3,583 research outputs found

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Структурно-функциональный анализ компонентов систем Sensor Web

    Get PDF
    The paper is devoted to the structural and functional analysis of Sensor Web systems. We described a structural model of the Sensor Web, and investigated different approaches to integration of Sensor Web and Grids. We presented a Sensor Web system for flood forecasting and monitoring.В данной статье рассматривается задача структурно-функционального анализа компонентов систем Sensor Web. Приведена структурная модель системы Sensor Web, а также рассмотрены вопросы интеграции Sensor Web и Grid систем. Описана система прогнозирования и мониторинга наводнений, построенная на основе технологии Sensor Web

    Sensor web

    Get PDF
    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond

    PRACTICAL ISSUES OF SENSOR WEB IMPLEMENTATION AND GRIDIFICATION

    Get PDF
    In this paper we provide an overview of emerging Sensor Web paradigm and show several practical issues of using Sensor Web technologies for real-world tasks. Issues under study include sensor description using SensorML and database performance for serving observations data. This paper also shows an approach for integrating standard Sensor Observation Service with Globus Toolkit Grid platform.\ud В данной работе представлен обзор развивающейся парадигмы Sensor Web и рассмотрены практические вопросы использования данной технологии для решения прикладных задач. Рассматриваются вопросы описания численных моделей с использованием языка SensorML и оценки производительности баз данных в задачах обслуживания сервисов Sensor Web. Кроме того, в работе описаны подходы к интеграции сервисов Sensor Web с Grid-платформой Globus Toolkit.\u

    Applying OGC sensor web enablement to ocean observing systems

    Get PDF
    The complexity of marine installations for ocean observing systems has grown significantly in recent years. In a network consisting of tens, hundreds or thousands of marine instruments, manual configuration and integration becomes very challenging. Simplifying the integration process in existing or newly established observing systems would benefit system operators and is important for the broader application of different sensors. This article presents an approach for the automatic configuration and integration of sensors into an interoperable Sensor Web infrastructure. First, the sensor communication model, based on OGC's SensorML standard, is utilized. It serves as a generic driver mechanism since it enables the declarative and detailed description of a sensor's protocol. Finally, we present a data acquisition architecture based on the OGC PUCK protocol that enables storage and retrieval of the SensorML document from the sensor itself, and automatic integration of sensors into an interoperable Sensor Web infrastructure. Our approach adopts Efficient XML Interchange (EXI) as alternative serialization form of XML or JSON. It solves the bandwidth problem of XML and JSON.Peer ReviewedPostprint (author's final draft

    Sensor nets discover search

    Get PDF
    In the world of information discovery there are several major trends which are emerging. These include the fact that the nature of search itself is changing because our information needs are themselves becoming more complex and the data volume is increasing. Other trends are that information is increasingly being aggregated, and that search is now becoming information discovery. In this presentation I address a different kind of information source to the usual media, scientific, leisure, and entertainment information we usually consume, whose availability is now upon us, namely data gathered from sensors. This covers both the physical sensors around us which monitor our environment, our wellbeing and our activities, as well as the online sensors which monitor and track things happening elsewhere in the work and to which we have access. These sensor information sources are noisy, errorsome, unpredictable and dynamic, exactly like both our real and our virtual worlds. Several wide-ranging sensor web applications are used to demonstrate the importance of event processing in managing information discovery from the sensor web

    New Generation Sensor Web Enablement

    Get PDF
    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement

    Design and Discovery of Sensor Web Registry Services for Wireless Sensor Network with x-SOA Approach

    Get PDF
    The application of wireless sensor network is emerging as a new trend in different sphere of modern society. However due to the advancement of SWE, designing & discovering sensor web registry services throughout heterogeneous environments is becoming a challenging task and raises several concerns like performance, reliability, and robustness. Many approaches and frameworks have been proposed to discover the sensor web registry services. Some of the approaches assume that the requests are placed in SOAP compatible formats while others focus on GUI based parametric query processing. We have formulated an approach that uses the Natural Language Query Processing which is a convenient and easy method of data access, especially for casual users who do not understand complicated database query languages such as SQL or XML based Query Language like XQuery and XPath. SOA is the proven technology for designing an efficient Sensor Web Registry by describing various parameters and sensor web services needed. We also propose an architecture based on x-SOA that organizes the method of sensor web registry service discovery in an efficient and structured manner using an intermediary, requester friendly layer called the Request Parser & Query Generator (RPQ) between the service provider and service requester via a service registry. We describe how RPQ facilitates the processing of plain text request query to a most appropriate sensor web service and also an algorithm with implementation for a complete cycle of sensor web registry service discovery

    Using sensor web technologies to help predict and monitor floods in urban areas

    Get PDF
    Includes abstract.Includes bibliographical references.Since flooding is worldwide one of the most common natural disasters, a number of flood prediction and monitoring approaches have been used. A lot of research has been conducted on the prediction and monitoring of floods by using hydrological models. The problem is that current hydrological models do not offer Disaster Management officials or township residents with timely data and information. In South Africa, possible flood warnings are usually communicated by Disaster Management officials using traditional approaches such as loudspeakers, radio and Television (TV). Making calls to warn residents about the possible occurrence of floods by using such means are, however, neither sufficient nor effective. As the result of improved communication, sensor, software and computing capabilities, the use of sensor networks and sensor web for predicting and monitoring environment have been considered in recent years. In order for sensor data such as sensor measurements, sensor descriptions and alerts to be integrated, the Open Geospatial Consortium (OGC) introduced the Sensor Web enablement (SWE) standards and suggested different specifications with respect to the geospatial sensor web. The first implementation of the sensor web framework is available. In this research, the results of using the sensor web technologies for predicting and monitoring floods in the urban areas are presented. The aim of this research project is to illustrate how the sensor web technology can help in the prediction and monitoring of floods in the urban areas, particularly in the Alexandra Township (Greater Johannesburg) which has experienced floods each and every year. The focus of this research is on the incorporation of the sensor data into the sensor web technology. The data used as input to sensor web and the hydrological model was historical rainfall data from the South African Weather Service (SAWS). Shuttle Radar Topography Mission (SRTM) free data from the internet was also used in this research
    corecore