79 research outputs found

    On the Sheffer stroke operation in fuzzy logic

    Get PDF
    From the beginnings of fuzzy logic, the Sheffer stroke operation has been overlooked and the efforts of the researchers have beendevoted to other logical connectives. In this paper, the Sheffer stroke operation is introduced in fuzzy logic generalizing the classical operation when the truth values are restricted to {0, 1}2. Similar to what happens in Boolean logic, the fuzzy Sheffer stroke is functionally complete and it can be used to generate any other fuzzy logical connective by combinations of itself. Two construction methods are presented and the close connection of this operation with a pair of fuzzy conjunction and negation is analysed

    Functional completeness and primitive positive decomposition of relations on finite domains

    Get PDF
    We give a new and elementary construction of primitive positive decomposition of higher arity relations into binary relations on finite domains. Such decompositions come up in applications to constraint satisfaction problems, clone theory and relational databases. The construction exploits functional completeness of 2-input functions in many-valued logic by interpreting relations as graphs of partially defined multivalued `functions'. The `functions' are then composed from ordinary functions in the usual sense. The construction is computationally effective and relies on well-developed methods of functional decomposition, but reduces relations only to ternary relations. An additional construction then decomposes ternary into binary relations, also effectively, by converting certain disjunctions into existential quantifications. The result gives a uniform proof of Peirce's reduction thesis on finite domains, and shows that the graph of any Sheffer function composes all relations there

    Implementation of Oxymetry Sensors for Cardiovascular Load Monitoring When Physical Exercise

    Get PDF
    The performance condition of an athlete must always be maintained, one way to maintain that performance is by training. Each individual has different abilities and physiological responses in receiving the portion of the exercise. Physical exercise that exceeds the body's ability can worsen the condition of the athlete itself which can result in excessive fatigue (overtraining) or can even result in injury. Therefore a system is needed to monitor the condition of the physiological response when given the intensity of the training load so that the portion of the training provided provides positive benefits for the athlete. This system was developed using an oxymetry sensor, microcontroller and wifi module ESP8266.  This system is used to collect heart rate and oxygen saturation data, then with the existing formula the heart rate value is converted to a CVL (Cardiovascular Load) value to determine the level of fatigue in athletes when given the intensity of the training load. By using a web-based application, measurement data is displayed in realtime to make it easier to see the results of monitoring. From the experimental results the system can monitor changes in the physiological condition of the athlete when given the intensity of the training load. Finally, the developed system can collect athlete's physiological data, and can store the data in a database and display it in a web application

    Collected Papers (on Neutrosophic Theory and Its Applications in Algebra), Volume IX

    Get PDF
    This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang

    When logic gives out : Frege on basic logical laws

    Get PDF
    Postprin

    Graph-based Object Understanding

    Get PDF
    Computer Vision algorithms become increasingly prevalent in our everyday lives. Especially recognition systems are often employed to automatize certain tasks (i.e. quality control). In State-of-the-Art approaches global shape char acteristics are leveraged, discarding nuanced shape varieties in the individual parts of the object. Thus, these systems fall short on both learning and utilizing the inherent underlying part structures of objects. By recognizing common substructures between known and queried objects, part-based systems may identify objects more robustly in lieu of occlusion or redundant parts. As we observe these traits, there are theories that such part-based approaches are indeed present in humans. Leveraging abstracted representations of decomposed objects may additionally offer better generalization on less training data. Enabling computer systems to reason about objects on the basis of their parts is the focus of this dissertation. Any part-based method first requires a segmentation approach to assign object regions to individual parts. Therefore, a 2D multi-view segmentation approach for 3D mesh segmentation is extended. The approach uses the normal and depth information of the objects to reliably extract part boundary contours. This method significantly reduces training time of the segmentation model compared to other segmentation approaches while still providing good segmentation results on the test data. To explore the benefits of part-based systems, a symbolic object classification dataset is created that inherently adheres to underlying rules made of spatial relations between part entities. This abstract data is also transformed into 3D point clouds. This enables us to benchmark conventional 3D point cloud classification models against the newly developed model that utilizes ground truth symbol segmentations for the classification task. With the new model, improved classification performance can be observed. This offers empirical evidence that part segmentation may boost classification accuracy if the data obey part-based rules. Additionally, prediction results of the model on segmented 3D data are compared against a modified variant of the model that directly uses the underlying symbols. The perception gap, representing issues with extracting the symbols from the segmented point clouds, is quantified. Furthermore, a framework for 3D object classification on real world objects is developed. The designed pipeline automatically segments an object into its parts, creates the according part graph and predicts the object class based on the similarity to graphs in the training dataset. The advantage of subgraph similarity is utilized in a second experiment, where out-of-distribution samples ofobjects are created, which contain redundant parts. Whereas traditional classification methods working on the global shape may misinterpret extracted feature vectors, the model creates robust predictions. Lastly, the task of object repairment is considered, in which a single part of the given object is compromised by a certain manipulation. As human-made objects follow an underlying part structure, a system to exploit this part structure in order to mend the object is developed. Given the global 3D point cloud of a compromised object, the object is automatically segmented, the shape features are extracted from the individual part clouds and are fed into a Graph Neural Network that predicts a manipulation action for each part. In conclusion, the opportunities of part-graph based methods for object understanding to improve 3D classification and regression tasks are explored. These approaches may enhance robotic computer vision pipelines in the future.2021-06-2

    Operators in the lexicon : on the negative logic of natural language

    Get PDF
    LEI Universiteit LeidenTheoretical and Experimental Linguistic

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products
    corecore