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Abstract in Spanish

Esta Tesis aborda el análisis de datos de teledetección empleando métodos de aprendizaje
máquina. En particular, en este trabajo se proponen diferentes métodos kernel para la extrac-
ción de características relevantes a partir de imágenes hiperspectrales adquiridas por satélites
de observación de la Tierra. El gran volumen de datos adquiridos, debido a la cada vez mayor
resolución tanto espacial y temporal como espectral de las imágenes, hace casi imprescindible
el empleo de técnicas que permitan reducir la dimensionalidad de los datos manteniendo la
información relevante. Por otro lado, la heterogeneidad y las relaciones no lineales presentes
en este tipo de datos sugiere el uso de métodos avanzados no lineales que sean capaces de
adaptarse a las particularidades y propiedades de estas imágenes. El fin último del análisis
de las características extraídas es, en definitiva, el de interpretar la información contenida en
los datos y extraer conocimiento. Si se consigue capturar la estructura subyacente en los datos
correctamente, estas características pueden emplearse directamente en tareas generales como
clasificación, regresión, segmentación, compresión, o visualización facilitando su uso y mejo-
rando los resultados. En este contexto, esta Tesis presenta diferentes métodos núcleo (kernel)
de extracción de características con dos objetivos principales: 1) incluir conocimiento a priori
sobre el problema a resolver y 2) aprender la distribución de los datos disponibles.
Además, uno de los problemas en la mayoría de aplicaciones de teledetección es la dificultad
para obtener muestras etiquetadas por lo que es pertinente el estudio de algoritmos super-
visados, no supervisados y semisupervisados. Por tanto, las propuestas que se plantean en la
presente Tesis son las siguientes. En los métodos supervisados, la calidad de los resultados de-
pende de las muestras etiquetadas que en muchas ocasiones son escasas y no contemplan todos
los escenarios posibles, lo cual puede afectar a la capacidad de generalización y robustez de los
modelos. En estos casos, cuando se conoce el problema y frente a qué variables el modelo de-
bería ser invariante, forzamos esa invarianza generando muestras de entrenamiento virtuales
que incluyan esa información. En los métodos no supervisados, el número de muestras de
las cuales se puede aprender no está limitado, pero al no disponer de muestras etiquetadas,
la aproximación más usual para reducir la dimensionalidad de los datos es la de encontrar las
proyecciones que preservan mejor la varianza de los datos. Sin embargo, cuando los datos no
siguen una distribución Gaussiana, podemos usar otros criterios como la teoría de la informa-
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ción para encontrar las proyecciones que alternativamente maximicen la entropía.
Por otro lado, un problema común en los métodos no supervisados es que no se dispone de in-
formación para ajustar los parámetros libres del modelo. Para aliviar este problema se propone
un kernel generativo capaz de medir similitudes locales y globales al considerar diferentes
agrupamientos a diferentes escalas, lo cual hace el modelo prácticamente independiente de
ningún parámetro.
Por último, cuando se dispone de un número limitado de muestras etiquetadas, las caracterís-
ticas extraídas pueden aprovechar la información contenida en las abundantes muestras sin
etiquetar de la imagen analizada. Para ello, se propone un método semisupervisado que com-
bina las similitudes del kernel supervisado y el kernel generativo aprendido a partir de todos
los datos.
Los métodos de extracción de características propuestos se ilustran en bases de datos estándar
e imágenes de teledetección de diferentes características. En general los resultados confirman,
por un lado las hipótesis de partida mostrando una clara ventaja de los métodos kernel re-
specto de las versiones lineales. Y por otro lado, los métodos propuestos que para cada uno
de los posibles escenarios de aprendizaje resuelven o mitigan los problemas más frecuentes
impuestos por datos de teledetección.



Abstract

This Thesis faces the challenging problem of remote sensing data analysis from a machine
learning perspective. In particular, different kernel feature extraction methods are proposed
to discover the most relevant features form multi and hyperspectral images acquired by Earth
observation satellites. The huge data volume acquired by these sensors –basically due to the
increasing spatial, temporal and spectral resolution of the images– makes almost mandatory
using techniques that allow us to reduce the data dimensionality while keeping the relevant
information. On the other hand, the heterogeneity and nonlinear relations present in this type
of data suggests the use of advanced nonlinear methods adaptable to the particularities and
properties of the images. The analysis of the extracted features is ultimately aimed at inter-
preting the data information and knowledge discovery about the problem. If the underlying
data structure is properly captured, these features can be directly used in general tasks such
as classification, regression, clustering, compression or visualization, making easier the anal-
ysis and improving the results. In this context, this Thesis presents different kernel feature
extraction methods with two main objectives: 1) to include a priori knowledge about the prob-
lem to be solved, and 2) to learn the data distribution from the available samples. In addi-
tion, one of the problems in most remote sensing applications is the difficulty to obtain labeled
samples, which makes also pertinent to study supervised, unsupervised and semisupervised
approaches. Therefore, proposals in the present Thesis can be summarized as follows. In su-
pervised methods, the quality of the results depends on the available labeled samples, which
are usually scarce and do not cover all possible scenarios. This, in fact, may affect the general-
ization capability and robustness of the models. Therefore, when one knows the problem and
to which variables the model should be invariant, one can force this invariance by generating
virtual training samples that encode this information. In the unsupervised methods, the num-
ber of unlabeled samples used for learning is almost unlimited and, in the unsupervised feature
extraction context, the most common approximation to reduce the dimensionality is based on
preserving the variance of the data. However, when the data do not follow a Gaussian distribu-
tion, one can resort to information theory concepts in order to find the projections maximizing
entropy. On the other hand, a common problem of unsupervised methods is that there are no
labeled samples to tune the free parameters of the models. In order to mitigate this problem,
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a generative kernel based on the cluster assumption is proposed. The kernel captures local
and global similarities in the data manifold by clustering the data at different scales, which
makes the model almost independent of any parameter. Finally, when a limited number of la-
beled samples is available, extracted features can also exploit the information contained in the
wealth of unlabeled samples from the analyzed image. Therefore, a semisupervised method
combining the similarities of the supervised kernel and the generative kernel learned from the
whole dataset is proposed. The feature extraction methods proposed in this Thesis are illus-
trated in standard machine learning problems and in a wide range of remote sensing images
with different characteristics. The results confirm the hypotheses showing a clear advantage of
kernel methods with respect to the linear versions. Moreover, results show how the proposed
methods solve or mitigate the problems present in remote sensing data.



Preface

Context and overview

Earth observation by remote sensing is an interdisciplinary field of Science focused on moni-
toring our planet using a wide range of instruments that capture information of the observed
scenes at different electromagnetic wavelengths. Materials can be identified using the different
interactions with the electromagnetic radiation emitted, absorbed and reflected by objects de-
pending on their composition. The spectral information is also very useful to estimate relevant
biophysical parameters characterizing the processes on Earth. Examples of remote sensing
products and applications include land cover thematic maps, land use inventories, as well as
temperature and chlorophyll content maps, just to name a few. Remote sensing actually in-
volves a plethora of broader applications with great economical and societal values, such as
urban monitoring, fire detection or flood damage evaluation among others. In all of them,
analyzing the acquired images by the sensors efficiently is of paramount importance. In this
context, Earth observation by remote sensing implies nowadays many different fields of Sci-
ence and Engineering, such as signal and image processing, statistics, computer vision, and
physics. All of them follow different approaches to tackle the same fundamental scientific chal-
lenge: extracting useful information from the acquired images.

Before answering the question of how to extract the useful information from images, one
should question what makes optical remote sensing images so distinctive. Statistically, multi
and hyperspectral images are not very different from natural grayscale and colour photo-
graphic images. Grayscale images are spatially smooth: the joint probability density function
(pdf) of the luminance samples is highly nonuniform, the covariance matrix is highly non-
diagonal, the autocorrelation functions are broad and have generally a 1/ f band-limited spec-
trum. In the case of color images, the correlation between the tristimulus values of the natural
colours is typically high. Despite all these commonalities, the analysis of multi- and hyper-
spectral images turns out to be more difficult, especially because of the high dimensionality
of the pixels and the spatial-spectral patches, the high spatial and spectral redundancy, the
particular noise sources present in the acquired data, the typically non-Gaussian nature of the
data, and perhaps more importantly their potential nonlinear nature. Such nonlinearities can

xxiii



xxiv

be related to a plethora of factors, including the multi-scattering in the acquisition process, the
heterogeneity at subpixel level, as well as the impact of atmospheric and geometric distortions.
The imaging process may lead to non-Gaussian pixel distributions, as well as pixels typically
embedded on distinct nonlinear manifolds within the higher-dimensional feature spaces. The
high spectral sampling of hyperspectral images, for instance also leads to strong collinearity
issues. Finally, the spatial variability of the spectral signature increases the internal class vari-
ability. All these factors, in conjunction to the few labeled examples typically available, make
information extraction a very challenging problem. As a result, the accuracy obtained with
standard parametric models, either for data classification, regression or pdf estimation, is very
often compromised.

The problems raised by the high dimensionality of the data and the high spectral and spatial
collinearity are commonly referred to as the Hughes phenomenon in the remote sensing commu-
nity. This problem is known as the curse of dimensionality in the machine learning community.
The problem is ubiquitous in remote sensing data processing. Inference in high-dimensional
low-sized datasets turns to be very challenging because the lack of samples to properly cover
the space volume increased by dimensionality. There are two obvious solutions to this situa-
tion: either increase the number of samples or to reduce the data dimensionality. On the one
hand, increasing the number of labeled samples is aimed to obtain a statistically more robust
and reliable representation. Nevertheless, to achieve this objective, the number of samples has
to increase exponentially with the dimensionality, which is not easy in remote sensing given the
high cost associated to data labelling. On the other hand, reducing the dimensionality of the
data can be done either through feature selection or feature extraction approaches. Feature se-
lection, or variable selection, tries to select a subset of relevant input features (or variables) that
optimally summarize the data information. The main advantage is that the retained features
keep their meaning and units, but these approaches may be hampered by strong nonlinear fea-
ture relations and scarcity of labeled samples to guide the optimization criterion. Alternatively,
one can resort to feature extraction techniques, which aim to find a transformation of the data
to a lower dimensional space while retaining most of the information content. The obtained
features are combinations of all the original input features, so in principle they can be more
appropriate to deal with complex feature relations.

Motivation and Objectives

This Thesis will investigate the recurrent problem in remote sensing data processing of deal-
ing with high dimensional low-sized datasets. The previous alternatives to solve the problem
will be investigated. On the one hand, we will focus on methods that can incorporate poten-
tially informative samples without additional sampling: we will exploit prior knowledge about
the problem and the expected feature relations to include synthetic examples, and we will ex-
ploit the information contained in the wealth of unlabeled examples present in the scene to
better model the data distributions. On the other hand, we will concentrate on reducing data



xxv

dimensionality via feature extraction in order to obtain potentially useful data representations.

In both approaches we will have to deal with nonlinear feature relations and non-Gaussian
scenarios. Therefore, we will consider nonlinear inference functions for the task at hand. The
general aim is then learning a function f (·) that, departing from input sensory data x ∈ X can
predict an output target variable y ∈ Y . The problem can be approached directly with non-
linear models implementing f (·), e.g. with neural networks or kernel machines. Despite its
efficiency, this approach leads to hidden representations that are hard to analyze and visualize.
Alternatively, one can approach the problem by learning an intermediate transformation g(·)
from the original, potentially high-dimensional feature space X , to an accessible representation
space of fewer dimensions,R. Then one can use the data projected intoR to perform a simple
linear transform, h(·), to infer the output variable. This approach delivers two important ad-
vantages: 1) the first nonlinear step leads to an accessible feature space of lower dimensionality,
and 2) the second linear step typically involve solving simpler, faster and convex optimization
problems. The Thesis will focus on this second approximation, and in particular will design
kernel methods to learn the nonlinear feature extraction transformation.

(a)
Nonlinear f (·)X Y

(b)
Nonlinear g(·) Linear h(·)X R Y

This Thesis is aimed to support the scientific and technological interest in kernel feature extrac-
tion for remote sensing data analysis. Two major points motivate the combination of feature
extraction methods with kernel methods. On the one hand, feature extraction methods reduce
the dimensionality of data looking for data projections that better describe the data. On the
other hand, kernel methods implicitly transform the original data to a feature space in which
the nonlinear relations are likely to be reduced. The data projected into the most relevant fea-
tures therein may be more useful than in the original input space because they account for
nonlinearities and non-Gaussian distributions efficiently.

The Thesis in a nutshell

• What is the main goal? To develop algorithms for dimensionality reduction better
adapted to the statistical characteristics of remote sensing data: high dimensionality, low
number of labeled samples, nonlinear feature relations and non-Gaussian distributions.

• Why is the topic important? the goal is important and timely given the increasing num-
ber of heterogeneous satellite images acquired by current and upcoming satellite con-
stellations. Reducing the data dimensionality while keeping the information content is a
relevant research and a technological opportunity. The goal is also challenging method-
ologically as it implies developing new machine learning methods adapted to specific
data characteristics.
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• How do we plan to address it? Kernel methods provide a solid mathematical framework
to tackle nonlinear dimensionality reduction. Kernel machines also allow us to design
nonlinear algorithms easily, and are able to incorporate prior knowledge, invariances and
regularization terms. All these ingredients are aimed to generate data representations
with high expressive power, i.e. compact and informative.

Research objectives

The present Thesis contributes with kernel feature extraction developments to deal with remote
sensing data. We will develop methods that can cope with nonlinearities and non-Gaussian
data distributions, as well as with methods that deal with few labeled samples, incorporate
prior knowledge and invariances through regularization. These objectives will be guided by
the following research questions:

• On the remote sensing data manifold characteristics.

1. Can kernel methods cope with global and local manifold structure? Kernel methods can
capture nonlinear feature relations efficiently. Typically they rely on a kernel func-
tion that reflects global data similarities. However, local relations can play a funda-
mental role in the feature extraction, especially since uneven sampling is a common
place in remote sensing datasets. By designing kernel functions that account for local
relations in the manifold we aim to answer about how much local relations can be
learned, what are the extent of such relations, and in what cases local information is
more useful than global information. The problem is even more challenging in un-
supervised scenarios because kernel parameters must be inferred without supervi-
sion. We will investigate these issues under the learning paradigms of semisupervised
learning in general and generative kernels in particular.

2. Should kernel feature extraction be guided by maximizing the variance or entropy compo-
nents? As we will see, all kernel feature extraction methods derive projections that
optimize a particular criterion in feature spaces, either the variance of the projec-
tions, the correlation or alignment with the labels. The latter methods cannot be
obviously applied in unsupervised settings. Therefore, we will investigate alterna-
tive measures to variance compaction in feature spaces. In particular we will focus
on entropy as a measure of information content of the data. We aim to answer when
and in what situations seeking for maximum entropy kernel components is more
appropriate than seeking for maximum kernel variance components. These funda-
mental question is aimed to study the Gaussian nature of the remote sensing data,
as for Gaussian distributions variance and entropy are equivalent.
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• On the inclusion of prior knowledge.

1. Can virtual data help feature extraction in supervised settings? Supervised feature extrac-
tion methods applied to image analysis may need a large amount of labeled samples
to yield efficient and effective representation spaces due to the curse of dimension-
ality. This problem can be solved by increasing the number of labeled samples per
dimension but this is very costly and time-demanding (human and computation-
ally). An alternative could be to generate virtual samples from the original training
data to fill in the space. Including informative samples is related to encode invariances
in the extraction, as one can generate synthetic samples that reinforce the prior belief
of feature relations based on solid physical knowledge about the problem. In turn,
encoding invariances in a learning machine is a clear form of regularization since,
roughly speaking, one tries to impose smoothness on the most plausible class of
functions.

2. Can unlabeled data help feature extraction in semisupervised settings? Semisupervised
learning has the advantage of accounting for both labeled samples and the infor-
mation in the unsupervised data. In remote sensing data problems, e.g. image seg-
mentation or biophysical parameter retrieval, this is a common situation. Departing
from the previous generative kernels, we aim to investigate whether inclusion of
both labeled and unlabeled samples offer a more accurate description of the remote
sensing data manifolds, what is the information content of each counterpart, and in
what situations the combination is beneficial.

These research questions and objectives have led us to develop a set of new kernel methods in
supervised, unsupervised and semisupervised settings. Methods performance will be exam-
ined in illustrative bidimensional toy examples, on classical machine learning databases, and
on remote sensing problems (image segmentation and biophysical parameter estimation) with
images of different spatial and spectral resolutions.

Organization

This Thesis is organized in seven chapters covering an introduction to remote sensing, a review
of the background of kernel methods and multivariate analysis, the proposed supervised, un-
supervised and semisupervised methods, and a discussion and conclusions obtained from the
work. The outline is summarized as follows:

Chapter 1 reviews the fundamental basis of optical remote sensing data processing, sum-
marizes the main concepts involved in Earth observation and remote sensing imaging,
and details the main problems in a classical processing chain.
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Chapter 2 reviews the fundamentals of kernel methods, which is the used statistical learn-
ing framework in the Thesis to classify images, estimate biophysical parameters, cluster
data and to validate all the proposed algorithms.

Chapter 3 reviews the framework of multivariate analysis to extract linear and nonlinear
features, along with a compilation of state-of-art feature extraction methods applied to
remote sensing data.

Chapter 4 addresses the study of encoding invariances via data synthesis, as well as it
analyzes the impact of these samples on supervised nonlinear feature extraction methods.
Furthermore, the chapter introduces the virtual support vector machine (VSM) in remote
sensing field.

Chapter 5 addresses two unsupervised nonlinear feature extraction methods based on
kernels. The first one proposes an optimization of the kernel decomposition based on
Kernel Entropy Component Analysis (KECA). The second method is the Probabilistic
Cluster Kernel (PCK), a free-parameter generative kernel learned from data that captures
the local and global data manifold structure.

Chapter 6 addresses the semisupervised kernel feature extraction problem. The chapter
reviews the state-of-art in semisupervised learning and explains the proposed method:
SemiSupervised Kernel Partial Least Square (SS-KPLS) and its orthonormalized exten-
sion, the SemiSupervised Orthonormalized Kernel Partial Least Square (SS-KOPLS). Both
proposals exploit the unlabeled information of the data along with the supervised infor-
mation.

Chapter 7 summarizes the accomplished objectives and discusses the main conclusions
obtained throughout this work.

Appendix A presents the linear algebra tools and the main matrix factorization funda-
mentals.



Chapter 1
Introduction to remote sensing data
processing
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Earth observation through the analysis of remote sensing data has contributed with real-life
applications with great societal benefits. For instance urban monitoring, fire detection or flood
prediction from remotely sensed multispectral or radar images have a great impact on eco-
nomical and environmental issues. To treat efficiently the acquired data and provide accurate
products, remote sensing has evolved into a multidisciplinary field, where machine learning
and signal processing algorithms play an important role nowadays (Tuia and Camps-Valls,
2009a; Camps-Valls, 2009). All the applications, from a machine learning and signal/image
processing perspective, are tackled under specific formalisms, such as classification and clus-
tering, regression and model inversion, image coding, restoration and enhancement, source
unmixing, data fusion or feature selection and extraction. In general, statistical machine learn-
ing has proven successful in many disciplines of Science and Engineering (Hastie et al., 2009).
Machine learning is a multidisciplinary field used in several domains such as computer sci-
ence, signal and image processing, computer vision, etc. In the last decade, machine learning
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has found widespread adoption in remote sensing and geosciences as well. Nowadays, for
instance, statistical inference algorithms are regularly used for image classification, target de-
tection and biophysical parameter retrieval applications, just to name a few (Camps-Valls et al.,
2011).

In this chapter, a brief introduction to remote sensing is first given. The electromagnetic ra-
diance, the kind of sensors and their different resolutions are described to frame the Thesis.
The standard remote sensing data processing chain that goes from the signal acquisition to the
final product is then detailed. Finally, new trends in machine learning for remote sensing data
processing are commented.

1.1 Introduction to remote sensing

Earth observation is a multi-disciplinary field embracing physics, chemistry, electronic, cartog-
raphy, geology, forestry and computer science, among others. Earth observation via remote
sensing data analysis aims to study the Earth’s surface (and interactions with the atmosphere)
as a complex, evolving system. The information captured using different remote sensing imag-
ing sensors is relevant: they essentially measure the electromagnetic radiation reflected, ab-
sorbed, and emitted in a different way by materials in a scene depending of their molecular
composition and shape. Such acquired signals help monitoring the processes occurring on
Earth, and lately thanks to new satellite sensors this can be done with unprecedented accuracy.

The Electromagnetic (EM) Radiation changes according to the wavelength. The energy distri-
bution of all electromagnetic waves is known as electromagnetic spectrum. The electromagnetic
spectrum covers regions from short to long wavelengths: Gamma-Rays, X-Rays, Ultra-Violet
(UV), Visible, Infrared, Microwaves and Radio waves:

• Gamma-Rays and X-Rays are highly energetic waves that are absorbed by the higher
layers of the atmosphere, and thus are not favorable for Earth observation.

• Ultra-Violet are also used in studies about surface of planets with and without atmo-
sphere.

• Visible is the most widely used range in Remote Sensing together with the Infrared re-
gion. The Visible region covers a narrow interval (0.4 to 0.7µm) of the EM spectrum where
we can find Red (0.6− 0.7µm), Green (0.5− 0.6µm) and Blue (0.4− 0.5µm) bands (RGB)
that human visual system is adapted to.

• Infrared (IR) can be divided in three ranges: Near, Medium and Far Infrared. The two
first intervals are close to the visible region, and along with it, are the most used by spec-
trometers, radiometers, polarimeters and lasers. The far IR is referred to as the emitted
infrared or “thermal energy” considering that the radiation on this interval is directly
related to the body’s heat.
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• The Microwave range is used in microwave radiometers and radar systems, such as the
Synthetic Aperture Radar (SAR) imaging systems.

• The last region of the electromagnetic spectrum corresponds to the Radio waves, which is
used by active sensors like radio altimeters.

Remote sensing exploits the radiation-matter iteration and deals with the acquisition of informa-
tion about a scene (or specific object) at a short, medium or long distance. According to the
type of energy sources involved in the data acquisition, remote sensing imaging instruments
can be passive or active:

• Passive systems: These are sensors that rely on solar radiation as the source of illumina-
tion. Some examples of passive sensors are multi- and hyperspectral imaging sensors.

• Active systems: These are sensors that accomplish a dual function, that is, to produce
a signal and to register it after interacting with the observed system. Radar systems or
Laser Imaging Detection and Ranging (LIDAR) are examples of systems for active remote
sensing.

This thesis concentrates on passive systems for Earth monitoring. Passive systems usually ex-
ploit solar radiation to capture the reflected radiation, which is acquired by airborne or satellite
spectrometers at different wavelengths. The quality of the information collected is based on
the resolution of the sensors. Higher resolution means more information taken from the scene,
but it involves greater information storage. There exist different types of resolution in a remote
sensing image:

1. Radiometric resolution is the number of gray levels in which the radiation is divided for
storage. The gray level is a numeric value that represents the radiance captured by the
sensor.

2. Temporal resolution is related to the revisit time of the remote sensing platform.

3. Spatial resolution is the surface’s distance between image elements or pixels. The spatial
resolution not only depends on the type of sensor, but also on the altitude and angle from
which the scene is captured.

4. Spectral resolution is related to the number and separation of spectral channels (or bands)
recorded by the sensor.

In this Thesis, we will focus on optical images only. Figure 1.1(a) shows the basic principle of
imaging spectroscopy to perform satellite remote sensing. Image pixels are linked to two spa-
tial coordinates that, together with the spectral (wavelength) dimension, form a “hypercube”
or data cube (Shaw and Manolakis, 2002; Lillesand et al., 2008). Hence, a pixel is a vector where
each dimension informs about the radiance captured by the sensor at the different wavelengths.
Each pixel in the scene has its own spectrum or spectral signature, which can be used to identify
and classify the object into different thematic classes automatically.
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Figure 1.1: The concept of imaging spectroscopy. Airborne/Spaceborne imagery is acquired, com-
pressed, preprocessed and analyzed. The latter step includes classification for mapping applica-
tions, regression for biophysical parameter estimation, anomaly detection and target recognition.
Source: Camps-Valls (2009).

1.2 Standard techniques for remote sensing image processing

Remote sensing image processing departs from the acquired hypercube and applies a set of
techniques and methods that allow capturing information from the observed scene. The main
objective is to provide a ready-to-use product to the users that is obtained from the acquired im-
age. Figure 1.1(b) shows some of the main problems involved in remote sensing image process-
ing, including the data storage/coding and transmission, pre-processing (e.g. feature selection
and extraction), and processing (e.g. segmentation, unmixing). The final aim of this Thesis is to
develop feature extraction methods for land cover classification and bio-geo-physical parameter
retrieval, which is a critical step before the classification or regression steps, respectively. The
main stages in the remote sensing image processing chain are detailed in what follows.

1.2.1 Remote sensing image transmission and coding

Along with the increasing demand of hyperspectral data, the sensor technology used to capture
remote sensing images has been significantly developed in the last decade, improving, among
others, the spatial and spectral resolutions. Such improvements on quality leads to an increas-
ing demand on storage and bandwidth transmission capabilities. Both lossy and lossless image
coding have been investigated extensively for multispectral imagery, but more important for
hyperspectral images (García-Vílchez et al., 2011). The current recommendation are based on
a transform stage, where data is decorrelated in the spatial domain using a wavelet transform
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(plus a bit plane encoder stage), thus following the latest standard JPEG2000 for grayscale im-
ages. Other well-known wavelet-based coding systems are SPIHT-3D and SPECK-3D (Karami
et al., 2012). In order to improve the coding performance, a common strategy is to decorrelate
first the image in the spectral domain (Keerthana and Sivasankar, 2013).

1.2.2 Remote sensing image preprocessing tasks

From all the possible preprocessing steps aimed at improving the image and product qual-
ity, three steps are intimately related to the objectives of this Thesis: image restoration, feature
extraction/selection and image fusion.

Image restoration

Image restoration is an important step in the remote sensing image processing chain since it
is intended to correct the distortions affecting the image formation. Several corrections are
typically applied:

• Radiometric correction deals with the corrections of the observed values that are usually
related to the imaging sensor and the data acquisition and transmission, such as missing
pixels or lines of an image (Yan and Shaker, 2014).

• Atmospheric correction is the process of correcting the distortions in the radiance values
observed at the sensor level caused by the atmosphere (Fuyi et al., 2013).

• Topographic correction is the process of correcting terrain effects, mainly due to the surface
elevation and observation/illumination geometries (Schlapfer et al., 2012).

• Geometric correction is the process where the geometry of the image is corrected to provide
an exact location to the image pixels in a specific surface projection (Hu and Tang, 2011).

In addition to the previous distortions, different noise amounts and sources are present in re-
mote sensing data. To mitigate the noise problem, the most common way in hyperspectral
images is by means of PCA (Chen and Qian, 2009). Nevertheless, an alternative is the widely
used minimum noise fraction (MNF) algorithm (Green et al., 1988) and its recent nonlinear
version (Gómez-Chova et al., 2011). Furthermore, the noise covariance estimation is a more
challenging problem and other techniques have been recently proposed, such as anisotropic
diffusion (Mendez-Rial and Martín-Herrero, 2012), wavelet shrinkage (Chen and Qian, 2011),
or kernel multivariate methods (Camps-Valls and Bruzzone, 2009).

Feature selection and extraction

The high collinearity between spectral bands pose a challenging problem when working with
hyperspectral images. Essentially, machine learning algorithms suffer from a risk of overfitting
thus giving rise to poor generalization capabilities. In these situations, feature selection and
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extraction are central tasks because of the curse of dimensionality (Guyon et al., 2006). Standard
feature selection methods select features that minimize a given criterion, e.g. the classification
error, by means of filter methods. This approach typically rely on correlation or the mutual in-
formation between the bands and the class labels to discard irrelevant or redundant channels.
The approach has been extensively studied in remote sensing data processing (Pal and Foody,
2010). Recent advances focus on wrapper methods, which select features that minimize the clas-
sification error directly (Bolón-Canedo et al., 2013). This approaches are typically greedy and
thus computationally expensive.
Feature extraction pursue a different direction: roughly speaking, all input variables are used
and combined to derive a reduced set of new features that maximally preserve the information
content of the original data. The most common method is linear PCA but recent advances have
been proposed using nonlinear methods such as locally linear embedding or isometric map-
ping (Jia et al., 2013). In the last years, multivariate kernel-based feature extraction methods
have been proposed to address nonlinearities in the data (Arenas-García et al., 2013). In all
these methods, one can also use spectral and spatial filters to extract edges or geometrical fea-
tures (Richards and Jia, 1999) although one typically exploit morphological operations to further
improve object detection (Izquierdo-Verdiguier et al., 2011). This thesis will concentrate on
multivariate kernel-based algorithms for feature extraction.

Remote sensing image fusion

As we have seen in section 1.1, there are different sensor resolutions: spectral, spatial and
temporal. Spatial resolution of sensors is often limited with respect to their spatial resolution.
Panchromatic sensors provide high spatial resolution whereas multispectral or hyperspectral
sensors give a high spectral resolution with low spatial detail. Sensors with both high spec-
tral and spatial resolutions would be technology challenging and extraordinarily expensive, if
at all physically realizable. An alternative comes from the field of imaging processing: image
fusion methods are used to generate an image with both (good spatial, good spectral) charac-
teristics. There are specific approaches developed for remote sensing image processing based
on wavelets (N. Indhumadhi, 2011) or for multisource fusion such as Ehlers et al. (2010) that
combines SAR with optical panchromatic images.

1.2.3 Remote sensing image processing tasks

The last step of the remote sensing image processing chain is intended to provide products
obtained from the remote sensing images that can be directly used or interpreted by the final
users. There are many products worth mentioning: abundance maps of materials of interest,
land cover and land use maps that allow monitoring, estimated biophysical parameter maps
that permit phenology studies, saliency maps that highlight interesting portions of the scene,
etc. The most relevant remote sensing problems analyzed in this Thesis are land cover clas-
sification and biophysical parameter retrieval only. They are typically tackled by particular
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classification and regression algorithms, respectively. We will instead focus on learning non-
linear feature transforms that lead to rich data representations where soimple (ideally linear)
classification or regression should suffice. In the following sections, we review applications in
these two fields.

Biophysical parameter retrieval and model inversion

The estimation of biophysical parameters represents a paramount scientific challenge in re-
mote sensing in order to better understand the environment dynamics at local and global scales
(Lillesand et al., 2008). The inversion of analytical models introduces a high level of complex-
ity and computational burden, and sensitivity to noise becomes an important issue. As a direct
consequence, the use of empirical models adjusted to learn the relationship between the acquired
spectra and the actual ground measurements has become very attractive in recent years. Para-
metric models have some important drawbacks, which typically lead to poor prediction results
on unseen (test) data. As a consequence, non-parametric and potentially nonlinear regression
techniques have been effectively introduced for the estimation of biophysical parameters from
remotely sensed images. Different models and architectures of neural networks have been con-
sidered for the estimation of biophysical parameters (Vilas et al., 2011). Recently the use of
support vector regression (SVR) and other Bayesian nonparametric methods have been pre-
sented as efficient alternatives to neural networks for modeling some biophysical parameters
(Verrelst et al., 2012b). We will further review the emerging field of kernel machines for bio-
physical parameter retrieval in the next chapter.

Image classification

A relevant application in remote sensing is to create classification maps for urban monitoring,
catastrophe assessment, change or target detection. Depending on the available data, it is possi-
ble to divide classification methods in three main families: i) supervised methods, ii) unsupervised
methods and iii) semisupervised methods. Supervised methods are probably the most common
in remote sensing, and neural networks (Pacifici and Del Frate, 2010) and support vector ma-
chines (Mountrakis et al., 2011) are popular algorithms. The latter method has been applied
in several problems for urban monitoring (Schwert et al., 2013) or multi-temporal classification
(Niu and Ban, 2013), among others. Unsupervised methods rely on clustering image pixels de-
pending on their similarity. Finally, semisupervised methods involve combining both labeled
and unlabeled data in the same model. These methods exploit the information conveyed by
abundant unlabeled data to generate, for example, improved land cover maps (Muñoz Marí
et al., 2012; Kiyasu et al., 2011).
Table 1.1 summarizes each step of the processing chain in remote sensing. We include the main
steps, the fields of engineering and sciences involved, the learning paradigms applicable, a
brief summary of the objectives, examples of applications and the main current methods and
techniques used in each of them. The summary does not pretend to be exhaustive but to serve
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Table 1.1: A taxonomy for remote sensing methods and applications, based on (Tuia and Camps-Valls,
2009a).

Topic Fields & Tools Objectives & Problems Examples Methods & Techniques

Coding Transform cod-
ing and vision
computing

Compress the huge amount
of acquired data

Transmission of data to
Earth station, avoid re-
dundancy and errors,
realistic quick-looks

PCA, DCT, Wavelets,
SPIHT, kernel feature
extraction

Feature Selection Filters/Wrappers Ranking and channel selec-
tion

Efficient transmission,
model development,
compression.

SFFS, RFE, Network
pruning, GA, kernel
dependence estimation

Feature Extrac-
tion

Statistical,
denoising, ma-
chine learning

Seek the best data direction
according to measures of re-
lations among data

data description, model
development, multi-
temporal

Multivariate analysis
(PCA), neural networks,
kernel methods

Restoration Denoising,
deblurring

interpretation, feat. extract. Acquisition noise, trans-
mission

Wiener, wavelets, ad-
vanced denoising, ker-
nel methods

Data fusion Image/Signal
Proc.

Different sensors, temporal
acquisitions, resolutions

Multi-temporal analy-
sis, change detection

Multi-resolution, fusion

Signal Unmixing Signal Process-
ing and machine
learning

Independizing the mixture
of spectra, restoration, clas-
sification with pure pixels

Unmixing and subpixel
techniques

ICA, linear/non-linear
unmixing, kernels and
pre-images.

Model inversion Regression Monitoring Earth’s Cover at
a local/global scale

Water quality, deser-
tification, vegetation
indexes, temperature
concentration , biomass,
ozone, ...

Linear regression, neu-
ral networks, kernel
methods.

Classification Pattern recogni-
tion

Monitoring evolution and
changes of Earth’s cover

Urban monitoring, min-
eral detection, change
detection, ...

k-NN, LDA, neural net-
works, kernel methods

as a comprehensive summarizing view of the field.

1.3 Advanced machine learning for remote sensing data processing

As we have already motivated before, the high dimensionality of the data, the high spectral
and spatial collinearity, or the few labeled examples motivates the use of machine learning
techniques in remote sensing data processing. Regularization of the models or semisupervised
learning are techniques that allow introducing additional information to prevent overfitting or
to solve an ill-posed problem. In this section, we summarize some recent learning paradigms
and the main techniques applied in remote sensing that are related to the core of the Thesis.

1.3.1 Manifold Learning

Manifold learning considers that high dimensional data can be mapped to a lower dimen-
sional space without information loss of the original data. This recent field is closely related to
dimensionality reduction and nonlinear feature extraction. The manifold learning framework
embraces a large set of algorithms. In order to circumvent the problems associated to tradi-
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tional linear dimensionality reduction methods, many algorithms have been proposed in the
machine learning community, such as spectral, graph-based, neural networks, principal curves
and projection pursuit methods. They are however seldom used in remote sensing problems.
Among them, the most common algorithms applied to remote sensing are Local Linear Embed-
ding (Crawford et al., 2011), Isomap (Feilhauer et al., 2011) and Lapacian eigenmaps methods
(Shi et al., 2013). Lately, as will be discussed in upcoming chapters, the family of kernel meth-
ods have been exploited to tackle manifold learning problems (Arenas-García et al., 2013).

1.3.2 Semisupervised Learning

Regularization is a way to introduce more information than the available in the data to reduce
the complexity of the models. A specific way of regularization is by means of semisupervised
learning. The main idea is to develop the model not only with the supervised information but
also adding the information of unlabeled data in order to improve the supervised model. These
methods can be divided in generative, which are based on probabilistic models, or discriminative,
which directly learn class boundaries. In remote sensing, generative models have been applied
in segmentation tasks (Li et al., 2010), urban monitoring (Tuia and Camps-Valls, 2011), or pixel
based classification (Maulik and Chakraborty, 2012). Furthermore, it is possible to model the
data representation by cluster kernels (Gómez-Chova et al., 2010) or graphs applied in tar-
get detection, regression, and classification (Camps-Valls et al., 2014). Other semisupervised
approaches are the transductive SVM (Bruzzone and Demir, 2014) and transductive Multiple-
Kernel Learning (Sun et al., 2014), which have been applied in image classification. The field
of semisupervised learning is tightly related to the previous manifold learning paradigm, since
the aim is to learn or encode the information of the manifold structure by exploiting all avail-
able data.

1.3.3 Transfer Learning

Finally, it is worth mentioning the field of transfer learning, that aims at transferring knowl-
edge (or a model) trained or adjusted in one (source) domain to another (target) domain. This
is an ubiquitous problem in remote sensing data processing. For example, land-cover maps are
only updated by classifying image time series when training samples collected at a particular
time are available, which commonly requires re-training classifiers. Transfer learning would
avoid that by updating the classifier or the data representation. The field of transfer learning
is also known as domain adaptation. The problem was initially tackled with partially unsuper-
vised classifiers, under parametric formalisms and neural networks. The approach was then
successfully extended to the use of SVM (Bruzzone and Marconcini, 2009). A related problem
is also that of classifying an image with samples from different images, which induces the sam-
ple selection bias or covariate shift problems. These problems have been recently presented by
defining proper kernel machines (Gómez Chova et al., 2008). The field is also related to the
general problem of learning and inference in manifolds.
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1.4 Summary

This Chapter has briefly introduced remote sensing data processing to the reader. The elec-
tromagnetic spectrum, the active and passive sensors, different image resolutions and the re-
sulting data have been described. In addition, from the data acquisition to the product gen-
eration, we have seen the most common processing problems. After imaging and acquisition,
remote sensing needs to be stored and transmitted, and hence advances in image coding come
to place. We have also introduced the three main pre-processing steps from an image pro-
cessing perspective: image denoising, fusion and selection and feature extraction. The latter
field of feature extraction will be analyzed in depth in the next chapters since it is the core of
this Thesis. The last image processing step has briefly reviewed the main algorithms used to
generate land-cover maps and biophysical parameter maps. The last part of the chapter has
summarized some machine learning paradigms that provided the basis to develop the tools
and algorithms proposed in this Thesis.
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This chapter provides a summary of applications and recent theoretical developments of kernel
methods in remote sensing data analysis. Section 2.1 summarizes the use of kernel methods
in remote sensing and reviews the main applications. Section 2.2 presents a brief introduction
to kernel methods, fixes notation, and reviews their basic properties. Section 2.3 reviews the
classification setting, under paradigms of supervised, and unsupervised classification. Fur-
thermore, the section presents kernel methods for density estimation and regression settings.
We intentionally leave the treatment of kernel feature extraction for the next chapter, as it is
the core of the Thesis. For more information about kernel algorithms see (Shawe-Taylor and
Cristianini, 2004), (Schölkopf and Smola, 2002) and (Camps-Valls and Bruzzone, 2009).
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The chapter is partly based on the paper:

� E. Izquierdo-Verdiguier, L. Gómez-Chova and G. Camps-Valls, “Kernels for remote sensing image classification,” Wiley

Encyclopedia of EEE (Submitted by invitation, expected publication 2015).

2.1 Kernel methods in remote sensing

Kernel methods are a standard tool in machine learning and pattern recognition, and are very
suitable for remote sensing data processing (Camps-Valls and Bruzzone, 2009). Actually, in the
last decade, kernel methods have been widely used in remote sensing data processing. This
is mainly due to the fact that they fit the needs of the field, and can efficiently cope with the
problems posed in many remote sensing data analysis. In particular, kernel methods are a
solid mathematical framework to develop nonlinear algorithms that are easy to parametrize,
fast and intuitive, and are typically robust to high dimensional data and problems with low
number of labeled samples, which is often the case in Earth observation applications. Further-
more, it is possible to combine multi-source heterogeneous data (i.e. images) by means of the
use of particular compositions of kernels dedicated to process the spatial, spectral or temporal
information (Camps-Valls et al., 2006b).

The information of the images acquired by imaging systems allow the characterization, iden-
tification, and classification of the land covers present in the scenes (Richards and Jia, 1999).
However, the high input data dimensionality in, for example, hyperspectral images degrade
the performance of traditional classifiers such as artificial neural networks or Gaussian maxi-
mum likelihood. These methods are highly impacted by datasets with low ratios of samples
per number of dimensions, essentially because either they estimate poorly the parameters in
the presence of noise or data sampling hampers the challenging problem of density estimation
they aim to solve. The issue of low number of samples per dimension is known in the literature
as the curse of dimensionality and has been largely reported in remote sensing image classifica-
tion problems (Hughes, 1968; Fukunaga and Hayes, 1989). In such situations, one is forced
to impose some constraints on the solution, by mainly restricting the capacity (i.e. flexibility,
number of parameters) of the model to enforce simpler decision functions. This has been ap-
proached by pruning weights in neural nets, enforcing sparsity in regression models, including
informative features, and encoding invariances in the model. All of these approaches can be
casted as different forms of regularization.

In the last decades, the use of support vector machines (SVM) widespread in many fields of
engineering and science (Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002). The
field of remote sensing has witnessed a similar wide adoption of SVMs, especially to tackle im-
age classification problems (Camps-Valls and Bruzzone, 2009). The SVM has integrated three
main processes in the same single algorithm. First of all, SVM makes a feature extraction step
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since data are mapped to a higher dimensional space in which they are classified with a simple
(linear) algorithm. Second, in SVM, it is possible to control the complexity of the model by
means of an efficient regularization procedure. And finally, an upper bound of the generaliza-
tion error is minimized, thus the SVM follows the Structural Risk Minimization (SRM) princi-
ple (Vapnik, 1998), which not only focuses on minimizing the training error but also limiting the
capacity of the classifier. The application of SVMs has demonstrated very good performance
in multispectral, hyperspectral, and multi-source image classification, see e.g. (Camps-Valls
and Bruzzone, 2005; Camps-Valls et al., 2006b; Tarabalka et al., 2010; Tuia et al., 2011b,a; García
et al., 2011). In this chapter, we will review the SVM formulation since this is the most widely
used kernel method nowadays.

Another different concern in remote sensing problems is related to situations where the train-
ing set is incomplete and/or not representative. We should stress that actually few attention
has been paid to the case of having an incomplete knowledge of the classes present in the in-
vestigated scene. Very often we find problems in which there is only one class of interest to
be detected, e.g. in anomaly and change detection problems, urban monitoring, and cloud
detection, just to name a few scenarios. In order to solve these types of problems, SVM has
played an important role with extensions such as the one-class SVM, which only considers sam-
ples belonging to the class of interest in order to learn the underlying data class support. The
method was originally introduced for anomaly detection (Mercier and Girard-Ardhuin, 2006),
then analyzed for dealing with incomplete and unreliable training data (Muñoz Marí et al.,
2007), it has also been recently reformulated for change detection (Muñoz Marí et al., 2010),
and recently was reformulated to introduce the user’s

Remote sensing image classification is restricted by both the quality and the number of labeled
samples. This is due to the fact that acquiring ground truth information is very challenging
and costly, mainly in complex and heterogeneous geographical areas. In order to alleviate this
problem, the semisupervised learning (SSL) paradigm (Chapelle et al., 2006) introduced in ma-
chine learning has been also exploited in remote sensing image classification. SSL employs the
information contained in the abundant unlabeled samples along with the low number of la-
beled samples. In several image classification applications, semisupervised learning has been
applied ranging from: image segmentation (Mitra et al., 2004), image classification by means of
semisupervised one-class SVM (Muñoz Marí et al., 2010), deformation kernels with the Lapla-
cian SVM (Gómez-Chova et al., 2008) for cloud detection, transductive SVMs in remote sensing
image classification (Chi and Bruzzone, 2005; Bruzzone et al., 2005, 2006), and semisupervised
data mining applications (Vatsavai et al., 2005).

Kernel methods have also found application in regression and function approximation (Smola
and Schölkopf, 2004), and also found application in some particular Earth observation appli-
cations. Remote sensing very often deals with inverting a forward model or to approximate
bio-geo-physical parameters from acquired imaging spectra. The goal is thus to obtain a robust
model able to predict/estimate different parameters, such as temperature, vegetation variables
like the fraction of vegetation cover (FVC) or leaf area index (LAI), water vapor, etc. While
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support vector machines (SVM) were introduced in the mid-90s for classification and regres-
sion, only recently the regression variation (support vector regression, SVR) gained popularity
for continuous biophysical parameter retrieval. For instance Karimi et al. (2008) used the SVR
model for estimating various crop physiological parameters (plant height, leaf nitrogen con-
tent, and leaf chlorophyll content) from hyperspectral data. The same approach was applied
by Yang et al. (2011), who found that SVR performed superior compared to linear nonparamet-
ric methods. One of the emerging powerful kernel-based regression methods involves kernel
ridge regression (KRR), also known as least squares support vector machines (LS-SVM). KRR
proved to be very promising because of its excellent performance. Wang et al. (2011) com-
pared KRR against linear nonparametric methods (multiple linear regression and PLSR) for
LAI estimation and concluded that KRR yielded the most accurate estimates. In the recent
years, kernel-based model inversion has dominated the field of non-linear and non-parametric
biophysical parameter estimation (Camps-Valls et al., 2011; Verrelst et al., 2012a; Bioucas-Dias
et al., 2013; Okujeni et al., 2013). In this Thesis, we will intentionally obviate all these powerful
nonlinear regression approaches, as our main goal is to analyze (regression) problems from the
perspective of nonlinear feature extraction plus linear regression.

2.2 Introduction to kernel methods

This section includes a brief introduction to kernel methods (Camps-Valls and Bruzzone, 2009;
Gómez-Chova et al., 2011; Izquierdo-Verdiguier et al., 2015). After setting the scenario and
fixing the used notation, we give the main properties of kernel methods, namely the notion of
kernel function, the property of positive definiteness, and the reproducing property. We also
pay attention to kernel methods development by means of particular properties drawn from
linear algebra and functional analysis (Golub and Van Loan, 1996; Reed and Simon, 1980). The
field of kernel machines is very vast. We however omit many interesting aspects in this review,
such as bounds of performance, capacity control and convergence and stability issues. This is
done intentionally for the sake of simplicity and to treat only the issues relevant to the topic of
this Thesis.

2.2.1 Measuring similarity with kernels

Machine learning deals with the very ambitious goal of learning and recognizing patterns from
data automatically. These patterns may come in different forms depending on the inference
problem: in classification problems one is interested in detecting relevant features that sepa-
rate samples belonging to different classes maximally, while in regression problems the interest
is in learning an approximating a function of the underlying system that generated the data.
Many methods exist to tackle the different problems: classification and regression trees, neu-
ral networks, boosting algorithms, projection pursuit and random projections, etc. Despite the
different principles guiding each particular algorithm, there is a common thing in all of them:
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machine learning algorithms try to learn feature representations that highlight similarities (or dissimi-
larities) among points. In this context, the field of kernel methods can be seen as an appropriate
framework to define statistical inference problems. Kernel methods essentially rely on the no-
tion of similarity between examples through the concept of kernel function. As we will see,
kernel methods can formalize many algorithms through this kernel function.
All machine learning problems start with the collection of a representative dataset describing
the problem at hand. In remote sensing data processing this may imply for example a terres-
trial campaign that measures a biophysical parameter/variable on the ground at the same time
an airborne/satellite sensor overpasses the area of study thus yielding spectra. The dataset is
thus formed by pairs of spectra and corresponding parameter, and the problem can then be
formalized as a prediction or regression problem. Formally, let us define a set of empirical data
(x1, y1), . . . , (xn, yn) ∈ X × Y , where xi are the inputs (often called the independent variables)
taken from X and yi ∈ Y are called the outputs (or dependent variable). The problem of learn-
ing from examples implies to use these sample pairs to predict well on test (unseen) examples. To
develop machines or models that generalize well, kernel methods try to exploit the structure of
the data and thus define a similarity between all pairs of samples available in the training set.
Then, with such learned (or inferred) similarity measure fixed, a new incoming test example
is, roughly speaking, simply assigned a prediction corresponding to the most similar example
in the training set. Therefore one can (simplistically) see that kernel methods are a kind of
memory-based algorithms.
The main problem encountered in machine learning is that very often X is not appropriate
to work, that is the input space has not a proper notion of similarity. In such case, the in-
put features are not discriminative of the different classes or do not carry enough information
for prediction. Machine learning methods typically solve the problem by introducing nonlin-
earities that transform the data with the aim of separating or aligning examples in a richer
representation space. Kernel methods do the same: examples are mapped to a (dot product)
space H, using a feature mapping φ : X → H, x 7→ φ(x). The similarity between the vectors
(points, or elements) inH can now be estimated using its associated dot product in that feature
space, i.e 〈·, ·〉H. Here, we define a function that computes that similarity, K : X × X → R,
such that (x, x′) 7→ K(x, x′). This kernel function needs to satisfy:

K(x, x′) = 〈φ(x), φ(x′)〉H, (2.1)

where the mapping φ is the feature map, the space H is called the feature space, and K is a
reproducing kernel in Hilbert space (RKHS). This equality is the core of all kernel methods: in-
tuitively the expression tells us that we may find a (similarity) kernel function that works with
data in X that is implicitly reproducing the similarity between these data mapped to a higher
dimensional feature space. The important thing here is that we do not need to map explicitly
the data points, nor to have access to their coordinates: we will just simply work with kernel
functions and original space data points. The equality has of course to fulfill the properties of
existence and uniqueness, whose formal demonstration can be found, e.g. in (Camps-Valls and
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Bruzzone, 2009)[chapter 2].

2.2.2 Positive definite kernels

An important property of kernel methods is that of positive definiteness. This is because the class
of kernels that can be written in the form of the previous equality (2.1) coincides with the class
of positive definite kernels.

Definition 1. A function K : X × X → R is a positive definite kernel if and only if there exists
a Hilbert space H and a feature map φ : X → H such that for all x, x′ ∈ X we have K(x, x′) =

〈φ(x), φ(x′)〉H.

In practice, a real (symmetric) matrix K of size n× n, whose entries are K(xi, xj) or simply Kij,
is named positive definite if for all c1, . . . , cn ∈ R, ∑n

i,j=1 cicjK(xi, xj) ≥ 0. Note that a positive
definite kernel is equivalent to a positive definite Gram matrix in the feature space. Throughout
this Thesis we will work with positive definite kernels, and when proposing new kernel func-
tions we will demonstrate that the property is fulfilled. Being a positive kernel (Gram) matrix
implies that all the eigenvalues must be positive and has some implications on the spectral
analysis of the proposed kernels in this Thesis.
Therefore, algorithms operating on the data only in terms of dot products can be used with any
positive definite kernel by simply replacing 〈φ(x), φ(x′)〉H with kernel evaluations K(x, x′).
This technique is also known in the statistical inference community as the kernel trick (Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Another direct consequence is that, for
a positive definite kernel, one does not need to know the explicit form of the feature map since
it is implicitly defined through the definition of the kernel.

2.2.3 Basic operations with kernels

For the interest of the developments in this Thesis, we now review some basic properties of
kernels functions. We want to stress that, although the space H can be very high-dimensional,
some basic operations can still be performed therein implicitly:

Translation. A translation in feature space can be written as the modified feature map φ̃(x) =
φ(x) + Γ with Γ ∈ H. Then, the translated dot product for 〈φ̃(x), φ̃(x′)〉H can be com-
puted if we restrict Γ to lie in the span of the functions {φ(x1), . . . , φ(xn)} ∈ H. The
property is widely used to define particular kernel functions that are robust (or invari-
ant) to undesired data translations. We will however use this operation just to center data
in feature spaces.

Centering. Note that the previous translation allows us to center data {xi}n
i=1 ∈ X in the feature

space, i.e. {φ(xi)}n
i=1. The mean of the data in H is φµ = 1

n ∑n
i=1 φ(xi), which is a linear

combination of the span of functions, and thus fulfills the requirement for Γ. One can
center data inH by computing K̃ = HKH where H is called the “centering matrix” whose
entries are Hij = δij − 1

n with the Kronecker symbol δi,j = 1 if i = j and zero otherwise.
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Computing distances. We have seen that the kernel function corresponds to a dot product in a
Hilbert space H, and thus one can compute distances between mapped samples entirely
in terms of kernel evaluations:

d(x, x′) = ‖φ(x)−φ(x′)‖H =
√

K(x, x) + K(x′, x′)− 2K(x, x′).

This property can be useful to estimate the degree of nonlinear distortion introduced by
a particular kernel, or a particular choice of its parameters.

Normalization. Exploiting the previous property, one can also normalize data in feature space:

K(x, x′)←
〈

φ(x)
‖φ(x)‖ ,

φ(x′)
‖φ(x′)‖

〉
=

K(x, x′)√
K(x, x)K(x′, x′)

Note that for some particular kernel functions, e.g. those with sample self-similarities K(x, x) =
1 as in radial basis function kernels, normalization does not impact the resulting kernel.

Representer’s theorem (Kimeldorf and Wahba, 1971)

A very relevant property in the context of kernel methods is the Representer’s theorem. The
statement of the theorem presented here is a particular example of (Kimeldorf and Wahba,
1971; Schölkopf et al., 2001):

Theorem 1. Let X be a non-empty set and K a positive-definite real-valued kernel on X × X with
corresponding reproducing kernel Hilbert space H. Given a training sample (x1, y1), . . . , (xn, yn) ∈
X ×R, a strictly monotonically increasing real-valued function Ω : [0, ∞) → R, and an arbitrary
empirical risk function V : (X ×R2)m → R∪ {∞}, then for any f ∗ ∈ H satisfying

f ∗ = argmin f∈H
{

V ((x1, y1, f (x1)), ..., (xn, yn, f (xn))) + Ω
(
‖ f ‖2

H
)}

,

f ∗ admits a representation of the form:

f ∗(·) =
n

∑
i=1

αiK(·, xi),

where αi ∈ R for all 1 ≤ i ≤ n.

This theorem is of special relevance to develop and analyze kernel machines, as many machine
learning problems can be defined in such general form, and hence we are given a common
representation of the solution. We should stress the generality of both the loss function, V, and
the regularization term, Ω. Note that the cost function may actually adopt complex penaliza-
tion terms depending not only on the labels and the predictions but also on the samples, hence
opening the field to cost-sensitive learning. On the other hand, the regularization term admits
flexible definitions, thus allowing to enforce smooth solutions of f , and opening the field to
design efficient priors and encoding invariances. Also note that, when plugging an admissible
representation of f into ‖ f ‖H, the regularizer reduces to an energy constraint depending on
the solution and the kernel matrix, α>Kα, where α ∈ Rn×1. This observation returns the dis-
cussion back to the centrality and relevance of the kernel definition not only to allow flexible
signal approximations but also as powerful regularizer.
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2.2.4 Standard kernels

As we have seen before, the bottleneck for any kernel method is the definition of a feature
mapping φ that maps data to a feature space endorsed with a dot product. The naive idea
would be to design such mappings. However, we have already observed that this is actually
not necessary, provided that we can construct reproducing kernel functions that may accurately
reflect the similarity among mapped samples. However, a new problem arises: not all kernel
similarity functions are permitted. In fact, valid kernels are only those fulfilling Mercer’s The-
orem (roughly speaking, being positive definite similarity matrices). The most common ones
are: the linear K(x, z) = x>z, the polynomial K(x, z) = (x>z + 1)d, d ∈ R+, and the Radial
Basis Function (RBF), K(x, z) = exp

(
−‖x− z‖2/(2σ2)

)
, σ ∈ R+. Note that, by Taylor series

expansion, the RBF kernel can be casted as a polynomial kernel with infinite degree. Thus the
corresponding Hilbert space is infinite dimensional, which corresponds to a mapping into the
space of smooth functions C∞. The RBF kernel is also of practical convenience –stability and
only one parameter to be tuned–, and it is the preferred kernel function in standard applica-
tions. The use of RBF kernels also allows some connections to the theory of density estimation,
Parzen’s windows and theoretic-information learning, as we will see later in this chapter, and
extensively in a kernel method proposed in the Thesis.

2.2.5 Kernel development

Taking advantage of some algebra and functional analysis properties (Golub and Van Loan,
1996; Reed and Simon, 1980), one can derive very useful properties of kernels. Be K1 and
K2 two positive definite kernel functions on X × X , A a symmetric positive (semi)definite
matrix, f any increasing, differentiable, monotone and enclosed function, and µ > 0. Then, the
following kernels are valid (Schölkopf and Smola, 2002):

K(x, x′) = K1(x, x′) + K2(x, x′) (2.2)

K(x, x′) = µK1(x, x′) (2.3)

K(x, x′) = K1(x, x′) · K2(x, x′) (2.4)

K(x, x′) = K( f (x), f (x′)) (2.5)

These basic properties give rise to the construction of refined similarity measures that could
be better fitted to the data characteristics. In remote sensing data processing, one can sum
dedicated kernels to spectral, contextual or even temporal information of pixels through (2.2).
A scaling factor to each kernel can also be added (Eq. 2.3). Also, we want to stress property
(2.5): if a particular preprocessing point-wise function f is useful one can either apply it before
hand or alternatively find a kernel function that implicitly encodes it. This latter property
will be used indirectly when proposing probabilistic kernels, being such f the maximum a
posteriori probability induced by a clustering algorithm.
There are many additional tricks and tips to construct kernel functions from previous ones. A
complete review can be found in (Shawe-Taylor and Cristianini, 2004). Nowadays the field of
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kernel construction is very active, and one may find kernels to deal with heterogeneous data
sources (e.g. strings, images, language, etc.), kernels that combine multiple modalities, and
kernels designed to deal with complex data representations (graphs, tensors, fractals), just to
name a few. In what follows, we simply review some recent advances for kernel development
that are important to this Thesis:

Convex combinations. By exploiting (2.2) and (2.3), one can build kernels by linear combina-
tions of kernels working on feature subsets:

K(x, x′) =
M

∑
m=1

dmKm(x, x′).

This field of research is known as multiple kernel learning (MKL), and different algo-
rithms exist to optimize the weights and kernel parameters jointly (Rakotomamonjy et al.,
2008). Note that this kernel offers some insight in the problem, since relevant features re-
ceive higher values of dm, and the corresponding kernel parameters yield information
about pairwise similarity scales. In the context of this thesis we will focus merely on sim-
ple composite functions to derive semisupervised feature extraction algorithms. Never-
theless, it does not escape to our knowledge that MKL extensions could be explored as
well.

Generative kernels. Exploiting Eq. (2.5), one can construct kernels from probability distribu-
tions by defining K(x, x′) = K(p, p′), where p, p′ are defined on the space X . This kind of
kernels is known as probability product kernels between distributions and is defined as:

K(p, p′) = 〈p, p′〉 =
∫
X

p(x)p′(x)dx.

This kernel construction is implicit behind our proposals for unsupervised learning in
chapter 5. On the one hand, generative kernels can be seen as particular constructions to
estimate densities, hence somewhat related to our optimized kernel entropy component
analysis. On the other hand, and with a more explicit relation, we will exploit posterior
probabilities to construct multiscale generative kernels in our probabilistic cluster kernel.

2.3 Examples of kernel methods

In this section, we summarize the most important instantiations of kernel methods for classifi-
cation, clustering, density estimation and dependence estimation. These are the central prob-
lems in this Thesis. Consequently, we intentionally do not treat the vast literature of kernel
methods for regression, function approximation, time series analysis, signal and target de-
tection, visualization or sorting. It is also worth noting that all the reviewed methods have
provided excellent performance in remote sensing data analysis.
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Figure 2.1: Illustration of kernel classifiers. (a) SVM: Linear decision hyperplanes in a nonlinearly
transformed, feature space, where slack variables ξi are included to deal with errors. (b) KFD: Kernel
Fisher’s Discriminant separates the classes by projecting them onto a hyperplane where the difference
of the projected means (µ1, µ2) is large, and the variance around means σ1 and σ2 is small. Source:
(Gómez-Chova et al., 2011).

2.3.1 Support Vector Machine (SVM)

The most important development of a kernel method is the Support Vector Machine (SVM)
for classification (Vapnik, 1998). The method has found wide application in many subfields
of Engineering and Science, and nowadays it constitutes the main classification algorithm in
remote sensing data processing as well. The reasons for this widespread adoption by our com-
munity is the excellent performance in very high dimensional feature spaces and low number
of examples, robustness to different noise levels and sources, and the capability to combine
heterogeneous information sources via kernel construction (Camps-Valls and Bruzzone, 2005;
Camps-Valls et al., 2006b; Camps-Valls and Bruzzone, 2009). The SVM is a supervised linear
classifier that tries to separate classes maximally. This is why it is also known as a maximum
margin classifier. In order to classify data, the SVM finds the hyperplane with largest margin be-
tween the two classes (Fig. 2.1). Such operation can be done in the original input space, hence
yielding a linear classifier, or implicitly in feature space, thus leading to a nonlinear classifier.
Either way, the hyperplane is defined by the points called support vectors, which lie on the
margin.

In the typically more powerful case of the nonlinear SVM, first the pixels are mapped to a
higher dimensional space, Φ : Rd → H. Then, a linear classifier is used therein, and hence the
mapped pixels are classified linearly with maximum margin in H. Notationally, we are given
a labeled training data set {xi, yi}n

i=1, where xi ∈ RN and yi ∈ {−1, +1}, and given a nonlinear
mapping φ(·), the SVM method solves:

min
w,ξi ,b

{
1
2
‖w‖2 + C

n

∑
i=1

ξi

}
(2.6)
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constrained to:

yi(w>φ(xi) + b) ≥ 1− ξi ∀i = 1, . . . , n (2.7)

ξi ≥ 0 ∀i = 1, . . . , n (2.8)

where w and b define a linear classifier in the feature space, and ξi are positive slack variables
enabling to deal with permitted errors (Fig. 2.1a). Appropriate choice of the nonlinear map-
ping φ guarantees that the transformed samples are more likely to be linearly separable in the
(higher dimension) feature space. The regularization parameter C controls the generalization
capability of the classifier, and it must be selected by the user. Primal problem (2.6) is solved
using its dual problem counterpart (Schölkopf and Smola, 2002), and the decision function for
any test vector x∗ is finally given by

f (xi) = sing(
n

∑
i=1

yiαi φ(xi)
>φ(xj)︸ ︷︷ ︸

K(xi ,xj)

+b)

where αi are Lagrange multipliers corresponding to constraints in (2.7), being the support vec-
tors (SVs) those training samples xi with non-zero Lagrange multipliers αi 6= 0; K(xi, x∗) is
an element of a kernel matrix K defined as in equation (2.1); and the bias term b is calculated
by using the unbounded Lagrange multipliers as b = 1/k ∑k

i=1(yi − 〈φ(xi), w〉), where k is the
number of unbounded Lagrange multipliers (0 6 αi < C) and w = ∑n

i=1 yiαiφ(xi) (Schölkopf
and Smola, 2002). It is worth noting that, as in any other kernel method, the classification only
depends on the dot products between the transformed samples which is implicitly estimated
through the kernel function. Therefore, even in the nonlinear case, we do not need to know
the mapping Φ explicitly, only the dot products among mapped samples, that is, the kernel
function among the samples.
The SVM has extensively reported good accuracy in remote sensing applications, as reported
in Camps-Valls and Bruzzone (2009). SVMs have been applied to both multispectral (Chen
et al., 2012; Dalponte et al., 2012) and hyperspectral (Tarabalka et al., 2010; Li et al., 2011a; Chen
et al., 2013) data in a wide range of domains, including object recognition (Duro et al., 2012),
land cover and multi-temporal classification (Silva et al., 2011; Petropoulos et al., 2012; Leiva-
Murillo et al., 2013), urban monitoring (Kamusoko et al., 2013) and agriculture land mapping
(Amorós-López et al., 2011; Zolfaghari et al., 2013).

2.3.2 Kernel Fisher’s Discriminant (KFD)

The kernel Fisher’s discriminant (KFD) analysis algorithm is a common method for supervised
data classification. The algorithm extends the linear Fisher’s discriminant to the nonlinear case
with kernels. The use of this method in remote sensing data processing has found many ap-
plications (Kuo et al., 2009; Jia et al., 2013). Interestingly, we should mention here that close
connections between Fisher’s discriminant analysis and many multivariate data analysis tech-
niques have been established in the literature (Arenas-García et al., 2013). These links extend
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to the kernel counterparts as well, and this is the main motivation of reviewing KFD in this
chapter.
Notationally, let us assume that, n1 out of n training samples belong to class −1 and n2 to class
+1, so n = n1 + n2. Let µ be the mean of the whole set, and µ− and µ+ the means for classes
−1 and +1, respectively. Analogously, let Σ be the covariance matrix of the whole set, and Σ−

and Σ+ the covariance matrices for the two classes.
The Linear Fisher’s Discriminant (LFD) seeks for projections that maximize the interclass vari-
ance and minimize the intraclass variance (Fisher, 1936; Hastie et al., 2009). By defining the
between class scatter matrix SB = (µ− − µ+)(µ− − µ+)

> and the within class scatter matrix SW =

Σ− + Σ+, the problem reduces to maximize

J(w) =
w>SBw
w>SWw

(2.9)

The Kernel Fisher’s Discriminant (KFD) is obtained by defining the LFD in a high dimensional
feature spaceH. Now, the problem reduces to maximize:

J(w) =
w>Sφ

B w

w>Sφ
Ww

(2.10)

where now w, Sφ
B and Sφ

W are defined inH, Sφ
B = (µ

φ
− − µ

φ
+)(µ

φ
− − µ

φ
+)
>, and Sφ

W = Σ
φ
− + Σ

φ
+.

We need to express (2.10) in terms of dot-products only. According to the reproducing ker-
nel theorem (Schölkopf and Smola, 2002), any solution w ∈ H can be represented as a linear
combination of training samples inH. Therefore w = ∑n

i=1 αiφ(xi) and then

w>µ
φ
i =

1
ni

n

∑
j=1

ni

∑
k=1

αjK(xj, xi
k) = α>Mi (2.11)

where xi
k represents samples of class i, and (Mi)j =

1
ni

∑ni
k=1 K(xj, xi

k). Taking the definition of Sφ
B

and (2.11), the numerator of (2.10) can be rewritten as w>Sφ
B w = α>Mα, and the denominator

as w>Sφ
Ww = α>Nα, where

M = (M− −M+)(M− −M+)> (2.12)

N = ∑j={−1,+1}Kj(I− 1nj)K
>
j (2.13)

Kj is a n × nj matrix with (Kj)nm = K(xn, xj
m) (the kernel matrix for class j), I is the identity

matrix and 1nj a matrix with all entries set to 1/nj. Finally, Fisher’s linear discriminant in H is
solved by maximizing

J(α) =
α>Mα

α>Nα
, (2.14)

which is solved as in the linear case. The projection of a new sample x onto w can be computed
through the kernel function:

w>φ(x) =
n

∑
i=1

αiK(xi, x) (2.15)
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2.3.3 Kernel k-means

Kernel methods have been also used to cluster data in general and remote sensing data in
particular. Note that, when clusters are compact and well separated, linear algorithms may
work well. Nevertheless, in other cases data contain arbitrarily shaped clusters of different
densities and hence clusters are not linearly separable. In such cases, separation may be easier
in a high dimensional feature space. The kernel k-means algorithm extends the linear k-means
to RKHS by means of mapping functions φ(·). Since the k-means formulation can be expressed
solely in terms of dot products, kernel functions can replace these expressions returning the
value of the dot product in the RKHS directly.
Let {x1, x2, . . . , xn} be a set of samples, mapped into a Hilbert space H, thus giving {φ(x1),
φ(x2), . . . , φ(xn)}. Then, the distances of each data to every centroid j = 1, . . . , q is (Girolami,
2002a):

n

∑
i=1

q

∑
j=1

∥∥φ(xi)− m̃j
∥∥2 , (2.16)

where m̃j =
1
nj

∑n
j=1 pi,jφ(xi) are the centroids of the clusters into the feature space. Substituting

m̃j in equation (2.16) and applying the kernel trick (Schölkopf and Smola, 2002), we obtain the
optimization problem of kernel k-means:

P∗ = arg max
P

Tr{PKP>}, (2.17)

where K is the kernel matrix and P∗ is the optimal normalized cluster membership matrix.

2.3.4 Hilbert-Schmidt Independence Criterion (HSIC)

A recurrent problem in machine learning and signal processing is that of estimating depen-
dencies between random variables. The most widely used method is mutual information
(MI), which extends correlation accounting for higher-order dependencies (Cover and Thomas,
2005). The mutual information between two discrete unidimensional variables x, y ∈ R can be
defined as:

I(x, y) = ∑
y

∑
x

p(x, y)log
(

p(x, y)
p(x)p(y)

)
,

where p(x, y) is the joint probability and p(x) and p(y) represent the marginal probability dis-
tributions. When the input and output data are independent, MI tends to zero.
The Hilbert-Schmidt Independence Criterion (HSIC) is a simple and effective method to es-
timate statistical dependence between possibly multidimensional random variables, extends
linear correlation and can be computed very efficiently. Its basic idea is to evaluate all possible
correlations in a reproducing kernel Hilbert space, which can be performed efficiently via the
kernel trick (Gretton et al., 2005). For random variables x ∈ Rdx , y ∈ Rdy , HSIC corresponds to
estimating the norm of the cross-covariance in feature space, whose empirical (biased) estima-
tor is:

HSIC =
1

(n− 1)2 Tr(KxKy) =
1

(n− 1)2 Tr(ΦΦ>ΨΨ>),
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where Kx and Ky are kernels working on x and y respectively, and Φ, Ψ are the mapped data
x and y, respectively. When the input and output data are independent, HSIC tends to zero.
Due to the kernelization, the empirical HSIC only depends on computable matrices of size
n× n. Both measures (HSIC and MI) will be used in this Thesis to measure differences between
features obtained by several methods and to compare dissimilarity between kernels.

2.3.5 Kernel Density Estimation (KDE)

Kernel algorithms have been proposed to estimate the probability density function (pdf) of
a random variable (Hwang et al., 1994), and lately in remote sensing (Mantero et al., 2005).
An easy way of density estimation is by means of histograms (Pearson, 1895) that divides the
samples space in bins and estimate the density by the fraction of the number of training data
falling into the corresponding bin:

pH(x) =
1
n

# o f xtrain in same bin that x
width o f bin

.

Note that the density estimation using histograms has several drawbacks. The histogram needs
two parameters to be defined (number of bins and bin width), the results of the probability
density estimation depends on the starting position of the bins, the discontinuities are due
to the choice of bin locations and, some precaution should be taken with the dimensionality
of the samples because of the exponential growth of the number of bins with the number of
dimensions.
Another way to estimate the pdf is by means of Parzen Windows (Parzen, 1962). Supposing a
regionR defined by a hypercube. We can find an expression for the number of samples falling
in this region defining a kernel function K(x) that is also known as Parzen window which is
given by

K(x) =

{
1 if

∣∣xj
∣∣ < 1

2 ∀j = 1, . . . , d
0 otherwise

where xj is the value of the sample x in the j dimension and d is the number of dimensions.
Thus, K(x) is a unity cube centered at the origin that is equal to one if sample x falls into the
hypercube, and zero otherwise. The samples that fall into a hypercube with side σ and center
at x is

nbin =
n

∑
i=1

K

(
x− xi

σ

)
where n is the total number of samples and σ is the smoothing parameter or kernel width. There-
fore the density estimation at x by means of Parzen windows is

p̂(x) =
1
n

n

∑
i=1

1
σ

K

(
x− xi

σ

)
.

This estimation can be seen as a superposition of n cubes of side σ, with one hypercube cen-
tered at each sample xi. The Parzen window estimation is similar to density estimation based
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on histograms. The difference is the use of hypercubes in Parzen estimation instead of bins
intervals. However, the discontinuity problem is still present. To solve this problem, one com-
mon solution is to use a smooth kernel function

∫
§ K(x)dx = 1. If the kernel is a positive

semi-definite function, it will fulfill the Mercer’ conditions and will link the Information The-
ory (IT) with kernel methods (Jenssen, 2009). The most commonly used kernel function is the
Gaussian kernel

G(x, xi|σ) =
(

1
2πσ2

) 1
2

e−
‖x−xi‖2

22σ ,

thus the pdf estimation is

p̂(x) =
1
n

n

∑
i=1

1
σ

G(x, xi|σ).

2.3.6 Kernel bandwidth selection

A crucial problem in kernel methods is to correctly select the kernel parameters. In the Gaus-
sian RBF kernel, high values of kernel bandwidth, σ, yield an over-smoothed sample similarity
(or density estimation for KDE) and mask the structure of the data while a small σ yields a
peaky kernel matrix (or density estimation) very hard to interpret. Then, we would like to
find a value of σ that maximizes the accuracy in classification or regression problems or that
minimizes the error between the estimated density and the true density in density estimation
problems. There are several ways to select the bandwidth. Here we summarize the most com-
mon ones used in this Thesis:

• Classification accuracy score by means of cross-validation is a supervised method that es-
timates the optimal bandwidth calculating the overall accuracy of the probabilistic classi-
fier, that is, we calculate the probabilistic distribution per class for each sample and assign
the class with higher probability to each sample. We obtain the overall accuracy for each
K-fold and the K results are averaged to produce a single estimation. The maximum
overall accuracy obtained gives us the optimum bandwidth (σ∗).

• Maximum likelihood (ML) leave-one-out is an algorithm for variable bandwidth estima-
tion particularly in spaces of high dimensionality (Barnard, 2010). The Maximum Likeli-
hood finds the parameters that maximize the probability distribution. Here, we use the
leave-on-out method to fix the bandwidth. The leave-one-out consists on randomly par-
titioning the data set in K subsets being K the number of samples into the data set. Out
of the K subsets, K− 1 subsets are used as a training and the sample that we leave out is
used to validate testing model. Then, the process is repeated K times using each of the
K subsets exactly once as the validation data. The K results are averaged (or otherwise
combined) to produce a single estimation.
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• Silverman’s rule (Silverman, 1986) is the classical rule of thumb in KDE and estimates the
optimal bandwidth σ by means of the next formula:

σ∗ =
1
σi

(
4

n(d + 2)

)1/(d+4)

, (2.18)

where n is the number of observations, d is the number of dimensions, and σi is the
standard deviation per dimension, i = 1, . . . , d.

2.4 Summary

This Chapter reviewed the main characteristics and properties of the framework of kernel
methods. We have first summarized some key developments of kernel methods in remote
sensing data analysis, with special focus on classification and regression developments, as they
will be the main illustrative applications throughout this Thesis. We have payed special atten-
tion to the main properties of kernel functions, as we will rely on some properties of functional
analysis to build new kernel functions by combination of elementary ones. Furthermore, the
representer’s theorem has been defined and different definitions of kernel mapping functions
have been summarized. They will play a role in the definition of out-of-sample projections of
the proposed kernel feature extraction methods. After this, we reviewed several state-of-the-art
kernel methods for classification, clustering, dependence, and density estimation. They were
included here as a mere illustration of the powerfulness of the framework, and for the sake of
completeness. Kernel feature extraction will be summarized extensively in the following chap-
ter, as it constitutes the core of the Thesis. Summarizing, we have seen that kernel methods
allow to easily develop nonlinear algorithms through the use of reproducing kernel functions.
Kernel methods can cope with problems involving high dimensionality and low number of ex-
amples, as well as permit the combination of heterogeneous sources of information. All these
advantages make them a solid and convenient framework for pattern analysis in general and
remote sensing data processing in particular.
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In this Chapter, we will summarize different feature extraction methods and their use. Very
often the terms of feature extraction, dimensionality reduction and manifold learning methods
are used indistinctly given the tight relations between them. Feature extraction is exploited as a
preprocessing step before classification and regression but classification or regression methods
lead to black-box models which must be designed specifically and attached to the following
application, the underlying idea in feature extraction is to find an appropriate data represen-
tation (typically via projection operators) which can then be used in any arbitrary application.
This different perspective of addressing a problem leads to some interesting properties.

27
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Essentially, both feature extraction and manifold learning seek for transformations (linear and
nonlinear, parametric or not) of the data to a representation space that allows to capture most
of the information of the data in fewer components. Feature extraction is typically concerned
with matrix transformations such that the new data is embedded in a lower dimensional sub-
space. Manifold learning pursues a more challenging goal, and looks for transformations that
describe the (typically nonlinear) characteristics of the data (Lee and Verleysen, 2007).

In recent years, a plethora of nonlinear dimensionality reduction methods has been presented
trying to deal with manifolds that cannot be described with linear methods, such as the clas-
sical principal component analysis (PCA) (Jolliffe, 2010). See for example (Lee and Verleysen,
2007) for a comprehensive review on manifold learning and nonlinear feature extraction. Ap-
proaches to the problem range from local methods (Tenenbaum et al., 2000; Roweis et al., 2002;
Verbeek et al., 2002; Teh and Roweis, 2003; Brand, 2003), kernel-based and spectral decom-
positions (Roweis and Saul, 2000; Schölkopf et al., 1998; Weinberger and Saul, 2004), neural
networks (Kramer, 1991; Hinton and Salakhutdinov, 2006; Scholz et al., 2007), and projection
pursuit approaches (Huber, 1985; Laparra et al., 2011).

In this context, Multivariate Analysis (MVA) techniques constitute a family of methods to ex-
tract features, which has been used in several scientific areas (Arenas-García et al., 2013). In
the following sections, we will review the main MVA methods used in the Thesis. We will
start with the methods that take into account linear input-output relations, i.e. linear methods.
Afterwards, we will continue with the nonlinear kernel MVA methods. We will conclude the
chapter with a summary of the main properties of feature extraction methods.

3.1 Feature extraction applications in remote sensing data processing

Feature extraction has become an important topic in remote sensing data processing mainly
due to the high dimensionality of data, as well as the high redundancy both between spec-
tral bands and between neighboring pixels. This can cause the curse of dimensionality (Bell-
man, 1961), or the Hughes’ phenomenon (Hughes, 1968). The problem is ubiquitous in re-
mote sensing image analysis. Moreover, the high-dimensionality of remote sensing data is
often increased by stacking spatial, spectral, temporal and multiangular features to the spectral
channels for modelling additional information sources. In order to reduce the problems of di-
mensionality, feature extraction methods have been used in several remote sensing problems.
Despite the fact that the most common method in remote sensing is PCA, there are also other
useful methods depending on the application. The PLS method is applied in regression cases
such as in (Hansen and Schjoerring, 2003). In this study, the authors did a regression analysis
using hyperspectral images and they concluded that PLS regression analysis may provide a
useful exploratory and predictive tool when applied to hyperspectral reflectance data. But in
the case of remote sensing data processing, PLS has also been used in particular applications,
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such as mapping canopy nitrogen (Coops et al., 2003; Townsend et al., 2003), classifying salt
marsh plants (Wilson et al., 2004), analyzing biophysical properties of forests (Naesset et al.,
2005), and retrieving leaf fuel moisture (Li et al., 2007). In order to mitigate problems due to
radiometric differences and noise, canonical correlation analysis (CCA/MAD) plus minimum
noise fraction (MNF/MAF) transformations are becoming popular in unsupervised change
detection (Nielsen, 2007). These methods, however, can only deal with affine transforms and
additive uncorrelated Gaussian noise, and cannot be easily adapted to find a particular type of
feature.

Remote sensing data often show nonlinearities: Backscattering, illumination changes, twisted
distribution data or the relation between the reflectance with their parameters (Friedl and Brod-
ley, 1997; Paola and Schowengerdt, 1995; Camps-Valls et al., 2008). This characteristic is very
common in remote sensing data specially in supervised or semisupervised problems. The use
of kernels is suited for remote sensing data processing (Camps-Valls and Bruzzone, 2009) due
to the robustness to high dimensional images, to noise and to low number of labeled sam-
ples. In recent years, kernel methods have emerged as an excellent tool to develop nonlinear
feature extraction methods (Camps-Valls and Bruzzone, 2009). Actually, most common linear
feature extraction algorithms have been kernelized and applied to target detection (Kwon and
Nasrabadi, 2005), channel selection (Serpico and Moser, 2007), classification of hyperspectral
images (Li et al., 2011b), noise reduction (Gómez-Chova et al., 2011), and also to unsupervised
change detection (Volpi et al., 2012). In addition, there are some works based on informa-
tion theory such as (Gómez-Chova et al., 2012) that used Kernel Entropy Component Analysis
(KECA) feature extraction method for clustering remote sensing data. Sparse kernel meth-
ods have also emerged in remote sensing due to computational burden. Arenas-García and
Camps-Valls (2008) presented a reduced rank complexity KOPLS method (rKOPLS) for feature
extraction. In (Arenas-García et al., 2013), the authors compared linear and kernel feature ex-
traction methods in temperature estimation from infrared sounding data, and in hyperspectral
image classification.

We can find other nonlinear feature extraction methods based on kernelization applied to
multitemporal analysis such (Muñoz Marí et al., 2013), (Gómez-Chova et al., 2013). In the
first work, the authors proposed the generalization of Kernel Canonical Correlation Analysis
(KCCA) for several datasets, and applied it to multitemporal image classification. In the sec-
ond work, the authors proposed a kernel change detection analysis (KCDA) that can be easily
adapted to find a specific change of interest in satellite image time series while discarding un-
desired changes.
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Figure 3.1: Different types of multivariate analysis for feature extraction used in this Thesis.

3.2 Introduction to multivariate analysis

Statistical multivariate analysis for feature extraction is commonly used to determine a system
with less variables. This analysis synthesizes the information of the original system reduc-
ing its dimensionality. We use MVA in order to obtain a subset of independent variables (or
features) from the original set by projecting the samples onto the most relevant directions of
the data manifold. The projections are obtained by means of mathematical transformations:
f : Rd → Rd f where d is the dimension of samples in original space and d f is the dimension
in the transformed space, typically d f ≤ d. Depending on the available labeled data (super-
vised and unsupervised) and transformations (linear, nonlinear) that we will apply, the feature
extraction methods can be divided in different groups. Figure 3.1 summarizes the different
MVA methods used throughout the Thesis as starting points for our developments. Among
all feature extraction methods, the two most common methods are principal component anal-
ysis (PCA) (Jolliffe, 2010) and partial least squares (PLS) (Rosipal and Krämer, 2006). Other
methods focus on including information about the noise, such as the minimum noise frac-
tion (MNF) transform (Green et al., 1988) or the related noise-adjusted principal components
(NAPC) (Blackwell, 2005).

All previous methods assume that there exists a linear relation between the original features. In
many situations, this linearity assumption does not hold, and a nonlinear feature extraction is
needed to obtain acceptable performance. Different nonlinear versions of PCA and PLS have
been developed, which can address nonlinear problems either by local approaches (Roweis
and Saul, 2000), neural networks (Kramer, 1991), or kernel-based algorithms (Shawe-Taylor
and Cristianini, 2004).

In the following sections, we first fix the notation used throughout the Thesis, and then sum-
marize the formulation, properties and relations of both linear and kernel multivariate analysis
techniques.
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Table 3.1: Specific notation for feature extraction methods.

n Total number of samples
ntrain Total number of training samples
ntest Total number of test samples
d Dimension of input space
nc Dimension of output space
X Input data matrix(size n× d)
Y Output data matrix(size n× nc)
X̃ Centered input data matrix
Ỹ Centered output data matrix
Cx, Cy Input, output centered sample covariance matrices
Cxy Input-output centered sample cross-covariance matrix
d f Number of extracted features
ui, vi ith projection vector for the input, output data
U, V [u1, . . . , ud f

], [v1, . . . , vd f
]. Projection matrices

X′, Y′ Extracted features for the input, output data
H Reproducing kernel Hilbert Space
φ(x) Mapping of x in feature space
K(xi, xj) 〈φ(xi), φ(xj)〉H. Kernel function
Φ [φ(x1), . . . , φ(xn)]>. Input data in feature space
K = ΦΦ> Gram or Kernel Matrix
K̃ Centered Gram or Kernel Matrix
A [α1, · · · , αd f

]. Coefficients for U = Φ>A

3.3 Notation

Before reviewing the framework of MVA both in the linear and nonlinear cases, let us first fix
the basic notation. Let {xi, yi}n

i=1 be a set of n data pairs, with xi ∈ Rd and yi ∈ Rnc where
d and nc are the number of dimensions of the input and output data, respectively. By using
matrix notation we can write, X = [x1, . . . , xn]> and Y = [y1, . . . , yn]>, where superscript >

denotes matrix or vector transposition. We denote by X̃ and Ỹ the centered versions of X and
Y, respectively. Note that, the operation of centering removes the mean of every variable in the
corresponding matrix. Cxx = X̃>X̃ and Cyy = Ỹ>Ỹ are the sample covariance matrices of input
and output data whereas Cxy = X̃>Ỹ is the sample cross-covariance matrix.
In order to solve the MVA problem, we can obtain the projections via a linear transformation,
X̃′ = X̃U, which for new test data X∗ reduces to:

X̃′∗ ≡ P(X̃∗) = X̃∗U, (3.1)

where U is the projection matrix to be estimated whose size is d× d f and the projected test data
(X∗) is a matrix of size ntest × d f .

Obtaining projections in kernel feature space for new test data X∗ involves two operations.
First, we have to map the data into the feature space, Φ̃∗. Second, we have to project these
mapped data with U, Φ′ = ΦU, which are expressed as a linear combination of the mapped
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samples, U = Φ̃
>A (Representer’s Theorem, Section 2.2.3). Therefore the projected test data

reduce to:
P(Φ̃∗) = Φ̃∗U = Φ̃∗Φ̃

>A = K̃(X∗, X)A, (3.2)

where X is the training data matrix, A columns contain the d f extracted feature vectors pro-
duced by a specific kernel method, and K̃ is the (centered) kernel containing as entries the
similarities between X∗ and X, which are defined by the dot product between mapped sam-
ples K̃(xi, xj) =

〈
φ̃(xi), φ̃(xj)

〉
(more information about kernels and how to center data within

Hilbert spaces in Section 2.2). The projected test data P(Φ̃∗) is a finite dimensional matrix of
size ntest × d f . Table 3.1 summarizes the specific notation used in this chapter.

3.4 Linear multivariate analysis

As we have seen in the previous section, MVA statistical methods present linear and nonlinear
versions. A common advantage of the linear methods is that they can be formulated using
standard linear algebra, the solution reduces to data rotations so they are easily interpretable,
and they can be implemented as standard or generalized eigenvalue problems that lead to con-
vex optimization problems. There are several ways to implement these methods but we have
focused on two approaches (more information in Appendix A): 1) in an iterative manner by
calculating the top eigenvalue and deflating the matrix data, and 2) in a clockwise manner by
solving the standard or generalized eigenvalue problems directly.

There are different approaches to linear MVA methods. Some disregard the target data (un-
supervised) and some do not (supervised). There is another type of approaches regarding the
kind of correlation criterion between variables which exploit the method to find a reduced set
of relevant features. PCA seeks the directions of maximum variance of the data and it ignores
the output data, i.e. class labels. On the contrary, PLS and orthonormalized PLS (OPLS), are
supervised methods: while PLS looks for the directions that maximally align input and out-
put data, OPLS reduces the Root Mean Square Error (RMSE) of the predictions using projected
data. In this section, we will review the principles of PCA, PLS and OPLS.

3.4.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a widespread method for dimensionality reduction in
real applications (Jolliffe, 2010). It consists in projecting the input data set onto the directions of
largest input variance. Thus, PCA only considers the input data and does not take into account
any target data set, i.e. it is an unsupervised feature extraction method. The criterion is expressed
compactly as:

PCA: U = arg max
U

Tr{U>CxxU}

subject to: U>U = I,
(3.3)
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where I is the identity matrix of size d f (number of extracted features), Cxx = X̃>X̃ is the cen-
tered sample covariance matrix of input data, and U is the projection matrix to be estimated.

Solving the problem in Equation (3.3) reduces to solve an eigenvalue problem of the input
covariance matrix (more information in Appendix A):

CxxU = ΛU, (3.4)

where Λ is the square matrix whose main diagonal contains the eigenvalues, i.e. Λ = diag([λ1,
. . . , λd]) and U is the projection matrix, U ∈ Rd×d f .

There are different ways to solve the eigenvalue problem. One of them is by means of Lagrange
multipliers, where the columns of the U matrix are the eigenvectors of the Cxx matrix associated
with the d f largest eigenvectors. The maximum number of features d f is limited by rank(Cxx)

when Cxx has maximum rank, d f = d. Another way to implement PCA is to extract the projec-
tion vectors one by one by means of sequential methods such as the deflation of the covariance
matrix (Appendix A). We use the first way in the experiments that have been carried out in this
Thesis.

PCA has multitude of applications such as a mere data exploration and visualization (Jolliffe,
2010). The main limitation of PCA apart of being a linear method, is that it does not consider
the target variables Y for the input vectors but simply performs a coordinate rotation that aligns
the transformed axes with the directions of maximum variance of the original data distribution.
Thus, there is no guarantee that the directions of maximum variance will contain good features
for discrimination or regression problems (see Figure 3.2).

3.4.2 Partial Least Squares (PLS)

The PLS algorithm, developed by Herman Wold (Wold, 1966), is probably one of the simplest
methods for supervised feature extraction, since it considers the input data and the target data
sets to define extracted features. The central idea of PLS is to find the projection vectors that
maximize the cross-covariance between the projected input and output data, whose problem is
expressed as:

PLS: U, V = arg max
U,V

Tr{U>CxyV}

subject to: U>U = V>V = I,
(3.5)

where Cxy = X̃>Ỹ is the covariance matrix of input and output centered data, and V is the
projection matrix to be estimated for the output data set.
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Original data PCA

PLS OPLS

Figure 3.2: Toy example consisting of two overlapping Gaussian distributions, and the solution obtain-
ing by PCA, PLS and OPLS first principal component and marginal pdfs of the two classes.

The equation (3.5) reduces to solve a Singular Value Decomposition (SVD) of the input-output
covariance matrix (see more information in Appendix A):

CxyV = ΛU or CxyU = βV. (3.6)

Some MVA methods consider also a feature extraction in the output space as is the PLS case,
Ỹ′ = Ỹ∗V where V is the projection matrix for the output data whose size is nc × d f , where nc

is the number of data classes.

In this work, the SVD of Cxy has been used in order to solve the problem (Sampson et al., 1989)
but it can be solved using different variants available in the literature. In our case, the maxi-
mum number of features d f that PLS can extract is limited by the output dataset dimensionality
(nc) or the number of dataset samples (n), since d f depends on rank(Cxy).

Figure 3.2 shows the first component obtained by PLS in a 2D toy example. PLS method is
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capable to distinguish both classes while, PCA does not distinguish then because, being an
unsupervised method, it does not take into account the labels.

3.4.3 Orthonormalized Partial Least Squares (OPLS)

In this subsection, we review a variation of the PLS method, known as Orthonormalized PLS
(OPLS). The OPLS method consists of finding the projections vectors that maximize the cross-
covariance between the input data with the output data (Y). Then, the two main differences
between PLS and OPLS are: 1) In OPLS, the original data are decorrelated, i.e. their covariance is
the identity matrix, and 2) output data are not projected, which means that OPLS only performs
dimensionality reduction in the input space, not in output space. That, OPLS is defined by the
following maximization problem:

OPLS: U = arg max
U

Tr{U>CxyC>xyU}

subject to: U>CxxU = I,
(3.7)

where I is the identity matrix of size d f (number of extracted features), Cxx = X̃>X̃ is the
centered sample covariance matrix of input data, Cxy = X̃>Ỹ is the centered sample cross-
covariance matrix of input-output data and U is the projection matrix to be estimated. Fig-
ure 3.2 shows the first feature selected by OPLS method, which is alike that the PLS first fea-
ture, in the toy example.

Equation (3.7) reduces to solving a generalized eigenvalue problem:

CxyC>xyU = ΛCxxU. (3.8)

There are different possibilities in order to solve the OPLS generalized eigenvalue problem.
One of them is to transform it into a standard eigenvalue problem, either premultiplying both
sides of the equation by C−1

xx or, more conveniently way, defining W = C−1/2
xx and after, pre-

multiplying right side of the equation by C−1/2
xx . Then, we get a standard eigenvalue problem:

C−1/2
xx CxyC>xyC−1/2

xx W = ΛW.

OPLS projections can be recovered from W as U = C−1/2
xx W. It is important to remark that the

transform from the generalized eigenvalue problem to standard eigenvalue problem is possible
only when Cxx is a full rank matrix. Even if the matrix Cxx is not a full rank matrix, it is still
possible to solve the problem (Golub and Van Loan, 1996).

The maximum number of features obtained by OPLS method is limited by the rank of Cxy. This
means that the OPLS maximum number of features depends on the dimensions of the output
data or the samples of input data since d f < min(nc, n), as in the PLS method.
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3.5 Kernel-based multivariate analysis

The previous subsection has reviewed some linear feature extraction methods. As we have
seen, these methods are easily interpretable but the projections are limited to the assumption
of linear feature relations. The extracted features have high quality when the data relations are
linear but the performance may be seriously degraded otherwise. Linear feature extraction also
suffers in case of strong collinearity of the inputs features, and also in the case of higher dimen-
sionality than number of examples. Both situations are ubiquitous in many scientific problems,
and are mainly related to poor estimation of covariance matrix in ill-posed situations. Further-
more, linear models can be wrong dealing with dataset that consists of more dimensions than
samples.

Several authors have proposed nonlinear extensions of MVA methods in order to solve the
problem of nonlinear data relations. The most widespread methods of transforming linear to
nonlinear MVA methods is through the kernel framework. To obtain the kernel version, we
must only replace the original centered data matrix X̃ by the centered data in feature space Φ̃.
Thus, the training dataset is {φ̃(xi), yi}n

i=1, where φ̃(xi) ∈ H and yi ∈ Rnc . In the following
subsections, we will show how through the Representer’s Theorem (Section 2.2.3) the linear
MVA algorithms are rewritten in terms of inner products reaching their nonlinear extensions.

3.5.1 Kernel PCA (KPCA)

The goal of KPCA is to find the projections that maximize the variance of the input data in the
feature space. By simply replacing X̃ by Φ̃ in (3.3), KPCA can be formulated in the following
way:

KPCA: U = arg max
U

Tr{U>Φ̃
>

Φ̃U}

subject to: U>U = I,
(3.9)

where matrix Φ̃ contains the mapped data centered in the Hilbert space. Making use of the
representer’s theorem one can introduce U = Φ̃

>A into the previous formulation, and the max-
imization problem can be reformulated as follows:

KPCA: A = arg max
A

Tr{A>K̃xK̃xA}

subject to: A>K̃xA = I
(3.10)

The solution to the above problem can be obtained from the eigendecomposition of K̃xK̃x rep-
resented by K̃xK̃xA = ΛK̃xA, which has the same solution as

K̃xA = ΛA. (3.11)

The maximum number of features d f is limited by the rank of the kernel matrix, thus d f ≤
rank(K̃x).
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Note that centering in feature space can be done implicitly via the simple kernel matrix oper-
ation K ← HKH, where Hij = δij − 1

n , δ represents the Kronecker delta δi,j = 1 if i = j and
zero otherwise (Section 2.2.3). It is worth mentioning that throughout the present Thesis we
considered to center data but recently, the centering operation has been questioned (Cadima
and Jolliffe, 2009; Shawe-Taylor and Cristianini, 2004), and it is possible to find PCA and KPCA
versions with uncentered data in original space (Jenssen, 2013b).

3.5.2 Kernel PLS (KPLS)

KPLS is the nonlinear kernel-based extension of PLS (Arenas-García and Camps-Valls, 2008).
The main difference between KPCA and KPLS is that while KPCA finds the projections con-
taining the maximum variance of the input data in the feature space, KPLS extracts projections
that account for both the projected input and target data. It is based on maximizing the vari-
ance between the projected data into a proper Hilbert spaceH and the target data matrix Ỹ (i.e.
the labels):

KPLS: U, V = arg max
U,V

Tr{(Φ̃U)>ỸV}

subject to: U>U = V>V = I,
(3.12)

By using again the representer’s theorem, the maximization problem becomes:

KPLS: A, V = arg max
A,V

Tr{A>K̃xỸV}

subject to: A>K̃xA = V>V = I,
(3.13)

As in the previous methods that we have reviewed, there are many ways of solving the prob-
lem. This is done either by solving an eigenvalue problem or as an iterative procedure. We
can obtain the solution to this problem from the SVD of K̃xỸ. Alternatively, the problem can
be efficiently solved using a deflation process. The many available variants of KPLS are de-
fined by different forms of deflation. Rosipal and Krämer (2006) present an overview of PLS
methods which can be adapted to nonlinear algorithms. Among all KPLS methods, we would
emphasize the KPLS Mode A and the dualPLS (Shawe-Taylor and Cristianini, 2004). The first
one is a deflation scheme that consists of the following two-steps iterative procedure:

1. Find the largest singular value of K̃xỸ, and the associated vector directions: {αi, vi},
where αi and vi are columns vectors of the A and V matrices.

2. Deflate the kernel matrix and labeled vector using:

K̃x ←
[

I−
K̃xαiα

>
i K̃x

α>i K̃xK̃xαi

]
K̃x

[
I−

K̃xαiα
>
i K̃x

α>i K̃xK̃xαi

]
(3.14)

Y = Y− K̃xαiY
K̃xαi

‖K̃xα‖2
2

(3.15)



38 CHAPTER 3. KERNEL MULTIVARIATE ANALYSIS IN REMOTE SENSING DATA PROCESSING

The dualPLS (Shawe-Taylor and Cristianini, 2004) uses the same deflation method above inside
an iterative method known as the iterative power method (see Appendix A). This deflation
procedure allows us to extract more features than output dimensions. This deflation method
has been selected in this Thesis. For a more detailed description, as well as implementation
details, the reader is referred to (Shawe-Taylor and Cristianini, 2004).

3.5.3 Kernel Orthonormalized PLS (KOPLS)

Kernel OPLS (KOPLS) presents the advantage of extracting the directions in feature space
H that minimize the residuals of a multiregression that approximates the label matrix, i.e.
arg minU ‖Ỹ− Φ̃UW‖2

F. It can be shown that this problem is equivalent to (Roweis and Brody,
1999):

KOPLS: U = arg max
U

Tr{U>Φ̃
>ỸỸ>Φ̃U}

subject to: U>Φ̃
>

Φ̃U = I,
(3.16)

whose dual form becomes:

KOPLS: A = arg max
A

Tr{A>K̃xK̃yK̃xA}

subject to: A>K̃xK̃xA = I,
(3.17)

where K̃y = ỸỸ>. It can be shown that the columns of A are given by the solutions to the
following generalized eigenvalue problem:

K̃xK̃yK̃xA = ΛK̃xK̃xA. (3.18)

We solved this problem with an iterative procedure that first computes the leading pair eigen-
value and eigenvector λi, αi (column vectors of Λ and A, respectively) and then deflates the
matrices. KOPLS method can only extract a maximum number of features given by the rank of
K̃xY, while as we have already seen the KPCA and KPLS are limited by the rank of K̃x.

3.5.4 Kernel Entropy Component Analysis (KECA)

KECA was recently proposed as a general method for feature extraction and dimensionality re-
duction in pattern analysis and machine learning, (Jenssen, 2010, 2013a). The KECA algorithm
is different from, but still intimately related to, the successful kernel multivariate signal pro-
cessing methods such as kernel principal components analysis (KPCA), kernel canonical corre-
lation analysis (KCCA) and kernel partial least squares (KPLS), (Arenas-García et al., 2013). On
the one hand, KECA maintains a probabilistic input space interpretation, seeks to capture the
entropy of the data in a reduced number of components, and constitutes a convergence point
between kernel methods and information theoretic learning (Jenssen, 2009). On the other hand,
KPCA, KPLS and KOPLS are also based on kernel feature space (reproducing kernel Hilbert space
- RKHS).
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KECA relies on the eigendecomposition of the (uncentered) kernel matrix, and sorts the eigen-
vectors according to the so-called entropy values of the projections. This is tightly related to
information-theoretic concepts and the field of density estimation. The entropy-relevant di-
mensionality reduction transforms the dataset in a way that reveals cluster structure and hence
information about the underlying class or cluster structures in the data (Jenssen, 2009, 2013a).

To be more precise, the measure of information used in Jenssen (2010) is the Renyi’s second
order entropy, given by

H = − log
∫

p2(x)dx, (3.19)

where p(x) is the pdf generating the data. Given a dataset D = {x1, . . . , xn} of dimensionality
d, the entropy may be estimated through kernel density estimation, KDE (Silverman, 1986) (as
we will see Sec.2.3.5) as − log v, where v is the so-called information potential (Principe, 2010):

v =
1
n2 1>n K1n (3.20)

where Kij = K(xi, xj) is any valid KDE kernel comprising the (n× n) kernel matrix and 1n is a
n-dimensional vector of ones. Using the kernel decomposition introduced in Jenssen (2010):

K = BB> = (UΛ
1
2 )(Λ

1
2 U>), (3.21)

we may write

v =
d f

∑
j=1

( n

∑
i=1

Bij

)2

=
d f

∑
j=1

(
λ

1
2
j 1>n uj

)2

. (3.22)

In this expression, U contains the eigenvectors in columns, U = [u1, u2, . . . , un], and Λ is a
diagonal matrix containing the eigenvalues of K, i.e. Λii = λi, and d f ≤ n is the number of

retained components. The terms (λ
1
2
j 1>n uj)

2 denote the entropy values. Note that KECA and
KPCA are somewhat related since the eigenvectors are the same in both cases. The difference
resides in the criterion for selecting the most relevant directions: retained variance in KPCA or
entropy in KECA.

3.6 Summary

Generally speaking, MVA methods look for projections of the input data that are “maximally
aligned” with the targets, and the different methods are characterized by the particular objec-
tives they maximize. Table 3.2 compares some of the most important properties of the methods
described in this chapter. An interesting property of linear methods is that they are based on
first and second order moments, and that some of their solutions can be formulated in terms
of (generalized) eigenvalue problems. Thus, standard linear algebra methods can be readily
applied. This property is shared by kernel methods as well. Table 3.2 shows the problem to be
solved, the constraints involved, and the maximum number of features that each method can
extract.
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Table 3.2: Summary of linear and kernel MVA methods. For each method it is stated the objective to
maximize (1st row), constraints for the optimization (2nd row), and maximum number of features (last
row).Vectors u and α are column vectors in matrices U and A, respectively. r(·) denotes the rank of a
matrix. Based on Arenas-García et al. (2013).

PCA PLS OPLS KPCA KPLS KOPLS KECA

u>Cxu u>Cxyv u>CxyC>xyu α>K̃2
xα α>K̃xỸv α>K̃xỸỸ>K̃xα α>K̃2

xα

U>U = I
U>U = I
V>V = I

U>CxU = I A>K̃xA = I
A>K̃xA = I

V>V = I
A>K̃2

xA = I
A>KxA = I

sorted by max.H

r(X̃) r(Cxy) r(Cxy) r(K̃x) r(K̃x) r(K̃xỸ) r(Kx)

Once the feature extraction with different methods is done, we project data onto the main di-
rections. We project test data using equation (3.1) in original space and (3.2) in feature space.
Figure 3.3 shows the obtained projections in a 2D example. The toy example is composed by
three sinusoidal snippets; each of them belonging to a different class (different colors). Linear
methods fail in finding good projections since they reduce to rotations and thus they cannot
cope with the nonlinear nature of the data distribution. Kernel methods find nonlinear projec-
tions that separate the classes better. The solution of KPCA does not allow to linearly separate
the data. This is due to the fact that it is very difficult to tune the kernel parameter without
labeled data, as previously studied in (Braun et al., 2008).

Original Data PCA PLS OPLS

KPCA KPLS KOPLS

class 1

class 2

class 3
 

 

 

 

Figure 3.3: Projections extracted by different linear and nonlinear feature extraction methods in a 2D
Toy example with three classes.
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PCA PLS OPLS

KPCA KPLS KOPLS

Figure 3.4: Faces projected onto the first two extracted features by different feature extraction methods.

Figure 3.4 shows another example to analyze the projections obtained by feature extraction
methods. We used the Olivetti faces dataset 1. The dataset is composed by 10 images of size
64× 64 pixels per person taken with different poses. A total of 40 persons with different illumi-
nation conditions were acquired. We selected 7 different persons to evaluate the performance
of the methods. Figure 3.4 illustrates the projected faces in a 2D space by the different feature
extraction methods (each color represents a face). As in the previous example, linear meth-
ods have serious problems to group faces of the same class, except the red and pink classes.
Also, the KPCA and KPLS methods have troubles to project data to discriminative representa-
tion, whereas the KOPLS method distinguishes the classes better that the rest of the methods,
yielding clearer clusters with higher separability.
Several feature extraction methods have been presented in this chapter. As we have seen, kernel
feature extraction methods help in the grouping of the data projection into the same class better
than the linear methods. Nevertheless, this occurs in nonlinear data distributions. Therefore,
before selecting a feature extraction method is recommendable to have prior knowledge of the
original data. A Matlab implementation of the algorithms is available at http://isp.uv.es/
simfeat.html for the interested reader.

1http://www.cs.nyu.edu/~roweis/data.html
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This chapter introduces a simple method for including invariances in support vector machine
(SVM) remote sensing image classification. We design explicit invariant SVMs to deal with the
particular characteristics of remote sensing images. The problem of including data invariances
can be viewed as a problem of encoding prior knowledge, which translates into incorporat-
ing informative support vectors that better describe the classification problem. The proposed
method essentially generates new (synthetic) support vectors from the obtained by training
a standard SVM with the available labeled samples. Then, original and transformed support
vectors are used for training the Virtual SVM (VSVM). We first incorporate invariances to rota-
tions and reflections of image patches for improving contextual classification. Then, we include
invariance to object scale in patch-based classification. Finally, we focus on the challenging
problem of including illumination invariances to deal with shadows in the images. Interest-
ingly, the methodology can be applied to any kernel method, thus constituting a new research
opportunity. Posteriorly, we will relate this new approach to the central core of this Thesis:
feature extraction with kernel methods.

43



44 CHAPTER 4. SUPERVISED KERNEL FEATURE EXTRACTION INCLUDING INVARIANCES

The chapter is partly based on the published papers:

� E. Izquierdo-Verdiguier, V. Laparra, L. Gómez-Chova, and G. Camps-Valls, “Including invariances in SVM remote

sensing image classification,” 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 7353–

7356, 2012.

� E. Izquierdo-Verdiguier, V. Laparra, L. Gómez-Chova, and G. Camps-Valls, “Encoding Invariances in Remote Sensing

Image Classification With SVM,” IEEE Geoscience and Remote Sensing Letters, vol. 10 (5), pp. 981–985, 2013.

4.1 Introduction

As previously discussed, dimensionality of the remote sensing images is one of the main prob-
lems in the analysis of data (see Chapter 1). The large amount of acquired data in remote
sensing favors the use of machine learning techniques. In Chapter 2 we presented different
techniques to analyze and turn into information input data. To reduce the model complex-
ity, we have applied a dimensionality reduction approach to the input data. There are plenty
of features extraction methods, but MVA stands out (summarized in Chapter 3). Of all MVA
methods previously explained, we will focus on supervised feature extraction methods in this
chapter.

The introduction of supervised feature extraction methods in remote sensing has increased in
the last decades. They are mostly used in classification or regression problems. Although Prin-
cipal Component Analysis (PCA) has been a widely used method in remote sensing, there are
other feature extraction methods that have been proposed to remote sensing problems such as
partial least square (PLS) or Orthonormized PLS (OPLS) methods. PLS applied to regression
is one of the most common techniques for spectral calibration and prediction to measure the
reflectance of canopy biomass (Hansen and Schjoerring, 2003; Cho et al., 2007) or soil organic
carbon (Cho et al., 2007), among others. Nevertheless, PLS and OPLS are possible to use them
for image classification. In (Arenas-García et al., 2013), not only a comparison among different
supervised feature extraction methods (linear and their kernel based methods) is presented, but
they also are applied to pixel-based hyperspectral image classification and regression problems.

In the following sections, we will discuss three important issues about supervised methods.
First, we will contrast supervised methods with the classical PCA and its nonlinear approach
(KPCA). Second, we will discuss about the inclusion of invariance (Izquierdo-Verdiguier et al.,
2012c, 2013b) not only into the classifiers, but also in feature extraction approaches. Finally,
we will discuss the main conclusions about the studied supervised feature extraction methods
with and without invariance encoding.
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Table 4.1: UCI database description (n: number of samples, d: number of dimensions, nc: number of
classes, ntrain: number of training samples, and ntest: number of test samples).

Database n d nc ntrain ntest

Ionosphere 351 33 2 80 172
Letter 20000 16 26 260 1040
Pendigits 10992 16 9 180 900
Pima-Indians 768 8 2 200 330
Vowel 990 12 10 150 330
wdbc 569 30 2 80 344

4.2 Comparison of supervised kernel feature extraction methods

Within the MVA family, there are several kinds of supervised feature extraction methods. We
will focus now on PLS and OPLS methods and their nonlinear kernel counterparts. We will
evaluate the performance of different supervised linear and nonlinear feature extraction meth-
ods and will compare its results to classical unsupervised methods, namely PCA and KPCA.
We will illustrate the results obtained in two cases evaluating the accuracy of methods for clas-
sification and for regression experiments in different databases and multispectral images.

4.2.1 Feature extraction for classification

In this section, we present the results obtained by applying different feature extraction meth-
ods to six real datasets from the University of California Irvine (UCI) Machine Learning Repos-
itory1 and the Pavia remote sensing multispectral image classification problem. First, we will
start explaining the data used in the experiments. And then, we will focus on the analysis
and comparison of the accuracy and the robustness between the supervised feature extraction
methods used prior the linear classifier.

Data collection

We selected some databases of the UCI repository: The Ionosphere dataset is a binary classi-
fication problem about the radar signal quality returned from the ionosphere; the goal for the
Letter dataset is to detect each of a large number of black-and-white rectangular pixel displays
as one of the 26 capital letters in the English alphabet; the Pendigits problem deals with the
pen-based recognition of handwritten digits; the Pima-Indians dataset constitutes a classical
problem of diabetes diagnosis in patients from clinical variables; the Vowel dataset deals with
the vowels detection problem in Japanese and contains data from a large number of time se-
ries of cepstrum coefficients taken from speakers; and finally wdbc is another clinical problem

1http://archive.ics.uci.edu/ml/datasets.html
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Figure 4.1: Overall accuracy (Left) and κ (Center) in an independent test set as function of different
numbers of extracted features. Right: RGB Pavia image.

for diagnosis of breast cancer in malignant/benign classes. The datasets were intentionally se-
lected either because of the observed high collinearity between input features or the diversity
in number of classes. Table 4.1 gives details on the dimensionality, number of classes and train-
ing and test stes used in the experiments which are explained below.

The last experiment deals with the problem of pixel classification of a hyperspectral image.
We applied different feature extraction methods plus a linear classifier to an hyperspectral re-
mote sensing image in order to analyze the methods in a real image (see the RGB image in
Fig. 4.1[right]). We used in this case an image acquired by the DAIS7915 sensor over the city
of Pavia (Italy)2, as it constitutes a challenging 9-class urban classification problem dominated
by structural features and relatively high spatial resolution (5-meter pixels). Following previ-
ous works on the classification of this image, we took into account only 40 spectral bands in
the range [0.5, 1.76] µm, and thus skipped thermal and middle infrared bands above 1958 nm.
Training and test sets using this image are 36 and 1710 samples, respectively.
We considered the Gaussian RBF kernel since it is the most common in kernel methods. This
kernel only introduces a scalar free parameter, σ. We obtained the RBF kernel by fixing the
width parameter (σ) to the average Euclidean distance between all samples.

Experimental results

We extracted feature projections and projected train and test data using Eqs. (3.1) and (3.2),
respectively. Then, a Least Squares (LS) linear regressor has been used because it is a simple
and fast model. The basic idea is to find the best predictions that minimize the prediction error.
In matrix notation, let X ∈ Rn×d and Y ∈ Rn×nc be a set of observations:

W∗ = arg min
W

‖Y− XW‖2,

whose solution reduces to the normal equations W∗ = (X>X)−1X>Y = X†Y, where † is the
Moore-Penrose pseudoinverse, and predictions for test data X∗ are obtained by Ŷ∗ = X∗W =

X∗X†Y.
2I would like to acknowledge Prof. Paolo Gamba for kindly providing the image.
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Table 4.2: Kappa statistic for different UCI databases.

Database d f PCA PLS OPLS KPCA KPLS KOPLS

Ionosphere 1 0.51 0.38 -0.27 0.54 0.51 0.55
2 0.11 0.37 0.52 0.39 0.55 –

Letter 1 0.005 0.04 0.04 -0.001 0.03 0.02
10 0.34 0.33 0.35 0.30 0.36 0.32
20 – – – 0.35 0.44 0.47

Pendigits 1 0.07 0.11 0.12 0.12 0.11 0.12
8 0.70 0.73 0.72 0.72 0.78 0.87
20 – – – 0.85 0.85 –

Pima-Indians 1 0.37 0.39 0.16 0.43 -0.09 0.24
2 0.32 0.37 0.16 0.43 0.10 –
3 0.14 – – 0.13 0.16 –

Vowel 1 -0.002 0.08 0.10 -0.005 0.10 0.11
9 0.37 0.35 0.38 0.39 0.51 0.58
20 – – – 0.45 0.58 –

wdbc 1 0.80 0.77 0.53 0.81 0.84 0.75
2 0.83 0.84 0.60 0.81 0.75 –
3 0.83 – – 0.81 0.75 –

For the particular case of classification, the linear model is followed by a “winner-takes-all”
activation function. We used the overall accuracy OA[%] and the estimated Cohen’s kappa
statistic κ. The former is the mean value of the correct prediction obtained by the classifier,
and the latter score measures the statistical agreement between observers. Both measures are
obtained from the confusion matrix, see (Congalton and Green, 1999).

Results for the UCI databases are shown in Table 4.2. The number of d f is variable according
to the number of classes in the database. It is also variable according to the rank of the matrix
applied to obtain the eigendecomposition which depends on the feature extraction method.
This happens with all methods but the KPLS, which depends on the decomposition algorithm
used (see Sec. 3.5.2). For this reason, Table 4.2 presents different values of d f depending on the
databases. The results were obtained for a different number of training and testing samples
for each database (see Table 4.1). In general, nonlinear methods (KPCA, KPLS and KOPLS)
outperform the linear approaches (PCA, PLS, OPLS). The supervised methods provide the best
results in all databases except for Pima-Indians. Remarkably, the KOPLS outperforms KPLS
in four out of five databases with less number of extracted features. Excluding Pendigits and
Letter databases which all feature extraction methods show low κ results, note that, the lower
κ values have obtained by OPLS method. This may suggest an OPLS overfitting problem.
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a) Training (PLS) b) Test (PLS) c) Training (OPLS) d) Test (OPLS)

Figure 4.2: Training and test data projections on two dimensions obtained by PLS and OPLS.

Figure 4.1 shows the results for the hyperspectral Pavia image for a different number of ex-
tracted dimensions d f . Nonlinear methods (dotted lines) generally lead to higher accuracy
than the linear methods (solid line). The KOPLS slightly outperforms PLS with lower number
of features. It is worth noting that the test accuracy obtained with the OPLS method is lower
than 50%, even when all possible extracted features are used. This is because the OPLS method
overfits the training data when the ratio ntrain/d is very low since very low variance directions
of the input space are used (Arenas-García et al., 2013). This issue of potential overfitting is
further analyzed in Fig. 4.2, which shows the data projections obtained by PLS and OPLS in
training and test datasets. The test data projected by PLS (Fig. 4.2(b)) allows to separate the
different classes, while the OPLS (Fig. 4.2(d)) is not able to do it. Figure 4.2(c) shows the over-
fitting for the projections of the data using OPLS while this does not happen with PLS. We will
come back to this issue in the next section, and will propose the inclusion of virtual examples
to remedy the problem.

4.2.2 Feature extraction for biophysical parameter estimation

In this section, we tackle the estimation of oceanic chlorophyll concentration from multispec-
tral MERIS measurements. The dataset simulates data acquired by the Medium Resolution
Imaging Spectrometer (MERIS) (Bezy et al., 1997; Rast and Agency, 1999) onboard the Envisat
satellite (MERIS dataset) and, in particular, the spectral behaviour of chlorophyll concentra-
tion in the subsurface waters. We selected the eight channels in the visible range (412-681 nm)
to be used for retrieval. The range of variation of chlorophyll concentration in this dataset is
0.02− 25 mg/m3 (Camps-Valls et al., 2006a).

In this experiment, the predictions are obtained using a linear regression model on top of
the projected data. We evaluate different quantitative measures of accuracy (with RMSE and
MAE), bias (with ME) and goodness-of-fit (with the Pearson’s correlation coefficient) for a vary-
ing number of extracted features. We compare the results obtained by 1) unsupervised linear
PCA and its nonlinear kernel version, (KPCA), and 2) supervised feature extraction algorithms
(PLS and OPLS their nonlinear version KPLS and KOPLS). Table 4.3 shows the obtained results
with ntrain = 135 and ntest = 865 samples to obtain the measures of accuracy in the test dataset.
As in the classification section, the Gaussian RBF kernels have been obtained fixing the kernel
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Table 4.3: Estimated results for the oceanic chlorophyll concentration retrieval problem versus the num-
ber of extracted features.

Model RMSE MAE |ME| R

PCA (d f = 1) 0.484 0.385 0.005 0.221
PCA (d f = 2) 0.352 0.279 0.007 0.704
PCA (d f = 3) 0.294 0.228 0.006 0.809
PCA (d f = 4) 0.235 0.170 0.006 0.882
PLS (d f = 1) 0.429 0.339 0.008 0.502
OPLS (d f = 1) 0.153 0.109 0.005 0.951

KPCA (d f = 1) 0.486 0.390 0.008 0.194
KPCA (d f = 2) 0.480 0.383 0.015 0.250
KPCA (d f = 3) 0.368 0.292 0.014 0.673
KPCA (d f = 4) 0.363 0.280 0.015 0.682
KPLS (d f = 1) 0.401 0.317 0.022 0.589
KPLS (d f = 2) 0.350 0.278 0.022 0.709
KPLS (d f = 3) 0.339 0.269 0.008 0.730
KPLS (d f = 4) 0.312 0.238 0.005 0.785
KOPLS (d f = 1) 0.143 0.066 0.037 0.961

width parameter to the average Euclidean distance between all samples.

On average, nonlinear methods obtained better results than the linear approaches with few
features (e.g. d f = 1). Specifically, KOPLS method obtained the best results reducing the
prediction error around 25% with respect to the KPCA and the linear PCA and PLS methods.
Increasing d f , the best predictions are obtained by PCA but in order to improve a result such
as the KOPLS with d f = 1, PCA requires at least four extracted features.

4.3 Invariant kernel feature extraction

Up to now, we have checked the robustness of the different methods using measures of classifi-
cation (OA, κ) or regression (RMSE) accuracy in several toy examples and remote sensing data
processing problems. All the previous feature extractors used the data directly, and did not
consider the inclusion of prior knowledge about the problem. This limitation has actually led
to eventual problems of overfitting and lack of expressive power. To circumvent these prob-
lems many forms of prior knowledge have been considered in remote sensing data processing.
For example, in active learning, interaction with a user is the most naive form of incorporating
knowledge as manual labeling corrects the posterior probability provided by a limited classi-
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fier (Tuia et al., 2011b). In the case of relying on the classical smoothness assumption of natural
images, it is reasonable to regularize the solution by including contextual, multisource, multi-
angular or multitemporal information. Another example is to develop statistical models that
invert radiative transfer models that encode plausible physical relations between features and
biophysical parameters (Darvishzadeh et al., 2011).

Mathematical models, such as classifiers or regressors, should be robust to uninformative changes
in the data representation. The property of such mathematical functions is called ‘invariance’,
and the algorithm is referred to as being ‘invariant’, i.e. its decision function should be unal-
tered under transformations of data objects. The problem of encoding invariances in remote
sensing image processing applications is ubiquitous. An algorithm for biophysical retrieval
estimation should be resistant (invariant) to illumination changes and to canopy spectral in-
variants. Similarly, a classifier should be invariant to rotations of patches, to changes in illumi-
nation and shadows, or to the spatial scale of the objects to be detected. The question raised
here is how to include any kind of prior invariant behavior into a large margin classifier.

One way to perform supervised classification of multispectral and hyperspectral remote sens-
ing data is to use the Support Vector Machine (SVM, see Section 2.3.1) kernel algorithm which
provides robustness and accuracy to the classification. Different ways of incorporating invari-
ances in SVM were originally presented in (Schölkopf et al., 1996; DeCoste and Schölkopf, 2002;
Chapelle and Schölkopf, 2002). Recently, other methods have been presented: Walder and
Lovell (2005) proposed a penalization of the variance of the decision function across similar
class memberships; while in Shivaswamy and Jebara (2006) the classifier is forced to be invari-
ant to permutations of sub-elements within each sample. The work of DeCoste and Schölkopf
(2002) considers two main solutions to the invariance problem: designing particular kernel
functions that encode local invariance under transformations, or to generate artificial examples
from the selected support vectors and train a SVM with them. The latter method is informally
named Virtual SVM (VSVM) and, because of its simplicity and effectiveness, it is the one stud-
ied in this Thesis in the context of remote sensing image classification.

We will explain the proposed Virtual Support Vector Machine (VSVM) as a way to deal with the
invariance problem. Subsequently, we show experimental results on three problems: encoding
invariances to rotations and reflections of image patches for contextual classification; encod-
ing invariances to the different scales of objects in the land cover classification, and encoding
invariances to illumination changes to deal with shadows in the images.

4.3.1 Virtual SVM

The Virtual SVM (VSVM) implements invariances in a very simple and intuitive way. The
method consists of three steps:
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Step 1 Step 2 Step 3

? ?

Figure 4.3: Illustration of the Virtual SVM in a binary toy example. The prior knowledge that we want
to encode here is that the classification function should be invariant to transformations of the horizontal
feature. The first step of the algorithm gives a wrong prediction to the green test sample because it does
not fulfill the invariance assumption since the sample should belong to the blue class. The second step
generates a set of virtual support vectors from the two found before: intuitively, the idea is to construct
a more meaningful hyperplane by forcing the presence of SVs in those regions to which the classifier
should be invariant. By training a SVM again with both SVs and VSVs, a correct hyperplane is obtained
in the third step.

1. Train the standard SVM (see Section 2.3.1) with the available training data, and find the
corresponding support vectors (SVs).

2. Perturb the features of the found SVs to which the solution should be invariant. This
procedure generates a set of virtual SVs (VSVs).

3. Train a new SVM with both SVs and VSVs.

The method is intuitively illustrated in Fig. 4.3. The VSVM is general enough to encode any
prior knowledge about the invariance of the classifier to specific features. The method was
originally applied for handwritten digit recognition applications, in which the classifier should
be invariant to rotation of the digits (Schölkopf et al., 1996; DeCoste and Schölkopf, 2002).
Nevertheless, as we will see in the next section, encoding more challenging invariances may be
harder in remote sensing image analysis.

4.3.2 Experimental results

In the experiments, we compare the standard SVM and the VSVM, both using the standard ra-
dial basis function (RBF) kernel with length-scale σ. A 10-fold cross-validation procedure was
used to find the optimal SVM parameters, σ ∈ [10−2, ..., 102], C ∈ [1, ..., 103]. In all cases, the
one-versus-one multiclass scheme implemented in LibSVM (Chang and Lin, 2011) was used.
We report different figures of merit: overall accuracy (OA[%]), the estimated Cohen’s kappa
statistic (κ), and the rate of support vectors used after training both SVM and VSVM. Note that
comparing the total number of SVs would constitute an unfair measure because the VSVM will
always use by definition more training samples: SVs plus VSVs. We train the models with
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Figure 4.4: Example for encoding invariance to rotation. The leftmost patches (shaded) are illustrative
SVs of the 9 different classes obtained in the first classification round by SVM in the QuickBird image.
From these SVs, we generate the three rightmost patches (called virtual support vectors) by rotations
and reflections.

different number of labeled examples per class, and show results in an independent test set. In
particular, we compare the mean and standard deviation of random training sample selections,
and test for statistical significance of the differences between models. Depending on the invari-
ance to be encoded, specific parameters are varied, as discussed in the following subsections.
Also note that in multiclass scenarios, the virtual support vectors should be generated for the
class that encodes the invariance only.

Invariance to rotations

In the first experiment, we used a QuickBird image of a residential neighborhood of Zürich,
Switzerland 3. The image was acquired in August 2002, its size is 329× 347 pixels, and has a
spatial resolution of 2.4 m. A total of 40,762 pixels were labeled by photointerpretation, and as-
signed to 9 different land cover classes, such as soil, buildings, parkings, meadows, vegetation,
roads, etc. Figure 4.6 shows an RGB composite and the ground truth available.

To enhance the performance of classifiers in some particular classes, morphological top-hat fea-
tures were computed for the four bands and stacked to the multispectral bands before training
the models. We used as structural elements squares and disks of sizes 5, 7 and 9, thus yielding
a total of 22 spatial features. We performed patch-based classification: the image is divided into
disjoint squared windows (patches) of size w, and each block is converted into a vector contain-
ing as many features as pixels are in the window. These vectors are used for classification, and
its corresponding label is that of the center pixel in the patch. This is a very effective method
to impose spatial smoothness in the classifier, and it is a procedure widely used in computer
vision applications. Different patch sizes were considered, w ∈ {3, 5, 7, 9}. In this setting, the

3We would like to acknowledge Dr. Tuia at the EPFL (Switzerland) for kindly providing the QuickBird image.
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Figure 4.5: Kappa statistic κ (left) and SVs rate [%] (right) as a function of the number of training
samples and window size w.

VSVs were generated by essentially rotating and reflecting the patches corresponding to the
SVs, as illustrated in Fig. 4.4. We assume that the classifier should be invariant to the rotation
or reflection of a patch, provided that the patch size contains enough information about the
class characteristics.

Figure 4.5 shows the performance of the methods as a function of the used number of training
samples and window size. Accuracy results show that in general VSVM performs better than
SVM for all window sizes, but the gain is slightly higher with larger window sizes. As window
size increases pixels from different classes are included as features for the classifiers (and also
used for generating VSVs). This can eventually lead to decreased performance. Similar trends
for different window sizes are observed for the standard SVM, but the curves of the proposed
VSVM cross each other as more samples are included. Thus suggesting an optimal window size
for encoding this type of invariance in this image. Another interesting observation is that the
rate of SVs obtained with the VSVM is roughly constant for all training dataset sizes, suggest-
ing that the introduced virtual vectors are rich. However, the standard SVM leads in general to

RGB GT SVM (76.14, 0.73) VSVM (83.15, 0.80)

Figure 4.6: True-color composite (RGB) and ground truth (GT) used in experiment 1 of patch-based
classification. Classification maps of the experiments using standard SVM and VSVM with 500 training
samples selected spatially disjoint. Best results are shown in parentheses in the form of (OA[%],κ).
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Figure 4.7: Generation of virtual support vectors by up-scaling and down-scaling 5 regular support
vectors (each one in the central shaded column).

sparser models (remember that SVM uses a lower overall number of training vectors by defi-
nition). Actually, this turns to be even more noticeable with an increasing number of training
samples.

Figure 4.6 shows the accuracy results and classification maps obtained with SVM and VSVM
for the specific case of using a total of 500 training patches with w = 5. Both classifiers show
high classification scores and the maps, generally, detect all major structures of the image. An
improved numerical performance is obtained with the proposed VSVM (about +7% both in
OA and κ). These results demonstrate the capabilities of the method to include invariances in
the classifier, but also show that properly encoding the invariance is of paramount importance.

Invariance to objects scales

In this experiment, we introduce invariance to object scale in SVM: this means that the same
object with different sizes should be univocally classified. This illustrative example simply
focuses on the binary problem of classifying image patches as ‘tree’ or ‘bare soil’. We used
orthoimages of the Comunitat Valenciana autonomous region (Spain) provided by the Instituto
Cartográfico Valenciano (ICV)4. The images were acquired in 2007 using an airborne Vexcel
UltraCam camera (Leberl et al., 2003). The images have 0.5 m spatial resolution and 4 spectral
bands (RGB and NIR). We generated a tree database with different classes (oranges, almond
trees, olive trees, etc.) as well as uncultivated (bare soil) areas. Image patches of 13× 13 pixels
were used for classification.

4http://www.icv.gva.es/
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Table 4.4: Number of SVs, VSVs generated and VSV finally used in the model as a function of the
number of training samples.

Training samples 50 100 200 500 1000

SVs 26 36 59 112 188
Generated VSVs 81 149 268 585 759
Selected VSVs 50 87 152 341 491

The resizing operation was done by bicubic interpolation. Note that the VSVs must have same
dimensions as the original samples. In order to generate VSVs, we resized a SV (image patch)
and then selected the central 13× 13 pixels. When the output size is smaller than the original
one (decreasing the object size), we increase first the size of the original image by using a mir-
ror padding. A careful padding is needed to create realistic virtual support vectors. It is also
important to note that encoding the invariance can be done in this case for a particular feature
(e.g. the image intensity) which alleviates the computational cost involved in the process. Fig-
ure 4.7 shows examples of different SVs (central column) that give rise to generated VSVs.

Figure 4.8 shows the results for a different number of training samples for a fixed test set of 1000
different samples. We performed 50 realizations for each number of training samples. The scale
limits was set to 50% and 120%, which are realistic values for trees. The amount of VSVs gener-
ated for each SV is different in each realization, and have been tuned by cross-validation inside
the training set. Results show that using the VSVs clearly improves the performance of SVM.
The average improvement with VSVMs is more noticeable with a low number of training sam-
ples, which suggests that the procedure helps in describing the class distributions properly.
The average gain achieved is around +5% for all situations, and statistical significant differ-
ences between methods are observed (note that error bars showing confidence intervals at 95%
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Figure 4.8: Classification results for invariance to object scale for the standard SVM (blue) and the
VSVM (red) as a function of the number of training samples. Error bars indicate confidence intervals at
95% over the average accuracy computed for 50% realizations.
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RGB SVM (0.79±0.11) VSVM (0.84±0.09)

Figure 4.9: True-color composite (RGB) used in the third experiment of patch-based classification and
shadow invariance. Classification maps of the experiments using standard SVM and VSVM with 50
training pixels. Results are shown in parentheses in the form of (mean± standard deviation of κ in 20
realizations).

do not generally overlap).

Table 4.4 shows the number of SVs and VSVs for each number of training samples. Reported re-
sults are the mean of the 50 realizations. Note how, although VSVM obtains better classification
performance, the solution is less sparse.

Invariance to shadows

The third experiment deals with the segmentation of hyperspectral images. We used data ac-
quired by an airborne ROSIS-03 optical sensor of the city of Pavia (Italy) (Camps-Valls et al.,
2014). The image consists of 102 spectral bands of size 1400× 512 pixels with a spectral cover-
age ranging from 0.43 to 0.86µm. Spatial resolution of the scene is 1.3 m. 5 classes of interest
(buildings, roads, water, vegetation and shadows) have been considered, and a labeled dataset
of 206, 009 pixels has been extracted by visual inspection. As in the previous examples, we per-
formed patch-based classification. For this purpose, we only used 50 training patches of size
w = 5. This example deals with a different, but rather common, problem in remote sensing
images: the presence of shadows.

The study of the presence of shadows and how to remove them before image processing (e.g.
biophysical parameter estimation or classification) has been long studied (Finlayson et al.,
2006). It is well-known that the radiance ratio shadow/sunlit increases as the sunlight gets
weaker, thus depending on the hour of the day; and the ratio is dependent on the wavelength,
due to the direct and diffuse light proportions. The intensity of the shadows is also influenced
by the spatial neighborhood. In Yamazaki et al. (2009), an exponential behavior of the ratio
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shadow/sunlit as a function of the wavelength was observed in the visible range of Quickbird.
With these observations in mind, we encoded invariance to shadows by generating VSVs from
exponentially-modulated versions of the SVs, xvsv(λ) = xsv(λ) exp(−γλ), where γ is a param-
eter that controls the impact of the spectral decay of the shadow/sunlit ratio as a function of
the wavelength λ. We should note that only those SVs belonging to the class ‘shadow’ were
used to generate VSVs, resembling the invariant SVM in Shivaswamy and Jebara (2006).

Numerical results and classification maps are reported in Fig. 4.9. Again, VSVM leads to more
accurate results than the standard SVM in this experiment. Essentially, we observe about +5%
gain in κ and overall accuracy (not shown), and slightly more stable results for different realiza-
tions, even with a reduced number of examples. Looking at the classification maps of Fig. 4.9, it
is however observed that encoding shadow invariance reports some improvements, especially
noticeable on the bridge and a more homogeneous classification on flat areas (see crossroads in
the center of the image). The obtained numerical and visual results confirm the benefits of the
invariance encoding in general. Nevertheless, we should note here that a statistical compar-
ison between the solutions with a McNemar’s test McNemar (1947) did not show significant
differences (|z| < 1.96). The marginal homogeneity assessed by McNemar’s test (and many
other statistical tests) assume independence between the pairs, which might not necessarily
hold in this particular case: the SVs used in SVM are also included in the VSVM. We also used
Wilcoxon’s rank sum tests to assessed statistical differences and results were similar to those
obtained with the McNemar’s test. Moreover, encoding shadow invariance in such a simple
way may report some undesired effects in other classes, especially on the class ‘vegetation’ in
this case.

4.4 Extracted features from virtual samples

In this section, we will compare the kernels and the extracted features using the original sam-
ples and also using the combination of original and virtual samples. As previously described,
the Virtual SVM is a better approach than the standard SVM when the prior knowledge is prop-
erly included. Now, we will relate this new approach to the central core of this Thesis: feature
extraction with kernel methods. For this, we focus on assessing two main points: 1) how the
kernel (and its information content) changes with the inclusion of the virtual samples, and 2)
how the extracted features are modified after adding the prior knowledge.

In order to show the variations in the kernel and the extracted features when virtual samples
are added, we first use a bidimensional synthetic dataset composed of 600 samples divided
in two classes. The example is generated by a Gaussian distribution (class 1) surrounded by
a ring-shaped distribution (class 2). In Figure 4.10, we study a toy example distribution and
the kernels generated by the training samples and the virtual samples generated by invariance
to rotations, as well as the decision boundary obtained by both classifiers. We have used 30
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SVM (97.89, 0.96) VSVM (98.60, 0.97)

Figure 4.10: Example of differences between the kernels and the decision boundary of the standard
SVM and Virtual SVM. Selected SVs are marked in cian.

samples to train the classifier and the remaining samples have been used for testing. One
might think that the ‘’virtual kernel” show less similarity between classes than the standard
kernel, due to the fact that the first kernel is generated by the support vectors obtained by the
second kernel. Nevertheless, the invariance produces a virtual kernel capable of distinguishing
the classes and obtaining better accuracy than the standard RBF kernel.

We test the presented supervised feature extraction methods with the RBF kernel (using train-
ing samples) and the virtual kernel (using virtual samples) in order to compare the methods
using both approximations. The database is bidimensional hence the number of the extracted
features is maximally two, since both are limited by the rank of the centered kernel matrix. The
exception is the KOPLS method that only can extract as maximum one dimension less than the
number of classes in the database since is limited by the rank(K̃xY) (see Sec. 3.5).
Figure 4.11 shows the data projected onto the top two components. We observe that the prin-
cipal features are modified when the virtual samples are added. We measured these changes
using the Pearson’s correlation coefficient and the mutual information between the projected
data onto them. The first index is the normalized trace of the covariance matrix (Sriperum-
budur et al., 2010) of the two principal components and the second one is the estimated mutual
information between the data projected onto the first two principal components (Cover and
Thomas, 2005).

KPCA and KPLS obtain features with both lower correlation and less mutual information using
virtual samples than standard samples. That is, the two first components using virtual samples
are more independent and less redundant than using the standard kernel. Note that the inde-
pendence of the components does not necessary mean that the classification of the samples is
better than that of dependent components. This may be particularly harmful in unsupervised
feature extraction, as looking for independent features might result in not sufficiently discrim-
inative power. In addition, note that classification in an ‘’independent” domain is highly af-
fected by the type of classifier used. Figure 4.12 shows the data test projected onto the two
first components (KPCA and KPLS) and the accuracy of the classification. The KPCA, being an
unsupervised method, obtains independent components but it is not capable of distinguishing
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KPCA: (0.92, 1.27) KPCA with Invariance: (0.01, 0.04)

KPLS: (1.00, 2.33) KPLS with Invariance: (0.17, 0.74)

KOPLS KOPLS with Invariance

Figure 4.11: Toy example: Principal components obtained by KPCA (top), KPLS (middle) and KOPLS
(bottom) without invariances (left) and with invariances (right) using the training samples (red and blue
dots). We also give the correlation and mutual information between features in parentheses.

both classes. Whereas the KPLS method increases the classifier accuracy using virtual samples.
For the KOPLS method, we could not measure the correlation and mutual information since we
can only extract one feature (number of features minus one). However, using only one feature,
KOPLS method obtains similar results to KPLS method.

4.5 Summary

In this chapter, performance of supervised feature extraction methods (linear and nonlinear)
has been analyzed. We have applied classification and regression algorithms using real databases
to measure the quality of different FE projections. In general, KOPLS obtains better results than
the other methods using a lower number of extracted features, not only in the regression but
also in the classification scenario. This improvement of the results, especially in the regression
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test1 test2 train1 train2

KPCA: 93.16 KPLS: 98.07 KOPLS: 84.21

KPCA with Invariance: 50.18 KPLS with Invariance: 98.42 KOPLS with Invariance: 98.42

Figure 4.12: Toy example: Decision boundary of the linear classier and the original data projected onto
the two first dimensions in the case of KPCA (left) and KPLS (middle) and onto the first dimension in
the case of KOPLS (right) without invariances (left) and with invariances (right).

cases, is due to the fact that KOPLS and OPLS found the projections that minimize the MSE.
Whereas, KPLS and PLS projections are those projections that align with the output labels, and
the KPCA and PCA projections are the directions that retain maximum variance without tak-
ing into account the labels of the samples. Consequently, much more discriminative projection
vectors are typically extracted by KOPLS.

There are other ways to improve the accuracy of the classification or the error in the regression
case. One of them is through the inclusion of prior knowledge. This knowledge was added here
to the classifier by means of encoding the invariances into artificial generated examples. We
introduced a simple method to include data invariances in SVM remote sensing image clas-
sification. We illustrated the performance in relevant remote sensing problems: invariance to
rotations and reflections of image patches for contextual classification, object-scale invariances,
and including prior knowledge on the way shadows affect the acquired images. Good classifi-
cation accuracy was obtained in general when few labeled samples were available for training
the models. Other invariances, from translation to illumination and canopy spectral invari-
ances, and other kernel methods, from regression to clustering methods, could be explored. In
all cases, the inclusion of physically-based models may lead to improved invariant statistical
models.
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Finally, we have introduced virtual samples into nonlinear feature extraction methods in or-
der to study the performance of the methods using virtual samples. We have seen that the
kernel constructed by virtual samples is decomposed in more independent features than the
kernel constructed using available real samples, and therefore they lead to a redundant data
representation. We have observed that the independence of the features does not guarantee an
improvement of the classification accuracy, especially for KPCA. In general, we observed an
improvement of KOPLS results using virtual samples.

The observations in this chapter confirm that, in spite of PCA and KPCA methods are the most
widely used methods in remote sensing data processing, they are not always the most appro-
priate, so it would be advisable to analyze data before selecting the feature extraction method
to apply them. Actually, accounting for labeled information guides the feature extraction better
so KPLS or KOPLS would be a first choice in most of the cases. In cases of few labeled samples,
an alternative would be including virtual samples in these methods to alleviate the possible
overfitting issue.
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This Chapter describes our work in unsupervised kernel feature extraction by proposing two
different approaches: an information theoretic kernel method and a generative kernel function.
The first one is an optimized version of the KECA and seeks for the minimum number of
components that maximize entropy and it is applied to pdf estimation, while the second one
learns a kernel metric automatically from the data and it is used for clustering.

This Chapter is based on the works:

� E. Izquierdo-Verdiguier, V. Laparra, R. Jenssen, L. Gómez-Chova, and G. Camps-Valls, “Optimized Kernel Entropy

Components,” IEEE Transactions Neural Network, submitted (2014).

� E. Izquierdo-Verdiguier, R. Jenssen, L. Gómez-Chova, and G. Camps-Valls, “Spectral Clustering with the Probabilistic

Cluster Kernel,” Neurocomputing, submitted (2013), second review round.
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5.1 Introduction

The previous chapter has introduced supervised kernel feature extraction: different feature ex-
traction methods have been compared and the use of invariant kernels has been proposed in
remote sensing. The use of supervised methods in remote sensing generates the necessity to
work with labeled samples. However, this labeling process is expensive and costly as it in-
volves terrestrial campaigns or photointerpreters in the case of classification problems or in
situ measurements for biophysical parameter retrieval. Because of the difficulties in obtaining
labeled samples and the associated statistical problems, unsupervised algorithms are typically
preferred. Unsupervised algorithms try to find the most relevant features of the data manifold
that describe the problem, either in terms of information, variance, or clustering.

The most widely used unsupervised feature extraction method in remote sensing is PCA. It
is possible to find multitude of works that use PCA as a tool, for mutitemporal (Byrne et al.,
1980), fusion (Pohl and Van Genderen, 1998) or dimensionality reduction (Jia and Richards,
1999). Nevertheless, this not imply that the PCA is the most appropriate feature extraction
method in all cases (Cheriyadat and Bruce, 2003). Other unsupervised approaches have been
recently used in remote sensing: Independent Component Analysis (ICA) and its nonlinear
version for change detection (Marchesi and Bruzzone, 2009) or Kernel Entropy Component
Analysis (KECA) for cloud detection (Gómez-Chova et al., 2012).

An important learning paradigm in unsupervised feature extraction is clustering, which has
been applied in image fusion (Amorós-López et al., 2011) or in cloud screening (Gómez-Chova
et al., 2007). Clustering is of fundamental importance in data analysis. This is reflected by
the vast literature on the subject, including well-known methods such as k-means and Gaus-
sian mixture models (GMMs) (Xu and Wunch II, 2008; Jain, 2010). Recently, very promising
approaches to clustering have been proposed in the form of the interrelated kernel-based and
graph-spectral techniques (Shawe-Taylor and Cristianini, 2004; von Luxburg, 2007; Filippone
et al., 2008; Jain et al., 2012). These methods typically consist of two separated stages: First, fea-
tures are generated based on the (top) eigenvalues and eigenvectors of a matrix that encodes
similarities between pairs of data objects. Then, extracted features are globally clustered using
k-means. The main advantages of such methods are their well-understood behavior in terms
of linear algebra and their ability to correctly cluster both linear and nonlinear data structures.

In this Chapter, we propose two unsupervised kernel feature extraction methods: First, we
propose the optimization of the kernel decompositionin KECA method (section 3.5.4), which
is based on the ICA framework (Hyvärinen et al., 2001). With this optimization we will obtain
features that are more efficient than KECA features for density estimation. Additionally, the
selection of the kernel parameter critically affects the performance of both the KECA and the
proposed method (Izquierdo-Verdiguier et al., 2014b) . Therefore, we also analyze the most
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common kernel length-scale selection criteria. Second, we present the Probabilistic Cluster
kernel (Izquierdo-Verdiguier et al., 2013a), which is not only proposing a new kernel based on
probabilistic models (section 2.3.5), but the idea of using this kind of kernels for data clustering,
hence finalize the data clustering through clustering-based kernels. The Probabilistic Cluster
Kernel (PCK) for data clustering is proposed as an unsupervised approach. In this setting, we
have the need to generate a parameter-free kernel due to the lack of labeled samples (super-
vised information) that help in tuning parametrized kernel functions. Hence, our PCK is a
parameter-free kernel learned directly from the data. Furthermore, the PCK captures the data
manifold structure at different scales and, therefore, we can better cover data manifolds than
with other kernel types, such as the RBF.

5.2 Optimized Kernel Entropy Component Analysis (OKECA)

Kernel entropy component analysis was proposed in pattern analysis and machine intelligence
(Jenssen (2010), section 3.5.4). It has proven useful in different applications e.g. remote sensing
data analysis (Gómez-Chova et al., 2012; Luo and Wu, 2012; Luo et al., 2013), face recogni-
tion (Shekar et al., 2011), chemical processes modelling (Jiang et al., 2013), high-dimensional
celestial spectra reduction (Hu et al., 2013) and audio processing (Xie and Guan, 2012). Several
extensions have been proposed for feature selection (Luo et al., 2012), class-dependent feature
extraction (Cheng et al., 2011) and semisupervised learning as well (Myhre and Jenssen, 2012).

One distinguishing feature of KECA is that the method originates from kernel density esti-
mation (KDE) (Silverman, 1986; Girolami, 2002b; Duin, 1976), as do principal curves estima-
tion (Ozertem and Erdogmus, 2011) and the family of information theoretic learning methods
(Principe, 2010). In KDE, the key is the kernel function, locally approximating the underlying
probability density function (pdf). This in turn enables estimation of entropy, a quantity that
describes the shape of the pdf (Cover and Thomas, 2005). The KDE kernel must be a non-
negative function that integrates to one (i.e. a density) but needs not be positive semi-definite
(PSD). The KDE kernel is versatile since it is not limited to PSD. However, many KDE kernels
are PSD, well-known examples include the Gaussian kernel, the Student kernel, and the Lapla-
cian kernel (Kim and Scott, 2012). If the KDE kernel used in KECA is PSD, then there are close
relations to the aforementioned kernel signal processing methods, in the sense that the kernel
computes an inner-product in a reproducing kernel Hilbert space (RKHS). In this situation,
KPCA, KCCA and KPLS are based on RKHS learning algorithms to maximize e.g. the feature
space variance, correlation or alignment with the output variables. PSD KECA hence bridges
KDE, information theoretic learning and RKHS learning.

Although both KDE and kernel methods have experienced great success, all kernel-based meth-
ods, including the one proposed in this section, are sensitive to the kernel function used. For
instance, many kernel methods depend heavily on a bandwidth, or length scale, parameter. In
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addition, all the aforementioned spectral methods may need a considerable number of com-
ponents (eigenvalues and eigenvectors) in order to properly describe the data. This may be
undesirable e.g. in compression and data visualization contexts.

Here, we take advantage of the KDE foundation of KECA (see also Girolami (2002b) for further
details), and introduce an optimization procedure aiming at compressing the entropy infor-
mation into optimal directions in feature space. To accomplish this goal, we introduce a rota-
tion procedure that resembles the one in Independent Component Analysis (ICA) (Hyvärinen
et al., 2001). The resulting Optimized KECA (OKECA) employs a gradient descent method for
searching the new features. Two major benefits stand out with respect to the extracted OKECA
components:

1. OKECA shows great robustness to the kernel bandwidth parameter. This is important, as
there is no universally accepted kernel size selection procedure for unsupervised KDE-
based kernel methods.

2. We use OKECA in order to improve the KDE. This is achieved based on far fewer com-
ponents compared to KECA.

The rest of the section is divided as follows. Section 5.2.1 presents the OKECA formulation
and proposes a density estimation that exploits kernel feature characteristics. Section 5.3.3 is
devoted to the analysis of the results. We use OKECA as a feature-extraction method and
analyze the retained entropy, show the estimated pdf, and perform data classification.

5.2.1 Proposed Optimized Kernel Entropy Components (OKECA)

As mentioned before, if the KDE kernel is PSD, then there is a close connection between KECA
and un-centered KPCA since the kernel function in that case reproduces the dot product be-
tween two samples mapped to a RKHS H via φ(·), i.e. Kij = k(xi, xj) = φ(xi)

>φ(xj). Note
that centering of the kernel matrix K makes no sense in the KDE and entropy context of Eq.
(3.22), as this would correspond to v = 0, i.e. infinite entropy. Hence, Λ

1
2 U> is the uncentered

projection of the feature space data DH = {φ(x1), . . . , φ(xn)} onto all the principal axes in
the feature space (Jenssen, 2010, 2013a). These projections may be sorted according to their
contribution to the input space entropy as measured by the information potential (the entropy
values), constituting the KECA procedure (see Section 3.5.4).
However, the projections and their entropy content are fully dependent on the quality of the
KDE performed via the kernel function. Moreover, using the eigendecomposition procedure
may not be optimal to find the best projections from an entropy perspective.

Optimized KECA (OKECA)

The novel approach proposed in this Thesis searches for a basis that maximizes the information
potential in as few components as possible. The procedure corresponds to optimally capturing
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in these components the low entropy part of the data, which typically corresponds to the struc-
ture of the data in terms of class or cluster information.

To that end, we present a solution motivated by the classical Independent Component Analy-
sis (ICA) formulation (Hyvärinen and Oja, 2000) in which, after the whitening step (applying
Λ

1
2 U>), there is an extra rotation (applying W>) that maximizes the independence between

components. Note that W is an orthonormal linear transformation, i.e. WW> = I. Similar
ideas have been applied in kernel-based component analysis (see for instance Pan and Yang
(2011)). Following the ICA rationale, we now aim at a new kernel matrix decomposition:

K = CC> = (UΛ
1
2 W)(W>Λ

1
2 U>). (5.1)

Note that the kernel matrix does not change (in relation to Eq. (3.21)), but the modification
allows us to directly find the basis that maximize the information potential with respect to the
number of retained components. Therefore, for each column vector wk in W = [w1, . . . , wn],
we maximize:

L =
(

1>n UΛ
1
2 wk

)2
, (5.2)

where each wk is restricted to be normal ‖wk‖2 = 1 and to be orthonormal to the previous wl ,
∀l < k. This deflationary procedure ensures that the obtained solution retains more (or equal)
information potential than the one obtained by the standard KECA in fewer components.

In order to solve the OKECA optimization problem in Eq. (5.2), a gradient-descent approach
can be followed:

wk(t + 1) = wk(t) + τ
∂L

∂wk(t)
, (5.3)

where τ is the step size and the gradient is:

∂L
∂wk

= 2(1>n UΛ
1
2 wk)(1>n UΛ

1
2 )>. (5.4)

A Matlab implementation of the algorithm is available at http://isp.uv.es/code/okeca.htm
for the interested reader. While other more sophisticated optimization algorithms could be
deployed here, in our experiments we observed that this simple gradient-descent strategy per-
formed consistently even in the presence of noise.

Kernel decomposition on density estimation

This section illustrates the benefits of using the proposed decomposition for KDE (Parzen,
1962). KDE is a classical method for estimating a pdf in a non-parametric way. Essentially,
KDE defines the pdf as a sum of kernel functions, K(·, xi), defined over the training dataset D
as follows:

p̂(x∗) =
1
n

n

∑
i=1

K(x∗, xi). (5.5)
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As mentioned before, KDE kernel functions do not need in general to be PSD but have to be
nonnegative and integrate to one to ensure that p̂ is a valid probability density function. A
classical example of such a kernel function is the Gaussian distribution, K(x∗, xi) = (2πσd)−1/2

exp(−‖x∗− xi‖2/(2σ2)), but as mentioned, other choices exist. Then, the corresponding kernel
matrix can be used for KDE

p̂(x∗) =
1
n

n

∑
i=1

K(x∗, xi) =
1
n

1>n k∗, (5.6)

where k∗ is the vector of kernel evaluations between the point of interest x∗ and all samples in
the dataset D. As explained in Girolami (2002b), if the decomposition of the uncentered kernel
matrix follows the form K = UΛU>, where U is orthonormal and Λ is a diagonal matrix, then
the kernel-based density estimation may be expressed as

p̂(x∗) = 1>n UrU>r k∗, (5.7)

where Ur is the reduced version of U by keeping columns for r < n. Note that when using U
instead of Ur, Eq. (5.7) reduces to Eq. (5.6). This shows that the retained KECA components
may be used for KDE (Girolami, 2002b) by selecting the dimensions that maximize the infor-
mation potential in Eq. (3.22).

A novel aspect of the proposal is to use the OKECA components for KDE in a similar manner.
Note that the KECA decomposition in Eq. (3.21) is not exactly the same as the proposed OKECA
in Eq. (5.1). Nevertheless, it is easy to find a basis that fulfills the same decomposition form,
i.e. ŨΛ̃ = C, where Ũ is the C matrix with normalized column vectors and Λ̃ is diagonal
matrix containing the norms of each column in C. Therefore, Eq. (5.7) for OKECA reduces to
p̂(x∗) = 1>n ŨrŨ>r k∗.

Model estimation

In this work, we consider the Gaussian RBF kernel since it is the most common and versatile
in both RKHS kernel methods and KDE (Parzen, 1962). This kernel induces a probabilistic
Gaussian mixture model, and it only introduces one scalar free parameter, σ. Note that more
complicated models could be taken into account in both frameworks. However, a recurrent
and unsolved problem in both approaches is the estimation of the length-scale parameter σ.

A plethora of heuristics and rules for estimating the length-scale have been proposed in the
machine learning and statistics literatures. Roughly speaking, one finds two main approxi-
mations. The first approach considers maximizing a particular objective function through a
cross-validation procedure. The objective function may be optimized using unsupervised (e.g.
maximum likelihood (Duin, 1976), denoted by σML in the experiments) or supervised (e.g. a
classification accuracy score, denoted by σclass in the experiments) approaches (Section 2.3.6).
The second approach resorts to empirical rules of performance or theoretical bounds. Good
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Figure 5.1: Cumulative estimated information potential versus the number of dimension components
for different toy datasets, using KECA and OKECA and different σ estimation approaches.

examples of this second approach, which are considered in this section, are: 1) the Silverman’s
rule (Silverman, 1986), which is the classical rule of thumb in KDE (see Section 2.3.6), σSilv in
the experiments; 2) the mean distance between training points, which is a common approach in
kernel methods for classification, σd1 in the experiments; and 3) the 15% of the median distance
between points, which is the classical employed in KECA, σd2 in the experiments.

5.2.2 Experiments

We compare the performance of the standard KECA and the proposed OKECA for both density
estimation and data classification. We analyze the methods in terms of the retained information
potential as a function of the extracted features, the impact of the model selection criteria, and
the classification accuracies in synthetic and real datasets.

OKECA for optimally entropic representations

The first experiment considers three well-known 2D toy examples for analyzing the methods:
a ring-shaped distribution consisting of one class only, and the binary two-moons and pinwheel
datasets. In this section, we illustrate the ability of the proposed method to obtain projections
that maximize the information potential, hence minimizing the squared Rényi entropy. In the
results, we used 80, 20 and 45 training samples for each problem, respectively.
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Figure 5.2: Density estimation for the ring dataset by KECA and OKECA using different number
of extracted features d f and approaches to estimate the kernel lengthscale parameter σ. Black color
represents low pdf values and yellow color high pdf values.

Figure 5.1 shows the original data distributions and the estimated cumulative information po-
tential (v and L defined in (3.22) and (5.2), respectively) attained by KECA and OKECA as a
function of the 10 top components and all the considered kernel length-scale selection criteria.
For all datasets and for all σ values, OKECA reaches almost the maximum entropy value with
just one feature; whereas KECA cumulative entropy values need five or more components to
saturate. This effect is almost independent of the chosen criterion to set the σ parameter. The
higher information content may translate into more informative features potentially useful for
density estimation and classification, as we illustrate in the next sections.

OKECA for pdf estimation

Figure 5.2 illustrates the ability of KECA and OKECA for density estimation in the ring dataset.
We merely applied Eq. (5.7) for a different number of components r in Ur. This figure should be
analyzed together with Fig. 5.1[top]. Note that, for the proposed OKECA, the first projection
concentrates most of the entropy information. This agrees with the fact that just one dimension
is needed to obtain a good pdf estimation. On the contrary, KECA cannot estimate correctly
the pdf using only the first component and actually needs at least five components. This issue
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Figure 5.3: Overall Accuracy obtained with two-moons (left) and pinwheel (right) datasets. The five bars
for every number of retained features are, from left to right: σd1, σd2, σSilv, σML and σclass.

is even more dramatic when using σML, see Fig. 5.2. It is worth noting that σML and σd2 give
rise the best pdf estimates in OKECA.

OKECA components for data classification

We here illustrate the capabilities of OKECA for data classification. The experiments are con-
ducted on a wide range of synthetic and real problems: 1) The two moons and the pinwheel
datasets considered previously in Sec. 5.2.2; 2) Six real datasets from the University California
Irvine (UCI) Machine Learning Repository1; and 3) A real satellite multispectral image classi-
fication problem. In order to evaluate the classification performance, we have used the overall
classification accuracy (OA) which is obtained as the average of samples correctly predicted in
percentage terms. While one could classify on top of the extracted features, we here rely inten-
tionally on the class-dependent estimated densities and perform maximum a posteriori (MAP)
classification.

Synthetic datasets

Figure 5.3 shows the OA test obtained with different σ values and different number of retained
dimensions with KECA and the proposed OKECA on the two-moons and pinwheel datasets. The
five bars for every number of retained features are, from left to right: σd1, σd2, σSilv, σML and
σclass. The value of σclass has been optimized for classification using all features in a 5-fold
cross-validation scheme. We used 20 samples and 45 samples per class for training two-moons
and pinwheel respectively, and 500 per class for testing the models and computing the OA test in
both datasets. Note that the OKECA method achieves better classification results than KECA
for all σ values, confirming that to seek for optimally entropic data descriptors may benefit
classification. Smaller differences between methods are observed as the number of compo-
nents increases. When all n features are used, OKECA and KECA are trivially equivalent.

1http://archive.ics.uci.edu/ml/datasets.html
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Table 5.1: Overall accuracy, OA[%], obtained by KECA and OKECA methods using different values of
noise. In bold the highest OA for each number of features.

Noise, σn 0.001 0.051 0.091
# dim KECA OKECA KECA OKECA KECA OKECA

1 57.1 93.8 73.2 90.7 79.0 85.0
2 60.3 93.8 76.9 90.7 78.6 85.0
3 63.0 93.8 79.3 90.7 80.0 85.0
4 66.6 93.8 81.5 90.7 81.1 85.0
5 69.2 93.8 83.6 90.7 82.1 85.0
6 71.5 93.8 85.1 90.7 82.4 85.0
7 74.3 93.8 86.9 90.7 83.2 85.0
8 77.0 93.8 88.1 90.7 83.6 85.0
9 79.1 93.8 89.4 90.7 84.6 85.0

10 80.6 93.8 90.3 90.7 84.8 85.0
11 82.5 93.8 90.5 90.7 84.9 85.0
12 84.9 93.8 90.7 90.7 84.9 85.0
13 86.8 93.8 90.7 90.7 84.9 85.0
14 89.4 93.8 90.7 90.7 84.9 85.0
15 91.2 93.8 90.7 90.7 84.9 85.0
16 92.7 93.8 90.7 90.7 84.9 85.0
17 93.4 93.8 90.7 90.8 84.9 85.0
18 93.7 93.8 90.7 90.7 84.9 85.0
19 93.8 93.8 90.7 90.7 84.9 85.0
20 93.8 93.8 90.7 90.7 84.9 85.0

In the rest of the section, we discuss the capabilities of OKECA in the presence of distorted
distributions. The question raised is how sensitive the optimization algorithm is to the pres-
ence of noise. To this end, a toy example of the KECA and OKECA projections in presence of
noise is considered. We used 50 samples of two-moons dataset to training and 500 samples to
test the classifier. Gaussian noise was added to the original data distributions by varying the

Table 5.2: UCI database description (d: number of dimensions, nc: number of classes, Ntrain: number of
training samples, and Ntest: number of test samples.

Database m d nc Ntrain Ntest

Ionosphere 351 33 2 80 172
Letter 20000 16 26 1014 3874
Pendigits 10992 16 9 540 3498
Pima-Indians 768 8 2 200 330
Vowel 990 12 10 150 330
wdbc 569 30 2 80 344
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Table 5.3: Overall accuracy obtained with UCI database using KECA and OKECA methods with dif-
ferent number of dimensions.

ionosphere Letter Pendigits
# dim KECA OKECA KECA OKECA KECA OKECA

1 76.9 78.9 35.8 69.9 74.1 93.4
2 76.8 78.9 45.1 69.9 80.0 93.4
3 76.4 78.9 50.9 69.9 82.4 93.4
4 76.6 78.9 55.1 69.9 84.1 93.4
5 76.8 78.9 58.3 69.9 85.5 93.4
6 77.0 78.9 61.0 69.9 86.9 93.4
7 77.1 78.9 63.3 69.9 87.9 93.4
8 77.4 78.9 65.3 69.9 89.3 93.4
9 77.2 78.9 66.8 69.9 90.4 93.4
10 77.3 78.9 67.9 69.9 91.7 93.4

pima Vowel wdbc
# dim KECA OKECA KECA OKECA KECA OKECA

1 55.3 62.9 33.1 83.6 79.8 87.1
2 58.5 62.9 41.5 83.6 82.8 87.1
3 61.2 62.9 47.0 83.6 86.1 88.5
4 62.2 62.9 59.0 83.6 87.7 89.3
5 62.4 62.9 64.4 83.6 88.3 89.9
6 62.3 62.9 72.6 83.6 88.8 90.2
7 62.3 62.9 80.3 83.6 89.0 90.4
8 62.3 62.9 83.3 83.6 89.0 90.5
9 62.3 62.9 83.3 83.6 89.3 90.5
10 62.6 62.9 83.3 83.6 89.8 90.5
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Figure 5.4: The cumulative information potential for the multispectral image using KECA and OKECA
and different σ estimation approaches.
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Figure 5.5: Classification results for the Zürich QuickBird satellite image for different σ values and
number of retained dimensions by KECA and OKECA. The five bars for every number of retained
features are, from left to right: σd1, σd2, σSilv, σML and σclass.

dimension-wise standard deviation of the Gaussian noise σn from 0.001 to 0.091. Numerical
results are shown in Table 5.1. Note that the difference of OA between methods is reduced
when the noise increases, but even in the high-noise regime, OKECA needs far less features to
outperform standard KECA.

UCI benchmark datasets

We used the six datasets from the UCI machine learning repository of different sizes and di-
mensionality described in Section 4.2.1. Table 5.2 gives details on the dimensionality, number
of classes and training and test samples used in the experiments that follow.

We run KECA and OKECA for all datasets for different numbers of extracted components. The
average of the OA for the ten first dimensions is shown in Table 5.3. In this case we restrict our-
selves to σML because of the good performance in the previous experiments and for the sake
of simplicity. In general, the OKECA method outperforms the KECA method and, as observed
before, OKECA saturates its performance with just the first extracted dimension.

Multispectral VHR image classification

In this experiment, we apply KECA and OKECA to the segmentation of remotely-sensed mul-
tispectral images. We consider a real multispectral image acquired over a residential neigh-
bourhood of the city of Zürich by the QuickBird satellite in 2002 (see Section 4.2.1).



5.2 OPTIMIZED KERNEL ENTROPY COMPONENT ANALYSIS (OKECA) 75

RGB composite Groundtruth map KECA (57.77%, 0.5) OKECA (72.91%, 0.68)

Figure 5.6: Classification maps for the Zürich QuickBird satellite image using three features and σclass

in KECA and OKECA. Top-left: RBG version of the original image; top-right: groundtruth classification
map (each color represents a different landcover class); bottom-left: classification map obtained with
KECA; bottom-right: classification map obtained with OKECA.

Table 5.4: Confusion Matrix yield by the three retained features and σclass in the test set (whole scene
Fig. 5.6, u: user’s accuracy [%] and p: producer’s accuracy [%]).

KECA

True classes u classes

Pr
ed

ic
te

d
cl

as
se

s

3884 808 75 2 0 1741 70 186 384 54.32 residential buildings

1088 2492 46 7 20 2018 4 416 134 40.03 commercial buildings

46 6 8397 430 1 367 0 0 100 89.84 meadows

16 28 2901 2067 21 91 0 9 0 40.27 harvest vegetation

0 721 0 5 3775 53 0 6 0 82.79 bare soil

854 218 25 0 1 1554 11 388 23 50.55 asphalt

1 0 0 0 0 0 180 0 0 99.45 pools

747 989 2 0 4 288 4 744 0 26.78 parkings

110 15 1677 12 0 46 0 0 454 19.62 trees

p 57.57 47.22 63.99 81.93 98.77 25.24 66.91 42.54 41.46

OKECA

True classes u classes

Pr
ed

ic
te

d
cl

as
se

s

4238 190 29 0 0 639 0 26 23 82.37 residential buildings

366 3130 6 1 42 676 0 145 1 71.67 commercial buildings

26 8 9840 71 0 168 0 0 72 96.61 meadows

4 49 1834 2432 117 15 0 7 4 54.50 harvest vegetation

0 47 0 2 3657 15 0 1 0 98.25 bare soil

1356 610 8 1 1 3838 3 239 1 63.36 asphalt

0 4 0 0 0 2 262 1 0 97.40 pools

331 1208 16 0 5 695 4 1327 0 37.01 parkings

425 31 1390 16 0 110 0 3 994 33.48 trees

p 62.82 59.31 74.98 96.39 95.68 62.33 97.40 75.87 90.78
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The KECA and OKECA cumulative information potential values follow similar trends to the
toy examples (see Fig. 5.4). OKECA reaches the maximum with just one feature, while KECA
needs much more components to achieve similar informative content, especially noticeable for
the σML and σd2 criteria. Such dependence with the criterion is not shared by OKECA. These
results suggest that the sharpness in the component selection made by OKECA is relevant in
cases of high feature redundancy as well.

Figure 5.5 shows the classification results obtained using different σ values and different num-
ber of retained dimensions. In this case, we use 22 and 200 samples per class for training and
testing the models, respectively. Both methods achieve the best results using the σML and σclass

criteria. Finally, note that σd1, which is a common choice in unsupervised kernel methods, pro-
vides very poor results for both methods. Figure 5.6 shows the classification maps obtained us-
ing three retained features and σclass for both methods. Note how OKECA outperforms KECA
in general for all the classes (Table 5.4).

5.3 Probabilistic cluster kernel (PCK)

In the previous section, we have proposed an optimized version of the unsupervised KECA
feature extraction method and studied procedures for the selection of the kernel scale size for
unsupervised KDE. Actually, the bottleneck of KECA but also of most kernel feature extraction
methods is the selection of the kernel parameters. This section presents a novel approach that
aims to mitigate this relevant machine learning problem.

5.3.1 Introduction to generative kernels

The similarity (kernel) matrix is commonly based on a parameterized function such as the ra-
dial basis function (RBF). As mencioned before (Section 5.2), the important parameter in RBFs
is the width, which basically determines a fixed scale of analysis, and the choice of this pa-
rameter is of paramount importance. Lately some probabilistic (often referred such as gen-
erative) approaches have been introduced to design kernel functions that capture the signal
characteristics. Among them, we stand out the Fisher kernel (Jaakkola et al., 1999), other gen-
erative approaches (Bicego et al., 2013), kernels that accommodate particular characteristics of
the expected signal distribution (Campbell et al., 2006; Carli et al., 2014), and kernels based on
GMM (You et al., 2010). All these kernel functions have shown very good results, but three
main shortcomings still arise: 1) they all require first assuming a data generative model (e.g.
Gaussian (You et al., 2010), Riccian (Carli et al., 2014), etc.) for which explicit metaparameter-
dependent feature extractors need to be derived; 2) they have all been specifically designed
and applied to supervised problems, mainly through the Support Vector Machine (SVM); and
3) they need a priori knowledge about the data to fix some parameters. These problems prevent
using such kernels for data clustering, as no prior knowledge (besides the number of clusters)
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is assumed. In this Thesis, we address these issues by presenting a parameter-free kernel func-
tion based on clustering for data clustering.

In particular, we take a different approach to spectral clustering, wherein the feature generation
process is obtained not separately from the clustering, but as a part of an integrated process.
The idea is to encode similarity between objects using their probability of being grouped to-
gether at different scales, which is obtained from multiple “weak” learners based on GMM
clustering. These local linear clusterings are then combined to build a global multiscale kernel
that is used for spectral decomposition. As a result, an ensemble of linear clusterings enables
nonlinear clustering.

The key quantity we introduce is a generative probabilistic cluster kernel function that is learned
directly from the data by looking at local-to-global similarities along the manifold. This entails
no parameter tuning, which is especially beneficial in the current context of unsupervised clus-
tering. We analyze the main properties of the kernel and compare it to the standard RBF kernel
and other kernel clustering approaches. The structure, informative content, optimality and
spectral decomposition are studied. Analysis and performance are illustrated in several real
problems.

5.3.2 Proposed Probabilistic Cluster Kernel (PCK)

Given n data points xi ∈ Rd, i = 1, . . . , n, the proposed generative kernel, Kc(xi, xj), is di-
rectly learned by clustering the available data. Building Kc requires first running a cluster-
ing algorithm, such as Expectation-Maximization (EM) assuming a Gaussian mixture model
(GMM) with different initializations, q = 1, . . . , Q, and with different number of clusters,
g = 2, . . . , G + 1. These results in m = Q · G cluster assignments where each sample xi has
its corresponding posterior probability vector πi,g(q) ∈ Rg. The probabilistic cluster kernel Kc is
then computed as a composite kernel by averaging all the dot products between the posterior
probability vectors (Jebara et al., 2004)

Kc(xi, xj) =
1
Z

Q

∑
q=1

G+1

∑
g=2

πi,g(q)>π j,g(q), (5.8)

where Z is a normalization factor. After kernel construction with a sufficiently large number
of clusters G and realizations Q, we proceed as in the standard spectral clustering approach,
described above.

An illustrative toy example of the multiscale cluster kernel construction is shown in Fig. 5.7.
Intuitively, the probabilistic cluster kernel accounts for probabilistic similarities at small and
large scales (which are related to the number of clusters, since a higher number of clusters
implies local scales and vice versa) between all samples along the data manifold. Actually, the
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Distribution m=2 m=4 m=9

Figure 5.7: Illustration of the construction of the probabilistic cluster kernel. The method clusters data
with EM-GMM clustering for m = {2, 4, 9}, the posterior probability vectors are used to compute the dot
products leading to the cluster kernel explicitly, and after repeating the process for a number of clusters,
it accumulates the similarities in a multi-scale way. Samples with similar probabilities of membership to
a group should belong to the same class. The multiscale cluster kernel (right kernel) is a better estimation
of the optimal ideal kernel Kideal = YY> (left kernel). Based on Tuia and Camps-Valls (2011)

proposed kernel has the very important advantage that it does not assume an ad hoc parametric
form or sophisticated priors and thus is more flexible and general. Moreover, the method does
not require computationally demanding procedures (e.g. EM-GMM clustering algorithms scale
linearly with n). Finally, note that the proposed kernel generalizes previous (semi) supervised
approaches based on cluster kernels, e.g. the approach in Weston et al. (2005) is obtained when
solely the cluster assignment with maximum posterior probability is considered. Moreover, it is
worth noting that the proposed multiscale approach might also be applied to other generative
kernels such as the Fisher kernel (Jaakkola et al., 1999).

Properties

Here we will describe the main theoretical properties of the proposed cluster kernel in a Hilbert
space.

Property 1. The probabilistic cluster kernel performs a linear kernel in a posterior probability space.

Proof. From Eq. (5.8), an arbitrary kernel function that forms the probabilistic cluster kernel
is Kc(xi, xj) = 〈φ(xi), φ(xj)〉 = 〈πi, π j〉, and then the explicit feature mapping is φ(xi) = πi.
Therefore, the probabilistic cluster kernel computes second-order statistics in a probability
space.

Property 2. The probabilistic cluster kernel Kc is a positive definite (p.d.) kernel.

Proof. The function Kc : X × X → R is a p.d. kernel if and only if there exists a Hilbert space
H and a feature map φ : X → H such that for all x, x′ ∈ X we have Kc(x, x′) = 〈φ(x), φ(x′)〉H.
Using standard properties of kernel functions and property 1, and as a simple consequence of
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the bilinearity of the dot product 〈·, ·〉H, then ∀ci ∈ R:

n

∑
i,j=1

cicjKc(xi, xj) =
n

∑
i,j=1

cicj〈φ(xi), φ(xj)〉H =
n

∑
i=1

n

∑
j=1

cicj
〈
πi, π j

〉
H

=

〈
n

∑
i=1

ciπi,
n

∑
j=1

cjπ j

〉
H

= ‖cπ‖2
H > 0.

since Kc(xi, xj) = 〈πi, π j〉 is symmetric positive definite, where πi ∈ Rg.

Property 3. The probabilistic cluster kernel Kc in (5.8) is a valid Mercer’s kernel.

Proof. The kernel is a weighted summation of valid kernels (see property 2), which can be
shown to be a valid kernel (Reed and Simon, 1980). The corresponding mapping to a sum-
mation of inner products in QG-dimensional spaces, φ(xi) =

⋃Q,G
q=1,g=2 πi,g(q), where operator⋃

represents vector concatenation. The mapping induced by the sum can be expressed as a
concatenation of different multiscale mappings (φq,g), φ(xi) =

⋃Q,G
q=1,g=2 φq,g.

5.3.3 Experimental results

Data collection

We analyze the proposed kernel and illustrate its capabilities for data clustering in four chal-
lenging, high dimensional real problems: two UCI machine learning repository datasets2, and
the segmentation of two satellite images using their reflectance spectral bands as inputs. The
Pendigits dataset is composed of 10, 992 samples with 16 dimensions and 9 classes. The wdbc
dataset consists of 569 samples, 30 dimensions and 2 classes (Table 5.2). We used 200 randomly
selected samples in wdbc dataset and 500 in Pendigits dataset for illustration purposes. The
third dataset considers a multispectral image acquired over a residential neighborhood of the
city of Zürich by the QuickBird satellite in 2002 and the fourth dataset refers to an image ac-
quired by the DAIS7915 sensor over the city of Pavia (Italy) (see Section 4.2.1).

Analysis of the kernel structure

First, we analyze the structure of both the standard RBF kernel and Kc. The RBF kernel was
obtained by fixing the width parameter to the average Euclidean distance between all samples.
The probabilistic cluster kernel was generated for a maximum of G = 20 clusters with Q = 20
realizations, i.e. Kc is an average of 400 kernels. It is worth noting that the selected maximum
number of clusters G might be different depending on the number of classes, samples and
dimensions of the dataset. Figure 5.8 shows these kernels for the considered datasets. We also
include the HSIC (see Section 2.3.4) and the Frobenius norm error of Kc and KRBF with the ideal
kernel matrix Kideal = YY>, where Y stores the binary assignment of the samples to the classes
(which are of course unknown for the clustering algorithm). It is worth noting that Kc gives

2http://archive.ics.uci.edu/ml/datasets.html
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Pendigits wdbc Brutisellen Pavia
(7091, 208.20) (2107.6, 91.21) (24233, 521.19) (36186, 581.70)

(11939, 154.64) (4433.7, 68.04) (47112, 314.16) (57124, 289.82)

Figure 5.8: RBF kernel (top) and probabilistic cluster kernel (bottom) matrices for different datasets.
We show in parenthesis the quality of the similarity measure as (HSIC(K, YY>), ‖K− YY>‖F).
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Figure 5.9: Cumulative normalized eigenvalues (top), and the three leading eigenvectors for the RBF
(middle) and the proposed Kc (bottom) for the considered datasets obtained in the kernel eigendecom-
position.
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Pendigits wdbc Brutisellen Pavia

Figure 5.10: Data projected on the two top eigenvectors for the RBF (top) and the proposed Kc (bottom).
Different colors indicate classes.

rise to a more blocky structure which is consistent with the numeric quantitative results (higher
dependency, lower error).

In order to further analyze the information content of the kernel, we perform the spectral de-
composition on the kernel matrices obtained from Kc and the RBF kernel, respectively. The
spectral decomposition seeks the directions in the kernel Hilbert space that preserve most of
the data variance. Figure 5.9 presents the cumulative normalized eigenvalues obtained with
both kernels as well as the first three eigenvectors. On the one hand, we observe that the
energy contained in each kernel per dimension is different since the cumulative eigenvalues
obtain distinct values. On the other hand, the three top extracted eigenvectors reveal a more
clear class structure in the case of the Kc kernel. Figure 5.10 shows the projected data onto the
first two components. Results show important differences between the two kernels. Interest-
ingly, the Kc better reveals class structure compared to the RBF kernel. This suggests that the
adaptive scale encoded in Kc may be useful for visualization purposes.

So far we showed that the Kc obtains favorable eigenvectors and reveals blockier than the RBF
kernel because Kc captures different scales of information along the manifold unlike the RBF.
Figure 5.11 shows an illustrative toy example in which are presented the differences between
the local properties using four kernels: RBF, PCK, Fisher (Jaakkola et al., 1999) and Jensen-
Shannon (Bicego et al., 2013) kernels. The data was generated by the composition of two normal
distributions,N (3, 0.5) andN (5, 0.5). We look at the structure of the kernel matrix through the
first eigenvectors, and compute the Frobenius norm of the residuals with the ideal kernel. The
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Original Data RBF Kernel (438.64) Probabilistic Cluster Kernel (333.81)

0 200 400 600 800 1000
0

2

4

6

8

0 2 4 6 8 0 2 4 6 8

Fisher Kernel (704.36) Jensen-Shannon Kernel (388.72)

First eigenvector

Second eigenvector

Third eigenvector
0 2 4 6 8 0 2 4 6 8

Figure 5.11: Example of differences between the local properties of the RBF, the proposed probabilistic
cluster kernel (PCK), Fisher’s, and Jensen-Shannon kernels. We indicate in parentheses the Frobenius
norm of the residuals with the ideal kernel, ‖Kideal −K‖2

F, where Kideal = yy>.

lengthscale of the RBF was fixed to the average distance of all examples while we used Q = 10
and G = 25 for Kc. The Fisher kernel here built from feature vectors extracted from a Gaus-
sian mixture model using the same number of clusters as for the PCK, and the Jensen-Shannon
kernel was built from divergence Jensen-Shannon obtained from Shannon entropy. Since the
Fisher and Jensen-Shannon kernels are not intrinsically multiscale, here we implement a mul-
tiscale version of the Fisher and Jensen-Shannon kernels for the sake of a fair comparison. The
figure shows that the PCK and the Jensen-Shannon return more discriminative eigenvectors
and substantially different from the somewhat Fourier-like basis obtained by the RBF and the
Fisher kernel. The PCK better captures the local structure than the Jensen-Shannon kernel. This
becomes clear through the visual comparison of the kernel matrices, and is also supported by
the Frobenius norm of the differences to the ideal kernel (in parentheses).

Figure 5.12 presents two additional examples that show how Kc captures different scales of
information along the manifold. The first one shows seven 2D normal distributions forming a
clear hierarchical cluster structure. Solid lines in the figure represent the pdf contours of the
distributions obtained by the EM-GMM for different number of clusters (from 2 to 8). The RBF
kernel captures global similarities that only help to distinguish samples from well-separated
clusters in terms of Euclidean distance. On the other hand, the PCK correctly captures the data
manifold structure (which is given by the cluster distribution) at different scales (which are
determined by the selected number of clusters).

The second example is a nonuniform distribution with increasing variance in a curved mani-
fold. The RBF and the PCK Kernels are sorted with respect to the vertical axis of the original
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data figure. We observe that the RBF kernel is not capable of recognizing the differences of the
data density whereas the PCK can identify it, depending on the scale in both examples. Using
G = 4, the PCK retains better the structure in areas of the manifold with higher density than
in areas of lower density. While the PCK built from 2 to 7 clusters keeps the structure of the
higher density (structure obtained with G = 4), and besides, the PCK manages to obtain the
manifold structure in areas with lower density.

Probabilistic cluster kernel clustering

The good properties of the probabilistic cluster kernel are here exploited in spectral cluster-
ing. Essentially, a number of features are extracted through the eigendecomposition of the
selected kernel and the scores (projections onto top eigenvectors) are then used for canonical
k-means clustering. Interestingly, using Kc for clustering involves performing clustering twice:
An ensemble of clusterings is used to build the kernel matrix and a second spectral cluster-
ing algorithm is used to assign labels to the observations. This may seem counterintuitive
but we should stress here that the first clustering operation is not intended to assign centroids
but to learn a proper (in our case, probabilistic) similarity metric in the feature space that al-
low us to extract nonlinear features capturing the manifold structure. We compare clustering
results of the standard k-means and EM-GMM algorithms in the input space and the kernel
k-means (KRBF) (Girolami, 2002a), bagged kernel (Kbag) (Weston et al., 2005), and the proposed
probabilistic cluster kernel (Kc) in feature space. Clustering is assessed using six validation
indices (Wu et al., 2009): the Overall Accuracy, estimated Cohen’s Kappa statistic, entropy, F-
measure, cluster’s purity, and the Fowlkes and Mallows validation index. All measures are
based on the confusion matrix, which in this unsupervised scenario is constructed assigning
the clusters to the corresponding most repeated class labels. Average results and confidence
intervals are computed for 10 realizations.

Figure 5.13 shows the results of the four datasets. For all the examples, the use of the prob-
abilistic cluster kernel improves the results compared to the RBF kernel. This matches the
previous observations on the structure of the kernels and the obtained eigenvectors, hence we
can confirm that the probabilistic cluster kernel represents better the cluster structure along the
manifold than the RBF kernel.
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RBF kernel PCK G = 2 PCK G = 3 PCK G = 4

PCK G = 5 PCK G = 6 PCK G = 7 PCK G = 8

a) 2D three normal distributions (see text for details).

2D distribution RBF kernel PCK G = 3 PCK G = 4

PCK G = 5 PCK G = 6 PCK G = 7 PCK G = 8

b) 2D non uniform distribution with changing variance and curved manifold.

Figure 5.12: Example showing a hierarchical cluster structure at differents scales.
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Figure 5.13: Results obtained by clustering validation with six different scores and for a number of test
samples in different datasets.

5.4 Summary

In this Chapter, we have focused on unsupervised kernel feature extraction methods, that have
roots on information theory and on the cluster assumption.

First, we proposed a simple yet highly efficient modification of the KECA algorithm for optimal
extraction of entropic kernel components. While KECA reduces to sort the kernel eigenvectors
by entropy, OKECA explicitly searches for the features that retain most informative content.
We have illustrated the ability of OKECA to retain more information in pdf estimation and
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classification in both synthetic and real examples. Results consistently showed that OKECA
outperforms KECA in terms of information content and robustness. In fact, in all experiments,
a single OKECA feature retained almost all the relevant information. Furthermore we have
analyzed the effect of using different unsupervised rules to fit the RBF kernel lengthscale pa-
rameter on KECA and OKECA performances. In general, the maximum likelihood approach
showed the best performance.

The Chapter also introduced a very simple yet efficient generative cluster kernel that also
avoids the RBF kernel bandwidth to be tuned. Comparison to the standard RBF kernel func-
tion revealed very good capabilities for data description and adaptation to the local and global
structure of the manifold. We studied the spectral decomposition and explored the cluster
structure of eigenvalues and eigenvectors. The kernel structure revealed sharper and more
blocky, and better aligned with the ideal kernel. After projection onto the kernel eigenvec-
tors, the use of canonical k-means for nonlinear clustering substantially improved the results
obtained with other approaches in several synthetic and real examples.
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In the previous chapters, supervised (Chapter 4) and unsupervised (Chapter 5) methods have
been analyzed. Now, we will study the semisupervised methodologies. We will start by in-
troducing the semisupervised learning approach, its main advantages, and how to apply it in
feature extraction methods for remote sensing data processing. We will propose the adaptation
of feature extraction methods to the semisupervised framework. In particular, we focus on the
well-known kernel PLS and OPLS methods that have been described in Chapter 3. Finally, we
will finish the chapter with the conclusions.
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6.1 Introduction to semisupervised learning

Learning the best feature projections for data representation from a representative set of labeled
samples by supervised methods allows to obtain the best decision function for the task at hand,
e.g. classification or regression (Gómez-Chova et al., 2008). Nevertheless, supervised methods
present problems when the sample data do not cover sufficiently well the manifold, generating
an estimated probability that does not represent the model of the true underlying distribution
correctly (Camps-Valls and Bruzzone, 2009). On the other hand, unsupervised methods do not
present this problem since they do not rely on a limited set of labeled samples. Unfortunately,
unsupervised methods have to confront other kinds of problems. The fundamental problem
is to estimate a pdf which has likely generated the data distribution so selecting both a plau-
sible model and its parameters is the key problem. This problem is extremely difficult even in
moderate dimensional spaces and is even more complicated with high dimensional space and
heavy-tailed data distributions.

The learning halfway between unsupervised and supervised is known as Semisupervised learn-
ing (SSL) (Chapelle et al., 2006). The field consists of using the available supervised information
together with the contribution of the unlabeled information to generate a model that pays at-
tention to both the manifold structure and the class specificities. From the probabilistic point
of view, SSL approaches typically adopt either discriminative or generative models:

• Generative models involve estimating the conditional distribution by means of modeling
the class-conditional distribution explicitly, such EM algorithms which have been exten-
sively applied in the context of remote sensing data classification (Maulik and Chakra-
borty, 2011; Gómez-Chova et al., 2010).

• Discriminative models estimate the conditional distribution directly and there is no need to
explicitly specify the class-conditional distribution. Within this kind of semisupervised
models, we distinguish two subgroups: Graph-based methods and The low density separation



6.1 INTRODUCTION TO SEMISUPERVISED LEARNING 89

algorithms principle. In graph methods, each sample extends its label information to its
neighbors until stable state is achieved on the whole dataset. These techniques have been
adapted to remote sensing data processing (Camps-Valls et al., 2007) and used in different
applications (Gómez-Chova et al., 2008; Camps-Valls et al., 2009). Alternatively, methods
implementing Low density separation, try to maximize the margin for labeled and unla-
beled samples simultaneously, such a Transductive SVM (Vapnik, 1998), which has been
applied to remote sensing as well (Bruzzone et al., 2006). A nice classifying discussion
about the differences and similarities between transductive and semisupervised learning
can be found in Chapelle et al. (2006).

The main difference between these two approaches resides in that transductive algorithms do
not provide a function for predicting out-of-the-sample, only predictions for the used unla-
beled examples. This raises computational problems. In this thesis, we focus on generative
models, which take into account the “cluster assumption” that states that when points in the
same cluster are likely to belong to the same class. Several works have been clearly based on
this assumption (Weston et al., 2005; Tuia and Camps-Valls, 2009b). We will show some of these
works in this section considering that they have been the starting point of our proposal. Fur-
thermore, this section presents the proposed semisupervised kernel feature extraction method.
The underlying idea is to construct a kernel function K(xi, xj) measuring the similarity among
labeled samples, taking into account the distribution of all available pixels, i.e. labeled ` and
unlabeled u. The constructed kernel has two contributions, one using all available `+ u sam-
ples and the other computed with the ` labeled samples. The summation of the kernels is a
valid kernel, and can be used in any kernel method for classification or regression, such as the
standard support vector machine (SVM). Nevertheless, in this thesis, we plug this kernel into
kernel PLS feature extraction to extract a desired number of nonlinear features, which are then
used for linear classification and regression. The method is easy to apply and relies on our
recent developments presented in Chapter 5.

6.1.1 Bagged kernel for support vector machine

In (Tuia and Camps-Valls, 2009b), the authors exploited the general idea of developing a kernel
directly learned from data. The bagged kernel (Chapelle et al., 2006) was defined by counting the
occurrences of two pixels in the same cluster over several runs of an unsupervised algorithm.
The algorithm consists of different steps. First, it computes the standard RBF kernel Ks using
labeled samples only (supervised). Second, it runs q times the k-means algorithm (Duda and
Hart, 1973) with different initializations but with the same number of clusters g, which results
in q = 1, . . . , Q cluster assignments cq(xi) for each sample xi. Third, we build a bagged kernel
Kbag based upon the fraction of number of times that xi and xj are assigned to the same cluster:

Kbag(xi, xj) =
1
Q

Q

∑
q=1

[cq(xi) = cq(xj)] (6.1)
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where i, j = 1, . . . , (`+ u) and operator [cq(xi) = cq(xj)] returns ‘1’ if samples xi and xj belong
to the same cluster according to the Qth realization of the clustering, cq(·), and ‘0’ otherwise.
Finally, train a SVM with the weighted sum (or the product) between the standard and the
bagged kernels (Chapelle et al., 2006):

K(xi, xj) = βKs(xi, xj) + (1− β)Kbag(xi, xj), (6.2)

where i, j = 1, . . . , ` and the weighting parameter β ∈ [0, 1] provides a trade-off between the
supervised and the unsupervised information.

6.1.2 Multiscale bagged kernel support vector machine

The previous kernel implements the cluster assumption in the sense that samples that repeat-
edly fall in the same cluster should belong to the same class. However, this quite intuitive idea
should hold independently of the scale of the relations we look at. Noting that the notion of simi-
larity can be particularly distinctive at different scales, (Tuia and Camps-Valls, 2011) developed
a multiscale bagged kernel for urban very high resolution (VHR) images. The kernel of Eq. (6.1)
was replaced by a kernel using G clusters of Q runs of the standard k-means. This new aver-
aged kernel accounts for similarities at different scales across the manifold between the pixels.
The final kernel is the averaging of the q single-k bagged kernels and encodes multiscale (MS)
similarities:

KMS
bag (xi, xj) =

1
G

G+1

∑
g=2

Kg
bag(xi, xj). (6.3)

This kernel was then linearly combined to the standard supervised kernel Ks (Chapelle et al.,
2006), as in (Tuia and Camps-Valls, 2009b):

KMS
C (xi, xj) = βKs(xi, xj) + (1− β)KMS

bag (xi, xj). (6.4)

6.1.3 Proposed semisupervised kernel feature extraction

The two previous developments share in common the use of the k-means algorithm. Note the
similarity of the multiscale bagged kernel and the probabilistic cluster kernel (PCK) proposed
in Chapter 5. The bag kernels use k-means clustering while the PCK uses a EM-GMM clus-
tering to decide whether two samples fall into the same cluster. The difference is that while
the k-means gives us hard-decisions (the pixels belong or not to the same clustering), the EM-
GMM yields a soft-decision by means of membership probabilities. Using hard decisions leads
to generating too blocky kernels. This problem motivates our two modifications of the previ-
ous algorithms:
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1. The probabilistic cluster kernel presented in chapter 5 replaces the bag/cluster kernel.
The EM-GMM is a probabilistic model to group the data in different subgroups focused
on mixture Gaussian densities. Using the general Bayes’ rule, it is possible to obtain the
posterior probabilities, πi,g, of the sample xi belonging to cluster g as:

πi,g =
p(xi|g)p(g)

p(xi)
, (6.5)

where p(g) is the prior probability and p(xi|g) is the conditional probability of sample
xi given the cluster g. In the case of GMM, p(xi|g) is a linear combination of Gaus-
sian probability functions. The mixture parameters can be estimated by the classical
expectation-maximization method, and the maximum posterior probability is computed.
The GMM clustering is almost as fast as k-means, but it also provides posterior mem-
bership probabilities. By using these probabilities instead of the hard memberships in
k-means, smoother kernels are obtained. Including GMM in the construction of cluster
kernels leads to the interesting notion of probabilistic kernel functions that account for the
local structure of the data manifold, whose excellent performance has been assessed in
the previous chapter.

2. We replace the standard SVM of (Weston et al., 2005; Tuia and Camps-Valls, 2009b) with
any supervised kernel feature extraction algorithm plus linear classification or regression.
This has several benefits: i) A supervised kernel feature extraction method allows us to
extract nonlinear features maximally aligned with the target variables, ii) it allows us to
control the number of features easily, which has a direct impact on the compactness of
the solution, and iii) in turn it allows us to describe the data complexity indirectly with
the number of needed features to achieve a given level of classification or regression error.

With these two modifications in mind, the proposed semisupervised kernel feature extraction will
consist of

1. Compute the kernel function using labeled samples:

Ks(xi, xj) = 〈φs(xi), φs(xj)〉, i, j = 1, . . . , ` (6.6)

2. Build a probabilistic cluster kernel Kc based upon the probability that xi and xj are as-
signed to the same cluster:

Kc(xi, xj) =
1
Z

Q

∑
q=1

G+1

∑
g=2

πi,g(q)
>π j,g(q), (6.7)

where i, j = 1, . . . , (`+ u) and Z is a normalized factor (maximum value of Kc).
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Kc K

β• +(1−β)• =

Original distribution Ks

Figure 6.1: Illustration of the different kernels. The original data and the ideal kernel (left). Ks corre-
sponds to the RBF kernel constructed with labeled samples, Kc is the probabilistic cluster kernel con-
structed with both labeled and unlabeled samples, and K is the final kernel constructed by a linear
combination of the previous kernels (right).

3. Define the final kernel function K as the weighted sum (see also properties of kernel
methods in Chapter 2) of the standard and the probabilistic cluster kernels (Camps-Valls
et al., 2006b):

K(xi, xj) = βKs(xi, xj) + (1− β)Kc(xi, xj), (6.8)

where i, j = 1, . . . , ` and β ∈ [0, 1] is a scalar parameter.

4. Plug K into the kernel feature extraction method solver (e.g. KPCA, KPLS or KOPLS).
The kernel feature extraction method returns the requested number of features d f , which
are used to project data onto them. These (nonlinear) projected data (scores) are then used
as inputs to a linear classifier or regression method. The application of a linear model to
the projected data is not incidental: note that all the features are extracted with a non-
linear method so this is the proper scheme to evaluate the effectiveness of the extracted
variables.

The probabilistic cluster kernel accounts for probabilistic similarities at small and large scales
between all labeled samples along the data manifold. Note that finding a proper kernel is
equivalent to learn metric relations in the manifold, which are defined through a generative
model learned from the data. The PCK kernel generalizes previous approaches based on mul-
tiscale cluster kernels. For example, the kernel in Eq. (6.7) reduces to the approach in (Tuia and
Camps-Valls, 2011) when only the cluster assignment with maximum posterior probability is
considered (hard or crisp clustering). As we have explained before (Section 5.3), the PCK can
be related to the family of Fisher’s kernels (Jaakkola and Haussler, 1998; Chapelle et al., 2003).
Nonetheless, the kernel has the very important advantage that it does not assume an ad hoc
parametric form or sophisticated priors and thus is more flexible and general.

A toy example of the three kernels involved in the semisupervised proposal is shown in Fig. 6.1
for a two-dimensional binary classification problem. One could think that the probabilistic
cluster kernel alone constitute a good enough metric to find better projections. However, this
issue strongly depends on the number of both labeled and unlabeled samples. Figure 6.2[left]
shows the results in this toy example for a fixed number of labeled samples and varying



6.2 SEMISUPERVISED KERNEL PARTIAL LEAST SQUARES (SS-KPLS) 93

10
−1

10
0

18.5

18.6

18.7

18.8

18.9

19

19.1

19.2

β

A
lig

nm
en

t

 

 
u=10
u=100
u=300
u=500

100 200 300 400 500

50

100

150

200

250

300

Unlabeled samples, u

La
be

le
d 

sa
m

pl
es

, l

Optimal β, K=β Ks + (1−β)Kc

 

 

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.2: Left: The alignment obtained with several values of β (weight of linear combination kernels)
for a fixed number of labeled samples ` = 100 and different unlabeled samples, u = {10, 100, 300, 500}.
Right: Surface of optimal values of β for different number of labeled and unlabeled samples.

number of unlabeled samples, u: as u is increased the optimal β becomes lower, and hence
the probabilistic cluster kernel becomes relatively more important. Furthermore, we show in
Fig. 6.2[right] the surface of optimal β values for different numbers of labeled and unlabeled
samples. It is worth noting that the RBF kernel dominates the linear combination (high β val-
ues) when few data (less than 100 labeled and less than 200 unlabeled samples) are available,
while for many data available, the PCK kernel becomes more important (low β values). This is
due to the fact that the PCK kernel is not able to capture well information of the manifold data
using low number of samples (labeled and unlabeled) since the clusters obtained by GMM are
not representative of the data manifold.

6.2 Semisupervised Kernel Partial Least Squares (SS-KPLS)

This section presents the experimental setup used in the proposed SS-KPLS (Izquierdo-Verdiguier
et al., 2014a, 2012b) applied to remote sensing image classification and biophysical parame-
ter retrieval problems. For the classification setting, we show results in three multispectral
and hyperspectral images acquired by different sensors and involving the identification of
different numbers and types of land cover classes. For the biophysical parameter retrieval,
we consider two particularly relevant problems for land and ocean monitoring: the estima-
tion of oceanic chlorophyll concentration, and of chlorophyll, LAI and fPAR for vegetation
monitoring. The method is compared against standard linear and nonlinear feature extrac-
tion approaches in terms of accuracy and robustness, and expressive power (compactness
of the information). Matlab code and demos are available for the interested reader in http:

//isp.uv.es/code/sskpls.html.
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Original Data

PCA (85.42%) PLS (86.16%) KPCA (86.84%)

KPLS (87.11%) KcPLS (99.21%) SS-KPLS (99.47%)

Figure 6.3: Projections extracted by different linear and nonlinear feature extraction methods in a binary
problem. We indicate the overall accuracy in the test set for comparison. Note that the SS-KPLS method
reduces to KPLS for β = 1 and KcPLS method for β = 0.

For all experiments, we used ` labeled samples and u unlabeled samples in order to define
the (G · Q) cluster centers and the pixel posterior probabilities for each example xi, i.e. πi. In
all cases, we used G = Q = 20 and the parameters β and σ were optimized by N-fold cross-
validation. Given the low number of examples, a common prescription in machine learning is
to use a low number of folds; in our case we optimized β and σ with N = 3 folds. The param-
eter β was tuned between (0, 1) in steps of 0.05 and σ was varied between [0.05, 2]× s (s here
represents the mean distance between all labeled data) for each number of extracted features.
Once the mixture models are obtained and stored, the posterior probabilities or membership
of the samples to each cluster are computed and Kc is constructed following (6.7). The same
assignment is used for predicting the output (class membership for classification or estimated
output variable for regression) of an unknown test pixel.

The projections in feature space for new data X∗ involve the two operations described in Sec-
tion 3.3. We used Eq. (3.2) to obtain them. We used this projected data (scores in the statistics
literature) in a simple linear regression model, Ŷ = P(Φ̃∗)W. The weight vectors are obtained
through the normal equations, W = P(Φ̃∗)†Ỹ, where † is the Moore-Penrose pseudoinverse.
This solution is valid for multioutput regression problems. For the particular case of classifica-
tion, the linear model is followed by a “winner-takes-all” activation function. We used different
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quality measures to test model’s accuracy. In all cases, the accuracy values were computed over
a total of u unlabeled samples for each number of extracted features. For classification, we used
the overall accuracy OA[%] and the estimated Cohen’s kappa statistic κ. For regression prob-
lems, we evaluated the accuracy of the estimations through the RMSE and the MAE; the bias
through the ME; and the goodness-of- fit through R.

Figure 6.3 illustrates the features extracted by linear and kernel feature extraction methods in
the nonlinear toy classification problem in a two-dimensional space. Linear methods fail in
finding good projections since they cannot cope with the nonlinear nature of the data distribu-
tion. Kernel methods find nonlinear projections that better separate the data. The solution of
KPCA does not allow to linearly separate the data. This is due to the fact that it becomes very
difficult to tune the kernel parameter without labeled data, as previously studied in (Braun
et al., 2008). Such problem should be alleviated with KPLS but tuning the parameter is ham-
pered by the low number of labeled data. The PCK kernel Kc included in the KPLS method
projects the original data such that they become linearly separable. The combination of the
supervised and unsupervised kernels in KPLS refines the decision boundaries.

6.2.1 Semisupervised feature extraction for classification

This subsection presents the results obtained by applying the proposed SS-KPLS technique
to remote sensing multispectral and hyperspectral image classification. The next subsection
details the data used in the experiments. Then, we focus our attention on the accuracy and
robustness of the proposed algorithm in terms of the number of extracted features. Finally, we
analyze the eigenspectrum, structure, and information content of the derived kernels.

Data

The first image dataset consists of 4 spectral bands acquired on a residential neighborhood of
the city of Zürich by the QuickBird satellite in 2002. The portion of the image analyzed has
a size of 329× 347 pixels. The original image has been pansharpened using a Bayesian data
fusion method (for more information see (Fasbender et al., 2008)) to attain a spatial resolution
of 0.6 m. Nine classes of interest have been defined by photointerpretation. According to the
good results obtained in previous studies (Tuia et al., 2010), a total of 18 spatial features ex-
tracted using morphological opening and closing (Serra, 1988) have been added to the spectral
bands, resulting in a final 22-dimensional vector.

The second image was acquired by the DAIS7915 sensor over the city of Pavia (Italy), and con-
stitutes a challenging 9-class urban classification problem dominated by structural features and
relatively high spatial resolution (5-meter pixels). Following previous works on classification
of this image, we took into account only 40 spectral bands in the range [0.5, 1.76] µm, and thus
skipped thermal and middle infrared bands above 1958 nm.
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Figure 6.4: Comparison between different feature extraction methods (linear and nonlinear) using the
overall accuracy versus the number of extracted features for the Zürich image (left), Pavia image (cen-
ter), Salinas image (left).

The third image is an AVIRIS hyperspectral image acquired over Salinas valley, an agricultural
area of California (USA). A total of 16 crop classes were labeled and 224 spectral bands were
used. This is a high-resolution scene with pixels of 3.7 meters. The high number of spectrally
similar subclasses makes the classification problem very complex.

Results and discussion

For all experiments, we use ` labeled samples per class and u unlabeled samples, being ` = 10
and u = 1710 for all images. In order to avoid biased results, a total number of 10 realizations
is carried out, and the averaged results are shown. We also provide the classification maps and
the accuracies obtained in the whole scenes with the optimal parameters and fixing the number
of extracted features.

We evaluated the accuracy of several methods for a varying number of extracted features: 1)
unsupervised linear, PCA, and its nonlinear version, KPCA; 2) supervised feature extraction
algorithms (PLS and its nonlinear version KPLS); and 3) the different kernels involved in SS-
KPLS. Note that the proposed SS-KPLS generalizes the standard KPLS (when β = 1).

Mean and standard deviation accuracies are shown in Fig. 6.4. In general, nonlinear kernel
methods (KPCA, KPLS and variants) outperform linear approaches (PCA and PLS). The pro-
posed SS-KPLS improves the results of the standard KPLS and the cluster kernel. The gener-
ative cluster kernel yields higher accuracies than the RBF kernel when increasing the number
of features. When a higher number of nonlinear features is extracted, all curves become stable
but the proposed SS-KPLS clearly outperforms the standard PCA in a range between +5-15%,
the more advanced KPCA in a range between +4-15% and KPLS in a range between +3-10%.
The behavior of PCA and KPCA in the Zürich and Salinas images should be analyzed because
higher accuracy is not obtained with higher number of extracted features, revealing a kind
of overfitting problem. This effect has been recently reported in the literature (Braun et al.,
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Figure 6.5: Top to bottom: RGB composite, ground truth and three classification maps along with the
overall accuracy and kappa statistic for the Zürich image (left) for 11 extracted features, Pavia image
(middle) for 16 extracted features and Salinas image (right) for 20 extracted features by linear methods.

2008). This is not the case of the probabilistic cluster kernel Kc. These results are confirmed by
the visual inspection of the classification maps shown in Fig. 6.5 (linear methods) and Fig. 6.6
(nonlinear methods), which confirm qualitatively the quantitative results in which the SS-KPLS
shows a clear and consistent gain over KPLS of about +7% (Zürich), +3% (Pavia), +13% (Sali-
nas). Nevertheless, in some cases, SS-KPLS does not achieve the Kc accuracy since only with
unsupervised information is enough to obtain the higher accuracy.
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Figure 6.6: Top to bottom: three classification maps along with the overall accuracy and kappa statistic
for the Zürich image (left) for 11 extracted features, Pavia image (middle) for 16 extracted features and
Salinas image (right) for 20 extracted features by nonlinear methods.

Figure 6.7 shows the false color composite obtained by the data projections with the four, five
and six features for the Zürich image. As we see, in PLS and PCA we cannot differentiate the
classes. With KPCA and KPLS it is possible to distinguish some classes, as roads, although
with KPCA, they are confused with roofs. We show that the features obtained by KcPLS and
SS-KPLS are visually more discriminant than the obtained by the other methods and we are
capable to distinguish several classes within the image.
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Figure 6.7: False color composite using features 4,5 and 6 for the Zürich image obtained by several
feature extraction methods.

6.2.2 Semisupervised feature extraction for biophysical parameter retrieval

We focus now on two challenging problems of biophysical parameter estimation. In particular,
we first tackle the estimation of oceanic chlorophyll concentration from multispectral MERIS
measurements, and second the retrieval of land-cover biophysical parameters –leaf chlorophyll
content (Chl), leaf area index (LAI), and fractional vegetation cover (fCover)– from CHRIS hy-
perspectral images. In both cases, satellite-derived data and in situ measurements are subjected
to high levels of uncertainty, as well as collinearity between the input features (channels) and
the output target variables. In these difficult scenarios, a proper (robust) feature extraction is
necessary, particularly when their relationship is believed to be nonlinear or the target data are
scarce thus leading to poorly conditioned problems.

Oceanic chlorophyll concentration

The first dataset simulates data acquired by the Medium Resolution Imaging Spectrometer
(MERIS) on board the Envisat satellite (MERIS dataset), and in particular the spectral behavior
of chlorophyll concentration in the subsurface waters. We selected the eight channels in the
visible range (412-681 nm) to be used for retrieval. The range of variation of chlorophyll con-
centration in this dataset is 0.02− 25mg/m3.
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Table 6.1: Estimated results for the oceanic chlorophyll concentration retrieval problem as a function of
the number of extracted features.

Model RMSE MAE |ME| R

PCA (d f = 1) 0.484 0.385 0.005 0.221
PCA (d f = 2) 0.352 0.279 0.007 0.704
PCA (d f = 3) 0.294 0.228 0.006 0.809
PCA (d f = 4) 0.235 0.170 0.006 0.882
PLS (d f = 1) 0.429 0.339 0.008 0.502
OPLS (d f = 1) 0.153 0.109 0.005 0.951

KPCA (d f = 1) 0.486 0.390 0.008 0.194
KPCA (d f = 2) 0.480 0.383 0.015 0.250
KPCA (d f = 3) 0.368 0.292 0.014 0.673
KPCA (d f = 4) 0.363 0.280 0.015 0.682
KPLS (d f = 1) 0.401 0.317 0.022 0.589
KPLS (d f = 2) 0.350 0.278 0.022 0.709
KPLS (d f = 3) 0.339 0.269 0.008 0.730
KPLS (d f = 4) 0.312 0.238 0.005 0.785
KOPLS (d f = 1) 0.143 0.066 0.037 0.961
KcPLS (d f = 1) 0.269 0.198 0.029 0.842
KcPLS (d f = 2) 0.233 0.180 0.044 0.890
KcPLS (d f = 3) 0.225 0.169 0.029 0.901
KcPLS (d f = 4) 0.228 0.171 0.021 0.901
SS-KPLS (d f = 1) 0.296 0.226 0.030 0.804
SS-KPLS (d f = 2) 0.232 0.176 0.048 0.892
SS-KPLS (d f = 3) 0.248 0.182 0.034 0.873
SS-KPLS (d f = 4) 0.225 0.164 0.050 0.901

In this experiment, we evaluate different quantitative measures of accuracy, bias and goodness-
of-fit for a varying number of extracted features. We compare the results obtained by 1) unsu-
pervised linear PCA and its nonlinear kernel version, KPCA; 2) supervised feature extraction
algorithms (PLS and its nonlinear version KPLS); and 3) the different kernels involved in SS-
KPLS. Table 6.1 shows the obtained results with ` = 135 labeled samples and u = 865 unla-
beled samples to construct the cluster kernel Kc. The models have been tested with 4000 labeled
samples. In general, the nonlinear methods obtain better results than linear approaches. The
proposed SS-KPLS reduces the prediction error around 35% with respect to linear PLS and
PCA, and KPCA method. In addition, the proposed semisupervised KPLS reduces the error
about 25% for a given number of extracted features. Note that, the good results obtained with
semisupervised KPLS are mainly due to the cluster kernel function (β values are small) which
in many cases yields very high accuracies working alone (β = 0).
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Figure 6.8: Estimation maps for Chl, LAI and FCV, for the KPLS, KcPLS and SS-KPLS feature extraction
methods with the RMSE for the small area of CHRIS/PROBA image with 4 features.

Biophysical parameter retrieval

For the second dataset, we considered data obtained in the SPectra bARrax Campaign (SPARC)
in 2003 and 2004 in Barrax, Spain. The test area is an agricultural research facility with an extent
of 5× 10km. It is characterized by a flat landscape and large uniform land-use units of irrigated
and dry lands. The vegetation biophysical parameters were measured among different crops
where a large number of samples on an elementary sampling unit (ESU) were taken and av-
eraged for different parameters, obtaining a local characterization of the crops. The Chl was
measured with a calibrated Minolta CCM-200 from 50 samples per ESU. The LAI was derived
from canopy measurements made with a LiCor LAI-2000 at 24 locations per ESU. The fCover
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Figure 6.9: Left: Normalized eigenvalues for all kernels used in the Pavia dataset. Right: ideal and
used kernels, along quantitative measures of error ‖ · ‖F and dependence (HSIC).

was derived from hemispherical photographs taken at the same locations as the LAI measure-
ments. All parameters present standard errors between 3% and 10%. For both years, we have a
total of nine crop types (garlic, alfalfa, onion, sunflower, corn, potato, sugar beet, vineyard, and
wheat), with field-measured values of LAI that vary between 0.4 and 6.3, Chl between 2 and 55
µg/cm2, and fCover between 0 and 1. This makes the dataset representative and well-suited to
multioutput regression studies. Simultaneously to the ground sampling, hyperspectral images
were collected by the CHRIS/PROBA spaceborne sensor. The data provided have 62 bands in
the visible and near-infrared (NIR) region (400− 1000 nm) at a spatial resolution of 34m. The
images selected for this experiment were those acquired from the nadir view sharing similar
observation configuration in order to minimize angular and atmospheric effects. The images
were geometrically and atmospherically corrected using the official CHRIS/PROBA Toolbox
for BEAM (Alonso et al., 2009). Finally, the database consists of 135 labeled pixels of Chl, LAI,
and fCover measurements and their associated 62 CHRIS reflectance channels. We used ` = 30
and u = 2437 pixels to construct the cluster kernel and 105 pixels to test the models.

The obtained maps of vegetation area and RMSE for the three considered biophysical parame-
ters are shown in Fig. 6.8. In the three cases, the use of the kernel combination reports slightly
better results. Even if the gain is not very high with regard the standard KPLS approach (about
+2%), we should note that 1) the built Kc could be used directly for retrieval without the need of
tuning kernel parameters; 2) the probabilistic cluster kernel leads to higher RMSEs than KPLS
for Chl and fCover but, since the solutions are complementary, the SS-KPLS benefits from the
combination, and 3) the combination makes the final model more robust for LAI as well.
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6.2.3 Analysis of the kernels

Figure 6.9 shows the eigenvalues of the best kernels for the Pavia image. The eigendecompo-
sition of the proposed semisupervised kernel K shows a trade off between the RBF and the
cluster kernel, as expected. It is worth noting that the eigenvalues of cluster kernel (blue line)
show a slower decay because the kernel is indeed quite blocky and sparse. On the other hand,
the RBF kernel shows a heavier tail. The introduction of the cluster kernel can be casted as
an extra regularization of the RBF kernel. The right plots present the used kernels and their
similarity to the ideal one, Kideal = YY>. Two quantitative measures are given: the Frobenius
norm of the difference of these two kernels, ‖ · ‖F, and the HSIC between them (Camps-Valls
et al., 2010). The proposed kernel K aligns well with the ideal kernel (lower error, higher de-
pendence), and takes advantage of the sharper structure learned by the PCK.

6.3 Semisupervised Kernel Orthonormal Partial Least Squares (SS-
KOPLS)

In the previous section, we proposed the SS-KPLS method. Nevertheless, in the view of the
results obtained in supervised kernel feature extraction in chapter 4, we decided to extend
the SS-KPLS proposal to a semisupervised kernel orthonormalized partial least squares (SS-
KOPLS) algorithm (Izquierdo-Verdiguier et al., 2012a) for nonlinear feature extraction. This
is in principle intended to improve results with a reduce number of components, but also to
study the impact of unlabeled samples to alleviate the eventual overfitting observed in KOPLS.
The method finds projections that minimize the least squares regression error in Hilbert spaces
and incorporates the wealth of unlabeled information to deal with low-sized labeled datasets.
The method relies on combining a standard RBF kernel using labeled information, and a gen-
erative kernel learned by clustering all available data. The structure and information content
of the derived kernels will be studied. The effectiveness of the method will be illustrated in
classification and biophysical parameter estimation tasks using standard UCI databases and
high-dimensional hyperspectral satellite images. We will study performances in terms of ex-
pressive power of the extracted nonlinear features.

Figure 6.10 illustrates the projected data by KPLS and KOPLS in a nonlinear toy classification
problem in supervised and semisupervised settings. For both methods, the standard super-
vised approach fails in unfolding the data distributions, mainly because of the low number of
labeled samples. On the contrary, the probabilistic cluster kernels Kc offer better projections,
and the semisupervised approach optimizes the combination leading to better data separabil-
ity. This feature is more noticeable in the case of the proposed SS-KOPLS over its SS-KPLS
counterpart.
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Figure 6.10: Projections extracted by different nonlinear feature extraction methods in a toy problem.

6.3.1 SS-KOPLS for image classification

We apply the SS-KOPLS technique to the six UCI databases1 (see Table 6.2), a remote sensing
multispectral image classification problem. The image was acquired by the DAIS7915 sensor
over the city of Pavia (Italy), the same that has been described in the data section of SS-KPLS
(Section 6.2.1). And a RGB composite is shown in Fig. 6.11[right].

For our experiments, we compare KPLS and KOPLS families in the previous datasets. We used
different number of labeled, `, samples per class and unlabeled, u, samples to illustrate the ro-
bustness to challenging poorly sampled classification problems (see Table 6.2). In the case of
the Pavia image, we only used ` = 4 samples per class, and u = 1710 samples to define the
(Q · G) clusters. In all problems, we used Q = G = 20. Once the mixture models are computed
and stored, their sample posterior probabilities πi are estimated and Kc is constructed accord-
ingly. The same assignment is used for predicting the class membership of an unknown test
sample. For Ks we used in all experiments an RBF kernel of width σ. A 3-fold cross-validation

1http://archive.ics.uci.edu/ml/datasets.html
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Table 6.2: UCI database description (d: number of dimensions, nc: number of class, l: number of labeled
samples, and u: number of unlabeled samples).

Database n d nc l u

Ionosphere 351 33 2 10 241
Letter 20, 000 16 26 130 4, 940
Pendigits 10, 992 16 9 45 1, 710
Pima-Indians 768 8 2 10 380
Vowel 990 12 10 50 430
wdbc 569 30 2 10 414

Table 6.3: Kappa statistic for different UCI databases.

Database KPLS KOPLS
d f β Ks Kc K β Ks Kc K

Ionosphere 1 0.80 0.51 0.53 0.58 0.90 0.55 0.55 0.58
2 0.80 0.55 0.56 0.59 – – – –

Letter 1 0.95 0.03 0.03 0.03 0.60 0.02 0.02 0.01
10 0.90 0.36 0.31 0.35 0.80 0.32 0.38 0.34
20 0.50 0.44 0.46 0.46 0.25 0.47 0.52 0.54

Pendigits 1 0.05 0.11 0.11 0.11 0.05 0.12 0.12 0.11
8 0.15 0.78 0.86 0.86 0.25 0.87 0.92 0.92

20 0.20 0.85 0.92 0.92 – – – –
Pima 1 0.70 -0.09 0.26 -0.05 0.85 0.24 0.07 0.25

2 0.70 0.10 0.24 0.12 – – – –
3 0.75 0.16 0.24 0.19 – – – –

Vowel 1 0.20 0.10 0.09 0.09 0.35 0.11 0.07 0.04
9 0.75 0.51 0.30 0.50 0.65 0.58 0.39 0.57

20 0.80 0.58 0.34 0.54 – – – –
wdbc 1 0.05 0.84 0.88 0.88 0.05 0.75 0.89 0.89

2 0.05 0.75 0.89 0.89 – – – –
3 0.05 0.75 0.89 0.89 – – – –
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Figure 6.11: Overall accuracy (left) as a function of extracted nonlinear features for the Pavia image
(right).

procedure was used to find the optimal σ and β parameters; σ was varied between [0.5, 2]× s,
where s represents the median distance between all labeled data, and β between [0, 1] in steps
of 0.05 for each number of extracted features. We evaluated the accuracy of KPLS and KO-
PLS methods for a varying number of extracted features, and for scenarios involving purely
supervised, unsupervised and semisupervised feature extraction learning, which is controlled
by the value of β ∈ [0, 1]. We must remember that KOPLS can extract a maximum number of
features given by the rank of KxỸ, while KPLS is limited by the rank of Kx, which can be low
for reduced-sized datasets. Since cross-validation requires splitting the `-samples datasets into
smaller subgroups, it may happen that d f < ` for KPLS and d f < min(nc, `) for KOPLS.

Results for the UCI databases are shown in Table 6.3. The proposed semisupervised approach
provides the best results in all databases except for Vowel, and SS-KOPLS outperforms KPLS
in five out of six databases. Actually, inferior yet quite competitive results to KPLS are ob-
tained only for the Ionosphere dataset. In general, the optimal β parameters for SS-KPLS and
SS-KOPLS follow similar trends, but no clear dependence is observed with the dimensionality
or the number of classes. The average gain of the proposed SS-KOPLS over its counterpart
SS-KPLS is about +5%.

Figure 6.11 shows the results for the hyperspectral Pavia image for different number of ex-
tracted features. The proposed KOPLS methods generally lead to higher accuracy with lower
number of features than KPLS methods, e.g. SS-KOPLS achieves 80% accuracy with three fea-
tures only, while SS-KPLS needs at least six features. It is worth noting that the cluster kernel
Kc-OPLS alone yields very good results for low number of features, and the combination with
the supervised kernel gives rise to an improved semisupervised feature extractor.
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Table 6.4: Estimated results for the oceanic chlorophyll concentration retrieval problem as a function of
the number of extracted features.

Model KPLS KOPLS
d f RMSE MAE |ME| R RMSE MAE |ME| R

Ks

1 0.401 0.317 0.022 0.589 0.143 0.066 0.037 0.961
2 0.350 0.278 0.022 0.709 – – – –
3 0.339 0.269 0.008 0.730 – – – –
4 0.312 0.238 0.005 0.785 – – – –

Kc

1 0.269 0.198 0.029 0.842 0.214 0.157 0.012 0.916
2 0.233 0.180 0.044 0.890 – – – –
3 0.225 0.169 0.029 0.901 – – – –
4 0.228 0.171 0.021 0.901 – – – –

K

1 0.296 0.226 0.030 0.804 0.141 0.093 0.009 0.959
2 0.232 0.176 0.048 0.892 – – – –
3 0.248 0.182 0.034 0.873 – – – –
4 0.225 0.164 0.050 0.901 – – – –

6.3.2 SS-KOPLS for biophysical parameter retrieval

This subsection evaluates the biophysical parameter retrieval task. We compare the results
obtained by KOPLS methods using 1) the standard RBF (Ks), 2) the PCK (Kc) and, 3) semisu-
pervised combination (K) to two different datasets: data acquired by MERIS, (MERIS dataset)
and data obtained in SPARC campaign (see Section 6.2.2). In both cases, we used G = Q = 20
and the parameters β and σ were optimized by cross-validation, as the SS-KPLS case. We mea-
sured the error of estimations (RMSE and MAE), the bias (ME) and the goodness-of- fit (R).

Table 6.4 shows the MERIS dataset results obtained with ` = 135 labeled samples u = 865
to construct the Kc kernel and 4000 labeled samples to test the models. The KOPLS methods
outperform their respective KPLS methods. Note that the SS-KOPLS method obtains the best
results reducing the SS-KPLS error to nearly 50% with lower number of extracted features. In
contrast to SS-KPLS, the goods results obtained with semisupervised KOPLS are mainly due to
the RBF kernel function (β = 0.95) and not due to the PCK.
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Figure 6.12: Estimation maps for Chl, LAI and FCV, for the KOPLS, KcOPLS and SS-KOPLS feature
extractor methods with the RMSE for the small area of CHRIS/PROBA image with just one feature.

The comparison among the KOPLS methods using the SPARC dataset is shown in figure 6.12.
The figure illustrates the estimation maps for Chl, LAI and FVC and the RMSE with 1 feature
of vegetation area. We have used the same experimental setup, labeled and unlabeled pixels
to build the Probabilistic Cluster Kernel and number of training and test samples to obtain
the accuracy in the case of SS-KPLS (6.8). Comparing the RMSE values of different KOPLS
methods, the results obtained with semisupervised KOPLS reduce the prediction error around
13% with respect to standard KOPLS and 15% with respect to KcOPLS. The use of the kernel
combination reports slightly better results excluding the fCover results.
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Figure 6.13: Kernel matrices along with quantitative measures of error ‖ · ‖F and dependence (HSIC)
with the ideal kernel used in KPLS (top) and KOPLS (bottom) methods.

6.3.3 Analysis of the kernels

Figure 6.13 shows the used kernels and their similarity to the ideal one, Kideal = ỸỸ>, for the
case of d f = 4, where the maximum difference in accuracy between SS-KOPLS and SS-KPLS ap-
pears for the Pavia image. Two quantitative measures are given: the Frobenius norm of the dif-
ference, ‖ · ‖F, and the Hilbert-Schmidt Independence Criterion (HSIC) between them (Camps-
Valls et al., 2010). The proposed semisupervised KOPLS aligns well with the ideal kernel (lower
error, higher dependence), and takes advantage of the sharper structure learned by the cluster
kernel.

Finally, note that KOPLS maximizes the covariance between the projected data in H and the
labels. This can be easily shown to be equivalent to maximize statistical dependence with HSIC
working with projected data. HSIC corresponds to estimate the norm of the input-output cross-
covariance inH, whose empirical (biased) estimator is ‖Cxy‖2

H = 1
l2 Tr(KxKy) = 1

l2 Tr(Φ̃Φ̃
>ỸỸ>).

Now, by projecting mapped data to a subspace ofH, Φ̃′ = Φ̃U, the equivalent subspace projected
HSIC estimator, ‖Cx′y‖H = 1

l2 Tr(Φ̃′Φ̃′>ỸỸ>), whose maximization reduces to solve the problem
in (3.17), but without the orthogonality constraint.
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6.4 Summary

This chapter proposed a novel semisupervised kernel feature extraction techniques for remote
sensing image classification and retrieval of biophysical parameters. We used a convex combi-
nation of two kernels: one dedicated to labeled samples and the other a multiscale probabilistic
cluster kernel. The kernel can be plugged in any kernel method for feature extraction, and is
specifically devised to address problems where the number of training samples available is
relatively small. Note that these problems are common in operational applications of remote
sensing data processing. In such situations, the combination of labeled and unlabeled samples
in a semisupervised framework can significantly improve the representation of data. The main
limitation is that the number of unlabeled samples used to estimate the probabilistic cluster
structure via the EM-GMM algorithm should be high enough, which is usually the case in re-
mote sensing applications.

The first part of the chapter presented the SS-KPLS method. In classification tasks, SS-KPLS
was more influenced by PCK generated from unlabeled samples than RBF kernel using only la-
beled samples. Even, in many cases, PCK yielded very high accuracies working alone without
supervision at all. In regression tasks, the results showed an improvement of SS-KPLS results
for certain values of d f over those obtained with probabilistic and RBF kernels. Nevertheless,
neither SS-KPLS nor KcPLS have managed to overcome the standard KOPLS results. This made
us think of the possibility of extending the semisupervised proposal to KOPLS method. Using
SS-KOPLS, good results were obtained on both standard databases, and in hyperspectral im-
age processing. In classification problems, KOPLS methods obtained in general better results
than KPLS and their variants. In regression tasks, KOPLS methods were applied to retrieval
of oceanic chlorophyll using MERIS database and to estimate Chl, LAI and fCover of SPARC
campaign. In both cases, SS-KOPLS obtained the lower RMSE in test data, except for fCover
estimation of SPARC in which KcOPLS method obtained the best prediction value.



Chapter 7
Conclusion and Discussion

This Thesis has presented different kernel feature extraction methods for remote sensing analy-
sis. We have organized the Thesis in three parts: supervised, unsupervised and semisupervised
approaches. In the following paragraphs, several remarks and conclusions are drawn from the
different developments in the Thesis.

One of the main conclusions is that, in order to choose the most suitable feature extraction
method among the available ones, it is very important to first study the main characteristics
of the data distribution (linear or nonlinear, Gaussian or not, dimensionality and number of
labeled and prior information) to choose the most suitable method. Through toy examples,
standard databases and in many real remote sensing classification and regression problems,
we have observed that, in general, the KOPLS projections stood out among all methods in
terms of accuracy and reduced number of discriminant features. This main conclusion has to
be further clarified, as it strongly depends on the amount and characteristics of the labeled data
and a priori information.

Supervised kernel feature extraction. We have studied classification and regression problems
using real and standard databases to measure the quality of different supervised feature extrac-
tion methods. We have compared these methods with classical unsupervised remote sensing
methods, such as PCA and KPCA. We have observed that the KOPLS method usually obtains
better results than the other methods using a lower number of extracted features, not only in
the regression but also in the classification scenario. This improvement of the results, espe-
cially in the regression cases, is due to the fact that KOPLS and OPLS find the projections that
minimize the Mean Square Error (MSE). Consequently, a much more discriminative projection
vectors are extracted by the KOPLS method over unsupervised methods as KPCA, and over
other supervised kernel methods optimizing alignment measures such as KPLS. However, we
want to rise a concern about the OPLS and KOPLS considering that they may incur in overfit-
ting problems when dealing with low-sized datasets and few classes.
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We have studied some alternatives to improve the accuracy and robustness of the models. One
of them is to reinforce invariance to factors affecting the performance by means of including
artificial examples. We have introduced a simple method to include data invariances in SVM
remote sensing image classification and extended this analysis to kernel feature extraction.
Good classification accuracy was obtained in general when few labeled samples were available
to train the models. Interestingly, despite of containing more support vectors, we can confirm
that the obtained classifiers revealed in some cases enhanced sparsity and robustness proper-
ties. We consider that the promising results obtained here open a new and interesting research
line for the future.

The inclusion of the virtual samples into the kernel nonlinear feature extraction has allowed us
to study the performance of the feature extraction methods using virtual samples. We observed
that the kernel constructed using virtual samples was decomposed into more independent fea-
tures than the kernel constructed by standard samples and therefore carried less redundant
information. We observed that independence between features does not guarantee an improve-
ment of the classification accuracy. KPCA did not improve the classification, being the method
that obtained the most independent features. Finally, an important conclusion is noticeable
improvement of KOPLS encoding invariances, which suggests that including prior knowledge
in KOPLS may help to reduce the overfitting issue when when few training samples are used.

The observed facts in the analysis of supervised methods and their comparison with the PCA
and KPCA methods confirm that, although they both are the most widely used methods in
remote sensing, they are not the most appropriate methods when labeled samples are avail-
able. In this regard, we evaluated several supervised kernel feature extraction alternatives in
different databases and applications, and we showed the benefits of the supervised KPLS and
KOPLS methods.

Unsupervised kernel feature extraction. Two approximations to unsupervised learning with
kernel feature extraction have been induced in this Thesis: an information theoretic kernel
method for pdf estimation, and a generative kernel for clustering. The first proposal was
based on KECA, a kernel feature extraction that seeks for projections that maximize the en-
tropy description. An optimization for searching the optimal components was presented called
OKECA. While KECA reduces to sort the kernel eigenvectors by entropy, OKECA explicitly
searches for the features that retain most informative content. We have illustrated the ability
of OKECA to retain more information in pdf estimation and classification on both synthetic
and real examples. Results consistently showed that OKECA outperforms KECA in terms of
information content and robustness. In fact, in all experiments, a single OKECA feature retains
almost all the relevant information. Furthermore we have analyzed the effect of using different
unsupervised rules to fit the RBF kernel lengthscale parameter on KECA and OKECA perfor-
mances. And in general, the maximum likelihood approach showed the best performance.
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In order to avoid the unsupervised methods problem of adjusting the kernel parameters, we
introduced a very simple yet efficient probabilistic cluster kernel. Comparison to the stan-
dard RBF kernel function (and other kernels such as Fisher’s and Jensen-Shannon’s) revealed
very good capabilities for data description and adaptation to the local and global structure of
the manifold. We analyzed the spectral decomposition and explored the cluster structure of
eigenvalues and eigenvectors. The kernel structure revealed sharper and more blocky, and
better aligned with the ideal kernel. Finally, we studied the proposed kernel for nonlinear clus-
tering. The use of canonical k-means substantially improved the results obtained with other
approaches in several synthetic and real remote sensing examples.

Semisupervised kernel feature extraction. The last approach combined labeled and unlabeled
data. Based on the previous studies and the use of the probabilistic cluster kernel, we pro-
posed novel semisupervised kernel feature extraction techniques. The methods are specifi-
cally devised to address problems where the number of training samples available is relatively
small. In such situations, the combination of labeled and unlabeled samples in a semisuper-
vised framework can significantly improve the representation of data. The main limitation is
that the number of unlabeled samples used to estimate the probabilistic cluster structure via
the EM-GMM algorithm should be high enough.

We applied the developed SS-KPLS and SS-KOPLS methods in remote sensing image classifi-
cation and retrieval of biophysical parameters, obtaining good results on multispectral and hy-
perspectral datasets. The proposed methods perform better than supervised and unsupervised
linear and nonlinear approaches. In both cases SS-KOPLS performed better than SS-KPLS in
general but performance depends again on the problem characteristics (mainly on the number
of samples and classes). The main advantage of KOPLS over KPLS relates to the fact that fewer
(but more informative) features can be extracted, which is the final objective in feature extrac-
tion. But this is at the same time an important limitation in problems with few output variables.

Summarizing, different kernel feature extraction algorithms have been developed for the differ-
ent approaches (unsupervised, supervised and semisupervised). All the proposed algorithms
have been tested in several remote sensing scenarios: classification, regression, clustering, pdf
estimation or in presence of distorted distributions, obtaining most of the times better results
than the classical methods.

Finally, we would like to close the discussion by looking back to the hypotheses raised at the
beginning of the Thesis. According to the developments and experimental evidences observed,
we can conclude that most of the hypotheses are correct:
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1. Remote sensing data live in low-dimensional manifolds that can be learned by kernel
feature extraction methods, either looking for a cluster (multiscale) structure or for
the shape of the pdf (entropy).

2. Prior knowledge either by invariance encoding or by the information contained by
unlabeled samples act as an efficient regularization way and generally improve the
results.
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7.2 Visits to national and international research centers

This thesis was carried out with the collaboration of national and international researchers.
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• Four months in the Remote Sensing Laboratory at University of Trento (Italy) headed by
Prof. Bruzzone. Tasks involved feature extraction methods and image classification.
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los III of Madrid (Spain) under the supervision of Prof. Arenas-García. Tasks involved
extension to feature extraction methods, especifically the KOPLS method.

• Three months in the Department of Physics and Technology at University of Tromsø (Nor-
way) under supervision of Prof. Jenssen. During this period, the PhD candidate was
introduced into Information Theoretic Learning.
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Appendix A
Linear Algebra Tools

Our aim here is to present the main matrix factorization fundamentals required to understand
better the thesis due to the large number of existing matrix factorization methods.

A.1 Eigenvalue-vector decomposition

Let A be a square (N × N) matrix, it is possible to compute its spectral decomposition into
eigenvalues and eigenvectors (A = U−1ΛU) if A satisfies the linear equation:

AU = ΛU (A.1)

where U is the matrix whose columns are the eigenvectors (ui) of A and Λ is a diagonal matrix
whose principal diagonal is formed by the eigenvalues (λi) of A. The equation (A.1) is known as
the standard eigenvalue problem. If U is an orthonormal matrix (U>U = 1) then A is orthogonally
diagonalizable: A = U>ΛU. There exist many ways of solving the equation (A.1) depending
on the matrix size and the matrix rank. If the matrix is small, the standard way is by using
the characteristic polynomial. Since the matrix sizes in the present thesis are not small, we will
focus on the approaches to solve the eigenvalue problem with high matrix sizes. The algorithm
used to solve the PCA and KPCA problems has been the QR decomposition which is the one
by MATLAB software.

A.2 Generalized eigenvalue problem

Let A and B be two square (N × N) matrices, then it is possible to make their spectral decom-
position into eigenvalues and eigenvectors if A and B satisfy the general eigenvectors equation:

AU = ΛBU (A.2)

where U is the eigenvectors matrix whose columns are the eigenvectors (ui), and Λ is a diag-
onal matrix whose principal diagonal is formed by the eigenvalues (λi). The equation (A.2) is
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equivalent to:

u = arg max
u

u>Au

subject to: u>Bu = I,
(A.3)

and equivalent to:

(B−1/2AB1/2)w = λw

being u = B1/2w
(A.4)

If matrix B is not a full rank matrix, we use the decomposition theorem to calculate the eigende-
composition of matrix B−1A (Demmel et al., 2000).

A matrix is similar to other if and only if exists a matrix Q such that A′ = Q>AQ. If two
matrices (A′ and A) are similar then the eigenvalues and eigenvectors are the same for both.
Let λi be an eigenvalue of A, then:

∣∣A′ − λiI
∣∣ = 0→

∣∣∣Q>AQ− λiI
∣∣∣ = 0→

∣∣∣Q>AQ− λiQ>IQ
∣∣∣ = 0∣∣∣Q>∣∣∣ |A− λiI| |Q| = 0→

∣∣∣Q>∣∣∣ |Q| |A− λiI| = 0→ |A− λiI| = 0
(A.5)

Therefore, in the case of the general eigenvectors equation, we can use a similar matrix to convert
it into a standard eigenvalue problem without problems using the inverse of B. Let B′ = U>BU be
a similar matrix of B, where U is the eigenvectors matrix of B. And let A′ = U>AU be a similar
matrix of A. It is fulfilled that:

B′−1A′ = (U>BU)−1(U>AU) = U−1B−1(U>)−1U>AU = U>B−1UU>AU = U>B−1AU,

that is, the eigenvalues and eigenvectors of B−1A are the same than the eigenvalues and eigen-
vectors of B′−1A′. The last expression does not raise any problem with the inverse of B′ since it
is a non-singular matrix.

A.3 Singular value decomposition

Let A be a matrix (N × M), the Singular Value Decomposition (SVD) is a factorization of the
matrix in singular values and singular vectors that consists on: A = UΣV where U ∈ RN×N

is made up of unit eigenvectors associated with non-zero eigenvalues of AA>, V ∈ RM×M is
made up of unit eigenvectors associated with non-zero eigenvalues of A>A, and Σ is a diagonal
matrix that contains the Singular Values of A sorted in descending order. The Singular Values
are the square root eigenvalues of AA>. We can express also the SVD in vectorial from: A =

∑
d f
i=1 λiuiv>i .
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A.4 Deflation

One way of solving either the standard eigenvalue problem, the Generalized eigenvalue problem or
the SVD, is using iterative methods. These methods consist in approximating successively the
solution by means of random initializations. There exist different iterative methods but here
we focus on the deflation method. The deflation is a transformation of a symmetric matrix
by means of extracting the information that the matrix contains itself about the corresponding
eigenvector. The deflation consists of:

A← A− λuu> (A.6)

If we apply the eigenvector over the deflation matrix: Au = Au− λuu>u = Au−Auu>u =

Au−Au = 0 since u is a normalized vector. Therefore, the deflation is a transformation that
keeps the eigenvector of the matrix while reduces the corresponding eigenvalue to zero without
modifying the remainder.
Let u1 and u2 be eigenvectors of the matrix A associated to eigenvalues λ1 and λ2, then:

Au1 = λ1u1

Au2 = λ2u2
(A.7)

as u1 and u2 have associated different eigenvalues. According to the eigenvalues properties, u1

and u2 are orthogonal. Repeating this procedure, we find the largest eigenvalue (λ1) of A.
Let B = A− λ1u1u>1 be the matrix deflation of matrix A. Then,

Bu2 = λ2u2 → (A− λ1u1u>1 )u2 = λ2u2

Au2 − λ1u1u>1 u2 = λ2u2

as: u>1 u2 = 0→ Au2 = λ2u2

(A.8)

i.e., the second eigenvalue of A (λ2) is also an eigenvalue of B in spite of we make the deflation
transform.

In the case of PCA and KPCA methods, both methods need to solve the standard eigenvalue
problem, and the deflation transform is:

PCA: Cxx ← Cxx − λiuiu>i , i = 1, . . . , d f

KPCA: Kxx ← Kxx − λiuiu>i , i = 1, . . . , n
(A.9)

where d f is number of dimensions and n is number of samples.

When we find a Generalized eigenvalue problem, we know that matrix (B−1/2AB1/2) (Eq. (A.4))
can be decomposed in eigenvalues and eigenvectors as:

(B−1/2AB1/2) =
d f

∑
i=1

λiuiu>i =
d f

∑
i=1

λiB1/2wiw>i B1/2
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so

A =
d f

∑
i=1

λi(Bwi)(wiB)>,

then, the deflation transform is:

A← A− λi(Bwi)(wiB)>. (A.10)

In the case of the methods that need to solve the generalized eigenvalue problem (OPLS and its
kernel version approach), the deflation transform is:

OPLS: A = CxyC>xy and B = Cxx then,

CxyC>xy ← CxyC>xy − λiCxxuiu>i C>xx

KOPLS: A = K̃xK̃yK̃x and B = K̃xK̃x then,

K̃xK̃yK̃x ← K̃xK̃yK̃x − λiK̃xK̃xuiu>i K̃xK̃x.

(A.11)

A.5 Iterative power method

Alternatively, the eigenvectors and eigenvalues can be obtained using the iterative power method.
This method a finds convergent sequence by means of we can solve the eigendecomposition prob-
lem or SVD equation.

Let A ∈ Rn×n be a diagonalizable matrix and its eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|. Let
B = {x1, . . . , xn} ∈ Rn a vectors bases that are the eigenvectors associated to |λ1| , |λ2| , . . . , |λn|.
It verifies that A2xi = A(Axi) = Aλixi = λiAxi = λiλixi = λ2

i xi and it is easy to proof that
Akxi = λkxi.

Proof. Select a random vector z ∈ Rn defined as

zn = Azn−1 = · · · = Anz0. (A.12)

If the coordinates of z0 into the base B are (α1, . . . , αn), we can define z0 = α1x1 + · · ·+ αnxn,
then:

zn = Akz0 = Ak(α1x1 + · · ·+ αnxn) = λk
1α1x1 + · · ·+ λk

nαnxn =

λk
1

(
α1x1 + · · ·+

λk
n

λk
1

αnxn

)
= λk

1

(
α1x1 +

n

∑
i=1

(
λi

λ1
)kαixi

) (A.13)

As λ1 � λi is fulfilled that lim
k→+∞

(
λi

λ1
)k = 0, and then eq. (A.13) is equivalent to lim

k→+∞
(

zk

λk
1
) =

α1x1. If k is very low, equation A.12 reduces to:

Azk = zk+1 ≈ λk+1
1 α1x1 = λ1(λ

k
1α1x1) = λ1zk.

Then, we can conclude that z converges and therefore z is a random vector which is the first
eigenvector associated to λ1 of A.
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We used the deflation and the iterative power method to obtain the principal components of
KPLS method presented in this thesis (Chapter 3) while in the case of PLS the singular value
decomposition was used due to higher computational burden.
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