74 research outputs found

    Unsupervised Change Detection in Wide-Field Video Images Under Low Illumination

    Get PDF

    Kernel Feature Extraction Methods for Remote Sensing Data Analysis

    Get PDF
    Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, developments and applications of feature extraction methodologies using these techniques have increased exponentially in remote sensing. This improves the data visualization and the knowledge discovery. Several feature extraction methods have been addressed in the literature depending on the data availability, which can be classified in supervised, semisupervised and unsupervised. In particular, feature extraction can use in combination with kernel methods (nonlinear). The process for obtaining a space that keeps greater information content is facilitated by this combination. One of the most important properties of the combination is that can be directly used for general tasks including classification, regression, clustering, ranking, compression, or data visualization. In this Thesis, we address the problems of different nonlinear feature extraction approaches based on kernel methods for remote sensing data analysis. Several improvements to the current feature extraction methods are proposed to transform the data in order to make high dimensional data tasks easier, such as classification or biophysical parameter estimation. This Thesis focus on three main objectives to reach these improvements in the current feature extraction methods: The first objective is to include invariances into supervised kernel feature extraction methods. Throughout these invariances it is possible to generate virtual samples that help to mitigate the problem of the reduced number of samples in supervised methods. The proposed algorithm is a simple method that essentially generates new (synthetic) training samples from available labeled samples. These samples along with original samples should be used in feature extraction methods obtaining more independent features between them that without virtual samples. The introduction of prior knowledge by means of the virtual samples could obtain classification and biophysical parameter estimation methods more robust than without them. The second objective is to use the generative kernels, i.e. probabilistic kernels, that directly learn by means of clustering techniques from original data by finding local-to-global similarities along the manifold. The proposed kernel is useful for general feature extraction purposes. Furthermore, the kernel attempts to improve the current methods because the kernel not only contains labeled data information but also uses the unlabeled information of the manifold. Moreover, the proposed kernel is parameter free in contrast with the parameterized functions such as, the radial basis function (RBF). Using probabilistic kernels is sought to obtain new unsupervised and semisupervised methods in order to reduce the number and cost of labeled data in remote sensing. Third objective is to develop new kernel feature extraction methods for improving the features obtained by the current methods. Optimizing the functional could obtain improvements in new algorithm. For instance, the Optimized Kernel Entropy Component Analysis (OKECA) method. The method is based on the Independent Component Analysis (ICA) framework resulting more efficient than the standard Kernel Entropy Component Analysis (KECA) method in terms of dimensionality reduction. In this Thesis, the methods are focused on remote sensing data analysis. Nevertheless, feature extraction methods are used to analyze data of several research fields whereas data are multidimensional. For these reasons, the results are illustrated into experimental sequence. First, the projections are analyzed by means of Toy examples. The algorithms are tested through standard databases with supervised information to proceed to the last step, the analysis of remote sensing images by the proposed methods

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Graph Embedding via High Dimensional Model Representation for Hyperspectral Images

    Full text link
    Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes, as well as to encapsulate the high dimensionality in a reduced set of informative features for subsequent classification, regression, or unmixing. Manifold learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to project out-of-sample samples into the latent space. The proposed method is compared to manifold learning methods along with its linear counterparts and achieves promising performance in terms of classification accuracy of a representative set of hyperspectral images.Comment: This is an accepted version of work to be published in the IEEE Transactions on Geoscience and Remote Sensing. 11 page

    A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization

    Get PDF
    When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provide more details on modeling the physical phenomena occurring on the Earth’s surface. In this article, we introduce a flexible and efficient method based on graph Laplacians for information selection at different levels of data fusion. The proposed approach combines data structure and information content to address the limitations of existing graph-Laplacian-based methods in dealing with heterogeneous datasets. Moreover, it adapts the selection to each homogenous area of the considered images according to their underlying properties. Experimental tests carried out on several multivariate remote sensing datasets show the consistency of the proposed approach

    Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches

    Get PDF
    In this research, climate classification maps over the Korean Peninsula at 1 km resolution were generated using the satellite-based climatic variables of monthly temperature and precipitation based on machine learning approaches. Random forest (RF), artificial neural networks (ANN), k-nearest neighbor (KNN), logistic regression (LR), and support vector machines (SVM) were used to develop models. Training and validation of these models were conducted using in-situ observations from the Korea Meteorological Administration (KMA) from 2001 to 2016. The rule of the traditional Koppen-Geiger (K-G) climate classification was used to classify climate regions. The input variables were land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS), monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM) 3B43 product, and the Digital Elevation Map (DEM) from the Shuttle Radar Topography Mission (SRTM). The overall accuracy (OA) based on validation data from 2001 to 2016 for all models was high over 95%. DEM and minimum winter temperature were two distinct variables over the study area with particularly high relative importance. ANN produced more realistic spatial distribution of the classified climates despite having a slightly lower OA than the others. The accuracy of the models using high altitudinal in-situ data of the Mountain Meteorology Observation System (MMOS) was also assessed. Although the data length of the MMOS data was relatively short (2013 to 2017), it proved that the snowy, dry and cold winter and cool summer class (Dwc) is widely located in the eastern coastal region of South Korea. Temporal shifting of climate was examined through a comparison of climate maps produced by period: from 1950 to 2000, from 1983 to 2000, and from 2001 to 2013. A shrinking trend of snow classes (D) over the Korean Peninsula was clearly observed from the ANN-based climate classification results. Shifting trends of climate with the decrease/increase of snow (D)/temperate (C) classes were clearly shown in the maps produced using the proposed approaches, consistent with the results from the reanalysis data of the Climatic Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC)

    Advanced techniques for classification of polarimetric synthetic aperture radar data

    Get PDF
    With various remote sensing technologies to aid Earth Observation, radar-based imaging is one of them gaining major interests due to advances in its imaging techniques in form of syn-thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-itoring, detecting, and classifying local or global areas of interests to support humans within their efforts of decision-making, analysis, and interpretation of Earth’s environment. This thesis focuses on improving the classification performance and process particularly concerning the application of land use and land cover over polarimetric SAR (PolSAR) data. To achieve this, three contributions are studied related to superior feature description and ad-vanced machine-learning techniques including classifiers, principles, and data exploitation. First, this thesis investigates the application of color features within PolSAR image classi-fication to provide additional discrimination on top of the conventional scattering information and texture features. The color features are extracted over the visual presentation of fully and partially polarimetric SAR data by generation of pseudo color images. Within the experiments, the obtained results demonstrated that with the addition of the considered color features, the achieved classification performances outperformed results with common PolSAR features alone as well as achieved higher classification accuracies compared to the traditional combination of PolSAR and texture features. Second, to address the large-scale learning challenge in PolSAR image classification with the utmost efficiency, this thesis introduces the application of an adaptive and data-driven supervised classification topology called Collective Network of Binary Classifiers, CNBC. This topology incorporates active learning to support human users with the analysis and interpretation of PolSAR data focusing on collections of images, where changes or updates to the existing classifier might be required frequently due to surface, terrain, and object changes as well as certain variations in capturing time and position. Evaluations demonstrated the capabilities of CNBC over an extensive set of experimental results regarding the adaptation and data-driven classification of single as well as collections of PolSAR images. The experimental results verified that the evolutionary classification topology, CNBC, did provide an efficient solution for the problems of scalability and dynamic adaptability allowing both feature space dimensions and the number of terrain classes in PolSAR image collections to vary dynamically. Third, most PolSAR classification problems are undertaken by supervised machine learn-ing, which require manually labeled ground truth data available. To reduce the manual labeling efforts, supervised and unsupervised learning approaches are combined into semi-supervised learning to utilize the huge amount of unlabeled data. The application of semi-supervised learning in this thesis is motivated by ill-posed classification tasks related to the small training size problem. Therefore, this thesis investigates how much ground truth is actually necessary for certain classification problems to achieve satisfactory results in a supervised and semi-supervised learning scenario. To address this, two semi-supervised approaches are proposed by unsupervised extension of the training data and ensemble-based self-training. The evaluations showed that significant speed-ups and improvements in classification performance are achieved. In particular, for a remote sensing application such as PolSAR image classification, it is advantageous to exploit the location-based information from the labeled training data. Each of the developed techniques provides its stand-alone contribution from different viewpoints to improve land use and land cover classification. The introduction of a new fea-ture for better discrimination is independent of the underlying classification algorithms used. The application of the CNBC topology is applicable to various classification problems no matter how the underlying data have been acquired, for example in case of remote sensing data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the unlabeled data. By combining these techniques for superior feature description and advanced machine-learning techniques exploiting classifier topologies and data, further contributions to polarimetric SAR image classification are made. According to the performance evaluations conducted including visual and numerical assessments, the proposed and investigated tech-niques showed valuable improvements and are able to aid the analysis and interpretation of PolSAR image data. Due to the generic nature of the developed techniques, their applications to other remote sensing data will require only minor adjustments

    Change detection in optical aerial images by a multilayer conditional mixed Markov model

    Get PDF
    In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth
    corecore