673 research outputs found

    Cloud for Gaming

    Full text link
    Cloud for Gaming refers to the use of cloud computing technologies to build large-scale gaming infrastructures, with the goal of improving scalability and responsiveness, improve the user's experience and enable new business models.Comment: Encyclopedia of Computer Graphics and Games. Newton Lee (Editor). Springer International Publishing, 2015, ISBN 978-3-319-08234-

    An Overview of the Networking Issues of Cloud Gaming: A Literature Review

    Get PDF
    With the increasing prevalence of video games comes innovations that aim to evolve them. Cloud gaming is poised as the next phase of gaming. It enables users to play video games on any internet-enabled device. Such improvement could, therefore, enhance the processing power of existing devices and solve the need to spend large amounts of money on the latest gaming equipment. However, others argue that it may be far from being practically functional. Since cloud gaming places dependency on networks, new issues emerge. In relation, this paper is a review of the networking perspective of cloud gaming. Specifically, the paper analyzes its issues and challenges along with possible solutions. In order to accomplish the study, a literature review was performed. Results show that there are numerous issues and challenges regarding cloud gaming networks. Generally, cloud gaming has problems with its network quality of service (QoS) and quality of experience (QoE). The poor QoS and QoE of cloud gaming can be linked to unsatisfactory latency, bandwidth, delay, packet loss, and graphics quality. Moreover, the cost of providing the service and the complexity of implementing cloud gaming were considered challenges. For these issues and challenges, solutions were found. The solutions include lag or latency compensation, compression with encoding techniques, client computing power, edge computing, machine learning, frame adaption, and GPU-based server selection. However, these have limitations and may not always be applicable. Thus, even if solutions exist, it would be beneficial to analyze the networking side of cloud gaming further

    Clouds + Games: A multifaceted approach

    Get PDF
    The computer game landscape is changing: people play games on multiple computing devices with heterogeneous form-factors, capability, and connectivity. Providing high playability on such devices concurrently is difficult. To enhance the gaming experience, designers could leverage abundant and elastic cloud resources, but current cloud platforms aren't optimized for highly interactive games. Existing studies focus on streaming-based cloud gaming, which is a special case for the more general cloud game architecture. The authors explain how to integrate techniques from the cloud and game research communities into a complete architecture for enhanced online gaming quality. They examine several open issues that appear only when clouds and games are put together. © 2014 IEEE

    Economic impact of energy saving techniques in cloud server

    Get PDF
    In recent years, lot of research has been carried in the field of cloud computing and distributed systems to investigate and understand their performance. Economic impact of energy consumption is of major concern for major companies. Cloud Computing companies (Google, Yahoo, Gaikai, ONLIVE, Amazon and eBay) use large data centers which are comprised of virtual computers that are placed globally and require a lot of power cost to maintain. Demand for energy consumption is increasing day by day in IT firms. Therefore, Cloud Computing companies face challenges towards the economic impact in terms of power costs. Energy consumption is dependent upon several factors, e.g., service level agreement, virtual machine selection techniques, optimization policies, workload types etc. We address a solution for the energy saving problem by enabling dynamic voltage and frequency scaling technique for gaming data centers. The dynamic voltage and frequency scaling technique is compared against non-power aware and static threshold detection techniques. This helps service providers to meet the quality of service and quality of experience constraints by meeting service level agreements. The CloudSim platform is used for implementation of the scenario in which game traces are used as a workload for testing the technique. Selection of better techniques can help gaming servers to save energy cost and maintain a better quality of service for users placed globally. The novelty of the work provides an opportunity to investigate which technique behaves better, i.e., dynamic, static or non-power aware. The results demonstrate that less energy is consumed by implementing a dynamic voltage and frequency approach in comparison with static threshold consolidation or non-power aware technique. Therefore, more economical quality of services could be provided to the end users

    Revamping Cloud Gaming with Distributed Engines

    Get PDF
    While cloud gaming has brought considerable advantages for its customers, from the point of view of cloud providers, multiple aspects related to infrastructure management still fall short of such kind of service. Indeed, differently from traditional cloud-ready applications, modern game engines are still based on monolithic software architectures. This aspect precludes the applicability of fine-grained resource management and service orchestration schemes, ultimately leading to poor cost-effectiveness. To mitigate these shortcomings, we propose a Cloud-Oriented Distributed Engine for Gaming (CODEG). Thanks to its distributed nature, CODEG is capable of fully exploiting the resource heterogeneity present in cloud data centers, while providing the possibility of spanning its service on multiple network layers up to the edge clouds

    A Systematic Mapping Study of MMOG Backend Architectures

    Get PDF
    The advent of utility computing has revolutionized almost every sector of traditional software development. Especially commercial cloud computing services, pioneered by the likes of Amazon, Google and Microsoft, have provided an unprecedented opportunity for the fast and sustainable development of complex distributed systems. Nevertheless, existing models and tools aim primarily for systems where resource usage—by humans and bots alike—is logically and physically quite disperse resulting in a low likelihood of conflicting resource access. However, a number of resource-intensive applications, such as Massively Multiplayer Online Games (MMOGs) and large-scale simulations introduce a requirement for a very large common state with many actors accessing it simultaneously and thus a high likelihood of conflicting resource access. This paper presents a systematic mapping study of the state-of-the-art in software technology aiming explicitly to support the development of MMOGs, a class of large-scale, resource-intensive software systems.By examining the main focus of a diverse set of related publications, we identify a list of criteria that are important for MMOG development. Then, we categorize the selected studies based on the inferred criteria in order to compare their approach, unveil the challenges faced in each of them and reveal research trends that might be present. Finally we attempt to identify research directions which appear promising for enabling the use of standardized technology for this class of systems
    • …
    corecore