883 research outputs found

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    PENGUKURAN PERFORMANSI MOBILE IPV6 MENGGUNAKAN RSVP DENGAN MULTICAST IP

    Get PDF
    Mobile IP merupakan teknologi dalam infrastruktur jaringan IP yang memperbolehkan host untuk berpindah dari satu subnet ke subnet yang lain tanpa terputusnya proses komunikasi host tersebut. Mobile IPv6 mendukung mobile node terhubung ke internet secara terus menerus kapan saja dan dimana saja. Meningkatnya mobilitas dan trafik data tersebut, penggunaan multicast IP pada mobile IPv6 sangat mendukung dalam hal ini. Dengan menerapkan multicast IP, dapat dilakukan pengiriman paket ke sejumlah node tertentu dalam waktu yang hampir bersamaan, dan RSVP bertujuan secara efisien melakukan setup jaminan resource reservation dalam pengiriman paket yang dapat mendukung multicast. Untuk melakukan pengukuran performansi Menggunakan akan dibangun simulasi Mobile IPv6 menggunakan Multicast IP dan RSVP menggunakan Network Simulator 2 (NS2). Dengan parameter-parameter yang sudah ditentukan yaitu packet loss, delay, dan throughput

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    Modeling the processing delays of Internet of Things nodes in the ns3 network simulator

    Get PDF
    As arquiteturas de hardware dos dispositivos orientados para a Internet of Things (IoT), ou Internet das Coisas, pressupõem a existência de restrições energéticas. O hardware e o software destes dispositivos são, por isso, projetados por forma a minimizar o consumo energético e, frequentemente, a capacidade de processamento e memória destes dispositivos são bastante limitados. Como consequência os tempos de execução de processos ou funções de código podem ter valores médios e variações elevados. Estas restrições têm um impacto grande, e até agora pouco estudado, no desempenho das redes de comunicações de objetos. Torna-se por isso importante estudar e modelizar o desempenho das funções de comunicações destes dispositivos. Nesta tese pretende-se fazer este estudo e desenvolver um módulo de software para o simulador de redes ns-3 que simule os tempos de processamento das funções de comunicação de múltiplas combinações de plataforma hardware/sistemas operativos reais

    Enabling Distributed Simulation of OMNeT++ INET Models

    Get PDF
    Parallel and distributed simulation have been extensively researched for a long time. Nevertheless, many simulation models are still executed sequentially. We attribute this to the fact that many of those models are simply not capable of being executed in parallel since they violate particular constraints. In this paper, we analyze the INET model suite, which enables network simulation in OMNeT++, with regard to parallelizability. We uncovered several issues preventing parallel execution of INET models. We analyzed those issues and developed solutions allowing INET models to be run in parallel. A case study shows the feasibility of our approach. Though there are parts of the model suite that we didn't investigate yet and the performance can still be improved, the results show parallelization speedup for most configurations. The source code of our implementation is available through our web site at code.comsys.rwth-aachen.de.Comment: Published in: A. F\"orster, C. Sommer, T. Steinbach, M. W\"ahlisch (Eds.), Proc. of 1st OMNeT++ Community Summit, Hamburg, Germany, September 2, 2014, arXiv:1409.0093, 201

    Enhanced Mobility Solution In Mobile Ipv6 Network

    Get PDF
    The performance of Network Mobility (NEMO) used to manage network mobility does not provide satisfactory result in terms of delay, throughput and session continuity when dealing with multihomed mobile network. Enhanced Mobility Solution in Mobile IPv6 Network is extremely complex; the study addressed the multihoming issues of MIPV6 Networks on the basis of NEMO Basic Support, analyzes the benefits of multihoming and discusses implementation issues of all classes of multihoming possibilities. Additionally, Policy-based routing, as one of the multihoming benefits, is studied in particular. A framework based on policy based routing protocol was proposed for handling both the inbound and the outbound traffic on a mobile network, under specified policies which consider packet characteristics, current network situation and user preferences. The interface selection algorithm was based on NEMO implementation structure using a technique of mutihoming which was extended to MIPv6 concepts The outcome of this research work are: a designed policy protocol for policy messages communication between the Mobile Router and the Home Agent, the framework is simulated using Network Simulator (NS2) with an extension of mobiwan, the result shows the end to end delay, average end to end delay, overhead, optimal routing path, average inter-packet latency and throughput of the developed system. The information from the analysis of the result shows that the enhanced solution has drastically reduced average packet delay to minimum with 72.5 %( 0.040s to 0.011s), and end-end delay with 75 %( 0.020s to 0.005s) compared with NEMO solution. Overhead in the mobile network was maintained by 10bytes per nested level by keeping the session. The solution is important by enterprises in making decision to acquire internet connectivity for the purpose of connectivity redundancy and traffic load distribution optimization. This result is very important for time sensitive application that requires stable network condition

    Voice and Video Transmission with Mobile IPv6

    Get PDF
    Mobile IPv6 (MIPv6) is a protocol that is proposed for the future of the mobile Internet access. The aim of MIPv6 is to provide seamless communication services to mobile nodes. The aim of this study is to investigate the effect of real time applications: voice and video transmission on MIPv6 network. In this paper the implementation of MIPv6 and fast handover MIPv6 (FMIPv6) is modeled and simulated using Network Simulator 2 (NS-2) software. The performance is analyzed for three different voice coding schemes and video based on H.263 format for both MIPv6 and FMIPv6

    Emulation platform design for multimedia applications over vehicular networks

    Get PDF
    Safety applications seems that will be decisive for a successful introduction to the automotive market for the vehicular networks. However, another kind of applications could be very helpful in order to reach the maximum number of equipped vehicles after market introduction, because can attract a greater number of users and facilitate a vehicular infrastructure investment because vehicular communication must provide business opportunities for Internet service providers to generate revenue. One of these kind of applications is live video streaming over vehicular networks. Video streaming is an attractive feature to many applications, such as emergency live video transmission, video on demand services, road-side video advertisement broadcasting and inter-vehicle video conversation. Test and evaluate implementations in a real testbed environment could be very costly and di cult in this kind of networks. Simulations are still commonly used as a first step in any development for vehicular networks research. Therefore, to test this kind of applications an emulation platform for multimedia applications over vehicular networks is presented in this article. We’ve studied the performance of video streaming services in a infrastructure environment over a highways taking special account in the losses that produces handovers during the communication caused by the network mobility

    Emulation platform design for multimedia applications over vehicular networks

    Get PDF
    Safety applications seems that will be decisive for a successful introduction to the automotive market for the vehicular networks. However, another kind of applications could be very helpful in order to reach the maximum number of equipped vehicles after market introduction, because can attract a greater number of users and facilitate a vehicular infrastructure investment because vehicular communication must provide business opportunities for Internet service providers to generate revenue. One of these kind of applications is live video streaming over vehicular networks. Video streaming is an attractive feature to many applications, such as emergency live video transmission, video on demand services, road-side video advertisement broadcasting and inter-vehicle video conversation. Test and evaluate implementations in a real testbed environment could be very costly and di cult in this kind of networks. Simulations are still commonly used as a first step in any development for vehicular networks research. Therefore, to test this kind of applications an emulation platform for multimedia applications over vehicular networks is presented in this article. We’ve studied the performance of video streaming services in a infrastructure environment over a highways taking special account in the losses that produces handovers during the communication caused by the network mobility
    corecore