precisions are not known and fusion with lidar and/or passive optical sensors needs to be 1186 
more thoroughly explored for wall-to-wall mapping of canopy cover. 1187 
 1188 
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Canopy height (± 2m, 1 m desired), annually, same season, contiguously sampled profiles 1189 
to estimate height correlation length scales (25 m and greater) 1190 

As discussed in section 1.2.3, forest height (or canopy height) has been correlated 1191 
with suitability of habitat for species of birds, mammals and other taxa, and used as a 1192 
management tool for biodiversity planning. A number of lidar metrics relate to canopy 1193 
height within a stand; maximum canopy height (first-last return height), height of median 1194 
energy (HOME), and other quantile height distributions are important for habitat and 1195 
biodiversity studies. A lidar-derived absolute canopy height precision (repeatiblity of 1196 
lidar metrics for a cross-over pixel) of ± 2 m is required, and ±1 m is desired, especially 1197 
to accurately represent young forest or shrub vegetation, where an absolute error of ±1 m, 1198 
may represent an undesireably high relative error.  1199 
 1200 
Canopy height profile, lidar 1 m quantile heights, with a within-canopy relative accuracy 1201 
of ± 5% (under 99% or greater canopy cover and on flat terrain);25 m resolution, 1202 
contiguous, leaf-on, annual, same season each year. 1203 

As discussed in section 1.2.3, vertical profiles of canopy structure are essential for 1204 
measuring the vertical distribution of vegetation in a canopy. Canopy height profiles 1205 
make possible the study of individual layers through quantile heights that are desired in 1 1206 
m lidar bins. For the canopy height profiles, a lidar vertical resolution of ± 2 m would be 1207 
required, and ±1 m is desired. Desired footprint size is again 25 m resolution, with 1208 
observations taken annually and during the same leaf-on season each year. 1209 
 1210 
Biomass at nominal 30 m radar pixel spatial resolutions for local applications; for global 1211 
products as in section 2.3.1 at 250 m resolution after 5 years of observations and at 100 1212 
m for low biomass areas. 1213 

Because of the fragmented and variable nature of many regional landscapes, we 1214 
suggest a pol-SAR spatial resolution no coarser than 30 m in order to meet biodiversity 1215 
and habitat needs over such heterogeneous landscapes. At the regional to global scales, 1216 
the biomass measurement requirements for biodiversity are the same as the requirements 1217 
for the coarser biomass science product proposed (this paper, section 2.1). At local to 1218 
landscape scales, accurate fine scale field or other calibration data may be used to help 1219 
achieve these accuracies and to map biomass at 1-ha or finer scales. 1220 
 1221 
4.0 CONCLUSIONS 1222 

There are pressing needs to rapidly advance our understanding of how changes in 1223 
the 3D structure of terrestrial vegetation is affecting the global carbon cycle and the 1224 
habitability and sustainability of those ecosystems. Uncertainties in the amount, location 1225 
and rate of change in the Earth’s vegetation biomass are the largest contributor to 1226 
uncertainty in future atmospheric CO2 concentrations, hence climate change. These 1227 
uncertainties also feed into uncertainties about the future suitability of terrestrial 1228 
ecosystems to sustain the life fundamentally dependent upon them. 1229 
 Vegetation structural information is currently available only over very limited 1230 
regional scales. But these local studies have clearly demonstrated the potential at a global 1231 
scale of vegetation 3D information to revolutionize our understanding of the key roles 1232 
that the Earth’s vegetation and its changes over time plays in the global carbon cycle, 1233 
climate, and ecosystem habitability.   1234 
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 New space assets are urgently needed to measure the 3D structure of global 1235 
vegetation and its changes at annual time scales at high spatial resolution.   1236 

• The lidar and mission orbit design should be capable of measuring global biomass  1237 
with accuracies of  20% (error magnitude between 10 and 25 MgC ha-1), for 90% 1238 
of forested grid cells of 1km spatial resolution. For forested areas of low biomass 1239 
(<40 MgC ha-1) the lidar and radar and mission design should be capable of 1240 
increasing the spatial resolution of the biomass products to 100m.  Fusion of the 1241 
radar and lidar products have shown potential to further increase the spatial 1242 
resolution of the biomass product at all biomass levels, perhaps to 250m. 1243 

• Radar can be used to map disturbance in areas 1ha or greater for which biomass 1244 
decreases by 50% or more.  1245 

• The mission should be able to produce estimates of average biomass increase with 1246 
an accuracy of 2 MgC ha-1 yr-1 for patches with biomass ≤ 40MgC ha-1 after 1247 
observation for a period of 4 years or more.  For mission lifetimes of 2 yrs or less 1248 
biomass change products will be limited to disturbance maps and modeled 1249 
biomass change. 1250 

• Them mission should be capable of producing transect maps of vertical forest 1251 
canopy profiles and structure consisting of 30 m along-transect measurements at 1252 
25 m spatial resolution, with transects separated by 250 m or less in canopy cover 1253 
up to 985%.  1254 
 1255 
Combined radar and lidar instruments in space, can produce 3D global forest 1256 

structure information not previously available that will significantly advance our 1257 
understanding of terrestrial carbon dynamics and their implications for climate change.   1258 

Sufficiently high lidar samping density and fusion with radar are required to 1259 
establish the initial global data record of biomass and habitability at the required accuracy 1260 
and resolution. A two-year mission could, with sufficient numbers of lidar samples and 1261 
fusion provide biomass and habitability information satisfying the information needs. But 1262 
landscape disturbance and regrowth rates of 4 Mgha-1yr-1 would need to be observed for 1263 
at least 5 years to be measureable with biomass accuracies of 10 MgCha-1.    1264 

 1265 
 1266 
The technology readiness levels of combined pol-SAR and lidar instruments are 1267 

adequate to render the global 3D structural information products necessary to produce 1268 
high resolution biomass, biomass change and the vegetation structural maps to support 1269 
carbon cycle, biodiversity and habitability studies.  L-band quadpol pol-SAR imagery 1270 
combined with lidar profile samples of the earth’s vegetation at a suitably high density 1271 
have been shown adequate to measure biomass with the required precision over a large 1272 
majority of even the more densely forested canopies. pol-SAR will provide frequent 1273 
coverage of disturbance, even in tropical cloud covered areas where changes resulting 1274 
from land use are the most rapid and most uncertain. Remaining to be worked out, are the 1275 
particulars of a lidar/pol-SAR mission design that meet these ecosystem structure 1276 
requirements.    1277 
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 1290 

Tables and Figures 1291 
TABLE 1 BIOMASS MEASUREMENT GOALS AND REQUIREMENTS 1292 

Measurement Goals/Reqts  Justification/Rationale  Verification Method 
GLOBAL BIOMASS: Global 1 
ha (but finer than 1 km) 
resolution biomass map 
with accuracies better 
than the greater of 10 
MgC/ha or 20%, not to 
exceed 25 MgC/ha 
  
 

Critical to improving information on 
terrestrial carbon flux from 
respiration and loss from disturbance 
critical to reduce the uncertainty of 
the land use and terrestrial sink 
terms of the global carbon budget 

Field campaigns in 
representative forests 
distributed around the 
world comparing in situ 
measurements to mission-
derived biomass and 
biomass change estimates 
  

 1293 

TABLE 2: BIOMASS CHANGE MEASUREMENT GOALS AND REQUIREMENTS 1294 

Measurement Goals/Reqts  Justification/Rationale  Verification Method 
BIOMASS CHANGE: Map global 
areas of disturbance (50% loss of 
biomass no worse than 90%) at 1 ha 
resolution annually. A goal with 
sufficient mission lifetime is to 
quantify a biomass gain of 2 to 10 
Mgha-1yr-1 at 1 ha resolution (no 
coarser than 1 km) 5 years following 
last disturbance 
 

Global biomass change 
with these characteristics 
is critical to improving 
information on terrestrial 
exchange of carbon with 
the atmosphere 

Field campaigns in 
representative forests 
distributed around the 
world comparing in situ 
measurements to mission-
derived biomass and 
biomass change estimates 
  

 1295 

TABLE 3: BIODIVERSITY/HABITAT MEASUREMENT GOALS AND 1296 

REQUIREMENTS 1297 

Measurement Goals/Reqts  Justification/Rationale  Verification Method 
HABITAT STRUCTURE: Transects 
of vegetation vertical canopy profiles 
over all biomes at 25 m spatial 
resolution, 30 m along-transect 
posting, with a maximum of 250/500 
m across-transect posting at end of 
mission and 1 m vertical resolution 
up to conditions of 99% canopy 
cover. (BIOMASS AND BIOMASS CHANGE 
REQTS ARE IDENTICAL TO THOSE ABOVE). 

Global characterization of 
habitat structure is critical 
to improving information 
on the relationship of 3D 
forest structure and 
change to biodiversity and 
biodiversity change. 

Geolocate observations 
over reference surfaces 
and determine spatial 
distribution and 
resolutions 

1298 
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 1298 

Figure 1. Carbon source and sink strengths in gigatonnes (petagrams)-yr-1 and the 1299 

uncertainties in their estimates (Friedlingstein et al. 2010); fossil fuel emissions are 1300 

increasing at about 3% per year, but the terrestrial biosphere and oceans have continued 1301 

to keep pace, absorbing more than half. How terrestrial processes are taking up the 1302 

“missing carbon” and how long they can continue is one of the critical and challenging 1303 

questions for understanding future climate change. 1304 

1305 
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 1306 

 1307 

  1308 

Figure 2. Global changes in forested area from the Millennium Ecosystem Assessment  1309 

Synthesis Report, 2005)1310 
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 1311 

 1313 

 1320 

Figure 3:  Target locations for forest structure and biomass measurements including 1321 

existing forest and savanna/woodlands. 1322 

1323 
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 1323 

Figure 4. (a) Radar image from Canadian boreal forest showing evidence of fires (dark 1324 

areas at top) and logging (e.g. black features in center) (b) Lidar profile of vegetation 1325 

vertical distribution provides key insights into ecosystem state and function (c) 1326 

Ecosystem structure changes in response to climate. 1327 

1328 
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 1329 

 1331 

 1333 

 1335 

 1337 

 1339 

 1341 

 1343 

Figure 5.  Box plots showing the range of response variable (species richness) values 1344 

relative to key habitat predictor variables for:  (a,b) total species richness, c) forest 1345 

species richness, d) scrub species richness.  Predictor variables were derived from 1346 

airborne LVIS full waveform Lidar at a 7 km altitude with a 12 m footprint. Several 1347 

statistical modeling methods were used to relate Lidar-derived predictor variables to 1348 

response variables. Each box shows the median (horizontal line), quartiles (upper and 1349 

lower extent of box) and range (dashed vertical lines) for each binned range within the  1350 

predictor variables.  The width of the boxes is proportional to sample size (Source Goetz 1351 

et al., 2007). Forest bird species richness increased systematically with canopy height; 1352 

scrub species showed a distinct drop in richness when median canopy height exceeded 9 1353 

m.; total richness increased with VDR but displayed increased between-class variability 1354 

at higher VDR values (Goetz et al., 2007). 1355 

1356 
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 1356 

 1357 

 1358 

Figure 6. Height variability in 1 km cells for various study regions as calculated from 1359 

LVIS data by co-author Lefsky. Standard deviation in height average is about 7 m. Thus 1360 

to achieve a 1 m accuracy in similar cells would require 49 samples for a 1 sigma error (7 1361 

/(49)-1/2). Vegetation ranges in composition from ecosystems dominated by needleleaf 1362 

evergreen (Niwot CO, Howland ME, Fraser CO, GLEES WY, Tahoe NF CA), mixed 1363 

broadleaf deciduous (Bartlett NH, Marcell MN, Plymouth NC) to tropical forest (La  1364 

Selva CR). 1365 

1366 
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 1366 

 1367 

 1368 

Figure 7. The use of biomass spatial distribution instead of a regional average can impact 1369 

the assessment of the carbon flux from deforestation by a factor of 2 (bottom right).  The 1370 

annual deforestation over the Amazon basin (top figure – green undisturbed, red and 1371 

yellow disturbed) is occurring at small scales (1 ha).  A biomass distribution (bottom left) 1372 

at the scale of 1 km resolution (Saatchi et al. 2007) over the Amazon basin corrected the 1373 

average annual estimate from 0.38 PgCyr-1 to 0.23 PgCyr-1. 1374 

1375 
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 1375 

 1376 

 1377 

Figure 8. Upper left, model results for lidar RMSE height estimates as a function 1378 

of off-nadir lidar pointing angle and terrain slope for 25m footprint based on 1379 

topographic data as shown in remaining figures (Michael Lefsky, private 1380 

communication). 1381 

 1382 

1383 
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 1383 

   1384 

 1385 

Figure 9:  (9a) Frequency distribution of biomass changes in hardwood (Mg/ha/yr) for 1386 

and (4b) softwood forests. 2.5 to 3% of counties realized changes > 10Mg/ha/yr. For 1387 

softwoods only about 5% of the production occurred in the older low yield (<4 Mg/ha/yr) 1388 

forests; in hardwoods only 6%.  In temperate and boreal forests, production averaged 5 1389 

Mg/ha/yr (Brown and Schroeder 1999). (9b) General trajectory of successional dynamics 1390 

following disturbance and Post-disturbance aboveground biomass accumulation in 1391 

different forest types over 283 known age plots distributed globally with respect to the 1392 

growing season degree years (GSDY=age x temperature x length of growing season 1393 

divided by 365 days). GSDY of 250 is approximately equivalent of 20-25 year of forest 1394 

age (Johnson et al., 2001). 1395 

 1396 

 1397 
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1398 

 1399 

Figure 10:  Global phenology. Monthly periods for occurrence of minimum and 1400 

maximum vegetation leaf area index.  1401 

1402 
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 1402 

 1403 

 1404 

 1405 

 1406 

Figure 11. Time and space scales of the boreal forest and their relationship to 1407 

some of the processes that impact structure the forest Adapted from Peterson et al. (1998) 1408 

(Allen and Hoekstra 1992) 1409 

1410 
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 1410 

 1411 

Figure 12: ISCCP cloud cover probabilities (3 hourly) for Equatorial South America, 1412 

showing some diurnal variation and strong seasonal variation. 1413 

 1414 
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