
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Revamping Cloud Gaming with Distributed Engines / De Giovanni, Luigi; Gadia, Davide; Giaccone, Paolo; Maggiorini,
Dario; Palazzi, Claudio E.; Ripamonti, Laura A.; Sviridov, German. - In: IEEE INTERNET COMPUTING. - ISSN 1089-
7801. - ELETTRONICO. - (In corso di stampa). [10.1109/MIC.2022.3172105]

Original

Revamping Cloud Gaming with Distributed Engines

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MIC.2022.3172105

Terms of use:
openAccess

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2962319 since: 2022-05-05T07:28:52Z

IEEE

Revamping Cloud Gaming
with Distributed Engines

Luigi De Giovanni, Davide Gadia, Paolo Giaccone, Dario Maggiorini, Claudio E. Palazzi,
Laura A. Ripamonti, German Sviridov

Abstract—While cloud gaming has brought considerable advantages for its customers, from the
point of view of cloud providers, multiple aspects related to infrastructure management still fall
short of such kind of service. Indeed, differently from traditional cloud-ready applications,
modern game engines are still based on monolithic software architectures. This aspect
precludes the applicability of fine-grained resource management and service orchestration
schemes, ultimately leading to poor cost-effectiveness. To mitigate these shortcomings, we
propose a Cloud-Oriented Distributed Engine for Gaming (CODEG). Thanks to its distributed
nature, CODEG is capable of fully exploiting the resource heterogeneity present in cloud data
centers, while providing the possibility of spanning its service on multiple network layers up to
the edge clouds.

Index Terms: Cloud gaming, distributed game
engines, service provisioning and
management.

INTRODUCTION

Running a video game requires a specific
set of computational resources to execute game-
related tasks (e.g., rendering, physics simulation,
etc.). In legacy environments, those resources are
provided by means of PCs or gaming consoles
physically available to the player. Yet, a growing
population of players is reluctant to purchase
this kind of hardware due to its cost, or being
afraid of not taking full advantage of it. Moreover,
gaming hardware requires periodic upgrades, thus
furthermore limiting the attractiveness of such
local solutions.

In recent years, the gaming industry has
grown thanks to the advent of online gaming,
which generally involves the gaming experience
being partially provided with the support of re-
mote servers. Nevertheless, online players still

have to rely on local PCs or consoles and face
QoE and latency issues [1], [2], [3].

Cloud gaming tries to address the aforemen-
tioned limitations by providing a subscription-
based service model to play [4]. The cloud pro-
vides remote acceleration of some of the heavy-
weight tasks, thus enabling new games to be
enjoyed on otherwise underpowered devices [5].
Such tasks are offloaded to a server located within
some private data centers equipped with dedi-
cated hardware. In some cases, such as Google
Stadia, Amazon Luna, GeForce Cloud Gaming
and Microsoft xCloud, this involves the complete
offloading of the Game Engine (GE). This means
that the game now runs in a physically dislocated
place, leaving to the players’ equipment only the
task of displaying a pre-rendered game scene.

Cloud systems generally provide resource
sharing and service disaggregation across multi-
ple servers in the data centers. Yet, legacy GEs
have been traditionally built following a mono-
lithic architecture with multiple elements tightly
intertwined. While adapting GE architectures to
better exploit the distributed and heterogeneous

resources at the core and the edge of the network
is not an easy task, it can bring considerable ad-
vantages from the point of view of both operators
and players.

Indeed, cloud resources utilization, players’
satisfaction, and cost-effectiveness can be im-
proved thanks to the software-defined network
infrastructure provided by modern telecommuni-
cation network infrastructures. As a motivating
example, 5G allows appropriate (i) placement
of the GE modules within the network and (ii)
allocation of computation and network resources,
in order to provide guaranteed performance, espe-
cially in terms of maximum latency experienced
by the players, thanks to the support of network
slicing [6].

Distributed GEs encompass the low latency
enabled by edge computing and the advantages in
terms of cost and resource elasticity provided by
cloud computing. At the same time, distributing
GEs across multiple physical devices opens new
opportunities for developing hybrid cloud gaming
solutions. Indeed, we envision a next-generation
of cloud gaming according to which GEs can
be distributed across the entirety of the network,
from the player’s device up to the remote clouds,
with the most critical and latency-sensitive parts
of the GE placed close to the player. This is
coherent with previous work leveraging the edge
computing paradigm to reduce network delay and
save bandwidth cost [7]. The main idea is to
offload computation intensive tasks from the end
devices by moving the 2D/3D graphic rendering
and the main game logic to the edge node. The
cloud is responsible for all the configuration and
management tasks without latency constraints.
Similarly, the graphical rendering operation can
be split between the cloud and client [8].

In this context, we propose CODEG (Cloud-
Oriented Distributed Engine for Gaming) as a
framework to develop and operate distributed GEs
in a software-defined network infrastructure. The
goal of CODEG is to fully exploit the hetero-
geneity of resources present in modern cloud and
edge networks and to provide an improved cloud
gaming experience while reducing the operational
costs for cloud providers. To this end, we will
discuss the main architectural requirements and
the implications of modern network infrastruc-
tures on the design of gaming services.

An Overview of Legacy Game Engines
Game Engines (GEs) are software frameworks

devoted to the creation of an interactive digital
artifact, i.e., a video game. A GE merges various
kinds of multimedia assets (e.g., 3D meshes,
textures, sounds, and animations) with code de-
scribing the interaction between a simulated en-
vironment and a player to create an executable
program. This executable program is, at its core,
an interactive discrete event simulator running
the game. To achieve this result, a subset of
the GE itself, called runtime, is transferred into
the game executable to manage resources and
schedule events. On the other hand, all other man-
agement utilities, i.e., the development toolset, is
left behind because not useful while playing.

A GE is usually organized as a software
stack rooted in the operating system with an
increasing level of abstraction, layer-by-layer, up
to a point where game mechanics and interactions
are described. Inside a running game, the lowest
level of the runtime is acting as an interface to the
kernel and the (sometimes proprietary) hardware.
This layer is taking care of implementing basic
game functionalities such as physics simulation
and graphics rendering in an extremely optimized
way for the hardware in use. As an example,
rendering requires some preliminary processing
to be performed on the CPU, but it relies on the
Graphics Processing Unit (GPU) for the majority
of the operations: the sequence of the differ-
ent hardware operations on CPU and GPU can
become a bottleneck for the overall GE if not
correctly managed.

The upper layers of the runtime provide first
stubs to undisclosed, proprietary, APIs, then a de-
gree of platform independence, and finally game-
specific functionalities, like e.g., Artificial Intelli-
gence (AI) and online multiplayer management.

The traditional architectural model of a GE is
the cause of three major shortcomings [9]. First,
due to its high performance nature, a game is
often a monolithic piece of software, hence the
developers must rebuild/relink the whole project
(or large part of it) at every change in the code-
base. For huge repositories, a global rebuild may
become a significant production bottleneck. Sec-
ond, the vast majority of CPU workload is on the
centralized server, while on the client we observe

2

Cloud
servers

Core

Edge
cloud

TLC
operator
cloud

Distributed GEGame server Monolithic
GE

GE

Cloud
servers

GEGE GECloud GE

GEM GEM

GEM

GEM

GEM(a) TheGame1.0: Monolithic GE

(b) TheGame2.0: Cloud GE (c) TheGame3.0: Distributed GE

Internet

Internet

Figure 1: Examples of Game Engine (GE) sce-
narios.

mostly rendering activity. Centralized services are
usually hard to scale and perform poorly with a
high offered workload. Third, every game exposes
some degree of platform dependency. Even if an
engine claims to be cross-platform and uses its
lowest layer to adapt to vendor-specific hardware,
seamless deployment across multiple platforms is
not always possible.

Technical Limits of Legacy Game Engines
To show the limits imposed by the architecture

of current-generation GEs, and introduce our pro-
posal, we will illustrate three evolving scenarios.

Scenario 1 (Monolithic GE). A video game
company, “TheCompany”, is producing and pro-
viding an online multiplayer game: “TheGame”.
As in Fig. 1(a), TheGame 1.0 has been developed
following a standard monolithic approach: the
server-side is built as a single piece of software
and the service is made available to the public via
a high-performance machine and a high capacity
network connection. This approach has been used
by popular games in late 90s such as Quake
and, more recently, by Minecraft (Java Edition).
TheGame 1.0 proved to be a very successful
game: on day one, many players connected to
enjoy it. Unfortunately, the system under strains
immediately shows its weaknesses: (i) uneven
response latencies, (ii) connection dropping, and
(iii) poor performances due to system overload.
Indeed, each player connects to TheGame through
a different network path and using many different
access technologies and, thus, uneven network

delays are experienced; players with lower de-
lay will typically have some advantage on the
other players, affecting the overall game fairness.
Furthermore, connection dropping or excessive
delays can be caused by an increased number
of concurrent network connections exceeding the
physical server capacity. While it is technically
possible to boost the hardware, this is unlikely
to meet TheCompany budget limitations. More-
over, after the initial hype, the workload will
significantly drop, and many resources will be left
unused.

Scenario 2 (Cloud GE). To overcome scala-
bility issues, TheCompany adopts a new strategy
to deploy TheGame 2.0: a cloud infrastructure,
as shown in Fig. 1(b). Players can now connect
to the service through multiple servers, usually
geographically closer to the players, greatly re-
ducing the delay. The software is still deployed
as a monolithic installation, but multiple copies
of the game servers running on virtualized ma-
chines can be available. The cloud management
system is able to elastically adapt the resources to
the demand by running servers proportionally to
the number of connected players. Many modern
games with large audience use this approach.
We can mention Second Life, Candy Crush, and
Clash of Clans; all using Amazon Web Services
(AWS). See [10] for a list of case studies on AWS.

Even with the adoption of a cloud approach,
TheCompany is still facing several issues. Firstly,
despite having multiple servers, all players are
interacting in the same environment and, thus, all
the game instances must refer to the same global
state. Synchronizing in real-time the game state
across all servers is very complex and thus it
is typically preferable to refer to a shared state
available centrally in the cloud infrastructure.
This is the case of the virtual realms for legacy
Massively Multiplayer Online Games (MMOG),
such as World of Warcraft, in which the bottleneck
due to the shared state has been limiting the
maximum number of players allowed in each
realm. Secondly, the monolithic nature of the
performance-oriented software typically imposes
strict constraints on the hardware and software
choice, boosting performances but severely limit-
ing the scalability of the approach, like in the
case of Microsoft xCloud, where Windows is
required as hosts’ operating system, or GeForce

3

Cloud Gaming, running only on NVidia propri-
etary hardware [3], [4].

Towards Scenario 3 (Disaggregated GE). To
solve all the issues mentioned so far, when de-
veloping TheGame 3.0, TheCompany must com-
pletely change its paradigm. Given the limitations
described in the previous sections, we can safely
suggest that the architecture of current GEs is not
adequate to provide the flexibility and scalability
required by game developers and designers of
the next generations. An alternative proposal for
a more efficient architecture is to decompose a
GE in several dynamic and independent soft-
ware modules interacting with each other via
a microkernel-like message bus, thus defining
a disaggregated GE. This approach can offload
all computational effort to the game infrastruc-
ture, including rendering. This could contribute
to improve the scalability of game streaming
architectures such as Stadia and Luna.

The SMASH engine described in [11] is an
execution environment following such approach.
SMASH provides three basic functionalities: a
soft real-time scheduler, a dynamic game modules
manager, and a messaging system between mod-
ules. The game modules are independent entities
providing gaming functionalities. A module may
implement a general-purpose engine service, such
as graphic rendering or physics simulation, or be
extremely-game specific. The possibility to swap
in and out modules at runtime allows developers
to effortlessly modify and extend games with a
plug-in approach, down to a very fine granularity.
Each software module uses a message bus to call
service functions provided by other modules.

The Price of Centralization
We consider 256 real topologies of network

providers available from the Internet Topology
Zoo [12] and we study the latency experienced
by a player if the GE was centralized in a
single cloud, as in Scenario 2. We assume (op-
timistically) that all the players belongs to the
same network provider and the data center is
optimally located to minimize the latency by
any other node. Table 1 shows the worst case
game latency, i.e., the Round Trip Time (RTT)
experienced from any node to the closest cloud,
taking into account only the propagation delays of
communication links. The latency could be much

Table 1: Performance in 256 topologies of net-
work providers

Num. GE Worst case game latency [ms]
clouds min ave max

1 1.9 32.2 161
8 0.48 6.4 24

larger than 30 ms, which have been observed
as the maximum acceptable delay for highly
interactive games [13]. Replicating the game on
8 data centers would decrease the propagation
delays by a factor 5, leaving about 23 ms on
average to accommodate further latency associ-
ated to distributed implementation (e.g., queuing
delays, function calls, computational overheads,
replication overheads). This motivates the need of
carefully distributing the GE across the network.

Distributed Game Engines in the Cloud
In the context of cloud computing, the mod-

ular and structured nature of disaggregated GEs
represents a cornerstone for the development of
fully distributed ones. Modern cloud infrastruc-
tures are composed of a set of Compute Nodes
(CNs) which can be either physical or virtual
servers. Furthermore, thanks to the advanced net-
work virtualization techniques offered by modern
telecommunication networks, it is possible to
define logical networks with specific Quality-of-
Service (QoS) levels, thus providing minimum
bandwidth and maximum delay guarantees for the
game-related traffic. Leveraging on this capabili-
ties, enabling Scenario 3, TheCompany can then
develop TheGame 3.0 by abstracting a disaggre-
gated GE as a mesh of microservices running into
distinct containers (e.g., Docker ones) on different
CNs, as shown in Fig. 1(c). We claim that this
approach, coupled with the traditional benefits of
distributed systems, can enable truly distributed,
scalable, and fault-resilient GEs with high load
adaptability and little-to-no downtime.

We baptized our proposal for a distributed
GE running on a cloud infrastructure CODEG:
Cloud-Oriented Distributed Engine for Gaming.
Differently from SMASH [11], where the focus
was to modularize a GE and to propose a plug-
in system to improve the development process,
CODEG is designed to provide a network-wide
abstraction of an operating system for GEs. This

4

GEM2

GEM3 GEM4

GEM1

GEM2 GEM6

GEM5

GEM7 GEM8

Session frontend

Rendering and encoding

Physics and AIIn-game core logic

GEM9

Metadata egress

Game Engine

Figure 2: Game session workflow in CODEG.

abstraction must be capable of exploiting multiple
CNs offered by a modern cloud infrastructure.
While not being an easy task, abstracting each
disaggregated game module through a mesh of
microservices living in different parts of the cloud
represents a major architectural improvement
over legacy solutions for the design of cloud-
ready distributed GEs. Achieving such a result
requires considerable effort on multiple levels: (i)
the definition of distributed GE modules and their
location inside the CNs, (ii) the mitigation of the
overhead for synchronizing shared states across
many CNs, and (iii) the QoS support to control
end-to-end network latency. In the following, we
analyze the challenges along with the benefits that
CODEG brings to game developers, designers,
and players.

CODEG Workflow
To reach its scalability and elasticity goals,

CODEG partitions each GE into a set of disag-
gregated modules, namely GEMs (Game Engine
Modules). A GEM represents a basic element
of a given GE and it is activated whenever its
functionality is required. As in conventional GEs,
individual GEMs must be chained together to
implement more complex functionalities. For a
given game, the GEMs, alongside their inter-
connection, form the GE abstracted by CODEG.
During the execution, GEMs continuously ex-
change information among each other, in order
to implement the GE processing workflow.

Fig. 2 depicts an example of a CODEG in-
stance, i.e., a set of GEMs required to run a single
game. Such an instance can in turn be associated
with one or more game sessions or players. The
possibility of running multiple game sessions per
CODEG instance largely depends on the game
and session type. For example, in the case of

Cloud infrastructure

CN

Edge
Network

User

Core
Network

GEM1 GEM3 GEM4 GEM2 GEM5 GEM7 GEM8GEM6

Figure 3: Mapping of GEMs on the underlying
hardware in CODEG

multiplayer game sessions, some GEMs provide
a conventional multiplayer game backend, thus
requiring only one GEM instance holding the
same global state for many game sessions. In
other scenarios, the GEM instance is stateless
and, thus, can be reused for different players
and different games at the same time. Finally,
some other GEMs are unique for each player,
thus requiring a new instance of a GEM for each
session.

While the GEMs responsible for running the
main in-game logic can be shared across multiple
sessions, each game session is assigned a unique
pair of ingress and egress GEMs. The ingress
GEMs are responsible for managing per-session
information and permit to discriminate across
different sessions. Whenever a player input is
received at the ingress GEM, the information
contained in the request is propagated through
the entirety of the GE, and session-specific output
is generated at the egress GEM. As the egress
GEM is disaggregated from the rest of the GE,
it enables the possibility of supporting different
operation modes for each session. Notably, for
fully cloud-based gaming solutions, an egress
GEM can be comprised of a remote rendering
pipeline capable of video streaming, while for
hybrid or legacy solutions, such output would be
composed of metadata in order to perform local
rendering of the in-game world at the player’s
side.

GEM Placement Strategy
The main peculiarity of CODEG is that it en-

ables the possibility for each GEM to be located
in an arbitrary position inside the cloud infrastruc-
ture, as shown in Fig. 3. Yet, while an arbitrary set
of CNs can be selected for such a task, they have
to satisfy requirements in terms of underlying

5

resources availability and, most importantly, have
to meet application-level requirements in terms of
response latency, as perceived by the player. This
calls for a suitable placement strategy for each
GEM, taking into account the processing and
network resources allocated for the game session.

Processing resources Each GEM has a par-
ticular set of hardware requirements that must
be satisfied by the underlying hardware of the
CN. Such is the case of rendering-related GEMs
which require GPU rendering capabilities inside
the CN, or physics simulation GEMs which may
require a given amount of RAM and CPU. Thus,
the placement strategy must take into account the
availability of suitable and enough computation
resources.

Network resources As in legacy GEs run-
ning on a local operating system, the CODEG
workflow requires dedicated communications be-
tween the GEMs. This implies the existence of
a logical network across different CNs, e.g., as
enabled by the network slicing capability offered
by 5G networks. Tailored QoS requirements (e.g.,
maximum delay and minimum bandwidth) can be
either associated to all or groups of players (for
a coarse but simpler network management) or to
a single player (for an accurate but more com-
plex management). The requirements in terms
of bandwidth are dictated by the nature of each
GEM, and consequently, by the type and temporal
pattern of exchanged data.

Costs and performance Public cloud ser-
vice providers offer different types of CNs de-
pending on the actual needs of the customer.
While being different in terms of provided re-
sources, these CNs differ also in terms of leasing
costs, reflecting different computation and net-
work infrastructures, as shown in Fig. 3. The
low-cost conventional cloud infrastructures can be
used for more resource-demanding but latency-
insensitive tasks, while the edge cloud for more
latency-sensitive GEMs, at the expense of an
increased cost.

An optimal GEM placement strategy mini-
mizes the total cost for the game provider, while
satisfying a maximum response delay for all the
players, taking into account the actual load due to

the active game sessions and the current available
computation and network resources. When no
feasible solution is found, either some new play-
ers’ sessions are blocked or additional resources
are reserved.

CODEG Load Adaptability
A major advantage of CODEG with respect to

fully-centralized solutions is its load adaptability.
In general, the players’ activity pattern is not
stationary and typically shows day-night, weekly
and seasonal effects. The number of concurrent
game sessions varies over time, and thus the
overall load on the GE is very dynamic. Further-
more, despite the preliminary resource allocation
in terms of computation, storage and network
resources, unexpected events (as network failures
or performance interference in the cloud) can oc-
cur, triggering new resource allocations. Notably,
resource overutilization will lead to application-
level performance degradation, thus poor qual-
ity of experience for players, whereas resource
underutilization will lead to higher operational
costs. Thus, it is of paramount importance to
dynamically allocate and adapt the resources to
cope with the variable gaming demand and the
variable resource conditions.

In traditional approaches exploiting mono-
lithic GEs, scalability is achieved by instantiating
multiple copies of the whole GE [14] and adopt-
ing some load balancing scheme, leading eventu-
ally to a large resource overhead associated with
each instance of the GE. Instead, CODEG adopts
a GEM orchestrator that provides fine-grained
migration and replication of individual GEMs
depending on the measured load. In the case
of resource overutilization, the orchestrator will
provide new candidate CNs into which migrating
the affected GEMs. If no viable candidates are
found, additional copies of such GEMs will be
instantiated by the orchestrator, thus providing
application-layer load-balancing across different
instances of the same GEM. On the contrary, in
the case of resource underutilization, some GEMs
could be either exploited to serve requests from
other CODEG instances or could be migrated to
a location with a lower operational cost. Thanks
to the natural disaggregation and containerization
of GEMs, such functionalities can be enabled by
out-of-the-box solutions already present in most

6

of the commercial orchestrators.

Response Latency-aware Design
While minimizing the operational costs and

satisfying the underlying hardware constraints,
in CODEG the GEM placement must be de-
signed to provide guaranteed response latency
for the players. The response latency depends
on the processing time in each GEM and on
the overall network delay, which comprises the
delay experienced by the player’s commands to
reach the ingress GEM, the delay to transfer the
data between GEMs when running in different
CNs, and the delay from the egress GEM to
the player. In the case of shared states between
GEMs, additional delay could be experienced due
to the adopted replication protocol.

A key aspect in the placement is given by
the degree of GEM co-location resulting from the
placement phase. Indeed, a GE fully co-located
inside the same CN would degenerate into a
traditional GE and minimize the communication
overhead. However, such a strategy falls short
in terms of load adaptability, as previously dis-
cussed. Distributing the GE across multiple CNs
inevitably adds the communication latency be-
tween the GEMs to the perceived response delay,
and this delay degradation is the main price to
pay in CODEG as opposed to legacy monolithic
and cloud GEs. Communication latencies depend
on the allocated bandwidth and on the amount
of exchanged data between the GEMs. Thus,
characterizing the dependency graph between the
different GEMs in terms of data is crucial to
properly predict the communication latency for
a given placement of GEMs within the network.
For this reason, possible solutions to minimize the
response latency may employ placement strate-
gies aimed at colocating in the same CN groups
of highly connected GEMs and/or data-intensive
GEMs.

QoS support in the network allows to con-
trol the communication latency, but this requires
characterizing the traffic leaving each GEM, in
terms of the amount of data and its burstyness.
The logical network can be defined at different
granularity levels, depending on the capabilities
offered by the network control plane: in a 5G net-
work, we envision a single network slice shared
by multiple game sessions, in which the actual

bandwidth is allocated based on the worst-case
burstiness and bandwidth of the data transferred
between GEMs.

In summary, the placement strategy should
minimize the overall operational cost while sat-
isfying the maximum response time for the play-
ers and taking into account resources costs and
availability. Reducing delays may require the use
of resources at the edge of the network but at
higher costs than conventional clouds. Yet, thanks
to the disaggregated nature of CODEG, one may
employ hybrid solutions by spanning the GEMs
across multiple network layers. In this way, more
latency-sensitive GEMs can be placed close to
the player while maintaining the less latency-
sensitive but resource-demanding GEMs at the
network core, ultimately leading to a better trade-
off between the player’s experience and opera-
tional costs. As suggested in Fig. 3, rendering
and encoding GEMs can be placed at the edge
of the network, thus offering the possibility of
transmitting synthetic metadata over a congested
core network while transmitting the game video
stream only in the proximity of the player.

Future Research Directions and
Challenges

In the near future, we foresee a number of
research fields converging into this topic because
of the innovative large-scale service model on
both the player and provider sides. From an en-
gineering standpoint, network-aware distributed
real-time cloud applications will raise the bar
for networking support by requesting end-to-
end cross-infrastructure with QoS guarantees, as
well as optimization tools to define efficient and
effective placement strategies. To this end, we
expect that GEMs should be properly profiled and
that novel static and dynamic placement policies,
aware of delay and bandwidth overheads, need
to be devised. From a player-experience perspec-
tive, new ways to evaluate players’ experience
will be required in order to explore the inter-
dependencies between game elements and in-
frastructure performance. Game content creators
will be able to leverage on a virtually infinite
resource pool and, on the other hand, the extreme
scalability in terms of the number of concurrent
players will call for novel and extended players’
experience approaches. On an economical stand-

7

point, we might also assist to a radical change in
the value chain due to new pricing and business
models. E.g., the players might be charged for
the resources used while playing regardless of the
actual game. This approach may end up blurring
the distinction between game publishers and ser-
vice/cloud/network providers, opening innovative
service models for online games. Last but not
least, our approach may also support Virtual
Reality platforms (e.g., Facebook Meta) where
users connect to and interact with each other.

Conclusion
We propose CODEG, a Cloud-Oriented Dis-

tributed Engine for Gaming, according to which
a game is implemented by combining multiple
modules (GEMs) and placing them across the
available network infrastructure, exploiting het-
erogeneous computation, storage, and network
resources. The main design requirement for al-
locating the resources is to minimize the opera-
tional costs while satisfying a maximum response
delay constraint. We discuss how CODEG can
be integrated into modern telecommunication net-
works by distributing the GEMs across the core
resources and the edge ones. In conclusion, we
argue that the proposed solution is capable of
reaching a sweet spot between player’s quality
of experience and operational costs.

Acknowledgments
This work is partially funded by the Depart-

ment of Mathematics of the University of Padua
through the BIRD191227 project.

REFERENCES
1. J. Saldana and M. Suznjevic, “QoE and latency issues

in networked games,” Handbook of Digital Games and

Entertainment Technologies, eSpringer, 2015.

2. A. Bujari, M. Massaro, and C. E. Palazzi, “Vegas over

Access Point: Making room for thin client game systems

in a wireless home,” IEEE Transactions on Circuits and

Systems for Video Technology, 2015.

3. M. Suznjevic, L. Slivar, and L. Skorin-Kapov, “Analysis

and QoE evaluation of cloud gaming service adaptation

under different network conditions: The case of NVIDIA

GeForce NOW,” in QoMEX 2016, 2016.

4. A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and

D. Giordano, “A network analysis on cloud gaming:

Stadia, GeForce Now and PSNow,” Network, 2021.

5. W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu,

V. C. M. Leung, and H. C.-H., “A survey on cloud gam-

ing: Future of computer games,” IEEE Access, 2016.

6. X. Foukas, G. Patounas, A. Elmokashfi, and M. K.

Marina, “Network slicing in 5G: Survey and challenges,”

IEEE Communications Magazine, 2017.

7. X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang,

H. Yin, and D. O. Wu, “Improving cloud gaming expe-

rience through mobile edge computing,” IEEE Wireless

Communications, vol. 26, no. 4, pp. 178–183, 2019.

8. J. Bulman and P. Garraghan, “A cloud gaming frame-

work for dynamic graphical rendering towards achieving

distributed game engines,” in USENIX HotCloud, Jul.

2020.

9. D. Maggiorini, L. A. Ripamonti, and G. Cappellini,

“About game engines and their future,” in EAI

GOODTECHS, 2015.

10. Amazon Web Services, “Gaming Customer

Success Stories,” https://aws.amazon.com/gaming/

gaming-customer-references/.

11. D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari,

and C. E. Palazzi, “SMASH: A distributed game engine

architecture,” in IEEE ISCC, 2016.

12. “The Internet Topology Zoo,” http://www.topology-zoo.

org.

13. G. Sviridov, C. Beliard, A. Bianco, P. Giaccone, and

D. Rossi, “Removing human players from the loop: AI-

assisted assessment of gaming QoE,” in IEEE INFO-

COM Workshop, 2020, pp. 1160–1165.

14. H. Liu and M. Bowman, “Scale virtual worlds through

dynamic load balancing,” in IEEE/ACM DS-RT, 2010.

Luigi De Giovanni is Associate Professor of Oper-
ations Research at Università degli Studi di Padova,
Italy.

Davide Gadia is Assistant Professor of Computer
Science at Università degli Studi di Milano, Italy.

Paolo Giaccone is Associate Professor of Telecom-
munication Networks at Politecnico di Torino, Italy.

Dario Maggiorini is Associate Professor of Computer
Science at Università degli Studi di Milano, Italy.

Claudio E. Palazzi is Associate Professor of Com-
puter Science at Università degli Studi di Padova,
Italy.

Laura Anna Ripamonti is Assistant Professor of
Computer Science at Università degli Studi di Milano,

8

https://aws.amazon.com/gaming/gaming-customer-references/
https://aws.amazon.com/gaming/gaming-customer-references/
http://www.topology-zoo.org
http://www.topology-zoo.org

Italy.

German Sviridov received his PhD in Electrical,
Electronics and Communications Engineering from
Politecnico di Torino, Italy.

9

